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Abstract

We describe U-Net/SLE (Safe Language Extensions), a user-level network interface architecture which enables

per-application customization of communication semantics through downloading of user extension applets, imple-

mented as Java class�les, into the network interface. This architecture permits applications to safely specify code
to be executed within the NI on message transmission and reception. By leveraging the existing U-Net model,

applications may implement protocol code at the user level, within the NI, or using some combination of the

two. Our current implementation, using the Myricom Myrinet interface and a small Java Virtual Machine subset,
obtains good performance, allowing host communication overhead to be reduced and improving the overlap of

communication and computation during protocol processing.

1 Introduction

Recent work in high-speed interconnects for distributed and parallel computing architectures, particularly workstation
clusters, has focused on development of network interfaces enabling low-latency and high-bandwidth communication.
Often, these systems bypass the operating system kernel to achieve high performance; however the features and
functionality provided by these di�erent systems vary widely. Several systems, such as U-Net [26] and Active
Messages [27], virtualize the network interface to provide multiple applications on the same host with direct, protected
network access. Other systems, including Fast Messages [16] and BIP [17], eschew sharing the network in lieu of design
simplicity and high performance. In addition, fast network interfaces often di�er with respect to the communication
semantics they provide, ranging from \raw" access (U-Net) to token-based 
ow-control (Fast Messages) to a full-
featured RPC mechanism (Active Messages). Complicating matters further is the spectrum of network adapter
hardware upon which these systems are built, ranging from simple, fast NICs which require host intervention to
multiplex the hardware [30] to advanced NICs incorporating a programmable co-processor [26].

Application programmers are faced with a wide range of functionality choices given the many fast networking
layers currently available: some applications may be able to take advantage of, say, the 
ow-control strategy imple-
mented in Berkeley Active Messages, while others (such as continuous media applications) may wish to implement
their own communication semantics entirely at user level. Additionally, the jury is still out on where certain features
(such as 
ow-control and retransmission) are best implemented. It is tempting to base design choices on the results
of microbenchmarks, such as user-to-user round-trip latency, but recent studies [12] has hinted that other factors,
such as host overhead, are far more important in determining application-level performance.

Given the myriad of potential application needs, it may seem attractive to design for the lowest common denom-
inator of network interface options, namely, the interface which provides only fast protected access to the network
without implementing other features, such as RPC or 
ow-control, below the user level (U-Net is one such design).
This design enables applications to implement protocols entirely at user level and does not restrict communication
semantics to some arbitrary set of \built-in" features. However, experience has shown [10] that in the interest of
reducing host overhead, interrupts, and I/O bus transfers, it may be bene�cial to perform some protocol processing

0For more information on this project, please see http://www.cs.berkeley.edu/~mdw/projects/unet-sle/.
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within the network interface itself, for example on a dedicated network co-processor [5]. Such a system could be used
to implement a multicast tree directly on the NI, allowing data to be retransmitted down branches of the tree without
intervention of the user application, overheads for I/O bus transfer, and process or thread context switch. Another
potential application is packet-speci�ed receive bu�ers, in which the header of an incoming packet contains the bu�er
address in which the payload should be stored. Being able to determine the packet destination bu�er address before
any I/O DMA occurs enables true zero-copy as long as the sender is trusted to specify bu�er addresses.

A number of systems have incorporated these NI-side features in an ad hoc manner, however, it would seem
desirable to have a consistent and universal model for fast network access which subsumes all of these features. We
have designed an implemented U-Net/SLE (Safe Language Extensions), a system which couples the U-Net user-level
network interface architecture with user extensibility by allowing the user to download customized packet-processing
code, in the form of Java applets, into the NI. With this design, it is possible for multiple user applications to
independently customize their interface with the U-Net architecture without compromisingprotection or performance.
Applications which are content with the standard model provided by U-Net are able to use \direct" U-Net access
and are not penalized for features provided by the underlying system which they do not use.

With the U-Net/SLE model, for example, it is possible for an application to implement specialized 
ow-control
and retransmission code as a Java applet which is executed on the network interface. For instance, the semantics
of the Active Messages layer could be implemented as a combination of Java and user-level library code. Those
applications which require the use of Active Messages may use those features without requiring all applications on
the same host to go through this interface, while still being able to take advantage of the ability to do NI-level
processing rather than pushing all protocol code to user level.

A number of questions are raised by U-Net/SLE and other similar designs, including:

� How can performance be maintained while protection between user extensions is enforced?

� How should resource management for user extensions be handled?

� At what point does it become advantageous to move packet-processing code from user level into the NI, and
vice versa?

� What tradeo�s should be considered when providing a certain feature in the network interface rather than on
the host?

In this paper we describe the design and implementation of U-Net/SLE, focusing on the considerations of using Java
as a safe language for user extensions executed in the critical path of communication on a network interface.

Section 2 of this paper describes the U-Net/SLE design in more detail. Section 3 describes JIVE, our implemen-
tation of the Java Virtual Machine used in U-Net/SLE. Sections 4 and 5 summarize performance, while section 6
describes related work. Section 7 concludes and raises issues for future work to consider.

2 Design and Implementation

U-Net/SLE is based on U-Net [26], a user-level network interface architecture which multiplexes the NI hardware
between multiple applications such that each application has transparent, direct, protected access to the network. U-
Net may be implemented either in hardware, software, or a combination of both, and does not presume any particular
NIC design. On NICs with a programmable co-processor, for instance, U-Net multiplexing/demultiplexing functions
may be implemented directly on the co-processor, while on a non-programmable NIC a protected co-routine on the
host may be used to enforce protection.

