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Alternating-time Temporal Logic*T

Rajeev Alur^ Thomas A. Henzinger^ Orna Kupferman^

Abstract. Temporal logic comes in two varieties: linear-time temporal logic assumes implicit
universal quantification over aU paths that are generated by system moves; branching-time temporal
logic allows explicit existential and universal quantification over all paths. We introduce a third,
moregeneralvariety of temporal logic: alternating-time temporal logic offers selective quantification
over those paths that are possible outcomes of games, such as the game in which the system and the
environment alternate moves. While linear-time and branching-time logics are natural specification
languages for closed systems, alternating-time logics are natural specification languages for open
systems. For example, by preceding the temporal operator "eventually" with a selective path
quantifier, we can specify that in the game between the system and the environment, the system
has a strategy to reach a certain state. Also the problems of receptiveness, realizability, and
controllability can be formulated as model-checking problems for alternating-time formulas.

Depending on whether we admit arbitrary nesting of selective path quantifiers and temporal
operators, weobtain the two alternating-time temporal logics ATLand ATL*. Weinterpret the for
mulas of ATL and ATL* over alternating transition systems. While in ordinary transition systems,
each transition corresponds to a possible step of the system, in alternating transition systems, each
transition corresponds to a possible move in the game between the system and the environment.
Fair alternating transition systems can capture both synchronous and asynchronous compositions
of open systems. For synchronous systems, the expressive power of ATL beyond CTL comes at no
cost: the model-checking complexity of synchronous ATL is linear in the size of the system and the
length of the formula. The symbolic model-checking algorithm for CTL extends with few modifica
tions to synchronous ATL, and with some work, also to asynchronous ATL, whose model-checking
complexity is quadratic. This makes ATL an obvious candidate for the automatic verification of
open systems. In the case of ATL*, the model-checking problem is closely related to the synthesis
problem for linear-time formulas, and requires doubly exponential time for both synchronous and
asynchronous systems.

*A preliminary version of this paper appeared in the Proceedings of the 38th IEEE Symposium on Foundations of
Computer Science (FOCS 1997), pp. 100-109.
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1 Introduction

In 1977, Pnueli proposed to use linear-time temporal logic (LTL) to specify requirements for reactive
systems [Pnu77]. A formula of LTL is interpreted over a computation, which is an infinite sequence
of states. A reactive system satisfies an LTL formula if all its computations do. Due to the implicit
use of universal quantification over the set of computations, LTL cannot express existential, or
possibility, properties. Branching-time temporal logics such as CTL and CTL*, on the other hand,
do provide explicit quantification over the set of computations [CE81, EH86]. For instance, for
a state predicate v?, the CTL formula VO^ requires that a state satisfying y? is visited in all
computations, and the CTL formula 30 (p requires that there exists a computation that visits a
state satisfying (p. The problem of model checking is to verify whether a finite-state abstraction
of a reactive system satisfies a temporal-logic specification [CE81, QS81]. Efficient model checkers
exist for both LTL (e.g., SPIN [Hol97]) and CTL (e.g., SMV [McM93]), and are increasingly being
used as debugging aids for industrial designs.

The logics LTL and CTL have their natural interpretation over the computations of closed
systems, where a closed system is a system whose behavior is completely determined by the state
of the system. However, the compositional modeling and design of reactive systems requires each
component to be viewed as an open system, where an open system is a system that interacts with its
environment and whose behavior depends on the state of the system as well as the behavior of the
environment. Models for open systems, such as CSP [Hoa85], I/O automata [Lyn96], and Reactive
Modules [AH96], distinguish between internal nondeterminism, choices made by the system, and
external nondeterminism, choices made by the environment. Consequently, besides universal (do
all computations satisfy a property?) and existential (does some computation satisfy a property?)
questions, a third question arises naturally: can the system resolve its internal choices so that
the satisfaction of a property is guaranteed no matter how the environment resolves the external
choices? Such an alternating satisfaction can be viewed as a winning condition in a two-playergame
between the system and the environment. Alternation is a natural generalization of existential and
universal branching, and has been studied extensively in theoretical computer science [CKS81].

Different researchers have argued for game-like interpretations of LTL and CTL specifications
for open systems. We list four such instances here.

Receptiveness [Dil89, AL93, GSSL94]; Given a reactive system, specified by a set of safe compu
tations (typically, generated by a transition relation) and a setof live computations (typically,
expressed by an LTL formula), the receptiveness problem is to determine whether every finite
safe computation can be extended to an infinite live computation irrespective of the behavior
of the environment. It is sensible, and necessary for compositionality, to require an affirmative
answer to the receptiveness problem.

Realizability (program synthesis) [ALW89, PR89a, PR89b]: Given an LTL formula over
sets of input and output signals, the synthesis problem requires the construction of a reactive
system that assigns to every possible input sequence an output sequence so that the resulting
computation satisfies

Supervisory control [RW89]: Given a finite-state machine whose transitions are partitionedinto
controllable and uncontrollable, and a set of safe states, the control problem requires the
construction of a controller that chooses the controllable transitions so that the machine
always stays within the safe set (or satisfies some more general LTL formula).

Module checking [KV96]: Given an open system and a CTL* formula y?, the module-checking



problem is to determine if, no matterhow the environment restricts the external choices, the
system satisfies y?.

All the above approaches use the temporal-logic syntax that was developed for specifying closed
systems, and reformulate its semantics for open systems. In this paper, we propose, instead, to
enrich temporal logic so that alternating properties can be specified explicitly within the logic: we
introduce alternating-time temporal logics for the specification and verification of open systems.
Our formulation of open systems considers, instead of just a system and an environment, the more
general setting of a set E of agents that correspond to different components of the system and
the environment. We model open systems by alternating transition systems. The transitions of
an alternating transition system correspond to possible moves in a game between the agents. In
each move of the game, every agent chooses a set of successor states. The game then proceeds to
the (single) state in the intersection of the sets chosen by the agents. Special cases of the game
are turn-based synchronous (in each state, only one agent restricts the set of successor states, and
that agent is determined by the state), lock-step synchronous (the state is partitioned according
to the agents, and in each step, every agent updates its component of the state), and turn-based
asynchronous (in each state, only one agent restricts the set of successor states, and that agent
is chosen by a fair scheduler). These subclasses of alternating transition systems capture various
notions of synchronous and asynchronous interaction between open systems.

For a set A C S of agents, a set A of computations, and a state q of the system, consider the
following game between a protagonist and an antagonist. The game starts at the state q. At each
step, to determine the next state, the protagonist chooses the choices controlled by the agents in
the set A, while the antagonist chooses the remaining choices. If the resulting infinite computation
belongs to the set A, then the protagonist wins. If the protagonist has a winning strategy, we say
that the alternating-time formula ((A))A is satisfied in the state q. Here, ((A)) is a path quantifier^
parameterized with the set A of agents, which ranges over all computations that the agents in A can
force the game into, irrespective of how the agents in E \ A proceed. Hence, the parameterized path
quantifier ((A)) is a generalization of the path quantifiers of branching-time temporal logics: the
existential path quantifier 3 corresponds to ((E)), and the universal path quantifier V corresponds
to ((0)). In particular, closed systems can be viewed as systems with a single agent sys, which
represents the system. Then, the two possible parameterized path quantifiers ((sys)) and ((0))
match exactly the path quantifiers 3 and Vrequired for specifying such systems. Depending on the
syntax used to specify the set A of computations, we obtain two alternating-time temporal logics:
in the logic ATL*, the set A is specified by a formula of LTL; in the more restricted logic ATL,
the set A is specified by a single temporal operator applied to a state formula. Thus, ATL is the
alternating generalization of CTL, and ATL* is the alternating generalization of CTL*.

Alternating-time temporal logics can conveniently express properties of open systems as illus
trated by the following five examples:

1. In a multi-process distributed system, we can require any subset of processes to attain a goal,
irrespective of the behavior of the remaining processes. Consider, for example, the cache-
coherence protocol for Gigamax verified using SMV [McM93]. One of the desired properties
is the absence of deadlocks, where a deadlocked state is one in which a processor, say a, is
permanently blocked from accessing a memory cell. This requirement was specified using the
CTL formula

VD (30 read A 30 write).

The ATL formula

VD (((a))O read A {{a)) O write)



captures the informal requirement more precisely. While the CTL formula only asserts that
it is always possible for all processors to cooperate so that a can eventuaUy read and write
("coDaborative possibility"), the ATL formula is stronger: it guarantees a memory access for
processor a, no matter what the other processors in the system do ("adversarial possibility").

2. While the CTL formula VD (p asserts that the state predicate (p is an invariant of a system
component irrespective of the behavior of all other components ("adversarial invariance"), the
ATL formula (which stands for ({E \ {a})) D^) states the weaker requirement that p is
&possible invariant of the component a; that is, a cannot violate Up on its own,and therefore
the other system components may cooperate to achieve Up ("collaborative invariance"). For

to be an invariant of a complex system, it is necessary (but not sufficient) to check that
every component a satisfies the ATL formula

3. The receptiveness of a system whose live computations are given by the LTL formula if) is
specified by the ATL* formula VD {{sys)) if).

4. Checking the realizability (program synthesis) of an LTL formula if) corresponds to model
checking of the ATL* formula {{sys))ip in a maximal model that considers all possible inputs
and outputs.

5. The controllability ofa system whose safe states are given by the state predicate p is specified
by the ATL formula {{control)) • p. Controller synthesis, then, corresponds to model checking
of this formula. More generally, for an LTL formula ip^ the ATL* requirement {{control)) if)
asserts that the controUer has a strategy to ensure the satisfaction of if).

Notice that ATL is better suited for compositional reasoning than CTL. For instance, if a component
a satisfies the CTL formula 30 we cannot conclude that the compound system a||6 also satisfies
30 p. On the other hand, if a satisfies the ATL formula {{a))Op, then so does al|6.

The model-checking problem for alternating-time temporal logics requires the computation of
winning strategies. In the ca.se ofsynchronous ATL, all games are finite reachability games. Con
sequently, the model-checking complexity is linear in the size of the system and the length of the
formula, just as in the case ofCTL. While checking existential reachability corresponds to iterating
the existential next-time operator 30, and checking universal reachability corresponds to iterating
the universal next VO, checking alternatingreachability corresponds to iterating an appropriate mix
of 30 and VO, as governed by a parameterized path quantifier. This suggests a simple symbolic
model-checking procedure for synchronous ATL, and shows how existing symbolic model checkers
for CTL can be modified to check ATL specifications, at no extra cost. In the asynchronous model,
due to the presence of fairness constraints, ATL model checking requires the solution of infinite
games, namely, generalized Biichi games [VW86b]. Consequently, the model-checking complexity
is quadratic in the size of the system, and the symbolic algorithm involves a nested fixed-point
computation. The model-checking problem for ATL* is much harder: we show it to be complete
for 2EXPTIME in both the synchronous and asynchronous cases.

