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Abstract. In this paper we describe our experience Wihpot][7], a domain-specific language for
addressing theache coherence problerithe cache coherence problem arises when parallel and
distributed computing systems make local replicas of shared data for reasons of scalability and per-
formance. In both distributed shared memory systems and distributed file systehexeace pro-

tocol maintains agreement among the replicated copies when the underlying data are modified by
programs running on the system. Unfortunately, cache coherence protocols are notoriously difficult
to implement, debug, and maintain. Furthermore, the details of the protocols depend on the require-
ments of the system under consideration and are highly varied. This paper presents case studies
detailing the successes and shortcomings of using Teapot for writing coherence protocols in two
distinct systems. The first systelopsely coherent memo@.CM) [15], implements a particular

flavor of distributed shared memory suitable for data-parallel programming. The second system, the
xFS distributed file systef], implements a high-performance, serverless file system.

Our overall experience with using Teapot has been positive. In particular, Teapot’s language fea-
tures resulted in considerable simplifications in the protocol code for both systems. Furthermore,
Teapot's close coupling between implementation and formal verification allowed us to achieve

much higher confidence in our protocol implementations than had previously been possible, reduc-
ing the time needed to build the protocols. By using Teapot to solve real problems in complex sys-
tems, we also discovered several shortcomings of the Teapot design. Most noticeably, we found
Teapot lacking in support for multithreaded environments, for expressing actions that transcend
several cache blocks, and for blocking system calls. We conclude that domain-specific languages
can be valuable in the specific problem domain of cache coherence. Drawing on our experience, we
also provide guidelines for domain-specific languages in the broader context of systems software.

1 Introduction of variety because the protocol for a particular system is
closely linked to its sharing semantics and performance

Cache coherence engines are key components in sevegglals' For example, different distributed shared memory
stems provide different memory consistency models

parallel and distributed computing systems. Coherenc . . . o
issues arise whenever distributed systems make loc 3, supporting different assumptions that application
replicas of shared information for reasons of perfor’rograms can make about the currency of cached values.

mance or availability (or both) because the systems muslyStems with similar sharing semantics can have vastly
keep those replicas current while they modify the sharefifferent protocols, implementing different algorithms
information. Thus, distributed shared memory systemr achieving the same task, albeit with different perfor-
[6,14], distributed file systems [19, 9], and high-perfor-mance considerations. Thus, each system essentially
mance client-server database systems [12] all implemef€€ds & new coherence protocol. Second, and perhaps
cache coherence protocols. Coherence in web caching'iore importantly, cache coherence protocols represent

also a current research topic in the distributed systenf®omplex, distributed algorithms that are difficult to rea-
community [18]. son about, often resulting in subtle race conditions that

are difficult to debug via system testing. Furthermore, to
Tools that facilitate the implementation of cache coherour knowledge, most systems hitherto have not
ence protocols are important for two reasons. Firstattempted a clear separation between the cache-coher-
coherence protocols, while ubiquitous, show a great de@&nce engine and other implementation details of the sys-



tem, such as fault management, low-level 1/O, threadssuperior to earlier efforts to implement the protocols
synchronization, and network communication. It is notusing C without any domain-specific tools. The paper
difficult to imagine the hazards of this approach. Themakes several contributions. First, it highlights the
implementor cannot reason about the coherence protaspects of Teapot that proved successful across several
col in isolation from other details, and any modificationprotocols:

she makes in the system can potentially impact the cor-

rectness of the coherence protocol, a debugging night- * Domaln-spec!flc language constru,ctsuch_
mare. Experimentation with newer protocols is a 25 @ state-centric control structure and continu-

perilous proposition at best. ations, simplified the protocol writing task.

Teapot is a protocol writing environment that provides ~ * Automatic protocol verificationusing the
two significant improvements over writing ad-hoc C Mur® system improved system confidence and
code. First, it is a domain-specific language specifically  reduced testing time.

designed to write coherence protocols: it forces a proto- h _ v, thi Iso di
col programmer to think about the logical structure of a4 erhaps more importantly, this paper also discusses

protocol, independent of the other entanglements of ar;]ortcommgs of thg Iandguaglje that becallm(re] apparent onLy
system, and language features of Teapot facilitate th&N€N We attempted to develop protocols that were muc

task of expressing the control structure commonly found©"e complicated than the simple protocol examples on

in coherence protocols. Second, Teapot facilitates autd?Nc Teap(_)tdyvas orlgr;:nal_ly teste((:ij. In pamcfular, olu_r
matic verification of protocols because it not only transEXPerience indicates that improved support for muiti-

lates Teapot protocols into executable C code, it als readed environments, for protocol actions that affect

generates input code for Moy an automatic verifica- multiple blocks, for local protocol actions that might

tion system from Stanford[10]. Mdxcan then be used block, and for automated verification test strategies
to detect violations of invariants in a modest amount ofVUld further ease the job of a protocol designer.
verification time. For example, our system might report INally, the paper generalizes our experience to provide

a stylized trace of a sequence of events that would caud¥idelines for future domain-specific languages for sys-
a deadlock. A protocol can be run through a verificatiof™S software.

system prior to actual execution to detect possible errdrhe rest of the paper is organized as follows. Section 2
casesvithouthaving to manually rewrite the protocol in provides some basic background on cache coherence
Murd®’s input language. protocols and describes the implementation problems

The Teapot work was originally undertaken to aid proto9€nerally faced by protocol programmers. Section 3

col programmers in the context of the Blizzard distrib-'mmduces the language features in Teapot that address
uted shared memory system[24]. Blizzard exports éhe difficulties presented in Section 2. Section 4 presents

cache-coherence protocol programming interface to af'e case-study of LCM, and Section 5 presents the case-

application writer, so she can supply a coherence protos_tudy of xFS. Section 6 describes some related work.

col that best suits the requirements of her applicatioro€Ction 7 concludes the paper with implications for

Writing such protocols in C, without domain-specific domain-specific languages for systems software.

