
Heuristics for the Automatic Construction of Coarse Grids in

Multigrid Solvers for Finite Element Matrices

Mark Adams
�

January 29, 1998

Abstract

The �nite element method (FEM) has proven to be a popular spatial discretization technique in
the simulation of complex physical systems in many areas of science and engineering. Implicit solution

schemes, used in the time discretization, require the application of the inverse of an operator which is

usually linear or linearized; thus, after the FEM discretization, a linear set of discrete equations must be
solved. The solution of these equations is a dominate cost of FEM. Direct solvers are easy to use; that is

they are relatively invariant to condition number and e�ective (fast) for small scale problems. But for the

solution of large complex systems, iterative methods are vary attractive due to their potential O(n) time
and space complexity. Multigrid (MG) is a powerful solver, or preconditioner, and is ideally suited for

FEM matrices. MG performance, however, is signi�cantly in
uenced by the quality of the coarse grids;

maximal independent sets (MISs) are a useful and popular tool in the automatic construction of these
coarse grids on unstructured FE meshes. The inherent
exibility common to all MIS algorithms, allow

for the use of heuristics to improve their quality. We will present heuristics and methods to optimize the

quality of MISs, and the meshes constructed from them, for use in multigrid solvers for 3D continuum
mechanics.

Key words: maximal independent sets, multigrid, parallel solvers

1 Introduction

This paper presents a set of algorithms and heuristics for the construction of maximal independent sets

(MISs) of �nite element (FE) meshes in 3D solid mechanics for use in multigrid equation solvers. This work
is motivated by the success of the �nite element method (FEM) science and engineering, coupled with the
wide spread availability of ever more powerful computers, which has lead to the need for e�cient equation
solvers for large sparse systems. The matrices from FE simulations tend to be very poorly conditioned;
this fact has made the use of direct solvers popular in both research and industry as they are relatively
una�ected by the condition number of the matrix. Direct methods however possess suboptimal time and
space complexity when compared to iterative methods. As larger and faster computers are becoming more
widely available, to a larger number of research and industrial institutions, the use of iterative methods is
becoming increasingly more necessary. Thus given the computational resources that are available today,
and that are continually becoming more available, the asymptotics of direct methods are overwhelming the
relatively small constants in their complexity, resulting in the need to resort to iterative methods.

Iterative methods are notoriously unreliable on most FE problems of interest. Many iterative methods
perform poorly on the matrices produced by accurate FE simulations of complex geometric domains - these
di�culties tend to be ampli�ed by many of the sophisticated, state of the art, FE formulations that are used
in research today and will certainly be used more by industry in the future. Multigrid is one of a family
of \optimal" multilevel domain decomposition methods [13]. Multigrid is known to be a highly e�ective
methods to solve FE matrices, although its application to the unstructured meshes, that are the hallmark of

�Department of Civil Engineering, University of California Berkeley, Berkeley CA 94720 (madams@cs.berkeley.edu). This

work is supported by DOE grant No. W-7405-ENG-48

1

FEM, has not been well developed. This paper will discuss methods for the e�ective application of multigrid
in the solution of the large sparse system of equations that arise from FE simulations.

Multigrid is known to be the optimal serial solution method for the �nite di�erence Poisson equation [4].
But unlike the optimal parallel method to solve Poisson's equation (FFT in the P-RAM complexity model),
multigrid can be applied e�ectively to general second order PDE �nite element problems in elasticity [11, 3]
and plasticity [6, 9], as well as fourth order problems [5, 16]. The application of MG to unstructured FE
meshes is not transparent however. MG requires two types of operators in its application: �rst, restriction
and interpolation operators, which can be implemented with a rectangular matrix (R and RT respectively);
and second the PDE operator, or sparse matrix on the coarse mesh (the �ne grid matrix is the one to be
solved).

