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What's Decidable About Hybrid Automata?*^

Thomas A. Henzinger^ Peter W. Kopke^ Anuj Puri^ Pravin Varaiya^

Abstract. Hybrid automata model systems with both digital and analog compo
nents, such as embedded control programs. Many verification tasks for such programs
can be expressed as reachabibty problems for hybrid automata. By improving on pre
vious decidability and undecidability results, we identify a precise boundary between
decidability and undecidability for the reachabibty problem of hybrid automata.

On the positive side, we give an (optimal) PSPACE reachabibty algorithmfor the case
of initiabzed rectangular automata, where ab analog variables foUow independent tra
jectories within piecewise-bnear envelopes and are reinitiabzed whenever the envelope
changes. Our algorithm is based on the construction ofa timedautomaton that contains
ab reachabibty information about a given initiabzed rectangular automaton. The trans
lation has practical significance for verification, because it guarantees the termination
of symbobc procedures for the reachabibty analysis of initiabzed rectangular automata.
The translation also preserves the w-languages of initiabzed rectangular automata with
bounded nondeterminism.

On thenegative side, we show that several sbght generabzations ofinitiabzed rectangular
automata lead to an undecidable reachabibty problem. In particular, we prove that
the reachabibty problem is undecidable for timed automata augmented with a single
stopwatch.

1 Introduction

A hybrid automaton [ACHH93, NOSY93] combines the discrete dynamics of a finite automaton
with the continuous dynamics of a dynamical system. Hybrid automata thus provide a mathe
matical model for digital computer systems that interact with an analog environment in real time.
Case studies indicate that the model of hybrid automata is useful for the analysis of embedded
software and hardware, including distributed processes with drifting clocks, real-time schedulers,
and protocols for the control of manufacturing plants, vehicles, and robots (see, for example,
[HRP94, ACH+95, HHWT95, HW95, NS95, AHH96, Cor96, HWT96, SMF97]). Two problems
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that are central to the analysis of hybrid automata are the reachability problem and the more
general a;-language emptiness problem. The solution of the reachability problem for a given hybrid
automaton allows us to check if the trajectories of the automaton meet a given safety requirement;
the solution to the w-language emptiness problem allows us to check if the trajectories of the au
tomaton meet a liveness requirement [VW86]. While a scattering of previous results show that both
problems are decidable in certain special cases, and undecidable in certain general cases, this paper
attempts a systematic characterization of the boundary between decidability and undecidability.

Hybrid automata generalize timed automata. Timed automata [AD94] equip finite automata with
clocks, which are real-valued variables that follow continuous trajectories with constant slope 1.
Hybrid automata equip finite automata with real-valued variables whose trajectories follow more
general dynamical laws. For each class of dynamical laws, we obtain a class of hybrid automata. A
particularly interesting class of dynamical laws confines the set of possible trajectories to piecewise-
linear envelopes. Suppose, for example, that the variable x represents the water level in a tank.
Depending on the position of a control valve (i.e., the state of a finite control automaton), the
water level either falls nondeterministically at any rate between 2 and 4 cm s~^, or rises at any rate
between 1 and 3 cm s~^. We model these two situations by the dynamical laws x € [-4,-2] and
X€ [1,3]—so-called rectangular flow constraints [PV94]—which enforce piecewise-linear envelopes
on the water-level trajectories. Rectangular-flow automata are interesting from a practical point of
view, as they permit the modeling of clocks with bounded drift and the conservative approximation
of arbitrary trajectory sets [OSY94, HH95, PBV96], and from a theoretical point of view, as they
lie at the boundary of decidability.

Our results are threefold. First, we give an (optimal) PSPACE algorithm for the reachability
problem of rectangular-flow automata with two restrictions: (1) the values of two variables with
different flow constraints are never compared; (2) whenever the flow constraint of a variable changes,
the value of the variable is reinitialized. Second, under the additional assumption of bounded
nondeterminism (which requires that the successor of a bounded region be bounded), we obtain
a PSPACE algorithm for checking a;-language emptiness of rectangular-flow automata. Third, we
prove that the reachability problem becomes undecidable if either one of the restrictions (1) and (2)
is relaxed, or if more general, triangular flow constraints are admitted.

The first two results are proven by translating rectangular-flow automata of dimension n into
timed automata of dimension 27i -f 1, where the dimension is the number of real-valued variables.
The translation preserves finite languages, and in the case of bounded nondeterminism, also w-
languages. In addition, the translation implies that, when applied to rectangular-flow automata
that meet restrictions (1) and (2), existing semidecision procedures for the reachability problem of
hybrid automata terminate. Such procedures have been implemented in the HyTech verification
tool [AHH96, HHWT97].

The third result is proven by reduction from the halting problem for two-counter machines. In an
attempt to characterize the undecidability frontier, we sharpen the reduction as much as possible.
First, we prove that any relaxation of restriction (1) leads to the undecidability of the reachability
problem for timed automata augmented with a single constant-slope variable whose slope is different
from 1. Second, we prove that any relaxation of restriction (2) leads to the undecidability of the
reachability problem for timed automata augmented with a single uninitialized two-slope variable,
such as a stopwatch, which is a variable whose slope is always either 0 or 1.

Previous work. Over the past few years, there have been many decidability and undecidability
results about hybrid systems; we list only those that led to the present work. The first decidability



result for hybrid automata was obtained for timed automata, whose reachability and w-language
emptiness problems are PSPACE-complete [AD94]. Under restrictions (1) and (2), that result was
later generahzed to automata with variables that run at any constant positive slopes [ACH+95],
and to the reachability problem for automata with nonstrict rectangular flow constrsiints [PV94].
In [BES93, KPSY93, BER94, MV94, BR95, ACH97], it was shown that, under various strong side
conditions, reachability is decidable for timed automata with one stopwatch, but the general prob
lem of one-stopwatch automata was left open. As far as undecidability results are concerned, in
[Cer92] it was shown that reachability is undecidable for timed automata with three stopwatches,
as well as for timed automata with one memory cell (a variable of constant slope 0) and assign
ments between variables. It was also known that reachability is undecidable for timed automata
with six memory cells and no assignments [AHV93], for timed automata with two three-slope
variables and restriction (1) [KPSY93], and for timed automata with two nonclock constant-slope
variables [ACH+95].

2 Rectangular Automata

A hybrid automaton of dimension n is an infinite-state machine whose state has a discrete part,
which ranges over the vertices of a graph, and a continuous part, which ranges over the n-
dimensional euclidean space R" [ACH"^95]. A run of a hybrid automaton is a sequence of edge
steps and time steps. During an edge step (also called jump), the discrete and continuous states
are updated according to a guarded command. During a time step (also called flow), the discrete
state remains unchanged, and the continuous state changes according to a dynamical law, say, a
differential equation. In this paper, we are concerned with decidability questions about hybrid au
tomata, and therefore consider restricted classes ofguarded commands and dynamical laws. This
leads us to the definition of rectangular automata.

Notation. We use the symbol R>o to denote the set {x GR | > 0} of the nonnegative reals. We
use the boldface characters x, y, and z for vectors in R", and subscripts on italic characters such
as Xi, yj, and Zk for components of vectors.

Rectangular regions

Given a positive integer n > 0, a subset of R" is called a region. A closed and bounded region
is compact. A region R C R" is rectangular if it is a cartesian product of (possibly unbounded)
intervals, all ofwhose finite endpoints are rational. We write R, for the projection ofR on the i-th
coordinate, so that R = n"=i Ri- The set of all rectangular regions in R" is denoted

Definition of rectangular automata

An n-dimensional rectangular automaton A consists of a directed multigraph {V,E),b, finite obser
vation alphabet E, three vertex labeling functions init: V —»• , inv: V —> 7^", andflow: V —»• 7^",
and four edge labeling functions pre : E —> 7^", post : E -+ 7^", jump : E and
obs: E —^ S. An n-dimensional rectangular automaton with e moves differs in that the function
obs maps E into S®, where E® = S U{e} augments the observation alphabet with the null obser
vation £ ^ E. When we discuss more than one automaton, we use the subscript A to identify the
components of A. For example, the vertex set of A may be denoted Va-

The initial function init specifies a set of initial automaton states. When the discrete state begins
at vertex v, the continuous state must begin in the initial region init{v). The preguard function pre.



the postguard function post, and the jump function jump constrain the behavior of the automaton
state during edge steps. The edge e = (v, w) may be traversed only if the discrete state resides at
vertex v and the continuous state lies in the preguard region pre(e). For each i in the jump set
jump(€), the i-th coordinate of the continuous state is nondeterministically assigned a new value in
the postguard interval post{e)i- For each i ^ jump{e), the i-th coordinate of the continuous state is
not changed and must lie in post{e)i. The observation function obs identifies every edge traversal
with an observation from S or S®. The invariant function inv and the flow function flow constrain
the behavior of the automaton state during time steps. While the discrete state resides at vertex v,
the continuous state nondeterministically follows a smooth (C°®) trajectory within the invariant
region inv{v), whose first time derivative remains within the flow region fiow{v). A rectangular
automaton with e moves may traverse e edges during time steps.

Note that if we replace rectangular regions with arbitrary linear regions in the definition of rect
angular automata, we obtain the linear hybrid automata of [AHH96]. Thus rectangular automata
are the subclass of linear hybrid automata in which all defining regions are rectangular.

Initialization and bounded nondeterminism

The rectangular automaton A is initialized if for every edge e = (v, it;) of A, and every coordinate
i € with flow{v)i ^ flow{w)i, we have i € jump(e). It follows that whenever the i-
th continuous coordinate of an initialized automaton changes its dynamics, as given by the flow
function, then its value is nondeterministically reinitialized according to the postguard function.

The rectangular automaton A has bounded nondeterminism if (1) for every vertex v € F, the regions
init{v) and flow{v) are bounded, and (2) for every edge e ^ E, and every coordinate i € {1,...,n}
with i G jump(e), the interval post{e)i is bounded. Note that bounded nondeterminism does not
imply finite branching. It ensures that the edge and time successors of a bounded region are
bounded.

The labeled transition system of a rectangular automaton

The rectangular automaton A, possibly with e moves, defines a labeled transition system with an
infinite state space Q, the infinite set S UM>o of labels, and the binary transition relations ^
on Q, one for each label r € SUR>o. Each transition with label a € S corresponds to an edge step
whose observation is a. Each transition with label t € ]R>o corresponds to a time step of duration t.
The states and the transitions of A are defined formally as follows.

States. A state (i;,x) of A consists of a discrete part u € F and a continuous part x € such
that X € inv{v). The state space C F x R" of A is the set of all states of A. A subset
of Q is called a zone of A. Each zone Z C Q can be uniquely decomposed into a collection
Uugv'{i;} X[ZY of regions [ZY C R", one for each vertex v £ V. The zone Z is rectangular
(resp. bounded; compact), if each region [ZY is rectangular (resp. bounded; compact). The
state (t;,x) is an initial state of A if x G init{v). The initial zone of A, denoted Init, is the
set of all initial states of A. Notice that both the state space Q and the initial zone Init are
rectangular.

Jump transitions. For each edge e = {v,w) of A, we define the binary relation C by
(v,x)-^(it;,y) iffX € pre(e), and y € post(e), and for every coordinate i € {!,...,n} with
i ^ jump{e), we have Xi = y,-. Hence x and y differ only at coordinates in the jump set



jump(e). For each observation a € S®, we define the edge-step relation C by ^ r iff
9-4 r for some edge e ^ E with o6s(e) = a.

Flow transitions. For each nonnegative real t 6 R>o, we define the binary relation C hy
(i;,x)-i (u;,y) iff (!) v= wand (2) either t = 0and x = y, or t > 0and (y- x)/< €flow{v).
Notice that due to the convexity of rectangular regions, (u,x)—> (w,y) iflF there is a smooth
function /: [0,t] inv(v), with first derivative /', such that /(O) = x, and f(t) = y, and for
all reals s G (0, t), we have f'(s) € flow(v). Hencethe continuous state may evolvefrom x to y
via any smooth trajectory satisfying the constraints imposed by ^^v{v) and flow{v). If Adoes
not have emoves, then we define the time-ste^ relation to be —». If ^4 has emoves, then the
time-step relation C is defined by 9 r iff there exists ^n^integer m>1, noijn^gative
reals <1,.. and states gi,. ..,q2m-2 such that qqiq293-^92m-2 and

We write 11 = S®UR>oUF?U[R>o] for the set oflabels that arisein connection with the automaton A,
where [R>o] = {[<] I t € M>o}- Let Z be a zone of A, and let tt be a label from H. We define
Post^{Z) = {q £ Q I3r GZ.r g) to be the zone ofstates that arereachable in one tt stepfrom Z,
and we define Post{Z) = U7r€Sua>o states that are reachable in one
edge or time step from Z. Similarly, we define Pre^{Z) = {g GQ | 3r GZ. r} to be the zone
of states from which Z is reachable in one it step, and we define Pre{Z) = U7r6Eul>o
be the zone of states from which Z is reachable in one edge or time step. Notice that Post{Z) D Z
and Pre{Z) D Z because of time steps of the form .

The reverse automaton

For an n-dimensional rectangular automaton A, the reverse automaton —A is an n-dimensional
rectangular automaton that defines the same state space as A, but with the transition relations
reversed. The vertex set, observation alphabet, initial and invariant functions of —A are the same
as for A. For each vertex v, the flow region of -A is defined by flow_j^(v) = {x G R" | -x G
flowy^(v)]. For each edge e = {v,w) of A, the reverse automaton -A hzis the edge -e = (u;,v)
with pve_j^{—e) —pos<^(e), jump_^{—e) = jumpj^{e)^ and post_j^{—e) = pre^(e). From these
definitions. Proposition 2.1 follows immediately.

Proposition 2.1 For all states q and r of a rectangular automaton A, and every label tt GH, i/?e
have q t iff r -^-a q-

It follows that for every zone Z ofA, andevery label tt GH, Post^{Z) = Prel^(Z) and Pre\{Z) =
Pos<!L^(Z).

Multirectangular zones

A zone Z is multirectangular if Z is a finite union of rectangular zones. Multirectangularity is
preserved by edge and time steps.

Proposition 2.2 For every multirectangular zone Z ofa rectangular automaton A, and every label
TT Gn, the zones PosP(Z) and Pre^{Z) are multirectangular.

Proof. We give the proof for Post\ the result for Pre then foUows from Proposition 2.1. Since
each relation with a G S® is a finite union of relations with e G P, and each relation —»



with t € R>o is a finite composition of relations and —» with s € R>05 it suffices to prove the
proposition'for tt € jE U[R>o]. Call a zone elementary if it is of the form {v} x R, where Ris a,
rectangular region. Then a zone is multirectangular iff it is a finite union ofelementary zones. We
show that for every elementary zone Z = {v} x the successor zone Post^{Z) is elementary. If
TT = (v,w) is an edge of A, then Post^{Z) = {ly} x 5, where

Si =

If TT = [0], then Post^(Z) = Z. If tt € [K>o] and tt > 0, then Post^{Z) = {v} x 5, where

Ri n pre(7r),- n post(Tr)i n inv{w)i, if i ^ jump{Tr)i^
post('K)i n inv{w)i^ if i € jump{T)i and Ri fl pre(7r),- / 0,
0, if Ri n pre{w)i = 0.

Si = inv{v)i n {^inf(il,) + ir •mi{flow(v)i)^ oo) n (-oo, sup(J2,) + ir •sup{flow{v)i)} .

Here, stands for [ if Ri andflow(v)i are left-closed, stands for (if Ri or flow{v)i are left-open,
y standsfor ] if Ri andflow{v)i are right-closed, and standsfor ) if Ri orflow{v)i are right-open.
•

Given a zone Z of the rectangular automaton A, and a finite sequence ttotti •••7r,n € H* of labels, we
define Post^°'^^(Z) = Post^^(Post^^{Z)), and we define Post'"°^^"'̂ "'{Z) inductively in the usual
way. Also, we define Post''(Z) = Post\Z) to be the zone of states that are reachable from
Z in a finite number of edge and time steps. Analogous definitions are made for Pre. A state q
is a reachable state of A if 9 € Post''{Init). The reachable zone of A, denoted Reach{A), is the
set Post''(Init) of all reachable states of A. The reachable zone Reach{A) is an infinite union of
rectangular zones, and may not be multirectangular.