tools, turned out to be a difficult task, fraught with prob-

lems of deadlocks, livelocks, core dumps, and most

annoyingly, wrong answers. After few initial protocols 2 Coherence Protocols and

(all variants of ordinary shared memory protocols) werCom p|icati0n3

successfully developed using Teapot, the Blizzard team

at Wisconsin wrote several other, more complicatedn systems with caching, read operations on shared data
coherence protocols for their system. We report on ongypically cache the value after fetching it from remote
such protocol here. Subsequently, the xFS team at U@odes, in the expectation that future read references will
Berkeley adopted Teapot to write the coherence protocshit” locally. Write operations on shared data must take
of their distributed file system. As expected, these teamsteps—coherence actions—so readers with cached val-
encountered several rough spots, because the originaés do not continue to see the old value indefinitely.
Teapot design did not anticipate all of the requirement3his section describes coherence protocols in more
of other protocols in the context of Blizzard, much lessdetail in the context of distributed shared-memory sys-
those arising in a distributed file system context. tems, though the issues discussed apply equally well to

This paper describes our experiences with using Teap8fher contexts with appropriate changes in terminology.

to implement the coherence engines in two distinct sysShared-memory systems can be implemented using a
tems. In both systems, we found Teapot to be vastlpair of mechanisms: access control and communication.



load (obtain readable copy)
ﬁ]validate msg (acknowledge) Readable

(@) (b)

Figure 1: Idealized protocol state machine for (a) the non-home side, and (b) the home side. Transitions are
labeled with causes and, in parentheses, actions.

Access control allows the system to declare which typememory block. Home nodes also maintaitiractory, a

of accesses to particular regions of memory are permiper-block data structure that usually keeps track of
ted. These permissions typically include—no accessvhich processors have a readable copy, or which proces-
(invalid), reads only readonly, and both reads and sor has an exclusive copy.

writes (eadwritd. Performing an illegal access (for As an example, consider a (non-home) block that is ini-

example, writing areadonly region) causes aaccess tially in the Invalid state. A processor reading any

fault and invokes the coherence protocol. Communlca'address within the block causes an access fault, at which

tion allows a system to exchange control informationti e the protocol is invoked. Its action is to send a
and data between processors. The coherence protocrrp

into ol ¢ fault. It  obtai gquest to the home node for a readable copy and await a
COMES INto piay at an access faullt. 1t must obtain a Copr)ésponse. Assuming no outstanding writable copy exists
of the referenced data with appropriate access permi

. d satisfv th M tocols desianat the Idle state in Figure 1), the home responds with a
sions and satisfy the access. Viany protocols designate a, e copy and changes its statReadSharedThe
home nodethat coordinates accesses to a particula

. Brrival of this message on the non-home side causes the
range of memory addresses. The faulting process

rotocol to copy the incoming data to memory and
sends a request to the home node for a copy of t Py g y

¢hange the block’s state Readablgand is-
required data, which responds with the data after updag]oir;gzre ghazge; ?rgm(:/a":t:regggmsccess permis

ing its bookkeeping information. After receiving the
response, the faulting processor typically caches thEnfortunately, specifying protocols is much more diffi-
data so subsequent accesses will succeed without cogult than the simple three-state diagrams in Figure 1
munication. would lead one to believe. The main difficulty is that,
although the transitions showappearto be atomic,
A common technique for ensuring coherence allows atany state changes in response to protocol events can-
most a single writer or multiple readers for any block ofnot be performed atomically. Consider the transition
memory at a time. When the home receives a request finom the Exclusive state to theReadSharedstate in
a writable copy of the block, it asks processors currentlfrigure 1. Conceptually, when a request arrives in the
holding a readable copy to invalidate it, i.e. allow no fur-Exclusivestate for a readable copy of a block, the proto-
ther accesses. A writable copy can then be sent to tle®l must retrieve the exclusive copy from the previous
requestor. A cache coherence protocol specifies thewner and pass it along to the requestor. The protocol
actions taken by the home and caching processors Bends an invalidation request to the current block holder,
response to access faults and incoming messages. Thesel must await a response before proceeding. But, to
actions are commonly captured by finite state machinesyvoid deadlock, protocol actions must run to completion
with transitions between protocatatesoccurring in  and terminate. This requires that an intermediate state,
response to faults and messages. Figure 1 shows samplecl-To-ReadSharedbe introduced. After sending the
state machines describing protocol actions for a cachinigivalidation request, the protocol moves to Ehel-To-
processor and the corresponding home side. Both tiReadSharedtate and relinquishes the processor. When
home and caching processors associate a state with edbk invalidation acknowledgment arrives in this interme-
memory block. At an access fault or upon a messageiate state, the processor sends a response to the original
arrival, the protocol engine consults the appropriatgequestor and completes the transitioRéadSharedA
block’s state to determine the correct action. Typicakevised state diagram incorporating the required inter-
protocol actions involve sending messages and updatingediate states is shown in Figure 2 (which is still far
the state, the access permissions, and contents ofr@moved from a realistic protocol).



The case studies presented in sections 4 and 5 show that
all these complications were serious issues in the initial
state machine versions of those protocols. In the next
section, we highlight the features of Teapot that aid a
protocol programmer.

3 Teapot

The Teapot language resembles Pascal with extensions
for protocol programming support, but fewer built-in
types. Space does not permit a complete description of
Figure 2: State machine (home side) with the language; the reader is referred to the original paper
intermediate states necessary to avoid synchronous [7] for further language details. The Teapot compiler
communication. can generate executable C code from a protocol specifi-

o . ) cation, and can also translate it to code that can be fed to
Introducing intermediate states increases the number gfe Mud verification system[10].

states a programmer has to think about. Furthermore,

while in an intermediate state, messages other than the

expected reply can arrive. For example, before the invaly 1 \/erification Support

idation response arrives in thexcl _To ReadShared

state, another request for an exclusive copy could arrivEhe generated Mdr code models the input protocol,
from a different processor. A protocol designer musbut must be supplemented with code describing the sys-
anticipate the arrival of such unsolicited messages angm in which the protocol executes. We developed, by
handle them in an appropriate manner. It may be temptiand, routines implementing a typical network model
ing to not take such messages out of the network whiland necessary support routines, as well as a typical
they are not welcome: this, however, is not an option onuleset The ruleset drives the verification by generating
most systems, because messages must constantly dlepossible sequences of loads and stores to one or more
drained out of the network to avoid deadlock in the netsimulated shared-memory addresses.

work fabric [26].

