

Copyright © 1998, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ARCHITECTURE AND INFRASTRUCTURE FOR

A DISTRIBUTED DESIGN ENVIRONMENT

A CLIENT PERSPECTIVE

by

Francis L. Chan

Memorandum No. UCB/ERL M98/10

17 March 1998

ARCHITECTURE AND INFRASTRUCTURE FOR

A DISTRIBUTED DESIGN ENVIRONMENT

A CLIENT PERSPECTIVE

by

Francis L. Chan

Memorandum No. UCB/ERL M98/10

17 March 1998

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Acknowledgments

I would like to thank Professor A. Richard Newton, my research advisor, for his

invaluable siq)portduring my years at Berkeley as a graduate student. He provided

constantacademicand researchguidanceand inspiredmany ofthe ideaspresented in this

report A great communicator and man with rich academic, industry and life e?q>erience.

ProfessorNewton has sharedwith me not only much academic and technicalknowledge,

but also many lessonsof life. I also have to thank him for trusting me and giving me the

freedom and flexibility in my research work.

I would like to thank ProfessorJan Rabaey for being the reader ofmy report and giving

me much constructive feedback and encotiragement.

Mark Spiller,my counterpartin the server area of the client/serversub-group, was

someone i^om I worked very closely with throughout my graduate career and

contributedto many designsdecisionsdocumentedin this research report. We spent

many good and bad times together, at and outside ofschool. I thank him for his work

and the supporthe has givenme in manydifferentaspects of life.

I thankMichael Shilman for introducing me to this research groupand for the talks we

had in manydifferent areas and discussions of research ideas fromhigh-level system

architecture to the font-type ofmy presentations.

I alsowishto acknowledge Wendell Baker, SerenaLeungandJim Young whohas

helped me in many ways with my work here at Berkeley.

This work was supported in part by DARPA under contract DABT63-95-C-0074-

NEWTON-06/96 and DigitalEquipment Corporation. Their siqjport is gratefully

acknowledged.

Last but certainlynot least, I thank my family and friends for supportingme and bearing

with me throughout my college and graduate career. I am deeply gratefid for their

patience and love.

1. Contents

1. CONTENTS 1

2. INTRODUCTION 3

3. WELD ARCHITECTURE 5

3.1 iNTRODUCnON 5

3.2 Comparison to Previous work 5

3.3 Motivation 7

3.4 System Architecture 10

3.4.1 Components Description H

4. CLIENT INFRASTRUCTURE AND APPLICATIONS 15

4.1 Introduction 15

4.2 Java Client Persistent Object Management Package 16

4.2.1 Objective 76

4.2.2 Introduction 16

4.2.3PackageDescription 17

4.2.4Extensions in thePackage 21

4.2.5 Future Extensions and Considerations 23

4.2.6 Overview and AnalysisofJava RemoteMethodInvocation 25

4.2.7 Conclusion 29

4.3 Java-Based OCX - A CAD Data Manager. 30

4.3.1 Objective 50

4.3.2 Technical Introduction 31

4.3.3 Implementation Description 32

4.3.4 Functional Description 33

4.3.5 Applications 34

4.3.6 Conclusion 35

4.4 Web-Based Project Management application 37

4.4.1 Introduction. 37

Architecture and Infrastructure for a Distributed Design Environment
A Client Perspecdve

4.4.2 Functional Description 38

4.4.3 Future Extensions 40

4.4.4 Summary 41

4.5 DlSTRIBUnBD TOOL FLOW MANAGER 42

4.5.1 Introduction 42

4.5.2 Functional Description 43

4.5.3 Conclusion 45

4.6 Results and experience 46

4.6.1 Server Requirements 46

4.6.2 Applications 48

4.6.3 Performance 49

4.6.4 Conclusion 53

5. CONCLUSIONS AND FUTURE DIRECTIONS 54

5.1 Archtiectural Challenges 54

5.2 Feature and Service Provision Challenges 54

5.2.1 Future Development 55

5.3 User and Developer Participation Challenges 57

6. REFERENCES 59

7. APPENDICES 67

7.1 WELD Client/Server Communication Protocol

7.2 WELD Client/Database Communication Protocol

Architecture and Infiastnicture for a Distributed Design Environment
A Client Perspective

2. Introduction

The continuing advances in computer processing power, storage and network transmission

capacity, as well as an ever-increasingamount of information and services available on the

Internet indicate that there are great potential advantages for future CAD environments [1,2] to

leverage wide-area networks. Moreover, as design complexity continues to grow exponentially,

so do the needs for and opportunities provided by network collaboration and design

environments.

In the future, advances in computer and networking technologies will enable the rise of

ubiquitous computing [36], applications that dynamically adapt to different hardware capabilities

[37, 38], and an increase in the number ofnetwork tools and services. Moreover, emerging

technologies will enable data migration [39], agent/application migration [40-42], and network

data access[43]. In this environment, it will be imperative that distributed applications be

scaleable and extensible. In addition, the rise of such distributed design systems will require

advanced server features [44,46, 50] like consistency, fault tolerance, security, and intelligent

resource location mechanisms.

On the client side, users of the system should be able to access and execute tools with minimal

hardware and software in place (e.g. Java-enabled network browser). Moreover, the working

environment should allow remote tool invocation according to users* access criteria and

Architecture and Infiastructure for a Distributed Design Environment
A Client Perspective

permission. Flexible open frameworks could be achieved by customizable configuration of data

formats and tools from different sources.

This report documents the research work carried out in the high-level design and architectureof

a distributeddesign environment. It also highlightsand describesdifferentpieces ofclient

software infrastructure and applications that have been developed to test the technical and usage

feasibility of a network design environment. The issues and challengesinvolved in building

such a distributed environment will be discussed and the experience and findings with

developing, integrating and deploying the client and server infrastructure will be analyzed.

Architecture and Infiastructure for a Distributed Design Environment
A Client Perspective

3. WELD Architecture

3.1 Introduction

The goal of the WELD infirastructure team [97, 99] is to provide a high-level system architecture

as well as the software infrastructure that enable and facilitate a distributed design environment.

This environment should allow application developers to easily incoiporate their tools into the

environment and should allow network users to access and flexibly configure the tools and

services available.

Throughout the design, implementation, and testing process, not only have we considered the

technical challenges, such as communications, connectivity, data consistency and availability,

etc., involved in building and deploying a distributed environment, we have also looked into

ways of improving the usability, data transmission efQciency and hence the overall performance

ofa network-based design environment.

3.2 Comparison to Previous Work

The work ofproviding the architecture and infrastructure ofa distributed design environment

can be compared closely to that of developing CAD frameworks, which is an area ofactive

research[l-6]. Our system provides many ofthe features that a CAD framework provides[2],

such as:

• design database - provision ofa data manager and client object managementpackage.

Architectureand Infiastructurefora DistributedDesignEnvironment
A Client Perspective

• design datamanager - versioning, security andmeta-data' handling capabilities and

• design process manager - distributed tool flow manager.

However, our approach differs from others' work in a number of fundamentalways. Most of

the past efforts in the area of CAD frameworks is involved in introducing new systems,

techniques or extensions in specific areas ofdesign data management [7, 8], design meta data

management [9-12] and flow, process and tool management [13-25]. WELD, however, is

concernedwith providing the connectionand communicationmechanismsamong distributed

users, tools and services. While we are also involved in the development EDA applications [94],

ourmain goal is to provide theenabling andenhancing^ mechanisms thatleverages most, if not

all, systems andtoolkits in place^. Wedeliberately engineered our infrastructure in a waysuch

that no restrictions or assumptionsare placed on data representation, design methodologiesor

data and tool usage. Instead,we allowapplication users and developers to retain their existing

methodologies and/or build on top of our infrastructure.

Past frameworks and systems were also ti^tly-coiq>led with theirparticular operating

environment; in manyrecentcases, it has beenthe UNIXand NFS (NetworkFile System)

environment Such a relationship made it difficult ifnot impossible, to extendthe

frameworks/systems to an Internet environment which consists of heterogeneous hardware

platforms andoperating systems. Ontheother hand, WELD infrastructure is based onplatform-

indep^dent standards, such asJava on thecli^t side, socket implementation fornetwork

' Meta data refers to information regarding thedata, e.g. version, user andpermission information.
^Enhancing mechanisms include manipulation and processing ofdesign information and tool dependency, etc.

Aicbitectuie and Infirastiucture for aDistributed Design Environment 6
A Client Perspective

connectivity, and openand generic string-based comniunication protocols. Complete platform

independence on boththe client"* andserver^ sides is another feature which distinguishes our

environment with other frameworks.

3.3 Motivation

Rapid technological development is taking place in the areaof Internet, networking anddata

processing technologies, suchas HTTP [63, 64], Java[65], object-oriented database [47-49] and

distributed systems [44]. It is important that any designtechnology infrastructure take account

of, is compatible with,and leverage thesetechnologies. The increase in complexity ofthe data

andprocess of electronic design, largeand distributed teamsof engineers, alsoprovides many

needsand opportunities [23,35] for wide-area collaboration in the designofcomplex electronic

systems. These trendsenableandnecessitate the development of a distributed designsystem that

is composedofcross-platform, network-enabled tools and a platformindependentand

collaborative user environment.

At the system level, there are many attributes and benefits that pertain to an open distributed

design environment [44-46]. The environmentand infrastructure should be scaleable and

adaptive, i.e. servicesand performanceofthe system would not be sacrificedwith the addition

oftools, users and different technologies. The WELD infrastructure consists ofcomponents that

are flexible and extensible so that users can easily extend existing features (on the client, server

^New or legacytools can be integrated into our environment by placinga serverwrapperon top of it
^A Java-enabledweb browser, such as Netscape or Intemet Explorer, is all that a user needs to access the WELD
system and available resources.
^Tool encapsulation mechanism is providedby a generic C++ serverwrapper.

Architectiue and In&astructure for a Distributed Design Environment 7
A Client Perspective

sides andcommunication andnetwork service capabilities) andthat the system could easily

adapt to new, as well as legacy, tools and technologies.

Thedistributed environment should beplatform independent andplacea minimum requirement

on end-users' hardware and software environmentand capability. Anyone who has access to a

Java-enabledweb browser can access the WELD system, regardless oftheir hardware and

software computing environment.

In addition, the system shouldhave the ability to support a wide range ofcomputing resources.

Serverconununication technology allows local computing powerto be coupledwith plications

and data processingofnetwork servers. The Distributed Data Manager (explainedlater in

detail) enablesusers to store and retrieve informationat a network location. These capabilities

allow the WELD environmentto supportofa wide range ofcomputingplatforms from high-end

workstations to mobile PDAs.

Users and developers ofa distributed (design) environment should be able to leverage existing

software, systems and toolkits. Java, network protocols and server technology enable the

encapsulation ofexisting tools and software resources regardless oftheir programming language,

operating system base and development environment (such as commercial or academia) and

allow them to be integrated into the WELD environment.