The coarse grid matrix can be formed in one of two ways - either algebraically (Acoarse RAfineR
T) or

by creating a new FE problem on the coarse grid thereby letting the FE implementation construct the matrix.
There are advantages and disadvantages to each approach, the algebraic method has the advantage that it
places less demand on the user by not requiring that a good coarse mesh be provided. The construction of
good quality meshes is a very challenging and expensive part of using FE and requiring good coarse meshes
may be an onerous responsibility for the solver to place on the user. Additionally mesh generators, be
they automatic or semi-automatic, are not accustomed to approximating the domain automatically (i.e. not
strictly maintaining the topology of the domain) which is often required - especially on the coarsest grids.
The explicit construction of a new FE problem on the coarse grid may however provide better quality coarse
grid operators as well as better restriction and interpolation operators, at least in some cases, but we are
not aware of any direct comparison of the two methods. We have opted for the algebraic approach - this
requires that we construct only the restriction matrices, and all of the operators that MG requires can be
constructed from these.

Our work thus centers on constructing good quality restriction operators. To do this we utilize an
algorithm [7, 3] applied recursively to produce a coarse grid, and its attendant operators, from a \�ne" grid.
A high level view of the algorithm is as follows:

� The vertex set at the current level (the \�ne" mesh) is automatically and evenly coarsened, with a MIS
algorithm, to produce a much smaller subset of vertices.

� This vertex set is then automatically remeshed with tetrahedra.

� These tetrahedra are used with standard �nite element shape functions to produce the restriction
matrix.

� This restriction matrix is then used to construct the coarse grid matrix from the �ne grid matrix -
Acoarse RAfineR

T .

� Finally these matrices are used in one iteration of full multigrid as a preconditioner for a Krylov
subspace method.

This paper will discuss methods and heuristics useful in optimizing the quality of these restriction oper-
ators. These methods will use coordinate data available in all FE simulations, we will also employ element
data that is available when continuum elements are used. We will show how to use this data to categorize
topological elements of the FE mesh (i.e. corners, ridges, surfaces, and interiors), and to use this information
in a logical way to modify the graph that is used in a MIS algorithm. We will also show how these heuristics
can be applied globally on parallel platforms, as well as a simple method to get the coarse grids to more
e�ectively \cover" the �ne grids.

This paper will proceed as follows: in x2 we describe our methods, in x3 we present numerical results on
some representative problems in solid mechanics, and we conclude in x4.

2 Automatic Coarse Grid Creation with Unstructured Meshes

This section will introduce the components that we will be using for the automatic construction of coarse
grids on unstructured meshes, but �rst we need to state what we want our coarse grids to be able to do.

2

The goal of the coarse grids in MG is to approximate the low frequency error in the current grid. Each
successive grid's FE function space should (with a drastically reduced vertex set) approximate, as best it
can, the highest frequency (or eigen functions) of the current grid - that it can approximate well. That is,
with say 1/10th the vertices it is natural that one could only represent the lowest 10% of the �ne grid spectra
well - the coarse grid functions should approximate the the highest part of this lower part of the spectrum
as well as possible. It is not possible to satisfy this criterion directly (on unstructured grids), but a natural
heuristic is to represent the geometry as well as possible, in some sense, with a much smaller set of vertices.
One promising approach is to use computational geometry techniques to characterize features and maintain
them on the coarser grids [14]. An alternative and popular method is to use a maximal independent set as
a heuristics to evenly coarsen the vertex set - if vertices are added to the MIS randomly then the MIS is
expected to be good representation of the �ne grid in the sense of evenly coarsening the grid points and
maintain the feature characteristics of the mesh [14]. A MIS is not unique in general, and an arbitrary MIS
is not likely to perform well as will show.

We motivate our approach by �rst looking at the structured MG algorithm. We can characterize the
behavior of multigrid on structured meshes, as shown in �gure 1, as: select every other vertex (starting from
the boundary), in each dimension, for use in the coarse grid.