In the U-Net model an endpoint serves as an application's interface to the network and consists of a bu�er area

and transmit, receive, and free bu�er queues (see Figure 1). The bu�er area is a pinned region of physical host RAM
mapped into the user's address space; in order to ensure that the NI may perform network bu�er DMA at any time,
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Figure 1: U-Net endpoint data structure

all transmit and receive bu�ers are located in this region.1 In order to transmit data, the user constructs the data
in the bu�er area and pushes a descriptor on the transmit queue indicating the location and size of the data to be
transmitted as well as a channel tag, which indicates the intended recipient of the data. U-Net transmits the data
and sets a 
ag in the transmit queue entry when complete. When data arrives from the network, U-Net determines
the recipient endpoint for the packet, pops a bu�er address from that endpoint's free bu�er queue and transfers the
data into the bu�er. Once the entire PDU has arrived (which may span multiple receive bu�ers), U-Net pushes a
descriptor onto the user receive queue indicating the size, bu�er address(es), and source channel tag of the data. As
an optimization, small messages may �t entirely within a receive queue descriptor. The user may poll the receive
queue or register an upcall (e.g. a signal handler) to be invoked when new data arrives.

U-Net/SLE allows each user endpoint to be associated with a Java class�le implementing the user extension

applet for that endpoint.2 This applet consists of a single class which must implement the following methods:

� UnetSLEApplet, the constructor for the class;

� doTx, invoked when the user pushes an entry into the transmit queue; and,

� doRx, invoked when a packet arrives for the given endpoint.

In addition the class must contain the �eld RxBuf, an unallocated array of byte. This array is initialized by U-
Net/SLE to point to a temporary bu�er used for data reception; see below. The class need not adhere to any
additional structural restrictions. The use of Java as a safe user extension language is discussed in section 3.

When an endpoint is created, if the user has supplied a class�le it is loaded into the network interface, parsed,
and initialized by executing the applet constructor.3 This constructor could, for example, allocate array storage for
future outgoing network packets, or initialize counters.

During normal operation, U-Net/SLE polls the transmit queues for each user endpoint while simultaneously
checking for incoming data from the network. When a user pushes a transmit descriptor onto their transmit queue,
U-Net/SLE �rst checks if the endpoint has a class�le associated with it. If not, U-Net/SLE transmits the data as
usual. Otherwise, the applet doTx method is invoked with three arguments: the length of the data to be transmitted,
the destination channel, and the o�set into the user's bu�er area at which the payload resides. These arguments
correspond exactly to the contents of the transmit descriptor. The doTx method may then inspect and modify the

1The U-Net/MM architecture [32] extends this model to permit arbitrary virtual-memory bu�ers to be used; the future work section

of this paper discusses it further.
2This terminology used because, like standard Java applets, U-Net/SLE applets are mini-programs that register callback functions

with the runtime environment. The use of the term applet is not meant to suggest that U-Net/SLE applets are required to import the

java.applet Java package or that they are otherwise constrained by the restrictions on standard Java applets.
3The current prototype provides a single application class�le bu�er, which is loaded when the network interface is initialized.
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packet contents before transmitting it to the network (if at all). Multiple packets may be injected into the network
as a result of the doTx call.

Similarly, when data arrives from the network, U-Net/SLE �rst determines the destination endpoint. If this
endpoint has a class�le associated with it, the applet's doRx method is invoked with the packet length and source
channel as arguments. The packet at this point resides in the applet's RxBuf bu�er, although implementations may
choose not to implement this feature (if, for example, a direct network-to-host DMA engine is available). This
method may process the packet contents, allocate and �ll user free bu�ers, and may eventually push one or more
receive descriptors into the user's receive queue. If no applet is associated with this endpoint the data is pushed to
the user application as described above.

Operations such as moving data between user and network interface bu�ers, and pushing data to or pulling
data from the physical network, are handled by native methods provided to user extension applets by U-Net/SLE.
These methods are responsible for enforcing protection boundaries between user applets; for example, to prevent
an applet from accessing data outside of the user endpoint bu�er area. The exact functionality provided by these
native methods is dependent on the U-Net/SLE implementation; for example, on some NICs it may be necessary
to move data into a temporary bu�er before the applet can process it. In general, however, these methods must
ensure that applets may only access (a) the user transmit, free, and receive queues, and (b) the user bu�er area. The
methods need not protect the applet from writing \garbage" data into these regions; any such bug is considered a
user programming error and will not a�ect other applications.

2.1 Myrinet interface implementation

Our prototype implementation uses the Myricom Myrinet SBus interface, which incorporates 256K of SRAM and
a 37 MHz programmable processor (the LanAI), with a raw link speed of 160 MBytes/sec. The host is a 167 MHz
UltraSPARC workstation running Solaris 2.6. U-Net/SLE is implemented directly on the LanAI processor, with
the raw U-Net functionality being very similar to that for the FORE Systems SBA-200/PCA-200 implementations
described in [26, 31]. Endpoint transmit and free queues are mapped into user space from the LanAI SRAM, while
pinned host memory is used for the endpoint receive queue and bu�er area. This allows the LanAI to poll endpoint
transmit queues and users to poll their individual receive queues without crossing the I/O bus. The Myrinet board
interface requires network data to be transmitted from and received into bu�ers in the LanAI SRAM; there is no

y-by DMA capability such as that described in [26]. However, the network-to-SRAM and SRAM-to-host DMA
engines may operate in parallel.

U-Net/SLE is implemented as an add-on to the standard U-Net �rmware running on the LanAI, and user
extension applets are executed on the LanAI itself in response to user transmit requests and data reception from the
network. At endpoint creation time a user application may load the unparsed Java class�le for their applet into a
region of the LanAI SRAM, where it is then parsed and the applet constructor executed. The Java virtual machine
implementation, JIVE, is described section 3.

