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Abstract

To meet the increasing capacity demand on wireless networks, there have been intense
efforts in the past decade on developing multi-user receiver structures which mitigate the
interference between users in spread-spectrum and antenna array systems. While much
of the research is performed at the physical layer, the capacity of networks with multi
user receivers and the associated power control problems are less well-understood. In this
paper, we show that under some conditions, the capacity of a single power-controlled cell
for several important receivers can be very simply characterized via a notion of effective
bandwidth: the quality-of-service requirements of all the users can be met if and only if
the sum of the effective bandwidths of the users is less than-the total number of degrees
of freedom in the system. The number of degrees of freedom is the processing gain in a
spread-spectrum system and the number of antenna elements in an antenna array. The
effective bajidwidth of a user depends only on its own requirement, expressed in terms
of the desired signal-to-interference ratio. Simple effective bandwidth expressions are
derived for three linear receivers: the conventional matched filter, the decorrelator and
the MMSE receiver. The effective bandwidths under the three receivers serve as a basis

for performance comparison.
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1 Introduction

The mobile wireless environment provides several unique challenges to reliable communi
cation not commonly found in wireline networks. These include scarce bandwidth, limited
transmit power, interference between users, and time-varying channel conditions. A cen
tral problem in the design of wireless networks is how to use the limited resources most
efficiently in such adverse environments, in order to meet the quality-of-service require
ments of applications in terms of bitrate and loss. To meet these challenges, there have
been intense efforts in developing more sophisticated physical layer communication tech
niques. A significant thrust of work has been on developing multi-user receiver structures
which mitigate the interference between users in spread spectrum systems. (See for ex
ample [16, 6, 7, 21, 8, 11, 12].) Unlikethe conventional matched filter receiver used in the
IS-95 CDMA system, these techniques take into account the structure of the interference
from other users when decoding a user. Another important line of work is the development
of processing techniques in systems with antenna arrays. While spread-spectrum tech
niques provide frequency diversity to' the wireless system, antenna arrays provide spatial
diversity^ both of which are essentially degrees of freedom through which communication
can take place.

Despite significant work done in the area, there is still much debate about the network
capacity of the various approaches to deal with multi-user interference in spread-spectrum
and multi-antenna systems. One reason is that the networking level problems of resource
allocation and power control are less well understood in the context of multi-user tech
niques than with more traditional multi-access schemes, such as TDMA, FDMA and
conventional CDMA systems. For example, much of the previous work on performance
evaluation of multiuser receivers focus on their ability to reject worst-case interference
(so-called near-far resistance [6]) rather than on their performance in a power-controlled
system.

In this paper, we will show that under some conditions, a simple characterization of
the network capacity is possible for several important multi-user receivers. The specific
scenario is a set of power-controlled mobile users communicating to a receiver (base-
station) in a single cell. Assuming that each user's requirement can be expressed in
terms of a target signal-to-interference ratio (SIR), we will show that a notion of effective
bandwidth can be defined such that the SIR requirements of all the users can be met if
and only if the sum of the effective bandwidths of the users is less than the total number
of degree of freedom in the system. This result holds asymptotically in the regime where
the number of degrees of freedom is large. These degrees of freedom can be provided by
the processing gain in a spread-spectrum system or the number of antenna elements in
a system with an antenna array. These capacity characterizations are simple' in that the
effective bandwidth of a user depends only on its own SIR requirement and nothing else.

The effective bandwidth of a user depends on the multi-user receiver employed. Results
for three receivers are obtained. They are the minimum mean-square (MMSE) receiver
[21, 8, 11, 12]), the decorrelator [6, 7], and the conventional matched filter receiver. We



will show that the effective bandwidths are respectively:

emmseiP) = ^dec{P) = 1 = /?,

where /? is the SIR requirement of the user. These effective bandwidth expressions also
provides a succinct basis for performance comparison between different receiver structures.
In particular, the MMSE receiver occupies a special place cts it can be shown to lead to
the minimum effective bandwidth among all linear receivers. Moreover, its performance
is the least understood about the three receivers, and its analysis is the main thrust of
this paper.

To obtain these results, we assumed that the users' signals arrive from random di
rections. In the context of a spread-spectrum system, this means that each of the users
employ random spreading sequences. In the context of an antenna array system, this
translates into independent fading from each of the users to each of the receiving antenna
element.

Related results on the performance of multiuser receivers under random spreading
sequences were obtained independently in [18], presented simultaneously as a conference
version [14] of this work. They considered exclusivelythe single class case where every user
has the same received power and same rate requirement, and derived Shannon theoretic
performance. In the present paper, our main results are for situations where users have
different received powers and possibly different SIR requirements.

The outline of the paper is as follows. In Section 2, we will introduce the bcisic model
of a multi-access spread-spectrum system and the structure of the MMSE receiver. In
Section 3, we will present our key result, that in a large system with each user using
random spreading sequences, the limiting interference effects under the MMSE receiver
can be calculated as if they were additive; to each interferer can be ascribed a level of
effective interference that it provides to the user to be decoded. In sections 5 and 6,
we apply this result to study the performance under power control and obtain a notion
of effective bandwidth. In Section 7, we obtain analogous results for the decorrelating
receiver. In Section 8, we show that similar ideas carry through for systems with antenna
diversity. Section 9 contains our conclusions.

2 Basic Spread-Spectrum Model and the MMSE
Receiver

In a spread-spectrum system, each of the user's information or coded symbols is spread
onto a much larger bandwidth via modulation by its own signature or spreading sequence.
The following is a sampled discrete-time model for a symbol-synchronous multi-access
spread-spectrum system:

M

Y = ^XiSi + W, (1)
i=l



where Xi € and s,- G are the transmitted symbol and signature spreading sequence
of user m respectively, ajid W is A^(0,(7^/) background Gaussian noise. The length of the
signature sequences is L, which one can also think of as the number of degrees of freedom
or diversity. The received vector is Y € 3?^. We assume the XiS are independent and
that E[Xi] = 0 and E[Xf] = P,-, where P, is the received power of user i.

Rather than looking at symbol-by-symbol detection, we are interested in the more
general problem of demodulation^ extracting good estimates of the (coded) symbols of
each user as soft decisions to be used by the channel decoder [12]. From this point of
view, the relevant performance measure is the signal-to-interference ratio (SIR) of the
estimates.

We shall now focus on the demodulation of user 1, assuming that the receiver has
already acquired the knowledgeof the spreading sequences. In this paper, we shall confine
ourselves to the study of linear demodulators, such that the estimates are linear functions
of the received vector Y. For user I, the optimal demodulator Ci that generates a soft
decision Xi = c\Y maximizing the signal-to-interference ratio (SIR):

(c'iSi)^P.
- (c5cO^<^^ + Ei^2(cls.PF(

is the MMSE receiver ^ [8, II, 12].

As a comparison, note that the conventional CDMA approach simply matches the
received vector to Si, the signature sequence of user I. This is indeed the optimal receiver
when the interference from other users is white. However, in general the multi-access
interference is not white and has structure cls defined by 82,83,...,sa/, assumed to be
known to the receiver. The MMSE receiver exploits the structure in this interference in
maximizing the SIR of user I.

