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1 Introduction

Performance prediction on parallel machines is notoriously di�cult, especially using designer-supplied machine
parameters for features like clock speed, network latency, and network bandwidth. The performance observed
by an application programmer is a complicated function of the local memory hierarchy on each node, software
overheads from the compiler and operating system, and interactions between components of the machine. As a
result, the process of understanding and tuning application level performance is often an ad hoc process, lacking
in the kinds of models and tools that are enjoyed by other engineering disciplines. In a previous paper [1], we
proposed a \gray-box approach" for measuring machine performance through the use of micro-benchmarks, and
applied it to the problem of compiling a global address space language on the Cray T3D. In this paper, we use
micro-benchmarks to compare the support for a global address space on two Cray machines, the T3D and T3E.

1.1 Overview of the T3D and T3E

In the spectrum of scalable parallel machines, the T3D and T3E represent a unique point on the spectrum
between distributed shared memory and pure message passing. They augment a conventional microprocessor
with a small amount of hardware to allow each processor to address memory on any processor, but do not cache
remote data. The resulting communication overhead is much lower than standard message passing layers, thereby
encouraging applications that demand small, frequent communication.

On initial inspection, the T3E is a signi�cant improvement over the T3D: It has a faster clock, more on-chip
cache (organized in two levels), and a higher bandwidth network. Figure 1 summarizes these di�erences. As we
will show, these advantages do not always translate to better language-level performance. First, we discuss the
two machines in more detail.

T3D T3E

processor Alpha 21064 Alpha 21164

clock speed 150 MHz 300 MHz

instructions per
cycle (maximum) 2 4

L1 cache size 8 KB 8 KB

L2 cache size { 96 KB

network latency .55 us .5 us

peak link bandwidth 300 MB/s 600 MB/s

Figure 1: Peak performance of hardware components on the Cray T3D and T3E.

The Cray T3D [4, 10, 11] is built around the 150MHz dual-issue Alpha 21064 processor [8, 16] and is scalable
to upto 2048 processors. It has an 8 KB L1 cache, but, unlike workstations built with the 21064, no o�-chip L2

�This work was supported in part by the Defense Advanced Research Projects Agency (N00600-93-C-2481, F30602-95-C-0014,
F30602-95-C-0136), the National Science Foundation (CDA 9401156), Army Research O�ce (DAAH04-96-1-0079), U.S. Department
of Energy (W-7405-ENG-48).
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cache. The L2 cache is omitted to allow for lower memory latency on a cache miss. The global address space
is implemented using a combination of hardware augmentations, which we refer to as the \shell." The primary
component of the shell is a DTB Annex, which serves the role of a segment table for remote addresses. The DTB
Annex is used to overcome the address range limitation of the 21064 processor. Once the Annex entries are setup,
the processor can issue cached and uncached reads and non-blocking writes to remote locations. The shell also
supports binding prefetch operations through a prefetch FIFO queue. In addition to these features, the machine
has a DMA transfer engine (BLT), fetch-increment registers (which are accessible to remote memory operations),
and a hardware barrier mechanism.

The T3D o�ers a large menu of primitives for implementing remote accesses, but there are performance
problems and correctness issues that render some of these unusable [1]. First, it does not correctly support
partial word stores, which means that data structures such as character arrays are cumbersome to implement.
Second, address translation is done by the issuing processor, so it is possible to crash the program by issuing an
address that is legal on the remote processor but not valid on the local one. Third, the remote prefetch mechanism
has a low overhead, but the cost of Annex management and other book-keeping operations, which are necessary
to avoid hazards arising out of physical synonyms, almost doubles the 600 nsec latency. Fourth, a remote write
results in invalidation of the corresponding cache line, even if the target location is not being cached. Fifth, the
Annex entries are accessed using special instructions, which are implemented using the opcodes for the Alpha
load-locked and store-conditional instructions; the loss of these instructions a�ects read-modify-write sequences,
which further exacerbates the lack of partial word stores. Finally, the BLT has a large startup cost, rendering it
useless for anything but enormous transfers, in spite of possessing a peak bandwidth of 150MB/s.