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

11

1

1

11

1

1

11

1

1

2

2

Points labeled are
part of next coarser grid

Points labeled 1 are
part of next coarser grid

 7 by 7 grid of unknowns 3 by 3 grid of unknowns 1 by 1 grid of unknowns
P : 9 by 9 grid of points P : 5 by 5 grid of points P : 3 by 3 grid of points

(2) (1)(3)

2

2

2

2

2

Figure 1: Multigrid coarse vertex set selection on structured meshes

To apply MG to unstructured meshes it is natural to try to imitate the \look" of the structured algorithm
in hopes of imitating its success. The coarse grids in �gure 1, in addition to evenly coarsening the vertex set,
also pay special attention to the boundaries. A more accurate description of MG meshes on regular grids is:
place each vertex v in the topological category of the lowest dimension to which v belongs; select about 1=2d

vertices (e.g. a MIS) from each category. De�ne topological categories, each with an inherent dimension d,
and place each vertex v in the category of lowest dimension, to which v belongs. For instance a natural set
of topological categories is: corners (d = 0), ridges (d = 1), surfaces (d = 2), and interiors (d = 3). Now we
can see that each category of vertices, in the regular mesh case, is reduced in number from one grid to the
next by about a factor of 1=2d, and is a MIS (assuming a nine point stencil is in use). Now this is all well
and good, but how can these observations be made incarnate in an algorithm - to do this we �rst need to
look at standard methods used in the construction of a MIS.

2.1 Maximal Independent Set Algorithms

An independent set is a set of vertices I � V in a graph G = (V;E), in which no two members of I are
adjacent (i.e. 8v; w 2 I; (v; w) =2 E); a maximal independent set is an independent set for which no proper
superset is also an independent set. A MIS of a graph is not unique, in general, and its calculation is a
relatively easy task to perform. The simple serial greedy algorithm in �gure 2 will construct a MIS. Here we
endow vertices v with a mutable data member state, state 2 fselected; deleted; undoneg. All vertices begin
in the undone state, and ending in either the selected or deleted state; the MIS is de�ned as the set of selected

3

vertices. Each vertex v will also be given a list of adjacencies adjac, de�ned by v:adjac = fv1 j (v; v1) 2 Eg.

forall v 2 V

if v:state = undone then

v:state selected

forall v1 2 v:adjac
v1:state deleted

I fv 2 V j v:state = selectedg

Figure 2: Basic MIS Algorithm for the serial construction of a MIS

There is a great deal of
exibility in the order in which vertices are chosen in each iteration of the
algorithm. Herein lies a simple opportunity to apply a heuristic, as the �rst vertex chosen will always be
selectable and the probability is high that vertices which are chosen early will also be selectable. Thus if
an application can identify vertices that are \important" then those vertices can be ordered �rst and so
that a less important vertex can not delete a more important vertex. We can now decide that corners are
more important than ridges and ridges are more important than surfaces and so on, and order the vertices
with all corners �rst, then ridges, etc. With this heuristic in place basic MIS algorithm in �gure 2 will
guarantee, for instance, that the number of ridge vertices on the coarse grid (in each ridge segment) will

satisfy
�
�
�V coarse

ridge

�
�
� �
jV fine

ridgej�2
3

; whereas a valid MIS could remove all ridge and corner vertices from the graph,

which would clearly be disastrous.

2.2 Parallel Maximal Independent Set Algorithms

For parallel processing we partition the vertices onto processors and de�ne the vertex set Vp owned by
processor p of P processors. Thus V = V1 [V2 [::: [VP is a disjoint union, and for notational conve-
nience we give each vertex an immutable data member proc after the partitioning is calculated to indicate
which processor is responsible for it. We can now use a random algorithm [8] where each vertex is given
a random number and vertices can only be selected which are connected to strictly lower numbered ver-
tices. Alternatively we can use a partition based algorithm [1] where a vertex v can only be selected if
fv1 2 v:proc; v1:state 6= deleted j v1:proc > v:procg = ;.

