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1 Introduction

An important multiple access technique in wireless networks and other common channel com-
munication systems is Code-Division Multiple Access (CDMA). Each user shares the entire
bandwidth with all the other users and is distinguished from the others by its signature se-
quence or code. Each user spreads its information on the common channel through modulation
using its signature sequence. Then, the receiver demodulates the transmitted messages upon
observing the sum of the transmitted signals embedded in noise. We focus on symbol syn-
chronous CDMA (S-CDMA) systems where in each symbol interval the receiver observes the
sum of the transmitted signals in that symbol interval alone embedded in additive white Gaus-
sian noise (AWGN). Although complete synchronization is too idealistic, the study of such
system provides fundamental limits on the best that can be achieved by practical systems.

Of fundamental interest in such a system is the capacity region defined as the set of
information rates at which users can transmit while still having reliable transmission. This
problem was addressed in [5] and the capacity region was characterized as a function of the
signature sequences and average input-energy constraints of the users. However, the choice of
the signature sequences of the users is left open to the designer of the CDMA system and it
was suggested in [5] that the signature sequences could be optimized given the constraints of
the problem. We address this issue and focus on finding the “sum capacity” (maximum sum
of the rates of all users; maximum over all choices of signature sequences).

This problem has been attempted in part in [4] where the authors derive an upper bound
on the sum capacity. This upper bound is just the capacity of the system with “no spreading”,
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i.e., of the system with processing gain 1 and an appropriate power constraint on its input.
It turns out that this upper bound on the sum capacity is not achievable for all values of the
average input-energy constraints of the users. In this report, we completely characterize the
sum capacity. Furthermore, we identify the sequences (as a function of the average input-
energy constraints of the users) that achieve sum capacity and indicate a method to construct
them. Let L be the processing gain of the S-CDMA system and let there be M users. We
show the following:

1. M > L is a necessary condition for sum capacity to equal that of the system with no
spreading.

2. When M > L, the sum of input-energy constraint of the users being greater than the
product of L and input-energy constraint of every user is a necessary and sufficient
condition for sum capacity to equal that of the system with no spreading.

3. Suppose the condition mentioned above holds. Then we identify a method of construct-
ing sequences for the users that achieve the sum capacity.

This report is organized as follows: We discuss the model of the S-CDMA system briefly
and recall the characterization of the capacity region for fixed choice of signature sequences
in Section 2. Our main result, the characterization of sum capacity is in Section 3.

2 S-CDMA Model and Capacity Region

We consider the discrete-time, baseband S-CDMA channel model. There are M users in the
system and the processing gain is L. Both M and L will be fixed throughout this report. Since
we have assumed a synchronous model we can restrict our attention to one symbol interval.
As is traditional, we model the information transmitted (symbol) by each user as independent
random variables X;,...,Xp. We assume that there is an average input-energy constraint
on the transmit symbols given by

E[X} <p Vi=1..M

Let D = diag {p1,...,pn} and the maximum total average input-energy be p;x = >N, pi.
Let the signature sequence of user i be represented by s;, a vector in RL. Each signature
sequence has energy equal to L i.e., for each user , we have sis; = L. We assume an ambient
white Gaussian noise, denoted by W ~ N (0, NoI) independent of the transmitted symbols.
Then the received signal, represented by Y, can be written as:

M
Y=ZS;X,'+W

=1

Let us represent the L x M matrix [s;...sy] by S. The S-CDMA channel above is a special
case of the M user Gaussian multiple access channel and the capacity region (set of rates at
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which reliable communication is possible) is well known (see Section 7 of [1]) as the closure of
the convex hull of the union over all product probability densities pg on the inputs X;,..., Xpm
of the rate regions

C(S,px)= ﬂ {(Rl,...,RM):OSER,'SI(Y;X;,iEJ'X,',iGJC)} (1)
JC{1,...M} ied

Continuing as in [4], the union region over the product distributions, as a function of S, can
be simply written as

_ : <L 1 ¢
c(S) = JQ{Q“M}{(R,,...,RM) 0< ; Ri < Jlog [det (1+ NOSJDJSJ)]} 2)

where J is a non-null set and R; is the rate in bits/chip of user i. Also, Sj is L x |J| matrix
[s; : i € J] and D; is the |J| x |J| matrix diag {p; : 1 € J}. Observe that the choice of product
distribution for each user ¢, X; is distributed as M (0, p;) makes the region in (1) equal to that
in (2). The sum capacity represents the maximum sum of rates of all users at which users can
transmit reliably. Following the notation in [4], the sum capacity is defined formally as

M
Csum = max Rrg&g)z R; (3)

=1

where S is the set of all L x M real matrices with all columns having /; norm equal to VL.