The remaining paperis organized as foUows. Section 2 defines the model ofalternatingtransition
systems, and Section 3 defines the alternating-time temporal logics ATL and ATL*. Section 4
presents symbolic model-checking procedures, and Section 5 establishes complexity bounds on
model checking for alternating-time temporal logics. In Section 6, we consider more general ways
of introducing game quantifiers in temporal logics. Specifically, we define an alternating-time p-
calculus and a game logic, and study their relationship to ATL and ATL*. Finally, Section 7
considers models in which agents have only partial information about (global) states. We show



that for this case,of alternating transition systemswith incomplete information, the model-checking
problem is generally undecidable, and we describe a special case that is decidable in exponential
time.

2 Alternating Transition Systems

We model open systems by alternating transition systems. While in ordinary transition systems,
each transition corresponds to a possible step of the system, in alternating transition systems, each
transition corresponds to a possible step in a game between the agents that constitute the system.

2.1 Definition of ATS

An alternating transition system (ATS, for short) is a 5-tuple S = {II, E, with the foUowing
components:

• n is a set of propositions.

• E is a set of agents.

• Q is a set of states.

• TT: Q 2^ maps each state to the set of propositions that are true in the state.

• 6 : QxH 2^^ is a transition function that maps a stateand an agent to a nonempty set of
choices, where each choice is a set of possible next states. Whenever the system is in state q,
each agent a chooses a set Qa € S{q,a). In this way, an agent a ensures that the next state
of the system will be in its choice Qa- However, which state in Qa will be next depends on
the choices made by the other agents, because the successor of q must lie in the intersection

riaeS Qa of the choices made by all agents. The transition function is non-blocking and the
agents together choose a unique next state state. Thus, we require that this intersection
always contains a unique state: assuming E = {oi,.. .,an}) then for every state q ^ Q and
every set Qi,...,Qn of choices Qi € 6(q,a,), the intersection Qi n ... n is a singleton.

The number of transitions of S is defined to be 1^(9? ®)1- two states q and q' and an
agent a, we say that q' is an a-successor of q if there exists a set Q' € 6{q, a) such that q' € Q'.
We denote by succ{q^a) the set of a-successors of q. For two states q and q^, we say that q' is
a successor of q if for all agents a € E, we have q' € succ{q^ a). Thus, q' is a successor of q iff
whenever the system S is in state 9, the agents in E can cooperate so that ^ will be the next state.
A computation of 5 is an infinite sequence X = - of states such that for all positions
i > 0, the state is a successor of the state 9,-. We refer to a computation starting at state q
as a q-computation. For a computation A and a position i > 0, we use A[i], A[0,i], and A[i,oo] to
denote the i-th state in A, the finite prefix qo-,qi," -, qi of A, and the infinite suffix g,-, 9,+i,... of A,
respectively.

Example 2.1 Consider a system with two processes a and 6. The process a assigns values to the
boolean variable x. When x = false^ then a can leave the value of x unchanged or change it to
true. When x = true, then a leaves the value of x unchanged. In a similar way, the process 6
assigns values to the boolean variable y. When y = false, then 6 can leave the value of y unchanged
or change it to true. When y = true, then b leaves the value of y unchanged. We model the
composition of the two processes by the following ATS Sxy = (H, E,Q,7r,5):



n = {a;,y}.

S = {a,6}.

Q —{QyQyi^xiQxy}- The state q corresponds to a: = y = /a/se, the state qx corresponds to
X= true and y = false^and similarly for qy and qxy

• The labeling function ir :Q 2^ is therefore as follows:

- 7r(g) = 0.

- t(9x) = {x}.

- 7r(9y) = {y}-

- T^(qxy) = {x,y}.

• The transition function 6:Q x E —> 2^*^ is as follows:

- ^(g,a) = {{q,qy}Aqx,qxy}}'
- S{q,b) = {{q,qx},{qyiqxy}}-

- b[qx,a) = {{9r?9xy}}*

- b{qxib^ —{{9? 9r}j 9xj/}}*

- ^(9y,a) = {{9.9y}>{9x,9xy}}.
- ^(9y,t)= {{qy^qxy}}'
- ^(^xy?®) —{{9x1 9xy}}*

- b{qxy,b) = {{9y5 9xy}}'

Consider, for example, the transition ^(9,0). As the process a controls only the value of x,
and can change its value from false to true^ the agent a can determine whether the next state
of the system will be some q' with x € 7r(g') or some q' with x ^ 7r(g'). It cannot, however,
determine the value of y. Therefore, S{q^a) = {{9»9y}5{9x?9xy}}» letting a choose between
{q^qy} and {9x,9xy}5 yet leaving the choice between q and in the first case, and between
qx and qxy^ in the second case, to process b.

Consider the state qx- While the state qy is a 6-successor of qx, the state qy is not an a-successor
ofqx- Therefore, the state qy is not a successor of9^: when the system is in state qx, the processes
a and 6 cannot cooperate so that the system will move to qy. On the other hand, the agents can
cooperate so that the system will stay in state qx or move to qxy- By similar considerations, it
follows that the infinite sequences 9,9,9x,9x,9x»9xy 9?9y»9y»9xy a-nd q,qxy are three possible
^-computations of the ATS Sxy-

Now suppose that process b can change y from false to true only when x is already true.
The resulting ATS = (n,£,Q,7r,(5') differs from Sxy only in the transition function: 6\q,b) =
{{9,9a:}}, and in all other cases 6' agrees with S. While q, q, qx, qx-, qx-, 9xy ^ possible g-computation
of the ATS S'xy, the sequences 9,9y,9y?9xy and q,qxy are not.

Third, suppose that process 6 can change y from false to true either when x is already true,
or when simultaneously x is set to true. The transition function of the resulting ATS S^y —
(n,E,Q,7r,0 differs from 6 only in 6'\q,b) = {{9,9x},{9,9xy}}. In state q, if process 6 decides
to leave y unchanged, it chooses the first option {9,9x}- If, on the other hand, process 6decides to
change the value ofy to true provided that x is simultaneously changed to true by process a, then b



chooses the second option {g,g®y}}. Then q,q,qx,Qx,qx,Qxy are possible ^-computations
of the ATS S'Jy, while q,qy,qy,q^y is not.

Finally, suppose we consider process 6 on its own. In this case, we have two agents, 6 and env,
where env represents the environment, which may, in any state, change the value of x arbitrarily.
The resulting ATS S"y = has the set S'" = {6, env} ofagents and the foUowing
transition relation:

• ^"'{q,b) = 6"'{qx,b) = {{g,9x},{9y,9xy}}.

• '̂"(qy^b) = 6"\qj:y,b) = {{qy.qxy}}-

• 6"'(q, env) = 6"'{qx, env) = 6'"{qy, env) = 6"'{qxy, env) =
{{9? qy}i {?){9x)9xy}j{9x)9y}}*

•

An ordinary labeled transition system, or Kripke structure, is the special case of an ATS where
the set E = {sys} of agents is a singleton set. In this special case, the sole agent sys can always
determine the successor state: for 2l11 states q ^ Q, the transition 6{q,sys) must contain a nonempty
set of choices, each of which is a singleton set.

2.2 Synchronous ATS

In this section we present two specicd cases of alternating transition systems. Both cases correspond
to a synchronous composition of agents.

Turn-based synchronous ATS

In a turn-based synchronous ATS, at every state only a single agent is scheduled to proceed and that
agent determines the next state. It depends on the state which agent is scheduled. Accordingly,
an ATS is turn-based synchronous if for every state q £ Q, there exists an agent € E such that
6{q, Og) is a set of singleton sets and for all agents b € E\{a,}, wehave 6{q, b) = {Q}. Thus, in every
state q only the agent a, constrains the choice of the successor state. Equivalently, a turn-based
synchronous ATS can be viewed as a 6-tuple 5 = (11, E,Q,7r,a, .R), where a : Q E maps each
state q to the agent a, that is scheduled to proceed at q, and R C Q x Q is a total transition
relation. Then q' is a successor of q iff R(q,q').

Example 2.2 Consider the ATS Si = (n,E,Q,7r,^) shown in Figure 1:

• n = {out.of.gate, iu-gate, request,grant].

E = {train, ctr).

Q = {90,91,92,93}.

- 7r(9o) = {out_of_gate}.

- 'K(qi) = {out.of.gate, request].

- 7r(g2) = {out_of.gate,grant}.

- Triqs) = {in_gate}.

- S{qQ, train) = {{90}, {91}}-



out.oLgate

in.gate

ctr

out-of-gate
request

out.of-gate
grant

ctr train

Figure 1: A trziin controller as a turn-based synchronous ATS

- ^(gi, ctr) = {{90}, {91},{92}}.

- 6(92, train) = {{90}, {93}}.

- 6(93, ctr) = {{90}, {93}}-

- ^(9o, ctr) = 6(91, train) = S(q2, ctr) = 6(93, train) = {Q}.

Since 5i is a turn-based synchronous ATS, its transition function S induces an assignment of agents
to states: cr(9o) = <t(92) = train and o"(9i) = (7(93) = ctr. The ATS describes a protocol for a train
entering a gate at a railroad crossing. At each moment, the train is either out-of^ate or in.gate.
In order to enter the gate, the train issues a request, which is serviced (granted or rejected) by the
controller in the next step. After a grant, the train may enter the gate or relinquish the grant.
The system has two agents: the train and the controller. Two states of the system, labeled ctr, are
controlled; that is, when a computation is in one of these states, the controller chooses the next
state. The other two states are not controlled, and the train chooses successor states. •

Lock-step synchronous ATS

In a lock-step synchronous ATS, the state space is the product of local state spaces, one for each
agent. Then, in every state, all agents proceed simultaneously. Each agent determines its next local
state, possibly dependent on the current local states of the other agents but independent of the
choices taken by the other agents. Accordingly, an ATS is lock-step synchronous if the following
two conditions are satisfied:

1. The state space has the form Q = IIogEQa- Given a (global) state 9 € Q and an agent a eTi,
we write q[a] for the component of 9 local to a. Then, assuming E = {ai,..., a„}, every state
has the form 9 = (9(01],.. •,9[an])-

2. For every state 9 € Q and every agent a € (r, there exists a set {91,. ..,9A:} C of states
local to a such that 6{q,a) = {Qi,...,Qfc} for Qi = {9 € Q | q[a] = 9t}. Thus, while the
agent a can determine its next local state, it cannot determine the next local states of the
other agents.

