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Abstract

We survey the literature on methods for inference and learning in Bayesian Networks composed of

discrete and continuous nodes, in which the continuous nodes have a multivariate Gaussian distribution,

whose mean and variance depends on the values of the discrete nodes. We also brie
y consider hybrid

Dynamic Bayesian Networks, an extension of switching Kalman �lters. This report is meant to summarize

what is known at a su�cient level of detail to enable someone to implement the algorithms, but without

dwelling on formalities.1

1 Introduction

We discuss Bayesian networks (BNs [Jen96]) in which each node is either discrete or continuous, scalar or

vector-valued, and in which the joint distribution over all the nodes is Conditional Gaussian (CG) [LW89,

Lau92] i.e., for each instantiation i of the discrete nodes Y, the distribution over the continuous nodes X has

the form f(xjY = i) = N (x; ~�(i);�(i)), where N () represents a multivariate Gaussian (MVG) or Normal

density. (Note that discrete nodes cannot have continuous parents in this model.) This is the most general

kind of BN for which exact inference algorithms are known. A related review article is [RG97].

We start by discussing how to represent the conditional probability distribution of each node, and the joint

distribution this encodes. We then give an example of a hybrid BN before discussing inference and learning

techniques.

2 Representing the local conditional probability distributions

2.1 Discrete nodes

The conditional distribution of a discrete node Xi given its parents Pa(Xi) can be speci�ed by means of a

table (called a Conditional Probability Table or CPT), whose entries are �ijk = Pr(Xi = kjPa(Xi) = j).

Here, j denotes the j'th possible value (instantiation) that Pa(Xi) can have. Clearly we require
P

k �ijk = 1

for all i and j.

2.2 Continuous nodes

The conditional distribution of a continuous node Xi given its parents Pa(Xi) can be speci�ed by a Gaussian

function. We shall start by assuming that Xi and its parents are real valued scalars; then we shall consider

the vector case, and �nally the case where some of the parents are discrete.

2.2.1 Scalar case

Let node Xi have parents Xk1 ; : : : ; Xkp . Then its conditional distribution is

f(xijxk1; : : : ; xkp) == (2��2)�
1
2 exp

�
�

1

2�2
(xi � ui)

2

�
(1)

1This work was supported by grant number 442427-21957 awarded to Prof. Russell
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where ui = �i +
P

k2Pa(Xi)
bki(xk � �k), and the bki are the \weights" or regression coe�cients on the arcs

coming into node i from its parents. Equivalently, we may write

Xi = �i +
X

k2Pa(Xi)

bki(Xk � �k) + �iWi (2)

where Wi � N (0; 1) is a white noise random variable.

Alternatively, we might consider the following model in which we don't subtract o� the parents' means:

Xi =
X

k2Pa(Xi)

bki Xk +Ci (3)

where Ci � N (�i; �i) is a colored noise term.

2.2.2 Vector case

We can imagine a simple extension to the above scheme in which each node can be a vector. In this case,

the conditional distribution becomes

f(xijxk1; : : : ;xkp) = N (xi;ui;�i) = (2�)�
n
2 j�ij

�
1
2 exp

�
�

1
2
(xi � ui)

T ��1
i (xi � ui)

�
(4)

where ui = ~�i +
P

kBki(xk � ~�k). We can view this as multivariate or generalized linear regression:

EXi = ui = ~�i +
X
k

Bki(Xk � ~�k)

or

EXi = ui = ~�i +
X
k

BkiXk

For example, in Figure 1(a), we have

X3 = GX1 +HX2 +C

where C � N (~�i;�i) and we write G = B13 and H = B23 to avoid a profusion of subscripts.

Note that we can expand each vector into its components, yielding the equivalent scalar network shown in

Figure 1(b). However, the vector notation is more compact.

2.2.3 Discrete parent case

If node X has discrete parents Y and continuous parents Z, it has a di�erent mean, covariance and weight

matrix for every value of Y . That is,

f(xjy = i; z) = N (x; ~�i +Biz;�i):

Note that in this case it does not make sense to subtract o� the parents' means, since they may depend on

their discrete parents.
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X_11 X_12 X_21 X_22

X_31

Figure 1: (a) A BN with vector-valued nodes. G and H are matrices. (b) The scalar BN corresponding to

(a) in the case where Xi 2 R2. The solid arcs to Z31 have coe�cients which correspond to the �rst rows of

G and H. That is, bX31
= (G11; G12;H11;H12). Similarly, the dotted arcs to X32 have coe�cients which

correspond to the second rows of G and H.