The order in which each processor traverses the local vertex can be governed by our heuristics although
the global application of a heuristic requires an alteration in the algorithm. In the random algorithm the
number space can be divided into continuous segments, each category can simply generate random numbers
in its own segments of the number line - with the highest segments given to the corners, the next highest
to the ridges, and so on. The partition based algorithm requires that vertices v are give an immutable data
member v:topo; in the MIS algorithm, processor p can select a vertex v only if:

fv1 j v1 2 v:adjac; v1:state 6= deleted j v1:topo > v:topo or (v1:topo = v:topo and v1:proc > v:proc)g = ;

Note that with these modi�cations we no longer need to iterate over the vertex list in �gure 2 in any particular
order as these additions to the algorithms will insure similar behavior.

2.3 Topological Classi�cation of Vertices in Finite Element Meshes

Our methods are motivated by the well known fact [7, 3] that coarse grids of multigrid methods must
represent the boundary of the domain well in order to approximate the function space of the �ne mesh well,
which is necessary for multigrid methods to be e�ective. Intuitively this can be done by emphasizing the
vertices that \de�ne" the domain. Note, we will de�ne domain in a slightly non-standard way as to mean
a contiguous region of the real FE domain with a particular material property, thus for our discussion the
boundary of the PDE proper will be augmented with boundaries between di�erent material types. If the
domain is convex then a convex hull is useful in reasoning about how to best classify the vertices. Vertices

4

that are on the convex hull should be given more emphasis the those that are not (i.e. interior vertices).
Vertices that are required to de�ne the convex hull are likewise more important than vertices that simply
lay on the convex hull. Domains of interest are by no means necessarily convex, but the idea of emphasizing
vertices by their contribution to de�ning the boundary of a domain is useful in the exposition of our methods.

The �rst type of classi�cation of vertices is to �nd the exterior vertices - if continuum elements are used
then this classi�cation is trivial. For non-continuum elements like plates, shells and beams, heuristics such
as minimum degree could be used to �nd an approximation to the \exterior" vertices, or a combination if
mesh partitioners and convex hull algorithms could be used. For the rest of this paper we will assume that
continuum elements are used and so a \hull" of the domains, represented by a list of facets, can be de�ned.
These exterior vertices will give us our �rst vertex classi�cation: interior vertices are vertices that are not
exterior vertices. Exterior vertices require further classi�cation, but �rst we need a method of automatically
identifying faces in our FE problems.

2.4 A Simple Face Identi�cation Algorithm

To describe our algorithm we will assume that a list of facets facet list has been created of the boundaries
of the FE mesh. Assume that each facet f 2 facet list has calculate its unit normal vector f:norm. Assume
that each facet f has a list of facets f:adjac that are adjacent to it. With these data structures, and a list
with with AddTail and RemoveHead functions with the obvious meaning, we can calculate a face ID for
each facet with the algorithm shown in �gure 3.

forall (f 2 facet list) f:face ID 0
Current ID 0
forall f 2 facet list

if f:face ID = 0
list ffg

norm f:norm

Current ID Current ID + 1
while list 6= ;

f list:RemoveHead

f:face ID Current ID

forall f1 2 f:adjac - - �1 < TOL � 1 is a user selected tolerance
if normT � f1:norm > TOL and f1:face ID = 0

list:AddTail(f1)

Figure 3: Face identi�cation algorithm

This algorithm simply repeats a breadth �rst search, of trees rooted at an arbitrary undone facet, which is
pruned by the requirement that a minimum angle be maintained by all facets in the tree relative to the root.
This heuristic is a simple way to identify faces (or manifolds that are somewhat \
at") of the boundaries in
the mesh.

These faces are useful for two reasons:

� Topological categories for vertices, used in the heuristics of x2.4, can be inferred from these faces:

{ A node attached to only one face is a surface.

{ A node attached to two di�erent faces is an ridge.

{ A node attached to more than two di�erent faces is a corner.

� Vertices not associated with the same faces should not interact with each other in the MIS algorithm.

This second criterion will be discussed in the next section.

5

2.5 Modi�ed Maximal Independent Set Algorithm

We now have all of the pieces that we need to describe the core of our method. First we classify vertices and
ensure that a vertex of lower rank does not suppress a vertex of higher rank - this was done with a slight
modi�cations to standard MIS algorithms in x2.1. Second we want to maintain the integrity of the \faces"
in the original problem as best we can. The motivation for this second criterion can be seen in �gure 4.