Equivalently, the transition function 6 can be replaced by a set of local transition functions 6a -
Q —^ 2^°, one for each agent a G E and all of them total. Then q' is a successor of 9 iff for all
agents a 6 E, we have q'[a] G ^0(9)-

8



Example 2.3 The ATS Sxy from Example 2.1 is lock-step synchronous. To see this, note that its
state space Q = can be viewed as the product of Qa = {w,Ux} and Qh = {v,%}
with q = (u,u>, qx = {ux,v), qy = {u,Uy), and qxy = {«x,Vy). The local transition functions are as
follows:

Sa{q) = Sa(qy) = {u,Ux}.

^a(9x) —^a(qxy) —

Sb(q) = Sb(qx) = {v,Vy}.

^b(qy) —^b(qxy) —{^y}*

Also the ATS S^y from Example 2.1 is lock-step synchronous, but the ATS S^y and S^y are not.
For S^y, this is because the ability of process b to change the value of y depends on what process
a does at the same step. D

2.3 Fair ATS

When systems are modeled as ordinary transition systems, to establish liveness properties, it is
often necessary to rule out certain infinite computations that ignore enabled choices forever. For
instance, in an asynchronous system consisting of many processes, we may like to restrict attention
to the computations in which all the processes take infinitely many steps. Such assumptions can be
incorporated in the model by adding fairness conditions. Motivated by similar concerns, we define
fairness conditions for ATS.

A fairness condition for the ATS S = (11, S,Q,7r,6) is a set of fairness constraints for 5", each
defining a subset of the transition function. More precisely, a fairness constraint for 5 is a function
7 : Q XS —> 2^^ such that 7(9,0) C 6{q,a) for all states q ^ Q and all agents a G S. As
with ordinary transition systems, a fairness condition partitions the computations of an ATS into
computations that are fair and computations that are not fair. We elaborate on two interpretations
for fairness constraints. Consider a computation A = 90,9i, 92, • • •of the ATS 5, a fairness constraint
7 : Q XS —> 2^^ for 5, and an agent a € S. We say that 7 is a-enabled at position i > 0 of Aif
1(91^0.) ^ 0- We say that 7 is a-taken at position i of Aif there exists a set Q' G7(9t,a) such that
9t+i € Q'. The two interpretations for fairness constraints are defined with respect to a set A C E
of agents as follows:

• The computation A is weakly {f, A)-fair if for each agent a G A, either there are infinitely
many positions of A at which 7 is not a-enabled, or there are infinitely many positions of A
at which 7 is a-taken.

• The computation Ais strongly (7, A)-fair if for each agent a G A, either there are only finitely
many positions of A at which 7 is a-enabled, or there are infinitely many positions of A at
which 7 is a-taken. With these standard definitions, strong fairness implies weak fairness.

Now, given a fairness condition F for the ATS 5 and a set A C E of agents, the computation A
is weakly/strongly {T, A)-fair ii A is weakly/strongly (7,A)-fair for all fairness constraints 7 G F.
Note that for every fairness condition F and every set A of agents, each prefix of a computation of
S can be extended to a computation that is strongly (F, A)-fair. Note also that a computation A
is weakly/strongly (F, Ai UA2)-fair, for Ai, A2 C E, iffAis weakly/strongly both (F, Ai)-fair and
(F, A2)-fair,



Example 2.4 Consider the ATS Sxy from Example 2.1 and the fairness condition Ty = {7} with
the fairness constraint 7(9,6) = 7(9x56) = {{9yi9xi/}} (we specify only the nonempty values of a
fairness constraint). All computations of the ATS Sxy are strongly (Fy, {a})-fair. However, only
computations in which the value of the variable y is eventually true are weakly or strongly (Fy, {6})-
fair or, for that matter, (Fy, {a,6})-fair. This is because, as long as the value of y is false, the ATS
Sxy is either in state 9 or in state 9x. Therefore, as long as the value of y is false, the fairness
constraint 7 is 6-enabled. Thus, in a fair computation, 7 will eventually be 6-taken, changing the
value of y to true. D

As with ordinary transition systems, fairness enables us to exclude some computations of an ATS.
In particular, fairness enables us to model asynchronous systems.

Turn-based asynchronous ATS

In a turn-based asynchronous ATS, at every state only a single agent determines the next state.
However, unlike in a turn-based synchronous ATS, the state does not determine which agent is
scheduled to proceed. Rather, a turn-based asynchronous ATS has a designated agent sch, which
represents a scheduler. The scheduler sch proceeds at aU states and determines one other agent
to proceed with it. That other agent determines the next state. Fairness constraints are used to
guarantee that the scheduling policy is fair. Accordingly, an ATS is turn-based asynchronous if
there exists an agent sch e S and for every state q e Q and every agent a e E\{scJi}, there exists
a local transition function 6a : Q 2^ such that the following four conditions are satisfied:

1. For all states q £ Q and all agents a, 6 6 S \ {sch}, if a ^ 6 then 6a(q) H6^(9) = 0. We say
that agent a is enabled in state 9 if 60(9) ^ 0.

2. For all states q ^ Q, we have 6{q,sch) = {60(9) 1the agent a GS \ {sch} is enabled in 9}.
That is, if the scheduler sch chooses the option 6a(q), the agent a is scheduled to proceed in
state 9.

3. For all states q £Q and all agents a GE \ {sch} that are not enabled in 9, we have 6(9, a) =
{Q}. That is, if the agent a is not enabled, it does not influence the successor state.

4. For all states 9 GQ and all agents a G S \ {sch} that are enabled in 9, assuming 60(9) =
{9i5- we have 6{q,a) = {{Q\6a{q))U{qi],.. .,{Q\6a{q))li{qk}}. That, if the agent a
is enabled in state 9, it chooses a successor state in 60(9) provided it is scheduled to proceed.
If, however, a is not scheduled to proceed in 9, then it does not influence the successor state,
which must lie in Q \ 6a{q) because of the first condition.

Equivalently, a turn-based asynchronous ATS can beviewed asa 6-tuple 5 = (H, S\{sch}, Q,tt,R,o),
where R C Q x Q is a total transition relation, and <7 : R -> S \ {5} maps each transition to an
agent. Then 6a(q) = {9' G Q | R{q,q') and <7(9,9') = <^}- Note that, while in a turn-based syn
chronous ATS we label states with agents, in a turn-based asynchronous ATS we label transitions
with agents.

In order to ensure fairness of the scheduler, we impose a fairness condition F = {70 | a G
S \ {sch}} with a turn-based asynchronous ATS. The fairness condition F contains a fcdrness
constraint 7a for each agent a different from sch, which ensures that the scheduler does not neglect
a forever. For aU states 9 G Q, we have 7a(9,sch) = {60(9)} and for aU agents 6 G S \ {sch}
(possibly 6 = a), we have 7a(9,6) = 0. Then, a computation Ais weakly (7a, {sch})-fair iff either
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Figure 2: A send protocol as a turn-based asynchronous ATS

there are infinitely many positions of Aat which the agent a is not enabled, or there are infinitely
many positions of A at which a is scheduled to proceed. Similarly, A is strongly (7a,{scii})-fair
iff either there are only finitely many positions of A at which the agent a is enabled, or there are
infinitely many positions of A at which a is scheduled to proceed.

Example 2.5 As an example of a turn-based asynchronous ATS consider the modeling of the
sender process of the alternating-bit protocol shown in Figure 2. There are two agents, the sender
and the environment. In the initial state go, only the sender is enabled, and it chooses either to
stay in go or to move to state gi. The transition from go to gi corresponds to sending a message
tagged with the bit 0. In state gi the sender is waiting to receive an acknowledgment. Both agents
are enabled, and the scheduler chooses one of them. The sender, if scheduled to proceed in state 91,
continues to wait. Each environment transitions correspond to the reception of an acknowledgment
by the sender. If the acknowledgment bit is 0, the sender proceeds to toggle its bit by moving to
state 92) and if the acknowledgment bit is 1, the sender attempts to resend the message by moving
back to state 90- This phenomenon is modeled by letting the environment, when scheduled in
state 9i, choose between 90 and 92. State 91 is similar to state 90, and 93 is similar to 91.

Formally, Q = {90) 91)92)93} and E = {sender, env,scii}. The set 11 contains four propositions:
sendO is true in state 90, waitO is true in state 91, sendl is true in state 92, and waitl is true in
state 93. The local transition functions are as follows:

• ^sender (90) = {90)9i}-

• ^env(9o) = 0*

• ^sender (91) ~ {9i}*

• ^env(9i) = {90)92}-

• ^senderi^"^) = {92)93}-

• ^env(92) = 0-

• ^sender (93) = {93}-

• ^env(93) = {90)92}-

These local transition functions induce the foUowing transition function:
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• ^(9o,scli) = {{9o,9i}}.

• 6{qo, sender) = {{90,92,93}, {91,92,93}}-

• 6(90, env) = {{50,91,92,93}}-

• %i,scii) = {{gi}, {90,92}}-

• %i, sender) = {{90,92,93,9i}}-

• ^(9i,env) = {{91,93,90}, {91,93,92}}-

• 6(92,sch) = {{92,93}}-

• 6{q2, sender) = {{90,91,92}, {90,9i, 93}}-

• ^(92,env) = {{90,91,92,93}}-

• ^(93,scli) = {{93}, {90,92}}-

• 6(93, sender) = {{90,91,92,93}}-

• 6(93,env) = {{9i,93,9o},{9i,93,92}}-

The weak-fairness constraint "fenv ensures that if the sender is waiting in state qi or 92, it will
eventually receive an acknowledgment:

• lenv(qi,sch) = 7env(93, sch) = {{90,92}}

(we specify only the nonempty values of a fairness constraint). The assumption that the envi
ronment does not keep sending incorrect acknowledgments forever, which ensures progress of the
protocol, can be modeled by a strong-fairness constraint 7':

• 7'(9i,env) = {{91,93,92}}-

• 7'(93,eiiv) = {{91,93,90}}.
•

3 Alternating-time Temporal Logic

3.1 ATL Syntax

The temporal logic ATL {Alternating-time Temporal Logic) is defined with respect to a finite set
11 of propositions and a finite set S of agents. An ATL formula is one of the following:

(81) p, for propositions p 6 11.

(82) -i<p or v^i V(p2, where ip, <pi, and (p2 are ATL formulas.