3 Characterizing the corresponding joint distribution

In the introduction we stated that, if X represents all the continuous nodes and Y represents all the discrete

nodes, then the joint distribution on X given a speci�c Yi is a multivariate Gaussian with parameters, ~�(i)

and �(i). We now show how to to compute these parameters as a function of the the local parameters of

each node.

3.1 Scalar case

We start by considering the scalar case, as in [SK89]. First we compute � and then ~�.

Construct a diagonal matrix containing the variances of each node, D = diag(�2i ), and another containing

the standard deviations, S = diag(�i). Also, construct a matrix B in which the i'th column contains the

weight vector for node i. We assume the nodes are numbered topologically, so B is upper triangular. Now

rewrite Equation 2 in vector form as follows:

X� ~� = BT (X� ~�) + SW

where W = (W1; : : : ;Wn) is a vector of all the noise terms. Let E be the innovations or residuals, i.e., the

di�erences (due to noise) between the values of X actually realized and those predicted by the linear model:

E
def
= SW = (I � BT )(X � ~�):

Since B is strictly upper triangular, (I �BT ) is invertible, so we may write

X� ~� = (I �BT )�1E = UTE = UTSTW

where we have de�ned UT def
= (I � BT )�1, so U = (I �B)�1. Finally, we have

� = Var[X] = Var[X� ~�] = Var[UTSTW] = UTSTVar[W]SU = (UTST )(SU ) = UTDU:
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(This result also holds if we use Equation 3 instead.)

Now we compute the global mean, ~�. If we use Equation 2 (i.e., subtract o� the parents' means), ~� is just

the local means stacked together. To see this, consider the following example, where X1 is the parent of X2.

E [X2] = E [E [X2jX1]] = E [�2 + b(X1 � �1)] = �2

If instead we use Equation 3, we need to traverse the graph in topological order to compute ~�. In our simple

example we have

E [X2] = E [E [X2jX1]] = E [�2 + b12X1] = b12�1 + �2

3.2 Vector case

In this case, D and S will be block diagonal, and B will be block upper triangular. For example, in Figure 1,

we have

D =

0@�X1
0 0

0 �X2
0

0 0 �X3

1A =

0BBBBB@
�X11X11

�X11X12
0 0 0 0

�X12X11
�X12X12

0 0 0 0

0 0 �X21X21
�X21X22

0 0

0 0 �X22X21
�X22X22

0 0

0 0 0 0 �X31X31
�X31X32

0 0 0 0 �X32X31
�X32X32

1CCCCCA
where we have ordered the nodes as X11; X12; X21; X22; X31; X32. The global matrix of weights is

B =

0@ 0 � GT

0 HT

0

1A =

0BBBBB@
0 0 � � G11 G21

0 0 � � G12 G22

0 0 0 0 H11 H21

0 0 0 0 H12 H22

0 0 0 0 0 0

0 0 0 0 0 0

1CCCCCA
where � represents a value that happens to be 0 (because X does not connect to Y), whereas 0 represents a

value that must be 0 (because of the topological ordering).

3.3 Conditional independence properties of Gaussian graphical models

In this section we will show that

Xi ?Xj j (the rest) () Kij = 0 (5)

where K = ��1 is the inverse covariance matrix (also called the precision matrix) of the joint distribution,

and \the rest" means all the other nodes [Whi90, Edw95].

We can represent the joint distribution over all the nodes as

�(x; p; ~�;�) = p� exp�1
2
(x � ~�)T��1(x � ~�) (6)
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where

p = (2�)�jxj=2
j�j�

1
2

is a normalizing constant to ensure
R
x �(x; p; ~�;�) = 1. p, ~� and � are called the moment characteristics of

the distribution.

Expanding out the quadratic form and collecting terms, we can rewrite this as follows.

�(x) = exp
�
g + xTh� 1

2
xTKx

�
;

In exponential family terminology, g, h and K are called the canonical characteristics, and are related to

the moment characteristics as follows:

K = ��1

h = ��1~�

g = log p� 1
2
~�T��1~�

where jxj = n. Finally, we can write the above equation in scalar form:

�(x) = exp

0@g + nX
i=1

hixi �
1
2

X
i

X
j

Kijxixj

1A
Using Dawid's theorem, which states that X ? Y jZ if the joint density can be factored as

fX;Y;Z(x; y; z) = g(x; z)h(y; z)

we prove Equation 5.