The following native methods are provided by U-Net/SLE for applets to process packet data:

doHtoLDMA(byte[] txarray, int txoff, int useroff, int len) DMAs a region of host memory speci�ed by
usero� (an o�set into the endpoint bu�er region) into the Java array txarray at o�set txo� for len bytes.

doLtoHDMA(byte[] rxarray, int rxoff, int useroff, int len) DMAs a region of LanAI memory speci�ed by
the Java array rxarray starting at o�set rxo� into the endpoint bu�er region at o�set rxo� for len bytes.

txPush(byte[] txarray, int txoff, int chan, int len) Transmits a packet to destination channel chan, us-
ing the payload stored in txarray starting at o�set txo� with size len bytes.

dmaRxd(int[] offsets, int chan, int len) DMAs a descriptor into the user's receive FIFO specifying channel
tag chan and length len with receive bu�er o�sets o�sets. The o�sets array must be equal to the size of the
receive descriptor o�set list (fourteen 32-bit words in this implementation).

dmaRxdPayload(byte[] payload, int chan, int len) DMAs a descriptor into the user's receive FIFO specifying
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channel tag chan and length len with receive descriptor payload speci�ed by the payload array. This allows
small message reception to be optimized by placing message data directly in the receive queue entry.

getFreeBuffer() Returns the bu�er area o�set of the next free bu�er on the user's free queue, or -1 if the queue is
empty.

getFreeBufferLength() Returns the size of this endpoint's free bu�ers, which is speci�ed at endpoint creation
time.

newAlignedArray(int nbytes) Returns a byte array of size nbytes which is properly aligned for DMA operations.

Some of these native methods are appropriate for all implementations of U-Net/SLE (such as txPush and dmaRxd),
while others (such as doHtoLDMA) are speci�c to the Myrinet implementation. No restrictions are made as to where
these native methods may be invoked, or even in what order; the applet doTx method could, for example, allocate
and �ll a user receive bu�er.

1 public class RawUnet {

2 public static byte[] TxBuf;

3 public static byte[] RxBuf;

4 public static int freebufferlen;

5 public static int[] offsets;

6

7 RawUnet() {

8 TxBuf = newAlignedArray(4096);

9 freebufferlen = getFreeBufferLength();

10 offsets = new int[14];

11 }

12

13 private static int doTx(int length, int channel, int off) {

14 doHtoLDMA(TxBuf, 0, off, length);

15 txPush(TxBuf, 0, channel, length);

16 return 0;

17 }

18

19 private static int doRx(int length, int channel) {

20 if (length <= 56) {

21 dmaRxdPayload(RxBuf, channel, length);

22 } else {

23 int dma_offset = getFreeBuffer();

24 if (dma_offset == -1) return; /* No buffer available; drop */

25 doLtoHDMA(RxBuf, 0, dma_offset, length);

26 offsets[0] = dma_offset;

27 dmaRxd(offsets, channel, length);

28 }

29 return 0;

30 }

31 }

Figure 2: Sample U-Net/SLE applet source code

Figure 2 shows sample U-Net/SLE applet code that implements the standard U-Net mechanism; that is, it
simply transmits and receives data without modifying it. For simplicity the applet assumes that a single receive
bu�er will be su�cient to hold incoming data. A more complicated applet could modify the packet contents before
transmission, or generate acknowledgmentmessages for 
ow-control in the receive processing code. Section 5 evaluates
the performance of several applets.
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3 Java Virtual Machine Implementation

In this section we discuss the design and implementation of the Java virtual machine subset used in U-Net/SLE,
Java Implementation for Vertical Extensions (or JIVE). An implementation of U-Net/SLE need not use JIVE as its
virtual machine; JIVE is simply one virtual machine with su�cient functionality to perform the operations needed
by many useful U-Net/SLE applications yet small enough to run on a network interface.

3.1 JIVE design

JIVE implements a subset of the Java Virtual Machine [11] and executes on the LanAI processor of the Myrinet
network interface. Our goals in designing JIVE were simplicity, a small runtime memory footprint, and reasonable
execution speed even on a relatively slow processor. All three goals stem from characteristics common in an embedded
processor environment like that of the LanAI: a limited runtime system, limited memory resources, and a CPU slower
than that found in workstations of the same generation.

JIVE de�nes a subset of the Java virtual machine, not the Java language [7]. The design of JIVE therefore does
not force any choice of source language from which the virtual machine bytecodes are compiled. In practice, however,
we expect that Java will be the language used for programming JIVE. Because JIVE implements a subset of the
Java VM, JIVE class�les can be generated by a standard Java compiler.

We compare JIVE to the standard Java VM in three areas: type-related features, class- and object-related
features, and runtime features.

JIVE supports the byte, short, and int datatypes, and one-dimensional arrays of those datatypes. JIVE does
not support the char, double, float, or long datatypes, or multi-dimensional arrays. We feel that this latter set of
datatypes is unlikely to be needed by an applet that performs simple packet processing, which is the design target
for JIVE. Although trivial to support, the char datatype has been excluded from JIVE because the Java VM's
requirement that char's be represented as 16-bit unsigned integers representing Unicode version 1.1.5 characters
[25]. A packet processing applet wishing to read or write the contents of a packet would use the byte datatype,
which is 8 bits and therefore matches the size of the C char datatype; it is di�cult to envision a network protocol
whose packet meta-information (e.g. headers) would be encoded in Unicode.

A JIVE applet consists of a single class. Because a JIVE applet consists of a single class, JIVE need not support
non-array objects except for a single instance of the applet's class. Array objects are supported, and arrays are
treated as objects (e.g. it is legal to invoke the arraylength operation on an array reference). Dynamic class
loading is not necessary because a class is associated with an endpoint at the time the endpoint is instantiated.
Arbitrary user-de�ned methods are fully supported. Methods and class variables may be static or non-static; since
only one instance of the applet class will ever exist at a time, the semantics of static and non-static functions and
class variables are identical.

JIVE does not support interfaces, exceptions, threads, or method overloading. These features would increase the
runtime overhead and code size of JIVE and are unlikely to be useful to packet processing applets. The current
prototype implementation of JIVE does not support garbage collection; the addition of a garbage collection or a
scope-based persistence model is a potential area of future work. JIVE supports the invocation of native methods
exported by the U-Net/SLE LanAI Control Program that allow applets to perform operations such as DMA to and
from a user-level application and transmitting data to the network. Exceptions are a useful feature that should be
added in a future implementation of JIVE; they were left out of the current version due to time constraints.