Architecture and Infiastructure for a Distributed Design Enviroiunent
A Client Perspective

A distributed environment should also facilitateparallelprocessing. Parallel processing can be

achieved implicitly and at a low cost in a web-basedenvironment (like WELD) since operations

can be easily distributed over the network to different servers.

There are also a set ofcharacteristics, at the user-level, that are important to a distributed design

environment. The distributed environment should be able to reach and be accessible by a large

user base. The large number of Internet users both createsneeds and provides opportunitiesfor

innovation and wide-area collaboration.

Applications and services in a distributed environment should manifest high availability.

Networked tools in the WELD environment provide users with on-demand access regardless of

time ofrequest or geographical location.

Finally, a distributed design environment should provide consistent and intuitive user interfaces

and allowflexible tool configuration to help reduce engineers* start-up and training time.

Platform independence ofJava enable client £q)plications to provide a consistent user interface

across different computing platforms. The Distributed ToolFlow Manager (explained later in

detail) allows users to custom design and configure workflow of"^networked" services to meet

application-specific needs.

Architecture and Infrastructure for a Distributed Design Environment
A Qient Perspective

3.4 System Architecture

Remote
Servers

Tools
Services

Integrcrted—

Network
Services

Proodes

Clients

\ Dc3tcixse,

V.

API

Regstry /
lervice ^

Integrated.
Browser ^ -
aients

Oients

Commands/
Dcio

Figure 3-1 Weld System Architecture.

TheWELD architecture is a three-tier architecture consisting of. Clients —users/programs who

access die network resources of the system. Remote Servers —tools or services that are made

available for network access and NetworkServices—services existing in the network that assist

various client/server activities. The mechanisms that enable these network entities to

communicate with each other are the Client-Server Communication Protocol and Client-

Database Communication Protocol,

Architecture and In&astructure for a Distributed Design Environment
A Client Perspective

10

3.4.1 Components Description

This section provides a description and detailed explanationof the functionality ofeach WELD

component.

3.4.1.1 Clients

Clients are (end-user) applications that make use ofWELD network infrastructure. They can be

Java NetworkClients- Java client programs ran via a Java-enabled browser, such as Netscape or

Internet Explorer, vdiichutilize the capabilitiesof the Java-Client Package to gain access to the

system(database andremote servers). They can alsobe Stand-Alone Clients —applications that

are developedin Java, C, C++ or PERL, that supportnetwork socket operationsand the client

protocol{s) can also connect with tools and services in the system.

3.4.1.2 Remote Servers

Remote servers are tools that can be invoked by WELD clients acrossthe Internet. They can be

Legacy Tool Servers —legacy(andnew)toolswrapped withserver wrappers canbe integrated

into the distributed system andexecuted by network clients. TheycanalsobeIntegratedServers

—servers, developedin Java, C, C++, etc., that have built-in support for socketconnectionsand

theclient-serverprotocolcanbe seamlessly integrated intothe WELD system. Integrated

networkcapabilities may also enable IntegratedServers to play a larger role (beyond simple

program execution and data processing) in the system.

Architectureand Infiastructuiefor a Distributed DesignEnvironment 11
A Client Perspective

3.4.1.3 Network Services

Networkservices arecomponents thatprovide features andfunctionality that areusefiil to most

applications. These include the DistributedDataManager, Proxies and Registry Service.

3.4.13.1 Distributed Data Manager

A database system thatmanages dataresiding in thenetwork, asopposed to onclient machines

or servers.

Functionalityof the data manager include:

Saving and loading ofdata.

Query and search.

Versioning ofdata/objects/programs [50].

Incremental update mechanism [50].

Fine-grainedgranularityof object/datalocking [51].

Transaction mechanism [52].

Directory/Registry service.

HTTP siq)port (may be used also as a web server).

3.4.1.3.2 Proxies

In theWELD architecture, wereferto aproxyas a software program residing in thenetwork that

acts ^^intelligently" and transparently as an agent[42] between clients, network serv^ and other

proxies.

Functionality ofproxies [37] include:

• When co-located with Web servers, proxies extend the Netscape-Java security model and

enable Java applets/clients to communicate with available network resources.

• Caching of(frequently accessed) data.

• Automatic translation between data formats as needed for tools.

Architecture andInfiastructure fora Disttibuted DesignEnvironment 12
A Client Perspective

• Data "distillation'* [38] according to application needs and network links.

• Security/Access control [54-58].

• Dynamic search for servers (in case of failures).

• Queuing, batch processing and scheduling/locking for servers.

• Plug-in architecture that allows the extension ofproxy capability to meet application-

specific needs.

3.4.1.3.3 Registry Service

A table (dynamic storage), which may be co-located with a data server, that maintains

information on the availability ofnetwork resources.

• Tools and services register with the system to inform the registry oftheir existence and

availability, as well as any restriction that is placed upon access of the resources.

• User applications can query the registry for availability and possible selection oftools.

Architecture andInfiastructure fora Distributed Design Environment 13
A Client Perspective

3.4.1.4 Client-Server Communication Protocol

The client/saver communication protocol enables communication between cli^t-server and

proxy-server. It was designed to:

• Flexibly handle server parameter type and values.

• Allow for stand-alone, as well as recursive, command structure.

• Be extensible by users and application developers.

3.4.1.5 Client-Database Communication Protocol

The client/database communication protocol enables clients/client objects to communication

with a network database system. This protocol:

Allows client objects to be translated and mirrored in the database.

Allows the linking ofobjects in a completely arbitrary manner.

Enables clients to take advantage ofbuilt-in database capabilities, such as save, load,

query, versioning, etc.

Architecture andInfrastnictme fora Distributed DesignEnviromnent 14
A Client Perspective

4. Client Infrastructure and Applications

4.1 Introduction

The success of a distributed enviroiunent binges upon both the quality and quantity of services

available as well as the number ofusers that can access the system. To enable a large user base,

Java [65], with its applets and applications being platform-independent, was chosen as the

language for the development of infrastructure and client applications for our distributed design

environment.

The focus ofthis research is placed on client infrastructure and applications. These packages

and applications cover a wide spectrum offunctionality, ranging from end-user applications to a

Java object-level management package.

A brief descriptionof the software developed are as followed:

• Java Client Persistent Object Management Package - a software package that allows any

Java object to be mirrored in and manipulated by a remote data server.

• Java-based OCT - A CAD Data Manager - Java-basedversion of the OCT system [26]

that helps manage CAD data model.

• Web-based Project Management Application - an application that facilitatesmanaging

and collaborating on projects over the Internet.

Architecture and Infiastructure fora Distributed DesignEnvironment 15
A Client Perspective

• Distributed Tool FlowManager —an application thatallows clients to custom design and

configure the flowofnetworked servers and dataprocessing.

4.2 Java Client Persistent Object Management Package

4.2.1 Objective

Javahas evolved [66,67] from a Intemetprogramming language for constructing applets for

fancy display on homepagesto a programming language for robust, full-blown applications.

Thefirst wave ofapplets were client-side applications thatwere downloaded as complete

applications. With the use ofJava network and socket infrastructure [68], then came a new class

of applications, suchas on-line games, chat roomsand whiteboards, that provide limited

interactivity and datatransaction to users. Thoseboundaries were onceagainextended as the

technology and need for persistent (Java) objects arose. To meet this demand, we have

developed a Java ClientPersistent ObjectManagement Package that utilizesa data-backend to

siqiportpersistent objects. The ability to manage objects across the network (WAN or Intemet)

is ofparamoxmt importance especially in applications such as distributed electronic design [34,

35].

4.2.2 Introduction

The Java Client Persistent Object Management Package allows Java (client) objects to be

managed and manipulated by a network data server. In addition to object storage and retrieval,

it also allows capabilities that the remote data backend provides to be extended to client users.

Architecture and Infrastructure fora Distributed Design Environment 16
A Client Perspective

The Persistent Object package allows fields of objects to be stored in internal data structures.

For remote object management, these information are then extracted to compose a string

according to a client-server communication protocol which is then sent over to the data server.

The data server then translates the messages received and recreates the object at the data

backend. (Object processing in terms of connections/attachments can then take place at the

backend. These "connection" relationships form the basis ofrepresenting object fields, such as

vectors.) The client applications can also utilize the capabilities that the data server provides,

such as querying and versioning.

The API provided for the Persistent Object package is simple and intuitive so that application

developers can easily utilize the features provided. It is also flexible and extendible so that it

could be tailored towards application-specific needs. Its scalability and ability to work in a

distributed manner make it an attractive means for networked object processing.

4.2.3 Package Description

4.23.1 Simple

One of the main goals ofbuilding the Persistent Object package was to provide a simple,

extendible and flexible tool to empower application developers and users to add value to a

networked environment. The overhead for using the package is minimal, and exists mainly in

object definition and instantiation. The simple API, which consists ofcommands such as load,

save, connect, etc., allows the complexity of the underlying operations (object persistence.

Architecture andInfiasiiucture fora Distributed Design Environment 17
A Client Perspective

network implementation, andworkings and interactions of the baseclasses) to be completely

abstracted away from the user.

4.2.3.2 Flexible

The current implementation ofthe package stores and retrievesonly the pre-designated fields of

the objects. Other fields in the object will be automaticallyskippedwhen p^orming network

operations. A similar mechanism has beenimplemented in the ObjectSerialization [69] portion

ofthe Java RemoteMethodInvocation [70] systemprovidedby Sun Microsystems where

static and private fields that are declaredtransient will not be processedfor remote

operations.

The packageis flexible in handling policies'* suchas caching and security. Whilethe

infrastructure is present for implementingthese policies (such as a isDirty field and a dbid

field in the objects), no policy is enforced in the current implementation. Application developers

are free to use the structures provided to implement the policies that suit their specific needs.

4.2.3.3 Extensible

Due to the object-oriented nature ofJava, it is very easy to extend the functionalities ofthe base

package. For instance, developers are free to create additional objects/methods that inherit from

PersistentObj ect or to simply override existing methods.

^Policies arerulesandbehaviors thatmakeuse ofprimitive mechanisms of a system, as defined byusersor
application developers.

Architecture andInfiastructure fora Distributed Design Environment 18
A Client Perspective

The classesare organized in a functionaily-modnlar way so that any componentcan be changed

if certain parameters need to be altered, such as the client-server communication protocol

(PO^CommandConstructor. j ava) or thenetwork connection (PO_NetClient. j ava)

mechanism.

4.2.3.4 Distributed

The location >^ere objects are to be loaded from and saved to can be changed at the individual-

object level (by calling setServer, setPort). This ability allows parallel and distributing

processing across the network.

