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1 Introduction

An important multiple access technique in wireless networks and other common channel com
munication systems is Code-Division Multiple Access (CDMA). Each user shares the entire
bandwidth with all the other users and is distinguished from the others by its signature se
quence or code. Each user spreads its information on thecommon channel through modulation
using its signature sequence. Then, the receiver demodulates the transmitted messages upon
observing the sum of the transmitted signals embedded in noise. We focus on symbol syn
chronous CDMA (S-CDMA) systems where in each symbol interval the receiver observes the
sum ofthe transmitted signals in that symbol interval alone embedded in additive white Gaus
sian noise (AWGN). Although complete synchronization is too idealistic, the study of such
system provides fundamental limits on the best that can be achieved by practical systems.

Of fundamental interest in such a system is the capacity region defined as the set of
information rates at which users can transmit while still having reliable transmission. This
problem was addressed in [5] and the capacity region was chaxacterized as a function of the
signature sequences and average input-energy constraints of the users. However, the choice of
the signature sequences of the users is left open to the designer of the CDMA system and it
was suggested in [5] that the signature sequences could be optimized given the constraints of
the problem. We address this issue and focus on finding the "sum capacity" (maximum sum
of the rates of all users; maximum over all choices of signature sequences).

This problem has been attempted in part in [4] where the authors derive an upper bound
on the sum capacity. This upper bound is just the capacity of the system with "no spreading",
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i.e., of the system with processing gain 1 and an appropriate power constraint on its input.
It turns out that this upper bound on the sum capacity is not achievable for all values of the
average input-energy constraints of the users. In this report, we completely characterize the
sum capacity. Furthermore, we identify the sequences (as a function of the average input-
energy constraints of the users) that achieve sum capacity and indicate a method to construct
them. Let L be the processing gain of the S-CDMA system and let there be M users. We
show the following:

1. M > L is a necessary condition for sum capacity to equal that of the system with no
spreading.

2. When M > L, the sum of input-energy constraint of the users being greater than the
product of L and input-energy constraint of every user is a necessary and sufficient
condition for sum capacity to equal that of the system with no spreading.

3. Suppose the condition mentioned above holds. Then we identify a method of construct
ing sequences for the users that achieve the sum capacity.

This report is organized as follows: We discuss the model of the S-CDMA system briefly
and recall the characterization of the capacity region for fixed choice of signature sequences
in Section 2. Our main result, the characterization of sum capacity is in Section 3.

2 S-CDMA Model and Capacity Region

We consider the discrete-time, baseband S-CDMA channel model. There are M users in the
system and the processing gain is L. Both M and L will be fixed throughout this report. Since
we have assumed a synchronous model we can restrict our attention to one symbol interval.
As is traditional, we model the information transmitted (symbol) by each user as independent
random variables Xi,... ^Xm- We assume that there is an average input-energy constraint
on the transmit symbols given by

E[Xf] <pi Vi = l...M

Let D = diag{pi,...,pM} and the maximum total average input-energy be ptot = IZiLiPi-
Let the signature sequence of user i be represented by s,-, a vector in 7^^. Each signature
sequencehas energy equal to L i.e., for each user f, we have sjs,- = L. We assume an ambient
white Gaussian noise, denoted by W ~ A/" (0, NqI) independent of the transmitted symbols.
Then the received signal, represented by y, can be written as:

M

Y = Y.^iXi^W
t=i

Let us represent the L x M matrix [si... sm] by S. The S-CDMA channel above is a special
case of the M user Gaussian multiple access channel and the capacity region (set of rates at



which reliable communicatioii is possible) is well known (see Section 7 of [1]) as the closure of
the convex hull of the union over all product probability densities pjf on the inputs JVi,..., Xm
of the rate regions

C{S,px)= n J')} (1)

Continuing as in [4], the union region over the product distributions, as a function of 5, can
be simply written as

C(5)= n ((fli, •••.«*/) :0<£ii.< I log [det(/ +^5ji3jSi)] I
I t€J ^ ^ °

(2)

where J is a non-null set and Ri is the rate in bits/chip of user i. Also, iSj is L x ]J| matrix
[si :i e J] and Dj is the |Jl x 1J| matrix diag{p,- : i € J}. Observe that the choice of product
distribution for each user i, Xi is distributed as A7(0,pi) makes the region in (1) equal to that
in (2). The sum capacity represents the maximum sumof rates of all users at which users can
transmit reliably. Following the notation in [4], the sum capacity is defined formally cis

M

^^sum = max max ^Ri (3)Se5 H€C(S)^

where 5 is the set of all L x M real matrices with all columns having h norm equal to y/L.