4 Example of hybrid DBNs: switching Kalman �lters

A Dynamic Bayesian Network [DW91, Gha97] is a BN used to model a temporal stochastic process. It can

be be created by specifying the network (structure and parameters) for two consecutive \time slices", and

then \unrolling" it into a static network of the required size. For example, in Figure 2 we show how to

represent a linear dynamical system subject to Gaussian noise.

Qt represents the hidden state of the system at time t, which is assumed to evolve according to the following

linear equation:

Qt = FtQt�1 + GtWt

where Wt � N (0; I) is a white noise random vector whose distribution is stationary. Thus we set the

parameters of Qt to be ~� = 0, � = GtG
T
t and B = Ft. Yt represents the observation vector at time t, which

is assumed to be a linear function of the hidden state:

Yt = HtQt + JtVt
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Y_t                       Y_t+1

F_t F_t+1 F_t+2
Q_t Q_t+1

H_t H_t+1

(b)

Y_t                       Y_t+1

F_t F_t+1 F_t+2
Q_t Q_t+1

H_t H_t+1

D_t D_t+1

(a)

Figure 2: (a) The Kalman Filter represented as a Dynamic Bayesian Network (DBN). The hidden state

variables are Qt and the observation variables are Yt. The noise terms in the state evolution and sensor

models are implicit in the fact that the distributions of QtjQt�1 and YtjQt are Gaussian. That is, we do not

have nodes for the noise variables. If the state variables are discrete, this model is called a Hidden Markov

Model (HMM). (b) A discrete node Dt has been added to model a switching Kalman �lter.

where Vt � N (0; I) (and is uncorrelated with fWtg). So we set the parameters of Yt to be ~� = 0,

� = HtH
T
t , and B = Ht.

The task of computing the probability of the hidden state given all the past observations, Pr(Qtjyt; : : : ;y0),

is called �ltering, and the classical algorithm for it was invented by Kalman. The task of computing the

probability of the hidden state given all the observations, Pr(Qtjy0; : : : ;yn), is called smoothing, and the

classical algorithm for it was invented by Rauch. See [BSF88, BSL93] for details.

The Kalman �lter was developed for tracking point-like objects, such as planes and missiles. It is reasonable

to represent the state (e.g., position and velocity) of a missile with a single node, Qt. However, if we want

to track more complicated objects, such as people, we would like to represent the complex internal spatial

structure of the object with an entire network (e.g., with one node per limb). Since Qt is a jointly Gaussian

rv, it can be replaced by an entire subnetwork, which also encodes a jointly Gaussian rv. The resulting

network is equivalent to the one in Figure 2(a), except that the various matrices are now sparse. However,

we claim that it is easier to exploit the conditional independence assumptions (for learning and possibly for

speeding up inference) if they are encoded graphically as a Bayes net, rather than encoded implicitely in a

sparse matrix.

We can imagine that the dynamical system has di�erent \modes", which we can represent by means of a

discrete variable, as shown in Figure 2(b). For example, we might have one set of parameters for when a

plane is taking o�, another for when it is cruising, etc. This is sometimes called a jump-linear system, and

the corresponding inference algorithm is the switching Kalman �lter. The state evolution equation is

Qt = F [Dt]Qt�1+ G[Dt]Wt

and the sensor model equation is

Yt = H[Dt]Qt + J [Dt]Vt

We brie
y discuss the computational issues involved in performing inference in hybrid DBNs in Section 5.2.
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5 Inference

We shall discuss how to perform inference in hybrid networks using a variation of the Lauritzen and Spiegel-

halter method [LS88, LW89, Lau92, Ole93, Lau96], which works on undirected trees. Similar results have

been derived for directed trees [Pea88, AA96, DM95] but some of the details have still to be worked out.

The algorithms for directed trees involve more complicated equations, since we must work out by hand the

form of various expressions involving products and integrals of multidimensioanl Gaussians. In contrast, for

the undirected case, it su�ces to show how to perform several basic operations (multiplication, division,

marginalization, evidence substitution, and initialization), and we can let the computer �gure out the rest.

