Copyright © 1998, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



ARCHITECTURE AND INFRASTRUCTURE FOR
A DISTRIBUTED DESIGN ENVIRONMENT
A CLIENT PERSPECTIVE

by

Francis L. Chan

Memorandum No. UCB/ERL M98/10

17 March 1998



ARCHITECTURE AND INFRASTRUCTURE FOR
A DISTRIBUTED DESIGN ENVIRONMENT
A CLIENT PERSPECTIVE

by

Francis L. Chan

Memorandum No. UCB/ERL M98/10

17 March 1998

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



Acknowledgments

I would like to thank Professor A. Richard Newton, my research advisor, for his
invaluable support during my years at Berkeley as a graduate student. He provided
constant academic and research guidance and inspired many of the ideas presented in this
report. A great communicator and man with rich academic, industry and life experience,
Professor Newton has shared with me not only much academic and technical knowledge,
but also many lessons of life. I also have to thank him for trusting me and giving me the

freedom and flexibility in my research work.

I would like to thank Professor Jan Rabaey for being the reader of my report and giving

me much constructive feedback and encouragement.

Mark Spiller, my counterpart in the server area of the client/server sub-group, was
someone whom I worked very closely with throughout my graduate career and
contributed to many designs decisions documented in this research report. We spent
many good and bad times together, at and outside of school. I thank him for his work

and the support he has given me in many different aspects of life.

I thank Michael Shilman for introducing me to this research group and for the talks we
had in many different areas and discussions of research ideas from high-level system

architecture to the font-type of my presentations.



I also wish to acknowledge Wendell Baker, Serena Leung and Jim Young who has

helped me in many ways with my work here at Berkeley.

This work was supported in part by DARPA under contract DABT63-95-C-0074-
NEWTON-06/96 and Digital Equipment Corporation. Their support is gratefully

acknowledged.

Last but certainly not least, I thank my family and friends for supporting me and bearing
with me throughout my college and graduate career. I am deeply grateful for their

patience and love.



1. Contents

1. CONTENTS 1
2. INTRODUCTION 3
3. WELD ARCHITECTURE 5
3.1 INTRODUCTION . vereeess S
3.2 COMPARISON TO PREVIOUS WORK .......cccrereruereeneensssssnsnasesnraene 5
3.3 MOTIVATION 7
3.4 SYSTEM ARCHITECTURE 10
3.4.1 Components DeSCriplion .............eceecoinsinsucresiesnisniseenesssasesassssssssssassstssssssssasssssassasssnes 11
4. CLIENT INFRASTRUCTURE AND APPLICATIONS 15
4.1 INTRODUCTION . 15
4.2 JAVA CLIENT PERSISTENT OBJECT MANAGEMENT PACKAGE.......cccscosiesssccsssusessssesssseanansans .16
. 2.1 OBJECHIVE........o.eooeeeeeeceneeeiremreriescssisssecsesesasesissessisstssssnssssssssnessnssnesssassssssstasassssesssssesssssseoseas 16
. 2.2 INETOQUCHION. ......c..eeeeeeeeercrecascesasessnsssesssssssessssssssasessnssnsrnessessasssensesssensantassesssassssasssnsssess 16
4.2.3 PACKAZE DESCHIPHON.........c..cooeeerereeecirnrecnessiiinsiisisissssssnssssnnssiessesssessessesssssessessasssssassssesssses 17
4.2.4 Extensions in the PACRAZE ................ucueevueenuiicueinuecseerresresnnssnesasnassesssssessassossasssssstsssassnsas 21
4.2.5 Future Extensions and CONSIAETALIONS ...............uucueeeeeerrernesressesensnisiassssessssssssssesssssssasosias 23
4.2.6 Overview and Analysis of Java Remote Method InvoCation..................ecuereeveveesieseneesvecccecns 25
4.2.7 Conclusion.................ccueevcmsueervssessesssecsanesnissessenans . verenseacesientsassrtserarnees 29
4.3 JAVA-BASED OCT - A CAD DATA MANAGER 30
4.3.1 Objective....... sesresnruesnassanesansaamasaasasneesteneanneaeete s EseAESerSIaN RS RNSI AT SRS AR RS SRS R AR S e b E 80 30
4.3.2 TeChnical INtrOGUCLION ...........cueeeeeveneeecenirininiieiessisseiseesnnnsesessessassssesssssssssassessesassassassassases 31
4.3.3 Implementation DeSCriDUiON. ................oeevecvissinsiesecseisinninsenseesssesessesasensessassssssssasssessasanss 32
4.3.4 FUnctionQl DeSCIIDUON.............eeecvreveeisiresseessnsssesissnnenssisscsssisssnsssssstsssssssasessassssssssssassssnsens 33
4.3.5 ADPLICALIONS .......c..cooeeeeereercsietessisscsseccstissssessae st se s ses s st essassaesnssnassasstessssssssasssassnses 34
4.3.6 CONCIUSION............ceeeoneereenrreeeecsnsenseesstississsessssssssssssssesnssnssnsssasnsensssssassasassnssnsasnassssasas 35
4.4 WEB-BASED PROJECT MANAGEMENT APPLICATION . 37
4.4.1 INIPOAUCHION. ..........cuoneeeeneinoannnecnennnenessessssisiesssssssssesstesbestsssssssesssssnasaassesssssssssessesnsssnassssone 37
Architecture and Infrastructure for a Distributed Design Environment 1

A Client Perspective



4.4.2 Functional DESCIIDHON...............ouccucosiecineeerseereereereeeereseeseeessessessessesessessessssssssessessssssssonsons 38
4.4.3 FUIUPE EXIENSIONS.............cconeeneinrieenriecnncceeectectesieeasesssssesessesssssseessesssessessessesssossesssessesssossons 40

B 4.4 SUMMGATY ........cooueeeeeeeceeeeeereecreseeeneerseerasssesssesssesssssssssstasseenesesseseneeeseessssssasssassnssssssesnassssnns 41

4.5 DISTRIBUTED TOOL FLOW MANAGER.........cccreiierrenreenneenssessreseessesesssssesssesssssssosasessessssssss 42
3.1 INOGUCLION..............oaeoeeenneneieeeinceecceesteseeensesesessesssessesssessesssesssssessesseesssennessesnssnsens 42
4.5.2 FUnctional DESCIIDHON...................cocueeeeveieesineesseresesseinssiseneesssssssssessessssssessasessessessssessnsesenss 43
4.5.3 Conclusion eteetesteesaseeseeteiaeesatebeere e ar bt st s et e b e Rt et s s e st e et e e at e e aeaeeneeersaesaeenaaeantannan 45

4.6 RESULTS AND EXPERIENCE 46
4.6.1 Server REGUITEMENLS.................ouuceevenrinsinsincricrieseesssessessessessesssessessessssssssssssssssesssesssessessessene 46
4.6.2 ADPUICGLIONS ..........cucevueurannviiancnrrerecrenssneniseninsestssesssssssasasessessesessesessssssessssasesasassesessssensse 48
4.6.3 PEIJOVIMANCE............covenenneneeerinreeierscnirsesnsssssessssssssessssssessessssessesessesssesasssssessessesensensossns 49
G.6.4 CONCIUSION ......c..n.evnneenneennrreinrecneccsesstianscstsssessessseesessessessasssessesssesssesssssessonsassnsonsensesssennn 53

S. CONCLUSIONS AND FUTURE DIRECTIONS 54
5.1 ARCHITECTURAL CHALLENGES 54
5.2 FEATURE AND SERVICE PROVISION CHALLENGES 54
5.2.1 Future DevelOpment ..................coioviiiviisinsineenereneesssseaseisessessessessessessessesessessaessessessssessans 55

5.3 USER AND DEVELOPER PARTICIPATION CHALLENGES .57

6. REFERENCES 59
7. APPENDICES 67

7.1 WELD CLIENT/SERVER COMMUNICATION PROTOCOL
7.2 WELD CLIENT/DATABASE COMMUNICATION PROTOCOL

Architecture and Infrastructure for a Distributed Design Environment
A Client Perspective



2. Introduction

The continuing advances in computer processing power, storage and network transmission
capacity, as well as an ever-increasing amount of information and services available on the
Internet indicate that there are great potential advantages for future CAD environments [1, 2] to
leverage wide-area networks. Moreover, as design complexity continues to grow exponentially,
so do the needs for and opportunities provided by network collaboration and design

environments.

In the future, advances in computer and networking technologies will enable the rise of
ubiquitous computing [36], applications that dynamically adapt to different hardware capabilities
[37, 38], and an increase in the number of network tools and services. Moreover, emerging
technologies will enable data migration [39], agent/application migration [40-42], and network
data access[43]. In this environment, it will be imperative that distributed applications be
scaleable and extensible. In addition, the rise of such distributed design systems will require
advanced server features [44, 46, 50] like consistency, fault tolerance, security, and intelligent

resource location mechanisms.

On the client side, users of the system should be able to access and execute tools with minimal
hardware and software in place (e.g. Java-enabled network browser). Moreover, the working

environment should allow remote tool invocation according to users’ access criteria and

Architecture and Infrastructure for a Distributed Design Environment 3
A Client Perspective



permission. Flexible open frameworks could be achieved by customizable configuration of data

formats and tools from different sources.

This report documents the research work carried out in the high-level design and architecture of
a distributed design environment. It also highlights and describes different pieces of client
software infrastructure and applications that have been developed to test the technical and usage
feasibility of a network design environment. The issues and challenges involved in building
such a distributed environment will be discussed and the experience and findings with

developing, integrating and deploying the client and server infrastructure will be analyzed.

Architecture and Infrastructure for a Distributed Design Environment 4
A Client Perspective



3. WELD Architecture

3.1 Introduction

The goal of the WELD infrastructure team [97, 99] is to provide a high-level system architecture
as well as the software infrastructure that enable and facilitate a distributed design environment.
This environment should allow application developers to easily incorporate their tools into the
environment and should allow network users to access and flexibly configure the tools and

services available,

Throughout the design, implementation, and testing process, not only have we considered the
technical challenges, such as communications, connectivity, data consistency and availability,
etc., involved in building and deploying a distributed environment, we have also looked into
ways of improving the usability, data transmission efficiency and hence the overall performance

of a network-based design environment.

3.2 Comparison to Previous Work

The work of providing the architecture and infrastructure of a distributed design environment
can be compared closely to that of developing CAD frameworks, which is an area of active
research[1-6]. Our system provides many of the features that a CAD framework provides[2],

such as:

e design database — provision of a data manager and client object management package,

Architecture and Infrastructure for a Distributed Design Environment 5
A Client Perspective



o design data manager — versioning, security and meta-data' handling capabilities and

e design process manager — distributed tool flow manager.