(S3) {(A))0(p, ((A))Dv>, or {(A))(pi W(p2, where A C S is a set of agents, and (p, <pi, and (p2 are ATL
formulas.

The operator (( )) is a path quantifier, and O ("next"), • ("always"), and U ("until") are tem
poral operators. The logic ATL is similar to the branching-time temporal logic CTL, only that
path quantifiers are parameterized by sets of agents. Sometimes we write ((ai,.. .,a„)) instead of
(({oi,.. .,an})). Additional boolean connectives are defined from -« and V in the usual manner. As
in CTL, we write {{A))0(p for {{A))true Up.
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3.2 ATL Semantics

We interpret ATL formulas over the states of a given ATS S that has the same propositions and
agents. The labeling of the states of S with propositions is used to evaluate the atomic formulas
of ATL. The logical connectives and V have the standard interpretation. To evaluate a formula
of the form {{A))ip at a state q of 5, consider the following two-player game. The game proceeds
in an infinite sequence of rounds, and after each round, the position of the game is a state of 5.
The initial position is q. Now consider the game in some position u. To update the position, first
the protagonist chooses for every agent a € A, a set Qa € ^(u, a). Then, the antagonist chooses a
successor u of u such that u € Qo for all a € A, and the position of the game is updated to v. In
this way, the game continues forever and produces a computation. The protagonist wins the game
if the resulting computation satisfies the subformula read as a linear temporal formula whose
outermost operator is O, •, or U. The ATL formula ({A))V' holds at the state q if the protagonist
has a winning strategy in this game.

In order to define the semantics of ATL formally, we first define the notion of strategies. Consider
an ATS S = (11, S, Q,tt,6). A strategy for an agent a 6 E is a mapping fa : Q'̂ 2^ such that for
all A € Q" and all q € Q, we have /a(A •q) G 6(q-,a). Thus, the strategy fa maps each finite prefix
A•q of a computation to a set in 6{q^a). This set contains possible extensions of the computation
as suggested to agent a by the strategy. Each strategy fa induces a set of computations that agent
a can enforce. Given a state q, a set A of agents, and a set = {/o | a 6 A} of strategies, one for
each agent in A, we define the outcomes of Fa from q to be the set out{q, Fa) of all q-computations
that the agents in A can enforce when they cooperate and follow the strategies in Fa; that is, a
computation A = qo,qi,q2,... is in out{q,FA) if qo = q and for all positions i > 0, the state q,+i is
a successor of q,- satisfying ^D-

We can now turn to a formal definition of the semantics of ATL. We write S,q \= <p ("state q
satisfies formula tp in the structure 5") to indicate that the formula (p holds at state q of S. When
S is clear from the context we omit it and write q \= <p. The relation |= is defined, for all states q
of 5, inductively as follows:

• For p € n, we have q |= p iff p 6 T^iq)-

• q \= iff q ^ p.

• g \= <Pi 92 iff Q\= y^i OT q \= p2-

• q 1= {{A))Op iff there exists a set Fa of strategies, one for each agent in A, such that for all
computations A€ out{q^FA)-, we have A[l] |= <p.

• q 1= ((A))Dcp iff there exists a set Fa of strategies, one for each agent in A, such that for all
computations A€ out{q,FA) and all positions i > 0, we have A[l] |= p.

• q 1= {{A))pi Up2 iff there exists a set Fa of strategies, one for each agent in A, such that for
all computations A6 out(q, Fa) there exists a position i > 0 such that A[i] \= p2 and for all
positions 0 < i < i, we have A[j] |= pi.

Note that the next operator O is local: q [= {{A))Op iff for each agent a G A there exists a set
Qa € Hg^d) such that for each state g' G Q^^ if is ^ successor of q, then q' |= p.

It is often useful to express an ATL formula in a dual form. For that, we use the path quantifier
[A|, for a set A of agents. While the ATL formula ((A))^ intuitively means that the agents in A can
cooperate to make V' true (they can "enforce" -0), the dual formula [A|0 means that the agents in
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A cannot cooperate to make ip false (they cannot "avoid" rf)). Using the path quantifier [ 1, we can
write, for a set A of agents and an ATL formula the ATL formula [A]l0<^ for the ATL formula

for -«((A))0-«9, and [A]0(^for -'{{A))D-t(^ (similar abbreviations can be defined
for the dual of the U operator). Let us make this more precise. For a state q and a set A of q-
computations, we say that the agents in A can enforce the set A ofcomputations if out{qyFA) C A
for some set Fa of strategies for the agents in A. Dually, we say that the agents in A can avoid the
set A of computations if ADout(q^ Fa) = 0 for some set Fa of strategies for the agents in A. If the
agents in A canenforce a set Aofcomputations, then the agentsin E\ A cannot avoid A. Therefore,
q 1= ((A))^ implies 9 |= [[E \ A|^. The converse of this statement is not necessarily true. To see
this, consider E = {a,6}, ^(9,0) = {{91,92},{93»94}} and 6{q,h) = {{91,93},{92,94}}, assuming
each state 9,- satisfies the proposition p, and no other propositions. Then 9 ^ {(a))0(pi VP4) and
9 [^]0(i^i VP4); that is, neither does a have a strategy to enforce 0(pi VP4) nor does h have a
strategy to avoid 0(pi VP4).

Example 3.1 Recall the turn-based synchronous ATS 5i from Example 2.2. Recall that in a
turn-based synchronous ATS, every state is labeled with an agent that determines the successor
state. In this simplified setting, to determine the truth of a formula with path quantifier ((A)), we
can consider the following simpler version of the ATL game. In every state u, if the agent scheduled
to proceed in u belongs to A, then the protagonist updates the position to some successor of u,
and otherwise, the antagonist updates the position to some successor of u. Therefore, every state
of S\ satisfies the following ATL formulas:

1. Whenever the train is out of the gate and does not havea grant to enter the gate, the controller
can prevent it from entering the gate.

(( ))n((out_of_gate A-ygrant) {{ctr))Oout.of.gate)

2. Whenever the train is out of the gate, the controller cannot force it to enter the gate.

(( ))D(ouf_of_gate —»• Ictr]nout_of_gate)

3. Whenever the train is out of the gate, the train and the controller can cooperate so the train
will enter the gate.

(( ))D(out_of_gate{{ctr,train))Oin.gate)

4. Whenever the train is out of the gate, it can eventually request a grant for entering the gate,
in which case the controller decides whether the grant is given or not.

(( ))D(out.of^ate ^ ((trafn))0(request A(((ctr))Ogrant) A(((ctr))n-•grant))

5. Whenever the train is in the gate, the controller can force it out in the next step.

(( ))D(jn_gate {{ctr))Oout.of-gate)

These natural requirements cannot be stated in CTL or CTL*. Consider the first two ATLformulas.
They provide more information than the CTL formula

\/0{out.of.gate —* 30out.of.gate).
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While the CTL formula only requires the existence of a computation in which the train is always out
of the gate, the two ATL formulas guarantee that no matter how the train behaves, the controller
can prevent it from entering the gate, and no matter how the controller behaves, the train can
decide to stay out of the gate. By contrast, since the train and the controller are the only agents
in this example, the third ATL formula is equivalent to the CTL formula

Vn (out.of.gate 30 innate).

•

Turn-based synchronous ATS

It is worth noting that in the special case of a turn-based synchronous ATS, the agents in A can
enforce a set A of computations iff the agents in E \ A cannot avoid A. Therefore, for all states
q of a turn-based synchronous ATS, q |= ((A)) '̂ iff 9 |= |S \ AJV*, or equivalently, [A] = ({E \ A)).
Due to this strong duality, over turn-based synchronous ATS, we can define the temporal operator
• from O: ((A))D^ = P \ A|nyj = -i[A]|0-«(^ = -»((E \ A))0-i9.

Single-agent ATS

RecaU that a labeled transition system is an ATS with the single agent sys. In this case, which
is a special case of turn-based synchronous, there are only two path quantifiers: {{sys)) = [ 1 and
{{ )) = [sys|. Then each set out{q,{fsys}) of outcomes contains a single q-computation, and each
set ou<(9,0) of outcomes contains all q-computations. Accordingly, the path quantifiers {{sys)) and
{{ )) are equal, respectively, to the existential and universal path quantifiers 3 and V of the logic
CTL. In other words, over labeled transition systems, ATL is identical to CTL. We write, over
arbitrary ATS, 3 for the path quantifier {{E)), and V for the path quantifier |E]. This is because,
regarding 3^^, all agents can cooperate to enforce a condition iff there exists a computation that
fulfills ij)^ and regarding V^, all agents cannot cooperate to avoid ip iff all computations fulfill

3.3 Fair-ATL

Since fairness constraints rule out certain computations, in their presence we need to refine the
interpretation of formulas of the form {{A))'ip. In particular, in the Fair-ATL game we require the
antagonist to satisfy all fairness constraints. This leads us to the following definition. The logic
Fair-ATL has the same syntax as ATL. The formulas of Fair-ATL are interpreted over an ATS 5,
a fairness condition F for S, and a state q of S. The satisfaction relation 5,r, ^ |=f <fi ("state q
fairly satisfies formula 9 in the structure S with respect to fairness condition F") for propositions
and boolean connectives is defined as in the case of ATL. Moreover:

• g |=F {{A))09 iff there exists a set Fa of strategies, one for each agent in A, such that for all
{F,E \ A)-fair computations AG ou<(g,F>i), we have A[l] |=f 9-

q 1= {{A))09 iff there exists a set Fa of strategies, one for each agent in A, such that for all
{F, E \ A)-fair computations AGout{q^FA) and all positions i > 0, we have A[l] |= 9.

0 q {{A))(piU(p2 iff there exists a set Fa of strategies, one for each agent in A, such that
for aU {F,E \ A)-fair computations A G out{q^FA) there exists a position i > 0 such that
A[i] |=F 92 and for all positions 0 < j < i, we have X[j] |=f Vi-
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Note that the path quantifier {{A}) ranges over the computations that are fair only with respect to
the agents in S \ A. To see why, observe that once T contains a fairness constraint 7 for which there
exists an agent a € A such that 7(9,0) is nontrivial for some state q (that is, 0 C K{q,(i) C 6(9,0)),
the agents in A can enforce computations that are not (F, S)-fair. The above definition assures
that the agents in A do not accomplish their tasks in such a vacuous way, by violating fairness.