4.2.3.5 Object Manipulatioii Mechanisms

The network operations and object manipulation mechanisms supported by the package include:

Command Description

save Saves a copy ofthe object to the data server.

versionSave Saves a new version ofthe object to the server.

load Loads the object with the corresponding ID.

versionLoad Loads the object with the corresponding ID and version.

deleteObj Deletes the object in the data backend

(all attached objects will also be automatically deleted).

connect Connects 2 objects in the data backend.

disconnect Disconnects the objects in the data backend (if they are attached).

InitGenContents Loads the objects that are attached to the current object.

InitGenContainers Loads the objects that the current object is attached to

Aichitectureand Infiastnictuie for a DistributedDesign Environment
A Client Perspective

19

4.2.3.6 Versioning

The support of versioning is ofgreat importance, especially to applications and processes such as

electronic circuit design [1,2] and software engineering [49]. Versioning capabilities of this

package arebuilton-top of thebasic save/load mechanians. They are enabled by backend

mechamsms and a version field(string) in each persistent object on the front end. Theclient-end

versioning capabilities, which includes, save, retrieve, browse, etc., are described below.

4.2.3.6.1 Save

Any (Persistent) object can be saved as a new versionusing versionSave

• Versioninga Point - If it is the first time the object is saved,a Vers ionObj ect will be

cheated at the data backend with the originalobject and new object attached to it, otherwisea

copy ofthe objectto be savedwill be attached to the alreadyexistingVersionObj ect in

the data backend.

• Versioning a Tree - All and any attachedobjects, startingfrom the point ofthe objectto be

saved will be recursively saved and attached on the backend server.

4.23.6.2 Retrieval

Three types ofversioned-object retrieval mechamsms are provided:

1. Retrieving a specific version (e.g. version A.B)

2. Retrieving the latest release (with version flag set as "R")

3. Retrieving the latest version (with version flag set as "L")

Architecture andInfrastructure fora Distributed Design Environment 20
A Client Perspective

4.23.6.3 Mechanisms

Although versioning capabilities are built-in, objects that do not require versioning need not deal

with the implementation at all. The basic versioning mechanisms provided with the package

also allows more sophisticatedversioningpolicies, that applications may need, to be built on top

ofthem.

4.2.4 Extensions in the Package

The core ofthe Persistent Object package has itselfbeen used to implement some ofthe more

advanced features that were deemed important and useful to general applications.

4.2.4.1 Directory Object

In order to facilitate a directory structure in the OODB server, a special class of

PersistentObj ect - DirObj ect was implemented. In addition to the

PersistentObj ect functionality, DirObj ects also provide special connection-related

commands such as detach and getContext.

A Database Browser(graphical user interface) (see Figure4-6) has been implemented in Java to

allow users of the system to peruse the database and directory structure.

4.2.4.2 Query Object

QueryObj ect was implemented in order to provide a more flexible and effective retrieving

mechanismand take advantage ofbackendintelligence. Currently, the keyField(first field) of

the objectcanbe usedto perform a pattemmatching retrieval. Plans havebeenmade to expand

the protocol and package to allow:

Architecture andInfiastructure for a Distributed Design Environment 21
A Client Perspective

• Query object field value.

• Query field of objectby unique id.

• Query field value by field value.

4.2.4.3 Version Object

VersionObj ect was implemented to represent a version objectnodein the data backend. It

actsas the point where the traversal of versioned objects is performed.

4.2.4.4 Data Object

Asa basic extension of thepackage, DataObj ects allow users to easily take advantage ofa

network data server. Any files, data or objects, thatcan be translated to a string representation

can be saved to and retrieved fi*om the data server with the use ofthis class.

Version

Object

Key:

CO —Command

Constructor

NC-Network

Client

PC —Static Constants

OI —Object Info

Data •{ Basic
Application

Dir

Object

Inherits

1
Persistent i

Object «

Query
Object

Uses

cc

\ PO
\

Package

Extensions

\NC[\

OI /
/

y

Helper Classes

F^ure 4-2 Module-level organization ofthe PersistentObject Package

Architecture and Infrastructure for a Distributed Design Environment
A Client Perspective

22

4.2.5 Future Extensions and Considerations

Although the PersistentObj ect class is functional at the present stage, there are many

possible directions of extending its functionality and improving its robustness. Some ofthe

possibilities are described below.

4.2.5.1 Preprocessor ofSource Class Files

Currently, use of the PersistentObj ect class requires the object developer to absorb an

initial code implementation cost. Such an overhead, though fairly small already, can be further

reduced by the development and incorporation ofa preprocessor that parses the object files

(. j ava) and automatically generate and compile the code for network object management.

However, at this stage, this would be a task that provides little value-added to the research of

distributed Java object management.

4.2.5.2 Client/Server Load Distribution

With a data management backend, applications can intelligently make use of server processing

power by "shifting" some ofthe computation/analysis to the backend. Load balancing [11] and

distribution between a Java q)plication front-end and server backend serves as great future

extension of this project or an independent project on its own.

4.2.5.3 Resource Location

While the package allows for retrieval of individual objects firom different servers and ports, the

mechanisms for locating an object or a service by providing user-specified properties has not

been implemented. Even thou^ resource location [53] is an important aspect ofa distributed

Architecture andInfiastructure fora Distributed Design Environment 23
A Client Perspective

environment, the discussion andimplementation of resource location on top of the persistent

object managenientpackage is outside the scope ofthis document.

4.2.5.4 Object Management Policies

The current Persistent Object packagehas provided many enablingmechanismsin the areas of

caching, securityand versioning. Application-specific or genericpoliciescan be implemented

using the underlying structures and mechanisms.

4.2.5.5 Security

Different methods and measurescan be taken to improve the authenticity, integrity and privacy

of the data transmitted to and from the backend server.

1. Authorized access [57, 58] ofobjects on the backend (login/password), >^ch is tightly-

linked to session control and efficient multi-user siq)port.

2. Check-length/checksum ofprotocol message to provide greater security measures for

verifying that message received is in fact message sent.

3. Other encryption schemes [55] (e.g. digital signatures) can be added to the transmission and

receipt ofmessage streams to ensure privacy ofnetwork session.

Architecture and Infirastructure fora Distributed Design Environment 24
A Client Perspective

4.2.6 Overview and Analysis of Java Remote Method Invocation

4.2.6.1 Introduction

The Java Remote Method Invocation (JRMI) system [70] allows distributed Java ^hcations

that run on different network hosts to communicate with one another as ifonly local calls were

made. Its main feature and restriction is that the system was specifically designed to operate in

the Javaenvironment It assumes the homogeneous environment of the JavaVirtual Machine^

[62,71], allowing it to seamlessly follow the Java object model.

Since the JRMI system/package is a part ofthe Java API [68], it is very convenient for

appHcation developers to take advantage ofthe networking and inter-object communication

c^abilities. However, it being a complete Java client-server/peer-peer system make it an

rmattractive/unusable option in a distributed system consisting ofapplications developed in

multiple languages.

4.2.6.2 Technical Description

4.2.6.2.1 Definition

Remote Object - an object whose methods can be invoked from another Java Virtual Machine.

This type ofobject has to be declared by one or more (Java) remote interfaces.

^TheJava Virtual Machine is thesoftware implementation ofa CPU designed to runcompiled Java code,
including stand-alone Java applications as well as applets that are downloaded and run in Java-enabled Web
browsers.

Architecture andInfiastructure for a Distributed DesignEnvironment 25
A Client Perspective

Remote MethodInvocation - invoking a method of a remote interface on a remote object.

4.2.6.2.2 Technical Merits and Features

There area many technical merits in using JRMI asdie communication mechanism among

distributed Javaobjects. Thereference of a remote object canbepassed asan argument or

returned as a result in anymethod invocation, as ifonlya localoperation wasp^ormed. The

JRMI systemtakes advantageofand extends the languageand security featuresofJava, such as

securitymanagers, class loadersand distributed garbage collection ofremoteobjects. It also

transparently handles serverreplication, multipleobject invocation and the loadingofa class

dynamically if it is not readilyavailable locally. The j ava. rmi. Naming interface provides

URL-based methodsto lookiq>, bind, rebind,unbind and list the name and objectpairings

maintainedon a particular host and port A^ch make it convenientto access remote objects.

Architecture andInfiastnicture fora Distributed Design Environment 26
A Client Perspective

4.2.6.3 Comparison with Other Object Communication Models

Model Advantages Disadvantages

JRMI • Seamless incorporation

ofdistributed objects and

object manipulation.

• Only supports Java-Java

environment.

RPC [59, 60] • System is built-in and

siq)ported by the remote

host

• Ability to manage and manipulate

objects is very restricted.

• Calls are platform dependent.

CORBA [78-

80]

• Pre-defined interface that

provides platform-

independence.

• Ability to take advantage

ofthe CORBA resources

already in place.

• Requires a language-neutral object

model for all parties involved (in

order to handle a heterogeneous,

multi-language environment).

Java/Network

Sockets

• Protocols can be tailored

to suit application-

specific needs (speed,

memory requirement,

etc.).

• Remote calls are platform

independent.

• Requires that the client and server

engage in a pre-defined

application-level protocol.

• Requires the packaging ofand

decoding/parsing ofmessages by

clients and servers.

Architecture and Infiastructuie for a E>istributed Design Environment
A Client Perspective

27

4.2.6.4 Comparison with WELD Client/Server Infrastructure

JRMI Characteristic

Possible to access a remote object by

reference.

The Object Serialization protocol was

designed and implemented to achieve the

translation and re-construction ofobjects.

• There are no natural extension to

furthering the built-in capabilities.

The writeObj ect method serializes the

specified object and traverses its references

to other objects in the object gr^h

recursively to create a complete serialized

representation ofthe gnq)h.

Object Serialization produces just one

stream format that encodes and stores the

contained objects.

• Minimizes number ofnetwork

WELD Infrastructure Characteristic

Object referencing is not supported.

• However, dynamicreferencing is only

meaningful in a transient environment.

Remote persistent object management

has to be done by copying object.

The communication protocols allows for

querying, versioning, as well as translations

ofobjects.

• Developers can easily extend the client,

server and/or client-server protocol for

application-specific needs.

Each object is encoded into a separate

message, object relationships are

represented by an explicit connection

message/command.

Finer object granularity allows for

Aichitectuie and Infiastructuie for a Distributed Design Environment
A Client Perspective

28

operations. flexible data transfer, especially for

loading.

Users only need to import the JRMI

package, v^ch is available with the Java

API, for the objects to utilize the

functionality.

Users need to explicitly download the

package for usage.

• Users may use the database server

provided by the WELD group or

implement their own data server.

Versioning is done with respect to

new/updated object definition.

Versioning is done with respect to updated

data/field values ofexisting objects.

4.2.7 Conclusion

The Java Remote Method Invocation system serves as a useful network package for developing

distributed Java-based applications. Such applications could easily take advantage ofthe built-in

networking and communication functionality, such as object serialization, remote object method

invocation and referencing, etc. However, its language-dependence makes the JRMI an

unsuitable candidate for the communication backbone ofa distributed environment, such as

WELD, which consists ofnot only Java-based clients, but also various network entities, such as

database manager, proxies, application servers, that are developed in various programming

languages.