Message reordering in the network adds to the woes of3.2 Teapot Example
protocol programmer. For example, processors may
appear to request copies of cache blocks which thefx Teapot program consists of a set of states; each state
already have, if a read request message overtakes apecifies a set of message types and the actions to be
invalidation acknowledgment message in the networkiaken on receipt of each message, should it arrive for a
The protocol might have to await delayed messagesache block in that state. We exhibit some of the features
before deciphering the situation and determining thef Teapot using an example; The Teapot code in
correct action. Without machine assistance, anticipatingrigure 3 implements coherence actions for a block in
all possible network reorderings is a very difficult task! the Exclusivestate at the home node. Suppose the block
receives the request mess&feT_RO_REasking for
The traditional method of programming coherence stata readable copy. The action code for this message first
machines usually resorts to ad-hoc techniques: unesends 2#UT_DATA_ REQ@nessage to the current owner
pected messages may be queued, they may be negativéhpte that the variablefo is a pointer to the directory
acknowledged (nack’'ed), or their presence may belata structure). Next, it executeSaspend statement.
marked by a “flag” variable. Additional flag variables A Suspend statement is much like a “call-with-cur-
are often used to track the out-of-order arrival of mesfent-continuation” of functional programming lan-
sages as well. These techniques invite protocol bugguages. Syntactically, it takes a program lahg] &nd
Queuing can easily lead to deadlocks; similarly,an intermediate statéHome_ Excl_To_Sh ) which it
nack’ing can lead to livelocks or deadlocks. Flag vari-visits “in transition”; the label is passed as an argument
ables are essentially extra protocol state—failing tdo the intermediate state. Operationally, it saves the envi-
update or test a flag at all the right places again leads tonment at the point it appears in a handler body and
correctness problems. Moreover, protocols implementedffectively puts the handler to sleep. This mechanism is
in this style are very difficult to understand and modify. used to provide a blocking primitive inside a handler,



1. State Stache.Home_Exclusive{}

2. Begin

3 Message GET_RO_REQ(id:ID; Var info:INFO; src: NODE)

4. Var

5. itor : SHARER_LIST_ITOR;

6 j : NODE;

7 Begin

8 Send(GetOwner(info), PUT_DATA_REQ, id);

9. IncSharer(info, src);

10. Suspend (L, SetState(info, Home_Excl_To_Sh{L}));

11. -- send out a readable copy to all nodes that want a copy
12. -- (more nodes might want a copy while you were waiting)
13. Init(itor, info, NumSharers(info));

14. While (Next(itor, j)) Do

15. SendData(j, GET_RO_RESP, id, TPPI_BlIk_No_Tag_Change);
16. End;

17. End;

18. -- other messages ...

19. Message DEFAULT(id:ID; Var info: INFO; src: NODE)

20. Begin

21. Error(“Invalid message %s to Home_Exclusive”,Msg_To_Str(MessageTag));
22. End;

23. End,

Figure 3: Teapot example

which physically needs to relinquish the processor everpose a handler into atomically executable pieces and
time it is invoked. sequencing them. Further advantages ofSingpend/
Resume primitives are brought out in the case studies
What happens in the intermediate state? Figure 4 showeapot provides a mechanism for handling unexpected
the Teapot code executed wheRWT_RW_RESHhes- messages by queuing. It does not solve the problem of
sage arrives. The handler receives the up-to-date conteddadlocks directly, but facilitates deadlock detection via
of the cache block from the network, sets its own state toerification. In lines 10-13 of Figure 4, all messages not
ReadSharedand executes Resume statement. The directly handled@EFAULT are queued for later execu-
Resume is the equivalent of a “throw” for a “call-with- tion—these messages are appropriately dispatched once
current-continuation” of functional programming. Syn- the system moves out of a transient state. Teapot relies
tactically, it takes a continuation paramet€ @s an on a small amount of system-specific dispatch code to
argument. (Note from line 1 in Figure 4 that the continu-deliver incoming network messages and previously
ation variableC is a state parameter and is a part of thejueued messages, based on a state lookup and the mes-
environment visible to all the message handlers in thasage tag. Note that tHBEFAULTmessages in Figure 3
state.) Operationally, it restarts the suspended handlélag an error because these messages cannot occur in a
immediately after theSuspend statement that called correctly functioning system.
this intermediate state. Thus, after fResume state-
ment, GET_RO_RESPnessages are sent to the set of
requesters (see Figure 3 again, lines 13-16). Continua-
tions in Teapot let us avoid having to manually decom-

1. State Stache.Home_Excl_To_Sh{C:CONT}

2. Begin

3 Message PUT_DATA_RESP (id: ID; Var info: INFO; src: NODE)
4 Begin

5. RecvData(id, TPPI_BIk_Validate_RW, TPPI_BIk_Downgrade_RO);
6 SetState(info, Home_RS{});

7 Resume(C);

8. End;

9. -- other messages

10. Message DEFAULT (id: ID; Var info: INFO; src: NODE)

11. Begin

12. Enqueue(MessageTag, id, info, src);

13. End;

14. End;

Figure 4: Teapot example (cont'd)



4 LCM retrospect, starting with Stache was an unfortunate deci-
sion. Stache, while a relatively simple protocol design,
.The Loosely Coherent Memori M) [15] coherence is still a large and complex piece of software. Adding
protocol implements the semantics of the parallel probCM functionality required both that the behavior of
gramming language C** [16] faster than conservative existing protocol states be altered and that new states be
compiler-implemented approaches. C** is a large-added—a difficult proposition for the unaided program-
grained data-parallel programming language based omer. Small changes in existing states (and the addition
C++ and provides a semantics in which parallel functiorof a new states) often had far-reaching effects that were
invocations on aggregate data execsitaultaneously difficult to fully anticipate.
and instantaneouslyso conflicting data accesses are

. : . It took several months for a single graduate student,
impossible. Processes can still collaborate to produc\%Orking full-time, to complete the basic protocol modi-
values via a rich set of reduction operations (includin ’

user specfed reducions),bu he reuis of hese reduf oo 2|1 1% 2 4<DU000G Phcee Began | ok
fuons are not available urml after all parallel functlon to write it in the first place since the protocol was riddled

|nvoc.at|o.ns complete. Dyrmg a parallel computation, Muith subtle timing-related bugs, the result of the unpre-
function invocation can influence the state of another. dictable effects of our modifications. A suite of applica-