The current implementation of JIVE assumes a trusted Java compiler. Bytecode veri�cation could be incorporated
into a trusted host daemon that is invoked when a JIVE class�le is loaded into the network interface, thus removing
this assumption. There is little reason to make bytecode veri�cation part of the JIVE virtual machine executing
on the network interface: since bytecode veri�cation only needs to be performed once each time a class is loaded,
overlapping bytecode veri�cation with other work on the host unlikely to improve overall system performance. In
addition to the standard bytecode veri�cation for safety, a bytecode veri�er for JIVE should also ensure that the
class�le being loaded conforms to the subset of the Java VM that JIVE supports.
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3.2 Java as an extension language

We selected Java as the user extension language for U-Net/SLE for a number of reasons:

� Safety. Java's safety features mesh well with the U-Net model of protected user-level access to the network
interface. An unsafe language without some external safety mechanism (such as Software Fault Isolation [29]
or Proof-Carrying Code [13]) requires blindly trusting the compiler that generated the code (as in SPINE [5],
which requires the compiler to sign downloaded code). The Java sandbox, as enforced by the bytecode veri�er
and runtime checks, protects applets from one another. Combined with resource consumption limits enforced
by the runtime system, these safety features provide a strong guarantee that a user cannot interfere with other
users by writing a malicious applet.

� Speed. Java bytecode can be interpreted or compiled to native machine code. As we will see in section [section],
the latter approach o�ers performance very close to that of native machine code, while still providing Java's
safety guarantees.

� Compact program representation. Java class �les are very compact. Many operations take their operands
from, and push their result to, the stack, and can therefore be encoded in a single byte (compared to four bytes
to encode the native instructions of most modern workstations and embedded controllers) because the source
and destination are implicit. For some operations that use local variables, the Java Virtual Machine de�nes
special bytecodes that explicitly encode the local variable to be used (for the most common local variables); this
allows operations that would otherwise be encoded in two bytes (a one-byte opcode followed by a one-byte local
variable number) to be encoded in a single byte, in the common cases. For example, the bytecode ISTORE 3

instructs the virtual machine to pop one value o� the stack and to store it in local variable 3.

� Portability. Because Java bytecodes are platform-independent, a JIVE applet can be written and compiled
once, and then run on any network interface with a JIVE virtual machine implementation. This makes it easy
to implement a network protocol that runs on a heterogeneous collection of hosts and network interfaces. For
example, a Java class�le could be sent as part of a network packet in an active network [23] and could run on
any network interface or router with a JIVE runtime system.

� Development environment. A number of high-quality Java development environments are currently available,
making development of Java code relatively easy on almost any platform. Moreover, Java is gaining popularity
as an embedded programming language, so we expect a proliferation of development tools targeted to the needs
of embedded systems (e.g. highly optimizing Java compilers, Java bytecode compression systems, and so on).

On the other hand, certain Java features are unnecessary for our purposes:

� Object orientation. The most useful object concept for a packet processing application is the idea of a packet or
message as an object, with associated methods triggered between message arrival in the network interface and
transfer to the application, and between transfer from the application and transfer to the network. A natural
way to integrate this idea with U-Net is to consider each message/packet associated with a single endpoint to
be an object of the class associated with that endpoint. Arbitrary user-de�ned classes beyond the single class
per U-Net endpoint are not necessary in this model.

� Threads. Network packet processing is an event-driven operation: packets arrive at the network interface from
the network and from the application. These events happen on a time-scale of microseconds so the amount of
time needed to handle each event must be minimized. The overhead of generating a new thread to handle each
such event and incorporating a thread scheduler into the Java runtime system is likely to have a detrimental
e�ect on performance, so a threaded model seems inappropriate for packet processing handlers running on
network interfaces. On the other hand, a timer mechanism could be useful, as it would allow handlers to block
brie
y and timeout if the event they are waiting for does not happen soon enough.

The Java Virtual Machine does not de�ne a model for resource accounting or limitation. Resource limitation
is important for U-Net/SLE, in order to guarantee that a malicious packet handler running on behalf of one U-
Net endpoint cannot signi�cantly a�ect the performance of a packet handler running on behalf of another U-Net
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endpoint. Some resource limits can be enforced at class loading time, while others can only be enforced at runtime.
The resource limitations that can be enforced at load time include class�le code size and memory consumed by local
variables and the operand stack in each method. The resources that can only be limited only at runtime include
CPU time consumption, dynamic memory allocation due to arrays, and memory needed to store local variables and
the operand stack due to recursive function calls.

Classes that exceed these resource limitations could be dealt with in a number of ways. The class loader could
refuse to load classes that violate the static load-time constraints. The virtual machine could kill an applet that
exceeds runtime memory constraints, possibly sending a noti�cation to the associated user-level application or, if
exceptions are supported, could throw a virtual machine exception to the applet. The virtual machine could do the
same for an applet that has consumed too much CPU time. In either case the applet exception handler would be
expected to rectify the situation (by reducing memory or CPU time consumption) within a �xed period of time;
failure to comply would result in the applet being killed.

3.3 JIVE implementation

As mentioned earlier, JIVE aims for a small code size and small runtime memory overhead. In the �rst respect,
the JIVE library for the LanAI is only 43K compiled, representing about 2700 lines of C source code. In contrast,
Ka�e [33], a free Java Virtual Machine that implements most of the Java Virtual Machine speci�cation, is about
15,000 lines of C source code, even when the code for just-in-time compilation and garbage collection is removed.
Also, JIVE assumes no runtime library (e.g. no libc): functions for operations such as memory allocation and string
manipulation are an explicit part of the JIVE library.

Function calls and operations on class �elds are among the most expensive operations in JIVE. These two types
of operations are time-consuming because of the way Java bytecodes refer to them in the instruction stream. Part
of the Java class�le is the constant pool which contains, among other things, what amount to pointers to pointers
to the names of class �elds and methods (which are themselves also stored in the constant pool). A �eld/method
is referenced in the instruction stream as an index into the constant pool. This index is turned into a pointer to
the �eld/method name, and the pointer must be compared to the pointers to the �elds/method names stored in the
virtual machine data structures representing the classes/�elds themselves, to �nd the proper �eld/method itself. 4

In the case of method lookup there exists the possibility of multiple methods with the same name (i.e. in the case of
method overloading), in which case the formal and actual argument types must be compared to identify the correct
method. By prohibiting method overloading JIVE eliminates the need to deal with that possibility, improving the
performance of method invocation. Also, since an applet contains a single class, JIVE does not need to determine
whether a �eld or method referenced in the instruction stream is de�ned in the current class or in another class, nor
does it need to check the \access 
ags" on �elds and methods { quali�ers like \private" and \public" are meaningless
in the context of a single class. These simpli�cations serve to reduce the complexity and size of the virtual machine
implementation and to speed up method and �eld access.