Architecture aad Infiastiucture for a Distributed Design Environment
A Client Perspective

29

4.3 Java-Based OCX - A CAD Data Manager

4.3.1 Objective

OCX isa data manager for VLSI/CAD applications [26]. It has been a m^or component ofthe

Berkeley CAD firamework and has been used inmany CAD applications and projects [25-33]

since the 1980s.

The development oftheJava-based OCX package marked WELD group's first attempt to gain

experience in evaluating efficient techniques and data structures for representing CAD data

formats and models and managing data ina network environment, with theuse of anobject-

oriented database backend.

There werea number of reasons whywechose to portthe OCX package as the first-cut network

data model. Structurally, theuseof generic attachments among OctObj ects to represent

object linkage/relationship translated wellinto an object-oriented model. While architecturally

simple, the OCX package could be usedto build andtraverse arbitrarily large and complex

objects, using simple mechanisms [26] such as Attach, InitGenContents and

InitGenContainers. Developed originally at UC Berkeley, OCXis a data model known

andunderstood well withinthe research (UCBerkeley CAD)group [95]. Modifying someof

the OCX-compliant legacy tools to work in a network environment with the Java-based OCX and

Javafiront-ends wasone of the considerations for futureextensions and experiments. The

resulting packagewould be a good base-objectstructure for the class assignmentsand project for

Architecture and Infirastructure fora Distributed DesignEnvironment 30
A Client Perspective

a graduate class in design technology at UC Berkeley. This translates to a solid user base for

implementation and usage testing.

4.3.2 Technical Introduction

Because ofOCX's architectural elegance and simplicity, Java-based OCXhas retained many of

original OCX's features, properties and structural representation mechanism. The basic unit in a

design is the cell. A cell is the portion ofa design that the user wishes to consider as a unit. A

cell may have many views, such as "schematic", "symbolic", **physical", "simulation", etc. Each

view has afacet named "contents" which contains the actual definition of the view and various

^plication-dependent "interface" facets. Facets, which exist beneath the level ofviews, contain

instances ofother cells, ^^ch may in turn contain instances of other cells.

Facets consist ofa collection ofobjects that are related by attaching one to another. The basic

OCX system allows OctObj ects such as bags, boxes, terminals, etc. to be arbitrarily attached

to each other. The main mechanism of traversing these relationships is by

InitGenContents (for generatingthe contents vector® ofobjects attached)and

InitGenContainers (for generating the containers vector ofobjects which the

object is attached to).

OCXimposes no restriction on the interpretation ofdata and few restrictions on the organization

' Vector isa data structure similar toa linked-list. It isprovided asa part oftheJava API.

Architecture andInfrastructure fora Distributed Design Environment 31
A Client Perspective

of OctOb j ects. It is left to the application developer to implement policies that assign

meanings to the organization and structure of data represented using OCT.

s£^ell OctCell

--- OctView —

OctFacet

POTtl ' ' Port2 Ports OctBox

fdctPoi^ ^^oinf

Figure 4-3 OCX Data Structure Example.

The figure shows an example of an GOT structure (that was used as the basic cell

of a class assignment (explained later in detail)). The ovals represent

OctOb j ects and the links represent Attachment relationships among

OctObjects.

4.3.3 Implementation Description

While we tried to retain as much of the original flavor of GOT as possible, this implementation

differs in many ways from the original GOT system. New concepts, structures and organizations

have been introduced and, at the same time, unsuitable features have been discarded.

The three main implementational differences between Java-based GCT and the original GCT

Architecture and Infrastructure for a Distributed Design Environment

A Client Perspective

1. The client/user code is written it in Java, an object-oriented programming language, as

opposed to C, which is a procedural language. Object-oriented design and organization can

and has been utilized.

2. An object-oriented database is used as a data back-end (for load, save, queries, etc.), ^diereas

the original OCX made use ofUNIX files.

3. Since the Java-based version ofOCX was designed to be able to work in both a Intemet and

LAN environment, a lot ofemphasis has been placed on protocol efficiency and

minimization of (network) transactions for network storage and retrieval.

4.3.4 Functional Description

The (Oct)object manipulation mechanisms are all supported in this Java-based implementation

and are embedded in the OctObj ect implementation which all other OctObj ects inherit.

These mechanisms include:

Attach

AttachOnce

Delete

DeleteCommit

Detach

DetachCommit

InitGenContainers

InitGenContents

DeleteCommit and DetachCommit were added to the list ofmanipulation mechanisms due

to the need to differentiatebetween local and remote object processing. Objects that exists only

dynamically on the client side or operations that need not be committed can make local calls

Architectureand Infiastructurefor a I^stributed DesignEnvironment 33
A Client Perspective

(Delete, Detach); operations \^diich require the persistent object/data server to record the

updates need to explicitly call the methods (DeleteCommit, DetachCommit) that invoke

remote calls over the network so that the respective operations can be executed by the data

server.

4.3.5 Applications

The Java-based OCXpackage was used in two assignments ofthe class Design Technologyfor

IntegratedElectronic Systems (EE 244, UC Berkeley, Fall 96) [96]. The assignments involved

the place-and-route and display ofa netlist (consisting of 10X10cells) and the subsequent use of

partitionmg algorithms to optimize the placement of the cells (see Figure 4-4). The purpose of

the assignment, in addition to introducing CAD concepts to the students, was to test and

demonstrate the usability and ease ofprogrammingofJava by regular students/engineers, as well

as the acceptable performance ofJava applets/applications in a computing-and user-interface-

intensive setting.

Architecture and Infiastructure for a Distributed DesignEnvironment 34
A Client Perspective

4«C09l-C3nD

aaAtsA-a^-A AA/'^^A^

insr^ns^m

>•• i.' CMA ^.un r.uS r.:

; vr iuvt

-x

^mTTT-L:'

' • Ih

il

•!•

•k*

1/2 r»nwwr

Bo—<»< Boa

i I 9 f « II 13 19 » »

Figure 4-4 Snapshot of one of the homework examples that used Java-based Oct as the base

object data structure.

The figure shows a Java applet that allows users to choose multiple partitioning

algorithms and visualize the placement of the cells/results. During execution,

various costs of the placement are also displayed (by the line graph and bar chart)

to the user.

4.3.6 Conclusion

The experience gained from this assignment/experiment provided a number of interesting and

encouraging insights with regards to using Java as a programming language for computing-

intensive (EDA) applications and general user interface.

Architecture and Infiastructure for a Distributed Desi^ Environment
A Client Perspective

Java programming was well-received within a group of users thatfocused on developing mainly

C applications. Thisis dueto the object-oriented nature, ease of programming forbothgeneral

programming logic and user interfacemanipulation, good abstractionofI/O and network

communication, as wellas the usehil library functions [68] and documentation providedwith the

Java Development Kit [72],

On the performance side, a significant performance penalty was observed when comparing the

Java-based s^lications (which included intensive computation and data structure manipulation)

with comparable plications developed in C/C++. However, the performance was still deemed

acceptable for full-blown applications.

The development ofJava-dedicated hardware [73] and compilers [74] promises to provide a

great performance boost to Java applets and ^plications. The performance improvement,

together with the inherent advantages ofJava as a programming language [65], and it being

Intemet-compliant (siqyportedby most Web browsers), will make Java an attractive candidate

for developing both user interface for existing EDA tools, as well as new applications.

AicUtectuie andInfiastmcture fora Distributed Design Environment 36
A Client Perspective

4.4 Web-Based Project Management Application

4.4.1 Introduction

Evolving into more thanjust a communications mediumfor staticpublishing, the Internet is

emerging as the platform for wide-area collaboration [20,35]. However, many challenges and

obstacles [44-46] factor in into the viability of such a platform. These include a rich set ofuser

applications, a "secure" transaction and storage data model, efficient communicationsprotocols

and siqiporting infrastructure applications.

The development of WebProJ, a Java-based project management application [81, 82], contributes

to a number ofthe aforementioned aspects. WebProj provides a common working environment

and helps manage the flow, collaboration and administration ofprojects, with an emphasis on

electronic design, that are performed by people over the Internet.

Architecture andInfiastiucture fora Distributed Design Environment 37
A Client Perspective

4.4.2 Functional Description

Distributed ^
ttela Mtui^emcnt n

Pdrsonnel Traddng

Scheduling System
i i

0^
✓Retrieve N.

Oata/Message

essaging ^ysiem \^orkfiow Ma^gemen^^^
Networking

V. C^bilities^

A Profile

Aclivit>-

Schedule

^ogjn/Qucry

D^a/Message

Figure 4-5 High-level functional descriptionof the different components of the WebProj
system.

Users can access the WebProj system either as a Java application or as an applet running via a

Java-enabled network browser. A registered or new user can log on to the application

environment via a Profile Window, which is analogous to an electronic time-sheet or the finger

information in a UNIX environment. After filling in the fields of the Profile window, a

Password Window will prompt the user for a password. The password is compared with the

corresponding Member object in the back-end data server. (If it is a new user, the information

will be used to create a new Member object.) After the verification process, the profile is saved

and an e-mail is sent to the administrator indicating that a login has occurred. The main window

of the application will then appear, allowing the user to create new projects (and edit them in the

Architecture and Infiastnicture for a Distributed Design Environment
A Client Perspective

form of a PERT Chart [83-85]), update existing projects, etc.. Through a Database Dialog

window, the user can access desired additional information (such as members, projects, profiles)

as allowed by his/her permissions.

nri^
.ii^4=*»nsr?0WTlir

^"iVwwvi
I*,' ^'4r»r

Figure 4-6 Snapshot of WebProj.

The figure shows the main window of WebProj, which has in display a PERT

chart that corresponds to the project as indicated by the Project Window. The

Database Browser is also shown.

4.4.2.1 Persistent Object Package Usage

In addition to it being a groupware/project management application [89], WebProj also served as

a driver and user of the features provided by the Persistent Object package.

Architecture and infisstnicture for a Distributed Design Environment

A Client Perspective

A table that pinpoints the demonstrated infrastructure capabilities is followed.

Activity Infrastructure Capability

Displayed

Loading from www-cad. eecs .berkeley. edu

(web server theseus) with data server at

yoyodyne.eecs.berkeley.edu.

• Proxy Server.

Password Verification. • Loading Objects.

• (Juery.

Saving Profile (during log in). • Saving Object.

E-mail Notification (during log in). • Messaging through e-mail.

Opening Project. • Database Browser.

• Directory Structure Traversal.

• Attachment Traversal.

4.4.3 Future Extensions

The extension ofJava client object versioning capabilitieswill enable the developmentofa

distributed software configuration management system [86,87]. This is especially important in

managing network files or data, especially those that are frequently updated ofhave versions

scattered across the net in different data servers.