The u;-language of a rectangular automaton

Let A be a rectangular automaton, possibly with e moves. A timed word for A is a finite or infinite
sequence r = tqTiT2 •• • of letters from E U R>o; that is, each r, is either an observation of A, or
a nonnegative real that denotes a duration of time between observations. The timed word r is
divergent if r is infinite and I i G N and r,- € R>o} = 00. A run p of A is a finite or infinite
sequence of the form qo ^ 9i ^ 92 ^ **•? where go € Init, and for all i > 0, we have 9,- 6 Q and
r,- € E U R>o. The run p accepts the timed word r = rorir2 •• •, and p is called divergent if r is
divergent. The io-language of A, denoted Lang{A), is the set of all divergent timed words that are
accepted by runs of A.

Example

It is often convenient to refer to each coordinate of the continuous state as a variable. We use letters

from the beginning of the alphabet, such as a, 6, c, d, for variables. If the variable a corresponds
to the z-th coordinate of the continuous state, we write flow{v){a) for flow{v)i^ etc. In pictorial
descriptions of rectangular automata, we annotate each vertex with its flow region, and sometimes
with its invariant region. For example, if flow{v){a) = [3,5],/?ou;(u)(6) = [4,4], inv(v){a) = (1,7],
and inv(v)(b) = (—oo,0], we write "d € [3,5]", "6 = 4", "1 < a < 7", and "6 < 0" inside of
vertex v. Often however, we give the invariant function in the text and omit it from the figure.
Edges are annotated with observations and guarded commands. A guarded command <j> defines
two regions pre{<l>) and post{<f>), and a jump set jump{<l>), in a natural manner. For example, if <i> is
the (nondeterministic) guarded command

a < 5 A 6 = 4 —»• 6 := 7; c [0,5]



c :

.c€ [1,3]
d€ [-3.-2]

d ;=

d G [1, 2]

c < 5 A <f < -3

C € -4,-c€ [-4.-2]
de [-3,-2]

c > -3 A d < -2 — c :€ (-1, -2]

d < -5 — d := -4
c € 1-4,-;

<72

Figure 1: The initialized rectangular automaton A

then pre(<^)(a) = (-oo,5], pre{<p){b) = [4,4], pre(0)(c) = (-00,00), jump(0) = {6,c}, pos«(<^)(a) =
(-00,00), pos«(</>)(6) = [7,7], and post{<f>){c) = [0,5]. As usual, when writing guarded commands,
the guard true is omitted, and so is the empty list of assignments.

Consider, for instance, the 2D rectangular automaton A of Figure 1. The observation alphabet
of Ais {o'i,<72,(T3,cr4}, and the invariant function ofAis the constant function Au. [—20,20]^ (not
shown in the figure). The automaton A is initialized, as the values of the two variables c and d
are reinitialized whenever their flow regions change. Figure 2 shows a sample trajectory ofAfrom
the initial zone Init^ = {(ui, (0,1))}. Each arc is labeled with a vertex giving the discrete state,
while the continuous state follows the arc. The discontinuities between the arcs labeled V2 and vz
correspond to the jump of variable d from —5 to —4 upon traversal of the edge from V2 to U3. The
divergent timed word (4o"il<72lo"3l(74)'̂ is an example of a timed word that is accepted by A. This
timed word is accepted by a run with the state sequence

((«i, (0.1))(V,, (5, -10))(t-2, (4, -10))(t,2, (0, -12.5))(t>3, (0, -4))(t,3. (-3, -2))(<^4, (-1. -2))(i'4. (0,0)))".

CNF edge families

We sometimes annotate edges of rectangular automata with positive boolean combinations of
guarded commands. Consider the two guarded commands 4>i and 02* First, the edge annota
tion (f>i A(f>2 stands for a guarded command <^3 with pre{<f>z) = pre{4>\) Dpre{<j>2)-> post{4>z) =
post{<f)\) r\ post{<f>2), and jump{<i>z) = jump{<f>i) \J juTnp(<f>2). Second, an edge with the annotation
<f>i V</>2 stands for two edges that share source vertex, target vertex, and observation; one anno
tated with <f)i and the other with ^2- These conventions generalize to DNF expressions of guarded
commands. An edge annotated with a CNF expression of guarded commands is interpreted by
first converting the expression into DNF. A CNF edge family ((u, it?), a,^), then, consists of a pair
(i?, w) of vertices, an observation a, and a CNF expression of guarded commands. Consider,
for example, the CNF edge family with the vertex pair (u, w), the observation (7, and the CNF
expression

((a < 2 a := 2) V (2 < a < 5)) A ((6 > 7 6 := 7) V (4 < 6 < 7)).

This edge family corresponds to four edges from v to it?, each annotated with the observation tr
and one of the following guarded commands:



1 ^ d

\

\vi ^

V _

/ V2

<

Figure 2: A sample trajectory of A

1. a < 2 A 6 > 7 —o := 2; 6 := 7,
2. a<2A4<6<7 —^ o:=2,
3. 2<a<5A6>7 —> 6:= 7,
4. 2<a<5A4<6<7.

In this way, an n-dimensional rectangular automaton may be specified by a set of vertices, an
observation alphabet, initial, invariant, and flow functions, and a set of CNF edge families. If Z
is a zone of the rectangular automaton A, and ^ is a CNF edge family, we define Post^{Z) to be
Ue Post^(Z)^ where the union is taken over all edges e of A that correspond to the edge family

Two problems concerning rectangular automata

We study the following two problems about rectangular automata.

Reachability. Given a rectangular automaton A, and a rectangular zone Z/ of A, is Reach(A)C\Zj
nonempty? That is, does Z/ contain a reachable state of A? If so, we say that the zone Z/ is
reachable for A. A solution to this problem permits the verification of safety requirements for
systems that are modeled as rectangular automata. If we equip rectangular automata with
rectangular final zones, then the reachability problem is equivalent to the finitary language
emptiness problem.

a;-language emptiness. Given a rectangular automaton A, is Lang{A) nonempty? That is, does
A have a divergent run? This problem is more general than the reachability problem, and
a solution permits the verification of safety and liveness requirements for systems that are
modeled as rectangular automata.

For initialized rectangular automata, we provide a PSPACE decision procedure for the reachability
problem. For initialized rectangular automata with bounded nondeterminism, we give a PSPACE
decision procedure for the a?-language emptiness problem. We then show that the reachability prob
lem (and therefore a>-language emptiness) is undecidable for very restricted classes of uninitialized
rectangular automata, and also for initialized automata with slightly generalized invariant, flow,
preguard, postguard, or jump functions.

3 Decidability

We translate a given initialized rectangular automaton A into a timed automaton [AD94] that
contains aH reachability information about A. The translation proceeds in two steps: from ini-
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tialized rectangular automata to initialized singular automata (Section 3.2), and from initialized
singular automata to timed automata (Section 3.1). For the subclass of automata with bounded
nondeterminism, the translation also preserves w-languages (Section 3.3), and therefore reduces
the w-language emptiness problem for these automata to the corresponding problem for timed
automata. In Section 3.4, we explain our translations in terms of simulations and bisimulations
of the underlying labeled transition systems. In Section 3.5, we supply a practical implication of
our translations, showing that symbolic execution [ACH+Qb] terminates on initialized rectangular
automata after a linear preprocessing step.

3.1 From Initialized Singular Automata To Timed Automata

We begin by defining several special cases of rectangular automata for which, using known results
about timed automata, the reachability and u?-language emptiness problems can be solved easily.

Finite-slope variables

Consider a rectangular automaton A. The variable c is a one-slope variable of A if there exists
a rational number k such that for each vertex v of A, we have flow(v){c) = [k^k]. A one-slope
variable with slope A; = 0 is called a memory cell. A one-slope variable with slope fc = 1 is called
a clock. A one-slope variable with any other slope is called a skewed clock. Notice that, if every
variable of A is a one-slope variable, then A is initialized. The variable c is a two-slope variable of
A if there exist two rational numbers A:i and k2, with ki ^ A:2, such that for each vertex v of A,
either flow{v){c) = [A:i,A;i] orflow{v){c) = [^^2,^:2]. Astopwatch is a two-slope variable with fci = 1
and k2 = 0. The variable c is a finite-slope variable of A if for each vertex v of A, the interval
flow{v){c) is a singleton.

A n-dimensional rectangular automaton A has deterministic jumps if (1) for every vertex v of A,
the region init{v) is either empty or a singleton, and (2) for every edge eofA, and every coordinate
i C{1,.. .,n} with i € jump{€), the interval post{e)i is a singleton. The first requirement ensures
that the number of initial states is finite. The second requirement says that along each edge step,
each variable either remains unchanged or is deterministically assigned a new value. Notice that,
if Ahas deterministic jumps and every variable ofAis a finite-slope variable, then Ahas bounded
nondeterminism.

Timed automata

A timed automaton Z? isa rectangular automaton with deterministic jumps such that every variable
of £) is a clock.

Theorem 3.1 [AD94] The reachability and uj-language emptiness problems for timed automata
(with or without e moves) are complete for PSPACE.

More precisely, the w-language emptiness problem for an n-dimensional timed automaton D with
£ moves can be solved in space 0(log(|Fl •n! •A'")) = O(log |y| + n •(logn -f log A)), where the
integer constant K is determined by the rational numbers that are used in the definition of i?, as
finite endpoints of initial, invariant, preguard, and postguard intervals. If the definition of D uses
only nonnegative integer constants, then K is the largest ofthese constants. If the definition ofD
uses only nonnegative rational constants, let /C be the set ofthese constants, and let / be their least
common denominator. Then A = max{fc •/ | A* € AC}. If the definition of D uses negative rational



constants, then subtract the constant with the least value from each of the other constants, and
compute K from the resulting set of nonnegative numbers as in the nonnegative case. We assume
that, in the definition of Z), all constants are written in binary notation. It follows that the value
of K is at most singly exponential in the size of the definition of D, and hence the above space
requirement is polynomial. The reachability problem for a timed automaton D and a rectangular
zone Z can be solved in the same amount of space, only that the constant K must take into account
also the finite endpoints of all intervals in the definition of Z.

We consider generalizations of timed automata. Therefore, all of our PSPACE hardness results
follow from the corresponding hardness results for timed automata.

Stopwatch automata

A stopwatch automaton C is a rectangular automaton with deterministic jumps such that every
variable of C is a stopwatch. Unlike timed automata, not every stopwatch automaton is initialized.
We will see that for nonintialized stopwatch automata, the reachability problem is undecidable
(Section 4.1). Initialized stopwatch automata, however, can be polynomiaUy encoded by timed
automata.

Let C be an n-dimensional initialized stopwatch automaton with e moves, let Kc be the set of
rational constants used in the definition of C, and let /Cj. = iCc U{±}. We define an n-dimensional
timed automaton Dc with the set = Vc x of vertices. Thus, each vertex (n, /) of Dc
consists of a vertex v from C and a function / from {1,..., n} to IC±. Each state q = ((u, /), x) of
Dc is intended to represent the state a{q) = (v,y) of C, where y,- = Xi if f{i) =±, and y,- = f{i)
if /(i) ^1. Intuitively, if the i-th stopwatch of C is running (slope 1), then its value is tracked
by the value of the i-th clock of Dc\ if the i-th stopwatch is halted (slope 0), at value k € /Cc,
then this value is remembered by the vertices of Dq- Note that ol'.Qdc Qc is an onto function
from the states of Dc to the states of C. It is extended to zones Z C Qdc natural way, by

= UgGZO'W-

It is useful to define also an "inverse" of the function a. We define -a : Qc Qdc so that
-Q(t;,y) = ((u,/),y), where for every coordinate i € {!,..., n}, if flowc(v)i = [1,1] then f{i) =1,
and if flowc(v)i = [0,0] then f(i) = y,-. The function -a is a one-to-one function from the states
of C to the states of Dc, so that for each state r of C, we have q(—Q(r)) = r. The map —a is
extended to zones Z C Qc in the natural way. Then, for each zone Z of C, we have ot(-a{Z)) = Z.

The remaining components of the timed automaton Dc are defined as follows. The observation
alphabet of Dc is the same as for C. The initial zone of Dc is —oc(Initc). For each vertex
(u,/) of Dc, = invc(v). For each edge e = (v,u;) of C, the timed automaton Dc
has all edges of the form e' = {(v,f),{w^g))^ where for every coordinate i € {l,...,n}, either
flowc{w)i = [1,1] and g{i) =±, or flowciv)i = [1,1] and flowdw), = [0,0] and g{i) = postc(€)i,
or flowc(v)i = [0,0] and flowc(w)i = [0,0] and g{i) = f(i). Furthermore, e and e' have the same
preguard and postguard regions, jump sets, and observations. From these definitions. Lemma 3.2
follows immediately.

Lemma 3.2 Let C be an initializedstopwatch automaton with e moves. First, Initc = a(InitDd'
Second, for all states q and r ofDc, and every label r GS® U[IR>o], IfQ^Dc q:(?').
Third, for all states q ofDc, all states r' ofC, and every label r 6 E® U[R>o], Ifd9)'^Dc
there is a state r ofDc such that q-^Dc^ similarly, if r' there is a
state r of Dc such that r ^Dc 9

10



InitOf
Prep, Prep,

Initc
Prec Postc

Postp,

Prec Prec Postc Postc

Figure 3: Commuting diagram for zones Z of an initialized stopwatch automaton C

Postc

From the second and third claims of Lemma 3.2, it follows that for every zone Z of Dc^ and every
label r € EuR>o, PosiJt(a(Z)) = Q:(jPo5f£)^(Z)) and Prel;(a{Z)) = a(Fre^^(Z)). These rela
tionships are illustrated in the commuting diagram of Figure 3. From the first claim of Lemma 3.2
and the fact that Post commutes with a, we conclude that Reach{C) = a{Reach{Dc))' From
Lemma 3.2 it also foUows that Lang{C) = Lang{Dc)'

Theorem 3.3 The reachability and u-language emptiness problems for initialized stopwatch au
tomata (with or without e moves) are complete for PSPACE.

Proof. For containment in PSPACE, notice that \Vd^\ < \Vc\ •[Kc + 1)", and that the definition
of Dc uses the same constants as the definition of C. The space requirement 0(logiyb^| -f n •
(log n -1- log Kdc)) = O(log l^cl + n ♦ (log n -|- log Kc)), where Kq is defined as for timed automata,
is polynomial in the size of C. •

Singular automata

A singular automaton B is a rectangular automaton with deterministic jumps such that every
variable of 5 is a finite-slope variable. Initialized singular automata can be rescaled to initialized
stopwatch automata.

Let B be an n-dimensional initialized singular automaton with £ moves. Wedefine an n-dimensioned
initialized stopwatch automaton Cb with the same vertex set, edge set, and observation alphabet
as B. Each state q = (v,x) of Cb is intended to represent the state (3(q) = (v,pv{x)) of 5, for the
following definition ofthebijections (3y: M" —^ R". For each vertex vofB, ifflowQ(v) = n?=i[^t»fct]5
then ..,Xn) = ih -xi,.. .Jn •^n), where li = ki if fc,- ^ 0, and /j = 1 if ki = 0. Note that
1 '̂ Qcb —* Qb is a bijection between the states ofCb and the states of5, and can be viewed as
a rescaling of the state space. Similar rescaling techniques for hybrid state spaces can be found in
in [ACH+95]. The maps /?v areextended to regions in the natural way, and the map /? is extended
to zones in the natural way.

The remaining components of the initialized stopwatch automaton Cb nre defined as follows. For
each vertex vofCb, initcgi'^) —̂ v^{1''̂ ^Ib{'̂ )), 1 '̂̂ Cb('̂ ) — every coordinate
i € {1,..., n}, flowcs{'̂ )i = [0,0] if flowB(v)i = [0,0], and flowc^Mi = [1,1] ifflowB{v)i [0,0].
For each edgee = {v,w) ofCB^prec^i^) = =
jumpB{e)y and obscBi^) = obsBie). From these definitions. Lemma 3.4 follows immediately.

Lemma 3.4 Let B be an initialized singular automaton with e moves. First, InitB = ^{InitcB)-
Second, forall states q and r ofCB, ci^d every labelr € S^U[R>o], we have q-^CB ^ (^iQ)'̂ B Pi''')-

From the second claim of Lemma 3.4, it follows that for every zone Z of Cb, and every label
r € E UR>o, PostiiPiZ)) = P{Postl;^(Z)) and PreJ()3(Z)) = P{Prel;^iZ)). These relationships

11
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Figure 4: Commuting diagram for zones Z of an initialized singular automaton B

are illustrated in the commuting diagram of Figure 4. From the first claim of Lemma 3.4 and the
fact that Post commutes with 7*^, we conclude that Reach{B) = ^(Reach{CB))' From Lemma 3.4
it also follows that Lang(B) = Lang{CB)'

Theorem 3.5 The reachability and uj-language emptiness problems for initialized singular au
tomata (with or without £ moves) are complete for PSFACE.