While there are well-known formulas for the MMSE receiver and its performance,
we will describe simple derivations for two equivalent formulas, which provides some
geometric insights to the operation of this receiver. Let

Af

z = ^a:,s. + w
t=2

be the total interference for user I from other users and background noise. Then

Y = XiSi -f Z

If Z were white, then

X fYI —•^mmse\ * 7 — *
Si Si

^More precisely, this should be termed the /inear least square (LLSE) receiver, since it is only optimal
within the class of linear receivers if the X, 's are not Gaussian. In deference to the standard practice in
the multiuser detection literature, however, we will call this the MMSE receiver.



which is a projection onto Si, i.e. the conventional matched filter. In general, then, we
should whiten the interference Z and then followed by a projection. The covariance matrix
of Z is

where 5i is a L by M —1 matrix whose columns are the signature sequences of the other
users, and Di = diag(/2, •••, Pm) isthecovariance matrix of(X2,..., XmY- Xz ispositive
definite. Factorize Kz = where A = diag{Ai,..., Al} is the diagonal matrix of
(positive) eigenvalues of Kz, and the columns of Q are the orthonormal eigenvectors of
Kz. The whitening filter is simply A~^Q, Applying this to Z, we get:

A-2QY = X1A-2QS1 + A-2 QZ

The interference is now white. We can then project it along the direction h~^Qsi to get
a scalar sufficient statistic for the estimation problem:

R=s'l/C'Y = (s'l A';'s,) X, +s',A';'Z

Thus, the MMSE demodulator is:

n C.X..2n-u (2)s\{SiDib{ cr^i) ^Si

and the signal to interference ratio for user 1 is

SIR, = s',(5iDi5! + (3)

3 Performance Under Random Spreading Sequences

Eqn. (3) is a formula for the performance of the MMSE receiver, which one can compute
for specific choice of signature sequences. However, it is not easy to obtain qualitative
insights directly from theformula. For example, theeffect ofan individual interferer onthe
SIR for user 1 cannot be seen directly from this formula. In practice, it is often reasonable
to assume that the spreading sequences axe randomly and independently chosen. (See
eg. [4]. For example, they may be pseudorandom sequences, or the users choose their
sequences from a large set of available sequences as they are admitted into the network.
In this case, the performance of the optimal demodulator can be modeled as a random
vaxiable, since it is a function of the spreading sequences. In this section, we will show
that, unlike the deterministic case, there is a great deal of analytical information one can
obtain about this random performance in a large network. In the development below,
we will assume that though the sequences are randomly chosen, they are known to the
receiver once they are picked. In practice, this means that the change in the spreading
sequences is at a much slower time-scale than the symbol rate so that the receiver has the



time to acquire the sequences. (There are known adaptive algorithms for which this can
even be done blindly; see [4].) However, the performance of the MMSE receiver depends
on the initial choice of the sequences and hence random.

The model for random sequences: let s, = ^ (Ki,..., ViL)\ i=l? ... M. The random
variables Vik's are i.i.d., zero mean and variances 1. The normalization by ^ ensures
that £[||s,||^] = 1. In practice, it is common that the entries of the spreading sequences
are 1 or —1, but we want to keep the model general so that we can later apply our results
to problems with other modes of diversity. For technical reasons, we will also make the
mild assumption that < oo.

Our results are asymptotic in nature, for a large network. Thus, we consider the
limiting regime where the number of users are large, i.e. M oo. To support a large
number of users, it is reasonable to scale up L as well, keeping the number of users per
degree of freedom (equivalently, per unit bandwidth), a = fixed. We also assume that
as we scale up the system, the empirical distribution of the powers of the users converge to
a fixed distribution, say F{P). ^ The following is our main result, giving the asymptotic
information about the SIR for user 1.

Theorem 3.1 Let be the (random) SIR of the MMSE receiver for user 1 when the
spreading length is L. Then converges to in probability as L oo, where /JJ" is
the unique solution to the equation:

" <T^ + ocS^I(P,Pul3l)dF(P)
and

PPi

Pi + PA"

Heuristically, this means that in a large system, the SIR (3i is deterministic and ap
proximately satisfies:

where as before P, is the received power of user i. This result yields an interesting
interpretation of the effect of each of the interfering user on the SIR of user I: for a large
system, the total interference can be decoupled into a sum of the background noise and an
interference term from each ofthe other users. (The factor ^ results from the processing
gain of user 1.) The interference term depends only on the receivedpowerof the interfering
user, the received power of user 1 and the attained SIR. It does not depend on the other
interfering users except through the attained SIR ft. This decoupling is rather surprising

-This assumption is needed for the current proof to go through but may not be really necessary. A
weaker form of regularity may suffice.



since the effect of an interferer depends on the MMSE receiver Ci, which in turn is a
function of the signature sequences and received powers of all the users in the system.

One must be cautioned not to think that this result implies that the interfering effectof
the other users on a particular user is additive across users. It is not, since the interference
term /(P, , Pi, /?i) from interferer i depends on the attained SIR which in turn is a function
of the entire system. Due to the following proposition, on the other hand, one can make
a related statement.

Proposition 3.2 The equation

Pi

has a unique fixed point x". For any x, x > x* if and only if

Pi

< '̂ + ii:fL2HPuPux)
> X

Proof. Define the function

1 / 1 ^ \f(x) = -p-^l^x +j^xIiPi^Pux)]
1 / „ I ^ PP.X ^

= d-K^ + tE\ ^ + PxJ

which we note to be a continuous, increasing function.

To see that a fixed point x* exists to (6), we note that /(O) = 0 and /(oo) = oo so it
follows that there must exist a value x* satisfying fix") = 1.. But this implies that x" is
a fixed point of (6).

To see uniqueness, and to prove the rest of the proposition, we note that

X < X* ^ f[x) < 1

Pi
^ X <

- + HPi,Pux)

and conversely that

X > X* ^ f(x) > 1

O x>
- <x'' + iT^^2l(PuPux)

•



It follows then that to check if the target for user I's SIR, /?t, can be met for a given
system of users, it suffices to check the following condition:

. >/?r<T^ + il:f=2l{Pi,Pl,PT)

Based on this interpretation, it seems justified to term l(Pi, Pi^^t) as the effective inter
ference of user i on user 1, at a target SIR of

To gain more insights into this concept of effective interference, it is helpful to compare
the situation with that when the conventional matched filter Si is used for the demodu
lation. For that case, we have the following proposition, in parallel with Theorem 3.1:

Proposition 3.3 Let be the (random) SIR of the conventional matched filter re
ceiver for user 1 when the spreading length is L. Then as L, M oo with ^ a,
converges in probability to

0'PiMF u2 + af^PdF(P)

where as before F is the limiting distribution of the powers of the users.