3 Sum Capacity

In this section, we shall characterize Csum- In [4] an upper bound was derived for Csum?
this upper bound being the sum capacity of the "unrestricted" S-CDMA channel, i.e., the
situation of no spreading when L = 1 with the appropriate power constraint on its input.
The latter channel is just the K-user Gaussian multiple-access channel and its sum capacity
is log (l -H (see Chapter 7in [1]) in bits/chip. When the input-energy constraints are
equal, it was shown in [4] that WBE signature sequences maximize the sum capacity, and the
sum capacity then equals the upper bound mentioned above. WBE sequences are so called
because they meet the Welch-Bound-Equality (see [7]).

However, we will show that this bound is not tight for arbitrary choices of the average
input-energy constraints of the users and indeed there is a loss in sum capacity when the
energy constraints axe "far apart"; we shall make this notion precise. We also indicate a
method to construct these signature sequences.

When M < L, it is easy to verify that the sum capacity is maximized when the signature
sequences are chosen orthogonal to each other and we have Csum = 3 •
Note that when M= Land all the energy constraints pi are the same, Csum = log (l +



the same as the sum capacity of the system with no spreading; this is the well known fact
that for equal-power users, orthogonal multiple access incurs no loss in capacity relative to
unconstrained multiple access. When M<Lthe claim is that Csum <log (l+5^) •
this, observe that (pi,...,Pm) majorizes the vector (^»---»^) (see Appendix Afor the
notation) It is verified that the map (pi,.. •,PAf) ^ x^i=i 1°S (l^ + is Schur-concave (see
Appendix A for the notation). Hence,

log ('*'t)
where in the last step we used the inequality (1 + x)" < 1 -|- ax for x > 0 and a € (0,1).

For the case M > Csum is characterized below. This is our main result:

Theorem 3.1 Let M > L. Let (without loss of generality) pi > ... > PM' Then,

A* =

-jhoJi= + (4)

where X* = (AJ,..., AJ,) € 7^+ is given by

ifPtot>Lpi

(pi,•••. Pt, ""'Sr' "'•••' ""'B"") Vfc=l...i-1 (5)
. if EjZ}Pj + (L-k + l)pt>Ptct> E'=1 Pi + (L-k)Pk+i

Proof First, observe that A* is well defined by the expression in (5). Now,

M

Criitti = max max y^RiS€S ReC(S)^

= max
ses

= max
S£S

^log ^det (j 4- from (2), also see [4]

where X{S) = (jLAi(5'), ..., LAjr,(5)) G 7^+ denotes the vector of eigenvalues of the matrix
SDS* arranged in descending order. Define the convex set C in the positive orthant of
hy C= {(Ai,..., Al) G7^+ :(Ai,..., Al,0,... ,0) majorizes (pi,.. •,Pm)}- We first identify



the region ofeigenvalues ofthe matrix ^SDS* as S varies inS to beexactly C. Formally, we
claim that

[jX(S):Ses]=C (7)
First consider S ES. Let A(5) € be the vector of eigenvalues of the matrix D^S^SDi and
observe that A(5) is just the vector A(5) with M —L appended zeros. The observation that
the diagonal elements of ^DiS^SD^ are pi,... ,Pm coupled with an appeal to Lemma A.l,
allows us to conclude that 7;A(5) € C. To see theother direction, consider A= (Ai,..., A^) €
C. Then, by definition, the vector (Ai,..., Al,0,...,0) majorizes the vector (pi,... ,PAf)-
Appealing to Lemma A.2, there exists a matrix H with eigenvalues Ai,..., A^, 0,..., 0 and
diagonal elements pi,...,PM- Let ui,...,V£, G 7?,^ be the normalized eigenvectors of H
corresponding to the eigenvalues Ai,...,Al. Let V = [uiU2---vl]. If we let A to be the
diagonzd matrix with entries Ai,...,Ax,, then H = V^hV. Now define S = ^/LA^VD'̂ .
Then, since the square of the I2 norms of the columns of S axe the diagonal elements of
we verify that S^S = LD~^HD~^ has diagonal entries equal to L concluding that S £ S.
This completes the proof of the claim in (7).