3 Sum Capacity

In this section, we shall characterize Csym. In [4] an upper bound was derived for Csum,
this upper bound being the sum capacity of the “unrestricted” S-CDMA channel, i.e., the
situation of no spreading when L = 1 with the appropriate power constraint on its input.
The latter channel is just the K-user Gaussian multiple-access channel and its sum capacity
is log (1 + p]—(,f) (see Chapter 7 in [1]) in bits/chip. When the input-energy constraints are
equal, it was shown in [4] that WBE signature sequences maximize the sum capacity, and the

sum capacity then equals the upper bound mentioned above. WBE sequences are so called
because they meet the Welch-Bound-Equality (see [7]).

However, we will show that this bound is not tight for arbitrary choices of the average
input-energy constraints of the users and indeed there is a loss in sum capacity when the
energy constraints are “far apart”; we shall make this notion precise. We also indicate a
method to construct these signature sequences.

When M < L, it is easy to verify that the sum capacity is maximized when the signature
sequences are chosen orthogonal to each other and we have Csym = %Z?__{l log (1 + %’:)

Note that when M = L and all the energy constraints p; are the same, Csym = log (1 + 7}:,—‘:)
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the same as the sum capacity of the system with no spreading; this is the well known fact
that for equal-power users, orthogonal multiple access incurs no loss in capacity relative to

unconstrained multiple access. When M < L the claim is that Csuym < log (1 + %’oi) . To see
this, observe that (pi,...,pm) majorizes the vector ( A e ,E‘A-;-') (see Appendix A for the

notation) It is verified that the map (p1,...,pm) = ¢ LM log (1 + L)\%) is Schur-concave (see
Appendix A for the notation). Hence,

1M Lp
Csum = gl (1+7V-0-)

M LPtot
T o8 (l + MNQ)

Dot
< log (1 + No)

where in the last step we used the inequality (1 + z)* <1+ az for z > 0 and a € (0,1).

IA

For the case M > L, Csum is characterized below. This is our main result:

Theorem 3.1 Let M > L. Let (without loss of generality) py > ... > pm. Then,

1 & L)
Csum = z‘Z;]og (1 + N, ) (4)

where A* = (A],...,A1) € RY is given by

(Be,...,22) if prot = Ly
k ] to—’f ]
X={ (g o, oo im? | el P Vk=1...L—1 (5)

if Tiipi+(L—k+1)pr > prot 2 i1 P+ (L= k) pesa

Proof First, observe that A\* is well defined by the expression in (5). Now,

M

C = maXx max R;
sum 5€8 ReC(S)g

= max llog [det (I + —l—SJDJSj)] from (2), also see [4]
Ses No

= mexg —Zlog (1 + 0)\;(5’)) (6)

where A(S) = (L)\l(S), ,LAL(S)) € RL denotes the vector of eigenvalues of the matrix
SDS! arranged in descendmg order. Deﬁne the convex set £ in the positive orthant of R

by £ = {(/\1, ,AL) € 'R_,_ (M1y--+»AL,0,...,0) majorizes (p,,.. ,pM)} We first identify



the region of eigenvalues of the matrix  SDS* as S varies in S to be exactly £. Formally, we
claim that

{—;—,\(5) Sesh=t (7)

First consider S € S. Let A(S) € RY be the vector of eigenvalues of the matrix D%S'SD?% and
observe that :\(.S' ) is just the vector A(S) with M — L appended zeros. The observation that
the diagonal elements of -}-,D%S‘SD% are p;,...,pm coupled with an appeal to Lemma A.1,
allows us to conclude that 7 A(S) € L. To see the other direction, consider A = (A1,...,AL) €
L. Then, by definition, the vector (\y,...,Ar,0,...,0) majorizes the vector (pi,...,pn)-
Appealing to Lemma A.2, there exists a matrix H with eigenvalues A,,...,A1,0,...,0 and
diagonal elements py,...,pm. Let vy,...,u;, € RM be the normalized eigenvectors of H
corresponding to the eigenvalues A;,...,Ar. Let V' = [vyvy...vz]. If we let A to be the

diagonal matrix with entries A;,..., Az, then H = V'AV. Now define S = VIAZVD-35.
Then, since the square of the /; norms of the columns of S are the diagonal elements of S'S,

we verify that S'S = LD-3HD~% has diagonal entries equal to L concluding that S € S.
This completes the proof of the claim in (7).