The Cray T3E [5, 15] was designed to address most of these di�culties. The T3E uses the 300MHz quad-issue
Alpha 21164 microprocessor [9], which has a second level on-chip cache and added support for memory accesses,
namely a write memory barrier. (Like the T3D, the T3E has no board-level cache.) The T3E introduces extra
hardware logic to support virtual to physical address translation at the destination node for remote accesses; this
eliminates the di�culty of addresses that are legal on one node but not on others. Language implementation on
the T3E is greatly simpli�ed by having a single remote access mechanism supported by a large set of o�-chip
registers, called the E-registers, as opposed to a wide variety of remote access mechanisms on the T3D. A detailed
functional description of the synchronization and communication mechanisms of the machine can be found in
Scott's machine overview [15].

1.2 Language overview

We evaluate the global address space support on the two machines using the primitives that underly the Split-C
language [7]. Split-C is an explicitly parallel SPMD language, which provides a global address space abstraction
through language features such as global pointers and spread arrays. The global address space features are similar
to those in CC++ [3], AC [2], and other languages. Global pointers, which in Split-C can be distinguished from
standard pointers through static typing, are wide pointers that represent a processor number and an o�set within
that processor's address space. Synchronous remote accesses are executed when global pointers are dereferenced
within expressions. The language also provides split-phase (or non-blocking) variants of read and write, called get

and put, to mask the latency of remote accesses. An explicit sync operation can be used to wait for split-phase
accesses to complete. The language also de�nes a variant of write, called store, which avoids acknowledging the
completion of a remote write, but rather increments a counter on the processor containing the target address.
Both blocking and non-blocking variants of bulk transfer are also supported.

1.3 Roadmap

The remainder of this paper is organized as follows. In Section 2 we use micro-benchmarks to characterize the
performance of the local memory hierarchy. In Section 3 we examine how the language's global address space
abstraction could be implemented. Section 4 characterizes the performance of remote read and write operations,
and identi�es the performance and semantic implications for our language implementation. In Section 5 we discuss
operations that mask remote memory latency. In Section 6, we study the performance of bulk transfer. Section 7
models the performance of an application kernel, and conclusions are drawn in Section 8.
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Figure 2: Local Memory Read Performance.

2 Local-Node Performance

We use experimental probes to identify the structure and performance of the local memory system on the
T3D and the T3E. In addition to characterizing the performance of the system for di�erent size data sets, the
insights from this exercise are valuable when we study remote memory access operations, which are initiated and
monitored through local memory operations on o�-chip elements.

2.1 Local Read Latency

Our �rst micro-benchmark measures the cost of local memory accesses for a variety of access patterns. The
experiment is designed to explore local node performance across a spectrum that at one end has the processor
operating entirely out of its cache and at the other end has the processor operating with very little spatial
locality. The micro-benchmark generates a stream of memory references whose stride and extent is varied. The
stream is generated using repeated applications of the following code, which is a modi�ed version of Saavedra's
micro-benchmarks [13, 14].

for (arraySize = 4 Kilobytes; arraySize <= 8 Megabytes; arraySize *= 2)

for (stride = 1; stride <= arraySize/2; stride *= 2)

for (i = 0; i < arraySize; i += stride)

MEMORY OPERATION ON A[i];

In this section, we examine the cost of executing this stimulus when the memory operation is a standard \load"
operation. The results of the experiment are graphed in Figure 2. We plot the average read latencies as a function
of stride and array size. In studying these graphs, we employ two general principles. First, if the read latency
increases with array size for a given stride resulting in a new set of curves, it indicates an increase in conict
misses. Second, if an increase in stride causes an increase in the latency, it indicates a decrease in spatial locality
that is provided by cache lines and memory pages.