Policies and visualization techniques that allow dependencies among data and members in the

environment to be easily traced and managed could be developed to enhance the wide-area

collaboration a^ect ofthis application.

Architecture and Infiastructure for a Distributed Design Environment
A Client Perspective

40

Database [61] capabilities such as indexing, storing, table look-up and queries can be used for

user profile operations. Inherent database features, such as replication, for distributed data

management can also be explored.

Scheduling functionality can be incorporated into personal profiles through integration with

other Java packages. These may include calendar and personal organizer functionality as well as

meeting proposals.

4.4.4 Summary

The development of WebProjprovided an excellent opportunity for testing, extending and

showcasing the features of the Java Persistent Object Package and Distributed Data Manager.

The design and implementation of such a groiq)ware shed light onto the needs ofengineers in a

distributed collaborative environment, areas ofuser interface, concurrent engineering and

network data access.

It also acted as a springboard to the development ofan important piece of

infrastructure/application in a Web-based design environment - The Distributed Tool Flow

Manager, presented in the following section.

Architecture andInfiastiucture fora Distributed Design Environment 41
A Client Perspective

4.5 Distributed Tool Flow Manager

4.5.1 Introduction

One ofthe visions ofa distributeddesign environment was the ability to pool together as many

tools as possible and enable any user to leverage the networked resources. There is a lot ofroom

for innovation and creativity in such an environment as users can choose best-of-breed

applications easilyand at a lowcost^.

The Distributed Tool Flow Manager is a Java-based ^plication that allows users to flexibly

choose network tools, design workflow and configure servers to meet application-specific needs.

This c^ability is ofgreat value, especially to CAD plications and processes [13-16,20,24].

At the system level, the Distributed Tool Flow Manager ties together the whole environment by

utilizing many pieces of the network infirastructure developed. These include:

• Java Client Package, Client-Server Communication Protocol, Client-Database

Communication Protocol - Enables any Java/browser client to access the network tools and

services.

• Proxy - Enables any browser client to access network resources.

• Registry Service - Provides network clients with information on the availability ofnetwork

resources.

' Userscan accesstools withoutfollowing the traditional purchase-install model.

Aichitectuie and Infrastnicture for a Distributed Design Environment 42
A Client Perspective

• Server Wrapper - Enables any new or legacy tool to connect to the WELD system by

allowing network clients to communicate with and invoke the tool.

• Data Manger - Provides network storage for client.

4.5.2 Functioaal Description

Networked tools that are encapsulated by the Server Wrapper register with the Registry Service

to inform potential users of its availability, network location and other information, such as

parameter types. When a client invokes the Distributed Tool Flow Manager, a command is sent

to the registry to query the tools that are available. The response from the registry (available

tools) is then used to dynamically configure the menu bar entries of the tool flow manager. A

user can then pick any ofthe tools (such as data processing servers, translation tools, database

entries, etc.) to be part of a flow. The tool will be represented as an object on the tool panel.

The user can then '"connect" the tools chosen and complete a flow. When the user "executes"

the flow, the tool flow manager automatically traverses the graph and configures the tools

(according to user input parameters) so that the actual network flow can be carried out and

executed by the tool flow manager or a backend workflow server. During the flow, the Tool

Flow Manager continuously queries the servers and updates the tool panel so as to allow users to

visually track progress, including intermediate results and failure information of the flow.

Architecture andInfiastructure fora IXstributed Design Environment 43
A Client Perspective

TtiolFlowaibnagcr^ HbmWmdDw

l- File €dit Tools ; {^er«ticns Help

Fina /;;Xr

, Htw State g ga^iaS^

^fKps«|s Besisn Collier ^

GmiI Sander"- - •

S^opsys Design Compiler

&State Assignment

Figure 4-7 Snapshot of the Distributed Tool Flow Manger.

The figure shows a workflow that is constructed with the help of the Distributed

Tool Flow Manager. The circles represent the tools chosen and the connections

represent data flow between them. The colors of the tools indicate the execution

status of the current workflow (e.g. red for failed, green for finished, blue for not

yet run).

Architecture and Infrastructure for a Distributed Design Environment

A Client Perspective

4.5.3 Conclusion

Many challenges and issues were encountered with the development of the tool flow manager, at

boththe server'̂ and chent side. At the cUent side, challenges included howbest to represent

and edit a workflow, using different user interface metaphors, e.g. different gr^hs, colors and

shapes. Furthermore, there were also interactivity issues as to how much, how frequent and

what kind of feedback about the (execution(s) of) workflow should be relayed back to and >^frat

kind of information to seek from the user.

The Distributed Tool Flow Manager wiU be used to demonstrate a significant CAD workflow at

the 1997 Design Automation Conference[94]. Experience from development and d^loyment,

as well as feedback gained from potential users will be used to improve the features of the

apphcation.

The focusof implementation related to this report is on the client side. Detailsof the issuesat the systems level
can be found at [97].

Architectuie andInfiastnicture fora Distributed Design Environment 45
A Client Perspective

4.6 Results and Experience

Throu^ the design and development of various infi:astructiire components andclient

^plications, we havegainedmuchknowledge and experience withregards to the needs, issues

and challenges ofbuilding a distributed environment.

These experience and insight include:

• Choice and tradeoffs amongdifferent typesofdata servers in a distributed object

environment

• Types ofapplications that best fit a distributed client-server model.

• Current and expected performanceofJava as ^plets and applications.

• Performance and different modes ofnetworked object operations.

4.6.1 Server Requirements

Currently, an object-oriented database [47-48] acts the data manager ofthe environment.

However, the underlying implementation that makes use of sockets and the transmission of

strings make the componentsflexible enoughto interface with any backend proxy or data

server, such as relational database or file server.

Architecture and Infiastructure fora Distributed Design Environment 46
A Client Perspective

The table below describes the tradeoffs ofusing different data backends:

Server Type Capability/Advantage Disadvantage

Object-

Oriented

Database

• Object characteristics and

properties can be

preserved.

• Can provide built-in

database capabilities (e.g.

query, attribute

processing).

• The whole database needs to be

recompiled/re-linked after the

manual entry ofany new

schema (object definition),

which requires database

adminifitratnr annftss

Relational

Database

• Fairly flexible in object

addition, deletion and

manipulation.

• Built-in database

cq)abilities.

• Requires mapping of object

from object-oriented structure

to a relational representation.

File Server • Minimal extra software

required.

• Complex object-mapping

techniques are required.

• An (intelligent) transaction

manager in the native

environment has to be

implemented.

While the use ofan object-oriented data backendcurrentlysuffers from slightdeficiencies such

as inflexible object additions, it was adopted due to its important ability to seamlessly preserve

object properties and thus provide object manipulation.

Architecture and Infrastructure for a Distributed DesignEnvironment
A Client Perspective

47

4.6.2 Applications

TheWELD grouphasbeeninvolved in developing various types ofnetwork applications:

• Full-blown EDA plications written in Java - SpecChartEditor[75].

• AdditionofJavauser interface to existing tools - WebSpice [76].

• Web-sizing and integration of legacy(Nova) and commercial tools (Synopsys Design

Compiler) with our server technology [77].

A summary ofthe effort required and plication capabilities of the aforementioned

development routes is listed below:

l>pe Development

Efforts

Suitable Applications Remarks

Developing/portin

g full-blown Java

applications

ffigh Stand-alone user

plications that cannot

utilize network processing.

User-interface-intensive''.

Performance hit

since Java is still

slower than C/C-H-.

Addition ofJava

front-end to

existing tools

Moderate Applications that can

leverage both flexible user

input/repnse and network

server processing.

Suitable for most

applications

Integrating with

server wrapper

Low Data

processing/computing-

intensive apphcations.

Cannot pport UI-

intensive

applications

" UI Programming withJavais easier(to do andlearn) than XtooUdt, but lesspoweriul andharderthanTck/Tk
[93].

Arciutecture and Infiastnictuie for a Distributed Design Environment
A Client Perspective

48

4.6.3 Performance

The running ofJava applets, as opposed to C/C-H- programs in a native environment, introduces

various performance issues.

Our experience and expectation oftheir current and future impacts are summarized below:

Affecting Factors Experience and Expectation

Loading ofApplet Size ofapplet

Network bandwidth

• Acceptable [75]

• Bandwidth is highly dependent on

the client and server. Will get better

in the future.

Program Execution Complexity of^let • Acceptable, but will improve upon

the introduction and optimization of

Just In Time compilers [74] and Java

chips [73] (dedicated hardware).

4.6.3.1 Data Transmission Overhead

Another performance issue is network latency caused by (frequent) network operations. This

kind ofnetwork overhead is introduced with the setting up ofconnection, opening and closing

sockets. While making use and taking advantage ofobject-oriented representation ofdata, we

needed to design and implement the policies ofhow (to what extent) objects would be saved and

retrieved.

We made the decision that during save, the complete object, including everything below it would

be saved. This mode is the most intuitive and reasonable since users need only to save the

Architecture and Infiastructure for a Distributed Design Environment
A Client Perspective

49

highest level object and can expect the necessary updates to be saved and passed over the

network, as opposed to having to explicitly state which particular object(s) to save.

As for loading object, we decided to follow the mechanism of the OCX system - a load only

retrieves an object at a single level. The user has to explicitly call initGenContents to

retrieved the data/objects that are attached to the original object This policy could reduce the

amoimt ofdata or objects (at a lower level) that is unnecessarily-transferred.

Whileobservingobject-oriented properties, this approachintroduced complexity and (object-

oriented) features that were not utilized by many legacy tools. Therefore,we implemented

DataObj ect, a Java class which provided the abstraction and mechanism that allows users to

easily save to and retrieve a string ofarbitrary length and representation from a network data

server. This mechanism allows the simple file-saving mechanism ofmany existing tools to be

preserved and reduces the integration time ofthese tools to the WELD environment.

Moreover, during stress-testingand application integration, we realized the network overhead of

saving and loading complex objects to be fairly substantial. Therefore, we have looked at

bundlingthe commands that savingand retrievinga complexobject involves to reducethe

network overhead involved.

Architecture andInfiastructure fora Distributed Design Environment 50
A Client Perspective

4 differentapproaches to handling network data transmission are describedin the 2 tables below:

Data/Object

Transfer

Mechanism

Performance

Single/Small Large

Object Set Set

Availability Example

(— socket set-iq))

Entire

Objects

Lowest Moderate Low-

Whole object

structure has to be

locked

Save

Box

Save

Point1 1 1

Connect Box Point1

Save

Point2 2 2

Connect Box Point2

Block Files Low Highest Low-

Whole file has to be

locked

Save

{Box

{Pointl(1,1)

Point2(2/2)

}

}

Separate

Network

Commands

High Low High-

Object-level locking

can be deployed

Save

Box

Save

Pointl 1 1

Connect Box Pointl

Save

Point2 2 2

Connect Box Point2

Complete

Command in

1 String

High Moderate High-

Object-level locking

can be deployed

Save

Box

Save

Pointl 1 1

Connect Box Pointl

Save

Point2 2 2

Connect Box Point2

Aichitecture and Infiastructuie for a Distributed Design Environment
A Client Perspecdve

51

The pros and cons ofeach type ofobject/data transfer mechanism is listed below:

Data/Object Transfer

Mechanism

Pros Cons

Entire Objects • User receives the whole

object with a single

load.