LCM helps implement C** by allowing protocol-level tions was used to debug the protocol—each application
copies of shared data to develop at runtime and effiexercising a new set of path-specific bugs in LCM which
ciently reconciling copies once all tasks have finished.had to be isolated, understood, and repaired. It often
The compiler uses LCM directives to identify memorytook days to identify infrequently-occurring bugs, and

accesses in parallel functions that can possibly conflicthe resulting “fixes” often introduced new bugs. Even

At these references, LCM copies the memory block conafter the LCM protocol had achieved relative stability,

taining the accessed location and makes it private to theser confidence in its correctness was low.

invocation. If multiple invocations modify the same

location, LCM creates local copies for each invocation.

These multiple writable copies preserve the semantics cﬂ'z Teapot and LCM

C**, even though shared memory as a Wh0|e_ IS NQun early version of the Teapot system was ready for
longer consistent. When the parallel call terminatesiesting as debugging of the hand-written LCM protocol
LCM reconciles multiple versions of a block to a singlewas being completed, and LCM was reimplemented
consistent value. using Teapot to more thoroughly evaluate the system.

LCM provides consistent memory as a default and ig he Teapot environment was a vast improvement over
similar in many respects to protocols providing sequenth® hand-coded approach. We found two language fea-
tially consistent distributed shared memory such a&ures of Teapot particularly useful: the “state-centric”

DASH [17], Alewife [1], and Stache[23], but it differs in Programming model, and the use of continuations to
several key respects. Most importantly, LCM allows?&llow blocking operations in handler code.

global memory to become temporarily inconsistentiny Teapot, one declares a protocol state, then lists the
under program control. During these phases, a giveRctions to be taken for the various messages that could
data item may have different values on different procesyyrive in that state. This contrasts with the “message-
sors, making correct management of shared data mogntric’ approach taken in the handwritten protocol,

difficult. Memory is returned to a globally consistent \yhere a single handler is written for each possible mes-
state by merging these distinct copies into a single valugage’ and a large conditional statement in its body
for each data item and ensuring that all processors se@lects the appropriate action based on the recipient
these new values. This requires coordination among afjock’s state. Organizing the protocol by states instead
processors in the system and mixes computation (mergg message type makes it easier to express and imple-
functions) with traditional protocol actions. ment for several reasons. First, each handler is now a
smaller unit of code. Instead of writing a large message
handler that must behave correctly for a block in any

state, a self-contained handler is written for each combi-
Our first LCM implementation effort was undertaken nation of message and block state. Second, program-
without the support of any formal methods or tools. Themers typically have a well-defined concept of how each

C code source of the Stache (ordinary shared memorg}ate should behave, and grouping handlers by state
protocol was available to us, so we used it as a startingstead of message type keeps related information close
point and added extra LCM functionality as required. Intogether. A state’s behavior can be understood by scan-

4.1 Initial Implementation



1. State LCM.Home_Excl {}

2. ... other messages

3. Message GET_RO_REQ (id: ID; Var info: INFO; src: NODE)

4. Begin

5. [...]

6. If (SameNode(src, GetOwner(info))) Then

7. Suspend (L, SetState(info, Home_Excl_To_ldle{L}));
8. If (SameState(GetState(info), Home_ldle{})) Then

9. SetState(info, Home_RS{});

10. AccChg(id, TPPI_BIk_Downgrade_RO);

11. Else

12. If (InSharers(info, src)) Then

13. Suspend (L2, SetState(info, Home_Await_ PUT_ACCUM{L2}));
14. Endif;

15. Endif;

16. [..]

17. Else

18. Send(GetOwner(info), PUT_DATA_REQ), id);

19. Suspend (L1, SetState(info, Home_Excl_To_Sh{L1}));
20. IncSharer(info, src);

21. [..]

22. Endif;

23. [..]

24. End;

Figure 5: Teapot handler code containing multiple Suspend statements

ning a set of consecutive handlers, instead of having tim practice, but were all the more dangerous as a result.
look through the entire protocol for actions relevant to & igure 6 illustrates an LCM bug that is representative of
given state. This makes modification and debugging eashose found through verification. Both diagrams show
ier as well. Of course, in retrospect, we could havenessages being exchanged between a pair of processors,
adopted a state-centric organization in the handwritte@jith time increasing from top to bottom. In each case, a
protocol, but the C language did not make the benefits Cﬁreceding exchange of messages (not shown) has left

doing so immediately obvious while the Teapot systeMpe cache (non-home) side with the exclusive copy of a
enforced a disciplined programming style that utiIizedgiVen coherence.block

the better design choice.

, . . . In Figure 6a, the caching processor performs an LCM
Teapot’s continuations also made an enormous improve- dificati t the block i ion that i
ment in handler legibility. Even for handlers using a sin-nodification of the block, crealing a version that 15

gle Suspend statement, keeping the code on either Siolénconsisten.t with respect tq other copies in th.e system.
of the call in the same handler dramatically increasedlOWeVer, since the cache side held the exclusive copy at
readability. Some handlers used as many as Buse the time it performed the modification, it first sends a
pend statements, and therefore had to be split into mul¢0PY of the block home. This data can be used by the
tiple code fragments in the handwritten version.nome to respond to requests for the block from other
Figure 5 shows part of an LCM handler with threeprocessors. The block is returned home viRUd_MOD
Suspend statements. Without continuations, this codemessage when the cache side is finished. The second
would have been split into at least four distinct handler$CM modification then faults and requests the block
making it much harder to write and debug. Teapot alsback from the hom& Messages have been reordered in
allows dynamic nesting of continuations, a feature usethe network such that the first to appear at the home is
numerous times during the specification of LCM. Forthe request for data. The home detects the reordering,
example, the firsBuspend in Figure 5 moves to the since the requestor alreadias a copy of the block
Home_Excl_To_ldle  state, where other handlers according to directory information. The correct action in
(not shown) may suspend again to await delayed mesghjs case is to await th@HARE_DATAmessage, then
sages satisfy the request. The home leaves the block in the