Proof. It remains to show containment in PSPACE. Consider the case that the definition of B uses
only nonnegative integer constants; the general case is similar to the analysis of timed automata
with rational and negative constants. As for timed automata, define Kb to be the maximum over
all finite endpoints of initial, invariant, preguard, and postguard intervals. Define Lb to be the
product of Kb and the least common multiple of all finite endpoints of flow intervals. Then the
value of Xb is at most singly exponential in the size of the definition of J?, and Kcb ^ It follows
that the space requirement 0(log\Vcb\ + n •(logn + logA'c^)) = O(log|Vb| + n •(log n + logLb))
is polynomial in the size of B. •

3.2 From Initialized Rectangular Automata to Initialized Singular Automata

Let A be an n-dimensional initialized rectangular automaton. We translate A into a (2n + 1)-
dimensional initialized singular automaton Ba with e moves so that Ba contains all reachability
information about A. (While we assume, for simplicity, that the given automaton A has no e moves,
the translation and its results apply also to initialized rectangular automata with e moves.) The
translation is similar to the subset construction for determinizing finite automata. We first give a
simplified construction for the compact case, and then proceed to the general case. All of the main
ideas of the construction are already present in the compact case, but the general case requires a
lot of additional bookkeeping.

Preliminary assumptions. Without loss of generality, we assume that for each vertex v of A,
initAiv) C invAiv), and for each edge e = (v^w) of A, pre^(e) C muyi(v), postj^{e) C mt;>i(it;),
and for every coordinate i ^ i«mp^(e), preyi(e),- = posi^(e)t. If this is not the case, then first we
replace each initial and guard region by its intersection with the appropriate invariant region, and
second wereplace each guard interval pre^(e),- and posf^(e)t with i ^ jumpA{e) by their intersection
pre^(e),- npos/^(e),. These replacements do not change the labeled transition system of A.

The compact case

We first restrict our attention to the case where invA is the trivial invariant function Xv. E", and
all initial, flow, preguard, and postguard regions of A are compact. In this case, we say that the
automaton A is compact.
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Figure 5: Envelope created by the flow interval flow{v){c) = [kt^ku]

In the compact case, we translate A into a 2n-dimensional initialized singiilar automaton de
noted The idea is to replace each variable c of A by two finite-slope variables C£ and Cu
such that when flow^(v)(c) = fcj, then flowqc^{v){c£) = and flowqc^{v){cu) = [kuiku]-
Intuitively, the variable C£ tracks the least possible value of c, and tracks the greatest possible
value ofc. Consider Figure5. With each time step, the flow interval of c createsan envelope, whose
boundaries are tracked by C£ and With each edge step, the values of C£ and Cu are updated so
that the interval [c^, c^] remains precisely the range of possible values of c. In Figure 5, at time t
a jump transition is taken along an edge e with pre^(e)(c) = [p, oo) and c ^ jumpji^{e). Since the
value of C£ is below p at time t, the variable C£ is updated to the new value p.

In the following formal definition of the automaton we use {ui | 1 < i for the variables
of A, and {6t | 1 < i < 2n} for the variables of 5^. The £(t)-th coordinate of B\ represents
the lower bound on the i-th coordinate a,- of A, and the u(2)-th coordinate of B\ represents
the upper bound on a,-. For concreteness, put i{i) = 22 —1 and u(i) = 22.

The 2n-dimensional automaton has the same vertex set and observation alphabet as A. The
initial function is given by initB^{v)£^i) = min(2ni<yi(2;),) and initB^(v)^(^i) = max(2mi^(u),).
The invariant function invs^ is the trivial invariant function. The flow function flowge is defined

A A

as outlined above: if flowj^{v)i = [A:£,A;u], then flowQ^{v)£^i) = [k£,k£] and flowB^{v)u{i) = [kuiku]-
We are left with defining a set of CNF edge families for B^. For each edge e = (v^w) of A, the
automaton has the CNF edge family = (u, u;,o6s>i(e), V'e), which shares the observation
of e. The CNF expression ipe is a conjunction A!=i ^ CNF expressions Suppose that
pre^(e),- = \p£,Pu] and posi^(c), = [pi»Pu]- If « € jump^(e), then the CNF expression ipl is the
guarded command

i>£ii) ^ Pu ^ K(i) ^Pi W{i) '= Po K{i) •= P'w
The values of and satisfy the guard iff intersects pre^(e),-. Since i € jumpy^{e),
the range ofvalues of a,- after traversing e is exactly pos<^(e)i, and hence is set to the minimum
of this interval, and 6u(,) is set to the maximum. If 2^ jump^(e), then by assumption [p^,Pu] =
[pj,p„], and the CNF expression ipl is

((^^(0 <Pe W{i) •= Pe) V{p£ < 6^(,) < Pu)) A((6u(t) > Pu ->• K{i) '-= Pu) V{p£ < b^^i) < Pu)).
The idea is that when the edge e is traversed in A, new information becomes available about the
value of a,-, namely, that it lies within the interval [p£,Pu]- Therefore, if 6£(i) < p£, it must be
updated to p£, and if > Pu, it must be updated to pu, in order to keep [6£(,),6u(,)] the range of
possible values of a,-.
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C/, c« 0; di,d^ := 1

^ 5 A {fy ^ ~3 ' •"

c/ < 5 A di < —3 A dy > —3
C/1 Cy I— 4j dy I" " i

c, > -3 A dy < -2

Cy > -3 A d/ < -2 A dy > -2
I— *2jCy 1" ~l|dy ~2

Figure 6: The initialized singular automaton B\

This completes the definition of the automaton The automaton is an initialized singular
automaton. Figure 6 showsthe initialized singular automaton that corresponds to the initialized

rectangular automaton A from Figure 1. Figure 7 shows the initialized stopwatch automaton Cb".
A

that corresponds to A. Notice that Cbc is a timed automaton.
A

The relationship between Aand is formalized through the function : Qs^ —^ 2^^, which
maps each state of B^ to a zone of A: define 7'̂ (u,x) = {v} x n?=i[®^(i)>®ix(t)]* The map 7^ is
extended to zones Z C Qs^^y = Uijgz 7*^(9)- Not all states ofB\ are ofinterest. The state
(v,x) 6 is an upper-half state of B^ if for every coordinate i € {1,..., n}, wehave
Notice that g is an upper-half state of B^ iff 7^(g) 7^ 0. The upper-half space of 5^, denoted ,
is the set of all upper-half states of B^. Lemma 3.6 shows that, for reachability purposes, each
upper-half state q of B\ represents the set 7^(q) C Qa of states of A.

It is useful to define also an "inverse" of the function 7^. For a compact rectangular region R C M",
define the vector -7'̂ (jR) € by -7'̂ {R)e(^i) = min(jR,) and -7^{R)u{i) = max(i2,); that is,
-7^{R) is the vector of all boundary points of the intervals Ri. For a compact rectangular zone Z
of i4, define —7'̂ (Z) to be the zone ^A- Notice that —7{Z) C and
that InitB^ = —7^(InitA)'

Lemma 3.6 Let A be a compact initialized rectangular automaton. First, for every compact rect
angular zone Z of A, we have 7®(—7^(^)) = Z; in particular, InitA = 7%InitB^)' Second, for
every upper-half state q ofB^, and every label r € S UR>o, Fo$t'̂ (7'̂ {q)) = 7'̂ (PostQ^{q)).

We delay a detailed proof of these claims to the general case. From the second claim of Lemma 3.6,
it follows that for every upper-half zone Z C Ub^, and every label r € S UR>o, Post^(7'̂ {Z)) =
7^(Pos<5e (Z)) and, by Proposition 2.1, Pre'̂ {7^{Z)) = 7®(PreIjgc^(Z)). These relationships are
illustrated in the commuting diagram of Figure 12. From the first claim of Lemma 3.6 and the fact
that Post commutes with 7*^, we conclude that Reach(A) = 7^{Reach{B^)).

Theorem 3.7 The reachability problem for compact initialized rectangular automata is complete
for PSPACE.

14



C/, c« := Old/, d« := 1
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ct > OA dj/ < 2 — d/ := -1/3;d„ := -1/2
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c« < 3/2 A d/ < -2 A d« > -3/2 -»

c/ := —2;c>, :s= —l/3;d« ;= —1

dt > 5/3— d/ := -4;d, ;= -2

<72

03

Figure 7: The initialized stopwatch automaton (and timed automaton)

Indeed, since InitA = ) and Post commutes with 7*^, we also have the following. Forevery
run of A we can, starting from the beginning of the run, inductively construct a run of that
accepts the same timed word. Therefore Lang{A) C Langi^B^). Furthermore, for every finite run
of B% we can, starting from the end ofthe run, inductively construct a run ofAthat accepts the
same timed word. Therefore A and Ba accept the same finite timed words.

The general case

Theextension from the compact to the general case is mostly a matterofbookkeeping. In particular,
for each lower-bound variable and upper-bound variable one bit is used to distinguish a
weak from a strict bound, and a second bit is used to distinguish a finite from an infinite bound.
The reader who is uninterested in the details can skip ahead to Theorem 3.18 without loss of
continuity (in this case, the reader should know that Ba is the generalization of and 7 is the
generalization of 7*^).

We encounter the following difficulties when the rectangular automaton A has noncompact compo
nents and a nontrivial invariant function. (1)Thelower-bound and upper-bound variables and
bu[i) may violate the invariant region of a vertex, and the function 7 must be changed to account
for this. (2) The lower and upper bounds represented by and 6u(,) may be weak (inclusive)
or strict (exclusive). To solve this problem, we introduce a bit called the weak/strict bit for each
variable of Ba- (3) Lower and upper bounds may be finite or infinite. For this, we introduce a
bit called the finite/infinite bit for each variable of Ba- (4) Unbounded flow regions cause discon
tinuous jumps in lower and upper bounds. For example, suppose that the variable ai is assigned
the value 3 by traversal of the edge e = {v,w),, where flow{w)i = [l,oo). Then in Ba-, both
and are assigned the value 3 by traversal of e. But after any positive amount of time passes,
the upper bound on a,- should be 00. For this, we introduce an e edge, which is taken before any
positive time step. The £ edge sets the finite/infinite bit for to infinite. Since the result of
the £edge presupposes that some positive amount oftime has passed, aU edge steps inherited from
A are disabled in Ba until time passes. Implementing this restriction requires a new clock called
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Figure 8: Commuting diagram for compact rectangular zones Z of a compact initialized rectangular
automaton A

the synchronization clock, and a bit called the time-passage bit. (5) Strict flow regions may cause
a weak bound to change to strict after any positive amount of time passes. For example, suppose
in the above case that flow(w)i = [1,5). Then after the edge e is traversed, the upper bound on a,
is a weak bound of 3. But after t > 0 time units pass, the upper bound is a strict bound of 3 + 5t.
Once again, we use the e edge to solve this problem. When the e edge is traversed, the weak/strict
bit for 6u(,) is set to strict.

We now proceed formally to define the (27i + l)-dimensional initialized singular automaton Ba with
£ moves. The observation alphabet of Ba is the same as for A. We define first the continuous state
(variables) and discrete state (vertices) of Ba, and then the flow and invariant functions. Next we
define the map 7, which relates states of Ba to zones of A. Then come the edges of Ba, which are
classified into e edges and edges inherited from A. Last, we define the initial function. We provide
lemmas about Ba as soon as enough definitions have been made to give the proofs.

Variables and vertices of Ba* For each variable a,- of A, the automaton Ba has two variables,
6£(,j and We add a zeroth coordinate 60 to Ba, which represents the synchronization clock.
Hence the dimension of Ba is 2n + 1. The finite/infinite and weak/strict bitvectors and the time-
passage bit are encoded in the vertex set of Ba- Therefore, Vba = Va ^ ({Ojl}^")^ x {0>1}- A
state {{v,fl,u, tp),x) of Ba, then, consists of a vertex u of A, a vector p of 2n finite/infinite bits
(fin = 0, inf = 1), a vector u of 2n weak/strict bits (wk = 0, str = 1), a time-passage bit tp, and
a vector x € of values for the 2n + 1 variables of Ba-

Notation. For the remainder of Section 3.2, i ranges over {1,..., n}, the symbol v ranges over Va,
the vectors fi and u range over {0,1}^", and tp ranges over {0,1}. So when we implicitly or explicitly
quantify these variables, as in "for all v,fi,i/,tp,i^ the quantification is over the domains just
specified. Recall that for a zone Z of A, we have the canonical decomposition Z = \Jy\ZY. We lift
the functions [•]'' to the zones Z' of Ba by defining [Z'f = {x € 1^"+^ | 3fi,v, tp. ((v,Jx,i/, tp),x) €
Z']. We say that the vectorx 6 satisfies a predicate <p over the variables 60,61,..., b2n ilF V
evaluates to true when each variable 6,- is replaced by the i-th component of x. Finally, consider an
interval / C R of the real line. We define the lowerstrictness of I by stricti(I) = wk if inf(/) € I,
and strictl{I) = str if inf(/) ^ I. Similarly, we define the upper strictness of I by strict}(/) = wk
if sup(/) G I and strict} (/) = str if sup(/) ^ I.

Flow regions of Ba- The flow function fiowg^ is defined by

ft) u £7 , - I if mf(^oto^(t)),) -oo,- I otherwise;

flotBo (v ae tv) - I if supiflowA{v)i) # 00,- I otherwise.
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The slope of (resp. in Ba is the infimum (resp. supremum) of the allowable slopes for a,-
in A, unless that infimum (resp. supremum) is infinite. The zeroth coordinate bo is a clock: define
flowB^{v,fl,u,tp)o = {!}.

Invariant regions of Ba' The lower-bound components of the invariant function are
defined by

(-00,00), if= inf,
(—oo,sup(mt;>i(u),)], if = fin and = strict'l {invA{v)i) = wk^
(—oo,sup(mt;>i(t7),)), otherwise.

If the finite/infinite bit is infinite, then the value of the lower-bound variable is irrelevant,
so we do not constrain it. If the finite/infinite bit is finite, then the interval of allowable values for

is right-open unless both the weak/strict bit is weak and the invariant interval invA{v)i
is right-closed. The motivation for this is that if I and J are intervals, and inf(/) = sup(J), then
IOJ ^ 0 iff stricti (7) = strict] {J) = wk. Here I is meant to represent the range of possible values
for a,- in A, as determined by the state of Bai and J is meant to represent the invariant interval
invA{v)i. The corresponding definition for the upper-bound components of invB^ is given by

invBy,(v,il,u,tp)^^i) = ^
(-00,00), if = m/,
[inf(mu>i(t;),), 00), if p^ii) = fi^ and = stricti{invA{v)i) =
(inf(mi;>i(u),),oo), otherwise.

The invariant intervals for the synchronization clock bo let time pass iff the time-passage bit tp is 1:
define invBy^{v,p^P,0)o = [0,0] and invBJ^{v,p,i^<,l)o = [0,oo).

Relating the state spaces of Ba and A. The function 7' : Qb^ —*• specifies how
each state of Ba indicates a range of possible values for each variable of A. Consider a state
q = ((u,/2,i7, tp),x) of Ba^ We define Yiq) = {v} x 72(9), where the function 72 : Qba 2®"
maps 9 to a rectangular region in R". For every coordinate i € {!,•• -5^}, the interval 72(9)» is
completely specified by its infimum, supremum, and which, if any, of the two it contains.

• If pff^i) = inf, then inf(72(g),) = "OOJ i^ inf(72(9)t) =

• If = m/, then sup(72(9)i) = cx); if p^^i) = fin, then sup(72(9),) =

• If pi^i) = fin, then inf(7^(9),) G72(9)1 iff = ^k.

• If = fi^, then sup(72(9)i) € 72(9)1 iff ^u(i) =

Since we have not taken into account the invariant function of A, we may have 7^(9) ^ Qa for
some states qoi Ba- We remedy this deficiency by defining 7 : Qb^ 2*^^ by 7(9)= Y(q)C\QA if
<p = 0 or xo > 0, and 7(9) = 0 if fp = 1 and xq = 0. The latter adjustment is necessary because the
states of Ba in which the time-passage bit is 1 and the synchronization clock is 0 are visited only
transiently between an e edge and a positive time step, and do not correspond to any states of A.
The function 72: 2®" strips offthe vertex: it is defined by the equation 7(9) = {v} x 72(9)-
The functions 7, 7', 72, and 72 are extended to zones Z C Qb^ by 'y(Z) = Ug€z7(9)>
state 9 is an upper-half state of Ba if 7(9) 7^ 0. The upper-half space Uba is the set of all upper-half
states of Ba- The truncation of 7' to 7 is justified by the following fact, which follows from the
assumption that the preguard region of each edge of A is contained in the invariant region of the
source vertex.
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Fact 3.8 For every edge e of an initialized rectangular automaton A, and every upper-half state q
of Ba, we have 72(g) n pre^(e) 0 72(g) Hpre^(e) 0.