• Performance hit due to

unnecessarily-

transferred data.

Block Files • High network

performance ^en

transferring v^ole files.

• Does not take advantage

ofobject-oriented

properties.

• Low Availability.

• Chents need an internal

representation and a

parser for objects.

Separate Network

Commands

• Observes object-

oriented properties.

• May suffer performance

hits when transferring

complicated objects.

Complete Command in 1

String

• Gives user hi^est

flexibility.

• Complicated message

format.

• Complexity introduced

at both the client and

server end in preparing

and parsing commands.

Architecture aad Infiastiuctuie for a Distributed Design Environment
A Qient Perspective

52

4.6.4 Conclusion

Many tradeoffs exist in the choice of infrastructure (such as different kinds ofdata servers and

network requirements) and application characteristics when building distributed applications and

systems. Our experience has shown that there is not always a clear-cut favorable strategy. It is

important that the system architects have the right vision and imderstanding oftechnology in

order to choose an implementation strategy that best meets system and user c^abilities and

demands. They should also be able to evolve their thinking as system requirements and

technologies evolve.

Architecture and Infiastructure fora Distributed Design Environment 53
A Qient Perspective

5. Conclusions and Future Directions

This report has described our vision and motivationofbuilding, as well as the high-level

architecture ofa distributed design environment. Our experience and results in developing,

testing and using various applications in this environment have also been documented. While

we have taken a substantial step in realizing the goal ofdelivering a distributed design

environment, there still exists many architectural, feature and client challenges that we need to

overcome in order for the WELD system to be considered successful.

5.1 Architectural Challenges

Architecturally, it is ofparamount importance to design the system and its protocols to be

scaleable, flexible and extensible. With the increasing popularity and prevalence of Internet

applications and users, it is imperative that the system be scaleable and able to accommodate the

addition oftools and users to the system without sacrificing the performance and availability of

resources. The architecture and components should be flexible and extensible so that it is easy

for clients or external developers, in both the industry and academia, to add-value to the system

by connecting legacy tools, incorporating emerging technologies or providing custom features

for our environment, etc.

5.2 Feature and Service Provision Challenges

The development and provision ofapplications at different user levels:

Object-Level Management Package - Java Client Persistent Object Management Package

Architecture andInficastructure fora Distributed Design Environment 54
A Client Perspective

Data Manager - Java-Based OCX

Engineering Application - Distributed Tool Flow Manager

General-User Application - Web-Based Project Management Application,

to the system have enabled us to realize that these applications not only satisfy ^ecific client

needs and improve the richness of the environment, they also provide a means ofmeasuring and

evaluating the performance of the infrastructure and (network) environment, which could help

reveal potential challenges and problematic areas that needs to be addressed and improved

Furthermore, they also serve as drivers for the researchand developmentofnew and usefril

technical features ofthe system.

5.2.1 Future Development

In addition to continuouslyimprovingthe features ofthe differentpackages and infrastructurein

place, effort could be put into investigatingtraditional and innovative ways to enhance

collaboration, as well as tacklethe issues and challenges in building and deploying a distributed

environment

5.2.1.1 CoUaboratioii Over Space

Besidesencouragingand making it easy for geographically-dispersed clients to use the

environm^t and application developers and v^dors to link in their tools and services, more

workcan be done in the direction of facilitating the managem^t offlows and dependencies of

network tools, data and users throu^ the display of informationusing various visualization

techniques [98].

Architecture andInfiastructuie fora Distributed DesignEnnronment 55
A Client Perspective

5.2.1.2 Collaboration Over Time

Design is a highly collaborative and iterativeprocess which often includesrounds ofrefinements

and exploration usingdifferent (combinations oQ data, techniques and tools in searchfor the

optimal or an acceptable solution. Therefore, features v^ch enhance concurrent engineering

andversionmanagement [86-88] are ofa high valueto a designenvironment.

• Locidng and Transaction Model- Weshouldinvestigate ways ofdatasynchronization[43]

to achieve:

• Incremental update and real-time sharing ofdata.

• A transaction mechanism that ensures data consistency and facilitates collaboration.

• Fine-grained locking and access that enableparts ofa designor data to be queried

and updated.

• Balance in database availability and performance.

• Versioning - More elaborate versioning techniques, such as branching, merging, etc.

(techniques usedby many software configuration management products [86-88]),couldbe

investigatedand implementedto augmentthe current versioning features.

5.2.1.3 Distributed Environment

Whilewe have overcomemany challenges in building a distributeddesign environment, such as

a high-level architecture, remote data and process management, commimication mechanisms and

tool and user connectivity, there remains a number of system and chent areas where we can

improve tq>on.

• Interactivity - Work can be done in the area ofresearching and prototyping mechanismsfor

delivering and displaying information that are ofvalue to users, as well as finding out

situations where seeking user input or feedback may be necessary and/or useftil.

• Reliability - Ways of improving the fault tolerance, durability, availability ofnetwork

resources and handling ofnetwork errors should also be considered.

Architecture andInfiastructure fora l^stributed Design Environment 56
A Client Perspective

5.3 User and Developer Participation Challenges

The expectations and goals ofdeveloping an environment is somewhat different from regular

research and development, where success is measured by the elegance of solution to a problem,

efficiency or a protocol, features and robustness ofa piece of software, etc. The success ofa

system is measured by, in addition to the technical soundness ofthe environment and

components, the number ofusers and the benefits that are generated from using the environment,

in terms ofparameters such as improved productivity, higher plication profile, better user

education about available tools, collaboration, etc.

Through interfacing with potential users and application providers of the system, we have found

out that users/clients are generally concerned and skeptical in the areas of security and

performance (of Java and the Internet). Therefore, besides making the system scaleable, easy to

use and feature-rich, we need to make the system secure and robust, by providing fault tolerance,

data replication, encryption, access control capabilities, etc., so as to ensure data consistency and

help manage and protect intellectual property, in teims ofdesigns and data. Only will such a

secure environment gain the trust and interest of a critical mass ofusers and developers to make

the system truly rich and useful. We also need to continuously look into ways of improving the

performance of our infrastructure components through better design and making use ofadvanced

technologies. Last but not least, we need to inform users of the system and promote its ease-of-

use and benefits so that more people can use, provide feedback and input on feature extensions

for, contribute and add value to the system.

Architecture andInfiastiucture fora Distributed Desigo Environment 57
A Client Perspective

While much of the design andresearch is either done or under way, a lot of engineering and

development is left to improveand extendthe various features ofthe system. Soundand

feature-rich infrastructure, outside participation in bothusing andproviding ^)plications, and

improvement in networking and Java capabilities will determine the eventual success ofthe

WELD environment.

Architectuie andInfiastnicture fora Distributed DesignEnvironment 58
A Client Perspective

6. References

[1] D. S. Harrison, A. R. Newton, R. L. Spickelmier and T. J. Barnes, "Electronic CAD

Frameworks," Proceedings ofthe lEEE^ vol. 78, no. 2, pp. 393-417, Feb. 1990.

[2] P. van der Wolf, CADFrameworks Principles andArcitecture^ Kluwer Publishers, 1994.

[3] J. B. Brockman et al., "The Odyssey CAD Framework," DATC Newsletter on Design

Automation, Spring 1992.

[4] Network Computing System (NCS) Reference, Apollo Computer Inc., 1987.

[5] B. Johnson, "A distributed computing environment framework: an OSF perspective,"

Technical Report DEV-DCE-TP6-1, OSF, January 1992.

[6] H. Sarmento and P. R. dos Santos, "Pace - a framework for electronic design automation,"

Proceedings ofthe IFIP WG 10.2 Workshop on Electronic Design Automation

Frameworks, pp. 85-97, Nov 1990.

[7] F. R. Wagner, L. Golendziner, and M. R. Fomari, "A ti^dy coi^led ^yproach to design

and data management," European Design Automation Conference with EURO-VHDL, pp.

194-199, September 1994.

[8] W. Schetder, S. Heymann, "Towards support for design description languages in £DA

frameworks," Proceedings ofthe IEEE International Conference on Computer-Aided

Design, pp. 762-767, November 1994.

[9] S. T. Frezza, S. Levitan and P. Chrysanthis, "Requirements-based design evaluation,"

Proceedings ofthe 32^ ACM/IEEE Design Automation Conference, pp. 76-81, June 1995.

[10] E. W. Johnson and J. B. Brockman. "Incorporating design schedule management into a

flowmanagement system," Proceedings ofthe 32^ ACM/IEEE DesignAutomation

Conference, pp. 88-93, June 1995.

[11] J. Schubert, A Kunzmann and W. Rosentiel, "Reduced design time by load distribution

with CAD framework and methodology information," European Design Automation

Conference with EURO-VHDL, pp. 314-319, September 1995.

[12] A. Bredenfeld, "Cooperative concurrency control for design environment," European

Design Automation Conference with EURO-VHDL, pp. 308-313, September 1995.

Architecture and Infirastructure foraDistributed E)esign Environment 59
A Client Perspective

[13] S. fQeinfeldt, M. Guiney, J. K. Miller and M. Barnes, "Design methodology management,"

Proceedings ofthe IEEE, vol. 82, no. 2, pp. 231-250, Feb. 1994.

[14] P. R. Sutton, J. B. Brockman and S. W. Director, "Design management using dynamically

defined flows," Proceedings ofthe ACM/IEEEDesign Automation Conference, pp. 648-

653, June 1993.

[15] K. O. ten Bosch, P. Bingley and P. van der Wolf, "Design Flow Management in the

NELSIS CADFramework," Proceedings ofthe2^ ACM/IEEE DesignAutomation

Conference, pp. 711-716, June 1991.

[16] P. van den Hamer and M. A. Treffers, "A data flow based architecture for CAD

Frameworks," Proceedings ofthe 1990 IEEE International Conference on Computer-Aided

Design, pp. 482-485, Nov. 1990.

[17] J. Daniel and S. W. Director, "An object oriented approach to CAD tool control within a

design framework," Proceedings ofthe IEEE, vol.78, no. 2, pp. 1062-1081, February

1990.

[18] N. Filer, M. Brown and Z. Moosa, "Integrating CAD tools into a flramework environment

using a flexible and adaptable procedural interface," European Design Automation

Conference with EURO-VHDL, pp. 200-205, September 1994.

[19] A. Hoeven, O. Bosch, R. Leuken, and P. Wolf, "A flexible access control mechanism for

CAD fl:ameworks," European Design Automation Conference with EURO-VHDL, pp. 188-

193, September 1994.