Fine Grid

Coarse Grid

Deleted Vertex

Selected Vertex

Figure 4: Poor MIS for multigrid of a \shell"

If the FE mesh has a thin region then the MIS as described in x2.1 can easily fail to maintain a cover of
the vertices in the �ne mesh. This comes from the ability of the vertices on one face to decimate the vertices
on an opposing face, this phenomenon could be mitigated by randomizing the order that the vertices are
added to the MIS, at least within a vertex type. But randomization is not good enough as these skinny
regions tend to deteriorate the performance of iterative solvers, so we need to do something better.

A simple �x for this problem is to modify the graph to which we apply the MIS algorithm - we want to
maintain the same vertices in the graph, but will reduce the edge set. To avoid the problems illustrated in
�gure 4, we can look at our method of classifying vertices again:

� A node attached to only one face is a surface.

� A node attached to two di�erent faces is an ridge.

� A node attached to more than two di�erent faces is a corner.

Now we claim that by removing all edges between vertices that do not share a face, we will force the MIS
to be a more \logical" and economically representative of the �ne mesh, as shown in �gure 5. For instance
we do not want a corners to delete a ridge vertex with which it does not share an exterior facet. Another
example is that we do not want a ridge vertices to delete ridges with which it does not share a face (this is
the most e�ective heuristic in this example). And �nally we will augment our heuristic and not allow corners
be deleted at all - this could be problematic on some meshes that have many initial \corners", as de�ned by
our algorithm, and a reclassi�cation of the remeshed vertices on coarse meshes may be advisable.

We are now free to run our MIS algorithm on this modi�ed graph, �gure 6 shows and example of a
possible MIS and remeshing.

2.6 Vertex Ordering in MIS Algorithm on Modi�ed FE Graphs

An additional degree of freedom, in this algorithm as described thus far, is the order of the vertices within
each category. Thus far we have implicitly ordered the vertices by topological category; the ordering within
each category can also be speci�ed. Two simple heuristics can be used to order the vertices: random order,
or a \natural" order. Meshes will generally be initially ordered in either a block regular order (i.e. an
assemblage of logically regular blocks), but this depends on the mesh generation method used. Initial vertex
orders can also be ordered in a cache optimizing order [15] like Cuthill-McKee. Both of these ordering types
are what we will call natural orders, and we assume that the \initial" order of our mesh is of this type (if
not then we can make it so). The MISs produced from natural orderings tend to be rather dense, random

6

Figure 5: Original and Fully modi�ed graph

Fine Grid

Coarse Grid

Figure 6: MIS and coarse mesh

ordering on the other hand will tend to be more sparse. That is the MISs with natural orderings will tend
to be larger than those produced with random orders. Note that for a uniform 3D hexahedral mesh, the
asymptotics of the size of the MIS is bounded from above by 1=23, and from below by 1=33; natural and
random orderings are simple heuristics to approach these bounds.

Small MISs are preferable as this means that there is less work to be done on the coarser mesh, also fewer
levels will be required before the coarsest grid is small enough to solve directly, but care has to taken to not
degrade the convergence rate of the solver by compromising the quality if the coarse grid representation.
In particular, as the boundaries are important to the coarse grid representation it may be advisable to
use natural ordering for the exterior vertices and a random ordering for the interior vertices - we use this
approach in our numerical experiments.