Edges of Ba' As in the compact case, the automaton Ba has an edge family for each edge of A.
We say that the edges defined by these edge families are inheritedfrom A. In addition, Ba has a
set of £ edges. The e edges provide changes to the finite/infinite and weah/strict bitvectors that
are caused by the passage of any positive amount of time, however small. Such changes can be
carried out only through edge steps.

Epsilon edges. We first define the £ edges of Ba- Forall u,jl,u, there is an edge e from (v, u,0)
to (u,/2', i?', 1)with observation £. The target vertex components p' and will be defined presently.
The preguard and postguard regions of e are both [0,0] x R^", so this edge can be traversed only
when both the time-passage bit and the synchronization clock have the value 0. The update set of
e is empty. The finite/infinite bitvector must be changed to account for finite bounds that become
infinite due to an unbounded flow interval:

, _ J inf, if inf(^ou;^(v),) = -00,
~ otherwise;

if SUp(floWA(v)i) = 00,
otherwise.

The weak/strict bitvector must be changed to account for weak bounds that become strict due to
a strict flow interval:

if strictl(flowA(v)i) = str,
otherwise;

, _ J str, ii
^^(0 ~ I 0

otherwise.

str, if strict1(flowA('^)i) =

The £ edges, just defined, play the following role in Ba- Suppose that an edge inherited from A
is traversed. Then tp = 0 and 60 = 0, and before any time may pass (since no time may pass
when ip = 0), an £ edge must be traversed, setting <p to 1, and performing whatever bookkeeping
is required for the finite/infinite and weak/strict bitvectors. The changes made by the £ edge
reflect the situation after some infinitesimal positive amount of time has passed. Therefore no edge
inherited from A is allowed after an £ edge but before a positive time step: as long as tp = 1 and
60 = 0, no inherited edges are enabled. After the next positive time step, tp = 1 and 60 > 0, and
another inherited edge may be traversed, resetting both tp and 60 to 0. Then the situation repeats.

Inherited edges. We now define the edges of Ba that are inherited from A. For this purpose, it
is convenient to extend the definition of CNF edge families to allow multiple target vertices. For
example, in a guarded command, we may write := inf to change the ^(i)-th component of
the finite/infinite bitvector u to inf. In this way, a disjunction of guarded commands can refer to
several target vertices. An extended CNF edge family for Ba is completely specified by a source
vertex, an observation, the first component of the target vertex (an element of V4), the time passage
bit of the target vertex, and a CNF expression that includes assignments to the bitvectors p and v.
The translation of such an extended CNF edge family into a set of edges for Ba is a straightforward
extension of the translation for standard CNF edge families, and will not be detailed.

For each edge e = (t;, w) of A, aU bitvectors p and u, and each bit tp, the automaton Ba has the
extended CNF edge family = ((^»^P)y obsA(e),w, 0, Every edge derived from
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strict] {J) strict] (/) ipi strict] (J) strict] (7) Tu

wk wk inf(J) < sup(/) wk wk sup(J) > inf(/)
wk str inf(J) < sup(/) wk str sup(J) > inf(7)
str wk inf(J) < sup(/) str wk sup(J) > inf(7)
str str inf(J) < sup(/) str str sup(7) < inf(7)

Table 1: / n J ^ 0 iff A (/?„

the family shares the observation label of e (which, by assumption, is different from e),
and leads to a target vertex of the form The CNF expression V'e,/r,i7,<p is a conjunction
<Ptp ^ A?=i of + 1 CNF expressions. The guarded command <f>o is bo = 0, and the guarded
command is 60 > 0 60 := 0. Hence an inherited edge from a state with the time-passage bit
tp = I can be taken only if the synchronization clock has a positive value. Upon traversal of the
edge, both the time-passage bit and the synchronization clock are reset to 0.

It remains to define the CNF expressions We define their guards so that an edge of Ba
derived from the edge family e,it,u,ip ca-n be takenfrom an upper-half state q of Ba iffthe range of
possible values for each variable a,- intersects the interval preyi(e),-, that is, iff72(9) Hpre^(e) 7^ 0.
Recall that by Fact 3.8, we have 72(g) Hpre^(e) 7^ 0 iff 72(g) Hpre^(e) ^ 0. If all values are
finite and all bounds are weak, then this intersection is nonempty iff both < max(pre^(e),)
and > min(pre^(e),). These were the lower-bound and upper-bound guards given in the
construction of for compact A. Taking strictness and infinite bounds into account, we obtain
the more complicated guards £guard{i,pr€A{e)i) and ttp«ard(i,pre^(e),), defined as follows. For an
interval / C E, and i € {1,. •w}, define

iguard{i,I) =

uguard{i,I) =

true, if p£(t) = inf,
be{i) < sup(/), if //£(t) = fin and = strict] {!)= wk,
6^(t) < sup(/), otherwise;

true,

bu{i) > inf(/),
K{i) > inf(/),

These expressions are guarded commands with no assignments. To understand the definition,
consider the conditions under which an interval J intersects the interval I.

if /^u(t) =
if = fin and = strict] (1) = wk,
otherwise.

Fact 3.9 Let I and J be two nonempty intervals of the real line, and let ipi and <fu be defined as
in Table 3.2. Then In J iff (fit and (pu are both true.

The guard lguard{i,I) on the lower-bound variable corresponds to the condition (pi, and the
guard uguard{i, I) on the upper-bound variable corresponds to Notice that p( is always true
ifinf(J) = —00. Hence the first line ofthe definition ofiguard{i,I). If strict] (J) = strict] (/) = wk,
then pe is inf(J) < sup(/). Hence the second line of the definition of iguard{i,I). Finally, if either
strict] (J) = str or strict] (/) = str, then p£ is inf(J) < sup(/). Hence the third line of the
definition of lguard{i, I). Symmetrical remarks apply to uguard{i,I) and pw Taking I = pre^(€)i
and J = 72(g)t", Lemma 3.10 follows.
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Lemma 3.10 Let e be an edge of the n-dimensional initialized rectangular automaton A, and
let be the predicate /\i=i{i9uard(i,prey^(e)i) Auguard(i,prej^(e)i)). For every upper-half state
q = of Ba, PostA(l(Q)) ¥" 0 iff the vector xe satisfies the predicate V'e-

The reader may recall from the compact case that the construction for coordinates i €
differs from the construction for coordinates i ^ j«mp^(e). We first consider the general con
struction for the case i GjumpA{e). In this case, the lower-bound and upper-bound variables 6^(,)
and 6u(,) are assigned to the infimum and supremum, respectively, of the interval posf^(e)i, and
the finite/infinite and weak/strict bitvectors are updated appropriately. This is done by the lists
iassign{i,postA(€)i) and uassign(i,postA{e)i) of assignments, defined as follows. For an interval
/ C R, and i e {1,.. .,n}, define

^ ^ \ ^0 := 0; Pi{i) := inf] u^i) ;= sir

• en - I ^"(0 Mi) strictUpostA{e)i) if sup(/) ^ oo,uasstgn{t, ) ^ q. otherwise.

These expressions are guarded commands with the guards true. The assignments to 0 are required
for Ba to be initialized. After such an assignment, the value of the variable is ignored due to the
finite/infinite bit being inf. Now, for i € jumpA(e)^ the extended CNF expression defined
by

iguard{i,preA{e)i) A uguard(i,preA(e)i) A £assf^n(i,pos<^(e),) A uassign{i^postAie)i).

From these definitions and Lemma 3.10, we obtain Lemma 3.11.

Lemma 3.11 Let e = (v^w) be an edge of the initialized rectangular automaton A. For every
upper-half state q = ((v, i7, fp),x) of Ba, and every i € jumpA{e), we have [Fosf^(7(g))]|" =
biPostl'f'''''''(q))]r.
The case i ^ jump{e) is more complicated, because the lower-bound (resp. upper-bound) variable
is reset only if its value is too small (resp. too large). Strictness considerations also contribute
some complications. Our definitions follow once again from Fact 3.9. The necessary adjustments
to and b^n), and to the finite/infinite and weak/strict bitvectors, are given by the extended

if inf(7) ^ -00,
otherwise;

CNF expressions Cadjust(i,prej^{e)i) and uadjust{i,prej^{e)i), defined as follows. For an interval
/ C R, and i € {1, •• , define

iadjust(iyl) =

uadjust{i,I) =

true if inf(/) = —oo,
= inf fit{i) '= fin; 6^(.) := inf(/); := stricti{I))

true

= fin A b(f^i) < inf(/) := inf(/); := stricti{I))
= fin A = inf(/) A = wk —*• := stricti{I))
= fin A 6f(,) = inf(/) A = str)
= fin A 6^(,) > inf(/)), otherwise;

if sup(/) = 00,

(fJ'uii) = inf /iu(t) := fin; 6u(i) := sup(/); !/„(,•) := strict](/))

V(a^u

V(/^u

= fin A b^i^i) > sup(/) ^ 6„(,) := sup(/); := strict](/))
= fin A 6u(,) = sup(/) A = wk v^ii) '•= strict](/))
= fin A 6u(,) = sup(/) A !/,,(,•) = str)
= fin A 6u(,) < sup(/)), otherwise.
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Then, for i ^ jump^(e)i, the extended CNF expression V'e./r.i? defined by

iguard{i^pr€y^{€)i) A w^«ard(i,pre^(e),) A£adjust(i^prej^{€)i) A uadjust(i,prey^(e)i).

Let us examine the definition of £adjusf(2,pre^(e),). When the edge e is traversed in A, then new
information about the value of a,- is obtained, namely, that it lies within the intervalpre^(e),- (which,
by assumption, is equal to postj^{e)i). Let p = inf(preyi(e),). If p = —oo, then there is no new
lower-bound information, and soiadjust(i,prej^(e)i) = true; hence the first line of the definition. If
p ^ —00, then we distinguish several cases. If = inf, then the present lower bound is infinite,
and so must be set to fitly and must be reassigned to p, and the weak/strict bit
must be assigned to the lower strictness of pre^(c)i (line two). Now suppose that = fin. If
h{i) < P? again and must be reset to p and its strictness (line three). If = p
and = wky then information is gained if the lower strictness of pr€j^{e)i is str. So in this case
(line four) we perform the assignment := stricti{prej^{e)i). But if 6^ = p and = sir, then
no information is gained, and so no assignment is performed (line five). Finally, if > p, then
there is no new lower-bound information, and so there is no assignment (line 6). The definition of
uadjust{iyprej^(e)i) is symmetric. Using Lemma 3.10, we conclude Lemma 3.12.

Lemma 3.12 Let e —(v,w) be an edge of the initialized rectangular automaton A. For every
upper-half state q = ((t;,p,i7, <p),x) of Ba, and every i ^ jumpA^e), we have [Pos<^(7(g))]J" =

Putting together Lemmas 3.11 and 3.12, we obtain the following.

Lemma 3.13 Let A be an initialized rectangular automaton. For every upper-half state q =
((r,/!, j7, <p),x) of Ba, and every edge e of A, Pos<^(7(q)) = 'y(Post '̂'̂ '̂̂ '*^{q)). Moreover, the
zone {q) of Ba is either empty or a singleton.

Proof. To see that {Post^"^ '̂'̂ '̂ ^{q)\ < 1, notice that all assignments made by the guarded com
mands comprising are deterministic, and the disjuncts ofiadjust{iypreA{€)i) are mutually
exclusive, as are the disjuncts of uadjust{iypreA{c)i)' So from each state of Ba, at most one of the
disjuncts of each of these CNF expressions can be executed. •

Initial regions ofBa* For a rectangular region RCR", we define the bitvectors /z^, € {0,1}^"
and the vector x^ € as follows. If mf(Ri) = -oo, then = m/» and = str, and

= 0. If m{{Ri) ^ -00, then = fin, and = stricti{Ri)y and = m{{Ri). Similarly,
if sup(J?,) =00, then = inf, and =str, and = 0. If sup(il,) ^ oo, then =fin,
and = strict] (J?,), and = sup(i2,). Finally, let x§ = 0. For a rectangular zone Z of A,
define -7(2) to be the zone Notice that -ifiZ) C Uba
and that —7(2) contains at most one state for each vertex of Ba-

We put InitBj^ = -'y{InitA)- It is a straightforward matter to give the actual initial function of
Ba from this. Lemma 3.14 follows immediately from the definitions.

Lemma 3.14 Let A be an initialized rectangular automaton. For every rectangular zone Z of A,
we have 7(-7(2)) = 2. In particular, InitA = l{InitB^).
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This completes the definition of the automaton Ba- Notice that Ba is initialized and singular. The
automaton Ba has exponentially more vertices and edges than A. However, as in the translation
frominitialized stopwatch automata to timed automata, this exponentialblowup does not adversely
affect the space complexity of reachability analysis. Before we establish this, we first prove the
analog of Lemma 3.13 for time steps.

Analysis of time steps. Lemma 3.13 relates the edge steps of A to edge steps of Ba- We must
develop a similar correspondence for time steps. For this purpose, the following two facts are useful
about the reachable states of Ba are useful. Fact 3.15 says that every reachable state of Ba that
is the target of a time step has its finite/infinite and weak/strict bits set correctly. This is because
reachability ensures that every sequence of consecutive time steps must have been preceded by an
£ step.

Fact 3.15 Let ((v,/r,i7, tp),x) be a reachable state of Ba with = 1 and xq > 0, and let i €
{l,...,n}. First, ifm{{flowA(v)i) = -co, then = inf, and «/sup(/?ou;^(u),) = oo, then
//„(,) = inf. Second, if strict{(flowA{v)i) = str, then = str, and if strict'l (flowy^{v)i) = str,
then = str.

We say that a state q of Ba satisfies the invariant of A if 7(9) C Qa- Fact 3.16 says that every
reachable state of Ba that does not satisfy the invariant of A cannot move, by £ and time steps
alone, to a state that does satisfy the invariant. This is because all initial states of Ba and all
target states of inherited edge steps satisfy the invariant of A, and because the direction of a flow
of Ba can change only after an inherited edge step. The latter follows from Ba being initialized.
The former foUows from the assumption that the initial region of each vertex of A is contained in
the invariant region, and postguard region of each edge is contained in the invariant region of the
target vertex.

Fact 3.16 Let V, <p),x) be a reachable state of Ba, and leti e {1, •••, n}. ^ invA(v)i,
then inf{floWjn(v)i) < 0, and if ^ iTiVA(v)i, then sup(y?oty^(u),) > 0.

Lemma 3.17 relates the time steps of A to time steps of Ba-

Lemma 3.17 Let A be an initialized rectangular automaton. For every reachable upper-half state q
of Ba, and every duration t GM>o, BastAiniq)) = 7(Fosig^(g)). Moreover, the zone PostQ^{q) n
C/jg^ of Ba is either empty or a singleton.

Proof. Consider a reachable state q = ((v,/z, i7, <p),x) of Ba, not necessarily upper-half. From
the construction of Ba we observe the following. If tp = 0, then there is a unique state q' such
that q-^B/, '̂", furthermore, 7(9') = 0, and the time-passage bit of q' is 1. If tp = 1, then there
is no state q' such that q-^Sj^ q'- If tp = 0, then there is no state r such that 9—r, for any
< > 0. If ip = 1, since Ba is a singular automaton, for each t > 0, there is a at most one state r
such that r; furthermore, the time-passage bit of r is stiU 1. This shows the second claim of
the lemma, that \PostQ^{q) DUba\ ^ 1- Moreover, since A has no £ moves, the first claim of the
lemma is reduced to the following proof obligation: for every reachable upper-half state q of Ba,
and every positive duration t > 0, show that Post^^{'y(q)) =ifiPostg^lq)), where tt =£•[t] if the
time-passage bit of 9 is 0, and tt = [<] if the time-passage bit of g is 1.