[20] A. Khetawat, H. Lavana and F. Brglez, "Collaborative workflows: a paradigm for

distributed benchmarking and design on the Internet," Technical Report 1997-TR@CBL-

02, Collaborative Benchmarking Laboratory, North Carolina State University, February

1997.

[21] P. R. Sutton and S. W. Director, "A description language for design process management,"

Proceedings ofthe 33'"'̂ ACM/IEEE Design Automation Conference, pp. 175-180, June

1996.

[22] J. W. Hagerman and S. W. Director, "Improved tool and data selection in task

management," Proceedings ofthe 33"^ ACM/IEEE Design Automation Conference, pp.

181-184, June 1996.

Architecture andInfiastmcture fora Distributed Design Environment 60
A Client Perspective

[23] 1. Videira, P. Verissimo and H. Sarmento, "Efficient conmiimication in a design

environment," Proceedings ofthe SS"* ACM/IEEE DesignAutomation Conference, pp.

169-174, June 1996.

[24] A. Casotto, A.R. Newton and A. Sangiovanni-Vincentelli, "Design management based on

designtrace,"Proceedings ofthe 27^ACM/IEEE DesignAutomation Conference, pages

136-141, 1990.

[25] A. Casotto and T. Roessel, "Real-World Application ofRun-Time Design Tracing," EDA

Integration andInteroperability Conference, May 1994.

[26] OCTTOOLS-5.2 Reference Manual, University ofCalifornia at Berkeley, 1993.

[27] M. Silva, D. Gedye, R. H. Katz, and A. R. Newton, "Protection and versioning for Oct,"

Proceedingsofthe 26f^ ACM/IEEE Design Automation Conference, pp. 264-269, June,

1989.

[28] D. S. Harrison, P. Moore, R. L. Spickelmier and A. R. Newton, "Data management and

graphics editing in the Berkeley design environment," Proceedings ofthe IEEE ICCAD-86,

pp. 24-27,1986.

[29] J. M. Rabaey, C. Chu, P. Hoang and M. Potkonjak, "Fast Prototyping ofDatapath-

Intensive Architectures," IEEE Design and Test ofComputers, pp. 40-51, June 1991.

[30] J. T. Buck, S. Ha, E. A. Lee and D. G. Messerschmitt, "Ptolemy: A Mixed Paradigm

Simulation/PrototypingPlatform in C-H-," Proceedings ofthe C++ At Work Conference,

Santa Clara, CA, November, 1991.

[31] E. M. Sentovich, K. J. Sin^ C. Moon, H. Savoj, R. K. Brayton and A. L. Sangiovanni-

Vincentelli, "Sequential circuit design using synthesis and optimization," Proceedings

IEEE International Conference on Computer Design, pp. 328-333, October 1992.

[32] R. W. Broderson, ed.. Anatomy ofa Silicon Compiler, Kluwer Academic Publishers,

Boston, 1992.

[33] The VIS Group, "VIS: A system for verification and synthesis, "Proceedings ofthe8P

International Conference on Computer Aided Verification, p428-432,1996.

[34] M. J. Silva, "Active documentation for VLSI design," Ph.D. dissertation. University of

California, Berkeley, 1994.

Architecture and Infiastnictuie for aDistributed Design Environment 61
A Qient Perspective

[35] M. J. Silva,R. H. Katz, "Thecase for design usingthe WorldWideWeb," Proceedings of

the 32^ ACM/IEEE Design Automation Conference, pp. 579-585, June 1995.

[36] M. Weiser, "Some computerscience issues in ubiquitouscomputing," Communications of

theACM, vol. 24, no. 7, pp. 412-418, July 1981.

[37] A. Fox, S. D. Gribble,E. A. Brewer and Elan Amir, "Adaptingto network and client

variation via on-demand dynamic transcoding," Proceedings ofthe ASPLOS-VU, Boston,

October 1996.

[38] A. Fox and E. A. Brewer, "Reducing WWW latency and bandwidth requirements by real

time distillation,"Proceedings ofthe Fifth International World Wide Web Conference,

Paris, France, 1996.

[39] T. P. Ng, "Optimal data migration policies in distributed systems". Technical Report,

Department ofComputer Science, University of Illinois at Urbana-Champaign, 1991.

[40] T. von Eicken, D. E. Culler, S. C. Goldstein and K. E. Schauser, "Active messages: a

mechanism for integrated communication andcomputation," Proceedings ofthe19''

Annual Symposium on Computer Architecture, pp. 256-266, May 1992.

[41] F. Doughs and J. Ousterhout, "Transparent process migration: design alternatives and the

Sprite implementation,"SoftwarePractice andExperience, Vol. 21, No. 7, pp. 157-183,

August 1991.

[42] D. B. Lange and D. T. Chang, "Programming Mobile Agents in Java," A White Paper

Draft, IBM Corporation, September 1996.

[43] M. Stonebraker, P. Aoki, R. Devine, W. Litwin and M. Olson, "Mariposa: a new

architecturefor distributeddata,"Proceedings ofthe ICP International Conferenceon Data

Engineering, pp. 54-65, February 1994.

[44] R. Bagrodia, W. W. Chu, L. Kleinrock, and 0. Popek, "Vision, issues,and architecture for

nomadic computing," IEEE Personal Communications, December 1995.

[45] C. A. R. Hoare, The Emperor'sOld Clothes,Communications ofthe ACM, Vol. 24, No. 2,

February 1981, pp. 75-83

[46] B. W. Lampson, "Hints forcomputer system design," Proceedings ofthe9^Symposium on

Operating Systems Principles, pp. 33-48, October 1983.

Architecture and Infrastructure for aDistributed Design Environment 62
A Client Perspective

[47] Objectivity Inc., Objectivity/DB Technical Review, 1995.

[48] Objectivity Inc., Objectivity/DB Programmer's Reference, 1995.

[49] L. C. Liu and E. Horowitz, "Object database support for a software project management

environment," Proceedings ofthe 3'^ACMSymposium on Software Development

Environments, pp. 85-96, 1988

[50] H. T. Chou and W. Kim, "Versions and change notification in an object-oriented database

system," Proceedings ofthe 25"' ACM/IEEE DesignAutomation Conference, pages 275-

281, Anaheim, June 1988.

[51] J. N. Gray, R. A. Lorie, G. R. Putzolu and I. L. Traiger, "Granularity of locks and degrees

ofconsistency in a shared data base," IFIP Working Conference on Modelling ofData

Base Management Systems,pp. 1-29, 1976.

[52] C. Mohan, B. Lindsay,and R. Obermarck, "Transaction management in the R* distributed

database management system,"ACMTransactions on Database Systems, vol. 11, no. 4,

December 1986.

[53] D. C. Oppen and Y.K. Dalai, "The Clearinghouse: A decentralized agent for locating

named objects in a distributed environment," ACM Transactions on OfficeInformation

Systems, July 1983.

[54] J. H. Saltzer, "The protection of information in computer systems,"Proceeding'softhe

IEEE, vol. 63, no. 9, pp.1278-1308, September 1975.

[55] R. M. Needham and M. D. Schroeder, "Using encryption for authentication in large

networks ofcomputers," Communications ofthe ACM, Vol. 21, No. 12, pp. 993-999,

December 1978.

[56] D. E. Denning and P. J. Denning, "Data security," ComputingSurveys,vol. 11, no. 3, pp.

227-249, September 1979.

[57] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, "Authentication in distributed

systems: theoryandpractice," Proceedings ofthe 13"* ACMSymposium on Operating

Systems Principles, October 1991.

[58] D. Brown, "Techniques for privacy and authentication in personal communication

systems," IEEE Personal Communications, August 1995.

Architecture and Infiastructure for a Distributed Design Environment 63
A Client Perspective

[59] Sxin Microsystems, "RPC: remote procedure call specification," Internet NetworkWorking

Group Requestfor Comments, NIC, 1988.

[60] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy, "Lightweight remote

procedure call," ACM Transactions on Computer Systems, vol. 8, no. 1, pp. 37-55,

February 1990.

[61] C. J. Date, An Introduction to Database Systems,Fourth Edition, volume 1. Addison-

Wesley Systems Programming Series, 1986.

[62] R. P. Goldberg, "Surveyofvirtual machine research," IEEE Computer, vol. 7, no. 6, pp.

34-45, June 1974.

[63] R. Fielding, H. Frystyk, T. Bemers-Lee, "Hypertext Transfer Protocol —HTTP/1.0,"

Network Working Grotq), May 1996.

[64] R. Fielding, J. Gettys, J. Mogul,H. Frystyk, T. Bemers-Lee, "Hypertext TransferProtocol

~ HTTP/1.1," Network Working Groi^, January 1997.

[65] J. Gosling, B. Joy and G. Steele, "TheJavaLanguage Specification,"

http://www.javasoft.com:80/docs/language_specification/iQdex.html.

[66] Gamelan home page, ht^://www.gamelan.com.

[67] Java Applet Rating Servicehome page, http://www.jars.com.

[68] J. Gosling and F. YeUin, The Java Team, Java API Documentation Version 1.02,

http://www.javasoft.com:80/products/jdk/1.0.2/api/.

[69] Sun Microsystems, Inc., "Object Serialization Specification,"

http://www.javasoft.eom/products/jdk/l.l/docs/guide/serialization/q)ec/serialTOC.doc.htm

1.

[70] SunMicrosystems, Inc., "Remote Method Invocation Specification,"

http://www.javasoft.eom/products/jdk/l.1/docs/guide/rmi/spec/rmiTOC.doc.html.

[71] T. Lindholmand F. Yellin, TheJava Virtual MachineSpecification, Addison-Wesley

Publishing Company, Inc., 1997.

[72] Sun Microsystems, Inc., The Java Developers Kit Version 1.02,

http://java.sun.eom/products/jdk/l.0.2/index.html.

[73] T. R Halfhill, "Java Chips Boost Applet Speed," BYTE Magazine, April 1996.

Architecture andInfirastructure fora IXstiibuted Design Environment 64
A Client Perspective

[74] Symantec Corporation, Just In TimeCompiler Performance Analysis,

http://www.symantec.com/jit/jit_pa.html.

[75] S. Leung, SpecChart Editor, http://www-cad.eecs.berkeley.edu/~wleung/specchart.

[76] J. C. Chen, WebSpice,

http://radon.eecs.berkeley.edu/~jamesc/classes/ee244/project/project.html.

[77] WELD Group DAC 96 Demo,

http://www-cad.eecs.berkeley.edu/Respep/Research/weld/dac96/demo.html.

[78] Z. Yang andK. Duddy, "Distributed object computing withCORBA," DSTC Technical

Report 23, CRC for Distributed Systems Technology Level 7 Gehrmann Laboratories, June

1995.

[79] The Common Object Request Broker: Architecture andSpecification, OMG andX/Open,

December 1991.