Proof. See appendix C. •

Hence, for large L, the performance of the matched receiver is approximately:

p

(d\,MF ~ 2 I 1 n ^^̂
^ + L ^«=2

Comparing this expression with eqn. (5), we see that the interference due to user i is
simply Pi in place of /(Pj, Pi,/?i). Since the matched receiver filter is independent of the
signature sequences of the other users, it is not surprising that the interference is linear
in the received powers of the interferers. In the case of MMSE receiver, the filter does
depend on the signature sequences of the interferers, thus resulting in the interference
being a non-linear function of the received power of the interferer. Also, observe that
/(Pi, Pi,/?i) < Pt, which is expected since the MMSE receiver maximizes the SIR among
all linear receivers. But more importantly, we see that while for the conventional receiver,
the interference grows unbounded as the received power of the interferer increases, we
see that for the MMSE receiver, the effective interference from user i is bounded and
approaches ^ as P,- goes to infinity. Thus, while the SIR of the matched filter receiver
goes to zero ibr large interferers' powers, the SIR of the MMSE receiver does not. This
is the well-known near-far resistance property of the MMSE receiver [8]. The intuition
is that as the power of an interferer grows to infinity, the MMSE receiver will null out
its signal. While the near-far resistance property has been reported by previous authors,
Theorem 3.1 goes beyond that as it not only quantifies the worst-case performance (i.e.



large interferer's power) but also the performance for all finite values of the interference.
This is useful for example in situations when power control is exercised, as we will turn
to in the next section.

In general, we have no explicit solution for the SIR /JJ in eqn. (4). However, for the
special case when the received powers of all users are the same, the equation is quadratic
in 3^ and a simple solution is obtained:

(l-a)P I (l + a)P 1
- 2+ V ~2^ ^ 4

We see that the (3^ is positive for all values of a, and approaches 0 as a, the number of
users per degree of freedom, goes to infinity.

To get a sense of the convergence of the random SIR to the asymptotic limit in the
equal received power case, Fig. 1 compares the actually realized SIR's from randomly
generated spreading sequences to the Eisymptotic limit (8). For different spreading lengths
and for each value of a, 100samples of realized SIR's for user 1 are obtained from randomly
generated +1 and —1 spreading sequences. One sees that as the processing gain increases,
the spread around the asymptotic becomes more narrow, to about 1 or 2 dB when L = 128.
Note however that for a fixed processing gain, the spread does not get smaller as the
number of users increases, which means that the relative spread is large when the SIR is
low. Fig. 2 plots the SIR's attained across users for a single realization of the random
spreading sequences. The processing gain L = 128 and the number of users is 80. Again,
there is a spread of about \dh around the asymptotic limit.

Two performance measures commonly used in the literature for multiuser receivers
are their efficiency and their asymptotic efficiency [17]. In the context of linear receivers,
the efficiency for user 1 is defined to be the ratio of the achieved SIR to the SIR when
there is no interferer and only background noise. For the MMSE receiver with random
spreading sequences and equal received power for all users, this is given by:

r

where /^J" is given by the above expression. The asymptotic efficiency rji is the limiting
efficiency as the background noise goes to zero. If a < 1, this is given by:

f3:a^
rji := Inn—^ = 1 - a

ff—>0 p

For Q > 1, the limiting SIR is positive but bounded:

lim/?i = —(9)
a -I

and so the asymptotic efficiency is 0.
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4 Proof of Main Theorem

We will now prove our main result, Theorem 3.1. It hinges on a result about the limiting
eigenvalue distribution of large matrices whose elements are random variables. Let Xij
be an infinite array of i.i.d. complex-valued random variables with variances 1, and Ui be
a sequence of real-valued random variables. Let An,m be a n by m matrix, whose (z, j) th
entry is Let Tm be an m by m diagonal matrix whose diagonal entries are
we cissume that els m —> oo, the empirical distribution of these entries converge almost
surely to a non-random limit F.

The matrix An,mTmA^„^ {A^ is the complex conjugate transpose of A) is n by n
Hermitian and has real non-negativeeigenvalues ..., Let C?„(A) be the empirical
distribution of the eigenvalues; sincethe eigenvalues are random, so is G„. (The empirical
distribution of the eigenvalues depends on the realization of the random entries of A and
T.) The following theorem due to Silverstein and Bai [13] , which is a strengthening of
an earlier result by Marcenko and Pastur [10], gives the asymptotic behavior of Gn as n
and m grows. The solution is in terms of Stieltjes transforms, where for any distribution
G is defined as:

moiz) =J
foT z £ = {z £ C : Imz > 0}.

Theorem 4.1 As n,m oo such that ^ > a > 0, then almost surely Gn converges
in distribution to a non-random limit G*. The Stieltjes transform m{z) of the limit G'
satisfies the following equation:

for all z £ .

= _ I , r r<iFlr) • (10)^Aaf i+.rm(r)

The above theorem says that the empirical distribution of the eigenvalues for large
random matrices looks the same for almost all realizations of the entries. Eqn. (10) gives
a functional equation for the Stieltjes transform of the limit; in general, it cannot be
solved explicitly.

Applying this result to the covariance matrix Kz = SiDiSl + cr^/ of the interference,
we see that in a large system with random signature sequences, the spectrum of the
interference is essentially deterministic. Moreover, the deterministic spectrum is colored
and not white. This is perhaps a little surprising, as one may expect the aggregate
interference to get whiter and whiter as we have more interferers in the system. However,
one must bear in mind that the number of degrees of freedom (dimension of the space) is
also increasing, fixing the number of interferers per degree of freedom. Theorem 4.1 tells
us that these two effects balance each other and yields a colored spectrum in the limit.

12



As a consequence, the MMSE receiver outperforms the conventional matched filter, even
in the limit.

Theorem 4.1 gives the asymptotic distribution of the eigenvalues of the covariance
matrix A^. However, this is in general not enough for characterizing the SIR performance
for user 1, as that depends on the position of Si relative to the eigenvectors of Kz. This
can be seen by writing Kg = WAU where A is diagonal and U is orthogonal, so that the
SIR for user 1 is given by

A = PiSiAT^Si = Pi(C/si)^A-^(f/si).

However, the following lemma shows that the distribution of the eigenvectors is asymp
totically irrelevant since for large spreading length, Si looks "white" in any coordinate
system, in the sense of containing about the same amount of energy in each direction.

Lemma 4.2 Let'Q be a random m by n matrix [m < n) such that every realization
consists of orthonormal rows. Let X = (Vi,...,I4)* where the Vi's are i.i.d. random
valuables independent of Q, A[K] = 0, = 1 and < oo. Then for any e > 0,

Pr
\mr _ !!i| >,

n n

for some constant C which depends only on c and the statistics ofVi.

Proof. See appendix C. •

This lemma allows us to express the limiting SIR in terms of only the eigenvalue
distribution of I\\.

c
< —

n

Lemma 4.3 As L.,M oo, ^ >a, the SIR A converges to

•oo Pj

lo A d"

roo p.

in probability, where G" is the limiting eigenvalue distribution of the random matrix
S,D,Sl

Proof. See appendix C. •

Call the limit A- shall now complete the proof of the main theorem by evaluating
this limit.

Consider the Stieltjes transform of the limiting spectrum G" of the matrix SiDiS{ -h
a^I:

-oo 1
mc ' '

roo 1

(z) = / .^dG'(A) z e c+.
Jo A — Z

13



By Theorem 4.1, this satisfies:

mG>{z) = . PdFWr

where F is the limiting distribution of the received powers of the users.