The simplest algorithm for hybrid networks is probably SPI [CF95]; unfortunately, it is not suitable for our

purposes, since we need to compute the marginal on every family for learning, and SPI takes N passes to

compute N marginals.

5.1 Pure Gaussian case

In the discrete case, the potential over a clique can be represented as a table. In the Gaussian case, the

potential can be represented as a Gaussian function in either moment or canonical form. It turns out that

some operations are easier to express in terms of canonical characteristics and others are easier to express

in terms of moment characteristics. In Hugin, they use both representations and switch between them as

necessary. However, this requires a matrix inversion, which is slow and can introduce loss of precision. We

would therefore like to work exclusively in moment form. In what follows below, we derive the equations for

the moment form, but, for completeness, also state the results in [Lau92] for the canonical case.

5.1.1 Initialization

In the Lauritzen and Spiegelhalter algorithm, each clique potential is initialized to be the product of the

conditional distributions of all the nodes that have been assigned to that clique. (Each node is assigned to

exactly one clique, which must contain its family.) After one forwards and one backwards pass over the tree,

each clique potential will be the joint distribution over all its member variables. (Let us call these \virgin

potentials".) We are then ready to incorporate evidence.

Unfortunately, we may not be able to represent the initial potential (before the initial forwards and backwards

pass over the tree) in moment form. The reason is that the mean may depend on the values of some variables

which have not been assigned to the clique, e.g., if only one node has been assigned to a clique, the initial

potential will be of the form f(XjY ); here, the mean depends on Y .

There are two solutions to this. One is to work out what the virgin potentials should be by traversing

the graph in topological order, c.f. [CF91]. The other is to represent the initial potentials using canonical

characteristics, and then, at the end of the initial pass, compute the moment form. We adopt the latter

approach.

For a vector node, the conditional distribution has the form

f(xjz) = c exp
�
�

1
2

�
(x � ~� �BT z)T��1(x � ~�� BT z)

��
= exp

�
�

1
2
(x z )

�
��1

���1BT

�B��1T B��1BT

��
x

z

�
+ ( x z )

�
��1~�

�B��1~�

�
�

1
2
~�T��1~�+ log c

�
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where c = (2�)�n=2j�j�
1
2 . Hence we set the canonical characteristics to

g = �
1
2
~�T��1~��

n

2
log(2�)� 1

2
log j�j

h =

�
��1~�

�B��1~�

�
K =

�
��1 ���1BT

�B��T B��1BT

�
This generalizes the result in [Lau92] to the vector case. In the scalar case, ��1 = 1=�, ~� = �, B = b and

n = 1, so the above becomes

g =
��2

2�
�

1
2
log(2��)

h =
�

�

�
1

�b

�
K =

1

�

�
1 �bT

�b bbT

�
:

Once we have the canonical characteristics, we can compute the initial potentials for each clique by multi-

plying together the potentials associated with each variable which is assigned to this clique. Unfortunately,

we cannot convert these canonical characteristics to moment characteristics because K is not of full rank,

and hence is not invertible. (This is easy to see in the scalar case, since K contains an outer product and

hence is of rank 1.)

5.1.2 Entering evidence

If we observe that a continuous variable Y takes on a speci�c value y, we must modify the potentials of all

the cliques/separators that contain Y, since their dimensionality will be reduced. Let the clique contain X

and Y. The new potential is

��(x) = exp[g + (xT yT )

�
hX
hY

�
�

1
2
( xT yT )

�
KXX KXY

KYX KY Y

��
x

y

�
= exp[

�
g + hTY y �

1
2
yTKY Y y

�
+ xT (hX �KXY y)�

1
2
xTKXXx]

This generalizes the equation in [Lau92] to the vector case.