Let us �rst examine the experimental data for the T3D. As expected, the results show that the �rst-level cache
is 8KB and has 32 byte direct-mapped cache lines. As the array size and stride is increased, we observe inection
points when the array references are 16KB and 64KB apart. This e�ect exposes the structure of the DRAM
organization. We can infer that the DRAM has 16KB pages with the pages interleaved across 4 memory banks.
If two consecutive memory references to the same bank access di�erent DRAM pages, the second access incurs
the cost of switching the active page on the DRAM. The results also indicate the absence of a second level cache.
The T3E data also reveals a �rst level cache that is 8KB in size with direct-mapped 32 byte cache lines. In
addition, there is an on-chip second level cache, which operates with 64 byte cache lines. The second level cache
size is between 64KB and 128KB with an associativity of three. We also observe that the DRAM is organized
into 16KB pages.
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Figure 3: Local Memory Write Performance.

From the experimental data, it appears that T3E's L2 cache is a mixed win. The read latencies are considerably
lower on the T3E when the data �ts into the second level cache. However, the main memory latencies are
signi�cantly higher, which would signi�cantly slow down codes that access large data sets. The T3E node is less
\Cray-like" and more like a workstation. Also signi�cant by their absence on both machines are latency increases
due to TLB misses. This behavior indicates that both the T3D and the T3E support very large page sizes. This
observation is useful when we examine the remote access mechanisms, which typically access memory mapped
registers that are far apart in the virtual address space.

2.2 Local Writes

Our second experiment evaluates the access latencies for writes for the same set of access patterns. The results,
which are shown in Figure 3, show dramatically di�erent performance pro�les, which can again be attributed to
the miss penalty of T3E's L2 cache.

Both machines have a write-through read-allocate �rst level cache along with a write-bu�er, which enhances
performance by bu�ering as well as merging writes. The L2 cache on the T3E is a write-back write-allocate cache,
which results in very low latencies for small data sets as the system eliminates all of the main memory accesses.
However, the write-back property of the second level cache manifests itself in the relatively high latencies for large
arrays where every access results in a write back of a dirty line in addition to fetching a new cache line.

3 Software Overheads in Global Addresses

One of the di�erences between advertised hardware performance and observed language-level performance
comes from the manipulation of global addresses. On a distributed memory architecture, global addresses must
contain su�cient information to indicate a processor number and a memory address within that processor's
memory. A dereference of a global pointer typically requires some processing of the pointer itself, followed by
read or write operation to an object in the global address space. The �rst part may be done by hardware or
software and involves extraction of the processor number and a check to see whether the data resides on the issuing
processor. In Split-C, global pointers are statically typed to be distinct from local pointers, so the overhead of
global pointer dereference is not incurred for pointers that are statically known to be local and are marked as
such by the programmer. In any global address space language, a key implementation challenge is to provide an
e�cient physical representation for global pointers and to map accesses through global pointers to the hardware
primitives.

3.1 T3D Design Constraints

Two aspects of the T3D's global addressing a�ect our design: an external segment register table for accessing
remote memory and source-based address translation. The T3D design allows remote accesses to be initiated
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through the standard load and store instructions on a machine-de�ned notion of a global pointer. However, the
designers had to overcome the limitation that the Alpha 21064 processor has only 33 physical address bits coming
out of the chip, which is not su�cient to address the global physical memory of a fully con�gured T3D. Their
solution is an o�-chip segment register table (DTB Annex) for providing the high order bits of a global address.
The target processor number is stored in an Annex entry, whose number is appended to the virtual address
(which is the local address within the target processor) to obtain a global address. When the annex entry number
appearing in a global address is zero, the address names a location in local memory. The advantage of allowing
local addresses to go through the annex is one of uniformity: A global address can name both local and remote
locations and access them with the same set of load and store instructions.

3.2 T3E Design Constraints

The T3E has a markedly di�erent design. There is no machine-de�ned notion of a global address, in spite of the
increased addressing capabilities (40 physical address bits) of the 21164 processor; the hardware does not overload
the use of load and store instructions for accessing remote memory. Instead, a short sequence of loads and stores
to memory mapped external registers (E-register) initiate and complete a remote access. More speci�cally, a
remote load is implemented by writing the target processor number and address to a memory mapped location
followed by a load from a E-register, which returns the fetched value. A remote store requires an E-register
to contain the value to be written before the store operation is initiated by writing the processor number and
the address on a memory mapped location. The virtual address of the target location is communicated in its
untranslated form to the destination node where the shell provides logic to do address translation.