However, our approach differs from others’ work in a number of fundamental ways. Most of
the past efforts in the area of CAD frameworks is involved in introducing new systems,
techniques or extensions in specific areas of design data management [7, 8], design meta data
management [9-12] and flow, process and tool management [13-25]. WELD, however, is
concerned with providing the connection and communication mechanisms among distributed
users, tools and services. While we are also involved in the development EDA applications [94],
our main goal is to provide the enabling and enhancing® mechanisms that leverages most, if not
all, systems and toolkits in place’. We deliberately engineered our infrastructure in a way such
that no restrictions or assumptions are placed on data representation, design methodologies or
data and tool usage. Instead, we allow application users and developers to retain their existing

methodologies and/or build on top of our infrastructure.

Past frameworks and systems were also tightly-coupled with their particular operating
environment; in many recent cases, it has been the UNIX and NFS (Network File System)
environment. Such a relationship made it difficult, if not impossibie, to extend the
frameworks/systems to an Internet environment, which consists of heterogeneous hardware
platforms and operating systems. On the other hand, WELD infrastructure is based on platform-

independent standards, such as Java on the client side, socket implementation for network

! Meta data refers to information regarding the data, e.g. version, user and permission information.
? Enhancing mechanisms include manipulation and processing of design information and tool dependency, etc.

Architecture and Infrastructure for a Distributed Design Environment 6
A Client Perspective



connectivity, and open and generic string-based communication protocols. Complete platform
independence on both the client* and server’ sides is another feature which distinguishes our

environment with other frameworks.

3.3 Motivation

Rapid technological development is taking place in the area of Internet, networking and data
proceésing technologies, such as HTTP [63, 64], Java [65], object-oriented database [47-49] and
distributed systems [44]. It is important that any design technology infrastructure take account
of, is compatible with, and leverage these technologies. The increase in complexity of the data
and process of electronic design, large and distributed teams of engineers, also provides many
needs and opportunities [23, 35] for wide-area collaboration in the design of complex electronic
systems. These trends enable and necessitate the development of a distributed design system that
is composed of cross-platform, network-enabled tools and a platform independent and

collaborative user environment.

At the system lev.el, there are many attributes and benefits that pertain to an open distributed
design environment [44-46]. The environment and infrastructure should be scaleable and
adaptive, i.e. services and performance of the system would not be sacrificed with the addition
of tools, users and different technologies. The WELD infrastructure consists of components that

are flexible and extensible so that users can easily extend existing features (on the client, server

3 New or legacy tools can be integrated into our environment by placing a server wrapper on top of it.

4 A Java-enabled web browser, such as Netscape or Internet Explorer, is all that a user needs to access the WELD
system and available resources.

Tool encapsulation mechanism is provided by a generic C++ server wrapper.

Architecture and Infrastructure for a Distributed Design Environment 7
A Client Perspective



sides and communication and network service capabilities) and that the system could easily

adapt to new, as well as legacy, tools and technologies.

The distributed environment should be platform independent and place a minimum requirement
on end-users’ hardware and software environment and capability. Anyone who has access to a
Java-enabled web browser can access the WELD system, regardless of their hardware and

software computing environment.

In addition, the system should have the ability to support a wide range of computing resources.
Server communication technology allows local computing power to be coupled with applications
and data processing of network servers. The Distributed Data Manager (explained later in
detail) enables users to store and retrieve information at a network location. These capabilities
allow the WELD environment to support of a wide range of computing platforms from high-end

workstations to mobile PDAs.

Users and developers of a distributed (design) environment should be able to leverage existing .
software, systems and toolkits. Java, network protocols and server technology enable the
encapsulation of existing tools and software resources regardless of their programming language,
operating system base and development environment (such as commercial or academia) and

allow them to be integrated into the WELD environment.

Architecture and Infrastructure for a Distributed Design Environment 8
A Client Perspective



A distributed environment should also facilitate parallel processing. Parallel processing can be
achieved implicitly and at a low cost in a web-based environment (like WELD) since operations

can be easily distributed over the network to different servers.

There are also a set of characteristics, at the user-level, that are important to a distributed design
environment. The distributed environment should be able to reach and be accessible by a large
user base. The large number of Internet users both creates needs and provides opportunities for

innovation and wide-area collaboration.

Applications and services in a distributed environment should manifest kigh availability.
Networked tools in the WELD environment provide users with on-demand access regardless of

time of request or geographical location.

Finally, a distributed design environment should provide consistent and intuitive user interfaces
and allow flexible tool configuration to help reduce engineers’ start-up and training time.
Platform independence of Java enable client applications to provide a consistent user interface
across different computing platforms. The Distributed Tool Flow Manager (explained later in
detail) allows users to custom design and configure workflow of “networked” services to meet

application-specific needs.

Architecture and Infrastructure for a Distributed Design Environment 9
A Client Perspective



3.4 System Architecture

Network

services
. APL e
Clients /gém? Gemc\

Clients

—

Figure 3-1 Weld System Architecture.

The WELD architecture is a three-tier architecture consisting of, Clients — users/programs who
access the network resources of the system, Remote Servers — tools or services that are made
available for network access and Network Services — services existing in the network that assist
various client/server activities. The mechanisms that enable these network entities to
communicate with each other are the Client-Server Communication Protocol and Client-

Database Communication Protocol.

Architecture and Infrastructure for a Distributed Design Environment 10
A Client Perspective



3.4.1 Components Description

This section provides a description and detailed explanation of the functionality of each WELD

component.

3.4.1.1 Clients

Clients are (end-user) applications that make use of WELD network infrastructure. They can be
Java Network Clients — Java client programs ran via a Java-enabled browser, such as Netscape or
Internet Explorer, which utilize the capabilities of the Java-Client Package to gain access to the
system (database and remote servers). They can also be Stand-Alone Clients — applications that
are developed in Java, C, C++ or PERL, that support network socket operations and the client

protocol(s) can also connect with tools and services in the system.

3.4.1.2 Remote Servers

Remote servers are tools that can be invoked by WELD clients across the Internet. They can be
Legacy Tool Servers — legacy (and new) tools wrapped with server wrappers can be integrated
into the distributed system and executed by network clients. They can also be Integrated Servers
— servers, developed in Java, C, C++, etc., that have built-in support for socket connections and
the client-server protocol can be seamlessly integrated into the WELD system. Integrated
network capabilities may also enable Integrated Servers to play a larger role (beyond simple

program execution and data processing) in the system.

Architecture and Infrastructure for a Distributed Design Environment 11
A Client Perspective



3.4.1.3 Network Services

Network services are components that provide features and functionality that are useful to most

applications. These include the Distributed Data Manager, Proxies and Registry Service.

3.4.1.3.1 Distributed Data Manager

A database system that manages data residing in the network, as opposed to on client machines
OT servers.
Functionality of the data manager include:

e Saving and loading of data.

e Query and search.

¢ Versioning of data/objects/programs [50].

¢ Incremental update mechanism [50].

¢ Fine-grained granularity of object/data locking [51].
e Transaction mechanism [52].

e Directory/Registry service.

e HTTP support (may be used also as a web server).

3.4.1.3.2 Proxies

In the WELD architecture, we refer to a proxy as a software program residing in the network that
acts “intelligently” and transparently as an agent[42] between clients, network servers and other
proxies.

Functionality of proxies [37] include:

¢ When co-located with Web servers, proxies extend the Netscape-Java security model and
enable Java applets/clients to communicate with available network resources.

e Caching of (frequently accessed) data.

e Automatic translation between data formats as needed for tools.

Architecture and Infrastructure for a Distributed Design Environment 12
A Client Perspective



e Data “distillation” [38] according to application needs and network links.

e Security/Access control [54-58].

e Dynamic search for servers (in case of failures).

¢ Queuing, batch processing and scheduling/locking for servers.

¢ Plug-in architecture that allows the extension of proxy capability to meet application-
specific needs.

3.4.1.3.3 Registry Service
A table (dynamic storage), which may be co-located with a data server, that maintains
information on the availability of network resources.

e Tools and services register with the system to inform the registry of their existence and

availability, as well as any restriction that is placed upon access of the resources.

o User applications can query the registry for availability and possible selection of tools.

Architecture and Infrastructure for a Distributed Design Environment 13
A Client Perspective



3.4.1.4 Client-Server Communication Protocol

The client/server communication protocol enables communication between client-server and

proxy-server. It was designed to:

e Flexibly handle server parameter type and values.
e Allow for stand-alone, as well as recursive, command structure.

e Be extensible by users and application developers.
3.4.1.5 Client-Database Communication Protocol

The client/database communication protocol enables clients/client objects to communication

with a network database system. This protocol:

o Allows client objects to be translated and mirrored in the database.
e Allows the linking of objects in a completely arbitrary manner.

e Enables clients to take advantage of built-in database capabilities, such as save, load,
query, versioning, etc.

Architecture and Infrastructure for a Distributed Design Environment 14
A Client Perspective



4. Client Infrastructure and Applications

4.1 Introduction

The success of a distributed environment hinges upon both the quality and quantity of se;vices
available as well as the number of users that can access the system. To enable a large user base,
Java [65], with its applets and applications being platform-independent, was chosen as the
language for the development of infrastructure and client applications for our distributed design

environment.

- The focus of this research is placed on client infrastructure and applications. These packages
and applications cover a wide spectrum of functionality, ranging from end-user applications to a

Java object-level management package.

A brief description of the software developed are as followed:

e Java Client Persistent Object Management Package — a software package that allows any
Java object to be mirrored in and manipulated by a remote data server.

e Java-based OCT - A CAD Data Manager — Java-based version of the OCT system [26]
that helps manage CAD data model.

e Web-based Project Management Application — an application that facilitates managing

and collaborating on projects over the Internet.

Architecture and Infrastructure for a Distributed Design Environment 15
A Client Perspective



¢ Distributed Tool Flow Manager — an application that allows clients to custom design and

configure the flow of networked servers and data processing.

4.2 Java Client Persistent Object Management Package

4.2.1 Objective

Java has evolved [66, 67] from a Internet programming language for constructing applets for
fancy display on home pages to a programming language for robust, full-blown applications.
The first wave of applets were client-side applications that were downloaded as complete
applications. With the use of Java network and socket infrastructure [68], then came a new class
of applications, such as on-line games, chat rooms and whiteboards, that provide limited
interactivity and data transaction to users. Those boundaries were once again extended as the
technology and need for persistent (Java) objects arose. To meet this demand, we have
developed a Java Client Persistent Object Management Package that utilizes a data-backend to
support persistent objects. The ability to manage objects across the network (WAN or Internet)
is of paramount importance especially in applications such as distributed electronic design [34,

35].

4.2.2 Introduction

The Java Client Persistent Object Management Package allows Java (client) objects to be
managed and manipulated by a network data server. In addition to object storage and retrieval,

it also allows capabilities that the remote data backend provides to be extended to client users.