Since the support of G* is on the non-negative real axis, mc* is continuous in the
neighborhood of 2 = — It follows that

By the continuity of the righthand side of eqn. (11) as a function of mG*(z)^ it follows
that

PI ^ 1
Pi +

"+V-

Hence the limiting SIR for user 1 satisfies:

Pi
P'i =

2 ,
^ " Jo P, 4.P/3?Pi+P/3i*

which completes the proof of the theorem.

While the above provides a rigorous proof, it provides little intuition zis why The
orem 3.1 is true. In particular, a better understanding of the decoupling phenomenon
between interferers is desired. Based on some new results obtained in [19], we provide
a heuristic but more intuitive derivation of formula (4) in Appendix A, bypassing the
mysterious Steltjes transform characterization of the limiting eigenvalue distribution of
random matrices in (10) and only basing ourselves on Lemma 4.3.

5 Capacity and Performance under Power Control

We observed in Section 3 that in the conventional receiver Ccise, the interference of a
user is proportional to its power, and hence a strong interferer can completely overcome
a weaJcer signal. This is the so-called near-far problem, and a well-known consequence
is that the conventional receiver can only avoid this via tight power control. We also
observed, that the MMSE receiver does not suffer arbitrarily poorly from the near-far
problem, and indeed this is one of the key motivations for the original work on multiuser
detection [16]. Nevertheless, a MMSE receiver still suffers interferencefrom other users,
and it follows that capacity can be increased and power consumption reduced, if power
control is employed.

14



In the present section we consider the czise in which all users require an SIR of exactly
/?"•, given a processing gain of L degrees of freedom per symbol. For a given number of
users we compute the minimum power consumption required to achieve /?* for all users,
and then look at the maximum number of users per degree of freedom supportable for
a given power constraint under power control. Of particular interest is the maximum
number without power constraint, which we define to be the capacity of the system (in
terms of number of users per degree of freedom.) This is the point at which saturation
occurs as we put in so many users that we drive the required power level to infinity.
We will show that this capacity is different but finite for both the conventional and the
MMSE receivers, thus both are interference-limited systems. As before, our results are
asymptotic as the the processing gain L goes to infinity.

Let us focus first on the conventional receiver. Under the matched filter. Prop. 3.3
tells us that asymptotically, users receive the same level of interference, and hence must
be received at the same power level to get the same SIR (3*. It is easy to compute that
with a processing gain of L and La users, the common received power required for the
conventional receiver asymptotically as L —)• oo is given by

For a given constraint P on the received power, the maximum number of users supportable
is then: ^

— — users/degree of freedom

The capacity of the conventional receiver when P = oo is then

Cmjif3*) = users/degree of freedom (13)

Put it another way, as a the system saturates and the required power level goes to
infinity. A similar result is given in [3].

Now let us turn to the MMSE receiver. To satisfy given target SIR requirements
for each user, [5, 15] showed that there is an optimal solution for which the received
power of every user is minimized; moreover, they gave an iterative algorithm to compute
it. However, here we can give an explicit solution and characterize the resulting system
capacity.

To begin, we fix the number of users per degree of freedom at a. As in the conventional
receiver case, it turns out that the system saturates if a is too high, so we first obtain a
necessary and sufficient condition for feasibility. The following theorem shows that in the
limit of a large number of degrees of freedom, the system is feasible if and only if the SIR
can be met with equal received powers for all users.

Theorem 5.1 If
. 1+/3"

15



then there is no distribution F of received powers such that the SIR requirements of all
users are satisfied, i.e.:

^ ^ P* for all Qin the support of F (14)a2 + a;o~/(P,0,^-)ciF(P)

On the other hand, if a < SIR requirements of all users can be satisfied and the
minimum power solution is having the received powers of all users to be

d''cr'^
Pmmsein = . _ ^ (15)

Proof. Suppose that there is a power distribution F such that all users get /?", i.e.

— roo r/ S^ Nin/ 1-.X ^ Qiu the support of Fa2 + a/o~/(P,(3,i5-)dF(P) ^

Let P* be the power of the weakest user in this distribution, i^e.

P- = inf{P : P(P) > 0}

and note that VP > P*, I(P*, P*,(3*) < I(P, P*,/3*). Focusing on the user with received
power P"*, since

P*

c^ + a!S^I{P',P,0')dF{P)

therefore „
P*

<7^ +qI{P-,P-,0-) - ^
Using the explicit expression for the effective interference term and rearranging terms,
the IcLst statement is equivalent to:

P'(l - a-^) >

Hence,
1+13'

(3-

This proves the first part of the proposition.

Conversely, if a > then it can be easily checked that Pmmse(P*) is positive and
satisfies

Pmms.[n
0-2 + OtI{Pmmse{l3'), Pmmse(/?*),/?*) = f3'

By Theorem 3.1, this implies that by assigning all users the same received power
PmTnse((3*)^ they will all achieve the SIR requirement (3'. To see that this is the minimal
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solution, suppose that F is another power distribution such that the SIR requirements of
all users are satisfied, and let P* be the power of the weakest user of this distribution. By
exactly the same argument as the proof of the first half of this proposition, we conclude
that:

3*(7^
P' > = Prnmsein

^1+jS'

This shows that indeed the solution with equal received powers at Pmmseif^*) is the min
imal solution.

Hence, the capacity of the system under MMSE receiver is:

Cmmseii^*) =1+̂ users/degree of freedom. (16)
Moreover, for a given received power constraint P, the maximum number of users that
can be supported is to assign each user the same receivedpower, and that number is given
by:

(1 +/?*)(^ —̂) users/degree of freedom.
Contrasting (12) and (13) with (15) and (16), we note that if a is feasible for both

types of receiver, then the MMSE power consumption is less than the matched filter power
consumption, and the MMSE has potentially much greater capacity. Indeed, if a < 1 then
we can take 0' arbitrarily high without saturating the MMSE receiver, whereas the the
conventional receiver saturates as /?* t q- For fixed 0*^ we also note that the MMSE
saturates at a higher value of q, yielding a capacity of precisely 1 more user per degree
of freedom than the conventional receiver. On the other hand, the relative gain of the
MMSE is not so large for small values of 0*.

The above capacity results are derived in the context of random spreading sequences.
A natural question to ask is whether one can get performance gain if wecould optimize the
choice of the sequences. In [19], it is shown that even with the optimal choice of sequences,
the capacity (without power constraint) under the MMSE receiver is still 1+ ^ users per
degreeof freedom. However, somewhat surprisingly, the capacity gap between the MMSE
and conventional receiver disappears under optimal sequences.

6 Multiple classes, maximum power constraints, and
effective bandwidths

It is straightforward to generalize our results to the case in which we have J classes, with
class j users requiring a SIR of 0j. We denote the number of users of class j by ajL, and
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again consider the limiting regime oo.

The conventional matched filter results generalize very easily to

Prnj(j) —^ o
1 - Ej=l OtjPj

where Pmf{j) denotes the common received power level of all users of class j (see [3]).
Thus, the capacity constraint on feasible values of (Qi,...,aj) is the linear constraint

j

< 1. Furthermore, if class j users have a maximum power constraint that

PmfU) ^ ^j-> h tighter capacity constraint:
J

EQjQj < min
- i<i<j

3=1 —

1 _

Pi

emerges ([2]). It seems very reasonable to call (3j the bandwidth of class j users, in degrees
of freedom per class j user. Let us denote this bandwidth by

emfiPj) = (3j degrees of freedom per class j user.