So suppose that q = {(v,p, V, tp),x.) is a reachable upper-half state of Ba, and consider a duration
/ > 0. Then 7(9) has the form {v} x R, for a rectangular region 7E C M". Recall from the proof of
Proposition 2.2 that Post^^{'y{q)) has the form {u} x 5, where

inf(5,) = max{inf(mt;>i(v),), inf(R,)-1-1 •inf(/?ou;^(u),)}, (1)
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sup(5i) = min{sup(muyi(u),), sup(ili) + t •sup(y?oiy^(v),)}. (2)

The strictness of the infimum of 5,- is given as follows. Put Inv = mvyi(u),-, Flow = flowj^(v)i^ and
Try = 'm{{Ri) +1 -mfiFlow). If inf(/nu) > Try, then stncij,(5,) = stricti{Inv). If inf(/nu) = Try,
then stricti(Si) = wk iff stricti{Inv) = stricti{Ri) = stricti{Flow) = wk. If inf(/nu) < Try, then
s<nc<J.(5,) = wk iff strictI (Ri) = strict i (Flow) = wk. The strictness of the supremum of 5, is
given symmetrically. We show that K{PostB^{q)) = {v} x 5, for tt = £•[t] if <p = 0, and x = [t] if
tp = 1.

Case PostQ^(q) 7^ 0. In this case, PostQ^(q) has the form {r} for a reachable upper-half state
r = l),y) of Ba with yo > 0. Hence Fact 3.15 applies to r. The set 7(r) has the form
{u} Xr, for a rectangular region T C R". We show that T = S. For this purpose, we show that for
each coordinate i, the right endpoints of the intervals T,- and Si coincide in value and in strictness.
The argument for the left endpoints is symmetric. In the following, put Isup = sup(mu(t;),),
/| = strict] (ini;(v),), Fsup = sup(y?ott?(v),), and F] = strict] (flow(v)i).

Subcase = fin. By Fact 3.15, the flow interval fiow(v)i is bounded from above. So the
upper-bound variable moves at the supremum of the allowable slopes for a,-. Hence, yu(j) =
2^u(t) + I ' Fsup and sup(rt) = min{yu(,),/sup} = min{a;u(,) -I-1 •Fsup, Isup}. From the subcase
assumption and q-^BA'''̂ know that Pu(,) = fin, and therefore sup(i2i) = min{a;,^(,),/sup}. By
Fact 3.16, if > Isup, then Fsup > 0. Thus equation (2) implies sup(5,) = min{/sup, -|-
t •Fsup], which is the same as sup(r,). The question of strictness remains. If yu(,) > Isup, then
strict] (Ti) = I] = strict] (5,). If yu(i) < Isup and = str, then from q^SA ^ we know that
either Ft= str or cases strict] (T,) = str = strict] (Si). If yu{i) < Isup and
^u(i) ~ fken from q-^SA ^we know that Uu{i) = to/;, and Fact 3.15 implies Ft= wk. Therefore,
strict] (Ti) = wk iff either y„(,) < Isup or /}= wk, and the same is true for strict] (Si).

Subcase = inf. Then sup(ri) = Isup and strict] (Ti) = I]. From the subcase assumption
and q-^BA'''̂ we know that either Fsup = inf, or = inf and therefore sup(Ri) = Isup and
strict](Ri) = /}. Either way, equation (2) implies sup(5,) = Isup and sfnctt(5,) = /}.

Case PostQ^(q) = 0. This means that for some coordinate i, the lower-bound variable rises
above the upper boundary of invA(v)i within time t, or the upper-bound variable l>u{i) drops below
the lower boundary of mu>i(u),. In the first case, either + f•inf(/?ou;^(v),) > s\ip(invA(v)i), or
these two expressions areequal andone of or strict] (fiowA(v)i) or strict] (mvyi(u),) is str. The
second case is symmetric and wiU not be detailed. If -}-1' inf(fiowA(v)i) > sup(muyi(u),), then
equations (1) and (2) together imply inf(S,) > sup(5,). If -ft •inf(flowA(v)i) = sup(mux(v)t)
and one of or strict] (flowA(v)i) or strict] (mu>i(u),) is str, then inf(5',) > sup(5',) and either
strict](Si) = str or sfncfj.(5,) = str. In all cases, S,- = 0 and therefore {v} x 5 = 0. But from the
assumption PostB^(q) = 0 it follows that also l(Post%^(q)) = 0, which concludes the proof. •

From Lemmas 3.13 and 3.17 it foUows that for every upper-half zone Z C Uba^ every label
r GSUR>o, Pos<^(7(Z)) =7(FosiJ^(Z)) and, by Proposition 2.1, Pr€\('y(q)) = lf(PrelB_^(q)).
Hence we again have the commuting diagram of Figure 8, with all superscripts c and the restriction
that Z be compact removed. From Lemma 3.14 and the fact that Post commutes with 7, we
conclude, as in the compact case, that Reach(A) = 'y(R€ach(BA)), that Lang(A) C Lang(BA)'> and
that A and Ba accept the same finite timed words.

Theorem 3.18 The reachabilityproblemfor initialized rectangular automata is complete for PSPACE.
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c > 1

c :€ (-00,0]

o
c < 0

Figure 9: The initialized rectangular automaton A with Lang(A) C Lang(B^)

Proof. For containment in PSPACE, notice that |Vb^| = \Va\ - and that the definition of
Ba uses the same constants as the definition of A. The space requirement O(log + (2n + 1) •
(log(2n + 1) + logifi^)) = 0(log\Va\ + n- (logn + logiyi)), where La is defined as for singular
automata, is polynomial in the size of A. •

3.3 a;-Language Emptiness

While the initialized rectangular automaton A and the initialized singular automaton Ba accept
the same finite timed words, the automaton Ba may accept infinite timed words that are not
accepted by A. To see this, consider the ID initialized rectangular automaton A from Figure 9.
The only coordinate of A is a clock, the only vertex of A is u, and the invariant region of v is R.
Note that A is not a timed automaton, because the initial region init^{v) = (—oo,0] is unbounded
from below. While every finite timed word of the form (lai)"^ is accepted by A, the divergent
timed word is not accepted by A. This is because, no matter what the initial value of the
clock c, in a divergent run it will eventually be positive. However, in B^ the finite/infinite bit for
the lower bound on c is initially m/, and remains inf during time steps and <Ti steps. Therefore
(l<Ti)'̂ is accepted by A similar phenomenon is exhibited with unbounded postguard intervals.
The definition of bounded nondeterminism precludes both.

Closure uder divergent limits

A set C of infinite timed words is limit-closed if for all infinite timed words r, if every finite prefix
of r is a prefix of some word in £, then r itself is in C. Since we are interested only in infinite
timed words that diverge, we relax the requirement of limit closure as follows [HNSY94]. The set
C is closed under divergent limits if for all divergent timed words r, if every finite prefix of r is
a prefix of some word in £, then T itself is in £. A set of divergent timed words that is closed
under divergent limits is completely determined by its finite prefixes. So if we have two rectangular
automata Ai and A2 such that (1) every finite timed word accepted by Ai is accepted also by A2,
and (2) the u;-language Lang{A2) is closed under divergent limits, then Lang{Ai) C Lang(A2).
Specifically, if A is an initialized rectangular automaton whose w-language Lang{A) is closed under
divergent limits, then Lang{A) = Lang{BA)'

As we have seen, the w-language of the initialized rectangular automaton A is not closed under
divergent limits. The unbounded initial region of A is to blame. We will prove that for every
initialized rectangular automaton A with bounded nondeterminism, the w-language Lang{A) is
closed under divergent limits. Consequently, for initialized rectangular automata A with bounded
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nondeterminisin, the translation from A to Ba can be used to solve not only reachability but also
w-language emptiness.

For a rectangular automaton A, the u-language Lang^{A) with convergent words is the set of all
infinite timed words, divergent or not, that are accepted by runs of A. One way of showing that
Lang(A) is closed under divergent limits is to prove that Lang''{A) is limit-closed. While it is
not true for aU initialized rectangular automata A with bounded nondeterminism that Lang'̂ (A)
is limit-closed, this is true in the special case that A has compact nondeterminism. So we first
consider the special case of compact nondeterminism, and then proceed to the more general case
of bounded nondeterminism.

Preliminary definitions. Let A be an n-dimensional rectangular automaton (without e moves).
In this section, it is convenient to consider timed words over the alphabet E UR>o, where the
edge set replaces the observation alphabet. Formally, a timed edge word for A is a finite or infinite
sequence if = 7ro7ri7r2 ••• of letters from UR>o. An edge run of A that accepts ¥ is a sequence
of the form go ^ 9i ^ 92 ^ •**with 90 € Init, and qi € Q for all i > 0. Divergence for timed
edge words and edge runs is defined as for timed words and runs. The edge u-language of A {with
convergent words)^ denoted LanggiA) (resp. Lang£{A)), is the set ofalldivergent (resp. all infinite)
timed edge words that are accepted by runs of A. Limit closure and closure under divergent limits
for edge w-languages is defined as for u;-languages. The following observation is due to the fact
that the edge set of A is finite.

Proposition 3.19 Let A be a rectangular automaton. First, if the edge u-language LangsiA) is
closed under divergent limits, then so is the u-language Lang{A). Second, if the edge u-language
Langg{A) with convergent words is limit-closed, then so is Lang'̂ {A).

Proof. We say that a timed edge word 7ro7ri7r2 ••• matches the timed word roTir2 •••if for all i > 0,
if TT,- 6 E then r,- = o6s(7r,), and if tt, € R>o then r, = tt,. Assume that Langl;(A) is limit-closed,
and consider all finite prefixes of an infinite timed word r GLang'̂ {A). The finite timed edge words
that match these prefixes and are accepted by A form the nodes of a finitely branching tree: the
root of the tree is the empty timed edge word, and the successors of a node w are the (matching
and accepted) timed edge words of the form w-ir, for tt € UR>o« By Konig's lemma, the tree
has an infinite rooted path, and the nodes along this path are the finite prefixes of an infinite timed
edge word if. Since Lang£{A) is limit-closed, if GLang£{A). Since Wmatches f, we conclude that
r G Lang'̂ iA). This proves the second claim of the lemma. The first claim follows from the fact
that if T is divergent, then if is also divergent. •

Notice that for every singular automaton A, the edge w-language Lang£{A) with convergent words
(and therefore also Lang^{A)) is limit-closed. This is because a singular automaton A has a finite
number of initial states, and all edge steps as well as time steps are deterministic; that is, for all
states 9 of A, and every label ir e EU R>o, the zone Post'̂ {q) is either empty or a singleton. Next,
we consider a class of nonsingular, and therefore nondeterministic, automata whose w-languages
with convergent words are limit-closed.

The case of compact nondeterminism

The rectangular automaton A has compact nondeterminism if it has bounded nondeterminism, and
all rectangular regions that appear in the definition of A are closed. More precisely, A has compact
nondeterminism if (1) for every vertex v of A, the regions init{v) and flow{v) are compact, and
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inv{v) is closed, and (2) for every edge e of A, the regions pre(e) and post{€) are closed, and for
and every coordinate i € n} with i € jump(e), the interval post{e) is bounded. We show
that if A has compact nondeterminism, then the a;-language Lang{A) with convergent words is
limit-closed. This result is a consequence of the following basic property of compact zones, which
is inherited from E".

Proposition 3.20 Let A be a rectangular automaton, and let (Z,),gN be an infinite decreasing
sequence of nonempty compact zones of A; that is, Zi D for all i >0. Then the intersection

riieN nonempty.

Proof. This follows from the corresponding statement for regions (subsets of E"), and the fact
that the vertex set of A is finite. •

The next fact points out the compactness of all zones that will appear in the proof of the main
theorem. It follows immediately from the proof of Proposition 2.2.

Fact 3.21 Let A be a rectangular automaton with compact nondeterminism, and let Z and Z'
be two compact rectangular zones of A. For every label ir € F U E>o, the zones Post'^{Z) and
Pre'^{Z') n Z are compact and rectangular.

Note the asymmetry in Fact 3.21: the intersection of Pre^(Z') with the compact zone Z is required
for compactness, because the preguard regions of automata with compact nondeterminism are not
necessarily bounded. The next lemma gives the heart of the limit-closure argument, showing that
if all finite prefixes of an infinite timed edge word can be generated from a given zone Z, then there
is a single state in Z from which each prefix can be generated.

Lemma 3.22 Let A be a rectangular automaton with compact nondeterminism, and let Z be a
compact rectangular zone of A. Suppose that ¥ £ (Eu E>o)'*' is a timed edge word such that for
every m £ N, Post^°^^"""'"(Z) ^ 0. Then there is a state q £ Z such that for every m € N,
p05^7ro7rr"7r,n(^) ^ 0^

Proof. For each m € N, define Zm = {q £ Z \ Post'̂ °'̂ ^""^"*{q) ^ 0}. Since each Post '̂̂ '̂ ^"" '̂̂ {Z)
is nonempty, each Zm is nonempty. Also, Zm D Zm+i for all m > 0. We show that each zone
Zm is compact; then the lemma follows from Proposition 3.20. By Fact 3.21, for each m £ N,
the zone Post'̂ °^^""""^{Z) is compact and rectangular. Therefore, again by Fact 3.21, the zone
Zm = Z n Pre'̂ °'̂ ^"" '̂̂ {Post^ '̂̂ ^"" '̂̂ {Z)) is compact as well. •

Now we are ready to prove the main theorem.

Theorem 3.23 IfA is a rectangular automaton with compact nondeterminism, then the u-language
Lana'^(A) with convenient words is limit-closed.

Proof. Let A be a rectangular automaton with compact nondeterminism. By Proposition 3.19, it
suffices to show that the edge tj-language Langf^{A) with convergent words is limit-closed. Suppose
that ¥ £ (FuE>o)'*' is an infinite timed edge word such that for every m € N, the prefix ttotti ' •-iTm
is a finite prefix of a timed edge word in Lang^{A); that is, for each m > 0, Post'̂ '̂ ^^"" '̂̂ {Init) 7^ 0.
We need to show that ¥ £ Lang^{A).

We define an infinite sequence of zones (Z,),eK of A. Let Zq = Init. Since Zq is compact and
rectangular, by Lemma 3.22, there is a state qo £ Zq such that for each m > 0, Post'̂ °'̂ ^""^"*{qo) ^ 0.

26



c > 1

C:6 (0,1)

c < 1

Figure 10: The initialized rectangular automaton A for which Lang'̂ (A) not limit-closed

Let Zi = Post^°(go). Then Zj is compact and rectangular, and for each m > 1, ^
0. So by Lemma 3.22, there is a state q\ € Zi such that for each fc > 1, Post'"^ '̂̂ """"^{q\) ^ 0.
Proceed inductively in this manner, with Z,+i = Post'^'(qi) compact and rectangular, and ^,+1 6
Zi+-[ given by Lemma 3.22 such that for each m > i + 1, Post^ '̂̂ '̂̂ *'̂ ^"''̂ "*{qi+i) ^ 0. Then
qo^ qi^ Q2^ ••• is an edge run of A that accepts W. •

Corollary 3.24 Theoj-language emptinessproblem for initialized rectangular automata with com
pact nondeterminism is complete for PSPACE.

The case of bounded nondeterminism

For rectangular automata Awith bounded, noncompact nondeterminism, thew-language Lang'̂ {A)
with convergent words may not be limit-closed. To see this, consider the ID initialized rectangular
automaton A from Figure 10 (with the trivial invariant function A.R). While every finite prefix
of the infinite timed word r = \(Ti\(Ti\(Ti ••• is accepted by A, the convergent word r is not in
Lang'̂ {A). However, we show that the a;-language Lang{A) is still closed under divergent limits for
all rectangular automataA that have bounded nondeterminism and are initialized, like the sample
automaton A. Bounded regions have no analogue to Proposition 3.20, and this greatly complicates
the proof, which now relies on a detailed case analysis of the flow function. The following fact
points out the boundedness of aU zones that wiU appear in the proofof the main theorem.

Fact 3.25 LetA be a rectangular automaton with bounded nondeterminism, and let Z be a bounded
rectangular zones ofA. For every label tt G£'UR>o, the zone Post^{Z) is bounded and rectangular.

The next lemma gives the heart of the argument. It shows that for ID rectangular automata A
with constant, bounded flow functions, Lang{A) is closed under those divergent limits that are
accepted by runs without discontinuous jumps in the continuous state.