2.7 Meshing of Vertex Set on the Coarse Grid

The vertex set for the coarse grid remains to be meshed - this is necessary in order to apply FE shape
functions to calculate the restriction operator. We use a standard Delaunay meshing algorithm to give use
these meshes. This is done by putting the mesh inside of a bounding box, thus adding dummy vertices to the
coarse grid set, and then meshing this to produce a mesh that covers all �ne grid vertices. The tetrahedra
attached to the bounding box vertices are removed and the �ne grid vertices within these deleted tetrahedra
are added to a list of \lost" vertices (lost list). With this (usually) convex body we continue to remove
tetrahedra from the mesh that connect points that were not near each other on the �ne mesh (recall the
vertex set are still nested), and that do not have any vertices that lie \uniquely" within the tetrahedron.
De�ne a vertex v to lie uniquely in a tetrahedron if v lies completely within the tetrahedra and not on its
surface, or there is no adjacent tetrahedra to which v can be added. More precisely if all of a vertices v shape
function values are larger than some very small negative tolerance �� (we use only linear shape functions),
or there is not an adjacent tetrahedra that can \accept" v, then that tetrahedra is deemed necessary and not

7

removed. We also use a more aggressive phase in which we use a more negative, though still small, tolerance,
to try to remove more tetrahedra - but the \orphaned" vertices are added to the lost list. The resolution of
the vertices in the lost list will be discussed in the next section

2.8 Coarse Grid Cover of Fine Grid

The �nal optimization that we would like to employ is to improve the cover of the coarse mesh on the �ne
vertex set. With these coarse grids constructed the interpolation operators are calculated by evaluating
standard FE element shape functions, of the element to the which the �ne grid vertex is associated, at the
coordinate of the �ne grid vertex. So each �ne grid vertex must be associated with an element in the coarse
grid - that is the element in which the �ne grid vertex is physically located. In general however some �ne grid
vertices will fail to be \covered" by the coarse grid (the lost list from the previous section). This problem
can be solved in one of two ways: �nd a near by element and use it, or move the vertices on the coarse grid
so as to cover all �ne grid vertices. We can use the interpolation of an element that does not cover a �ne
mesh point, the interpolation values will simply not all be between zero and one. Intuition tells us however
that interpolation will be of higher quality if the interpolation point is within an element - otherwise it is
an extrapolation. Alternatively one can move the coarse grid vertex positions to cover the �ne vertices in
lost list.

The optimal coarse grid vertex positions (or an approximation to it) could perhaps be constructed with
the use of interpolation theory to provide cost functions, and linear or non-linear programming. We have
instead opted for a simple, greedy algorithm that iteratively traverses the exterior vertices of the coarse mesh
and applies a simple algorithm to try to cover the uncovered vertices that are near it. This algorithm �rst
selects a coarse grid vertex c and �nds the \uncovered" �ne grid vertices in lost list that are near c - call this
list lost listc. A unit vector � is calculated: the weighted average of the normals of the facets connected to
the coarse grid vertex (c:facet list) weighted by the facet area. The normal of each facet that does not have
a positive inner product (with this � vector) is added to � until ff 2 c:facet list j f:normT � � < 0g = ;.
Now a standard geometric predicate [12], can be used to test if a �ne grid vertex v 2 lost listc is \outside"
or \inside" of each facet f = (a; b; c) 2 c:facet list, that is if the volume of the tetrahedra t = (a; b; c; v) is
positive then v is outside of f . A scale � is then calculated by �nding that smallest (positive) � required,
8f = (a; b; c) 2 c:facet list and 8v 2 lost listc such that:

�
�
�
�
�
�
�

a:x a:y a:z 1
b:x b:y b:z 1

c:x+ � � �:x c:y + � � �:y c:z + � � �:z 1
v:x v:y v:z 1

�
�
�
�
�
�
�

� 0:0

A limit on the value of � is also imposed to avoid large motions that can most likely be avoided by letting
other coarse grid vertices participate in the attempt to cover each �ne grid vertex. This procedure is then
applied to each exterior coarse grid vertex in one outer loop of the algorithm. We generally run about �ve
outer iterations and then use the extrapolated shape function values for the �ne grid vertices that remain
uncovered.

Figure 7 shows an illustration of what our algorithm might do on our running example.
Figure 8 shows and example of our methods applied to a problem in 3D linear elasticity. The �ne (input)

mesh is shown with three coarse grids used in the solution.