Example 3.2 Consider the ATS Si from Example 2.2. Unless the controller cooperates with the
train, there is no guarantee that the train eventually enters the gate:

9o ((train))Oin^ate

So suppose we add a fairness condition Fi = {7ctr} which imposes fairness on the control
decisions in state 91, namely, 7ctr(9ij^tr) = {{92}} (all other values of Jctr ^^e empty). If we
interpret Jdj- as a strong fairness constraint, then the train has a strategy to eventually enter the
gate:

9o |=F ((train))Oin^ate

To see this, whenever the train is in 90, let it move to 91. Eventually, due to the strong fairness
constraint, the controUer wiU move to 92. Then the train can move to 93. On the other hand, if
we interpret as a weak fairness constraint, cooperation between the train and the controller is
still required to enter the gate, and the Fair-ATL formula is not satisfied in 90. To see this, note
that the train cannot avoid the weakly (7ctri {tJ'ain, ctr})-fair computation 90,9i,9o?91? ••• ^

3.4 ATL*

The logic ATL is a fragment ofa more expressive logic called ATL*. There are two types offormulas
in ATL*: state formulas, whose satisfaction is related to a specific state, and path formulas, whose
satisfaction is related to a specific computation. Formally, an ATL* state formula is one of the
following:

(51) p, for propositions p 6 11.

(52) -i(p or <pi V(p2) where <p, (pi, and <p2 are ATL* state formulas.

(53) ((A))^, where A C E is a set of agents and ip is an ATL* path formula.

An ATL* path formula is one of the following:

(PI) An ATL* state formula.

(P2) -lip or ipi Vip2', where ip, ipi, and ip2 are ATL* path formulas.

(P3) Oip or ipiUip2', where ip, ipi, and ip2 are ATL* path formulas.

The logic ATL* consistsof the set of state formulas generated by the rules (Sl-3). The logic ATL* is
similar to the branching-time temporal logic CTL*, only that path quantification is parameterized
by agents. Additional boolean connectives and temporal operators are defined from V, O, and
U in the usual manner; in particular, <>ip — trueUip and Dip = -^O-yip. As with ATL, we use the
dual path quantifier lA^ip = -i((A))-^ip, and the abbreviations 3 = ((E)) and V = [E|. The logic
ATL can be viewed as the fragment of ATL* that consists of all formulas in which every temporal
operator is immediately preceded by a path quantifier.

The semantics of ATL* formulas is defined with respect to an ATS S. We write S,X ^ ip
to indicate that the path formula ip holds at computation A of the structure 5. The satisfaction
relation |= is defined, for all states 9 and computations Aof S, inductively as follows:
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• For state formulas generated by the rules (Sl-2), the definition is the same as for ATL.

• q \= {{A))'i}j iff there exists a set Fa of strategies, one for each agent in A, such that for all
computations A€ out{q,FA), we have A|= •0-

• A^ y? for a state formula (p iff A[0] |= ip.

• A [= -10 iff A 0.

• A 1= 01 V 02 iff A 1= 01 or A1= 02-

• A1= O0 iff A[l,oo] 1= 0.

• A [= 01^02 iff there exists a position i > 0 such that A[i,oo] |= 02 and for all positions
0 < i < we have A[j,oo] ^ 0i.

For example, the ATL* formula

((a))((OOreq) V(DOgrant))

asserts that agent a has a strategy to enforce computations in which only finitely many requests
are sent or infinitely many grants are given. Such a requirement cannot be expressed in CTL*
or in ATL. Since weak and strong fairness constraints can be expressed within ATL* (provided
appropriate propositions are available), there is no need for Fair-ATL*,

Remark 3.3 In the definitions of ATL and ATL*, the strategy of an agent may depend on an
unbounded amount of information, namely, the full history of the game up to the current state.
When we consider finite ATS, all involved games are u;-regular. Then, the existence of a winning
strategy implies the existence of a winning finite-state strategy [Rab70], which depends only on
a finite amount of information about the history of the game. Thus, the semantics of ATL and
ATL* with respect to finite ATS can be defined, equivalently, using the outcomes of finite-state
strategies only. This is interesting, because a strategy can be thought of as the paxaUel composition
of the system with a controller, which makes sure that the system follows the strategy. Then, for an
appropriate definition of parallel composition, finite-state strategies can be implemented using finite
ATS. Indeed, for the finite reachability games and generafized Biichi games of ATL, it suffices to
consider memory-free strategies [EJ88], which can be implemented as control maps (i.e., controllers
without state). This is not the case for ATL*, whose formulas can specify the winning positions of
Streett games [Tho95]. D

4 Symbolic Model Checking

4.1 ATL Symbolic Model Checking

The model-checking problem for ATL asks, given an ATS S = (11, S, Q, tt, and an ATL formula p,
for the set [(^] C Q of states of S that satisfy p. ATL Model checking is similar to CTL model
checking [CE81, QS81, BCM+90]. We present a symbolic algorithm, which manipulates state sets
of S. The algorithm is shown in Figure 3, and uses the foUowing primitive operations:

• The function Sub, when given an ATL formula p, returns a queue Sub(p) of subformulas of
p such that if pi is a subformula of p and p2 is a subformula of pi, then p2 precedes pi in
the queue Sub(p).

17



foreach ip' in Suh{<p) do
case (f' = p: [v?'] := Reg{p)
case (p' = -10: [ip'] := [true] \ [0]
case = 01 V02: [< '̂] := [0i] U[02]
case (p' = {{A))O0: [(p'] := Pre(A, [0])
case <p' = ((A)) 00:

/>:= [true]', r := [0];
while p %T do p := p n t; T := Pre(A, p) fl [0] od;
[p'] := p

case p' = ((A))0iZY02:
p := [false]', t := [02];
while T 2 /> do /> := /9 Ur; r := Pre(A, p) fl [0i] od;
[9'1 := P

end case

od;
return [</?].

Figure 3: ATL symbolic model checking

• The function Reg, when given a proposition p GIT, returns the state set [p].

• The function Pre, when given a set A C S of agents and a set r C Q of states, returns the set
containing aU states q such that whenever S is in state q, the agents in A can cooperate and
force the next state to lie in r. Formally, Pre(A,r) contains state q £ Q if[ for each agent
a € A there exists a set Qa € S{q, a) such that for each state q' € floe/l if q' is a successor
of q, then q' G t.

• Union, intersection, difference, and inclusion test for state sets.

These primitives can be implemented using symbolic representations, such as binary decision dia
grams, for state sets and the transition relation. If given a symbolic model checker for CTL, such
as SMV [McM93], only the Pre operation needs to be modified for checking ATL. In the special
case that the ATS 5 is turn-based synchronous, the computation of the function Pre used in the
symbolic model checking is particularly simple. Recall that in this case, (r{q) denotes the agent
that is scheduled to proceed in state q. Then, when given a set A of agents and a set r of states,
Fre(A,r) returns the set containing all states q such that either a(q) € A and some successor of q
is in r, or a{q) ^ A and all successors of q are in r.

4.2 Fair-ATL Symbolic Model Checking

We turn our attention to the model-checking problem for Fair-ATL: given an ATS S = (11, E, Q, tt, 0),
a fairness condition F for 5, and a Fair-ATL formula p, compute the set [<p]f of states of S that
fairly satisfy p with respect to F. We use the weak interpretation for F; the case of strong fairness
constraints can be handled similarly. Recall that to evaluate a formula of the form ((A))^, we need
to restrict attention to computations that satisfy all fairness constraints for agents not in A. To
determine which fairness constraints are satisfied by a computation, we augment the state space
by adding new propositions that indicate for each agent a G E and each fairness constraint 7,

18



whether or not 7 is o-enabled, and whether or not 7 is a-taken. For this purpose, we define the
ATS Sf = (Hf,

• For every agent a € S and every fairness constraint 7 6 F, there is a new proposition
(7,0, enaWed) and a new proposition (7,0, taken): IIf = 11 U(F x S x {enabied, taken}).

• The states of Sp correspond to the transitions of S: Qf = | 9' is a successor of q
in 5}.

• For every state {q,q') € Qf and every agent a E S, the transition ^f((9?9')'®) obtained
from 6{q\a) by replacing each state q" appearing in S(q',a) by the state {q',q"). For example,
if 6{qo,a) = {{91,92}, {93}}, then

^f({9. 90), a) = {{(90,9i), {90,92)}, {(90,93)}}-

• For every state (9,9') € Qf, we have

M{9,9')) = 'r(9)U {{7,a,enabled) I7(9,0) ^0}U
{(7,0, taken) \ there exists Q' G7(9,0) such that q' E Q'}.

Intuitively, a state of the form (9,9') in Sf corresponds to the ATS S being in state 9 with the
agents deciding that the successor of 9 will be q'. There is a one-to-one correspondence between
computations of 5 and 5f, and between strategies in S and Sf- The new propositions in F x II x
{enabled, taken} allow us to identify the fair computations. Consequently, evaluating formulas of
Fair-ATL over states of S can be reduced to evaluating, over states of 5f, ATL* formulas that
encode the fairness constraints in F.

Proposition 4.1 A state q of the ATS S fairly satisfies the Fair-ATL formula {(A)) '̂ with respect
to the fairness condition F iff for each agent a E A, there exists a set Qa E S(q,a) such that for
every successor q' ofq with q' E riag/i Qa> state (9,9') of the ATSSf satisfies the ATL* formula

U))i>P V Y 0D((7, a,enabled) A->(7,0, taken))).
'ver,aeE\>i

This proposition reduces Fair-ATL model checking to a special case of ATL* model checking. Rather
than presenting the model-checking algorithm for full Fair-ATL, we consider the sample formula
((A))Op, for a proposition p. Consider the following game on the structure Sf- When a state labeled
by p is visited, the protagonist wins. If the game continues forever, then the protagonist wins iff
the resulting computation is not weakly (F, E \ A)-fair. The winning condition for the antagonist
can therefore be specified by the LTL formula

•(-ip A f\ <>(-•{7, a,enabled) V(7, a, taken))).
76r,aeS\j4

This is a generalized Biichi condition. The set of winning states in such a game can be computed
using nested fixed points. To obtain an algorithm for this example, we note that the CTL* formula
3D(p AAi<kjt computed symbolically as the greatest fixpoint

vX.{p A30(pZy(pi ^pU{p2^ pUipk AA))))).