Lemma 3.26 Let T be a finite set of intervals, and let flow be a bounded interval. Let {ti)i^^
be an infinite sequence of positive reals with be an infinite sequence
of intervals such that Iq is bounded and each /,• is the intersection of one or more members of I.
Suppose that for each m € N, there is a finite sequence xq,X\,.. .,x.m of reals such that for all
i G {0,...,m}, we have x, € I{, and for all i 6 {0,...,m —1}, we have (xj+i —Xi)/ti Gflow.
Then there is an infinite sequence (a:,),gK of reals such that for all i > 0, we have Xi G li and
(x,+i - Xi)/ti Gflow.
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Proof, We call a finite sequence xo,xi,. ..,Xm m-admissible if for all i € {0,...,m}, we have
Xi € and for all i 6 {0,..m - 1}, we have (a;,+i - Xi)/ti € flow. We call an infinite sequence

admissible if for all i > 0, we have Xi € li and (®t+i - Xi)/ti € flow. Think of these
sequences as values of a variable a, with a € flow, in a run with time steps of durations U and
without discontinuous jumps. Let J be the set {J C R | J = 1% for infinitely many i} of intervals.

Case 0 i c\osvLTe(flow)» Suppose that flow C (^,oo) for some ^ > 0. The case of flow C
(—00,6) is handled symmetrically. Let fc G R be larger than all of the finite endpoints of the
intervals in J. The point here is that the slope of o is bounded from below by 6, so that once
(k —inf(/o))/6 time units have passed, no matter what the initial value of a, the value of a will be
greater than all of the finite endpoints of intervals from J (note that inf(/o) is finite, because Iq
is bounded). Let j be large enough so that YfiZo li > {k —inf(/o))/6; such a j exists because the
sum diverges. Then, for every m-admissible sequence a:o,a;i,...,a;m5 we have x, > k for
all t € {j -f-1,..., m}. Since each /,• is an intersection of intervals from J, it follows that for every
i > j, we have /,• D (fc,oo). Consider a y-admissible sequence xo,xi,.. .,Xj and choose 6' € flow.
Then xq,a;i,..., Xj,Xj + 6' •tj,Xj -H 6' • (tj -f tj+i),... is an admissible sequence.

Case 0 = inf(y?oiy) or 0 = sup(/?oiy). We suppose that 0 = inf(y7ou;); the case 0 = sup(y?oit;) is
handled symmetrically. Among the intervals /,• are only finitely many distinct intervals. Therefore

^ 0, because flow fi (—oo,0) = 0, so a can never descend from an interval /,• to an interval
Ij all of whose elements are less than those of Let ji be large enough so that (1) for every
i € N, we have G J, and (2) for every J ^ J, there is an i < j\ with I, = J\ that is, ji is
large enough so that all elements of J have been met in the past, and only elements of J wiU be
met in the future. Let j2 > ji be large enough so that all elements of J are represented among
/jj+i,.. Let xq,Xi,, . .,Xj2 be a j2-a'dmissible sequence. Then Xj^ because a cannot
decrease, each interval in J contains at least one x, with i < ji, and each interval in J contains at
least one Xi with ji < i < ^2- If 0 Gflow, then xo, a^i,..., xf^ is an admissible sequence. If 0 ^ flow,
then Xji < sup(f|t7). Let 6 = sup(f)t7) - Xj,. For each i > ji, choose 6,- so that 0 < 6, < 6/(2' •t,).
Then xq,Xj, ..., xj^, Xjj -{- 6jj^.i • , Xjj 6jj-|-i • -}• 6jj^2 *^ji+2)... is admissible.

Case 0 G mtenoT(flow) and f)y 0. Since 0 is in the interior of flow, every m-admissible
sequence can be slowed down to give another m-admissible sequence. Let ji be as in the previous
case. Since 0 Gflow, whenever a (ji i)-admissible sequence, i > 0, terminates in f\J, then it can
be extended to an admissible sequence by repeating the last value ad infinitum. Such a (/i + i)-
admissible sequence terminating in f) exists, because there exist two intervals Ji,J2^ J such that
inf(Ji) = inf(f)»7) with identical strictness, and sup(J2) = sup(n»7) with identical strictness. Let
j2 be large enough so that both J\ and J2 each appear twice in ,..., /jj-i• Let xq,xi,..., Xj^
be a j2-admissible sequence. There must be two positions ii and 12 with f\ < i\ < 12 < j2 such that
x,j G Ji and x,^ G J2- By slowing down the x, sequence, can be reached: if Xtj > sup(n»7)
and inf(n«7)> then for somef with i\ < j < 22, wehave xj > sup(ni7) and Xj+i < sup(n»7)-
Choose y ^f]J so that y > Xj+i. Then xo,xi,...,Xj,y'^ is an admissible sequence.

Case 0 Ginterior(/?oiy) and = 0. Let Ji, J2 ^ *7 be such that every element of Ji is greater
than every element of J2- Let ji be as in the previous two cases. Let ji < pi < qi < P2 be so that
Ipy = /p2 = Ji and Iq^ = J2. Let xq,xi,. ..,Xp2 be a p2-admissible sequence. We first show that
for every m G N, there is an m-admissible sequence starting from xq. This is obvious for m < p2?
so suppose that m > p2. Let yo? 2/i? •• •52/m he an m-admissible sequence. We have three subcases.

Subcase Xp, = t/p,. In this case xo,Xi,.. .,Xpj,ypj+i,ypj+2i• •-jl/m is m-admissible.
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Subcase Xp^ < yp^. If Xq^ < yq^, then by slowing down, the Xi sequence can meet up with the yi
sequence somewhere along the descent from Ji to If ^qj > Vqi ?fhen for some j € {pi+1,..., gi},
we have xj < yj and Xj+i > yj^i. Since (j/j+i - yj)/tj € flow and (xj+i - xj)/tj € flow, and
yj+i —yj < t/j+i —Xj < Xj^i —Xj, it must be that (j/j+i —Xj)ltj € flow. Hence the sequence
XQ,xi,...,Xj,yj+i,yj+2^"',ym is m-admissible.

Subcase Xp^ > yp^. If Xq^ < yq^, then by slowing down, the x, sequence can meet up with the y,-
sequence somewhere along the descent from Ji to J2- So suppose that . Now if Xp^ > yp^,
then by slowing down, the a;,- sequence can meet up with the y, sequence somewhere along the ascent
from J2 to Ji. If Xp^ < yp^, then the y,- sequence must cross the x, sequence as above, and the
a:o,a;i,.. .,Xj,yj+i,yj+2,. •.,ym construction from the previous subcase provides an m-admissible
sequence. This completes the case analysis.

It remains to construct an infinite admissible sequence. Let a;o € lo be such that for every m G N,
there is an m-admissible sequence starting from a:o- Let R be the set of to-successors of xq; that
IS, R = {y £ R \ (y - xo)/to 6 flow]. Since flow is bounded, R is bounded. Let (fJOieN he the
sequence of reals such that for all i > 0. Let he the sequence of intervals such that
Iq = IiD R, and I'i = Iw for all z > 1. If we apply what we have already proven to the duration
sequence (fJOigN and the interval sequence we conclude that there is an xi € Iq such that
for every m € N, there is an m-admissible (with respect to (fJOtgN and sequence starting
from xi. Continuing inductively, we form an admissible sequence starting from xq. •

Now the proofof the main theorem consists of reduction to one dimension, eliminating discontinuous
jumps, and applying Lemma 3.26.

Theorem 3.27 If A is an initialized rectangular automaton with bounded nondeterminism, then
the (jj-language Lang{A) closed under divergent limits.

Proof. Let Abe an n-dimensional initialized rectangular automaton with bounded nondeterminism.
By Proposition 3.19, it suffices to show that the edge w-language LangE{A) is closed under divergent
limits. Suppose that W£ (EU E>o)'*' is a divergent timed edge word such that for every m G N,
there is a finite edge run of A of the form ^ ^ ... III? . We need to show that there
is an infinite edge run p of A of the form go ^ ^ 92 ^ First, observe that each of the n
coordinates of a rectangular automaton is independent of the other coordinates. Hence, A has an
edge run p iff each of the n ID rectangular automata defined by projecting the continuous state of
A to one of the coordinates has the corresponding projection of p as an edge run. Therefore we
assume that n = 1.

Let u; = {i G N I 1 G jump(7r,)} be the set of positions with discontinuous jumps in the first
(and only) coordinate. If i G w, then the value of the continuous state after the i-th step is
independent of its previous value. So if lo is infinite, then we can string together p from infinitely
many segments that lead from one discontinuous jump to the next: for all j > 0, choose qj =
for f{j) = min{i ^ w \ i > j}. If w is finite, then we can string together p from |a;| many
segments that lead, as in the previous case, from one discontinuous jump to the next, followed by
an application of Lemma 3.26. In Lemma 3.26, let I be the set of all invariant, preguard, and
postguard intervals of A', let flow be the flow interval of the vertex associated with the state g| for
any k > j > max(uj); and let Iq be the interval associated with the zone The
initialization of A ensures that after the first max(u;) steps, the flow interval flow remains constant.
The bounded nondeterminism of A ensures, by Fact 3.25, that the zone Post^^^^"'̂ '̂ '-* '̂̂ '̂ {Init) is
bounded and rectangular. •
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Figure 11: Chain of timed simulations from A to Dcb^

Corollary 3.28 Theu-language emptiness problemfor initialized rectangular automata with bounded
nondeterminism is complete for PSPACE.

3.4 Simulation Relations

We introduced several mappings between the state spaces of rectangular automata. We were inter
ested only that the mappings preserve reachability and w-languages. Now we study the mappings
in greater detail and show that they are timed (bi)simulations [LV96] on the underlying labeled
transition systems. In particular, the map a from Section 3.1 specifies a timed bisimulation between
an initialized stopwatch automaton C and the timed automaton Dc-, the map (5 from Section 3.1
specifies a timed bisimulation between an initialized singular automaton B and the initialized stop
watch automaton Cjg, and the map 7 from Section 3.2 specifies a timed forward simulation of an
initialized rectangular automaton A by the initialized singular automaton Ba<, as well as a timed
backward simulation of Ba by A.

Let A\ and A2 be two rectangular automata with £ moves and the same observation alphabet.
A binary relation x C Reach{A\) x Reach{A2) is a timed forward simulation of A2 by Ai if the
following two conditions are met.

1. For every initial state r of A2, there is an initial state q of Ai such that (9, r) G X-

2. For all states r,r' G Reach{A2), every state q G Reach{Ai) with {q,r) G Xi every label
r GS UR>o, if r^A2 '̂1 t^^n there exists a state q' G Reach{Ai) such that {q'-,r') GX ^tnd

"T /

The relation x is a timed backward simulation of A2 by Ai if the following three conditions are met.

1. For every state r G Reach{A2), there exists a state q G Reach(Ai) with (9, r) G X-

2. For every initial state r of i42, and every state q G Reach(Ai), if (?? ^ X? 9 is an initial
state of Ai.

3. For all states r,r' G Reach{A2), every state q' G Reach(Ai) with iq',r') G X» and every label
r G E UR>o, if r-^A^ '"'i there exists a state q G Reach{A\) such that (9, r) Gx and

T / ~
q -

If X is a timed forward simulation of A2 by Ai, and x~^ is a timed forward simulation of Ai
by A2, then x is a timed bisimulation between A\ and A2. Notice that if there is a timed forward
simulation of A2 by A\, then every timed word accepted by A2 is accepted also by Ai; if there is a
timed backward simulation of A2 by Ai, then every finite timed word accepted by A2 is accepted
also by A\.
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For a map k : Qa^ —^ Qa2 from the states of Ai to the states of A2, define the relation k C
Reach{Ai) XReach(A2) such that (q,r) e k r = K(q). In this way, we obtain the relations
Qand p. For a map k: Qa\ 2^"^2 from the states of Ai to zones of A2, define the relation
k C Reach(Ai) XR€ach{A2) such that {q, r)e kif[r e K(q). In this way, we obtain the relation 7.
The next proposition foUows from Lemma 3.2 in the case of d, from Lemma 3.4 in the case of
and from Lemmas 3.13, 3.14, and 3.17 in the case of 7.

Proposition 3.29 For every initialized stopwatch automaton C with e moves, the relation a is a
timed bisimulation between C and the timed automaton Dc • For every initialized singular automa
ton B with £ moves, the relation P is a timed bisimulation between B and the initialized stopwatch
automaton Dc- For every initialized rectangular automaton A, the relation 7 is a timed forward
simulation of A by Ba, and 7"^ is a timed backward simulation of Ba, restricted to its upper-half
space, by A.

Simulation relations compose, as summarized in Figures 11 and Figure 12. In particular, the timed
automaton Dcd timed forward simulates the initialized rectangular automaton A via the relation

Ba

Qo/3 o7, and Atimed backward simulates F>Cba 7"^ o 0d. It is not difficult to check that A
does not timed forward simulate Ba, and Ba does not timed backward simulate A [Kop96].

3.5 Symbolic Reachability Analysis

Consider an n-dimensional rectangular automaton A, and a rectangular zone Zj of A. To solve
the reachability problem for A and Zj symbolically, by computing with multirectangular zones,
we may attempt to compute the sequence Init, Post{Init), Fost^{Init), ... of zones, until either
the intersection with Zj is nonempty, or a fixpint of Post is reached within a finite number of
steps (that fixpoint, then, is Reach{A)), This procedure, which we call the symbolic execution
ofA [ACH+95], will terminate if the zone Zj is reachable or if there is a natural number i GNsuch
that Reach{A) = PosV{Init), but it will not terminate if Zy is not reachable and no such i exists.
Symbolic execution therefore constitutes a semidecision procedure for the reachability problem of
rectangular automata. The procedure has been implemented in the automatic verification tool
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HyTech [HHWT97], and successfully applied to examples of practical interest [HHWT95, HW95,
NS95, Cor96, HWT96, SMF97].

While the reachability problem is decidable for all initialized rectangular automata, even for timed
automata symbolic execution does not always terminate. To see this, consider the 2D timed au
tomaton B from Figure 13, with first coordinate c and second coordinate d. The only vertex of B
has the invariant region [0,oo) x [0,1]. For each i > 1, Post^^~^{Init^) = {(v, (a;,y)) | 0 < x <
i and y = x- [xj}. Hence the fixpoint computation does not converge. To blame is the unbounded
invariant region. This is because symbolic execution is known to terminate for every timed automa
ton with bounded invariant regions [HNSY94] (where A has bounded invariant regions if for every
vertex v of A, inv{v) is bounded). It follows that symbolic execution terminates also for initialized
rectangular automata with bounded invariant regions. This is the content of the next proposition.

Proposition 3.30 For every initialized rectangular automaton A with e moves and bounded in
variant regions, there is a natural number i € N such that Reach{A) = Post*(Init).

Proof. Consider an initialized rectangular automaton A with e moves and bounded invariant
regions. The construction of the singular automaton Ba from Section 3.2 can be modified in two
respects. First, it is a simple matter to accommodate inherited e edges from A. Second, Ba is
equipped with bounded invariant regions as follows, by introducing additional e edges. Whenever a
lower-bound variable falls to 1 below the lower boundary of the bounded invariant interval for a,-,
the slope of is changed to 0 via an e edge. Upper-bound variables are treated symmetrically.
These modifications do not affect the mapping 7 and its properties. Now the proposition foDows
immediately from the relationships shown in Figure 12 and the statement of the proposition for
timed automata. •

In this section, we remedy the problems arising from unbounded invariant regions by preprocessing
the given automaton A. For initialized A, we construct in linear time an initialized rectangular
automaton Ai,d with e moves such that (1) Reach{A)r)Zf 7^ 0 iff Reach{Abd)f\Zf 0, and (2) there
is a natural number z G N such that Reach(Abd) = The second condition implies
that the symbolic execution of Atd terminates, and the first condition implies that it gives the
correct answer to the reachability problem for A. Consequently, the reachability problem for A
can be solved, rather than by translating A into a timed automaton, by direct symbolic execution
of Ahd- While translation doubles the dimension, the dimension of Af,d remains n, which alleviates
a major practical bottleneck in the verification of hybrid systems [HHWT97].

To facilitate the proofof condition (2), wefirst introduce a third automaton A\^, which satifiesboth
(1) and (2) but is exponentially larger than A. The automaton ^4^^ will have bounded invariant
regions, and therefore satisfy condition (2) by Proposition 3.30. For the remainder of this section,
assume that the given automaton A is initialized, and that its variables are oi,.. .,a„.

An exponential preprocessing step

We define an n-dimensional initialized rectangular automaton Ay with e moves and bounded
invariant regions, and a rectangular zone Zj ofAy, such that Reach{A) DZj ^ 0 iff J?each(Ay) n
Zy 7^ 0. Let k be 1 more than the largest rational constant that appears in the definitions of A
and Z/ as a finite endpoint of an interval. Let p be 1 less than the smallest such constant. The
idea is to truncate all invariant, preguard, and postguard regions of A by intersection with [gyh]^.
When a variable reaches the upper or lower boundary of the rectangular region [g, h]", we change
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d = 1 — d := 0

c, d := 0

Figure 13: The timed automaton B for which Reach{B) D PosV{Init) for all i > 0

its slope to 0. The automaton has the vertex set V^i =VaX {0,1,2}". Put low = 0, ofc = 1,

and high = 2, and let oA?" be the n-vector {ok, ok,. ..,ok). Each state ((u, A),x) of is intended
to represent all states ofAofthe form (v,y) with y,- < </ if Aj = low, and y, = x, 6 [flf, h] if A,- = ok,
and yi > hif A,- = high. AH of these states will be shown equivalent for reachability purposes.