We can compute the analogous result for moment characteristics as follows. We will start by just considering

the quadratic form

Q = (x0 � ~�0x y0 � ~�0y )

�
KXX KXY

KYX KY Y

��
x� ~�x
y � ~�y

�
Expanding out,

Q = (x � ~�x)
0KXX (x � ~�x) + 2(x � ~�x)

0KXY (y � ~�y) + (y � ~�y)
0KY Y (y � ~�y)

= x0KXXx � 2x0KXX~�x + ~�0xKXX~�x + 2x0KXY (y � ~�y)� 2~�0xKXY (y � ~�y) + (y � ~�y)
0KY Y (y � ~�y)

= x0KXXx � 2x0 (KXX~�x �KXY (y � ~�y)) + (~�0xKXX~�x � 2~�0xKXY (y � ~�y) + (y � ~�y)
0KY Y (y � ~�y))

def
= x0Ax � 2x0b+ c

Now we use the following rule, called completing the square:

xTAx � 2xTb+ c = (x� A�1b)TA(x � A�1b) + c� bTA�1b (7)
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to yield ��(x) = p� �Q(x; ~�;�) where

� = A�1

~� = A�1b

logp� = logp� 1
2

�
c� b0A�1b

�
5.1.3 Multiplication and division

In the discrete case, we use multiplication and division to update potentials when new evidence arrives:

Pr�W = PrW
Pr�S
PrS

, where S is a separator and W is a clique. Notice that PrW
PrS

= Pr(W jS), so we are really

computing a conditonal distribution \on the 
y" and multiplying in new information.

We can de�ne multiplication and division in the Gaussian case in terms of canonical characteristics, as

follows. To multiply �1(x1; : : : ; xk; g1;h1;K1) by �2(xk+1; : : : ; xn; g2;h2;K2), we extend them both to the

same domain x1; : : : ; xn by adding zeros to the appropriate dimensions, and compute

(g1;h1;K1) � (g2;h2;K2) = (g1 + g2;h1 + h2;K1 +K2)

The support of the new function is the intersection of the previous supports. Division is similar, except that

we de�ne (�1=�2)(x) = 0 if �1(x) = 0.

For moment characteristics, we use the explicit formula for conditional Gaussians (Equations 9 and 10).

5.1.4 Marginalization

Let �W be a potential over a set W of variables. We can compute the potential over a subset V � W of

variables by marginalizing, denoted �V =
P

WnV �W . Let

y =

�
y1
y2

�
; h =

�
h1
h2

�
; K =

�
K11 K12

K21 K22

�

with y1 having dimension p and y2 having dimension q. It can be shown (by completing the square and

using nice properties of multidimensional Gaussians) thatZ
�[
�
yT1 yT2

�T
]dy1 = �[y2; ĝ; ĥ; K̂]

where

ĝ = g + 1
2

�
p log(2�) � log jK11j+ hT1K

�1
11 h1

�
= g + 1

2

�
p log(2�) + log jK�1

11 j+ hT1K
�1
11 h1

�
ĥ = h2 �K21K

�1
11 h1

K̂ = K22 �K21K
�1
11 K12

In the moment case, things are much simpler. We simply extract out the components of ~� and � which

relate to y2, and change the constant so that it normalizes the new distribution.
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5.2 Hybrid case

The only change in the hybrid case is that the potential functions will now be over both continuous and

discrete nodes. Essentially we have one set of canonical or moment characteristics for each value of the

discrete nodes. All the operations go through as before, except for marginalization. If we marginalize out

over some continuous nodes, we can proceed as in Section 5.1.4, once for each value of the discrete nodes.

If we marginalize out over some discrete nodes d, but the mean/variance do not depend on j, we just sum

the appropriate constants (g or p) for each value of d: this is called strong marginalization. However, if the

mean and variance depend on j, we will get a mixture of Gaussians:

X
j

�(x; j; i) =
X
j

p�Q(x; ~�(j; i);�(j; i))

This cannot be simpli�ed any further, and must be kept as a list of terms. We would therefore like to arrange

things so that we integrate out all continuous nodes before the discrete nodes on which they depend, e.g., we

write
P

i

R
x f(x; ~�(i);�(i)) rather than

R
x
P

i f(x; ~�(i);�(i)). This can be achieved by ensuring that all the

continuous nodes are eliminated before their discrete ancestors. Such a node elimination ordering is called

a strong triangulation, c.f.[JJD94].