Even with the cleaner design, we uncovered a total of 2§|ome_hCMstate tg (_jenote the ffiCt tr}a':]attl)tlaaslz one pro-

errors with Teapot's automatic verification tool. (Each®€SSOr nas created its own version of the block.

error was fixed as soon as it was detected and under- 1. This scenario arises frequently in applications where a given

stood. and the verification step was repeated ) Many of processor handles several of a set of parallel tasks consecu-
’ . ’ tively.

these were subtle bugs that were unlikely to occur often y




[Home_Excl] [Cache_RW]
LCM Modify

Home_Excl] [Cache_RW] LCM Modify Done w/Mod

LCM Modify Done w/Mod Write Fault

Done w/Mod [Home_ idle]

LCM Modify [Home._Excl]

[Cache_RW]

Read Fault

(a) (b)
Figure 6: Two different scenarios in which a GET_RO_RECQarrives in state Home_Exclusive . The
appropriate response to the message is different in each case.

Initially, we thought the arrival of th6ET_RO_REQ@  to which a message is directed. In LCM, action must
theHome_Excl state always implied the message reor-periodically be taken across a collection of blocks. For
dering scenario in Figure 6a, and both the hand-writteexample, during the reconciliation phase, a processor
version of LCM and the first Teapot version encodedeturnsall modified blocks to their homes, where they
this assumption. Unfortunately, in the more complicatechre merged with copies from other processors. An event
case shown in Figure 6b, this caused the protocol thandler was written to carry out this flushing operation
respond incorrectly. The home should instead await théor a single block, but the handler must somehow be
PUT_DATA_RESP message, transition to the invoked for each block returned. As an application runs,
Home_ldle state, and satisfy the request. Correctingthe LCM protocol constructs a list of modified blocks
the protocol is straightforward once the two scenarioshat require flushing at the next reconciliation. This list
have been identified, but it is unreasonable to expect 3§ traversed when the reconciliation phase begins, and
unaided programmer to have foreseen such a bug, duee appropriate event handler invoked on each block.
the complexity of the cases involved. Enumerating alladditional C code was written to traverse the list and
chains of protocol events and ensuring that they argyoke handlers in the executable version of the proto-
properly handled is a job much better handled througlol, but this code is outside the scope of the Teapot pro-
verification. tocol specification and therefore cannot be verified. The
Using Teapot, the new version of the LCM protocol wagVork around in Teapot was to structure the ®iur
written, verified, and running applications in two weeks'ruleset so that, during a reconciliation, it invoked the
time. Only one bug was uncovered during field testindnandlers for each block in the list. This restructuring sig-
of the new protocol, and it occurred in a simple supportificantly increased the complexity of the ruleset and
routine that was intentionallyiot simulated® Also, therefore the chances that it could contain an error.
because of Teapot, we were able to implement easily

three variants of LCM: one that eagerly sends updates feven without operations on sets of blocks the ruleset for
consumers at the end of an LCM phase, another th&CM was already much more complicated than those
manages multiple, distributed copies of some data asf@r our previous protocols. Unlike Stache, where any
performance optimization, and a version that incorpoarbitrary stream of interleaved loads and stores to shared
rates both of these features. memory must be handled, LCM only properly handles
stylized sequences of loads and stores. There are distinct
i phases that all processors must agree to initiate, in
4.3 Teapot Shortcomings which only certain access patterns are legal. Encoding

While Teapot made it significantly easier to get LCMthis into a ruleset was a lengthy, complicated, and poten-
written and working, it fell short of our needs in severaftially error-prone process, and represented a significant
respects. One significant obstacle is Teapot's inability téraction of the work required to implement LCM. It
perform actions acrosssetof blocks. A message han- would be preferable to generate such rulesets automati-
dler, for example, can only update the state of the blockally from a high-level description of a protocol’s mem-
ory model, but we currently are unaware of any
techniques for doing so.

1. The routine was deemed too simple to be hiding any bugs.



The last shortcoming was relatively minor. Teapot cur- [ } [ }
. . K Manager Manager
rently does not allow the testing of a pair of expressions

for equality. There were several places in the protocol [ cjient } E Client } E Client } EManager}
where pairs of states or node identifiers needed to b

compared, and an external routine had to be written tﬁ ﬁ ﬁ ﬁ
perform these tests. Future releases of Teapot shoul
extend the language such that comparisons can be done

without resorting to external procedures. «

/ | | \
5 XFS —p P P —F

XFS, a network file system described in several previous[ Storage} [Storage} [Storage} [Storage}
. . L . Server Server Server Server
papers[2,9], is designed to eliminate all centralized bot-
tlenecks and efficiently use all resources in a network of Figure 7: A sample XFS configuration. Clients,
workstations. One of the most important features of xFS Managers, and storage servers provide a global
is its separation of data storage from data management, Memory cache, a distributed metadata manager,
This separation, while offering superior performance 2nd astriped network disk respectively.
and scalability compared to traditional file systems, alsdinally, the storage servers collectively provide the illu-
requires a more sophisticated cache coherence protocslon of a striped network disk.
In addition, other aspects of the cluster file system envi-
ronment—such as multi-level storage and reliabilityxFS employs a directory-based invalidate cache coher-
constraints—further complicate the system compared tence protocol. This protocol, while similar to those seen
more traditional DSM coherence protocols. Due to thesen traditional DSM systems, exhibits four important dif-
aspects of the design, we found it difficult to implementferences that prevent xFS from using previously devel-
a correct protocol with traditional methods. The use obped protocols and that complicates the design of xFS.
Teapot has resulted in clearer abstraction levelgl) xFS separates data management from data storage.
increased system confidence, and reduced complexity iilthough this separation allows better locality and more
the implementation of cache coherence in xFS. At thélexible configuration, it splits atomic operations into
same time, there are significant differences between xFifferent phases that are more prone to races and dead-
and the original applications which Teapot was designefbcks. (2) xFS manages more storage levels than tradi-
to support. These differences have revealed some shotional DSM systems. For example, it must maintain the
comings of Teapot. coherence of the kernel caches, write-ahead logs, and
secondary storage. (3) XFS must maintain reliable data
. storage in the face of node failures, requiring protocol
5.1 Caching in xFS modifications that do not apply to DSM systems. For

The three main components of an xFS system are tfxample, a client must write its dirty data to storage
C|ients the managers and thestorage serversUnder servers before it can forward it to another client. (4) The
the xFS architecture, any machine can be responsible f§FS client is heavily multi-threaded and it includes
caching, managing, or storing of any piece of data oPotentially blocking calls into the operating system,
metadata by instantiating one or more of these subintroducing more chances for synchronization errors not
systems. Figure 7 shows a sample xFS installation. ~ seen in DSM systems.