Consequently, the algorithm of Figure 4 computes the set p C Qf of winning states for the pro
tagonist. The function Prep is like Pre, but operates on the structure Sp. By Proposition 4.1, the
first projection of p gives the desired set [({A))Op]f Q Q of states in the original structure 5.
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p := [true]\ r := [-ip];
while p %T do

p :=pnr;

foreach 7 € F do
foreach a € E \ j4 do

p" := [p] n (([irue] \ /2ep({7,a, enabled))) UR€g{{'y,a, taken)))',
p' := [false]', r := [p] n p";
while t' ^ p' do p' := p' Ur'; r' := Frejr(E \ A,p') n [-ip]) od;
p := r';

od

od;
r := FreF(S\ A,p)n[-.p]

od;
return p := [true] \ r

Figure 4: Nested fixed-point computation for Fair-ATL symbolic model checking

5 Model-checking Complexity

We measure the complexity of the model-checking problem in two different ways: the joint com
plexity of model checking considers the complexity in terms ofboth the structure and the formula;
the structure complexity ofmodel checking (called "program complexity" in [VW86a]) considers the
complexity in terms ofthe structure, assuming the formula is fixed. Since the structure is typically
much larger than the formula, and its size is the most common computational bottle-neck [LP85],
the structure-complexity measure is of particular practical interest.

5.1 ATL Model-checking Complexity

Theorem 5.1 The model-checking problem for ATL is PTIME-complete, and can be solved in time
0{mC) for an ATS with m transitions and an ATL formula of length C. The structure complexity
of the problem is also PTIME-complete, even in the special case of turn-based synchronous ATS.

Proof. Consider an ATS S with m transitions and an ATL formula <p of length i. We claim
that the algorithm presented in Figure 3 can be implemented in time 0{m£). To see this, observe
that the size of Sub^ip) is bounded by i, and that executing each of the case statements in the
algorithm involves, at most, a calculation ofa single fixed point, which can be done in time linear
in m (see [Cle93]). Since reachability in AND-OR graphs is known to be PTIME-hard [Imm81],
and can be specified using the fixed ATL formula ((a))Opinterpreted over a turn-based synchronous
ATS, hardness in PTIME, for both the joint and the structure complexity, is immediate. •

It is interesting to compare the model-checking complexities of turn-based synchronous ATL and
CTL. While the two problems can be solved in time 0{mi) [CES86], the structure complexity
of CTL model checking is only NLOGSPACE-complete [BVW94]. This is because CTL model
checking is related to graph reachability, whereas turn-based synchronous ATL model checking is
related to AND-OR graph reachability.
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5.2 Fair-ATL Model-checking Complexity

As in Section 4.2, we consider the case of fairness constraints.

Theorem 5.2 The model-checking problem for Fair-ATL is FTIME-complete, and can be solved
in time 0{m^n'̂ c^£) for a fair ATS with m transitions and n agents, c weak fairness constraints,
and an ATL formula of size i. The structure complexity of the problem is also PTIME-complete.

Proof. Consider an ATS S with m transitions, n agents, and c weak fairness constraints. Let (p
be a Fair-ATL formula. Each state of S is labeled with each subformula of (p, starting with the
innermost subformulas. Let us consider the case corresponding to a subformula of the form {{A))09
(the cases corresponding to • and U are similar). As described in Section 4.2, we first construct
the ATS S', and the truth of {{A))09 can be evaluated by solvinga generalized Biichi game over the
structure S'. The number of transitions in S' equals m. Note that the winning condition for the
antagonist corresponds to visiting, for each fairness constraint 7 and each agent a ^ A, infinitely
often a state satisfying (7,0, taken) V a, enabled). Thus, there are cn Biichi constraints. Since
the complexity of solving Biichi games is quadratic (use the nested fixed-point computation of
Figure 4), the cost of processing a temporal connective is O(m^n^c^). This concludes the upper
bound. Since the model-checking problem for ATL is a special case of the model-checking problem
for Fair-ATL (with F = 0), hardness in PTIME follows from Theorem 5.1. •

5.3 ATL* Model-checking Complexity

We have seen that the transition from CTL to ATL does not involve a substantial computational
price. In this section we consider the model-checking complexity of ATL*. While there is an
exponential price to pay in model-checking complexity when moving from CTL to CTL*, this price
becomes even more significant (namely, doubly exponential) when we consider the alternating-time
versions of both logics.

Before we discuss ATL* model checking, let us briefly recall CTL* model checking [EL85]. The
computationally difficult case corresponds to evaluating a state formula of the form 3^5 for
LTL formula The solution is to construct a Biichi automaton A that accepts all computations
that satisfy tj). To determine whether a state q satisfies the formula 3^, we need to check if some
^-computation is accepted by the automaton A, and this can be done by analyzing the product
of A with the structure. The complexity of CTL* model checking reflects the cost of translating
LTL formulas to w-automata. In case of an ATL* state formula {{A))ip, the solution is similar,
but requires the use of tree automata, because satisfaction corresponds to the existence of winning
strategies. Therefore, model checking requires checking the nonemptiness of the intersection of two
tree automata: one accepting trees in which all paths satisfy and the other accepting trees that
correspond to possible strategies of the protagonist.

In order to solve the model-checking problem for ATL*, we first define the notion of execution
trees. Consider an ATS 5, a set A of agents, and a set = {fa | a € A} of strategies for the
agents in A. For a state q of 5, the set out{q, Fa) of g-computations is fusion-closed, and therefore
induces a tree ea:ec(g, F>i). Intuitively, the tree exec{q,FA) is obtained by unwinding S starting
from q according to the successor relation, while pruning subtrees whose roots are not chosen by
the strategies in Fa- Formally, the tree exec(q,FA) has as nodes the following elements of Q":

• q IS a node (the root).

• For a node X•q' 6 Q*, the successor nodes (children) of X-q' are all strings of the form
X' q'' q", where q" is a successor of q' and q" € na€>i ' 9')-
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A tree tis a (g,A)-execution tree if there exists a set Fa of strategies, onefor each agent in A, such
that t = exec{q,FA)'

Theorem 5.3 The model-checking problemfor ATL* is 2EXPTIME-complete, even in the special
case of turn-based synchronous ATS. The structure complexity of the problem is PTIME-complete.

Proof. Consider an ATS S and an ATL* formula ip. Asin the algorithmfor CTL* modelchecking,
we label each state 5 of 5 by all state subformulas of y? that are satisfied in q. We do this in a
bottom-up fashion, starting from the innermost state subformulas of (p. For subformulas generated
by the rules (Sl-2), thelabeling procedure isstraightforward. For subformulas p' generated by (S3),
we employ the algorithm for CTL* module checking [KV96] as follows. Let q>' = {{A))tJ); since the
satisfaction of all state subformulas of V' has already been determined, we can assume that ip is an
LTL formula. We construct a Rabin tree automaton that accepts precisely the trees satisfying
the CTL* formula V^, and for each state 9 of 5, we construct a Biichi tree automaton As,q,A
that accepts precisely the {9, A)-execution trees. The automaton has states and
Rabin pairs [ES84]. The automaton As,q,A has \Q\ states. The product of the two automata
and As,q,A is a Rabin tree automaton that accepts precisely the {9, A)-execution trees satisfying

Hence, q |= {{A))ip iff the product automaton is nonempty. The nonemptiness problem for
a Rabin tree automaton with n states and r pairs can be solved in time 0{nr)^^ [EJ88, PR89a].
Hence, labeling a single state with p' requires at most time (|C |̂ . = |g|2 Since
there are \Q\ states and at most |( |̂ subformulas, membership in 2EXPTIME follows.

For the lower bound, we use a reduction from the realizability problem for LTL [PR89a], which
is shown to be 2EXPTIME-hard in [Ros92]. In this problem, we are given an LTL formula ip over
a set n of propositions and we determine whether there exists a turn-based synchronous ATS 5
with two agents, sys and env, such that

1. the transitions in 5 alternate between sys states and env states,

2. every env statehas 2^^ successors, each labeled by a different subset of2^, and

3. some state of S satisfies {{sys))tp.

Intuitively, a state of S that satisfies {{sys))ip witnesses a strategy of the system to satisfy ip irre
spective of what the environment does. Let 5n be the maximal two-agent turn-based synchronous
ATS over H that alternates between sys and env states:

•S'n = (11, {sys, env},2" x {s,e},7r,c7,(2" x {s}) x (2^ x {e})U (2^ x {e}) x (2^ x {5})),
where for every w C H, we have 7r((u;,s)) = 7r((u;,e)) = ly, a((iu,s)) = {sys}, and a({w^e)) =
{env}. It is easy to see that 'tp is realizable iff there exists some state in S'n that satisfies {{sys))ip.
Since the 2EXPTIME lower bound holds already for LTL formulas with a fixed number of propo
sitions, the size of Sn is fixed, and we are done.

The lower bound for the structure complexity of the problem follows from Theorem 5.1, and
the upper bound follows from fixing |0| in the complexity analysis of the joint complexity above.

•

6 Beyond ATL*

In this section we suggest two more formalisms for the specification of open systems. We compare
the two formalisms with ATL and ATL* and consider their expressiveness and their model-checking
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complexity. Given two logics Li and L2, we say that the logic Li is as expressive as the logic L2
if for every formula (p2 of £2^ there exists a formula <^1 of Li such that ip\ and ^-re equivalent
(i.e., they are true in the same states of each ATS). The logic Li is more expressive than L2 if
is as expressive as L2 and L2 is not as expressive as Li.

6.1 The Alternating-time ^-Calculus

The formulas of the logic AMC {Alternating-time p-Calculus) are constructed from propositions,
boolean connectives, the next operator O, each occurrence parameterized by a set of agents, as well
as the least fixed-point operator p. Formally, given a set 11 of propositions, a set V of propositional
variables, and a set S of agents, an AMC formula is one of the following:

• p, for propositions p 6 H.

• A", for a propositional variables A € V.

• -«(p or <pi V where (p, <pi, and ^2 a-r® AMC formulas.

• ((A))0<p, where A C S is a set of agents and (p is an AMC formula.

pA.p, where p is an AMC formula in which all free occurrences of A (i.e., those that do not
occur in a subformula of p starting with pX) fall under an even number of negations.

The logic AMC is similar to the p-ccdculus of [Koz83], only that the next operator Ois parameterized
by sets of agents rather than by a universal or an existential path quantifier. Additional boolean
connectives are defined from -• and Vin the usual manner. As with ATL, we use the dual [A|Op =
->{(A))0-»p, and the abbreviations 3 = ((E)) and V= [SJ. As with the p-calculus, we write z/A.p
to abbreviate -ypX.-\(p. Using both the greatest fixed-point operator i/, the dual next operator
[AjO, and the connective A, we can write every AMC formula in positive normal form^ where
all occurrences of -1 are in front of propositions. An AMC formula p is alternation free if when
p is written in positive normal form, there are no occurrences of u (resp. p) on any syntactic
path from an occurrence of pX (resp. uX) to an occurrence of A. For example, the formula
pX.{p VpY.{X V((a))oy)) is alternation free; the formula vX.pY.{{p AA) V((a))oy) is not. The
alternation-free fragment of AMC contains only alternation-free formulas.