3.3 Global Address Representations

There are two conicting goals in representing global addresses. Since both machines require that the software
identify a processor number, it is more e�cient to store this value separately from the local address than to pack
the two values into a single word.1 However, the additional storage required for pointers, especially in languages
with no type distinction between local and global addresses will impactmemory usage and performance as pointers
are moved through the memory hierarchy. The Alpha processor supports 64-bit addresses internally, and also
have e�cient byte manipulation instruction, so we store the processor number and address within a single word,
but at a byte boundary. This strategy provides an implementation for storing and transferring global pointers
that is as e�cient as local pointers.

4 Remote Memory Access

In this section, we measure the hardware performance of the remote access mechanisms before determining the
cost of mapping Split-C primitives onto the hardware mechanisms. We conclude with a discussion on compiler
implications.

4.1 Remote Read Latency

We repeat our experiment by modifying our benchmark to issue read requests to remote memory. The results
of the experiment are shown in Figure 4. On the T3D, the remote read latency is between 600 and 750ns. On
the T3E, the average read latency is about 1500ns with slightly higher latencies when the stride exceeds 16KB
(DRAM page miss) and when the stride is less than 64bytes.2

The remote read latencies are substantially higher for the T3E. The increased latencies are primarily due to the
extra logic that the T3E requires for address translation on the target processor and higher main memory access
costs. We have devised experiments that show that the additional cost introduced by the address translation logic
is about 450ns. Our perspective is that the T3E shell pays the penalty for duplicating Alpha's e�cient on-chip
address translation mechanism.

1One could imagine a strategy on the T3D in which Annex entries are managed like registers by the compiler, but because the

processor number is rarely known at compile-time, in practice each global reference results in a separate Annex setup.
2This behavior indicates that accessing a word in the middle of a cache line on a remote processor is slower than accessing the

�rst word.

5



0

200

400

600

800

1000

1200

1400

1600

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

T
im

e 
(n

an
os

ec
on

ds
)

Stride (bytes)

CRAY T3D Remote Read Performance

Split-C
8 M
4 M
2 M
1 M

512 K
256 K
128 K
64 K
32 K
16 K
8 K

0

200

400

600

800

1000

1200

1400

1600

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

T
im

e 
(n

an
os

ec
on

ds
)

Stride (bytes)

CRAY T3E Remote Read Performance

Split-C
8 M
4 M
2 M
1 M

512 K
256 K
128 K
64 K
32 K
16 K
8 K

Figure 4: Remote Memory Read Performance.
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Figure 5: Remote Memory Write Performance.

4.2 Remote Writes

In our next micro-benchmark, we issue remote writes instead of remote reads. On both machines, an o�-chip
ag is polled to check for completion of the write operation. Figure 5 shows the results of the experiment. There
is very little di�erence between the raw hardware write latencies on the two machines. This behavior is very
surprising given that the remote read latency on the T3E is substantially higher than that on the T3D. A possible
explanation for this behavior is that writes are acknowledged as they are received by the remote node without
waiting for the corresponding address translation and memory operation to complete.

4.3 Compiler Implications

The Split-C implementation of remote accesses on the T3D includes the cost of manipulating the Annex
in addition to the raw hardware costs. The total cost seen by the programmer is shown in Figures 4 and 5.
Eliminating Annex setup costs requires complex program analysis (as discussed in [1]) as the compiler has to
ensure that physical address synonyms are not generated. However, on the T3E, the Split-C implementation does
not incur any additional cost beyond the raw hardware performance.