3 Numerical Results

To demonstrate the e�ectiveness of the methods that we have discussed we will use three test problems
in linear elasticity, shown in �gure 9. The problems are chosen to exercise the primary problem features
that we have tried to accommodate: material coe�cient discontinuities, thin \shell" types of features, and
curved surfaces. The �rst problem is of a hard sphere (Youngs modulus E = 1, Poisson ratio (v) = 0:35)
encased in a soft rubber like material (E = 10�4, v = 0:49). The second problems is a steel beam-column
connection made of thin, poorly proportioned, elements. The third problem is of a tube �xed at one end
and loaded at the other end like a cantilever - a thin slit of the rubber like material of the �rst problem runs

8

Fine Grid

Coarse Grid

Figure 7: Coarse grid after vertices have been moved to cover all �ne grid vertices

Figure 8: Fine (input) grid and coarse grids for problem in 3D elasticity

down the length of one side of the tube. The \sphere" problem has 40,000 equations, the \beam" has 36,000
equations, and the \tube" has 60,000 equations. All problems use eight node trilinear \brick" elements; the
hard material is a standard displacement element and the soft material is a mixed formulation.

Figure 9: Test problems from linear elasticity: Sphere (40,000 dof), beam-column (36,000 dof), tube (60,000
dof)

Each problem is solved with conjugate gradient (CG) solver, to a relative tolerance of 10�6. Full multigrid
is used for the preconditioner, the smoother is CG preconditioned by block Jacobi, the number of blocks
was reduced by a factor of eight at on each successive level. All problems used three coarse grids, so that
the top grid (solved directly) was a few hundred equations in size. We present numerical experiments on an
IBM SP (120 MHz PowerPC 604e CPU). Finite Element Analysis Program (FEAP)[17], is used to generate
out test problems and produce our graphics. We use ParMetis [10] to calculate our partitions, and PETSC
[2] for our parallel programming development environment. Our code is implemented in C++ and FEAP is
implemented in FORTRAN, PETSc and ParMetis are implemented in C.

9

To demonstrate the e�ectiveness of our methods, we run these test problems with: Pure MIS (no op-
timizations); Pure MIS with the heuristics of exterior vertices ordered �rst, and interior ordered last and
randomly; our modi�ed MIS without the vertex cover heuristics; and �nally all of our optimizations. The
solution times and the iteration counts are shown in �gure 10.

Problem Names Sphere Beam-column Tube

Number of equations 40,000 36,000 60,000
Condition K(A) of matrix 7:2 � 106 1:0 � 108 1:8 � 105

Number of pre (and post) smoother applications 2 3 3
Number of blocks in Jacobi smoother (�ne grid) 240 32 256

Pure MIS (no optimizations) 116(58) 201(50) 296(69)
Pure MIS w/ exterior vertices ordered �rst, interior last and random 75.1(36) 225(54) 286(70)
Modi�ed MIS w/o vertex cover heuristics 56.5(27) 91.0(25) 104(14)
Modi�ed MIS w vertex cover heuristics (all optimizations) 56.5(27) 91.0(25) 52.8(9)
Matrix vector product Time on the �ne grid (sec) 0.0727 0.057 0.0907

Figure 10: Solve Time (number of iterations)

These experiments show that our methods provide signi�cant improvement over a randomMIS, especially
on complex domains. Moving coarse vertices, to cover �ne ones, did not help on meshes that do not have
curved surfaces, as is expected, and provide some improvement the mesh with curved surfaces. The vertex
orderings, within each category when applicable, e�ects these results a small amount, particularly on the
\Pure MIS" data; we see about a 10-15% variance with di�erent randomization schemes. Thus one should
consider that the standard deviation rather high for this data - but we have consistently observed the dramatic
bene�t of the modi�ed MIS, that is re
ected in this data. The ine�ectiveness of ordering the exterior vertices
�rst in the \Pure MIS" experiments is surprising. Other vertex orders (than the ones we used) provided
small variations the iteration count - some better and some worse. Also this code is somewhat \tuned" for
these problems, and a few others, in that we re�ned the algorithm the best average performance for these
our test problems; but only one code (executable) was used in all of these experiments. Thus we feel that
our modi�ed MIS heuristics are e�ective - especially on domains with complex geometry.