We now turn to the semantics of AMC. We first need some definitions and notations. Given an

ATS S = (n,E,Q,7r,6), a valuation V is a function from the propositional variables V to subsets
of Q. For a valuation V, a propositional variable A, and a set Q' C Q of states, we denote by
V[A := Q'] the valuation that maps X to Q' and agrees with V on all other variables. An AMC
formula p is interpreted as a mapping p*^ from valuations to state sets. Then, p'̂ (V) denotes the
set of states that satisfy the AMC formula p under the valuation V. The mapping p^ is defined
inductively as follows:

• For a proposition p GH, we have p'̂ (V) = {q ^ Q \p£ ""(g)}.

• For a propositional variable A GU, we have A'̂ (V) = V(A).

• (-9m = «\9^(v).

• (Vi VV2)^(V) = ¥'f(V)Uvf(V).

• (((A))Op)^(V) = {g GQ 1for each agent a GA, there exists a set Qa G^(9,0) such that for
each state q' Gnae>i ^ successor of 9, then
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. = n{«' C Q I := Q']) C Q'}.

Consider an AMC formula of the form iiX.tp. Then, given a valuation V, the subformula (p can be
viewed as a function h^y that maps each state set Q' CQ to the state set v?'̂ (V[A" := Q'])- Since
all free occurrences ofX fall under an even number ofnegations, the function h^y is monotonic;
that is, if Q' C Q"^ then h^y{Q) C h^yiQ")- Consequently, by standard fixed-point theory, the
function /1J5 has a least fixed-point, namely, {^{Q' C Q \ := Q']) CQ'}. Furthermore, if
each state has only finitely many successor states, the function h^y is continuous, and the least
fixed-point can be computed by iterative approximation starting from X = [false]:

= nC'lvyCI/oH)-
t>0

If the ATS S has only finitely many states, the intersection is finite, and the iterative approximation
converges in a finite number of steps.

A sentence of AMC is a formula that contains no free occurrences of propositional variables.
Sentences p define the same mapping for any and all valuations. Therefore, for a state 9 of 5
and a sentence v?, we write 5,9 |= y? ("state q satisfies formula p in structure 5") ilf 9 € p^. For
example, the AMC formula fiX {q V(p A((A))OA')) is equivalent to the ATL formula {{A))pUq.

AMC expressiveness

All temporal properties using the always and until operators can be defined as fixed points of next-
time properties. For closed systems, this gives the //-calculus as a generalization of temporal logics.
It is known that the //-calculus is more expressive than CTL*, and the alternation-free //-calculus
is more expressive than CTL. Similarly, and for the same reasons, AMC is more expressive than
ATL*, and its alternation-free fragment is more expressive than ATL.

Theorem 6.1 AMC is more expressive than ATL*. The alternation-free fragment of AMC is more
expressive than ATL.

Proof. The translation from alternating-time temporal logics to AMC is very similar to the
translation from branching-time temporal logics to //-calculus [EL86], with {{A))0 replacing 30.
We describe here the translation of ATL formulas to the alternation-free fragment of AMC. For
this, we present a function

g : ATL formulas —alternation-free AMC formulas

such that for every ATL formula </?, the formulas p and g(p) are equivalent. The function g is
defined inductively as foUows:

• For p G n, we have g{p) = p.

• gh'p) =

• 9(^1 VP2) = gi<pi) Vg{p2)-

• g{{W)Op) = {{A))Og{p).

• g{{{^))9i^^2) = pX.{f{p2)\/ {g(pi) A((A))OA')).
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To establish that AMC is more expressive than ATL*, and its alternation-free fragment is more
expressive than ATL, note that for a single-agent ATS, (alternation-free) AMC is the same as the
(alternation-free) /i-calculus, CTL* is the same as ATL*, and CTL is the same as ATL. •

The alternating-time /z-calculus, however, is not a natural and convenient specification language
for reasoning about open systems. Writing and understanding formulas in the //-calculus is hard
already in the context of closed systems, and in practice, designers avoid the nonintuitive use of
fixed points and prefer simple temporal operators (see [BBG"'"94]). Using AMC as a specification
language for open systems would require even more complicated formulas, with extra nesting of
fixed points, making the //-calculus even less appealing. So, just as CTL and CTL* capture useful
and friendly subsets of the //-calculus for the specification of closed system, ATL and ATL* capture
useful and friendly subsets of AMC for the specification of open systems. This is because ATL
and ATL* have as primitives parameterized path quantifiers, not just parameterized next-time
operators.

AMC model checking

Algorithms and tools for //-calculus model checking can be easily modified to handle AMC. Indeed,
the only difference between the //-calculus and AMC is the definition of the next operator, which
has a game-like interpretation in AMC. Hence, as in Section 4.1, the modification involves only the
Pre function. Therefore, the complexity of the model-checking problem for the //-calculus [EL86]
implies the following.

Theorem 6.2 The model-checking problem for the alternation-free fragment of AMC can be solved
in time 0{mi) for an ATS with m transitions and a formula of size i. The model-checking prob
lem for AMC can be solved in time for an ATS with m transitions and an formula of
alternation depth d> 1.

AMC and propositional logic of games

In [Par83], Parikh defines a propositional logic of games. Parikh's logic extends dynamic logics
(e.g., PDL [FL79]) in a way similar to the way in which AMC extends the //-calculus. The formulas
in Parikh's logic are built with respect to a set of atomic games, which correspond to the choices of
agents in an ATS. Cooperation between agentsand fixed-point expressions are specified in Parikh's
logic by the usual PDL operations, such as disjunction and iteration, on games. The alternation-
free fragment of AMC can be embedded into Parikh's logic. For example, the AMC formula
pX.pM {{a,b))OX corresponds to the formula ((aV6)*)p in Parikh's logic. In [Par83], Parikh's logic
is shown to be decidable and a complete set of axioms is given; the model-checking problem is not
studied.

6.2 Game Logic

The parameterized path quantifier ((A)) first stipulates the existence ofstrategiesfor the agents in A
and then universally quantifies over the outcomes of the stipulated strategies. One may generalize
ATL and ATL* by separating the two concerns into strategy quantifiers and path quantifiers, say,
bywriting 3A.V instead of{(A)) (read 3A as "thereexist strategies for the agents in A"). Then, for
example, the formula (p = 3A. (3D A 3Dpf) asserts that the agents in A have strategies such
that for some behavior of the remmning agents, is always true, and for some possibly different
behavior of the remaining agents, <p2 is always true.
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We refer to the general logic with strategy quantifiers, path quantifiers, temporal operators,
and boolean connectives as game logic (GL, for short). There are three types of formulas in GL:
state formulas^ whose satisfaction is related to a specific state of the given ATS S, tree formulas^
whose satisfaction is related to a specific execution tree of 5 (for the definition of execution trees,
recall Section 5.3), and path formulas^ whose satisfaction is related to a specific computation of 5.
Formally, a GL state formula is one of the following:

(Si) p, for propositions p € 11.

(82) -i<p or <pi V<p2» where <pi and <p2 are GL state formulas.

(S3) 3A.6, where A C E is a set of agents and 0 is a GL tree formula.

A GL tree formula is one of the following:

(Tl) <p, for a GL state formula (p.

(T2) or Oiy $2. where 6, 6i and $2 are GL tree formulas.

(T3) 3th, where ^ is a GL path formula.

A GL path formula is one of the following:

(PI) e, for a GL tree formula 6.

(P2) -Mp or tpi V1^2', where tp, tp\, and -02 «^re GL path formulas.

(P3) O0 or tpihltp2, where tp, tpi, and 02 a^re GL path formulas.

The logic GL consists ofthe set ofstate formulas generated by the rules (Sl-3). For instance, while
the formula <p from above is a GL (state) formula, its subformula 3D (pi A 30 ip2 is a tree formula.

We now define the semantics of GL. We write 5, q |= <p to indicate that the state formula <p
holds at state q of the structure S. We write 5, < ^ to indicate that the tree formula 6 holds
at execution tree t of the structure 5. We write S,t, X tp to indicate that the path formula tp
holds at infinite path Aof the execution tree t of the structure S (note that in this case, Ais a
computation of 5). If t is an execution tree of 5, and Ais a node of t, we write t(A) for the subtree
of t with root A. The satisfaction relation |= is defined inductively as follows:

• For formulas generated by the rules (Sl-2), the definition is the same as for ATL. For formulas
generated by the rules (T2) and (P2), the definition is obvious.

• q\= 3A.0 iflf there exists a set Fa ofstrategies, one for each agent in A, so that exec(q, Fa) |= 0.

• t [= (p for a state formula <p iff q [= (p, where q is the root of the execution tree t.

• t (= B0 for a path formula tp iff there exists a rooted infinite path Ain t such that t, A|= 0.

• t, A1= ^ for a tree formula 6 if[ t \= 0.

• t, A1= O0 iff <(A[0,1]), A[l, oo] 1= 0,

• t,A [= tpiUip2 iff there exists a position i > 0 such that t(A[0,z]), A[i,oo] [= 02 and for all
positions 0 < j < i, we have t(A[0, j]), A[7, oo] |= 0i.
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GL expressiveness

The logic ATL* is the syntactic fragment of GL that consists of all formulas in which every strategy
quantifier is immediately followed by a path quantifier (note that 3A. 3 is equivalent to 3). Since
the formula 3A. (3Dp A 3D q) is not equivalent to any ATL* formula, GL is more expressive than
ATL*.

Another syntactic fragment of GL is studied in module checking [KV96]. There, one consid
ers formulas of the form 3A. 6, with a single outermost strategy quantifier followed by a CTL or
CTL* formula $. Since the GL formula {(Ai)>0((A2))0p is not equivalent to any formula with a
single outermost strategy quantifier, GL is more expressive than module checking. Furthermore,
from an expressiveness viewpoint, alternating-time logics and module checking identify incom
parable fragments of game logic. In [KV96], it is shown that the module-checking complexity is
EXPTIME-complete for CTL and 2EXPTIME-complete for CTL*, and the structure complexity of
both problems is PTIME-complete. Hence, from a computational viewpoint, ATL is advantageous.

GL model checking

The model-checking problem for CTL* can be solved by repeatedly applying, in a bottom-up fash
ion, an LTL model-checking procedure on subformulas [EL85]. The same technique can be used in
order to solve the model-checking problem for GL by repeatedly applying the CTL* module-checking
algorithm from [KV96]. The complexity of CTL* module checking then implies the following.