Architecture and Infrastructure for a Distributed Design Environment 16
A Client Perspective



The Persistent Object package allows fields of objects to be stored in internal data structures.
For remote object management, these information are then extracted to compose a string
according to a client-server communication protocol which is then sent over to the data server.
The data server then translates the messages received and recreates the object at the data
backend. (Object processing in terms of connections/attachments can then take place at the
backend. These "connection"” relationships form the basis of representing object fields, such as
vectors.) The client applications can also utilize the capabilities that the data server provides,

such as querying and versioning.

The API provided for the Persistent Object package is simple and intuitive so that application
developers can easily utilize the features provided. It is also flexible and extendible so that it
could be tailored towards application-specific needs. Its scalability and ability to work in a

distributed manner make it an attractive means for networked object processing.

4.2.3 Package Description

4.2.3.1 Simple

One of the main goals of building the Persistent Object package was to provide a simple,
extendible and flexible tool to empower application developers and users to add value to a
networked environment. The overhead for using the package is minimal, and exists mainly in
object definition and instantiation. The simple API, which consists of commands such as load,

save, connect, etc., allows the complexity of the underlying operations (object persistence,

Architecture and Infrastructure for a Distributed Design Environment 17
A Client Perspective



network implementation, and workings and interactions of the base classes) to be completely

abstracted away from the user.

4.2.3.2 Flexible

The current implementation of the package stores and retrieves only the pre-designated fields of
the objects. Other fields in the object will be automatically skipped when performing network
operations. A similar mechanism has been implemented in the Object Serialization [69] portion
of the Java Remote Method Invocation [70] system provided by Sun Microsystems where
static and private fields that are declared transient will not be processed for remote

operations.

The package is flexible in handling policies® such as caching and security. While the
infrastructure is present for implementing these policies (such as a isDirty field and a dbId
field in the objects), no policy is enforced in the current implementation. Application developers

are free to use the structures provided to implement the policies that suit their specific needs.

4.2.3.3 Extensible

Due to the object-oriented nature of Java, it is very easy to extend the functionalities of the base
package. For instance, developers are free to create additional objects/methods that inherit from

PersistentObject or to simply override existing methods.

¢ Policies are rules and behaviors that make use of primitive mechanisms of a system, as defined by users or
application developers.

Architecture and Infrastructure for a Distributed Design Environment 18
A Client Perspective



The classes are organized in a functionally-modular way so that any component can be changed
if certain parameters need to be altered, such as the client-server communication protocol
(PO_CommandConstructor. java) or the network connection (PO_NetClient.java)

mechanism.

4.2.3.4 Distributed

The location where objects are to be loaded from and saved to can be changed at the individual-
object level (by calling setServer, setPort). This ability allows parallel and distributing
processing across the network.

4.2.3.5 Object Manipulation Mechanisms

The network operations and object manipulation mechanisms supported by the package include:

Command Description
save Saves a copy of the object to the data server.
versionSave Saves a new version of the object to the server.
load Loads the object with the corresponding ID.
versionLoad Loads the object with the corresponding ID and version.
deleteObj Deletes the object in the data backend

(all attached objects will also be automatically deleted).
connect Connects 2 objects in the data backend.
disconnect Disconnects the objects in the data backend (if they are attached).
initGenContents Loads the objects that are attached to the current object.

initGenContainers | Loads the objects that the current object is attached to

Architecture and Infrastructure for a Distributed Design Environment 19
A Client Perspective




4.2.3.6 Versioning

The support of versioning is of great importance, especially to applications and processes such as
electronic circuit design [1, 2] and software engineering [49]. Versioning capabilities of this
package are built on-top of the basic save/load mechanisms. They are enabled by backend
mechanisms and a version field (string) in each persistent object on the front end. The client-end

versioning capabilities, which includes, save, retrieve, browse, etc., are described below.

4.2.3.6.1 Save

Any (Persistent) object can be saved as a new version using versionSave

e Versioning a Point - If it is the first time the object is saved, a VersionObject will be
created at the data backend with the original object and new object attached to it, otherwise a
copy of the object to be saved will be attached to the already existing VersionObject in
the data backend. |

e Versioning a Tree - All and any attached objects, starting from the point of the object to be

saved will be recursively saved and attached on the backend server.

4.2.3.6.2 Retrieval

Three types of versioned-object retrieval mechanisms are provided:

1. Retrieving a specific version (e.g. version A.B)
2. Retrieving the latest release (with version flag set as "R")
3. Retrieving the latest version (with version flag set as "L")

Architecture and Infrastructure for a Distributed Design Environment 20
A Client Perspective



4.2.3.6.3 Mechanisms
Although versioning capabilities are built-in, objects that do not require versioning need not deal
with the implementation at all. The basic versioning mechanisms provided with the package

also allows more sophisticated versioning policies, that applications may need, to be built on top

of them.

4.2.4 Extensions in the Package

The core of the Persistent Object package has itself been used to implement some of the more

advanced features that were deemed important and useful to general applications.

4.2.4.1 Directory Object

In order to facilitate a directory structure in the OODB server, a special class of
PersistentObject — DirObject was implemented. In addition to the
PersistentObject functionality, DirObjects also provide special connection-related
commands such as detach and getContext.

A Database Browser (graphical user interface) (see Figure 4-6) has been implemented in Java to

allow users of the system to peruse the database and directory structure.

4.2.4.2 Query Object

QueryObject was implemented in order to provide a more flexible and effective retrieving
mechanism and take advantage of backend intelligence. Currently, the keyField (first field) of
the object can be used to perform a pattern matching retrieval. Plans have been made to expand

the protocol and package to allow:

Architecture and Infrastructure for a Distributed Design Environment 21
A Client Perspective



¢ Query object field value.
¢ Query field of object by unique id.
¢ Query field value by field value.

4.2.4.3 Version Object

VersionObject was implemented to represent a version object node in the data backend. It

acts as the point where the traversal of versioned objects is performed.

4.2.4.4 Data Object

As a basic extension of the package, DataObjects allow users to easily take advantage of a
network data server. Any files, data or objects, that can be translated to a string representation

can be saved to and retrieved from the data server with the use of this class.

Obfeff Application
e
|
{
I Version Package
: Object Object ject Extensions
e
Inherits | = N\ _--=-=a .
Key: ~
D pram— \
CC ~ Command % ,_ : .
Constructor N / CC NC \\
NC — Network Pers:'stent f BN |
Client ¢ Object \\ e
PO - Static Constants B e skt ) . PO or ,I
Ol — Object Info Mo i !
~ < . -
Helper Classes

Figure 4-2 Module-level organization of the PersistentObject Package

Architecture and Infrastructure for a Distributed Design Environment 22
A Client Perspective



4.2.5 Future Extensions and Considerations

Although the PersistentObject class is functional at the present stage, there are many
possible directions of extending its functionality and improving its robustness. Some of the

possibilities are described below.

4.2.5.1 Preprocessor of Source Class Files

Currently, use of the PersistentObject class requires the object developer to absorb an
initial code implementation cost. Such an overhead, though fairly small already, can be further
reduced by the development and incorporation of a preprocessor that parses the object files
(.java) and automatically generate and compile the code for network object management.
However, at this stage, this would be a task that provides little value-added to the research of

distributed Java object management.

4.2.5.2 Client/Server Load Distribution

With a data management backend, applications can intelligently make use of server processing
power by "shifting" some of the computation/analysis to the backend. Load balancing [11] and
distribution between a Java application front-end and server backend serves as great future

extension of this project or an independent project on its own.

4.2.5.3 Resource Location

While the package allows for retrieval of individual objects from different servers and ports, the
mechanisms for locating an object or a service by providing user-specified properties has not

been implemented. Even though resource location [53] is an important aspect of a distributed

Architecture and Infrastructure for a Distributed Design Environment 23
A Client Perspective



environment, the discussion and implementation of resource location on top of the persistent

object management package is outside the scope of this document.

4.2.5.4 Object Management Policies

The current Persistent Object package has provided many enabling mechanisms in the areas of
caching, security and versioning. Application-specific or generic policies can be implemented

using the underlying structures and mechanisms.

4.2.5.5 Security

Different methods and measures can be taken to improve the authenticity, integrity and privacy

of the data transmitted to and from the backend server.

1. Authorized access [57, 58] of objects on the backend (login/password), which is tightly-
linked to session control and efficient multi-user support.

2. Check-length/checksum of protocol message to provide greater security measures for
verifying that message received is in fact message sent.

3. Other encryption schemes [55] (e.g. digital signatures) can be added to the transmission and

receipt of message streams to ensure privacy of network session.

Architecture and Infrastructure for a Distributed Design Environment 24
A Client Perspective



4.2.6 Overview and Analysis of Java Remote Method Invocation

4.2.6.1 Introduction

The Java Remote Method Invocation (JRMI) system [70] allows distributed Java applications
that run on different network hosts to communicate with one another as if only local calls were
made. Its main feature and restriction is that the system was specifically designed to operate in
the Java environment. It assumes the homogeneous environment of the Java Virtual Machine’

[62, 71], allowing it to seamlessly follow the Java object model.

Since the JRMI system/package is a part of the Java API [68], it is very convenient for
application developers to take advantage of the networking and inter-object communication
capabilities. However, it being a complete Java client-server/peer-peer system make it an
unattractive/unusable option in a distributed system consisting of applications developed in

multiple languages.

4.2.6.2 Technical Description

4.2.6.2.1 Definition

Remote Object - an object whose methods can be invoked from another Java Virtual Machine.

This type of object has to be declared by one or more (Java) remote interfaces.

7 The Java Virtual Machine is the software implementation of a CPU designed to run compiled Java code,
including stand-alone Java applications as well as applets that are downloaded and run in Java-enabled Web
browsers.

Architecture and Infrastructure for a Distributed Design Environment 25
A Client Perspective



Remote Method Invocation - invoking a method of a remote interface on a remote object.

4.2.6.2.2 Technical Merits and Features

There are a many technical merits in using JRMI as the communication mechanism among
distributed Java objects. The reference of a remote object can be passed as an argument or
returned as a result in any method invocation, as if only a local operation was performed. The
JRMI system takes advantage of and extends the language and security features of Java, such as
security managers, class loaders and distributed garbage collection of remote objects. It also
transparently handles server replication, multiple object invocation and the loading of a class
dynamically if it is not readily available locally. The java.zrmi.Naming interface provides
URL-based methods to lookup, bind, rebind, unbind and list the name and object pairings

maintained on a particular host and port which make it convenient to access remote objects.