On the T3D, the design choices of using an Annex table and source-based address translation, in the absence
of OS support, result in a rather tricky language implementation problem. Since the Annex contents determine
the actual translation of a global address, and since it is impractical to access the Annex during a virtual address
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translation, the designers decree that the address mapping must be uniform across all processors. To preserve
this property, heap memory allocation for globally visible data requires a coordinated allocation strategy across
processors. Note, however, that this issue could be resolved with OS support for managing the Annex (just like
the OS handles TLB misses) without requiring specialized hardware for address translation at the destination
node as found in the T3E.

The Split-C write implementation for the T3D has a hidden cost that could be potentially vicious for codes
optimized carefully for cache performance. When the destination processor sees only a physical address along
with a write request, it ushes the corresponding cache line from the cache even if the processor is not currently
caching the memory location. This issue is resolved cleanly on the T3E, where each node maintains a back-map
of which lines are currently being cached and issues a probe only if it knows that the target location is being
cached. We have measured the cost of the back-probe to be about 20ns (6 cycles).

4.4 Semantic Mismatches

In our earlier study, we identi�ed two semantic mismatches between the language and the T3D machine. These
mismatches continue to persist with the new machine.

Byte Writes: The 21064 processor does not support byte store operations. The processor however has a set
of powerful byte manipulation instructions. A byte store could therefore be e�ected by a read-modify-write
sequence. While this solution works on a local node, it breaks down in a multiprocessor context like the T3D.
The T3E has the capacity to support remote byte store operations since a remote write operation is disguised
as a store of a virtual address to a memory mapped location. Unfortunately, the shell does not support a byte
store operation to a remote node. Byte writes have to be implemented on top of a more heavy-weight mechanism
such as Active Messages [17]. A signi�cant improvement though is that the handler code on the T3E can use the
load-locked/store-conditional instructions, which were not available on the T3D since the shell interprets these
instructions as Annex operations.

Global-Local Consistency Issues: The Split-C implementation of remote reads and writes wait for the comple-
tion of the operation. Split-C also allows the owner of a globally accessible value to access the value through
local pointers. However, since loads and stores through local pointers can be reordered due to the write bu�er,
the implementation could cause violations of sequential consistency. This problem is generic to any MPP system
that allows a remote node to access memory locations without involving the local node.3 Since we would like to
avoid the rather unfeasible solution of ushing the write bu�er after every store operation, this problem indicates
that the language requires an extended type system along with compiler analysis for distinguishing purely local
stores from stores that could interfere with remote loads and stores.

5 Split-Phase Accesses

Split-C provides split-phase operations, get and put, to overlap the latency of remote access operations with
other useful work. In this section, we measure the performance of the corresponding non-blocking machine
primitives and draw conclusions on how closely the Split-C implementation tracks the performance of the hardware
primitives.

5.1 Prefetching

T3D has a binding prefetch mechanism that utilizes an o�-chip queue of 16 entries. A non-blocking remote
load operation is initiated by issuing the Alpha \fetch" instruction on a global address. The fetched element is
stored at the tail of the prefetch queue. A load instruction to a memory mapped address pops an element from
the head of the queue. On the T3E, as we had discussed in the previous section, a remote read is implemented by
issuing a store operation to a memory mapped shell location followed by a load operation from an E-register. The
remote access latency can be masked by simply delaying the E-register load. We use a di�erent micro-benchmark
to evaluate the performance of the non-blocking prefetch operation. The experiment issues n prefetches followed
by n loads from either the o�-chip queue (on the T3D) or the E-registers (on the T3E). The results of varying n
are shown in Figure 6. n is limited to 16 on the T3D, whereas it can be increased upto 480 on the T3E.

3On systems where a Split-C handler is executed by the local node, the handler would see the values languishing in the write
bu�er.
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Figure 6: Prefetch Read Performance.
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Figure 7: Non-blocking Write Performance.

On the T3D, most of the latency gets hidden by grouping prefetches with the cost stabilizing at about 250ns
per prefetch. Since the memory access costs are less than 150ns (based on our local-node measurements), the
performance limiting factor is the cost of crossing the boundary between the processor and the shell. The T3E
attains a lower gap of about 130ns. Further instrumentation of the prefetch operation reveals that remote memory
read accesses can be pipelined at the rate of one every 67ns, while the cost of doing a store followed by a load
of an o�-chip register is 120ns. We are now beginning to see the e�ect of having a second level cache, which
increases the cost of shell operations.