4 Conclusion

We have presented a set of simple methods for the optimization of automatically generated coarse grids for
multigrid equation solvers. Our numerical results have shown that our methods are e�ective, for the class
of problems that we have addressed. Additionally we have shown that multigrid has promise in providing a
robust and scalable solution methods for unstructured FE problems with complex domains and large jumps
in material coe�cients.

Some potential areas of future work are:

� Incorporate more sophisticated computational geometry techniques to investigate their e�ectiveness
relative to our simple techniques.

� Compare the e�ectiveness of our algebraic methods of constructing the coarse grids with the restriction
operators provided by user supplied coarse grids, and FE implementations construction of the coarse
grid operator.

Acknowledgments. This work is supported by DOE, and we would like to thank Steve Ashby for his
constant support of our e�orts. We wish to thank Jim Demmel for his numerous suggestions and careful
reading of the manuscript. We gratefully acknowledge Argonne National Laboratory for the use of their
IBM SP for the program development and numerical results presented in this paper. Also, we would like to
thank R.L. Taylor at the University of California, Berkeley, for his helpful comments, and his providing and
supporting FEAP.

10

References

[1] Mark Adams. A parallel maximal independent set algorithm. Technical report, University of California,
Berkeley, 1998.

[2] S. Balay, W.D. Gropp, L. C. McInnes, and B.F. Smith. PETSc 2.0 users manual. Technical report,
Argonne National Laboratory, 1996.

[3] Tony F. Chan and Barry F. Smith. Domain decomposition and multigrid algorithms for elliptic prob-
lems on unstructured meshes. Proceedings of the Seventh Annual International Conference on Domain

Decomposition, 1994.

[4] James Demmel. Numerical Linear Algebra. SIAM, 1997.

[5] J. Fish, V. Belsky, and S. Gomma. Unstructured multigrid method for shells. International Journal for
Numerical Methods in Engineering,Vol. 39, pg. 1181-1197, 1996.

[6] J. Fish, M. Pandheeradi, and V. Belsky. An e�cient multilevel solution scheme for large scale non-linear
systems. International Journal for Numerical Methods in Engineering, Vol. 38, pg 1597-1610, 1995.

[7] Herve Guillard. Node-nested multi-grid with delaunay coarsening. Technical Report 1898, Institute
National de Recherche en Informatique et en Automatique, 1992.

[8] Mark T. Jones and Paul E. Plassman. A parallel graph coloring heuristic. SIAM J. Sci. Comput., Vol.

14 No. 3, pp. 654-669, 1993.

[9] S. Kacau and I. D. Parsons. A parallel multigrid method for history-dependent elastoplacticity compu-
tations. Computer methods in applied mechanics and engineering, Vol.108, 1993.

[10] George Karypis and Kumar Vipin. Parallel multilevel k-way partitioning scheme for irregular graphs.
Supercomputing, 1996.

[11] J. Ruge. AMG for Problems of Elasticity. 1986.

[12] Jonathan Richard Shewchuk. Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric
Predicates. Technical Report CMU-CS-96-140, School of Computer Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania, May 1996.

[13] Barry Smith, Petter Bjorstad, and William Gropp. Domain Decomposition. Cambridge University
Press, 1996.

[14] Dafna Talmor. Well spaced points for numerical methods. PhD thesis, Carnegie Mellon University,
Pittsburgh PA 15213-3891, 1997.

[15] Sivan Toledo. Improving memory-system performance of sparse matrix-vector multiplication. In Pro-

ceedings of the 8th SIAM Conference on Parallel Processing for Scienti�c Computing, March 1997.

[16] P. Venek, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggregation for second and
fourth order elliptic problems. In 7th Copper Mountain Conference on Multigrid Methods, 1995.

[17] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method, 4th ed. McGraw-Hill, London, 1989.

11