Each of the three subsystems implements a specific

interface. A client accepts file system requests fro 2 Implementation Challenges
users, sends data to storage servers on writes, forwards

reads to managers on cache misges, and receives replﬁ:;e XFS design and environment make the implementa-
from Stofage SErvers or ot.her clients. It also answergon and testing of cache coherence in xFS more difficult
cooperative cgche forwarding req.uests from'the Mahan in most systems. The usual problems of prolifera-
ager by sending data to other clients. The job of thi"lon of intermediate states and subtle race conditions

metadata_manager 1S tracking Iocatlons' of file dat?lvere even worse for XFS, as described in the following.
blocks and forwarding requests from clients to the

appropriate destinations. Its functionality is similar to
the directory manager in traditional DSM systems.5.2.1 Unexpected Messages and Network



Reordering 5.3 Teapot and xFS

An xFS node can receive messages that cannot be prafter several unsuccessful attempts at completing the
cessed in its current state. This is also a problem in mogkche coherence protocol using traditional development
DSM coherence systems, but it is particularly pervasivgnethods, we decided to rewrite the system using Teapot.
in XFS because xFS separates data storage and contgilr experience with this domain specific language has
and thereby makes it difficult to serialize data transfepeen positive. In particular, the close ties between Tea-
messages and control messages with one another: d@igt and the Mub verification system have provided us
transfer messages pass between clients and storage s&fith an effective testing tool for attacking the problem
ers or between clients and clients while control mesof unexpected event ordering; many of the bugs we
sages pass between clients and managers or storag@nd and corrected would have been extremely difficult
servers and managers. to isolate through field testing alone. Furthermore, sev-
?_ral aspects of the Teapot language have simplified the

The xFS protocol also suffers from the message reorder- <", : o
engineering complexity in our system.

ing problems as mentioned in Section 2. Further com
pounding the problem, this protocol often allows ) )
multiple outstanding messages in the network in order t§-3.1 Testing for Unexpected Event Orderings

maximize performance. For example, an xFS m"’m"’lgel‘—tigure 8 shows an example of a bug in an early version

does not wait 'untll a client completgs a forwarding ¢ e yFs protocol that would have been difficult to iso-
request to gontmue, 0 a subsequen.t invalidate MESSaGfe via field testing but which Mdr easily discovered.
can potentially reach the same client out of OrderIn this version of the protocol, we saw no need for the

Althqugh such ordering can be enforced at the COmml{ﬁwanager to maintain sequence numbers for its outgoing
nication layer[5], recent research has argued that th'ﬁlessages. If a receiver of a manager request was not

ordering is best expressed with application state[8]. Furr'eady to act upon it, it simply queued it for later process-

thermore, even if the network ensured in-order messagerﬁg_ Murd found the following deadlock bug:

between nodes, the causes mentioned in the previous
paragraph would still require xFS to explicitly handle Initially, client B is the sole cacher of a clean block. (1)

unexpected message arrivals. Client C sends a read request to the manager. (2) The
manager forwards the request to client B. To indicate
5.2.2 Software Development Complexity that Client B should send the data to Client C via coop-

_ ) erative caching; the manager also updates its state to
Managing the large number of states needed to implépgicate that both client B and C are caching the data.
ment the xFS state machine was a challenge. Althougrag) Meanwhile, client A sends a write request to the
intuitively, each block can be in one of only four manager. (4) The manager sends a revoke request to cli-
states—Read SharedPrivate Clean Private Dirty, or — ent B, which arrives at client B before the previous for-
Invalid—the system must, in fact, use various transienfy s ding message, invalidating its data. (5) The manager
states to mark progress during communication with thgends a second revoke request to client C, which client C
operating system and the network. Dealing with unexy,eyes, because its requested data has not arrived. (6)
pected or out of order messages, handling the separatigflient B sends a write request to the manager, which the
between data storage and data management, maintainiﬁ%Inager queues, because its previously sent revoke
multiple levels of storage hierarchy, and ordering eventgnessage has not been acknowledged. (7) The delayed
to ensure reliable data storage all increase the number @f\yarg message from step 2 finally arrives, which cli-
transient states needed to handle xFS events. Evenet g queues, because its request to the manager has not
simplified view of the xFS coherence engine containgyeen satisfied. Now we have finally reached a deadlock:
twenty-two states. One needs a systematic approadient A is waiting for the manager to complete the
when dealing with this large state space. revoke operations; the manager is waiting for client C to

As we were implementing the protocol, it became cleaRcknowledge the revoke request; client C is waiting for
that the C language was too general. Despite our bestient B to supply the desired data; and client B is wait-
intentions, aspects of implementations that were nofd for the manager to process its write request. One
related to protocol specification were mixed in. Thesolution is to use sequence numbers to order the outgo-
result was less modular, less general, harder to debud messages for a particular block from the manager, so
and harder to maintain. Although the xFS protocol isthe sequence of events seen by any client is consistent
similar to many other DSM protocols, we have found itWith the view of the manager.

non-trivial to reuse or modify existing codes, due to

their ties to the native environments. 5.3.2 Reduced Software Development



FORWARD,
READ

b
Figure 8: A sample deadlock dis(caévered by the protocol verifier. The three clients are Iat()e)led with “A”, “B”,
and “C”. The manager is labeled with “M”. In Figure (a), arrows denote the directions of the messages. The
numbers denote the logical times at which messages are sent and/or received. Shown to the left of each
host is a message queue, which holds the requests that are waiting to be processed. Messages that are not
gueued are processed immediately. In Figure (b), arrows denote the wait-for relationship, and the presence
of a cycle indicates a deadlock.