5.2 Non-Blocking Writes

Recall that on both machines, an o�-chip ag is polled to check for completion of a remote write operation.
A non-blocking write operation simply eliminates the check. The performance results for non-blocking writes are
shown in Figure 7. We observe the write merging behavior even for remote writes on the T3D. However, since
a remote store operation on the T3E is disguised as a store of an address value into a memory mapped register,
the remote stores do not merge in the write bu�er. Consequently, the bene�ts of spatial locality for updating
remote data structures are lost. On both machines, the memory operation at the remote node is the performance
limiting factor, which is in contrast to the performance characteristics of the prefetch mechanisms.
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Figure 8: Bulk Read Performance.

5.3 Compiler Implications

As expected, a Split-C implementation of gets on the T3D includes the cost of updating an Annex entry. On
both machines, there is an additional cost in mapping the language operation onto the machine primitives. Recall
that a Split-C get operation speci�es a local address into which a remote value is fetched. The local address, which
is available when a prefetch is initiated, is required when the remote access completes. The obvious solution is for
the compiler to maintain a table of these local addresses for outstanding prefetch operations. Through compiler
analysis, this book-keeping could be eliminated. The compiler analysis for T3D requires accurate information as
to the exact number of outstanding prefetches since the values are fetched into a dynamic address in a queue.
The T3E design of using statically named E-registers makes the compiler analysis similar to the well-understood
problem of register allocation for scalar processors.

Once again, we observe that the Split-C primitives, especially the put operation, can be implemented on top of
the hardware primitives at a much lesser cost on the T3E. Though both machines have similar gap and overhead
characteristics, the Split-C implementation on the T3E bene�ts from a closer match between the language and
the machine.

6 Bulk Operations

A critical performance metric of any system is the bandwidth it can provide for bulk transfers. The Split-C
operations for bulk transfers are bulk read, bulk write, bulk get and bulk put with the obvious semantics regarding
synchronicity and direction of transfer. We now consider the issues that arise in implementing these operations.

6.1 Hardware Performance

The T3D provides multiple mechanisms for implementing bulk transfers. A bulk read could be realized by
either DMA transfers or pipelined prefetches. The drawback with DMA transfers is the cost of issuing a system
call for initiating a transfer. For bulk writes, we have a choice between DMA transfers and non-blocking remote
put operations. Due to the write merging property of remote puts, a bulk write implemented using remote puts
attains a higher bandwidth than bulk read does with the prefetch operation. A higher payload prefetch operation
would have been useful.

The T3E design does not include the DMA engine. Instead, remote transfer using the E-registers is the only
mechanism. However, one of the operations that the shell supports is a transfer of an entire cache line of data
into and out of a set of E-registers, thus increasing the payload per operation. Furthermore, since E-registers can
also be used for loading and storing into local memory, data can be transferred between two memory modules
without entering a processor. Also, the E-register operations can be scheduled in a manner such that the cost
of local memory operations are hidden by the latency of remote memory accesses. By providing more powerful
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Figure 9: Bulk Write Performance.

operations and allowing the compiler to schedule them, T3E allows for more e�cient implementations as shown
in Figures 8 and 9.4

6.2 Compiler Implications

The performance pro�les of the T3D mechanisms suggest which mechanisms to use for code generation based
on the transfer size. An advanced compiler optimization that requires signi�cant compiler analysis is to transform
a bulk-read executing on the source processor into a bulk-write from the remote processor.

There is a hidden cost associated with the bulk-read on the T3E. Since the data never enters the processor, the
processor su�ers cache misses when it actually accesses the data. Given that main memory latencies are high, the
e�ective bandwidth could be much less than the raw performance. This behavior suggests that for smaller data
transfers (less than 64K), the compiler could fetch the data into its cache in addition to writing the values into
memory. Since loads from E-registers can be hidden by the latency of main memory operations, this strategy is
feasible without increasing the cost of bulk transfers.