Theorem 6.3 The model-checking problem for GL is 2EXPTlME-compleie. The structure com
plexity of the problem is PTIME-complete.

Thus, game logic is not more expensive than ATL*. We feel, however, that unlike state and path
formulas, tree formulas are not natural specifications of reactive systems.

7 Incomplete Information

According to our definition of ATL, every agent has complete information about the state of an
ATS. In certain modeling situations it may appropriate, however, to assume that an agent can
observe only a subset of the propositions. Then, the strategy of the agent can depend only on the
observable part of the history. In this section we study such agents with incomplete information.
Using known results on multi-player games with incomplete information, we show that this setting
is much more complex than the setting with complete information. Our main result is negative: we
show that the ATL model-checking problem is undecidable for cooperating agents with incomplete
information. We state this result for our weakest version of ATS, namely, turn-based synchronous
ATS.

7.1 ATS with Incomplete Information

A turn-based synchronous ATS with incomplete information is a pair (5, P) consisting of a turn-
based synchronous ATS S = {n,S,Q,7r,(T,P) and a vector P = {Ho | a € S} that contains sets
Ha C n of propositions, one for each agent in S. The observability vector P defines for each agent
a the set Hq of propositions observable by a. Consider an agent a € E. For a state q £ Q.,'we term
7r{q) n Hq the a-view of q. We write Qa = 2^° for the set of possible a-views, and T^a ' Q ^ Qa
for the function that maps each state to its a-view. The function tTq is extended to computations
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of S in the natural way: if A= qo,qi,q2,' • then 7ra(A) = Tra(qo),iCa(qi)','̂ a{q2)i'- - Two states q
and q' are a-stable if Tr(q) \ ira{q) = 7r(g') \ TTaiq')', that is, q and q' agree on all propositions that a
cannot observe. We require that the transition function of a can influence only propositions that
a can observe and is independent of propositions that a cannot observe. Formally, we require that
the following two conditions hold for <dl agents a € S and all states 91,91,52 € Q:

1. If o"(9i) = a and -R(9i,9i), then 91 and q[ are a-stable.

2. If cr(9i) = (7(92) = a and 7ra(9i) = 7ra(92) and R(qi,q[), then for every state 92 such that
Waiq'i) = ^0(92) Q2 and 92 are a-stable, we have ^2(92,92)-

In other words, the transition function ofagent a mapseach a-view ofa state in which a is scheduled
into a set of a-views of possible successor states. Accordingly, we deflne the relation i^o Q Qo XQa
such that Ra(v,v') iff for any and all a-stable states 9 and 9' with CT(q) = a and iTaiq) = v and
^a{q') = we have J?(9i,g2)-

7.2 ATL with Incomplete Information

When we specify properties of an ATS with incomplete information using ATL formulas, we restrict
ourselves to a syntactic fragment ofATL. To see why, consider the ATL formula {(a))Op for p ^Jla-
The formula requires agent a to have a strategy to eventually reach a state in which the proposi
tion p, which a cannot observe, is true. Such a requirement does not make sense. Consequently,
whenever a set of agents is supposed to attain a certain task, we require that each agent in the
set can observe the propositions that are involved in the task (this includes all propositions that
appear in the task as well as all propositions that are observable by agents appearing in the task).
Formally, given an observability vector P, we define for each ATL formula ip the set invp{(p) C 11
of involved propositions. The definition proceeds by induction on the structure of the formula:

• For p € n, we have invp{p) = {p}.

• invp{-^(p) = arg{ip).

• invp{ipi V92) = invp{(pi) U invp((p2)-

• invp{{{A))0<p) = invp{p) UIJae/i

• mup(((A))n<p) = invp{<p) U\JaeA Ha-

• invp{{{A))(pilip2) = invp{p2) Uinvp{(p2) UUogA ^a.

The ATL formula is well-formed with respect to the observability vector P if the following two
conditions hold:

1. For every subformulaof <p of the form {{A))O0 or ({A))0^ and for every agent a € A, we have
invp{6) C Ila.

2. For every subformula of <p of the form {{A))$il{62 and for every agent a G A, we have
inv{9\)\J inv{B2) C Hq.

Note that if the formula {{A))!^ is well-formed, then each agent in A can observe all propositions
that are observable by agents appearing in tp, but it may not be able to observe some propositions
that are observable by other agents in A.
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When weinterpret an ATLformula v? overa turn-based synchronous ATS (5, P) with incomplete
information, we require (p to be well-formed with respect to P. The definition of the satisfaction
relation is as in the caseofcompleteinformation (seeSection 3.2), except for the following definitions
of strategies and outcomes. Now, a strategy for an agent a € S is a mapping fa '• Qt Qa such
that for all X € and v,v' € Ho, we have Ra{v,v'). Thus, the strategy maps each a-view
of a finite computation prefix to the a-view of a possible successor state. Given a state g € Q, a set
A C E of agents, and a set = {/o | a GA} of strategies, one for each agent in A, a computation
A= qo,qi,q2i-- • is in an outcome in out(q,FA) if qo = q and for all positions i > 0, if ^(g,) € A,
then 7ra(g,+i) = /a('ro(A[0,y])) for a = ^(g,). Thus, for example, g 1= {{A))0(p iff either o-(g) € A
and there exists a or(g)-view vC!!<,(,) such that for all states q' with R{q^q') and T^a[q)(q') = v, we
have q' |= g?, ora{q) ^ Aand for all states q' with i2(g, g'), we have g' |= (p.

Theorem 7.1 The model-checking problem for ATL with incomplete information is undecidable,
even in the special case of turn-based synchronous ATS.

Proof. The outcome problem for multi-player games with incomplete information has been proved
undecidable by [Yan97]. This problem is identical to the model-checking problem for the ATL
formula ({A))Op on a turn-based synchronous ATS with incomplete information. •

We note that for Fair-ATL, proving undecidability is easier, and follows from undecidability results
on asynchronous multi-player games with incomplete information [PR79, PR90].

7.3 Single-agent ATL with Incomplete Information

Single-agent ATL is the fragment of ATL in which every path quantifier is parameterized by a
singleton set of agents. In this case, where agents cannot cooperate, the model-checking problem is
decidable also for incomplete information. There is an exponential price to be paid, however, over
the setting with complete information.

Theorem 7.2 The model-checking problem for single-agent ATL with incomplete information is
EXPTIME-complete. The structure complexity of the problem is also EXPTIME-complete, even in
the special case of turn-based synchronous ATS.

Proof. We start with the upper bound. Given a turn-based synchronous ATS (5, P) and an ATL
formula p, well formed with respect to P, we label the states of 5 by subformulcis of g), starting
as usual from the innermost subformulas. Since p is well-formed with respect to P, for each
subformula of the form ((a))the agent a can observe all labels that correspond to subformulas
of ((a))and we refer to these labels as observable propositions. For subformulas generated by
the rules (Sl-2), the labeling procedure is straightforward. For subformulas generated by (S3), we
proceed as follows. Given a state g of 5, and a well-formed ATL formula p' of the form ((a))Op,
((a))Dp, or ((a))piWp2? for agent a and observable propositions p,Pi,P2» we define a turn-based
synchronous ATS S' (with complete information) and a state g' of S' such that (5, P),g |= p' iff
S\q' 1= p'. Let 5 = (II,E,Q,7r,a', P), and let 11,^/ be the set of observable propositions in p' (then
fi^p! C Ila). In order to define 5"', we need the foUowing notations. First, we add to Ha a special
proposition pa that indicates if agent a is scheduled to proceed; that is, for all states g € we
have g 1= Pq iffa(g) = a. Let 11'̂ = Ha U{pa}. For a set CQ, an agent a GS, and an extended
a-view v C 11^, we define the v-successor of Qi as the set

^2 = {gz € Q 17ra(g2) = and there exists a state gi € C? such that P(gi,g2)};

29



that is, Q2 is the set of all states with extended a-view v that are successors of some state in Qi.
Now, S' = (n,^/,{a,6},Q',7r',a',i2') is defined as follows:

• Q' is the smallest set satisfying (1) {g} € Q' and (2) for all sets Qi GQ' and all a-views
VC njj, the v-successor of Qi is in Q'. Note that for all sets Qi € Q', if 91,92 ^ ^2, then 91
and 92 have the same a-view, and either agent a is scheduled to proceed in both 91 and 92,
or a is not scheduled to proceed in both 91 and 92. Hence, each state in Q' corresponds to a
set of states in Q that are indistinguishable by the agent a.

• For all sets Qi e Q\ if ^0(9) = v for any and all 9 € Qi, then —v.

• For all sets Qi 6 Q'-, if (^(q) = a for any and all 9 € Qi, then cr'{Qi) = a; otherwise,
(T'{Ql) = b.

• For all sets Qi,Q2 € Q', we have R'(Qi,Q2) iff

It is easy to prove that for each ofthe three types ofif' we have (5, P), 9 |= 5', {9} |= Since
the size of S' is exponential in the size of 5, membership in EXPTIME follows from Theorem 5.1.

For the lower bound, we observe that the model-checking problem for the ATL formula ((a))Op
on a turn-based synchronous ATS with the two agents a and b and incomplete information is
identical to the outcome problem for two-player games with incomplete information. The latter
problem is known to be EXPTIME-hard [Rei84]. D

8 Conclusions

Methods for reasoning about closed systems are, in general, not applicable for reasoning about
open systems. The verification problem for open systems, more than it corresponds to the model-
checking problem for temporal logics, corresponds, in the case of linear time, to the realizability
problem [ALW89, PR89a, PR89b], and in the case of branching time, to the module-checking
problem [KV96]; that is, to a search for winning strategies. Indeed, existing methods for the
verification ofopen systems could not circumvent the computational price caused by solving infinite
games. The logic ATL introduced here identifies a class of verification problems for open systems
for which it suffices to solve iterated finite games. The ensuing linear model-checking complexity for
ATL shows that despite the pessimistic results achieved in this area area sofar, there is still a great
deal of interesting reasoning about open systems that can be performed naturally and efficiently.

While closed systems are naturally modeled as labeled transition systems (Kripke structures),
we model open systems as alternating transition systems. In the case of closed systems, ATL
degenerates to CTL, Fair-ATL to Fair-CTL [CES86], and ATL* to CTL*. Our model-checking
complexity results are summarized in Table 1. All complexities in the table denote tight bounds,
where m is the size of the system and I is the length of the formula.
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