Architecture and Infrastructure for a Distributed Design Environment 26
A Client Perspective



4.2.6.3 Comparison with Other Object Communication Models

Model Advantages Disadvantages
JRMI Seamless incorporation Only supports Java-Java
of distributed objects and environment.
object manipulation.
RPC [59, 60] System is built-in and Ability to manage and manipulate
supported by the remote objects is very restricted.
host.
Calls are platform dependent.
CORBA [78- Pre-defined interface that Requires a language-neutral object
80] provides platform- model for all parties involved (in
independence. order to handle a heterogeneous,
Ability to take advantage multi-language environment).
of the CORBA resources
already in place.
Java/Network Protocols can be tailored Requires that the client and server
Sockets to suit application- engage in a pre-defined
specific needs (speed, application-level protocol.
memory requirement,
etc.).
Requires the packaging of and
Remote calls are platform decoding/parsing of messages by
independent. clients and servers.

Architecture and Infrastructure for a Distributed Design Eavironment

A Client Perspective

27




4.2.6.4 Comparison with WELD Client/Server Infrastructure

JRMI Characteristic

WELD Infrastructure Characteristic

Possible to access a remote object by

reference.

Object referencing is not supported.

e However, dynamic referencing is only
meaningful in a transient environment.
Remote persistent object management
has to be done by copying object.

The Object Serialization protocol was
designed and implemented to achieve the
translation and re-construction of objects.

e There are no natural extension to

furthering the built-in capabilities.

The communication protocols allows for
querying, versioning, as well as translations
of objects.

¢ Developers can easily extend the client,
server and/or client-server protocol for

application-specific needs.

The writeObject method serializes the
specified object and traverses its references
to other objects in the object graph
recursively to create a complete serialized
representation of the graph.

Object Serialization produces just one
stream format that encodes and stores the
contained objects.

e Minimizes number of network

Each object is encoded into a separate
message, object relationships are
represented by an explicit connection

message/command.

¢ Finer object granularity allows for

Architecture and Infrastructure for a Distributed Design Environment 28

A Client Perspective




operations. flexible data transfer, especially for
loading.
Users only need to import the JRMI Users need to explicitly download the

package, which is available with the Java
API, for the objects to utilize the
functionality.

package for usage.

e Users may use the database server
provided by the WELD group or

implement their own data server.

Versioning is done with respect to
new/updated object definition.

Versioning is done with respect to updated
data/field values of existing objects.

4.2.7 Conclusion

The Java Remote Method Invocation system serves as a useful network package for developing
distributed Java-based applications. Such applications could easily take advantage of the built-in

networking and communication functionality, such as object serialization, remote object method

invocation and referencing, etc. However, its language-dependence makes the JRMI an

unsuitable candidate for the communication backbone of a distributed environment, such as

WELD, which consists of not only Java-based clients, but also various network entities, such as

database manager, proxies, application servers, that are developed in various programming

languages.

Architecture and Infrastructure for a Distributed Design Environment 29

A Client Perspective




4.3 Java-Based OCT - A CAD Data Manager

4.3.1 Objective

OCT is a data manager for VLSI/CAD applications [26]. It has been a major component of the
Berkeley CAD framework and has been used in many CAD applications and projects [25-33]

since the 1980s.

The development of the Java-based OCT package marked WELD group’s first attempt to gain
experience in evaluating efficient techniques and data structures for representing CAD data
formats and models and managing data in a network environment, with the use of an object-

oriented database backend.

There were a number of reasons why we chose to port the OCT package as the first-cut network
data model. Structurally, the use of generic attachments among OctObjects to represent
object linkage/relationship translated well into an object-oriented model. While architecturally
simple, the OCT package could be used to build and traverse arbitrarily large and complex
objects, using simple mechanisms [26] such as At tach, InitGenContents and
InitGenContainers. Developed originally at UC Berkeley, OCT is a data model known
and understood well within the research (UC Berkeley CAD) group [95]. Modifying some of
the OCT-compliant legacy tools to work in a network environment with the Java-based OCT and
Java front-ends was one of the considerations for future extensions and experiments. The
resulting package would be a good base-object structure for the class assignments and project for

Architecture and Infrastructure for a Distributed Design Environment 30
A Client Perspective



a graduate class in design technology at UC Berkeley. This translates to a solid user base for

implementation and usage testing.

4.3.2 Technical Introduction

Because of OCT’s architectural elegance and simplicity, Java-based OCT has retained many of
original OCT’s features, properties and structural representation mechanism. The basic unit in a
design is the cell. A cell is the portion of a design that the user wishes to consider as a unit. A
cell may have many views, such as “schematic”, “symbolic”, “physical”, “simulation”, etc. Each
view has a facet named "contents" which contains the actual definition of the view and various
application-dependent "interface" facets. Facets, which exist beneath the level of views, contain

instances of other cells, which may in turn contain instances of other cells.

Facets consist of a collection of objects that are related by attaching one to another. The basic
OCT system allows OctObjects such as bags, boxes, terminals, etc. to be arbitrarily attached
to each other. The main mechanism of traversing these relationships is by
InitGenContents (for generating the contents vector® of objects attached) and
InitGenContainers (for generating the containers vector of objects which the

object is attached to).

OCT imposes no restriction on the interpretation of data and few restrictions on the organization

8 Vector is a data structure similar to a linked-list. It is provided as a part of the Java APL

Architecture and Infrastructure for a Distributed Design Environment 31
A Client Perspective



of OctObjects. Itis left to the application developer to implement policies that assign

meanings to the organization and structure of data represented using OCT.

OctCel -~

3 -- - OctView ---.

OctFacet -~

OctPoint’  {OctPoint

Figure 4-3 OCT Data Structure Example.

The figure shows an example of an OCT structure (that was used as the basic cell
of a class assignment (explained later in detail)). The ovals represent
OctObjects and the links represent At tachment relationships among
OctObjects.

4.3.3 Implementation Description

While we tried to retain as much of the original flavor of OCT as possible, this implementation
differs in many ways from the original OCT system. New concepts, structures and organizations
have been introduced and, at the same time, unsuitable features have been discarded.

The three main implementational differences between Java-based OCT and the original OCT

are:

Architecture and Infrastructure for a Distributed Design Environment 32
A Client Perspective



1. The client/user code is written it in Java, an object-oriented programming language, as

opposed to C, which is a procedural language. Object-oriented design and organization can
and has been utilized.

An object-oriented database is used as a data back-end (for load, save, queries, etc.), whereas
the original OCT made use of UNIX files.

Since the Java-based version of OCT was designed to be able to work in both a Internet and
LAN environment, a lot of emphasis has been placed on protocol efficiency and

minimization of (network) transactions for network storage and retrieval.

4.3.4 Functional Description

The (Oct)object manipulation mechanisms are all supported in this Java-based implementation

and are embedded in the OctObject implementation which all other OctObjects inherit.

These mechanisms include:

Attach
AttachOnce
Delete
DeleteCommit
Detach
DetachCommit
InitGenContainers

InitGenContents

DeleteCommit and DetachCommit were added to the list of manipulation mechanisms due

to the need to differentiate between local and remote object processing. Objects that exists only

dynamically on the client side or operations that need not be committed can make local calls

Architecture and Infrastructure for a Distributed Design Environment 33
A Client Perspective



(Delete, Detach); operations which require the persistent object/data server to record the
updates need to explicitly call the methods (DeleteCommit, DetachCommit) that invoke

remote calls over the network so that the respective operations can be executed by the data

server.

4.3.5 Applications

The Java-based OCT package was used in two assignments of the class Design Technology for
Integrated Electronic Systems (EE 244, UC Berkeley, Fall 96) [96]. The assignments involved
the place-and-route and display of a netlist (consisting of 10X10 cells) and the subsequent use of
partitioning algorithms to optimize the placement of the cells (see Figure 4-4). The purpose of
the assignment, in addition to introducing CAD concepts to the students, was to test and
demonstrate the usability and ease of programming of Java by regular students/engineers, as well
as the acceptable performance of Java applets/applications in a computing- and user-interface-

intensive setting.

Architecture and Infrastructure for a Distributed Design Environment 34
A Client Perspective



Max Cost =« 50000

Figure 4-4 Snapshot of one of the homework examples that used Java-based Oct as the base

object data structure.

The figure shows a Java applet that allows users to choose multiple partitioning
algorithms and visualize the placement of the cells/results. During execution,
various costs of the placement are also displayed (by the line graph and bar chart)

to the user.

4.3.6 Conclusion

The experience gained from this assignment/experiment provided a number of interesting and
encouraging insights with regards to using Java as a programming language for computing-

intensive (EDA) applications and general user interface.

Architecture and Infrastructure for a Distributed Design Environment 35
A Client Perspective



Java programming was well-received within a group of users that focused on developing mainly
C applications. This is due to the object-oriented nature, ease of programming for both general
programming logic and user interface manipulation, good abstraction of /O and network
communication, as well as the useful library functions [68] and documentation provided with the

Java Development Kit [72].

On the performance side, a significant performance penalty was observed when comparing the
Java-based applications (which included intensive computation and data structure manipulation)
with comparable applications developed in C/C++. However, the performance was still deemed

acceptable for full-blown applications.

The development of Java-dedicated hardware [73] and compilers [74] promises to provide a
great performance boost to Java applets and applications. The performance improvement,
together with the inherent advantages of Java as a programming language [65], and it being
Internet-compliant (supported by most Web browsers), will make Java an attractive candidate

for developing both user interface for existing EDA tools, as well as new applications.

Architecture and Infrastructure for a Distributed Design Environment 36
A Client Perspective



4.4 Web-Based Project Management Application

4.4.1 Introduction

Evolving into more than just a communications medium for static publishing, the Internet is

emerging as the platform for wide-area collaboration [20, 35]. However, many challenges and
obstacles [44-46] factor in into the viability of such a platform. These include a rich set of user
applications, a “secure” transaction and storage data model, efficient communications protocols

and supporting infrastructure applications.

The development of WebProj, a Java-based project management application [81, 82], contributes
to a number of the aforementioned aspects. WebProj provides a common working environment
and helps manage the flow, collaboration and administration of projects, with an emphasis on

electronic design, that are performed by people over the Internet.

Architecture and Infrastructure for a Distributed Design Environment 37
A Client Perspective



4.4.2 Functional Description

P T /1 Profile [
.7 Distributed ~~_ b }
#  Data Management ! |
» ¢ : 3 " Activity |

Personnel Tracking \

! 1 MOTD
2 : e A

{ User ) cioce Scheduling System o SISO - £S5
\ el Schedule :

i/

s Networking 7
£ Capabilities,. ~

Figure 4-5 High-level functional description of the different components of the WebProj
system.