JIVE for the LanAI supports native methods exported by U-Net/SLE as described in section 2. The call path
from the virtual machine to the native method function itself is optimized for fast invocation: since the locations for
the code for the native methods are known when JIVE is �rst invoked, these function pointers can be stored directly
in the method structures representing each of the native methods in the internal virtual machine representations for
those methods.

One shortcoming of the existing JIVE prototype is that it does not enforce resource limitations on applets (such
as CPU time or memory consumption). Rather than implement an arbitrary resource management policy, we believe
future research is needed to �nd the best mechanism for resource sharing among multiple user extension applets.

4Ka�e compares the actual names rather than the pointers. This is likely a major contributor to the performance superiority of

method invocation in JIVE compared to Ka�e.
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4 JIVE Performance

We evaluated the performance of JIVE on a Sun Ultra-1 workstation running Solaris 2.5.1. The Ultra-1 contains
a 167 MHz UltraSPARC I CPU with a 16K on-chip I-cache and a 16K on-chip D-cache. Our evaluation consisted
of microbenchmarks, designed to ascertain the performance of JIVE on operations we expect to be commonly used
by packet processing applications, and macrobenchmarks, designed to give a rough idea of JIVE's performance on
\real" applications.

Java bytecode can be interpreted or can be compiled to machine code when a class is loaded. This latter method
of execution is often referred to as just-in-time compilation because the compilation is deferred until the �rst time
a class is loaded5. A virtual machine that uses interpretation will generally execute a number of native machine
instructions for each bytecode, while a virtual machine that uses compilation will execute close to one native machine
instruction for each bytecode (not counting the instructions needed to compile the bytecode to native machine code).
The current version of JIVE uses interpretation; a later version may use just-in-time compilation. In the current
version of JIVE, most bytecode operations are executed using fewer than �fteen native SPARC machine instructions.
A few operations, such as those that operate on arrays, those that duplicate multiple operand stack entries, those
that operate on class �elds, and those involved in method calls, translate into substantially more instructions: about
25, 35, 40, and 75, respectively. The actual number of instructions required to perform method calls and operations
on class �elds varies because the location where a method or �eld mentioned in the instruction stream is stored must
be looked up in a table; we have given a rough estimate of the fewest instructions that would be executed.

We compared JIVE to

� Optimized C code (compiled with gcc)

� Unoptimized C code (compiled with gcc -O3)

� Ka�e version 0.9.2 using just-in-time compilation

� Sun's Java Virtual Machine version 1.1.5

� Ka�e version 0.9.2 using interpretation

The above con�gurations are listed in order of decreasing expected performance.

The comparison between the Java virtual machines and C code was made by executing a C program equivalent
to the Java program being tested. The execution time measurements of JIVE and Ka�e excluded class loading and
initialization; it was not possible to exclude class loading and initialization time from the Sun JVM measurements
because we do not have the source code for that system. In general we ran enough iterations of the Java benchmarks
to ensure that class loading and initialization time would contribute insigni�cantly to overall execution time.

The performance metric we used for the microbenchmarks was time per measured operation, e.g. the amount of
time needed to write one value to an array. The performance metric used for the macrobenchmarks was time per
program execution. These numbers were obtained by running each benchmark repeatedly in a loop, dividing the
total time consumed by the number of iterations, and subtracting out the loop overhead (i.e. the time needed to
increment the loop counter, test for loop termination, and branch back to the beginning of the loop).

4.1 Microbenchmarks

We measured the performance of nine microbenchmarks:

� null-loop: loop N times doing nothing; the time per iteration for this benchmark is subtracted from the runtime
of the other benchmarks

5Just-in-time compilation may compile individual methods instead of an entire class, in which case compilation is deferred until a

particular method is invoked.

9



� null-call: call a method that takes void and returns one int

� �eld-read: read a static class �eld N times

� �eld-write: write a static class �eld N times

� array-read: read the same array element N times

� array-write: write the same array element N times

� math: compute x+ x+ x+ x+ x+ x+ x+ x+ x+ x and store it in local variable y

� math-�eld: same as math but x and y are static �eld variables of the class rather than local variables

� math-array: same as math but x and y are one-element arrays

We also measured the time for a native method call in JIVE.

The results, presented in terms of microseconds per operation, are presented below. We do not report the time
for optimized C because in some cases the microbenchmark was optimized out of the executable entirely when opti-
mization was enabled, making the measured operation appear to take \zero" time. In general our microbenchmarks
were so simple that signi�cant optimization over the \standard" gcc-generated code was not possible.

Microbenchmark performance, in microseconds per operation
benchmark JIVE Unoptimized C Ka�e (just-in-time) Sun JVM Ka�e (interpreted)

null-loop 0.75 0.08 0.09 0.41 0.95
null-call6 2.32 0.12 0.28 1.07 9.47
�eld-read 1.38 N/A 0.13 0.57 2.02
�eld-write 1.41 N/A 0.12 0.58 2.03
array-read 1.46 0.11 0.16 0.76 1.8
array-write 1.51 0.11 0.15 0.76 2.2

math 4.07 0.20 0.17 2.03 4.86
math-�eld 7.55 0.20 0.47 2.28 13.6
math-array 8.35 0.32 0.62 4.23 10.0

Figure 3 shows the ratio of these execution times to the execution time for unoptimized C.