Unfortunately, in the case of hybrid DBNs, the need to eliminate all the continuos nodes before their discrete

ancestors clashes with our desire to eliminate all the nodes in slice t before we eliminate any in slice t+1. If

we don't do strong triangulation, the number of mixture components becomes exponential in the length of

the sequence. The standard approach (see e.g., [TSM85, BSL93, Kim94, WH97]) is to \collapse" the mixture

into k components. If k = 1, this corresponds to computing the \weak" moments:

p̂(i) =
X
j

p(i; j)

^~�(i) =
X
j

~�(i; j)p(i; j)=p̂(i)

�̂(i) =
X
j

�(i; j)p(i; j)=p̂(i) +
X
j

(~�(i; j)� ~̂�(i)T (~�(i; j)� ~̂�(i)p(i; j)=p̂(i)

These will give the \correct" mean and variance:

Pr(I = i) = p̂(i)

E [YjI = i] = E
Pr(J=jjI=i) [E [YjI;J]ji= i]

=
X
j

~�(i; j) Pr(J = jjI = i)

Var[YjI = i] = E [Var[YjI;J]ji= i] + Var [E [YjI;J]ji= i]

= E�(i; j)+ E
h
(~�(i; j)�E ~�(i; j)) (~�(i; j)� E ~�(i; j))

T
i

Lauritzen [Lau96] shows that this is the best approximation (in the KL sense) if k = 1.

6 Learning

In this section, we discuss how to �nd the Maximum Likelihood Estimates (MLEs) of the parameters asso-

ciated with each node. We assume that we have a set of N training examples, where each example assigns a
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value to every node in the network (this is called the fully observable case). In Section 6.2, we address the

issue of what to do when the values of some variables are unknown.

If we assume the parameters of node Xi, �i, are independent of those of all other nodes, we can maximize

the �i's separately. Further, the only terms in the joint distribution that depend on �i involve Xi and its

parents, so we just need to compute the su�cient statistics for each family.

Discrete, linear Gaussian and mixtures of linear Gaussian distributions are all in the exponential family

[DeG70, Bun94, Lau96]; hence the size of the su�cient statistics we need to keep is equal to the size of the

parameter vector (and independent of N ).

6.1 Fully observable case

6.1.1 Discrete case

If Xi is a discrete variable, the parameter vector is �i = (�ijk) = (Pr(Xi = kjPa(Xi) = j)), which is just

a table of numbers. The su�cient statistics are Nijk, the number of times the event (Xi = k;Pa(Xi) = j)

occurs in the training set. Since

�ijk =
Pr(Xi = k;Pa(Xi) = j)

Pr(Pa(Xi) = j)
�

1
N
Nijk

1
N
Nij

where Nij =
P

kNijk, the MLE is d�ijk = Nijk=Nij.

6.1.2 Gaussian case

The approach we will adopt is to model the joint distribution over a node and its parents (forming family

X) as a MVG, compute its su�cient statistics and then �nd its MLE parameters.

The su�cient statistics for an MVG after seeing N examples are sN
def
=
PN

l=1 xl and QN
def
=
PN

l=1 xlx
T
l ,

since

c~�N =
1

N
sN =

1

N

NX
l=1

xl (8)

and

d�N =
1

N

NX
l=1

(xl � c~�N )(xl � c~�N )T
=

1

N

" 
NX
l=1

xlx
T
l

!
�

 
NX
l=1

xl

! c~�NT
� c~�N  NX

l=1

xTl

!
+Nc~�N c~�NT

#

=
1

N
QN � c~�N c~�NT

:

It is simple to update the su�cient statistics when we see the next example, xN+1.
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To compute the parameters of a node given the su�cient statistics of its family, we use linear regression as

follows. Let X1 represent the child and X2 the parents, i.e.,

X =

�
X1

X2

�
; �X =

�
�X1

�X2

�
; �X =

�
�11 �12

�21 �22

�

Then the conditional density of X1 given X2 is a MVG with

�X1jX2

= E[X1jX2 = x2] = �X1

+�12�
�1
22 (x2 � �x2

) (9)

and

�X1jX2

= �11 � �12�
�1
22 �21: (10)

Hence the local parameters for the node are given by

B = �YZ�
�1
ZZ (11)

~� = ~�Y �B~�Z

� = �YY � B�ZY

B can then be broken up into its individual blocks, one for each parent.

6.1.3 Hybrid case

In [Lau96], it is shown that the sample mean, given a discrete instantiation i, has a N (~�(i); n(i)�1�(i))

distribution, where n(i) is the number of times this discrete instantiation has been seen (we assume n(i) > 0).

The sample covariance has a Wishart distribution, W (�(i); n(i) � 1), where we assume n(i) > 1. The

unconditional posteriors will be mixtures of Gaussians and Wisharts. Nevertheless, we can compute the

MLE parameters by using the appropriate sample mean and covariance, one for each discrete case. We

assume that we have seen enough samples to ensure that the sample covariance matrix is positive de�nite,

for each discrete case. Of course, we can use priors to help overcome data sparsity; see Section 6.3.