We now show that the MMSE filter results generalize in a similar manner. It is clear
in this case also that the minimal power solution consists of the same received power
for each class; let all users in class j be received at power Pj. Then the power control
equations become

J—^777r-?r^ =A j =i,2,...,J (17)
P' P • * 3where, as in Theorem 3.1, I(Pi, Pj^fSj) = p^p.p - But (17) implies that ^ is a constant,

which allows us to simplify (17) down to

Pmm»e(j) = fl— 1=1, 2,..., J. (18)
1- E/=l

The capacity constraint for the MMSE receiver with J classes is therefore given by

which is linear in ai,..., aj.

As above, maximum power constraints provide tighter capacity constraints, and in
this context we note that (18) implies that

5«'rfs-"-sS)
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Thus if Pmm3e(i) < Pi is a maximum power constraint on class z, then the linear constraint

0.O7 -—^ < min 1 -
0icr21

Pi
i = 1,2,..., J

defines the restricted capacity region of the system. It seems very reasonable to define the
effective bandwidth of class j users to be emmseWj) degrees of freedom per user, where

_ ftm = I
+ ft

Linearity in the matched filter case is a straightforward consequence of the fact that
powers of interferers add. However, our MMSE effective bandwidth results are rather
surprising, and it is a consequence of the asymptotic decoupling of the interference due
to other users. For more discussions about the linearity of the capacity region under
MMMSE, please consult Appendix A.

Fig. 3 gives an example of a capacity region for two classes of users, one with SIR
requirement IdB and the other 10 dB. The upper line gives the asymptotic limit for
the boundary of the region, under the MMSE receiver. The simulation curve gives the
average number of class 2 users admissible as a function of the number of class 1 users in
the system, for a spreading length of 64. The average number is obtained by averaging over
100 realizations of the spreading sequences. The actual number of class 2 users depend
on the realization of the spreading sequences, and will fluctuate around this average, as
was seen in Fig. 1.

One interesting observation is that no matter how high 0 is, the MMSE effective
bandwidth of a user is upper bounded by unity. We will gain further insight into why this
is so in the next section.

7 The Decorrelator

To this point we have contrasted the performance of the MMSE receiver with that of the
conventional matched filter receiver. It is also illuminating to compare its performance
with that of the decorrelator.

The decorrelator was in fact the first linear "multi-user detector" introduced by Lu-
pas and Verdu [6]. This receiver is known to be optimal in the worst Ccise scenario in
which interferers' powers tend to infinity; its near-far resistance is optimal [7]. Its main
shortcoming, as we will see, is that each user has an effective bandwidth of 1 degree of
freedom, which can be wasteful when the SIR of the user is small. On the other hand, it
is hardly wasteful when the SIR is large.

We can write the channel equation (1) in matrix form:

Y = 5X -I-W
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where X = (Xi,... ^XmYi and S = [si,... ,sa/] is the matrix of signature sequences. It
is well known ([6]) that the matched filter outputs

R = S'SX + 5"W

are sufficient statistics to recover the inputs X.

Consider now a further linear transformation applied to the matched filter outputs, to
obtain

U = (5'5)-^R = X + (5'5)-'5'W

The overall filter {S^S)~^S^ is called the decorrelating receiver. If the inverse does not
exist, then the pseudoinverse is used in its place. Observe that in the absence of external
noise the decorrelator output would be the vector X, and as such it represents the opti
mal zero-forcing linear filter. At this point, it is useful to provide an expression for the
covariance matrix E of the "noise" (5^5)~^5'W, namely

£ = (S'Sya""

The decorrelator for the user i returns Ui as an estimate of X,. Thus, the channel for
user i is given by

X,- X,- -h Ni

where Ni is a zero-mean, Gaussian random variableof variance E[2, z]. The SIR for user i is
given by An important point about the decorrelator detector is that the correlation

between the noise variables is not exploited, which explains why it is suboptimal.

We now study the performance of the decorrelator in the asymptotic regime in which
the processing gain L tends to infinity, the number of users is qL,

Theorem 7.1 Let /3\^^ be the (random) SIR ofthe decorrelating receiver for user 1 when
the spreading length is L. Then converges to in probability as L oo, where 0^
is given by

5._( ."<1
- I 0 a > 1

Proof. We begin with the assumption that q < 1, and prove convergence of S[l,l] to
This implies that the random SIR of user I converges to the desired deterministic

value.

First, Bai and Yin [1] shows that for a < 1, the smallest eigenvalue of S^S converges
almost surely to a positive value. Thus, without loss of generality, we can restrict ourselves
to invertible S^S.

^ det(5'5)
Am-i(s2|s3|..-|sm)
Am(si|s2|...1sm)
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where A(A') = det {K^K), and M = aL. Further, from the definition of the determinant,
we can express the inverse of this ratio of determinants as

Am(si|s2| .. • \sm) _ t r..
Am-i(S2|S3| •••|Sm) ^

where K is a non-negative, symmetric, L x L matrix that only depends on the vectors
S2, S3,..., sm- It follows that there exists an orthonormal matrix Q, such that

E[l, 1])"^ = u^nu

where u = Qsi, and Cl is diagonal.

This approach has been taken for a similar antenna array problem in [20], and there,
in the Theorem in Appendix A, it is shown that K has exactly M —1 eigenvalues equal
to 0, and L —M eigenvalues equal to 1. Thus we can take the first L —M -{-1 diagonal
elements of Q. to be unity, and the rest 0.

Let Q be the (L —M -H 1) x L matrix consisting of the first L —M rows of Q. If
we define the L —M dimensional vector u by

u = VTQsi

then Lemma 4.2 gives us that

llfilPIkyl (1 —a) in probability as L'[ 00.
Ij

It follows that (S[l,l])~^ converges in probability to

Finally, we observe that cls q 11, the limiting SIR tends to zero. But the SIR cannot
increase with increasing a, and is bounded below by 0, so the limiting SIR must be zero
when Q > 1. •

We observe that as a 1, i.e. the number of users per degree of freedom approach 1,
the SIR goes to zero. Geometrically, as the dimensionality of the orthogonal complement
to the span of the interference decreases to zero, the length of the projection of the
desired signal onto this orthogonal complement tends to zero, and so in the limit the
projected signal is lost in the background noise. This is the high price paid for ignoring
the background noise. In contrast, the MMSE receiver can support more users than the
number of degrees of freedom as it takes both the interference and the background noise
into account. In Appendix B, we will give a second derivation of Theorem 7.1 which will
emphasize this geometric interpretation.