7 Application Performance

In this section we build upon the performance measurements from previous sections to understand the behavior
of a Split-C application kernel, EM3D, that models the propagation of electro-magnetic waves through objects in
three dimensions [12]. A preprocessing step casts this problem into a simple relaxation algorithm on an irregular
bipartite graph containing nodes representing electric and magnetic �eld values.

We �rst examine the local-node performance for di�erent graph sizes to model the e�ect of cache performance.
A useful performance metric is the average time for processing an edge in the graph. This corresponds to
reading the value of a neighboring graph node and a oating-point multiply-add. The results, which are shown
in Figure 10, are consistent with the absence of a second-level cache on the T3D and higher cache-miss costs on
the T3E.

For a parallel implementation, the graph is represented using global pointers, and is spread across all of the
processors. We have developed several versions of the application with varying degrees of optimizations. In
the simplest version (Simple), the value associated with a graph node is fetched whenever one of its neighbors
is updated; a remote node is fetched multiple times if it is required more than once during a single time-step.
An obvious optimization is to introduce local \ghost nodes" that serve as cache-sites for remote values. This
version (Bundle) bene�ts from reuse of cached values as well as better code generation since the compute and
communication phases are separated. Both versions (Simple and Bundle) employ blocking read operations to
access remote memory. Version Get optimizes the communication phase by pipelining the ghost-node fetch
operations, and in version Put, the ghost-node values are pushed (using pipelined \puts") by the remote processor

4The N1=2 numbers for our bulk read implementation are lower than that of the vendor provided shmem library [15].
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Figure 11: Execution Costs for EM3D: Performance results on 16 processors, for a graph size of 500 nodes per
processor with each vertex having a degree of 20.

11



as opposed to being fetched by the source processor. The performance results for synthetic graphs with varying
communication requirements are graphed in Figure 11. The performance of the di�erent versions vary more
markedly on the T3E due to higher latencies for blocking accesses and lower overheads for non-blocking operations.

8 Summary and Conclusions

In this paper, we apply a gray-box performance study to compare two machines. The contributions of this
study are: (i) the �rst detailed characterization of language-level performance for the Cray T3E, (ii) an empirical
comparison of the Cray T3E and the Cray T3D, and (iii) identi�cation of the implementation issues for mapping
a global address space onto the two machines. In comparing the two machines, we observe that the T3E has
fewer options for implementing remote access and therefore a much simpler compilation strategy than the T3D.
Surprisingly, the hardware-level performance of blocking remote access operations have worse performance on the
T3E than the T3D, due to extra logic on the destination processor and the presence of a second level cache on the
source processor. However, the language implementation adds less overhead than a corresponding implementation
on the T3D resulting in better end-to-end performance for the non-blocking primitives. Consequently, the T3E
performs better on applications that allow remote operations to be overlapped at a �ne granularity.

The new machine also has certain architectural features that make the language implementation and program-
ming task easier. The ability to perform address translation on the destination processor eases the compiler's
responsibility in keeping address space extents uniform. The use of a back-map for invalidating cache lines during
a remote write operation preserves the programmer's notion of what is in the cache. Also, the shell is accessed
through standard load and store operations instead of the load-locked/store-conditional operations, which can
now be used for e�ecting read-modify-write sequences. However, the continued lack of support for partial word
stores complicates using data structures such as character arrays.

Performance characterization of parallel machines continues to be a challenging problem that is important for
application writers and language implementors, as well as machine architects. In this paper we identi�ed three
levels at which performance can be measured. At the hardware component level, shown in Figure 1, we see
the performance of individual system components, such as the link bandwidth and processor cycle time. At the
system level, we see the e�ects of combining these components, such as the additional latency on the T3E relative
to the T3D due to the addition of a second level cache and target-based address translation. At the language level,
there is additional overhead for implementing the global address space, which is made up of Annex management
on the T3D and E-register manipulation on the T3E. The insights drawn from studying the performance at each
one of these levels are valuable in understanding the behavior of whole programs.
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