Then the sum capacity can be rewritten as, from (6),

L L
Csum = ngzlog {1 + Fo'\‘} (8)

=1

The following lemma identifies a “minimal” element in L:

Lemma 3.1 Let L = {()\1,. .»AL) € RE 1 (A, AL,0,...,0) majorizes (py,... ,pM)}. Then
X* defined in (5) is a Schur-minimal element of L,i.e.,ifA € L, then X majorizes A*.

=1
Schur-concave. Then the proof is complete by an appeal to the lemma above. We only need
to prove the lemma.

Suppose this is true. As observed earlier, the map (X;,...,Az) — %EL log (1 + %) is

Proof of Lemma 3.1:

It is straightforward from the definition of A* in (5) that A] > A3 > ... > A} and hence that
MeL. Let A= (),..., L) € L and let A; > ... > Az. By the definition of A* in (5), it can
be verified that the following relation is true among the elements of A\*:

N = max{Pep} (9)
k * k
ot l"" At =
k1 = max{mt—f—k'l—'mk-l-1+2(p.'—z\,-)} Vk=1...L-1
=1
Hence Vk =1...L — 1 we can write
k+1 k+1 k
. _ __Prot L-k-1 .
gz\i—max{;p,,L_k+ % gz\i} (10)
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Now, since A € L we have Z,_l Ai = pror and hence A; > B2, Furthermore, A1 > p1. Hence,

A > mu{p}f',pl} = A}

We shall complete the proof of the claim that A majorizes A* by induction. Suppose Z,_l Ai 2
TF L Af for some 1 < k < L. Since T2k Mg = prot — Dby A and Apgr 2 Az 2 .22 2 A,y

we have Ay > "'—"'-—Zlﬁ-'-— Hence

1 2 + 1
i=1 L-k =1
Dot L—-k—- 1) k = . . .
> + ( A! by induction hypothesis (11)
ot \ T ) &

Since Y5+ (A — p:i) > 0, from (11), we have

1=1
k+1 k+1 P
DN 2 maX{ZP,, - ZX‘}

i=1 =1 =1

k+1
= Y A from (10)

i=1

This is true for all k =1...L — 1. Hence A majorizes A* and A* is a Schur-minimal element
of £. This completes the proof of the lemma and hence that of the theorem. u

As mentioned earlier, a trivial upper bound for Csym is log (l + ’}(,—‘;‘ the sum capacity of
the channel with “no spreading”. We saw that when M = L and all the energy constraints
are equal, then Csuym actually equaled this upper bound and was strictly less than this bound
when M < L. For the case M > L, we shall now identify, as a corollary of Theorem 4.1,
necessary and sufficient conditions on the input-energy constraints such that Csuym will equal
this upper bound. We shall also identify the signature sequences for the users to achieve this
sum capacity.

Corollary 8.1 Let M > L. Then Csym = log (1 + 2,%) if and only if pios
i=1...M.

> Lyp; for all

The proof is obvious from Theorem 3.1.

We now consider identification and construction of signature sequences of the users to
achieve sum capacity. The general scheme to identify the sequences that achieve the sum
capacity was outlined in the proof of Theorem 3.1, and we shall repeat that here: Sup-
pose pi: > Lp; for all ¢ = 1...M. Then, (pt,---,Ptot,0,...,0) majorizes the vector
(Lp,-..,Lpm). Appealing to Lemma A.2, there exists a M x M symmetric matrix H such
that its diagonal entries are Lpy, Lps, ..., Lpy and it has L eigenvalues (of multiplicity both
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algebraic and geometric) equal to p;r and M — L null eigenvalues. Let vy,... v, be the nor-
malized eigenvectors of H corresponding to the eigenvalue p;,; and denote V' = [v;...vy].
Then we can write H = pi,:V'V. As before, let D = diag{pi,...,pm}. Define the L x M
matrix S = |/PiotV D-%. Since the diagonal entries of S*S are all equal to L, we have S € S.

Furthermore L eigenvalues of D%S8'SD? = H are Pior and M — L eigenvalues are null (notice
that, by construction, SDS* = p;,t/). Hence for this choice of signature sequences S, we

have, from (8), that Csum = log (1 + 3,{,%’) The proof of Lemma A.2 indicates a method to
construct the matrix H from which S can be obtained.

In general, suppose 2_’,?._'.11 i + (L—=k+1)pr > pror = Tty pj + (L — k) prya for some
k € {1,2,...,L —1} and that py > po > ... 2 pm. Then, for i = 1,...,k we let s;
be orthogonal sequences. The remaining signature sequences are now constructed as above
with M replaced by M — k and L replaced by L — k and the M — k users have power
constraints pr41,...,pm. Now these M — k users have signature sequences chosen in the

subspace (span (s1,--- ,sk)J') which has dimension L — k.