By comparing Theorem 7.1 and Theorem 3.1, it can be seen that the effective inter
ference for an interferer on user 1 under the decorrelator is which does not depend
on the power of the interferer. The theorem states that the capacity constraint on the
system is a < 1.
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We also observe that if all users require an SIR of (3 and employ power control then it is
(3(7^

sufficient for each user to be received with power at leeist . Thus, for a given received
1 — a

power constraint P, the maximum number of users with SIR requirement (3 supportable
is 1 — Similarly, for multiple classes of users with SIR requirement (3j and power
constraint Pj for each class, then the system can support aj users (per degree of freedom)
from each class if

< min fl> Q,- mm 1 —
^ ~ ^<3<J3= 1

Thus, the capacity region under the decorrelator is given by:

^ a, <1 (20)
j=l

when there are no power constraints, or equivalently, when the background noise power
(7^ goes to zero. Thus, each user occupies an effective bandwidth of 1 degree of freedom,
independent of the value of (3.

From Theorem 7.1, it can be immediately inferred that the efficiency of a decorrelator
in a large system with random spreading sequences is 1 —a if a, the number of users per
degree of freedom, is less than 1 and zero otherwise. Since this does not depend on the
background noise power this is also the asymptotic efficiency.

It is well known [8] that the MMSE receiver has the same asymptotic efficiency as the
decorrelator, and hence the decorrelator is optimal in this sense among all linear receivers.
However, comparing eqn. (19) and (20), it can be seen that the capacity region under the
MMSE receiver is strictly larger than that under the decorrelator, even as the background
noise goes to zero. In particular, the MMSE receiver can in general accommodate more
users than the available degrees of freedom, while the decorrelator cannot. This apparent
paradox can be resolved by noting that when q > 1, the attained SIR by the decorrelator
is zero (Theorem 7.1) while the attained SIR by the MMSE receiver is strictly positive
but bounded, as the noise power goes to zero. Since the asymptotic efficiency only
measures the rate at which the SIR goes to infinity as goes to zero, they are the same
(zero) for both receivers. On the other hand, the capacity region quantifies the number
of users with fixed SIR requirements a receiver can accommodate; hence the difference
between the decorrelator and the MMSE receiver is reflected. In practice, users have
target SIR requirements and hence the capacity region characterization seems to be a
more natural performance measure than the asymptotic efficiency. In this context, the
decorrelator remains sub-optimal even as cr^ —0.

Pi

8 Antenna Diversity

In spread-spectrum systems, diversity gain is obtained by spreading over a wider band
width. However, there are other ways to obtain diversity benefits in a wireless system. A
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technique, particularly effective for combating multipathfading, is the use of an adaptive
antenna array at the receiver. Multipath fading can be very detrimental as the received
signal power can drop dramatically due to destructive interference between different paths
of the transmitted signal. By placing the antenna elements greater than half the carrier
wavelength apart, one can ensure that the received signal fades more or less independently
at the different antenna elements. By appropriately weighing, delaying and combining the
received signals at the different antenna elements, one can obtain a much more reliable
estimate of the transmitted signal than with a single antenna. Such antenna arrays are
said to be adaptive as the combining depends on the strengths of the received signals at
the various antenna elements. This in turn depends on the location of the users. More
over, the combining weights will be different for different users, allowing the array to
focus on specific users while mitigating the interference from other users. This is so-called
beam-forming. Using our previous results, it turns out that the capacity of such antenna
array system can again be characterized by effective bandwidths.

The following is a model for a synchronous multi-access antenna-array system:

M

+ W,
m=l

Here, Xm is the transmitted symbol of the mth user, and Y is a L-dimensional vector of
received symbols at the L antenna elements of the array. The vector hm represents the
fading of the mth user at each of the antenna array. The entries are complex to incorporate
both phase and magnitude information. The vectorW is Ar(0, <7^I) background Gaussian
noise.

The fading is time-varying, as the mobile users move. However, this is usually at
a much slower time-scale than the symbol rate of the system. Assuming then that the
channel fading of the users can be measured and tracked perfectly at the receiver, we would
like to combine the vector of received symbols appropriately to maximize the SIR of the
estimates of the transmitted symbols of the users. The optimal linear receiver is clearly
the MMSE. Assuming that the fading of each user at each antenna element is independent
and identically distributed, we are essentially in the same set-up as for spread-spectrum
systems. Thus, for a system with large number of antenna elements and large number
of users, we can treat each of the interfering users as contributing an additive effective
interference. Under perfect power control, the system capacity is characterized by sharing
the L degree of freedom among the users according to their effective bandwidths given by
the previous expressions for the different receivers. The only difference here is that the L
degrees of freedom is obtained by spatial rather than frequency diversity.

These results should be compared with that of Winters et. al. [20], which showed
that for a flat Rayleigh fading channel, a combiner which attempts to null out all the
interferers will cost one degree of freedom per interferer. This combiner is of course the
sub-optimal decorrelator, which we have shown earlier to be very wasteful of degrees of
freedom if interferers are weak. It should be noted that while Winters' result holds for the
Rayleigh model and any number of antennas, our results hold for anyfading distribution,
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but are cisymptotic in the number of antennas.

Fig. 4 illustrates the performance of MMSE receiver under a Rayleigh fading envi
ronment. It compares the asymptotic limit of the SIR for user 1 given by eqn. 8, as a
function of the number of users per antenna elements, with actual SIR achieved depend
ing on realizations of the Rayleigh fading. The number of antenna elements is 128. The
similarity between Fig. 4 and Fig. 1 further emphasizes the fact that the asymptotic limit
does not depend on the interpretation of the Sj's as spreading sequences or as channel
fading.

9 Summeiry of Results and Conclusions

It is illuminating to comparethe effective interferenceand effective bandwidths ofthe users
in the three cases:, the conventional matched filter, the MMSE filter, and the decorrelating
filter ( Fig. 5 and 6.). The effective interference under MMSE is non-linear, and depends
on the received power P of the user to be demodulated as well as the achieved SIR {3. The
effective interference under the conventional matched filter is simply P,, the received power
of the interferer. Under the decorrelator, the effective interference is j, independent of
the actual power of the interferer. The intuition here is that the decorrelator completely
nulls out the interferer, no matter how strong or weak it is.

Assuming perfect power control, we can define effective bandwidths which characterize
the amount of network resource a user consumes for a given target SIR. The effective
bandwidths under the conventional, MMSE and decorrelating receivers are /?, and 1
respectively. We note that the conventional receiver is more efficient than the decorrelator
when 13 is small, and far less efficient when (3 is large. Intuitively, at high SIR requirements,
a user has to transmit at high power, thus causing a lot of interference to other users
under the conventional receiver. Not surprisingly, since it is by definition optimal, the
MMSE filter is the most efficient in all Ccises. When (3 is small, it operates more like the
"conventional receiver, allowing many users per degree of freedom, but when (3 is large,
each user is decorrelated from the rest, much as in the decorrelator receiver, and therefore
the interferers can still occupy no more than 1 degree of freedom per interferer. The
performance gain afforded by the MMSE receiver over the conventional receiver depends
on the SIR at which the system is to be operated, and this in turn depends on the
data rate, amount of coding and symbol constellation size. However, due to the superior
performance of the MMSE receiver over a wide range of SIR's, it can be seen that it is
particularly suitable in a heterogeneous network with multiple traffic types.