[80] Object ManagementGrouphome page, ht^://www.omg.org/.

[81] F. P. Brooks, Jr., The Mythical Man-Month, 1995 Edition, Addison-Wesley Publishing

Company, 1995.

[82] Microsoft Corporation, Microsoft Project User's Reference, Microsoft Corporation, 1992.

[83] A. W. Shogan, Management Science,Prentice-Hall, 1988.

[84] P. Edwards,Systems Analysis & Design, McGraw-Hill, 1993.

[85] Q. W. Fleming, J. W. Bronn, andG.C. Humphreys, ProductandProduction Scheduling,

Probus Publishing Company, 1987.

[86] ClearCase Product Information, http://www.pureatria.com/products/clearcase/index.html.

[87] ContinuusSoftware Corporationhome page, http://www.continuus.com/.

[88] M. Cagan, "Change Management for SoftwareDevelopment," Continuus Software

Corporation, 1995.

[89] Lotus Development Corporation, "Lotus Notes: An Overview",

http://www.lotus.com/notesr4/over2d.htm.

[90] B. Reinwald, C. Mohan, "Structured Workflow Management with Lotus Notes Release 4,"

IEEE Computer Society International Conference, February 1996.

Architecture and Infrastructure for a Distributed Design Environment 65
A Client Perspective

[91] C. Mohan, G. Alonso, R, Guenthoer and M. Kamath, "Exotica:A Research Perspective on

Workflow Management Systems," Data Engineering Bulletin (Special Issue on

Infrastructurefor Business Process Management), vol. 18, no. 1, pp. 19-26, March 1995.

[92] Workflow Management Coalition home page, http://www.aiai.ed.ac.iik:80/project/wfinc/.

[93] M. D. Spiller, personal communication, March 1997.

[94] WELD Group home page, http://www-cad.eecs.berkeley.edu/weld.

[95] UC Berkeley CAD Group home page, http://www-cad.eecs.berkeley.edu/.

[96] A. R. Newton and J. Rabaey, EE 244 Fall 1996 home page,

http://www-cad.eecs.berkeley.edu/~newton/courses/.

[97] M. D. Spiller, Researchin Systems and Server Technologyfor a DistributedDesign

Environment, http://www-cad.eecs.berkeley.edu/~mds/research.

[98] M. Shilman, Research in Interactive Visualization for CAD,

http://www-cad.eecs.berkeley.edu/~michaels/research.

[99] F. Chan, WELD Group Research Materials,

http://www-cad.EECS.Berkeley.EDU/~fchan/research/index.html.

Architecture and Infiastnicture for aDistributed Design Environment 66
A Client Perspective

7. Appendices

7.1 WELD Client-Server Communication Protocol

7.2 WELD Client-Database Communication Protocol

Architecture and Infiastnicture for aDistributed Design Environment 67
A Client Perspective

WELD Client-Server Communication Protocol

Interface Syntax

(Each line is terminated by "\n\r", including one additional line after the last line given).

Called when a tool informs of the registry/data server of its availability.

• Resource Register

(Resource) Client:

REG

<DB Identifier String>
<ResourceName>

<ResourceMachineName>

<ResourcePortNumber>

Server:

<XXX> (Three digit status code)

Called when a tool informs of the registry/data server that it is no longer available.

• Resource De-Register

(Resource) Client:

DEREG

<DB Identifier String> (Is this necessary/reasonable???)
<ResourceName>

<ResourceMachineName>

<ResourcePortNumber>

Server:

<XXX> (Three digit status code)

Assumption: Tools will not stay down for an extended period of time without de-registering.

Tools can re-register, e.g. after a crash.

The triplet (name, server, port) "should" be unique.

Called when a client starts a tool flow manager and queries about the availability of network resources (for

dynamic UI (menu bar) construction) from the registry/data server.

• Query Registry

Client:

QUERYREG
<DB Identifier String>

Server:

<XXX> (Three digit status code)
<NumContents>

<ResourceName> (the triplet of each available server will be listed)
<ResourceServerName>

<ResourcePortNumber>

(*Rationale: The tool/service name, server and port are the only essential information needed for a client to
make a connection.)

Called when a client wants to execute a program at a "networked" server.

Execute:

Client:

EXECUTE

<DB Identifier String>
<ToolName>

<ParameterString>
<Data>

Server:

<XXX> (Three digit status code)
<Results^ataString>

The first-cut implementation will be to have the clients send and receive the data that is to be transmitted.
However, we will investigate different mechanisms where thedatafield canbe replaced by a "pointer" to the
data location, such as DataObject in the database, URL, etc. (for efficient data transfer).

Francis Chan. Mark D. Spiller

Last modified: April 3,1997

WELD Client-Database Communication Protocol

Interface Syntax

(Each line is terminated by "\n\r", including one additional line after the last line given).

Put:

Client:

PUT

<DB Identifier String>
<ClassName>

<ClassSpecificArguements * #ClassSpecificArguements> (each on its own line)

Server:

<XXX> (Three digit status code)
<UniqueObjectInteger (=0 if status failed)>

Modify:

Client:

MODIFY

<DB Identifier String>
<ClassName>

<UniqueObjectInteger>
<ClassSpecificArguements * #ClassSpecificArguements> (each on its own line)

Server:

<XXX> (Three digit status code)

Get by String: (Only Cells?)

Client:

GETSTR

<DB Identifier String>
<ClassName>

<Location Identifier String>

Server:

<XXX> (Three digit status code)
<ClassName>

<ClassSpecificArguements * #ClassSpecificArguements> (each on its own line)
<UniqueObjectInteger>
<Int String # of Content Objects >

<Int String # of Container Objects >

Get by Id;

Client:

GETID

<DB Identifier String>
<ClassName>

<IDString> (Integer String)

Server:

<XXX> (Three digit status code)
<ClassName>

<ClassSpecificArguements * #ClassSpecificArguements> (each on its own line)
<UniqueObjectInteger>
<Int String # of Content Objects >
<Int String # of Container Objects >

Get by Attachment:

Client:

GBTATT

<DB Identifier String>
<ClassName>

<UniqueObjectInteger>
<CONTAINER II CONTENTS>

<Int String of Attach # in list>

Server:

<XXX> (Three digit status code)
<ClassName>

<ClassSpecificArguements * #ClassSpecificArguements> (each on its own line)
<UniqueObjectInteger>
<Int String # of Content Objects >
<Int String # of Container Objects >

Get Attachment Information:

Client:

GBTATTINFO

<DB Identifier String>
<ClassName>

<UniqueObjectInteger>
<CONTAINBR II CONTBNTS>

<Int String of Attach # in list>

Server:

<XXX> (Three digit status code)
<ClassName>

<UniqueObjectInteger>

Delete by Id:

Client:

DELETE

<DB Identifier String>
<ClassName>

<IDString> (Integer String)

Server:

<XXX> (Three digit status code)

*Tentatively: All children are deleted?

Connect Two Objects by Id: (A -> B, A contains B)

Client:

CONNECT

<DB Identifier String>
<ID For A> (Integer String)
<ID For B> (Integer String)

Server:

<XXX> (Three digit status code)

Connect Two Objects, parent by Id child by info: (A -> B, A contains B, B being created)

Client:

CONNECTNEW

<DB Identifier String>
<ID For A> (Integer String)
<ClassName for B>

<ClassSpecificArguements * #ClassSpecificArguements> (each on its own line)

Server:

<XXX> (Three digit status code)
<UniqueObjectInteger (for B)>

Disconnect Two Objects by Id: (A -> B, A contains B)

Client:

DISCONNECT

<DB Identifier String>

<ID For A> (Integer String)
<ID For B> (Integer String)

Server;

<XXX> (Three digit status code)

GetRootDir

Client:

GETROOTDIR

<DB Identifier String>

Server:

<XXX> (Three digit status code)
<ClassName>

<CIassSpecificArguements * #CIassSpecificArguements> (each on its own line)
<UniqueObjectInteger>
<Int String # of Content Objects >
<Int String of "0" >

GetContext

(returns first field of each content)

Client:

GETCONTEXT

<DB Identifier String>
<ClassName>

<IDString> (Integer String)

Server:

<XXX> (Three digit status code)
<ClassNaine>

<NumContents>

<ContentClassName> (setof information transmitted foreachentity)
<Each Contents' first identifier> (each on its own line)
<Each Contents' UniqueObjectInteger> (each on its own line)

Versioning

Version strings are of theform A.B, where A&B are32bit unsigned integers.

Get Version (by Id):

Client:

GETVERID

<DB Identifier String>
<ClassName>

<IDString> (Integer String, ID of version object)
<VersionsString> (form A.B, "R", or "L")

Server:

<XXX> (Three digit status code)
<ClassName>

<ClassSpecificArguements * #ClassSpecificArguements> (each on its own line)
<UniqueObjectInteger>
<Int String # of Content Objects > (not valid/used)
<Int String # of Container Objects > (not valid/used)

Version Put:

Client:

PUTVER

<DB Identifier String>
<ClassName>

<IDString> (Integer String)
<Version Flag> ("P" for point (this single object) or "T" for tree rooted at this point. "R" appended to
create a new release (incr A))
<ClassSpecificArguements * #ClassSpecificArguements> (each on its own line)

Server:

<XXX> (Three digit status code)
<UniqueObjectInteger (=0 if status failed)>
(if Flag is P - retums id of VO, if Flag is T returns the id of the top of the copy tree (now under a VO)).

Version GetContext

(retums first field of each content)

Client:

VERGETCONTEXT

<DB Identifier String>
<ClassName>

<IDString> (Integer String)

Server:

<XXX> (Three digit status code)
<ClassName>

<NumContents>

<ContentClassName> (set of information transmitted for each entity)
<Each Contents' version string> (each on its own line)
<Each Contents' UniqueObjectInteger> (each on its own line)

QUERY

(only a simple start, much more needs to be done here...)

Client:

QUERY
<DB Identifier String> (= "global" for global search)
<ClassName>

<Query Scope> ("G" for global, "C" for class, "D" for container/db)
<Search Index Type ("F" for fieldname, "I" for integer)
<Field Name/Index Number>

<IDString> (search String)

Server:

<XXX> (Three digit status code)
<NumContents>

<Each Found Object's Class Type> (set of information transmitted for each entity)
<Bach Found Object's UniqueObjectInteger> (each on its own line)

Generators:

Generators are trackedby theclient, so that the servercan stay as stateless as possible (in termsof
connections).

Details

Multiple attachments between the same object are not allowed.
The power of preventionis in the handsof the application developer. The database will allow you to
make an object its own parent/child, as well as ^ow (potentially fatal) cycles (for now).
Connections (attachments) mustbe unique - multiple connections are currently undefined.

Francis Chan. Mark D. Spiller

Last modified: Wed Feb 12 10:43:46 PST

	Copyright notice 1998
	ERL-98-10