The above data shows that JIVE outperforms ka�e-interp on all the microbenchmarks. JIVE outperforms ka�e-
interp signi�cantly on null-call and math-�eld because of its optimized function call and class �eld access procedures.
The simpli�cations stem from JIVE's restrictions that applets contain only one class and that method overloading
may not be used, as described in section 3. We also note that just-in-time compilation brings performance to within
a factor of three of unoptimized C.

4.2 Macrobenchmarks

We measured the performance of three macrobenchmarks:

� qsort: Quicksort an array of N numbers which are initially sorted in reverse order. This benchmark stresses
method call/return (due to its recursive structure) and array operations.

� rand: generate N random numbers using an additive congruential random number generator [18] with a �xed
seed. This benchmark stresses the mathematical operations (particularly the more time-consuming ones like
multiply, divide, and modulo) and array operations.

6A null native method call in JIVE takes 1.60 �sec.
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Figure 3: Microbenchmark performance

� �bonacci: generate the �rst N �bonacci numbers. This benchmark stresses the simple mathematical operations
(primarily addition).

The results, presented in terms of microseconds per benchmark execution, are presented below.

Macrobenchmark performance, in microseconds per execution
benchmark JIVE Optimized C Unoptimized C Ka�e (just-in-time) Sun JVM Ka�e (interpreted)

qsort 24800 520 2130 2750 11700 46800
rand 11.8 1.1 3.8 3.2 5.5 11.0

�bonacci 2.15 0.018 0.19 0.16 1.04 2.52

Figure 4 shows the ratio of these execution times to the execution time for unoptimized C.

This data demonstrates that JIVE outperforms interpreted ka�e on two of the three benchmarks, and performs
within 8% on the remaining benchmark. The performance of JIVE is comparable to that of interpreted ka�e on the
rand benchmark because in executing rand the interpreter performs many long-latency multiply, divide, and modulo
operations, the execution time for which is bound by the latency of the CPU functional unit performing the operation.
In other words, optimizations in the interpreter aren't likely to lead to substantial performance improvements since a
large portion of the execution time is �xed by the hardware. JIVE signi�cantly outperforms ka�e-interp on the qsort
benchmark, most likely because its simpler (and therefore faster) method lookup procedure reduces the overhead of
function calls, as discussed earlier. This performance di�erence indicates that substantial performance bene�t can
be obtained by allowing only a single class and forbidding function overloading.

As was seen with the microbenchmarks, just-in-time compilation boosts performance substantially: with just-in-
time compilation, Ka�e performed better than unoptimized C for two of the three benchmarks, and performed less
than ten times slower than optimized C in all cases.
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Figure 4: Macrobenchmark performance

5 U-Net/SLE Performance

In this section we discuss the performance of U-Net/SLE with JIVE for various micro-benchmarks and a variety of
user extension applets running on the LanAI processor.

5.1 Latency and bandwidth measurements

Figure 5 shows round-trip latency as a function of message size for four con�gurations: A standard applet implement-
ing basic U-Net semantics; a simpli�ed applet assuming that packets will consume a single receive bu�er (shown in
Figure 2); an applet which performs pingpong operations between user extension applets only, without propagating
messages to user level; and standard U-Net without the use of SLE. The standard U-Net applet adds between 41.2
�sec (for small messages) and 99.7 �sec (for large messages) of overhead in each direction, while the simpli�ed U-Net
applet reduces large-message overhead to 42.5 �sec. These overheads are detailed in the next section. As can be
seen, round-trip latency between Java applets alone is very low, ranging between 64 and 119 �sec. This suggests
that synchronization between user extension applets on di�erent NIs can be done very rapidly.

Figure 6 shows bandwidth as a function of message size for a simple benchmark which transmits bursts of up
to 25 messages of the given size before receiving an acknowledgment from the receiver. This is meant to simulate
a simple token-based 
ow-control scheme. The applets demonstrated include the standard U-Net applet; an applet
which implements the receiver-acknowledgment between applets only (without notifying the user process); an applet
which transmits a burst of 25 messages for each transmit request posted by the user; and one which does not perform
transmit-side DMA, meant to simulate data being generated by the applet itself.

There is a notable drop in bandwidth due to the higher overhead of DMA-setup and packet processing code as
implemented in Java; however, we believe that user applications which are able to utilize the programmability of the
network interface to implement more interesting protocols will be able to avoid worst-case scenarios such as those
shown here. For instance, the SLE applet which implements token-based 
ow-control relieves the programmer from
dealing with this issue at user level, allowing the application to treat U-Net/SLE as providing reliable transmission
(a feature not provided by the standard U-Net model). In this way an application will be able to asynchronously
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Figure 5: Round-trip latency vs. message size

receive data into its bu�er area while performing other computation; no application intervention is necessary to keep
the pipeline full. It should also be noted that applications are not required to use SLE features for all communication,
and may wish to transmit high-bandwidth data through the standard U-Net interface while utilizing SLE extensions
for other protocol-processing code.

5.2 U-Net/SLE overhead breakdown

Figure 7 shows the breakdown of overheads for various U-Net/SLE operations as executed on the LanAI processor.
Note that these times do not include, for instance, DMA transfer and packet transmission times; instead they measure
only the overheads for these operations, as executed through JIVE and the U-Net/SLE native methods, over the
standard U-Net code. The transmit overhead regardless of message size is 24.5 �sec, while receive overhead is 16.7
�sec for messages 56 bytes or smaller, and 42.5 �sec for messages larger than 56 bytes.

As can be seen, there is an overhead of 3.2 to 3.9 �sec to invoke a user applet method from the U-Net �rmware,
and 5.5 �sec for null native-method invocation from JIVE. Considering the complexity of the code and the 
exibility
a�orded by Java, these overheads are well within reasonable bounds.

The overhead for Java operations can be attributed partly to the fact that JIVE interprets Java bytecodes (rather
than using just-in-time compilation), and the relatively slow clock speed of the LanAI processor compared to most
modern CPUs. The results in the previous section suggest that applying JIT to U-Net/SLE should result in signi�cant
performance advantages. Likewise we believe these results should encourage designers of high-performance network
interfaces to consider higher clock speeds for the network co-processor; chips such as the DEC StrongARM run at
200 MHz and are intended for such embedded applications. While there is some amount of software optimization
possible in our design, we believe that NIC-side processing can bene�t greatly from higher performance NIC designs,
allowing more complex processing tasks to be executed on the network co-processor.
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Figure 6: Bandwidth vs. message size

6 Related Work

U-Net/SLE draws on past work in the areas of programmable I/O controllers, user-supplied protocol handlers, and
safe languages.