It is not clear how the \collapsing" or weak marginalization approximations a�ect learning, especially in the

context of DBNs where we want to use all the evidence (\future" as well as past), as is traditional in o�-line

learning. The approach taken in [GH96] is to maximize an exact lower bound on the likelihood, produced

by considering a tractable approximation to the original structure. We are currently investigating this issue

experimentally.

6.2 Partially observable case

If we do not observe the value of every node in each training case, there is no longer a closed form expression

for the MLE. In this section, we investigate two methods for learning under these circumstances. Both

methods make many passes over the training data, and update the parameters at the end of each pass,

until they reach a local maximum in likelihood space; hence they are batch methods. However, it is easy

to convert them to incremental (online) versions, which update the parameters after seeing a subset of the

training set (see e.g., [NH93] for incremental EM and [BC94] for incremental gradient descent).

12



6.2.1 EM

The basic idea of the Expectation Maximization (EM) algorithm is to \�ll in" the missing values with

their expected values (expectation w.r.t. the current set of parameters), and to use these Expected Su�cient

Statistics (ESS) when computing the MLE. The parameters are then set to their MLE values, and the process

repeats until the likelihood stops increasing (it can be proved that EM will converge to a local maximum).

In the discrete case, the ESS are

E [Nijk] =
X
l

Pr(Xi = k;Pa(Xi) = j)jel) =
X
l

Pr(Xi = k;Pa(Xi) = j; el)

Pr(el)
:

The intuitive reason we divide by Pr(el) is that we don't want to pay undue attention to a particular event

(Xi = k;Pa(Xi) = j) that happens to be highly probable by virtue of some other parameters.

In the Gaussian case, if the posterior distribution over the family (x; i) given the evidence in the l'th case is

Pr(x; ijel) � N (~�l(i);�l(i)), then the ESS are

X
l

~�l(i)

and X
l

~�l(i)~�l(i)
0 + �l(i)

since E[XiXj ] = E[Xi]E[Xj] + Cov[Xi; Xj ].

We now present the EM algorithm in detail.

1. Choose (random) starting values for the parameters B; ~�;� for each node. A broad covariance is a

good idea, so that samples far from the mean are not assigned unduly low likelihood.

2. Repeat

(a) Reset the ESS for each node.

(b) Reset the log-likelihood: L = 0.

(c) For each training case e

i. Update the log-likelihood: L + = logPr(e).

ii. Compute the posterior marginal over each family given the evidence.

iii. Update the ESS for each family.

(d) Compute the MLE of the parameters for each family given the ESS.

3. Until L converges.

Steps 2(c)i and 2(c)ii can be computed using the inference algorithms we discussed earlier.

There are many variations on EM (see e.g., [MK97]), some of which may be applicable in this context.

In particular, it would be interesting to know if the simple, but powerful, speedup technique in [BKS97],
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which was developed in the context of discrete Bayes nets, is useful in the present case. (This technique

is as follows: if ~�t is the vector of parameters at iteration t, and ~�t+1 = U (~�t) are the updated parameters

suggested by the M step of EM, then use instead ~�t+1 = (1��)~�t+�U (~�t) for � > 1. This rule is somewhat

counterintuitive because it involves adding a negative fraction of the old values to the new values, but can

be justi�ed both from a theoretical on-line learning perspective [BKS97] or from a more classical statistical

perspective [RW84].)

6.3 Using priors to compute the MAP estimate

To avoid over�tting when we have too little training data, we can use priors, and compute the MAP estimates

instead of the ML estimates. A suitable prior for discrete nodes is the Dirichlet prior, which has a simple

intuitive interpretation in terms of pseudo counts: we just imagine that we have seen a certain number N 0

ijk

of cases of the event (Xi = k;Pa(Xi) = k), and add these to our real counts. For the vector Gaussian case,

things are a little more complicated. It is simpler to associate a prior with the MVG distribution N (~�F ;�F )

on the family F , rather than with the parameters (~�X ;�X ; BX ) of the node itself. A suitable prior is the

Normal-Wishart [GH94, DeG70]. This can be important since it takes a lot of data to ensure b� is positive

de�nite.
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