Users can access the WebProj system either as a Java application or as an applet running via a
Java-enabled network browser. A registered or new user can log on to the application
environment via a Profile Window, which is analogous to an electronic time-sheet or the finger
information in a UNIX environment. After filling in the fields of the Profile window, a
Password Window will prompt the user for a password. The password is compared with the
corresponding Member object in the back-end data server. (If it is a new user, the information
will be used to create a new Member object.) After the verification process, the profile is saved
and an e-mail is sent to the administrator indicating that a login has occurred. The main window

of the application will then appear, allowing the user to create new projects (and edit them in the

Architecture and Infrastructure for a Distributed Design Environment 38
A Client Perspective



form of a PERT Chart [83-85]), update existing projects, etc.. Through a Database Dialog

window, the user can access desired additional information (such as members, projects, profiles)

as allowed by his/her permissions.

jl!’JE crpetabies anale

B :l}‘mlmm Srqurenen® Doc
y T AT R SRR

Figure 4-6 Snapshot of WebProj.

The figure shows the main window of WebProj, which has in display a PERT
chart that corresponds to the project as indicated by the Project Window. The

Database Browser is also shown.

4.4.2.1 Persistent Object Package Usage

In addition to it being a groupware/project management application [89], WebProj also served as

a driver and user of the features provided by the Persistent Object package.

Architecture and Infrastructure for a Distributed Design Environment 39
A Client Perspective



A table that pinpoints the demonstrated infrastructure capabilities is followed.

Activity Infrastructure Capability
Displayed

Loading from www-cad.eecs.berkeley.edu |e Proxy Server.
(web server theseus) with data server at

yoyodyne.eecs.berkeley.edu.

Password Verification. ¢ Loading Objects.
¢ Query.
Saving Profile (during log in). e Saving Object.
E-mail Notification (during log in). e Messaging through e-mail.
Opening Project. e Database Browser.

e Directory Structure Traversal.
e Attachment Traversal.

4.4.3 Future Extensions

The extension of Java client object versioning capabilities will enable the development of a
distributed software configuration management system [86, 87]. This is especially important in
managing network files or data, especially those that are frequently updated of have versions

scattered across the net in different data servers.

Policies and visualization techniques that allow dependencies among data and members in the
environment to be easily traced and managed could be developed to enhance the wide-area

collaboration aspect of this application.

Architecture and Infrastructure for a Distributed Design Environment 40
A Client Perspective



Database [61] capabilities such as indexing, storing, table look-up and queries can be used for
user profile operations. Inherent database features, such as replication, for distributed data

management can also be explored.

Scheduling functionality can be incorporated into personal profiles through integration with
other Java packages. These may include calendar and personal organizer functionality as well as

meeting proposals.

4.4.4 Summary

The development of WebProj provided an excellent opportunity for testing, extending and
showcasing the features of the Java Persistent Object Package and Distributed Data Manager.
The design and implementation of such a groupware shed light onto the needs of engineers in a
distributed collaborative environment, areas of user interface, concurrent engineering and

network data access.

It also acted as a springboard to the development of an important piece of
infrastructure/application in a Web-based design environment — The Distributed Tool Flow

Manager, presented in the following section.

Architecture and Infrastructure for a Distributed Design Environment 41
A Client Perspective



4.5 Distributed Tool Flow Manager

4.5.1 Introduction

One of the visions of a distributed design environment was the ability to pool together as many
tools as possible and enable any user to leverage the networked resources. There is a lot of room
for innovation and creativity in such an environment as users can choose best-of-breed

applications easily and at a low cost’.

The Distributed Tool Flow Manager is a Java-based application that allows users to flexibly
choose network tools, design workflow and configure servers to meet application-specific needs.

This capability is of great value, especially to CAD applications and processes [13-16, 20, 24].

At the system level, the Distributed Tool Flow Manager ties together the whole environment by

utilizing many pieces of the network infrastructure developed. These include:

e Java Client Package, Client-Server Communication Protocol, Client-Database
Communication Protocol — Enables any Java/browser client to access the network tools and
services.

e Proxy — Enables any browser client to access network resources.

e Registry Service — Provides network clients with information on the availability of network

resources.

% Users can access tools without following the traditional purchase-install model.

Architecture and Infrastructure for a Distributed Design Environment 42
A Client Perspective



e Server Wrapper — Enables any new or legacy tool to connect to the WELD system by
allowing network clients to communicate with and invoke the tool.

e Data Manger — Provides network storage for client.

4.5.2 Functional Description

Networked tools that are encapsulated by the Server Wrapper register with the Registry Service
to inform potential users of its availability, network location and other information, such as
parameter types. When a client invokes the Distributed Tool Flow Manager, a command is sent
to the registry to query the tools that are available. The response from the registry (available
tools) is then used to dynamically configure the menu bar entries of the tool flow manager. A
user can then pick any of the tools (such as data processing servers, traﬁslation tools, database
entries, etc.) to be part of a flow. The tool will be represented as an object on the tool panel.
The user can then “connect” the tools chosen and complete a flow. When the user “executes”
the flow, the tool flow manager automatically traverses the graph and configures the tools
(according to user input parameters) so that the actual network flow can be carried out and
executed by the tool flow manager or a backend workflow server. During the flow, the Tool
Flow Manager continuously queries the servers and updates the tool panel so as to allow users to

visually track progress, including intermediate results and failure information of the flow.

Architecture and Infrastructure for a Distributed Design Environment 43
A Client Perspective



@ X @ Too! Flow Manager's MamwWndow

CFile Bt Too

Erd

~
4

‘ )njait sender

\ﬂﬂopsys Design Compiler

ra State Assignment

Figure 4-7 Snapshot of the Distributed Tool Flow Manger.
The figure shows a workflow that is constructed with the help of the Distributed

Tool Flow Manager. The circles represent the tools chosen and the connections

represent data flow between them. The colors of the tools indicate the execution
status of the current workflow (e.g. red for failed, green for finished, blue for not

yet run).

Architecture and Infrastructure for a Distributed Design Environment

A Client Perspective

44



4.5.3 Conclusion

Many challenges and issues were encountered with the development of the tool flow manager, at
both the server' and client side. At the client side, challenges included how best to represent
and edit a workflow, using different user interface metaphors, e.g. different graphs, colors and
shapes. Furthermore, there were also interactivity issues as to how much, how frequent and
what kind of feedback about the (execution(s) of) workflow should be relayed back to and what

kind of information to seek from the user.

The Distributed Tool Flow Manager will be used to demonstrate a significant CAD workflow at
the 1997 Design Automation Conference[94]. Experience from development and deployment,
as well as feedback gained from potential users will be used to improve the features of the

application.

1% The focus of implementation related to this report is on the client side. Details of the issues at the systems level
can be found at [97].

Architecture and Infrastructure for a Distributed Design Environment 45
A Client Perspective



4.6 Results and Experience

Through the design and development of various infrastructure components and client
applications, we have gained much knowledge and experience with regards to the needs, issues

and challenges of building a distributed environment.

These experience and insight include:

¢ Choice and tradeoffs among different types of data servers in a distributed object
environment.

e Types of applications that best fit a distributed client-server model.

¢ Current and expected performance of Java as applets and applications.

¢ Performance and different modes of networked object operations.

4.6.1 Server Requirements

Currently, an object-oriented database [47-48] acts the data manager of the environment.
However, the underlying implementation that makes use of sockets and the transmission of
strings make the components flexible enough to interface with any backend proxy or data

server, such as relational database or file server.

Architecture and Infrastructure for a Distributed Design Environment 46
A Client Perspective



The table below describes the tradeoffs of using different data backends:

Server Type Capability/Advantage Disadvantage
Object- o Object characteristicsand |e The whole database needs to be
Oriented properties can be recompiled/re-linked after the
Database preserved. manual entry of any new
e (Can provide built-in schema (object definition),
database capabilities (e.g. which requires database
query, attribute administrator access.
processing).
Relational e Fairly flexible in object e Requires mapping of object
Database addition, deletion and from object-oriented structure
manipulation. to a relational representation.

e Built-in database
capabilities.

File Server e Minimal extra software e Complex object-mapping

’ required. techniques are required.

e An (intelligent) transaction
manager in the native
environment has to be

implemented.

While the use of an object-oriented data backend currently suffers from slight deficiencies such
as inflexible object additions, it was adopted due to its important ability to seamlessly preserve

object properties and thus provide object manipulation.

Architecture and Infrastructure for a Distributed Design Environment 47
A Client Perspective



4.6.2 Applications

The WELD group has been involved in developing various types of network applications:
¢ Full-blown EDA applications written in Java — SpecChart Editor[75].

e Addition of Java user interface to existing tools — WebSpice [76].

e Web-sizing and integration of legacy (Nova) and commercial tools (Synopsys Design

Compiler) with our server technology [77].

A summary of the effort required and application capabilities of the aforementioned

development routes is listed below:

Type Development | Suitable Applications Remarks
Efforts

Developing/portin | High Stand-alone user Performance hit
g full-blown Java applications that cannot since Java is still
applications utilize network processing. | slower than C/C++.

User-interface-intensive''.
Addition of Java | Moderate Applications that can Suitable for most
front-end to leverage both flexible user | applications
existing tools input/response and network

server processing.
Integrating with Low Data Cannot support Ul-
server wrapper processing/computing- intensive

intensive applications. applications

! UI Programming with Java is easier (to do and learn) than Xtoolkit, but less powerful and harder than Tck/Tk
[931.

Architecture and Infrastructure for a Distributed Design Environment 48
A Client Perspective



4.6.3 Performance

The running of Java applets, as opposed to C/C++ programs in a native environment, introduces
various performance issues.

Our experience and expectation of their current and future impacts are summarized below:

Affecting Factors Experience and Expectation

Loading of Applet | Size of applet e Acceptable [75]

Network bandwidth e Bandwidth is highly dependent on
the client and server. Will get better
in the future.

Program Execution | Complexity of applet | e Acceptable, but will improve upon
the introduction and optimization of
Just In Time compilers [74] and Java
chips [73] (dedicated hardware).

4.6.3.1 Data Transmission Overhead

Another performance issue is network latency caused by (frequent) network operations. This
kind of network overhead is introduced with the setting up of connection, opening and closing
sockets. While making use and taking advantage of object-oriented representation of data, we
needed to design and implement the policies of how (to what extent) objects would be saved and

retrieved.

We made the decision that during save, the complete object, including everything below it would

be saved. This mode is the most intuitive and reasonable since users need only to save the

Architecture and Infrastructure for a Distributed Design Environment 49
A Client Perspective



highest level object and can expect the necessary updates to be saved and passed over the

network, as opposed to having to explicitly state which particular object(s) to save.

As for loading object, we decided to follow the mechanism of the OCT system — a load only
retrieves an object at a single level. The user has to explicitly call initGenContents to
retrieved the data/objects that are attached to the original object. This policy could reduce the

amount of data or objects (at a lower level) that is unnecessarily-transferred.

While obse;ving object-oriented properties, this approach introduced complexity and (object-
oriented) features that were not utilized by many legacy tools. Therefore, we implemented
DataObject, a Java class which provided the abstraction and mechanism that allows users to
easily save to and retrieve a string of arbitrary length and representation from a network data
server. This mechanism allows the simple file-saving mechanism of many existing tools to be

preserved and reduces the integration time of these tools to the WELD environment.