6.1 Programmable I/O controllers

One of the earliest examples of a programmable I/O controller was the I/O control units of the IBM System/360 [1].
These processors served as the interface between an I/O device's controller and the CPU. They operated indepen-
dently of the CPU and could access main memory directly. The Peripheral Control Processors (PPU's) of the CDC
6600 [24] were based on a similar idea. The CDC6600 contained ten PPU's, each of which operated independently.
Each PPU contained an accumulator register, could store 4K 12-bit words, and could perform 36 instructions, in-
cluding mathematical, logical, and branch operations, loading/storing to/from memory, interrupting the main CPU,
and transferring data to/from any of 12 \peripheral channels." The programs running on the PPU's were loaded by
the system operator, but this architecture and that of the IBM System/360 represent early systems with support for
programmable I/O processors.

U-Net/SLE takes advantage of \intelligent" network interfaces by downloading packet processing code to the NI
much as the IBM System/360 and CDC 6600 took advantage of \intelligent" I/O controllers by dynamically loading
the control programs for I/O devices. Unlike the early programmable I/O controllers described above, however,
U-Net/SLE allows multiple applications to simultaneously use the network interface without interfering with one
another. The operating system is not involved in providing this protection as it was in these early systems. The
new technologies which enable these U-Net/SLE features are network interfaces accessible at user level and safe
languages.
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Transmit overhead: 40-byte message 1000-byte message

Check for class�le, setup applet call 0.7 �sec 0.7 �sec
Call applet doTx method and return 3.9 �sec 3.9 �sec
(Null native method call) (5.5 �sec) (5.5 �sec)

DMA setup overhead 11.8 �sec 11.8 �sec
Transmit data overhead 8.1 �sec 8.1 �sec
Total 24.5 �sec 24.5 �sec

Receive overhead: 40-byte message 1000-byte message

Check for class�le, setup applet call 0.6 �sec 0.6 �sec
Call applet doRx method and return 3.2 �sec 3.2 �sec
(Null native method call) (5.5 �sec) (5.5 �sec)

Get free bu�er 5.85 �sec
DMA setup overhead 11.8 �sec
Do Rx descriptor DMA 12.9 �sec 21.0 �sec
Total 16.7 �sec 42.5 �sec

Figure 7: U-Net/SLE transmit/receive operation overhead

6.2 User-supplied protocol handlers

A number of systems have recently been developed that allow users to supply their own protocol handlers in place
of a generic operating system handler. All of these systems, like U-Net/SLE, allow users to write special-purpose
network protocols that take advantage of application-speci�c information and can adapt.

Application Speci�c Handlers (ASHs) [28] are user-supplied functions that are downloaded into the operating
system7 and are invoked when a message arrives from the network. ASHs can transfer a message from the kernel
to user space, initiate an outgoing message in response, and perform general computation. ASHs operate within the
address context of their associated application. The kernel ensures the safety of these programs through static and
dynamic checks on the handler. The execution time of ASHs are estimated by the ASH runtime system when the
ASH is loaded; any handler that exceeds its estimated runtime is killed. Wild jumps and wild writes are prevented
using the host's memory protection hardware and Software Fault Isolation [29].

U-Net/SLE di�ers from ASHs in several respects. First, ASHs operate in kernel or user space, while U-Net/SLE
extensions run within the context of the network interface (which may be embodied on a smart network co-processor
or the host, or some combination of the two). Second, ASHs are triggered only when a message is received, while
U-Net/SLE extensions are triggered both on receive and transmit. This second di�erence limits the range of uses for
ASHs compared to U-Net/SLE extensions: for example, ASHs cannot turn a single user-level message send into a
packet transmission to many hosts (i.e. a multicast) while U-Net/SLE can. Third, both U-Net/SLE and ASH allow
integrated layer processing, but ASH uses dynamic code generation to compose, on-the-
y, functions that operate
on network streams.8 ASH also allows dynamic protocol composition; however, this functionality is not particularly
relevant to the uses envisioned for U-Net/SLE, in which applications use single, tightly-integrated protocols rather
than multiple protocols of a protocol stack.

SPIN [4] also allows users to download code into the kernel. SPIN's networking architecture, Plexus, runs
user protocol code within the kernel in an interrupt handler. Extensions are written in the type-safe Modula-3 [14]
language, and the compiler that generates the extensions is trusted to generate non-malicious code. Plexus extensions
can be installed on both the transmit and receive paths; they are invoked by the operating system. Plexus extensions
are based on a protocol graph which describes the protocol structure for all applications running on SPIN; an
individual application installs its handlers as nodes in the graph, with safe multiplexing/demultiplexing provided by
guard functions.

7The authors state that ASHs may be run in kernel or user space, but most of their discussion relates to the uses of these handlers

when they are downloaded into the kernel.
8U-Net/SLE could achieve similar functionalityby adding very clever just-in-timecompilationand allowing dynamic loading of multiple

classes by an applet.
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SPINE [5] extends the the ideas of SPIN to the network interface, and is the system most similar to U-Net/SLE
in design and scope. Underlying SPINE is a Modula-3 runtime executing on the NI, the current prototype imple-
mentation of which uses the Myrinet interface. Despite some similarities, SPINE di�ers from U-Net/SLE in several
ways. First, SPINE targets server applications (e.g. it does not include �ne-grain parallel communication as part of
its design goals), while U-Net/SLE targets both server and cluster applications. Second, SPINE requires a trusted
compiler, while U-Net/SLE takes advantage of the safety features of Java. Third, SPINE extensions must be written
in Modula-3, while U-Net/SLE extensions may be written in any language that can be compiled to Java bytecodes.
In addition, the use of Java bytecodes in U-Net/SLE allows user extension applets to be transported across the
network and run on any network interface with a Java virtual machine, while SPINE's compiled Modula-3 code is
architecture-speci�c. Fourth, SPINE does not de�ne a mechanism by which the network interface can be accessed
safely at user level by multiple applications, while U-Net/SLE takes advantage of the existing U-Net user-level net-
work interface architecture. SPINE software was not available at the time of this writing so we cannot make a
detailed performance comparison of it to U-Net/SLE. We believe, however, that both SPINE and U-Net/SLE will
serve as useful platforms for future research in the areas of user-extensible networks and network interfaces.