Complexity handler primitives have revealed some shortcomings of

Four aspects of the Teapot language simplified the engg-giqp;;that were not apparent in its original application

neering of xFS. First, Teapot's continuations signifi-

cantly reduced the number of states needed by xFSBhe first shortcoming is the lack of support for multi-
protocol by combining each set of similar transientthreading. An xFS client is heavily multithreaded to
states into a single continuation state. Second, Teapotssipport concurrent users and react to concurrent
a more appropriate notation for specifying coherenceequests from the network, but the coherence engine
protocols because it is more restrictive and the specificagenerated by Teapot has a large amount of global state
tions are written in a fairly stylized way; by matching and is difficult to make thread-safe. Transforming the
the language to the task at hand, Teapot eliminates resulting Teapot coherence engine into a monitor was
source of bugs. Third, the domain-specific languag@nsuccessful, as subtle thread deadlocks occurred when
forces one to concentrate on the problem at hand ardifferent xFS threads enter the coherence engine and
separate it from other implementation details. In oumther xFS modules in different orders.

case, the use of Teapot has resulted in more modular an?1 d sh . blocki .
more general-purpose code that is well isolated from thg € second s orthmlng concems blocking operations
on local nodes, which occur frequently in xFS coher-

rest of the file system. Finally, the domain-specific lan- handl E | h S cl q
guage encouraged software reuse by isolating featur&'C® Nandiers. For example, when an xS client needs to

that are common to the class of problems they arl:‘nvalidate a file data block it caches, it makes a system

designed to solve. In our case, we were able to inherﬁa” to invalidate the data cached in the kernel. This sys-
' ' call might block, recursively waiting for some other

many support structures such as message queues ahl ) . i
state tables from other protocols supplied with the TesEvent that requires the attention of the coherence engine.

pot release, further reducing complexity and chances Ithough Teapot prpwdes good support for blqckmg
errors. operations that wait for remote messages, using the

same mechanism to handle local blocking operations is

tedious. In the above example, one must split the syn-
5.4 Teapot Shortcomings chronous system call into asynchronous phases, invent a
new node to represent the kernel, invent new states for
the kernel node, invent new messages the kernel must
. e : accept and generate, and write a number of handlers to
handler writers are limited and simple. The xFS COherfie all these elements together. Better support for local

ence engine, on the other hand, must interact with othgf .o o nerations would have significantly eased the
components of the system such as the kernel and th

) . s protocol implementation.
active message subsystem via more powerful operations
such as system calls and thread synchronizations. Thighe third shortcoming concerns users’ inability to add

difference in terms of power and expressiveness of theew arguments to Teapot handlers. We were faced with

Teapot was designed and is best suited for DSM env
ronments in which the primitives available to protocol



the unpleasant dilemma of either modifying Teapotguages [22, 3], an interface description language for
itself or simulating additional arguments via global vari-remote procedure call stub generation and optimization
ables. The former suggests a limitation of the model; thgl1], and a specification language for automatically gen-
latter work around is bad software engineering and irerating network packet filters [21].

particular, it makes the multithreading problem worse. A

more severe restriction is Teapot's lack of support for

operations that affect blocks other than the block o . . .
which the current message arrives. The problem ariserz Conclusion: Impllcatlons for

for example, when servicing the read fault of one blocDOmain-Specific Languages for
by an xFS client requires the eviction of a differentSyStemS Software
block. This is similar to the problem encountered by

LCM during its reconciliation phase. It would be gratuitous to reiterate the successes and

shortcomings of Teapot. Instead, we present some gen-

eralized insight gained from the Teapot exercise. While
6 Related Work our experience has been with only one domain-specific
language, we hope that our observations will be useful
;I'he 'kIJ'eaLrjothwork tm(:st fli)hselﬁ r_esemtblesf t?e PCSzgy%r designing other domain-specific languages, particu-
em by Lenara €t al. at the Lniversity o okyo [ ]'Iarly for systems software. First, we make a few general
They described a framework for writing coherence Pr9%onclusions, and then a number of detailed points that

tocols for distributed file system caching. Unlike Teapot, . emerged out of our experience with building and
they use an interpreted language, thus compromisingSing Teapot

efficiency. Like Teapot, they write protocol handlers

with blocking primitives and transform the program into, \yse hope our work provides further and concrete
a message-passing style. Our work differs in several evidence that it is better to build application-

aspects. Teapot's continuation semantic model is more e
, o S specific tools, than to program complex systems
general than PCS's, which is a message-driven interpre- ™"
with ad-hoc code.

tation of a protocol specification. PCS's application

domain is less sensitive to protocol code efficiency, sq In our experience. it is more profitable to start
they do not explore optimizations. Finally, we exploit u P ' P

verification technology by automatically generating an with a focused domain-.s.pecific language or tc_)OI
input specification for the Mdr verification system. that solves a very specific problem to the satis-
faction of a small user-community. Language

Reactive programming languages, such as ESTEREL extension and attempts at generalizing the appli-

[4], are useful for describing reactive systems and real- . . )
time applications. Teapot resembles ESTEREL in that it cation-domain should be conSIFjered only after-
provides a specification of the control part of the proto- Wards'_ Languages an_d tools W_'th a large scope
col, leaving data manipulation to separately written (O Pegin with run the risk of being useful to no
(often in C) support routines. Like ESTEREL, Teapot ONe€, because they could take much longer to
supports verification and can be translated to executable design and implement, and ultimately be less
code. Teapot differs from ESTEREL in that its emphasis useful to users than a more focused tool.

is on simplifying the task of programming complicated

finite-state machines.

i ?
Wing et al. [27] present an eloquent case for usinJ'l How big to make the language*
model checking technology with complex software SYSAn important consideration when designing a domain-

tems, such as a distributed file s_ystem coherence prOtgbecific language is: how general should the language
CO.IS' We also use model checking techr_mlogy, but OUhe? Teapot relies heavily on externally written routines.
primary focus is on a language for writing coherencei:Or example, it has to call a functi@ameNode to
protocols, and on deriving executable code as well as thceompare two,values of the typODEbecause we could
ve_rificatioq system input from a single source. Theynot decide how far, if at all, we wanted to support equal-
wrlt_e the mpu_t to_ the model checke_r _s_eparately fron‘|ty on opaque types in the language. Should procedure
their code, which introduces the possibility of errors. calls be a part of the language? If so, are there any
Domain-specific languages have recently found considrestrictions to be observed in the code for the proce-
erable interest in the systems programming communitydures? For example, Teapot does not alkwsgpend
Recent examples include instruction-set description laninside called procedures.