In the special case when all the energy-constraints are equal (to say p), then pi,s = Mp >
Lp and hence Csym = log (1 + %f) Furthermore, the sequence matrix S constructed above

from H now satisfies the relation $S* = MI. This result was observed in [4] and the sequences
that meet this constraint were denoted WBE sequences (such sequences were also identified
in [3]). However, WBE sequences had been constructed only for special values of M and
L. Recently, in [6], the authors prove the existence of WBE sequences and provide a simple
method to construct them for arbitrary choices of M > L.

The corollary above says that even if the input-energy constraints are not equal, so long
as they are not too “far apart” there is no loss in sum capacity. However, in the asymmetric
energy-constraints situation, the sequences that achieve the sum capacity are no longer WBE
sequences. When the sequences are far apart, then the optimal choice of sequences is to choose
signature sequences orthogonal for those users with the “most relaxed” input power constraint
as made precise above.

A Definitions and Relevant Results from Theory of
Majorization

In this appendix we collect together relevant definitions and results from the theory of ma-
jorization. All of these results can be found in the comprehensive reference on majorization
[2]. Majorization makes precise the vague notion that the components of a vector z are “less

spread out” or “more nearly equal” than are the components of a vector y by the statement
z is majorized by y.



For any z = (z;,...,%s) € R", let
T 2t 2 T
denote the components of z in decreasing order. For z,y € R", define

g=<y if { E§=1=v[=1 52{:13/[-], k=1...n-1
i=1 Tp) = i1 Y

When z < y say that z is majorized by y (or y majorizes z). An important though trivial
example of majorization is

11 1
(520 2) < (@1yens0m) (12)

for every a € R" such that "%, a; = 1. An important characterization of majorization is the
result that z < y if and only if there exists a doubly stochastic matrix P such that z = yP.

A real valued function ¢ : R® — R is said to be Schur-concave if for all z,y € R" such
that z < y we have ¢(z) > ¢(y). ¢ is said to be Schur-convex if —¢ is Schur-concave. Using
the observation in (12), for any Schur-concave function ¢ and for any vector z € R"™

$(z) 2 ¢()

n n n
- E . T E =1 T Z =1 T .
where Z = (——L—l——; e . A well known structure of Schur-convex functions

is the following result (Theorem 3.C.1 in [2]): If g : R = R is convex then the symmetric

convex function ¢ (z) = Y%, g(z;) is Schur-convex. It is obvious that if g : R — R is concave
then the symmetric concave function ¢ (z) = Y&, g () is Schur-concave.

It is well known that the sum of diagonal elements of a matrix is equal to the sum of
its eigenvalues. When the matrix is symmetric the precise relationship between the diagonal
elements and the eigenvalues is that of majorization: (Theorem 9.B.1, [2]).

Lemma A.1 Let H be a n x n symmetric matriz with diagonal elements.hl,...,hn and
eigenvalues A\y,...,A,. Then h < A

That h and A cannot be compared by an ordering stronger than majorization is the conse-
quence of the following converse (Theorem 9.B.2, [2]):

Lemma A.2 Ifhy > --- 2 hy, and A\; 2 -+ A\, are 2n numbers satisfying h < X\ in R", then
there ezists a real symmetric matriz H with diagonal elements hy,...,h, and eigenvalues
Al ge ey An-

The following interlacing lemma captures the interconnection between the eigenvalues of
a symmetric matrix and those of its principal submatrix. (p 219, [2]).
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Lemma A.3 Let H be a n xn symmetric matriz and H be a n—1xn~—1 principal submatriz
of H._Let the eigenvalues of H be A\, > ... 2> A, and those of H be Ay > ... > Au-y. Then,
MM 2002 A1 2 A 2 A

That the converse of this is true in some sense is made precise by the following (Lemma 9.B.3
in [2]):

Lemma A.4 Given real numbers c;,...,ca-1 and Ay,..., A, satisfying the interlacing prop-
erty
M2a2Xr2c 2 2ci1 2 Any

there ezists a real symmetric n x n matriz of the form

W = D. v
v U,
with eigenvalues My, ..., A\, where D, is a diagonal matriz with diagonal elements cy,...,cn-1.

The proofs of Lemmas A.2 and A.4 are constructive in nature and they provide a scheme of
constructing the symmetric matrix with the claimed properties.
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