Moreover, during stress-testing and application integration, we realized the network overhead of
saving and loading complex objects to be fairly substantial. Therefore, we have looked at
bundling the commands that saving and retrieving a complex object involves to reduce the

network overhead involved.

Architecture and Infrastructure for a Distributed Design Environment 50
A Client Perspective



4 different approaches to handling network data transmission are described in the 2 tables below:

Data/Object Performance Availability Example
Transfer
Mechanism | Single/Small Large
Object Set  Set (--- socket set-up)
Save
Entire Lowest Moderate | Low - Box
Objects Whole object save
has to be Po:.nt-:i- 11
locked Connect Box Pointl
Save
Point2 2 2
Connect Box Point2
Save
Block Files | Low Highest Low - {Box
{Pointl1(1,1)
Whole file has to be Point2(2,2)
locked .
Save
Separate High Low High - Box
Network Object-level locking | s ave"_
Commands can be deployed Poinf}_ 1
Connect Box Pointl
Save
Point2 2 2
Connect Box Point2
Complete High Moderate | High - -==
Save
Command in Object-level locking | Box
. Save
1 String can be deployed Pointl 1 1

Connect Box Pointl
Save

Point2 2 2
Connect Box Point2

Architecture and Infrastructure for a Distributed Design Environment

A Client Perspective

31




The pros and cons of each type of object/data transfer mechanism is listed below:

Data/Object Transfer Pros Cons

Mechanism

Entire Objects o User receives the whole | e Performance hit due to
object with a single unnecessarily-
load. transferred data.

Block Files ¢ High network e Does not take advantage
performance when of object-oriented
transferring whole files. properties.

¢ Low Availability.

e Clients need an internal
representation and a
parser for objects.

Separate Network o Observes object- e May suffer performance

Commands oriented properties. hits when transferring

complicated objects.

Complete Command in 1

String

e Gives user highest
flexibility.

e Complicated message
format.

e Complexity introduced
at both the client and
server end in preparing

and parsing commands.

Architecture and Infrastructure for a Distributed Design Environment

A Client Perspective

52




4.6.4 Conclusion

Many tradeoffs exist in the choice of infrastructure (such as different kinds of data servers and
network requirements) and application characteristics when building distributed applications and
systems. Our experience has shown that there is not always a clear-cut favorable strategy. It is
important that the system architects have the right vision and understanding of technology in
order to choose an implementation strategy that best meets system and user capabilities and
demands. They should also be able to evolve their thinking as system requirements and

technologies evolve.

Architecture and Infrastructure for a Distributed Design Environment 53
A Client Perspective



5. Conclusions and Future Directions

This report has described our vision and motivation of building, as well as the high-level
architecture of a distributed design environment. Our experience and results in developing,
testing and using various applications in this environment have also been documented. While
we have taken a substantial step in realizing the goal of delivering a distributed design
environment, there still exists many architectural, feature and client challenges that we need to

overcome in order for the WELD system to be considered successful.

S.1 Architectural Challenges

Architecturally, it is of paramount importance to design the system and its protocols to be
scaleable, flexible and extensible. With the increasing popularity and prevalence of Internet
applications and users, it is imperative that the system be scaleable and able to accommodate the
addition of toolé and users to the system without sacrificing the performance and availability of
resources. The architecture and components should be flexible and extensible so that it is easy
for clients or external developers, in both the industry and academia, to add-value to the system
by connecting legacy tools, incorporating emerging technologies or providing custom features

for our environment, etc.

5.2 Feature and Service Provision Challenges

The development and provision of applications at different user levels:

Object-Level Management Package — Java Client Persistent Object Management Package

Architecture and Infrastructure for a Distributed Design Environment 54
A Client Perspective



Data Manager — Java-Based OCT

Engineering Application — Distributed Tool Flow Manager

General-User Application — Web-Based Project Management Application,

to the system have enabled us to realize that these applications not only satisfy specific client
needs and improve the richness of the environment, they also provide a means of measuring and
evaluating the performance of the infrastructure and (network) environment, which could help
reveal potential challenges and problematic areas that needs to be addressed and improved.
Furthermore, they also serve as drivers for the research and development of new and useful

technical features of the system.

5.2.1 Future Development

In addition to continuously improving the features of the different packages and infrastructure in
place, effort could be put into investigating traditional and innovative ways to enhance
collaboration, as well as tackle the issues and challenges in building and deploying a distributed

environment.

5.2.1.1 Collaboration Over Space

Besides encouraging and making it easy for geographically-dispersed clients to use the
environment and application developers and vendors to link in their tools and services, more
work can be done in the direction of facilitating the management of flows and dependencies of
network tools, data and users through the display of information using various visualization

techniques [98].

Architecture and Infrastructure for a Distributed Design Environment 55
A Client Perspective



5.2.1.2 Collaboration Over Time

Design is a highly collaborative and iterative process which often includes rounds of refinements
and exploration using different (combinations of) data, techniques and tools in search for the
optimal or an acceptable solution. Therefore, features which enhance concurrent engineering
and version management [86-88] are of a high value to a design environment.

¢ Locking and Transaction Model — We should investigate ways of data synchronization[43]

to achieve:
® Incremental update and real-time sharing of data.
® A transaction mechanism that ensures data consistency and facilitates collaboration.
® Fine-grained locking and access that enable parts of a design or data to be queried
and updated.
e Balance in database availability and performance.

® Versioning — More elaborate versioning techniques, such as branching, merging, etc.
(techniques used by many software configuration management products [86-88]), could be

investigated and implemented to augment the current versioning features.

5.2.1.3 Distributed Environment

While we have overcome many challenges in building a distributed design environment, such as
a high-level architecture, remote data and process management, communication mechanisms and

tool and user connectivity, there remains a number of system and client areas where we can

improve upon.

¢ Interactivity — Work can be done in the area of researching and prototyping mechanisms for
delivering and displaying information that are of value to users, as well as finding out
situations where seeking user input or feedback may be necessary and/or useful.

¢ Reliability — Ways of improving the fault tolerance, durability, availability of network
resources and handling of network errors should also be considered.

Architecture and Infrastructure for a Distributed Design Environment 56
A Client Perspective



5.3 User and Developer Participation Challenges

The expectations and goals of developing an environment is somewhat different from regular
research and development, where success is measured by the elegance of solution to a problem,
efficiency or a protocol, features and robustness of a piece of software, etc. The success of a
system is measured by, in addition to the technical soundness of the environment and
components, the number of users and the benefits that are generated from using the environment,
in terms of parameters such as improved productivity, higher application profile, better user

education about available tools, collaboration, etc.

Through interfacing with potential users and application providers of the system, we have found
out that users/clients are generally concerned and skeptical in the areas of security and
performance (of Java and the Internet). Therefore, besides making the system scaleable, easy to
use and feature-rich, we need to make the system secure and robust, by providing fault tolerance,
data replication, encryption, access control capabilities, etc., so as to ensure data consistency and
help manage and protect intellectual property, in terms of designs and data. Only will such a
secure environment gain the trust and interest of a critical mass of users and developers to make
the system truly rich and useful. We also need to continuously look into ways of improving the
performance of our infrastructure components through better design and making use of advanced
technologies. Last but not least, we need to inform users of the system and promote its ease-of-
use and benefits so that more people can use, provide feedback and input on feature extensions

for, contribute and add value to the system.

Architecture and Infrastructure for a Distributed Design Environment 57
A Client Perspective



While much of the design and research is either done or under way, a lot of engineering and
development is left to improve and extend the various features of the system. Sound and
feature-rich infrastructure, outside participation in both using and providing applications, and
improvement in networking and Java capabilities will determine the eventual success of the

WELD environment.

Architecture and Infrastructure for a Distributed Design Environment 58
A Client Perspective



[1]

[2]
[3]

[4]

[5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

References

D. S. Harrison, A. R. Newton, R. L. Spickelmier and T. J. Barnes, "Electronic CAD
Frameworks," Proceedings of the IEEE, vol. 78, no. 2, pp. 393-417, Feb. 1990.

P. van der Wolf, CAD Frameworks Principles and Arcitecture, Kluwer Publishers, 1994.
J. B. Brockman et al., "The Odyssey CAD Framework," DATC Newsletter on Design
Automation, Spring 1992.

Network Computing System (NCS) Reference, Apollo Computer Inc., 1987.

B. Johnson, "A distributed computing environment framework: an OSF perspective,"
Technical Report DEV-DCE-TP6-1, OSF, January 1992.

H. Sarmento and P. R. dos Santos, "Pace - a framework for electronic design automation,"
Proceedings of the IFIP WG 10.2 Workshop on Electronic Design Automation
Frameworks, pp. 85-97, Nov 1990.

F. R. Wagner, L. Golendziner, and M. R. Fornari, "A tightly coupled approach to design
and data management," European Design Automation Conference with EURO-VHDL, pp.
194-199, September 1994.

W. Schettler, S. Heymann, "Towards support for design description languages in EDA
frameworks," Proceedings of the IEEE International Conference on Computer-Aided
Design, pp. 762-767, November 1994.

S. T. Frezza, S. Levitan and P. Chrysanthis, "Requirements-based design evaluation,"
Proceedings of the 32 ACM/IEEE Design Automation Conference, pp. 76-81, June 1995.
E. W. Johnson and J. B. Brockman. "Incorporating design schedule management into a
flow management system," Proceedings of the 32 ACM/IEEE Design Automation
Conference, pp. 88-93, June 1995.

J. Schubert, A Kunzmann and W. Rosentiel, "Reduced design time by load distribution
with CAD framework and methodology information," European Design Automation
Conference with EURO-VHDL, pp. 314-319, September 1995.

A. Bredenfeld, "Cooperative concurrency control for design environment," European
Design Automation Conference with EURO-VHDL, pp. 308-313, September 1995.

Aschitecture and Infrastructure for a Distributed Design Environment 59
A Client Perspective



[13]

[14]

[13]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

S. Kleinfeldt, M. Guiney, J. K. Miller and M. Barnes, "Design methodology management,"
Proceedings of the IEEE, vol. 82, no. 2, pp. 231-250, Feb. 1994.

P. R. Sutton, J. B. Brockman and S. W. Director, "Design management using dynamically
defined flows," Proceedings of the ACM/IEEE Design Automation Conference, pp. 648-
653, June 1993.

K. O. ten Bosch, P. Bingley and P. van der Wolf, "Design Flow Management in the
NELSIS CAD Framework," Proceedings of the 28" ACM/IEEE Design Automation
Conference, pp. 711-716, June 1991.

P. van den Hamer and M. A. Treffers, "A data flow based architecture for CAD
Frameworks," Proceedings of the 1990 IEEE International Conference on Computer-Aided
Design, pp. 482-485, Nov. 1990.