The remaining components of A\^ are defined as follows. The observation alphabet of is the
same as for A. The initial, invariant, and flow functions of A^^ are defined by

' -4 r \\ / i^^iA{v)i(^[9,h], \iXi = ok,inttA'Jv,X)i =<^ 0, otherwise;

f [h,h], \fXi = high,
invA' {v,X)i = < invA{v)i n [g,h], if A,- = ok,

I tfl.s], ifAi = /o«,;

a / u _ / flow^{v)i, if A,- = ok,)» I [0,0], otherwise.
For each edge e = (u,u;) of A, the automaton A^^ has an edge e' = ((u, oP), (in, oA:")) with
obsA' {e') = obsA{€),preA' {e') = pre^(e)n[fir,h]",pos<^/ (e') = pos<^(e)n[^,h]",andi«mp^; (e') =

bd bd

jumpAie). Define trunc : R" [p,h]" by trunc{x)i = g \f Xi < g, trunc{x)i = x, n g < x, < h,
and trunc{x)i = h if x, > h. A rectangular region C R" is gh-limited if for every coordinate
i € {1,..., (1) either mf(Ri) = -oo or g+l< inf(iE,) < h - 1, and (2) either sup(Ri) = oo or
g1 < sup(jR,) < h - 1. By definition of g and h, all initial, invariant, preguard, and postguard
regions of A, as well as [Z/Y for all vertices v of A, are ph-limited regions. The following fact
ensures that the guards of Ay have the same eflfect as the guards of A.

Fact 3.31 Let x € R", and let J? C R" 6e a gh-limited rectangular region. Then x e R iff
trunc{x) € RC\[g, h]".

In addition to the edges inherited from A, the automaton Ay has e edges for toggling the com
ponents of A. For every vertex v of A, every coordinate i € {l,...,n}, and every vector Awith
A, = ok, there is an e edge from {v, X) to (u, A[A,- := low]), and another e edge in the reverse direc
tion, from (v, A[Ai := low]) to (u. A), each annotated with the guarded command ai = g ai := g.
Here A[A,- := low] stands for the vector that agrees with Aon all components except for the i-
th component, which is low. The trivial assignment is for initialization. Similarly, there are e
edges from (v,A) to (v,A[A,- := high]) and from {v,X[Xi := high]) to (u,A), each annotated with
the guarded command ai = h a, := h. This completes the definition of Ay. Note that the
rectangular automaton Ay is initialized and has bounded invariant regions.
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Define the function ^:Qa^ Qa' by C(v,x) = ((u, oP), tr«nc(x)), and extend Cto zones in the
hd

natural way. Notice that InitA> —Q(InitA)' Define Zt =
hd

Lemma 3.32 Let A be an initializedrectangular automaton, and let Zj be a rectangular zone of A.
Then Reach{A) r\ Zj iffReach{A'f^^) fl Zy 5^ 0.

Proof. It suffices to prove the lemmafor one-dimensional A. For the "only if" direction, we show
that for all labels ir e EaU [K>o], if q^A^ then C(q)^A'^ C{^)- For time steps, suppose that

^ hd

(u,a;^) for t > 0. Then (x^ - x^)/t 6 floWj^(v). Ug < x^,x^ < h, then trunc(x^) = x^
and trunc(x'̂ ) = x^. Since fiowy^i^^{v, ok) =fiow/^(v), we have suppose
that x^ < g < h < x^. Then there exist three durations ^1,^2,^3 € R>o such that t = fi + ^2 + ^3
and (u, (u,/i)-^>i (u, x^). In this case, trunc{x^) = g and trunc{x'̂ ) = h. Since
floWj^i (u, ok) = fiowj^(v), we have

bd

((u, ok), trunc(x^)) ((v, low),g)^A'̂ ^ ((u, low),g) ((v, ok),g)^^>^^ ((v, ok), h)
{(v, high), h) ^a' (( v, high), h) -^a' ok), trunc{x^)).

oa Oo

Again C(v, x^) -^a' Other positions of x^ and x^ relative togand hare handled similarly.
bd

For edge steps, the key fact is that all preguard and postguard regions are p/i-limited. Suppose
that (t;^,x^)-^>1 (u^,x^) for e € Ea' Then x^ 6 pr€^(e) and x^ € posi^(e), and so by Fact 3.31,
trunc(x^) € preA'̂ ^ie') and trunc{x'̂ ) € postA'̂ ^(e'), where e' is the edge of inherited from e.
In addition, jumpA' (e') = jumpA(e), and so

bd bd

For the "if" direction we apply a more global argument. Suppose that

((v°, ok), y°) ok), yV-^A-^ ••• ((f", ok), r),

where ((v°, o/:),j/°) € InitA'̂ ^ and ((u"*, ofc),y*") € Zj. We find x°,.. .,x"^ such that

and for each i € {0,...,m}, trunc{x^) = y\ Since A is initialized, it suffices to assume that each
TT," € Ea' has jump{'Ki) = 0; otherwise we string together the solutions obtained for the segments

bd

between discontinuous jumps. Consequently, fiowA{v^) = flowA(v^) for all i,j 6 {0,...,m}. By
Fact 3.31, it suffices to assume that ir, 6 K>o for aU i, that is, all m steps are time steps. Let flow
be the common value of the flow region flowA(v^)^ for i € {0,.. .,m}. If 0 € flow, then

y") (v\y')^A---

so putting X* = y' for each i, we are finished, because y° € InitA and £ Zj by Fact 3.31. Now
suppose that flow C (0,00). Here the mostinteresting case is given by y° = y and y^ = h, forg < h.
In this case, there exist 0 < y'l < 32 < ni such that y* = y for t < ji, and g < y^ < h foi ji < i < j2>
and y^ = h for i > j2- We put x' = y' for y'l < f < j2- To set the x' for i > j2, we need only determine
a suitable slope. Let k2 be such that for some h' > h, we have k2 = {h' —y^^)/wj^+i € flow. Such
a A:2 > 0 exists because ((v^^,ok), y-'̂ ) a ôk), h). Put x* = y^^ k2 •(i - 32) for each

TT • •i > j2. Then (v',x*) -^^>1 (u'+^,x'+^) for all i + l,...,m - 1}. It remains to set the
X* for i < ji, which is done in the same way. Since {(v^^,ok),g) ofc),y'̂ ^"^^), there
exists a Aji € flow such that for some g' < g, we have ki = (y-'^^ - g')hj^^\ € flow. For each
i € {0,...,yi},put x' = y•^^•*•^- '̂l•(il + l-^). Then (u*,x*)(u'+\x'+^) for all i € {0,...,ji},
and we are finished. All other cases are handled in a similar fashion. •
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A linear preprocessing step

The automaton uses the discrete part of the state to store information about variables whose
values are too smallor too large to be relevant. This causes the state spaceof to be exponentially
larger than the state space of A. We now define an initialized rectangular automaton Ajd, with
the same dimension and state space as A, which uses the continuous part of the state for the same
purpose. Instead of stopping a variable when it reaches g (resp. h), the automaton Ahd allows a
nondeterministic jump to any value below g (resp. above h). Formally, An is identical to A, except
for 271 • \Va\ additional e edges. For every vertex u of A, and every coordinate i 6 {1,.. .,7i}, the
automaton Abd has two e edges from v to v, which are annotated respectively with the two guarded
commands ai < g a,- :6 (-00,5^] and ai > h ai :G [h,00).

The following two lemmas prove that the simple modification Abd cs-ii be used to decide reach
ability on A by symbolic execution. The connection between Abd A is established via the
automaton Aj^. The first lemma implies that Abd is timed bisimilar to Aj^.

Lemma 3.33 For all states q and r of the rectangularautomaton Abd, o.nd every label r e EUM>o,
we have ^ C(0'

Proof. For r € S, the statement of the lemma foUows from Fact 3.31. For r € K>o» it suffices
to prove the result for one-dimensional A. Suppose that (u,x^)If 5 < < /i,
then immediately = ((^1 ((u, The most interesting case
IS < g < h < In this case, there exists a duration t < t such that {h —g)/t € flowA{v).
Therefore

C(u, a:^) = ((u, ok), g) 9) 5) 9) ((^'

Similar arguments apply to all relative positions of g, and h. The reverse implication follows
from the £ edges of Aj^. •

Let Qok C Qa' be the set of states of AJ^ that have the form ((u,ofc"),x). Then C is an
onto function from Qai,^ Qa'̂ ^ '̂ From Lemma 3.33, it follows that for every zone Z of Abd,
PostA>^^(C{Z))nQok =CiPostAi^iZ)). Since ItiUa'̂ ^ = we conclude that Reach{A'i,^) n
Qok = C(^€ac/i(A4rf)). Another consequence ofLemma 3.33 is the next lemma, which implies that
the symbolic execution of Abd must terminate within at most one more step than the symbolic
execution of Aj^ (whose bounded invariant regions guarantee termination).

Lemma 3.34 For all zones Z of the rectangular automaton A, if PostA'̂ ^{C{Z)) = C(Z), then
Post^A^^(Z) = PostAf,a(Z).

Proof. Consider a zone Z of A such that PostA'.{C{Z)) = CiZ)- We assume that Q—^Ahd for
bd ^

two states q GPostAf,^{Z) and r ^ PostAf,^{Z), and show a contradiction. From Lemma 3.33 it
follows that for aU states r' with C(r') = C(r)5 also r' ^ PostAj,^(Z). On the other hand, ^(q) €
({PostA^^{Z)) C PostA' (C{Z)) = C(Z), using Lemma 3.33 asecond time. Since r GPostAf,^(q), we
have C(r) € Posta' {C(Z))r\Qok = CiPostAf,^(Z)) by a third and fourth application ofLemma 3.33.
So there exists a state r' GPostAt,j{Z) with ((r') = C(r), which gives us a contradiction. •

From Lemmas 3.32 and 3.33 it follows that reachability in A is equivalent to reachability in Abd- we
have Reach{A)nZf ^ 0iff i2eac/i(A^ 0ifFC(i2eac/i(A4d))nC(^/) # 0iff i2eac/i(Ay)nZ/ ^ 0
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(the final equivalence follows from Fact 3.31, because all regions of Zj are 5/1-limited). From
Proposition 3.30, Lemma 3.33, and Lemma 3.34 it follows that the symbolic execution of Aid
terminates.

Theorem 3.35 Let A be an initialized rectangular automaton, and let Zj be a rectangular zone
of A. Then there exists a rectangular automaton Au, obtained from A by adding e moves, such
that (1) Reach(A) C\Zj iff Reach(Au) HZ/ 7^ 0, and (2) there is a natural number i € N with
Reach{Abd) = PosVy^^^{InitAf,^).

4 Undecidability

In Section 3, we showed that the initialized rectangular automata form a decidable class of hybrid
automata. In this section, we show that they form a maximal such class. We proceed in two steps.
First, we show that without initialization, even a single two-slope variable leads to an undecidable
reachability problem. Second, we show that the rectangularity of the model must remain inviolate.
Any couphng between coordinates, such as comparisons between variables, brings undecidability
already with a single nonclock variable. (Timed automata, which have only clock variables, remain
decidable in the presenceof variable comparisons [AD94].) A main consequence is the undecidability
of compact automata with clocks and one stopwatch, which are of interest for the specification of
duration properties [KPSY93].

An n-dimensional rectangular automaton A is simple if it meets the following restrictions.

1. Exactly one variable of A is not a clock.

2. The automaton A has only one initial state go, and go has the form (u, (0,0,.. .,0)).

3. For every edge e of A, and every coordinate i € {1,..., n}, if i € jump(e) then post{e)i = [0,0],
and if i ^ jump{e) then post{e)i = pre(e),-.

4. For every vertex v of A, the invariant region inv{v) and the flow region fiow{v) are compact
(by restriction (2), the initial region init{v) is compact as well). For every edge e of A, the
preguard region pre(e) is compact (by restriction (3), the postguard region post(e) is compact
as well).

5. The observation alphabet of A is a one-letter alphabet, and the invariant function inv of A is
constant. (One can require that A has the trivial invariant function Au. with only minor
modifications of our proofs.)

The automaton A is m-simple if it meets restrictions (2)-(4), and exactly m variables of A are not
clocks.

We use simple automata for our undecidability results. Restrictions (2) and (3) ensure that every
simple automaton has deterministic jumps, which eliminates the nondeterminism of jumps as a
possible source of undecidability. Many limited decidability results are based on a technique,
called digitization, which discretizes time steps with noninteger durations [HMP92, BES93, BER94,
PV94]. Since the digitization technique requires closed guard and invariant regions, restriction (4)
implies that the technique does not generalize beyond very special cases. Many limited decidability
results apply to automata with a single stopwatch [BES93,KPSY93, BER94, MV94, BR95, ACH97].
Restriction (1) implies that these results do not generalize either.
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c = Wki — c := 0

Figure 14: Wrapping lemma: the skewed clock c retains its entry value upon exit

/I

®2 63 time

Figure 15: Proof of the wrapping lemma for slope 1

All of our undecidability proofs are reductions from the halting problem for two-counter machines
to the reachability problem for simple rectangular automata. A two-counter machine M consists
of a finite control and two unbounded nonnegative integer variables called counters. Initially both
counter values are 0. Three types of instructions are used: branching based upon whether a
specific counter has the value 0, incrementing a counter, and decrementing a counter (which leaves
unchanged a counter value of 0). When a specified halting location is reached, the machine halts.
In our reductions, the finite control of M is encoded in the finite control of a simple rectangular
automaton Aji/; in particular, there is a vertex v such that that M halts iffthe zone {u} x inv{v) is
reachable for Aa/. Each counter is encoded by a clock of Ajvf, and we supply widgets for performing
the operations that correspond to incrementing or decrementing a counter. Typically, the counter
value u corresponds to the clock value ki • where ki and k2 are the slopes of a two-slope
variable of Aa/, with ki being the larger. When ki = 2k2, decrementing (resp. incrementing) a
counter corresponds to doubling (resp. halving) the value of the corresponding clock. Notice that
since ki > k2-, it is the density of the continuous domain, rather than its infinite extent, that is
used to encode the potentially unbounded counter values.

4.1 Uninitialized Automata

We show that initialization is necessary for a decidable reachability problem.

Theorem 4.1 For every two slopes ki,k2 € Q with ki ^ k2, the reachability problem is undecidable
for simple rectangular automata with a two-slope variable of slopes ki and k2.

We first prove three lemmas that are basic to all of our undecidability proofs. Let W be a positive
rational number. A simple rectangular automaton A is W-wrapping if its invariant function is
defined as follows.

• For every variable a of A that is a clock, and every vertex v of A, inv{v){a) = [0, W],
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c = W Ad=W -* c,d:=0

«2

a = W

63

Figure 16: Equality lemma: testing if c = rf

• If 6 is the nonclock variable of A, and b takes only nonnegative slopes (i.e., flow{v)(b) C [0,oo)
for all v), then for each vertex v of A, inv(v){b) = [0,1^- imx{svLp{flow(w){b)) | w £ V}].

• If 6 is the nonclock variable of A, and b takes only nonpositive slopes, then for each vertex v
of A, inv{v){b) = [W •min{inf(/?ou;(tt;)(6)) | w £ V},0].

• If 6 is the nonclock variable of A, and 6 takes both positive and negative slopes, then for each
vertex v of A, inv(v)(b) = [W •mm{m{{flow(w){b)) | w £ V}, VF •max{sup(/?oi«(u;)(6)) | w £
V}].

A W-wrapping edge for a clock a and a vertex v is an edge from v to itself that is annotated with
the guarded command a = IV —» a := 0. A W-wrapping edge for a nonclock variable 6 and a
vertex v with flow(v)(b) = [A;,/:] is an edge from v to itself that is annotated with the guarded
command b = k -W b := 0. The invariant of a wrapping automaton forces wrapping edges to be
taken when they are enabled. We use wrapping to simulate discrete events by continuous rounds
taking W (or some multiple thereof) units of time. The wrapping edges ensure that variables take
the same values at the beginning and end of a round, unless they are explicitly reassigned by a
nonwrapping edge. This is the content of the wrapping lemma. A similar wrapping technique can
be found in [Cer92].