Making a language more comprehensive has the advapiler optimizations should be explicitly specified and
tage that less code needs to be written in external roshould be under user control. Even with all the virtues of
tines. However, a larger language is harder to learnjerification, a systems programmer may need to go to
harder to implement fully, and harder to optimize. Whilelow-level debuggers (perhaps for reasons unrelated to
smallness has virtues, a designer should not go ovethe coherence protocol). A restructuring compiler such
board and apply senseless restrictions. In Teapot, fas Teapot's makes the generated code harder to trace at
example, most users were unhappy about the fixed set afntime. Finally, despite these complications, we believe
arguments that appeared as handler parameters. that aggressive optimizations are essential. In our expe-

. . : rience, users are unwilling to compromise efficiency for
Capturing the commonly occurring programming sce-

narios is an important role of domain-specific Ian_ease of programming, particularly considering that

guages. Teapot, for example, incorporates Carefullspeed is often the main purpose of distributing a compu-

designed abstractions for waiting for asynchronous meé(gtlon.

sages. However, these abstractions were less effective at
capturing the scenario of waiting for asynchronous7/.3 Threads

eventsin general. This kind of waiting in XFS had to be h . h . it
cast into the waiting-for-messages idiom using extrd'S thread programming enters the mainstream, i

messages. In hindsight, the language could have be&@Main-specific languages are used to generate compo-

designed to support asynchronous events, with messag®@nts of systems software, their designers must pay
as a special case of events. close attention to thread support. Even when the lan-

guage does not currently support threads, if it is success-

For problem domains where it makes sense, it is imperdul, sooner or later users with multithreading needs
tive to think about automatic verification from the very would want to use it. The DSL designer, due to her
beginning. In Teapot, for example, we maintained ainique knowledge of the internals, should be prepared
clear distinction between opaque types and their impléeto provide recommendations, if not a full implementa-
mentation. In fact, the language has no mechanism tgon, of thread support. The first observation from our
describe the implementation of opaque types. This wagxperience is that thread support cannot be treated as an
done so the verification system and C code could praafterthought; instead it must be an integral part of the
vide an implementation suitable for their purpose, rathegarly language design. When we attempted to make Tea-
than providing a common base implementation whichpot thread-safe as an add-on, we quickly discovered that
may be poor for both purposes. An example of such aglobal state made this an error-prone process. Even
abstract type is a list of sharers, which is implemente¢hough we only introduced a small number of coarse
using low-level bit manipulation in C, but using an arraygrain locks, they frequently led to subtle synchroniza-
of enumerated type 0..1 in Mbr The language pro- tion problems because these locks were not exposed at
vides no pointers or dynamic memory allocation. the interface level. They broke abstractions and could
easily lead to deadlocks. The second observation con-
79 C iler i cerns the different alternatives that can enable the mod-

) ompiier ISsues ule written in a domain-specific language to interact
Ideally, language users should only need to know th&ith other multithreaded components. We have found
language definition, not the details of the languagdhat a viable alternative to making Teapot thread-safe is
implementation. Even the popular general purpose larfo turn the generated code into a single threadeht
guages fall short of this ideal by great distances, at leat0p [20]. Instead of allowing multiple threads to exe-
in the context of systems software. We have three obsegute concurrently in the cache coherence state machine,
vations in this regard. First, storage allocation policythese threads interact with the single thread of the state
should be made clear—programmers generally like ténachine via events. This approach eliminates unneces-
know where in memory particular variables live andsary thread synchronizations inside the state machine.
what their lifetime is. In Teapot, the storage for state
parameters was not clearly defined. It was not clear te)
the programmers how the memory management of con-
tinuation records happened. In fact, in the current impleMost users would be reluctant to even install a new pro-
mentation, unless Suspends and Resumes gramming language, much less learn it. Thus, designers
dynamically match, there would be a memory leak orof domain-specific languages should be prepared to do
continuation records, as we do not provide garbage cotonsiderable hand-holding: provide a very complete set
lection. Fortunately, most protocols naturally have suclof examples, documentation, and a distribution that
balancedSuspend andResume paths. Second, com- builds “out-of-the-box”. The xFS group found that hav-

.4 Distribution and Cost of Entry



ing a set of complete examples was a crucial aid tf]
adopting Teapot. However, in the case of Teapot, we
faced two stumbling blocks: we had to ask our users to
go pick up SML/NJ compiler from Bell Laboratories,
and the Mu® system from Stanford. Many people gave
up at this point, even when we offered to lead thenF]
through obstacles. Perhaps cleperl scripts could be
built which would pick up the right software from web.
To add to our difficulties, all the pieces of our system—
SML compiler, Mur compiler, and the Teapot
source—were constantly in flux and it was very difficult[4]
to maintain coherence [sic]. We see no easy way out of
this situation. From the point of view of distribution, it
would be best to provide everything in portable C code.
However, without drawing upon previously distributed
software, we couldn’t have built Teapot in a reasonablé)
amount of time.

7.5 A spade is not a general-purpose earth-

shattering device (6]

A tool-builder should be up front about what a tool does
and does not do. Despite our care, several people
thought of Teapot as a verification system, which it ism
not. In fact, we got an inquiry about Teapot which
implied that we have discovered a more practical way of
doing model-checking, rather than brute-force state-
space exploration! Also, we note that Teapot is not
directly suitable for describing hardware cache-coher-
ence controllers because it permits unbounded levels 8]
continuations. We were also asked why Teapot would
not be suitable for model-checking systems unrelated to
cache-coherence. These observations became apparent
when people forced us to think beyond the context 0[9]
Blizzard style DSMs. One should think carefully about a
language’s or system’s restrictions and why they exist
from the beginning, so as not to unnecessarily frustrate
potential users.
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