While the effective bandwidth results provide much insight into the performance of
these filters, it must be emphasized that they pertain only to a single cell, without multi-
path fading , and in the symbol-synchronous case. It remains to be seen how these filters
perform in more realistic scenarios. The multi-cell scenario is particularly important to
be studied. While the effective bandwidth concept for the MMSE receiver is only valid
in the perfectly power-controlled ceise. the concept of effective interference applies with
or without perfect power control, and may prove more useful in the multi-cell context.
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Figure 5; Effective interference for the 3 receivers as a function of interferer's received
power Pi. Here,P is the received power ofthe user to be demodulated, and /? is the SIR
achieved.
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Figure 6: Effective bandwidths for 3 receivers as a function of SIR.
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In a TDMA or FDMA system, the network resource is shared among users via disjoint
frequency and time slots, and they provide a simple abstraction of the resource consumed
by a user at the physical layer. Such an abstraction allows a clean separation between the
physical layer and networking layer resource allocation problems, such as call admissions
control, cell handoffs and resource allocation for bursty traffic. It is hope that the effective
bandwidth results presented here will be a first step in providing such an abstraction for
systems with multiuser receivers.
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Appendices

A A Heuristic Derivation of Theorem 3.1

In this appendix, we gave an alternative and heuristic derivation of expression (4), without
invoking the Steltjes transform characterization of the limiting eigenvalue distribution
(10). The goal is to shed more light into the form of the expression and to provide some
intuition about the decoupling of the interference from different users and the consequent
linearity in the effective bandwidth characterization of the capacity region. The derivation
given here makes use of some ideas developed in [19] but is self-contained.

We first give a formula for the MMSE receiver and the associated SIR under the
MMSE receiver, alternative but equivalent to (2) and (3). First recall the channel model
in matrix form:

Y = -h W

where S is the matrix the columns of which are the signature sequences of the users. If
X is the vector MMSE estimate of X, a direct application of the orthogonality principle
£[(.Y - X)'Y] = 0 yields

X= DS* [5D5' +
and the covariance matrix of the error e = X —X is given by

K, = D-DS'[SDS'+ SD (21)

where D = diag(Pi,..., Pm) is the covariance matrix of X. Right multiplying the above
equation with D~^ and taking the trace of both sides, we get:

trace(A'eZ)~^) (22)

= M- trace (d5' [SDS' +cr^l]s)
= M—trace (sDS' +<r^/j ) using the fact trace(j4B) =trace(B^)

- ™

where A, 's are the eigenvalues of the matrix SDS^. If we let .

be the (normalized) minimum mean-square error for user i, then eqn. (23) says that

M ^ A
$:MMSEi = M-2:-r-E^ (24)
1^1 St

-1
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Now it is well known that the SIR ' and the MMSE error are related as follows (see
eg. [8]):

MMSE, = ^-77T. (25)
1+ /?.'̂ '

Substituting this into eqn. (24) and rearranging terms, we obtain,

1 M fAL) 1 ^ 1

So far, we have not introduced any probabilistic model for the spreading sequences, and
this equation holds for every choice of the sequences and for every L. Now, let us ctssume
the sequences are randornly chosen, and each component is i.i.d., and consider what
happens when M, L oo, ^ a and the empirical distribution of the received powers
converge to F. The right-haind side of the above equation converges to

•oo 1

where G* is the limiting eigenvalue distribution of and by Lemma 4.3, con
verges to

oo X
dG*{X)

f
0- = Pi

Jo A + <7^

Expressing everything in terms of /JJ", one can expect that the limiting form of eqn. (26)
to become

P./
Jo

2/3.-^dF(P)=1- ^

idingthroughout by ^ and rea
(4):

/?*Dividing throughout by ^ and rearranging terms gives us the desired fixed-point equation

p: =
" Pi+Pp^

This development allows us to understand the linearity of the effective bandwidth
characterization of the capacity region. First, consider the simpler case when 0, i.e.
no power constraint. Assuming that the spreading sequences span a space of dimension
min{M, L}. Then precisely min{M, L} of the eigenvalues Aj's are non-zero. Eqn. (24)
becomes:

M

MMSE.- = M - min{M, L}
1=1

Note that the total MMSE of the users is a constant, irrespective of the received powers
of the users. Since the SIR of a user is a function of the MMSE error, this is the reason

^This is the heuristic step of the derivation.
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for the linearity of the capacity region with no power constraint. For the case when there
are power constraints (i.e. ^ 0), the situation is more subtle. Asymptotically, the
right-hand side ofeqn. (24) depends on the received powers of the users only through

roo 1

which can be interpreted as the SIR achieved by a user with unit received power.

B Decorrelator Revisited

Here we give another derivation of the performance of the decorrelator. This derivation
has the advantage of providing more geometric insights into the operation of the receiver
and also illuminates the relationship between the decorrelator and the MMSE receiver. We
start with an alternative definition of the decorrelator, focusing without loss of generality
on user 1.

Definition B.l The decorrelator receiver for user 1, Xdcc{')> ^ linear functional of
the received vector Y, which maximizes the SIR subject to the constraint that Xdec{y) is
statistically independent o/X2, A3,..., Xm-

We observe that the decorrelator has the same objective as the MMSE receiver except
that the estimate of the symbol of user 1 is further constrained to be independent of the
symbols of the other users.

Let Adec(Y) := v^Y. Now, expressing in terms of the transmitted symbols and the
background noise,

= (v'sijA-i + 53 + v'Z = (v'si)Y, + v'Z

since it is ecisy to see that the estimate being independent of A'2, ••., Xm is equivalent to
the fact that v^Sm = 0 for all m ^ 1. Let V := span{s2,... be a subspace. Noting
that Var(v^Z) = the vector v should be chosen to maximize the SIR

cr^ v^v

subject to the constraint that v € V. We shall now show the geometrically intuitive fact
that the optimal v" is along the direction of the projection of Si onto V. Since (27) is
invariant to scaling of v, we can consider the equivalent optimization problem with the
same optimal value:

^ max (u^si)^. (28)
0-2 u€V,u'u=r '

Now,
||si - u||̂ = SjSi + 1 - 2u^Si
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and so the optimal u* in (28) is the vector in V with norm 1 which is closest to Si. By
the projection theorem, u* and hence v* is along the projection of Si onto V. If w is the
projection of Si onto V, then the SIR of the decorrelator is given by:

^ Pi(w%y Pi (w*(si - w + w))2 Pi
Pi = r-^ = : — = —W W0-2 W*W

by the orthogonality principle.

Consider now the situation when the signature sequences are chosen randomly and
independently, with M < L. The subspace V depends only on the signature sequences
S2,...,SAf and therefore independent of Si. Moreover as L —^ oo, with high probability
it has dimension max{L —M + 1,0}. Lemma 4.2 then implies that w^w 1 —q in
probability, as L, M oo and ^ q, if a < 1. If a > 1, then w^w 0 in probability.
This proves Theorem 7.1.