In figures of simple automata, we use the following conventions. First, all variables whose slopes
are not listed are clocks, i.e., they have slope 1. Second, wrapping conditions are left implicit; in
particular, we omit invariants from every figure after those regarding the three ba^ic lemmas, and
we omit wrapping edges beginning with Figure 20.

Wrapping lemma. Let W be a positive rational number. Let ki € Q, and consider the simple
W-wrapping automaton fragment of Figure 14- Suppose that the value of c is x when the edge ei
is traversed, where 0 < x < ki 'W ifki>0, and ki - W < x < 0 if ki < 0. Then the next time es
is traversed, the value of c is again x.

Proof. Figure 15 contains a time portrait that illustrates the proof for W = 4 and ki = 1. The
markings ei, 62, and 63 along the time axis show at which points these edges are traversed. We
give the proof for ki >0. In order for es to be traversed in the future, the following series of events
must occur: (1) €1 is traversed; (2) exactly {W •ki - x)lki time units elapse, after which c has the
value W 'ki, and a has the value {W •ki - x)/ki\ (3) the wrapping edge €2 is traversed, after which
c has the value 0, and a has the value (IV •ki —x)/ki; (4) exactly IV —(IV •ki —x)/ki = x/ki
time units elapse, after which a has the value IV and c has the value x. •

By allowing clocks c and d to wrap only simultaneously, we can check if the two clocks have the
same value.
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a = Vv

Figure 17: Assignment lemma: performing the assignment d:= ^ -c

Equality lemma. Let W be a positive rational number. Consider the simple W-wrapping
automaton fragment of Figure 16, in which all variables are clocks. Suppose that the value of c is
Xand the value of d is y when the edge e\ is traversed, where {) < x,y <W. Then the edge 63 can
be traversed later iff x = y. Furthermore, the next time e^ is traversed, the value of both c and d
is X (hich is equal to y).

Similarly, by assigning skewed clock d to 0 at the same time as wrapping skewed clock c to 0, we
perform the assignment d:= ^ •c, where c= ki and d= k2.

Assignment lemma. Let W be a positive rational number. Let ki,k2 € Q with hi ^ 0, and
consider the simple W-wrapping automaton fragment ofFigure 11} Suppose that the value ofc is
X when the edge ei is traversed, where 0 < x < k-[ -W if ki > 0, and ki 'W < x < 0 if ki < 0.
Then the next time 63 is traversed, the value of c is again x and the value of d is ^ -x.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We reduce the halting problem for two-counter machines to the reachability
problem for simple wrapping automata with a two-slope variable taking slopes ki and k2' Let M be
a two-counter machine with counters C and D. We describe the construction of a simple wrapping
automaton Am with the following six variables: a, 6, 6', c, and d are clocks, and z is a. two-slope
variable with slopes fcj and k2. The values of the counters C and D are encoded in the values of
the clocks c and d, respectively.

Case ki > ^2 > 0 or ki < k2 < 0. The automaton Am is VF-wrapping, where W may be chosen
to be any number larger than |A:i|. We encode counter value u by clock value l^il •(^)^. The
relationships c = |A:i| • and d = |A:i| • hold when a = 0 or a = W, except when more
than one time interval of duration W is needed to simulate one computation step of M. The
initialization of C and D is implemented by the initial vertex of Am and an outgoing edge e with
the preguard pre(e)(c) = pre{e){d) = [|fci|, |fci|]. The test C = 0 is implemented by two edges ej
and €2, where pre(ei)(c) = [ki,ki\ (corresponding to C = 0) and pre(e2)(c) = [0,^:2] (corresponding
to C 7^ 0). Decrementing a counter corresponds to first checking if its value is 0 as above, and if
not, then multiplying the corresponding clock value by This is implemented by concatenating
two assignment lemma constructions, as shown in Figure 18 for counter C. In the first, i = fci; it
performs := ki •c. In the second, z - k2\ it performs c:= -^-z. The bottom portion of Figure 18
shows a time portrait of the decrementation fragment for W = 4, ki = 2, and k2 = Notice that

'Figure 17 assumes that ki,k2 > 0. If ki < 0, replace c < fci •VF by c > fci •IF; if ^2 < 0, replace d < A:i •VF by
d>ki- W.
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Figure 18: Counter decrement: multiplying c by using the two-slope variable z

the value of d, which represents the unchanged counter £>, is not affected by the decrementation
fragment. Incrementing a counter corresponds to multiplying the corresponding clock value by
This is done by reversing the two assignments, as shown in Figure 19 for counter C. First z := k2-c
is performed, and then c := ^ -z. The bottom portion of Figure 19 shows a time portrait of the
incrementation fragment for VF = 4, A:i = 2, and k2 = \.

Each instruction of M can be implemented as outlined above, with the terminal edge of the widget
for instruction i coinciding with the initial edge of the widget for instruction i +1 (with the obvious
modifications for the branch instruction). It follows that the vertex of Am that corresponds to the
halting location of M is reachable iff M halts.

Case Ari 5^ 0 and k2 = 0. The construction is insensitive to the sign of ki. We use the wrapping
constant W = 4 and encode counter value u by clock value 2^~". Initialization and test for zero
are implemented easily. Decrementing a counter corresponds to doubling the corresponding clock.
The doubling procedure is shown in Figure 20 for the clock c; in this and all remaining figures, we
omit the wrapping edges required to maintain the value of d. The idea is to perform z := ki ' c
using the assignment lemma, then to put i = 0 until c reaches W again, and then to put z = ki so
that when a reaches IF, we have z = 2ki •x, where x is the original value of c. Finally, we perform
c := z with the assignment lemma. The bottom portion of Figure 20 a time portrait for k\ = 2.
Incrementing a counter corresponds to halving the corresponding clock, which can be done with
two auxiliary clocks b and b'. To halve the value of c, first a value is nondeterministicaUy guessed
in b. Then 6' := 2b is performed using the above doubling procedure. Then c = 6' is checked by
the equality lemma, and if this succeeds, then c := 6 is performed using the assignment lemma.

Case > 0 > A:2« First suppose that |/j2| < ^i. The wrapping constant W can be any number
larger than ki. We encode counter value uby clock value ki •(^)^. Now we need two synchro
nization clocks, a and 6. Clock c is synchronized with a, and clock d is synchronized with 6. The
relationship c = fci • holds when a = 0 or a = IF, and the relationship d = ki • holds
when 6 = 0 or 6 = IF. To multiply c by we first perform z := ki - c and reset c to 0. Then we
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Figure 19: Counter increment: multiplying c by using the two-slope variable z

put i = ^2, and when z reaches 0, we reset a to 0. At this point c = •x, where x is the original
value of c. See Figure 21. The bottom portion of the figure shows a time portrait for VF = 4,

ki = 2, and k2 = To multiply c by simply reverse the slopes of z. Specifically, perform
z := k2 ' c, reset c to 0, then put i = fci, and when z reaches 0, reset a to 0.

If 1^:2! > A;i, we use a wrapping constant larger than \k2\ and encode counter value u by clock Vedue
|A:2| •(]|̂ )"* This simply switches the roles of multiplying by and multiplying by
Finally, suppose that ^2 = —In this case we use the wrapping constant 4 and encode counter
value u by clock value clock value 2^~". Again we use separate synchronization clocks a and b for
c and d. To double c, perform z ki- c, and then put i = —fci, resetting a when z reaches 0. See
Figure 22, which gives the construction, and also a time portrait for ki = 3. Halving c is done by
nondeterministically guessing the midpoint of the interval of time between c = 4 and a = 4. The
guess is checked by starting z at value 0 when c reaches 4, keeping z at slope ki for the first half
of the interval, and at slope —A;i for the second half. If z returns to 0 at the same instant that a
reaches 4, the guess was correct. See Figure 23, which gives the construction, and a time portrait
for = 5. •

4.2 Generalized Automata

A slight generalization of the invariant, flow, preguard, postguard, or jump function leads to the
undecidability of rectangular automata, even under the stringent restrictions of simplicity and
initialization. For the remainder of this section, fix an n-dimensional rectangular automaton A.
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Figure 20: Doubling c using the two-slope variable z with the slopes 0 and ki

Rectangular automata with assignments

The jump function of A can be generalized to allow, during edge steps, the value of one variable
to be assigned to another variable. An jump function with assignments for A assigns to each edge
e of A both a jump set jump(e) C {1,..., n} and an assignment function assign{e): -»•
{l,...,n}. The edge-step relation , for a € S, is then redefined as follows: (u,x)-^(u?,y) iff
there is an edge c = (v, w) of A such that obs(e) = a, and x € pre(u), and y € post(w), and for all
i 6 {1,.. .,n} with i ^ jump{e). we have ?/,• = Xassignii)- A rectangular automaton with assignments
is a rectangular automaton whose jump function is replaced by a jump function with assignments.

Using a jump function with assignments, the proof of Theorem 4.1 can be replicated even if the
two-slope variable is replaced by a memory cell (with slope 0) or by a skewed clock (with any slope
different from 0 and 1). The former gives a new proof of a result from [Cer92]. In the following
theorem, notice that every simple rectangular automaton whose nonclock variable is a one-slope
variable is necessarily initialized.

Theorem 4.2 For every slope k € Q \ {1}, the reachability problem is undecidable for simple
rectangular automata with assignments and a one-slope variable of slope k.

Proof. Consider k € Q \ {1}. We repeat the construction given in the proof of Theorem 4.1 for
the case fci = 1 and k2 = k with the following modifications. The two-slope variable z is replaced
by a clock zi and a one-slope variable 22 with slope k. Each vertex of Am is augmented with a bit
sip € {1,2} that indicates if the value of z corresponds to the current value of zi or to the current
value of 22- Assigments are used to copy the value of 21 into 22, or vice versa, whenever the bit
sip changes. More precisely, for each edge e = (i^, ly) of Am, we have an edge e' from {v,slp) to
{w,slp'), where sip = i iff the slope of 2 in i? is fc,, and sip' = i iff the slope of 2 in u; is fc,. For
all coordinates other than 2, 21, and 22 the preguard and postguard intervals and the jump sets of
e and e' coincide. In addition, pre(e'){zaip) = pre{e)(z), post{e'){Zgipi) = post{e){z)y and 2,/p/ is in
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Figure 21: Multiplying cby ||^ when fei >0> A;2

the jump set ofe' iff2 is in the jump set of e. Finally, the assignment function ofe' assigns to 2,;^/
the value of z^ip. •

Triangular preguard, postguard, and invariant constraints

The preguard, postguard, and invariant functions of A can be generalized to allow comparisons
between the values of variables. We call preguard, postguard, and invariant constraints of the form
a < 6, where a and b are variables, triangular, because they define triangular regions of R". A
triangular restriction < for Aisa reflexive and transitive binary relation on {1,..n}. A triangular
preguard (resp. postguard) function for A assigns to each edge e of A both a rectangular region
pre(e) (resp. post{e)) and a triangular restriction <e. The edge-step relation , for a € S, is
then redefined as follows: (u,x)-^ there is an edge e = (v,tn) ofA such that obs{e) = a,
X € pre{v), y € post{w), for all i e {l,...,n} with i i jump(e), we have Xi = y,-, and for all
ij£ {1,.. .,n} with i <e j, we have x,- < Xj (resp. y,- < yj). A triangular invariant function for
A assigns to each vertex u of A both a rectangular region inv(v) and a triangular restriction <„.
The state space Q of Ais then redefined to contain a pair (u,x) € V XR" iff x € inv{v) and for
all ij€ {1,.. .,n} with i <u j, we have x,- < Xj. An automaton with triangular preguards (resp.
postguards\ invariants) is a rectangular automaton whose preguard (resp. postguard; invariant)
function is replaced by a triangular preguard (resp. postguard; invariant) function.

Using any of the three types of triangular constraints, the proof ofTheorem 4.2 can be replicated
without assignments.

Theorem 4.3 For every slope k € Q \ {1}, the reachability problem is undecidable for simple
automata with triangularpreguards or postguards or invariants, and a one-slope variable of slope k.

Proof. Triangular preguards, postguards, or invariants permit comparisons between variables
of the form a = b. This allows an assignment a := 6 to be simulated by a reset a := 0 at a
nondeterministically chosen point in time, followed later by the test a = b (assuming positive
values and slopes). As usual, wrapping ensures that all other variables, as well as 6, maintain their
values while the assignment is simulated. In this way, the construction outlined in the proof of
Theorem 4.2 can be modified appropriately. •
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Figure 22: Doubling c when ^2 = —k\

Triangular flow constraints

The flowfunctions of A can be generalized to impose an ordering on the first derivatives of variables.
For example, the triangular flow constraint 1 < d < 6 < 2 says that both a and b may increase at
any slopes between 1 and 2, but h increases always as least as fast as a. A triangular flow function
for A assigns to each vertex u of A both a rectangular region flow{v) and a triangular restriction <v
For t > 0, the time-step relation is then redefined as follows: (u,x)-> (iy,y) if[ v = w, and
(y-x)/< 6 flow(v), and for all i^j e {1,.. .,n} with i <y j, we have yi-Xi < yj-Xj. The triangular
flow function is called constant if the functions flow and Xv, <„ are both constant functions on the
set of vertices. An automaton with constant triangular flow is a rectangular automaton whose flow
function is replaced by a constant triangular flow function.

Using a constant triangular flow constraint, the proof of Theorem 4.1 can be replicated. This is
nontrivial, because Theorem 4.1 permits a two-slope variable that is not governed by a constant
flow function. For the simulation of the two-slope variable, we use three infinite-slope variables
that do follow a constant flow function, albeit a triangular one.

Theorem 4.4 The reachability problem is undecidable for 3-simple automata with constant trian
gular flow.

Proof. We use three nonclock variables 2, z\, and Z2 with the constant triangular flow constraint
\ < zi < z < Z2 < 2. The idea is to repeat the construction given in the proof of Theorem 4.1 for
the case ki = \ and k2 = 2 with two additional variables, zi and Z2, which enforce that the slope
of z is always either 1 or 2. The slope 1 of 2 is enforced by resetting Z2 to 0 whenever a wraps to 0,
and later checking that a = 4 A22 = 4. Similarly, the slope 2 of 2 is enforced by resetting zi to 0
whenever a wraps to 0, and later checking that a = 4 A 21 = 8. •

5 Conclusion

There are three uniform extensions of finite-state machines with real-valued variables. Timed au

tomata [AD94] equip finite-state machines with perfect clocks, and the reachability and a?-language
emptiness problems for timed automata are decidable. Linear hybrid automata [AHH96] equip
finite-state machines with continuous variables whose behavior satisfies linear constraints, and the
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reachability problem for linear hybrid automata is undecidable. Yet because the Pre and Post
operations of linear hybrid automata maintain the linearity of zones, the reachability problem is
semidecidable, and thus the verification of many linear hybrid systems is possible. This observa
tion has been exploited in the model checker HyTech [HHWT97]. Initialized rectangular automata
equip finite-state machines with drifting clocks, that is, continuous variables whose behavior satis
fies rectangular constraints. Initialized rectangular automatalie strictly between timed automata
and linear hybrid automata, at the boundary of decidability. On one hand, initialized rectangular
automata generalize timed automata without incurring a complexity penalty. Their reachability
problem is PSPACE-complete, and under the natural restriction of bounded nondeterminism, so
is their w-language emptiness problem. (We do not know the complexity ofthe w-language empti
ness problem without the restriction of bounded nondeterminism.) On the other hand, initialized
rectangular automata form a maximal decidable class ofhybrid systems, because even the simplest
uninitialized or nonrectangular systems have undecidable reachability problems.

In summary, there are two factors for decidability: (1) rectangularity^ that is, the behavior of all
variables is decoupled, and (2) initialization, that is, a variable is reinitialized whenever its flow
changes.

Initialized rectangular automata are also interesting from a practical perspective. First, reachabil
ity analysis using HyTech terminates on every initialized rectangular automaton with bounded
invariants, and on every initialized rectangular automaton after a linear preprocessing step. Sec
ond, many distributed communication protocols assume that local clocks have bounded drift. Such
protocols are naturally modeled as initialized rectangular hybrid automata. For example, HyTech
hcis been applied successfully to verify one such protocol used in Philips audio components [HW95].
Third, initialized rectangular automata can be used to conservatively approximate, arbitrarily
closely, hybrid systems with general dynamical laws [OSY94, HH95, PBV96].

Acknowledgement. We thank Howard Wong-Toi for a careful reading and for Ai,d.
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