6.3 Safe languages

A number of techniques have been suggested for writing \safe" user-level extensions to operating systems. We have
already mentioned SPIN, which derives its safety from the type safety of the Modula-3 language and a trusted
compiler. VINO [3] uses Software Fault Isolation to protect downloaded kernel extensions from one another. In
Proof Carrying Code [13], the operating system publishes a security policy. An extension consists of code and a
formal proof that its code does not violate that policy. The operating system veri�es the proof; if the proof passes
veri�cation, it is accepted as safe and no runtime safety checks are required. Interpreted languages can guarantee
safety by providing runtime safety checks in the interpreter; Safe-Tcl [15] is an example of such a language. The
Exokernel operating system architecture [9] does not explicitly use a safe language, but allows user-level customization
of the operating system by providing a suitably restricted, but very low-level, system interface to applications. ASHs,
described earlier, are part of Exokernel. Finally, the Java Virtual Machine enforces safety by using a combination of
load-time bytecode veri�cation and runtime safety checks.

Java has received signi�cant attention not only as a language with important safety properties but also as a good
candidate for programming embedded devices; indeed, its original target was the embedded processors of set-top
television boxes. PersonalJava [19], EmbeddedJava [20], and JavaCard [21] are three Java standards targeted for
a range of embedded devices. PersonalJava speci�es an API an Application Environment for applications running
on networked consumer devices like set-top boxes and PDA's. The PersonalJava API is a subset of the standard
Java API plus some new API's. PersonalJava is designed to run on standalone devices with more functionality than
network interfaces; for example, it supports the entire Java Virtual Machine and requires support for parts of the
Abstract Windowing Toolkit (AWT) API. Neither of these requirements are practical for a virtual machine running
on a present-generation network interface.

EmbeddedJava is similar to PersonalJava but is targeted to embedded systems with less processing power and
memory, e.g. pagers and printers. Like PersonalJava, EmbeddedJava speci�es an API and Application Environment.
The EmbeddedJava speci�cation has not yet been publicly released.

Unlike PersonalJava and EmbeddedJava, JavaCard speci�es not only an API but also a restricted subset of the
Java language and Java Virtual Machine. The JavaCard speci�cation describes a Java environment for \smartcards."
Like JIVE, JavaCard limits the virtual machine due to memory and processor speed constraints. For example,
dynamic class loading, threads, garbage collection, and 
oating point types are not supported. Unlike JIVE, JavaCard
explicitly restricts the supported subset of the Java language; JIVE restricts only the virtual machine model and
therefore can run Java bytecodes generated from any language and by any compiler that compiles to that virtual
machine subset. Finally, the I/O model for JavaCard di�ers substantially from that of JIVE: rather than running
at the interface between a host and a network, JavaCard is the \host," and the card conducts low-bandwidth
communication with a Card Acceptance Device (a \smartcard reader").
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7 Conclusions and Future Work

We have presented U-Net/SLE, a fast network interface design which permits user extensibility through the down-
loading of Java applets which run within the network interface itself, and are triggered by transmit and receive events
on the network. We believe this design enables a wide range of applications to be built which customize the network
interface in order to obtain new communication semantics, more e�ciently implement protocols, and reduce host
and application overhead by moving elements of protocol processing into the NI.

The performance of our prototype implementation on the Myrinet LanAI processor, while lagging that of the
standard U-Net interface, are promising in that the use of interpreted Java bytecodes for packet processing has not
resulted in a larger performance penalty (as one might expect). We believe that the use of just-in-time compilation
and incorporation of a faster processor onto the network interface will greatly reduce U-Net/SLE overheads and
eventually allow the full 
exibility of user-safe extensions on the network interface to be realized with minimal
overhead.

JIVE, our implementation of the Java Virtual Machine, has demonstrated the di�culty of incorporating the full
Java speci�cation into the U-Net/SLE design. Many Java VM features are di�cult to implement in an embedded
environment, and indeed seem not to be relevant to the needs of small embedded applications. For instance, the use
of class inheritance and method overloading are features which can be safely left out of our design. On the other
hand, issues such as garbage collection should be addressed. One option would be to circumvent standard garbage
collection techniques by de�ning a persistence model for objects created by a user extension applet (e.g., that arrays
created within the doTx and doRx methods only live until the end of the method invocation).

Another approach which leverages our design is the potential to couple U-Net/SLE with virtual memory extensions
in the U-Net model (U-Net/MM [32]). In the U-Net/MM design, applications specify arbitrary virtual memory bu�ers
for transmit and receive, which are translated to physical DMA addresses using a software TLB on the network
interface. Providing U-Net/SLE hooks to the TLB lookup and miss-handling process would allow user extension
applets to customize the behavior of virtual bu�er mapping for network bu�ers. For example, an application could
suggest alternate physical pages to reject when a TLB capacity miss occurs, rather than allowing U-Net/MM to
make an arbitrary decision, which is synergistic with with application-level virtual memory systems [8].

In the future we would like to explore the design space of user-programmable network interfaces and I/O controllers
in general. Now that our proof-of-concept design has demonstrated the feasibility of user extensibility in the NI,
we hope that future implementations will further exploit the bene�ts of application-customized I/O processing. For
example, one could implement the remote memory access operations of the Split-C [2] language directly as a U-
Net/SLE extension without requiring the application to implement Active Message handlers for these operations.
Understanding the tradeo�s of executing protocol code within the NI as opposed to application level, in general, is
an area for future research.
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