Then the sum capacity can be rewritten as, from (6),

Csum =

The following lemma identifies a "minimal" element in L:

Lemma 3.1 Lei£ =|(Ai,..., Ai,) G7^+: (Ai,... ,Al,0, ... ,0) majonzes (pi,... ,Pm)}' Then
A* defined in (5) is a Schur-minimal element of C,i.e.^ifX GC, then A majorizes A*.

Suppose this is true. As observed earlier, the map (Ai,...,A£,) + is
Schur-concave. Then the proof is complete by an appeal to the lemma above. We only need
to prove the lemma.

Proof of Lemma 3.1:

It is straightforward from the definition of A* in (5) that AJ > AJ > ... > A^ and hence that
A" GC. Let A= (Ai,..., Al) G C and let Ai > ... > A^. By the definition of A* in (5), it can
be verified that the following relation is true among the elements of A*:

AJ = max|̂ ,pi| (9)
AJ+I =max|'''°' ^ (Pi -A()| Vfe =1

Hence VA: = 1... L — 1 we can write

fc+i (^+1 ^ /• _ I. _ 1 1gA- =ma.|x:p,,;^+i^±^gAr| (10)

.L-1



Now, since A€ £ we have = ptot and hence Xi>^. Furthermore, Ai > pi. Hence,

Ai >max|̂ ,pi| =AJ
We shallcomplete the proofof the claim that Amajorizes A* by induction. Suppose J2i=i >
ELi some 1 <k < L. Since Yli=i ^k+i = Ptot —S?=i and Afc+i > Ajb+2 > ••• > Al,
we have A^+i > • Hence

— u induction hypothesis (11)
V / t—1

Since SiJ? {^i - Pi) > 0, from (11), we have

k+l (k+1 /• _ JU _ 1

k+l

= ^ A' from (10)
1=1

This is true for all fc = 1... L —1. Hence A majorizes A* and A* is a Schur-minimal element
of £. This completes the proof of the lemma and hence that of the theorem. •

As mentioned earlier, atrivial upper bound for Csum is log (l + the sum capacity of
the channel with "no spreading". We saw that when M —L and all the energy constraints
are equal, then Csum actually equaled this upper bound and was strictly less than this bound
when M < L. For the case M > L, vfe shall now identify, as a corollary of Theorem 4.1,
necessary and sufficient conditions on the input-energy constraints such that Csum will equal
this upper bound. We shall also identify the signature sequences for the users to achieve this
sum capacity.

Corollary 3.1 Let M> L. Then Csum = log (l +5^) if and only if ptot > Lpi for all
i = 1 ...M.

The proof is obvious from Theorem 3.1.

We now consider identification and construction of signature sequences of the users to
achieve sum capacity. The general scheme to identify the sequences that achieve the sum
capacity was outlined in the proof of Theorem 3.1, and we shall repeat that here: Sup
pose Ptot > Lpi for all z = 1...M. Then, (ptoz,--.,P«ot,0,...,0) majorizes the vector
(Lpi,..., Lpm)' Appealing to Lemma A.2, there exists a. M x M symmetric matrix H such
that its diagonal entries axe Lpi,Lp2-,..., LpM and it has L eigenvalues (of multiplicity both



algebraic and geometric) equal to ptot and M —L null eigenvalues. Let ui,... be the nor
malized eigenvectors of H corresponding to the eigenvalue ptot and denote V* = [ui... U£,].
Then we can write H = ptotV^V' As before, let D = diag{pi,.. .,pm}- Define the L x M
matrix S = y/pt^D"^, Since the diagonal entries of S^S axe all equal to L, we have S ^ S.
Furthermore L eigenvalues of D^S^SD^ = H axe ptot and M —L eigenvalues are null (notice
that, by construction, SDS* = ptoti)' Hence for this choice of signature sequences 5, we
have, from (8), that Csum = log (l+ proof of Lemma A.2 indicates amethod to
construct the matrix H from which S can be obtained.

In general, suppose YljZi Pj + (L - fc + 1) pk > Ptot > Ej=i Pj + (L - k)pk+i for some
k € {1,2,..., L —1} and that pi > p2 > ... > Pm- Then, for e = 1,..., A; we let s,-
be orthogonal sequences. The remaining signature sequences axe now constructed as above
with M replaced by M —A: and L replaced by L —A; and the M —k users have power
constraints pjt+i?•.• jPm* Now these M —k users have signature sequences chosen in the
subspace (span (si,..., s*:)''') which has dimension L—k.