C Proofs

Proof of Proposition 3.3:

Now,

M ^ - xy-i-wPi (siSi)2

Clearly (sisi)^ converges to 1 in probability, by the weak law of large numbers. We now
look at the interference from the other users. Set

1 ^
^i = -^J2^i,kVi,k 2= 1,2,...,M

vL k=i

where s, = :^(Ki, •••, ViiY- Also, define Yl^i Pi- Let-us first condition on a
random realization of powers Pi, P2, — Then -

M MM

Var(5:F.«?|/'„P2,...) = EEE
t=2 1=2 j=2

(29)
By expanding out the product, we obtain that for i j, the term

equals

PjPj
L2

E f (E Vim K,*. f-Pj f̂ (E ViMViM? -P11^1. ^>2,

PP. PPi
e[(E Vi,tVijcf{E VukV,.kf]—rE[(E —iE[(E v,„Vi,,f]+p' (30)
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Expanding out the first term on the right hand side, we obtain

E E E E Vi.MViM Vu. v.,*.]
ki k2 ki k^

Now each of these expectations is zero except when ki = and k2 = ^4, so it reduces
to Now, L(L —1) of these terms are unity, and L are EfVjj], which is

ki k2

0(1), so it follows that the first term on the right hand side of (30) is PiPj + 0(1/L)^ In
a similar manner, the second term can be shown to be PjP and the third term is P,\P.

Returning to the expansion of (29), we note that for all f = 2,..., M,

- p] \PuP2,E

equals

- 4^e[(5: +p' (31)r o V / V ' 1,/C ' l,«:/ J r

^ k ^ k
Expanding out the first term we obtain

E E E E ViMVu^Vuk, va. Vi,i^ k-,*3 VaJ
ki k2 fca ^4

and each of these expectations is zero, unless ki = k2 and k^ = k4 or ki = k^ and k2 = k4
or ki = k4 and k2 = ks. In each of these nonzero cases, the expectations are 0(1) and
there are O(L^) of them, so the first term of (31) is 0(1). Similarly, for the other two
terms. We conclude that

l' M -i M M _

Var E P<^i\Pi,P^^ •••) = 172 E JliP'Pj - PiP^""^ - P'P '̂'̂ + + 0(1/L)
i=2 1=2 j=2

as L t oo- But by our assumption that the empirical distribution function of powers
converges to a deterministic limit, it follows that

-i M M

• E T,(PiPi - - PiP^ '̂' + 0
^ i=2 3=2

and hence that for any e > 0,limsup^ Var J2iL2 -^2, •••) < ^» is true
for any realization Pi,P2, •••• Hence, for all c > 0,limsup;i^E[(jg J2^2 ~ <
e. But P^^l -> /o°®PdP(P), which implies mean-square convergence of

PdF(P)^ and hence convergence in probability. So we have

M 1 M -oo

E Pi(sis.)' = 7 E Pi& ^ ° / P<^P(P)
tei p fe2
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in probability. We conclude that

<T^ + a PdF{P)
Pi

in probability

•

Proof of Lemma 4.2:

Let Y = ||QX|p. We compute the first and second moments of Y conditional on an
arbitrary realization of Q = (%).

m / n

E[Y\Q] = E E E9.i^
.=1 Vi=i

m n n

= E
t=l j=l k=l

EE?
i=l j=l

m,

= E

= E

E
t=i \j=i

m m n n n n

EEEEEE QikQilQjrQjsYk V/ Yf V5
i=l j = l A:=l /=1 r=l s=l

2^

Since the V '̂s are independent and zero mean, the terms in the expectation above are
zero whenever it has one random variable which has a diiferent index than the other three.

Hence.

E[Y'\Q]
m m n

= E E E <iUlkE[yk] + E E E gh]rE[v,']E[v?] + 2'£J2'£ KkWkqi'EmEix
t=l j=l fc=l t=l j=l kjtr t=l i=l k^l

m m n m m n n m m n n

= E E E (^[^*1 - 3) +E E E E qWjr +2E E E E qikquqmii
i=l 3=1 k=l t=l j=l k=l r=l t=l j=l A:=l /=1

m m n mm n mm n

= EEE9it9i*:(^[^fcl-3)+5^5!^(E9«:)(E9ir) +2EE(E9't9i')^
1=1 j=l Jk=l t=l j=l k=l r=l 1=1 j=l k=l

n m

= E(E qikf - 3) + +2m
Jt=l J=1

the last step using the orthonormality of the rows of Q. Now if we add orthonormal rows
to Q to construct a n by n orthogonal matrix Q', then the columns of Q' are orthonormal.
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This implies that for every column k,

Hence

and

and hence

< 1
t=l

E[Y^\Q] < n\ElV^^] - 3| + -f 2m

E[{Y - mf\Q] < n\E[V^] - 3| + 2m (32)

E[(Y - mf] < n\E[V^] - 31 + 2m

Using Chebychev's inequality, we have for every 6 > 0,

Pr

and

\.Y m,
> e

I' n n
<

<

<

£:[(y - m)^]
2c2n^e

n|E[Ui'*] —3| + 2m

l^[^i1-3| + 2 1
~ n

Picking the constant C = yields the desired result.

•

Proof of Lemma 4.3:

From eqn. (3),

i3p' = sU5i£)i5|+cr2/)-isiP,

Let ..., be the eigenvalues of SiDiS[. Write 5i£'i5j + cr^I as Q'AQ, where
A= diag(Al '̂ + <7^,..., A^f' + <7^). Let u'l-' = Qs,. Then

Fix a (Ji > 0. Pick a finite partition J = {/i, hi - Ik} of (0, oo) such that

K y-oo Pj
(33)

(34)
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where l{Ik),r{lk) are the left and right endpoints of the interval Ik respectively.

Let Gi be the empirical distribution of the eigenvalues of SiDiS\. Fix S2 > 0, and
consider the events:

El = { £ - GL(/t) < — for all fc = 1,..., A"
A

E2 = I|Gl(4) - G-f/t)! <^for all fc

If both events Ei and E2 hold, then we have

and similarly,

Si'' = E

<-L

,(i)»=i A, + (J

< h z («.•")')

fc=i Kh) + 0-
00 Pj

(L)\2^ -Pi
1(h) +

28
-dG*[\) + (5i + — from eqn. (33)

A + cr^

K
.(t)\2> -fl

> „ ^ G-(4) - 2#
- ' 1(4) +

> /
Jo

00 p. 2S0
-dG*(X) —5i from eqn. (33)

A+ C72 ^ ' Ct2

Hence, given any e > 0, one can pick ^i,<52 > 0 and K such that:

'OO Pj

Pr

Jo

- f
Jo

Pi

X-\- a'

:dG-(X)
A+ 0-2

whenever events Ei and E2 occur. Thus, by the union of events bound,

< e

:dG*(X) > e < Pr[AJ] + PvlEi]
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and
K

Pr[£ |̂] < E
k=l

\GL(h)-G'{Ik)\>-^

By Theorem 4.1, each of the probabilities in the sum go to zero as L —> oo. Hence
Pr[E5] 0. Now,

Pr[jE;j] = Pr H - GUh)

K

< EPf
it=i

y: (u^^)'-GL(h)

J< n
< — by Lemma 4,2

jk=i ^
KC

> — for some k
K

>1

which approaches 0 as L —> oo. Hence, from eqn. (35), we can conclude that

Pi

•

^ fJO A + cr'
^^""(A) in probability.
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