J. Daniel and S. W. Director, "An object oriented approach to CAD tool control within a
design framework," Proceedings of the IEEE, vol.78, no. 2, pp. 1062-1081, February
1990.

N. Filer, M. Brown and Z. Moosa, "Integrating CAD tools into a framework environment
using a flexible and adaptable procedural interface," European Design Automation
Conference with EURO-VHDL, pp. 200-205, September 1994.

A. Hoeven, O. Bosch, R. Leuken, and P. Wolf, "A flexible access control mechanism for
CAD frameworks," European Design Automation Conference with EURO-VHDL, pp. 188-
193, September 1994.

A. Khetawat, H. Lavana and F. Brglez, "Collaborative workflows: a paradigm for
distributed benchmarking and design on the Internet," Technical Report 1997-TR@CBL-
02, Collaborative Benchmarking Laboratory, North Carolina State University, February
1997.

P. R. Sutton and S. W. Director, "A description language for design process management,"
Proceedings of the 33" ACM/IEEE Design Automation Conference, pp. 175-180, June
1996.

J. W. Hagerman and S. W. Director, "Improved tool and data selection in task
management,” Proceedings of the 33° ACM/IEEE Design Automation Conference, pp.
181-184, June 1996.

Architecture and Infrastructure for a Distributed Design Environment 60
A Client Perspective



[23] I Videira, P. Verissimo and H. Sarmento, "Efficient communication in a design
environment," Proceedings of the 33 ACM/IEEE Design Automation Conference, pp.
169-174, June 1996.

[24] A. Casotto, A.R. Newton and A. Sangiovanni-Vincentelli, "Design management based on
design trace," Proceedings of the 27" ACM/IEEE Design Automation Conference, pages
136-141, 1990.

[25] A. Casotto and T. Roessel, "Real-World Application of Run-Time Design Tracing," EDA
Integration and Interoperability Conference, May 1994.

[26] OCTTOOLS-5.2 Reference Manual, University of California at Berkeley, 1993.

[27] M. Silva, D. Gedye, R. H. Katz, and A. R. Newton, "Protection and versioning for Oct,"
Proceedings of the 26" ACM/IEEE Design Automation Conference, pp. 264-269, June,
1989.

[28] D. S. Harrison, P. Moore, R. L. Spickelmier and A. R. Newton, "Data management and
graphics editing in the Berkeley design environment," Proceedings of the IEEE ICCAD-86,
pp. 24-27, 1986.

[29] J. M. Rabaey, C. Chu, P. Hoang and M. Potkonjak, "Fast Prototyping of Datapath-
Intensive Architectures," IEEE Design and Test of Computers, pp. 40-51, June 1991.

[30] J. T.Buck, S. Ha, E. A. Lee and D. G. Messerschmitt, "Ptolemy: A Mixed Paradigm
Simulation/Prototyping Platform in C++," Proceedings of the C++ At Work Conference,
Santa Clara, CA, November, 1991.

[31] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton and A. L. Sangiovanni-
Vincentelli, "Sequential circuit design using synthesis and optimization," Proceedings
IEEE International Conference on Computer Design, pp. 328-333, October 1992.

[32] R. W. Broderson, ed., Anatomy of a Silicon Compiler, Kluwer Academic Publishers,
Boston, 1992.

[33] The VIS Group, "VIS: A system for verification and synthesis, ” Proceedings of the 8*
International Conference on Computer Aided Verification, p428-432, 1996.

[34] M. J. Silva, "Active documentation for VLSI design," Ph.D. dissertation, University of
California, Berkeley, 1994.

Architecture and Infrastructure for a Distributed Design Environment 61
A Client Perspective



[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

M. J. Silva, R. H. Katz, "The case for design using the World Wide Web," Proceedings of
the 32 ACM/IEEE Design Automation Conference, pp. 579-585, June 1995.

M. Weiser, "Some computer science issues in ubiquitous computing," Communications of
the ACM, vol. 24, no. 7, pp. 412-418, July 1981.

A. Fox, S. D. Gribble, E. A. Brewer and Elan Amir, "Adapting to network and client
variation via on-demand dynamic transcoding," Proceedings of the ASPLOS-VII, Boston,
October 1996.

A. Fox and E. A. Brewer, "Reducing WWW latency and bandwidth requirements by real-
time distillation," Proceedings of the Fifth International World Wide Web Conference,
Paris, France, 1996.

T. P. Ng, "Optimal data migration policies in distributed systems", Technical Report,
Department of Computer Science, University of Illinois at Urbana-Champaign, 1991.

T. von Eicken, D. E. Culler, S. C. Goldstein and K. E. Schauser, "Active messages: a
mechanism for integrated communication and computation,” Proceedings of the 19"
Annual Symposium on Computer Architecture, pp. 256-266, May 1992.

F. Douglis and J. Ousterhout, "Transparent process migration: design alternatives and the
Sprite implementation,” Software Practice and Experience, Vol. 21, No. 7, pp. 157-183,
August 1991.

D. B. Lange and D. T. Chang, "Programming Mobile Agents in Java," A White Paper
Draft, IBM Corporation, September 1996.

M. Stonebraker, P. Aoki, R. Devine, W. Litwin and M. Olson, "Mariposa: a new
architecture for distributed data,” Proceedings of the 10" International Conference on Data
Engineering, pp. 54-65, February 1994.

R. Bagrodia, W. W. Chu, L. Kleinrock, and G. Popek, "Vision, issues, and architecture for
nomadic computing," IEEE Personal Communications, December 1995.

C. A. R. Hoare, The Emperor’s Old Clothes, Communications of the ACM, Vol. 24, No. 2,

February 1981, pp. 75-83

[46] B. W.Lampson, "Hints for computer system design,” Proceedings of the 9" Symposium on

Operating Systems Principles, pp. 33-48, October 1983.

Architecture and Infrastructure for a Distributed Design Environment 62
A Client Perspective



[47] Objectivity Inc., Objectivity/DB Technical Review, 1995.

[48] Objectivity Inc., Objectivity/DB Programmer's Reference, 1995.

[49] L. C. Liu and E. Horowitz, "Object database support for a software project management
environment,” Proceedings of the 3 ACM Symposium on Software Development
Environments, pp. 85-96, 1988

[50] H. T. Chou and W. Kim, "Versions and change notification in an object-oriented database
system," Proceedings of the 25" ACM/IEEE Design Automation Conference, pages 275-
281, Anaheim, June 1988.

[51] J. N. Gray, R. A. Lorie, G. R. Putzolu and I. L. Traiger, "Granularity of locks and degrees
of consistency in a shared data base," IFIP Working Conference on Modelling of Data
Base Management Systems, pp. 1-29, 1976.

[52] C. Mohan, B. Lindsay,and R. Obermarck, "Transaction management in the R* distributed
database management system,” ACM Transactions on Database Systems, vol. 11, no. 4,
December 1986.

[53] D. C. Oppen and Y K. Dalal, "The Clearinghouse: A decentralized agent for locating
named objects in a distributed environment," ACM Transactions on Office Information
Systems, July 1983.

[54] J. H. Saltzer, "The protection of information in computer systems," Proceedings of the
IEEE, vol. 63, no. 9, pp.1278-1308, September 1975.

[55] R. M. Needham and M. D. Schroeder, "Using encryption for authentication in large
networks of computers,” Communications of the ACM, Vol. 21, No. 12, pp. 993-999,
December 1978.

[56]) D.E.Denning and P. J. Denning, "Data security," Computing Surveys, vol. 11, no. 3, pp.
227-249, September 1979.

[57] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, "Authentication in distributed
systems: theory and practice,” Proceedings of the 13" ACM Symposium on Operating
Systems Principles, October 1991.

[58] D. Brown, "Techniques for privacy and authentication in personal communication
systems," IEEE Personal Communications, August 1995.

Architecture and Infrastructure for a Distributed Design Environment 63
A Client Perspective



[59] Sun Microsystems, "RPC: remote procedure call specification," Internet Network Working
Group Request for Comments, NIC, 1988.

[60] B.N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy, "Lightweight remote
procedure call," ACM Transactions on Computer Systems, vol. 8, no. 1, pp. 37-55,
February 1990.

[61] C.J. Date, An Introduction to Database Systems, Fourth Edition, volume I. Addison-
Wesley Systems Programming Series, 1986.

[62] R.P. Goldberg, "Survey of virtual machine research,” IEEE Computer, vol. 7, no. 6, pp.
34-45, June 1974.

[63] R. Fielding, H. Frystyk, T. Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.0,"
Network Working Group, May 1996.

[64] R.Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-Lee, "Hypertext Transfer Protocol
-- HTTP/1.1," Network Working Group, January 1997.

[65] J. Gosling, B. Joy and G. Steele, "The Java Language Specification,"
http://www javasoft.com:80/docs/language specification/index.html.

[66] Gamelan home page, http://www.gamelan.com.

[67] Java Applet Rating Service home page, http://www.jars.com.

[68] J. Gosling and F. Yellin, The Java Team, Java API Documentation Version 1.02,
http://www.javasoft.com:80/products/jdk/1.0.2/api/.

[69] Sun Microsystems, Inc., "Object Serialization Specification,"
http://www.javasoft.com/products/jdk/1.1/docs/guide/serialization/spec/serial TOC.doc.htm
L

[70] Sun Microsystems, Inc., "Remote Method Invocation Specification,"
http://www.javasoft.com/products/jdk/1.1/docs/guide/rmi/spec/rmiTOC.doc.html.

[71] T.Lindholm and F. Yellin, The Java Virtual Machine Specification, Addison-Wesley
Publishing Company, Inc., 1997.

[72] Sun Microsystems, Inc., The Java Developers Kit Version 1.02,
http://java.sun.com/products/jdk/1.0.2/index.html.

[73] T.R. Halfhill, "Java Chips Boost Applet Speed," BYTE Magazine, April 1996.

Architecture and Infrastructure for a Distributed Design Environment 64
A Client Perspective



[74] Symantec Corporation, Just In Time Compiler Performance Analysis,
http://www.symantec.com/jit/jit_pa.html.

[75] S.Leung, SpecChart Editor, http://www-cad.eecs.berkeley.eduw/~wleung/specchart.

[76] J.C. Chen, WebSpice,
http://radon.eecs.berkeley.edu/~jamesc/classes/ee244/project/project.html.

[771 WELD Group DAC 96 Demo,
http://www-cad.eecs.berkeley.edu/Respep/Research/weld/dac96/demo.html.

[78] Z. Yang and K. Duddy, "Distributed object computing with CORBA," DSTC Technical
Report 23, CRC for Distributed Systems Technology Level 7 Gehrmann Laboratories, June
1995.

[79] The Common Object Request Broker: Architecture and Specification, OMG and X/Open,
December 1991.