In the special case when all the energy-constraints axe equal (to say p), then ptot = Mp >
Lp and hence Csum = log (l + . Furthermore, the sequence matrix Sconstructed above
from H nowsatisfies the relation SS^ = MI. This result was observedin [4] and the sequences
that meet this constraint were denoted WBE sequences (such sequences were also identified
in [3]). However, WBE sequences had been constructed only for special values of M and
L. Recently, in [6], the authors prove the existence of WBE sequences and provide a simple
method to construct them for axbitrary choices of M > L.

The corollary above says that even if the input-energy constraints axe not equal, so long
as they axe not too "far apart" there is no loss in sum capacity. However, in the asymmetric
energy-constraints situation, the sequences that achieve the sum capacity are no longer WBE
sequences. When the sequences are far apart, then the optimal choice of sequences is to choose
signature sequences orthogonal for those users with the "most relaxed" input power constraint
as made precise above.

A Definitions and Relevant Results from Theory of
Majorization

In this appendix we collect together relevant definitions and results from the theory of ma
jorization. All of these results can be found in the comprehensive reference on majorization
[2]. Majorization makes precise the vague notion that the components of a vector x axe "less
spread out" or "more nearly equal" than axe the components of a vector y by the statement
X is majorized by y.



For any x = (xi,..., Xn) G7^", let

aJ[i] > ••• > a:[n]

denote the components of x in decreasing order. For x^y £ 7^", define

fc = 1.. .n — 1X̂ 1/ if I ~^*=12/1*1>lE?=,xw =E?=.s/t.i
When X •< y say that x is majorized by y (or y majorizes x). An important though trivial
example of majorization is

(i,i,... (12)
\n n nj

for every a G 7^" such that Ot = 1- An important characterization of majorization is the
result that x X y if and only if there exists a doubly stochastic matrix P such that x = yP.

A real valued function </> : 7^" —)• 7^ is said to be Schur-concave if for all x, y G 7^" such
that X-< y we have <t>{x) > <^(y). is said to be Schur-convex if —cj) is Schur-concave. Using
the observation in (12), for any Schur-concave function <l> and for any vector x € 7^"

<^(x) > <^(x)

where x = f Sisifi _ EiHifi). Awell known structure of Schur-convex functionsIn'n' ' n j

is the following result (Theorem 3.C.1 in [2]): If g : 7^ 7^ is convex then the symmetric
convex function <t>{x) = g (xi) is Schur-convex. It is obvious that if y : 7^ 7^ is concave
then the symmetric concave function <^(x) = IZJLiy(x,) is Schur-concave.

It is well known that the sum of diagonal elements of a matrix is equal to the sum of
its eigenvalues. When the matrix is symmetric the precise relationship between the diagonal
elements and the eigenvalues is that of majorization: (Theorem 9.B.1, [2]).

Lemma A.1 Let H be a n x n symmetric matrix with diagonal elements and
eigenvalues Ai,..., A„. Then h -< A

That h and A cannot be compared by an ordering stronger than majorization is the conse
quence of the following converse (Theorem 9.B.2, [2]):

Lemma A.2 If hi > '" > hn and Ai > •••A„ are 2n numbers satisfying h ^ X in 7^", then
there exists a real symmetric matrix H with diagonal elements hi,..., /i„ and eigenvalues
Ai,..., A,,.

The following interlacing lemma captures the interconnection between the eigenvalues of
a symmetric matrix and those of its principal submatrix. (p 219, [2]).
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Lemma A.3 Let H he an xn symmetric matrix and Hbean —lx n —1 principal submatrix
of H, Let the eigenvalues of H be Xi >...> Xn and those of H be Xi > ... > A„_i. Then,
Ai ^ Ai ^ ^ An_i ^ Aji—i ^ Xn'

That the converse of this is true in some sense is made precise by the following (Lemma 9.B.3
in [2]):

Lemma A.4 Given real numbers ci,...,Cn-i and Ai,..., A„ satisfying the interlacing prop
erty

Ai ^ Ci ^ A2 ^ C2 ^ ^ Cn—1 ^ Aji,

there exists a real symmetric nxn matrix of the form

W= f[ V Ur

with eigenvalues Ai,..., A„ where Dc is a diagonal matrix with diagonal elements ci,..., Cn-i.

The proofs of Lemmas A.2 and A.4 are constructive in nature and they provide a scheme of
constructing the symmetric matrix with the claimed properties.
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