[80] Object Management Group home page, http://www.omg.org/.

[81] F.P.Brooks, Jr., The Mythical Man-Month, 1995 Edition, Addison-Wesley Publishing
Company, 1995.

[82] Microsoft Corporation, Microsoft Project User's Reference, Microsoft Corporation, 1992.

[83] A. W. Shogan, Management Science, Prentice-Hall, 1988.

[84]) P. Edwards, Systems Analysis & Design, McGraw-Hill, 1993.

[85] Q. W. Fleming, J. W. Bronn, and G. C. Humphreys, Product and Production Scheduling,
Probus Publishing Company, 1987.

[86] ClearCase Product Information, http://www.pureatria.com/products/clearcase/index.html.

[87] Continuus Software Corporation home page, http://www.continuus.com/.

[88] M. Cagan, "Change Management for Software Development," Continuus Software
Corporation, 1995.

[89] Lotus Development Corporation, "Lotus Notes: An Overview",
http://www.lotus.com/notesr4/over2d.htm.

[90] B. Reinwald, C. Mohan, "Structured Workflow Management with Lotus Notes Release 4,"
IEEE Computer Society International Conference, February 1996.

Architecture and Infrastructure for a Distributed Design Environment 65
A Client Perspective



[91] C. Mohan, G. Alonso, R, Guenthoer and M. Kamath, "Exotica: A Research Perspective on
Workflow Management Systems," Data Engineering Bulletin (Special Issue on
Infrastructure for Business Process Management), vol. 18, no. 1, pp. 19-26, March 1995.

[92] Workflow Management Coalition home page, http://www.aiai.ed.ac.uk:80/project/wfmc/.

[93] M. D. Spiller, personal communication, March 1997.

[94] WELD Group home page, http://www-cad.eecs.berkeley.edu/weld.

[95] UC Berkeley CAD Group home page, http://www-cad.eecs.berkeley.edw/.

[96] A.R. Newton and J. Rabaey, EE 244 Fall 1996 home page,
http://www-cad.eecs.berkeley.edu/~newton/courses/.

[97] M. D. Spiller, Research in Systems and Server Technology for a Distributed Design
Environment, http://www-cad.eecs.berkeley.edu/~mds/research.

[98] M. Shilman, Research in Interactive Visualization for CAD,
http://www-cad.eecs.berkeley.edu/~michaels/research.

[99] F.Chan, WELD Group Research Materials,
http://www-cad. EECS.Berkeley. EDU/~fchan/research/index.html.

Architecture and Infrastructure for a Distributed Design Environment 66
A Client Perspective



7. Appendices
7.1 WELD Client-Server Communication Protocol

7.2 WELD Client-Database Communication Protocol

Architecture and Infrastructure for a Distributed Design Environment
A Client Perspective

67



WELD C(lient-Server Communication Protocol

Interface Syntax

(Each line is terminated by "\n\r", including one additional line after the last line given).
Called when a tool informs of the registry/data server of its availability.

* Resource Register
(Resource) Client:

REG

<DB Identifier String>
<ResourceName>
<ResourceMachineName>
<ResourcePortNumber>

Server:

<XXX> (Three digit status code)

Called when a tool informs of the registry/data server that it is no longer available.

¢ Resource De-Register
(Resource) Client:

DEREG

<DB Identifier String> (Is this necessary/reasonable???)
<ResourceName>

<ResourceMachineName>

<ResourcePortNumber>

Server:

<XXX> (Three digit status code)
Assumption: Tools will not stay down for an extended period of time without de-registering.
Tools can re-register, e.g. after a crash.

The triplet (name, server, port) "should” be unique.

Called when a client starts a tool flow manager and queries about the availability of network resources (for



dynamic UI (menu bar) construction) from the registry/data server.

* Query Registry
Client:

QUERYREG
<DB Identifier String>

Server:

<XXX> (Three digit status code)

<NumContents>

<ResourceName> (the triplet of each available server will be listed)
<ResourceServerName>

<ResourcePortNumber>

(*Rationale: The tool/service name, server and port are the only essential information needed for a client to

make a connection.)

Called when a client wants to execute a program at a "networked" server.

Execute:
Client:

EXECUTE

<DB Identifier String>
<ToolName>
<ParameterString>
<Data>

Server:

<XXX> (Three digit status code)
<Results/DataString>

The first-cut implementation will be to have the clients send and receive the data that is to be transmitted.
However, we will investigate different mechanisms where the data field can be replaced by a "pointer” to the

data location, such as DataObject in the database, URL, etc. (for efficient data transfer).

Francis Chan, Mark D. Spiller

Last modified: April 3, 1997



WELD Client-Database Communication Protocol

Interface Syntax

(Each line is terminated by "\n\r", including one additional line after the last line given).
Put:
Client:

PUT

<DB Identifier String>

<ClassName>

<ClassSpecificArguements * #ClassSpecificArguements> (each on its own line)

Server:

<XXX> (Three digit status code)
<UniqueObjectInteger (=0 if status failed)>

Modify:
Client:

MODIFY

<DB Identifier String>

<ClassName>

<UniqueObjectinteger>

<ClassSpecificArguements * #ClassSpecificArguements> (each on its own line)

Server:

<XXX> (Three digit status code)
Get by String: (Only Cells?)
Client:

GETSTR

<DB Identifier String>
<ClassName>

<Location Identifier String>

Server:

<XXX> (Three digit status code)

<ClassName>

<ClassSpecificArguements * #ClassSpecificArguements> (each on its own line)
<UniqueObjectInteger>

<Int String # of Content Objects >



<Int String # of Container Objects >

Get by Id:
Client:

GETID

<DB Identifier String>
<ClassName>

<IDString> (Integer String)

Server:

<XXX> (Three digit status code)

<ClassName>

<ClassSpecificArguements * #ClassSpecificArguements> (each on its own line)
<UniqueObjectInteger>

<Int String # of Content Objects >

<Int String # of Container Objects >

Get by Attachment:
Client:

GETATT

<DB Identifier String>
<ClassName>
<UniqueObjectInteger>
<CONTAINER || CONTENTS>
<Int String of Attach # in list>

Server:

<XXX> (Three digit status code)

<ClassName>

<ClassSpecificArguements * #ClassSpecificArguements> (each on its own line)
<UniqueObjectInteger>

<Int String # of Content Objects >

<Int String # of Container Objects >

Get Attachment Information:

Client:

GETATTINFO

<DB Identifier String>
<ClassName>
<UniqueObjectinteger>
<CONTAINER || CONTENTS>
<Int String of Attach # in list>

Server:



<XXX> (Three digit status code)
<ClassName>
<UniqueObjectinteger>

Delete by Id:
Client:

DELETE

<DB Identifier String>
<ClassName>

- <IDString> (Integer String)

Server:

<XXX> (Three digit status code)
*Tentatively: All children are deleted?

Connect Two Objects by Id: (A -> B, A contains B)

Client:

CONNECT

<DB Identifier String>

<ID For A> (Integer String)
<ID For B> (Integer String)

Server:

<XXX> (Three digit status code)

Connect Two Objects, parent by Id child by info: (A -> B, A contains B, B being created)

Client:

CONNECTNEW

<DB Identifier String>

<ID For A> (Integer String)

<ClassName for B>

<ClassSpecificArguements * #ClassSpecificArguements> (each on its own line)

Server:

<XXX> (Three digit status code)
<UniqueObjectInteger (for B)>

Disconnect Two Objects by Id: (A -> B, A contains B)
Client:

DISCONNECT
<DB Identifier String>



<ID For A> (Integer String)
<ID For B> (Integer String)

Server:

<XXX> (Three digit status code)

GetRootDir

Client:

GETROOTDIR
<DB Identifier String>

Server:

<XXX> (Three digit status code)

<ClassName>

<ClassSpecificArguements * #ClassSpecificArguements> (each on its own line)
<UniqueObjectInteger>

<Int String # of Content Objects >

<Int String of "0" >

GetContext

(returns first field of each content)
Client:

GETCONTEXT

<DB Identifier String>
<ClassName>

<IDString> (Integer String)

Server:

<XXX> (Three digit status code)

<ClassName>

<NumContents>

<ContentClassName> (set of information transmitted for each entity)
<Each Contents’ first identifier> (each on its own line)

<Each Contents’ UniqueObjectInteger> (each on its own line)

Versioning
Version strings are of the form A.B, where A&B are 32 bit unsigned integers.

Get Version (by Id):

Client:



GETVERID

<DB Identifier String>

<ClassName>

<IDString> (Integer String, ID of version object)
<VersionsString> (form A.B, "R", or "L")

Server:

<XXX> (Three digit status code)

<ClassName>

<ClassSpecificArguements * #ClassSpecificArguements> (each on its own line)
<UniqueObjectInteger>

<Int String # of Content Objects > (not valid/used)

<Int String # of Container Objects > (not valid/used)

Version Put:
Client:

PUTVER

<DB Identifier String>

<ClassName>

<IDString> (Integer String)

<Version Flag> ("P" for point (this single object) or "T" for tree rooted at this point. "R" appended to
create a new release (incr A))

<ClassSpecificArguements * #ClassSpecificArguements> (each on its own line)

Server:

<XXX> (Three digit status code)
<UniqueObjectInteger (=0 if status failed)>
(if Flag is P - returns id of VO, if Flag is T returns the id of the top of the copy tree (now under a VO)).

Version GetContext

(returns first field of each content)

Client:

VERGETCONTEXT

<DB Identifier String>
<ClassName>

<IDString> (Integer String)

Server:

<XXX> (Three digit status code)

<ClassName>

<NumContents>

<ContentClassName> (set of information transmitted for each entity)
<Each Contents’ version string> (each on its own line)

<Each Contents’ UniqueObjectInteger> (each on its own line)



QUERY

(only a simple start, much more needs to be done here...)
Client:

QUERY

<DB Identifier String> (= "global" for global search)
<ClassName>

<Query Scope> ("G" for global, "C" for class, "D" for container/db)
<Search Index Type ("F" for fieldname, "I" for integer)

<Field Name/Index Number>

<IDString> (search String)

Server:

<XXX> (Three digit status code)

<NumContents>

<Each Found Object’s Class Type> (set of information transmitted for each entity)
<Each Found Object’s UniqueObjectInteger> (each on its own line)

Generators:

Generators are tracked by the client, so that the server can stay as stateless as possible (in terms of
connections).

Details

® Multiple attachments between the same object are not allowed.

* The power of prevention is in the hands of the application developer. The database will allow you to
make an object its own parent/child, as well as allow (potentially fatal) cycles (for now).

* Connections (attachments) must be unique - multiple connections are currently undefined.

Francis Chan, Mark D. Spiller

Last modified: Wed Feb 12 10:43:46 PST



	Copyright notice 1998
	ERL-98-10

