
 

 

 

 

 

 

 

 

 

Copyright © 1998, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



SYMBOLIC ANALYSIS OF HYBRID SYSTEMS

by

Rajeev Alur, Thomas A. Henzinger, and Howard Wong-Toi

Memorandum No. UCB/ERL M98/23

15 April 1998



SYMBOLIC ANALYSIS OF HYBRID SYSTEMS

by

Rajeev Alur, Thomas A. Henzinger, and Howard Wong-Toi

Memorandum No. UCB/ERL M98/23

15 April 1998

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Symbolic Analysis of Hybrid Systems*^

Rajeev Alur^ Thomas A. Henzinger^ Howard Wong-Toi^

Abstract. A hybrid system is a dynamical system
whose behavior exhibits both discrete and continuous

change. A hybrid automaton is a mathematical model
for hybrid systems, which combines, in a single for
malism, automaton transitions for capturing discrete
change with differential equations for capturing con
tinuous change. In this survey, we demonstrate sym
bolic algorithms for the verification and controller syn
thesis of linear hybrid automata, a subclass of hybrid
automata that can be analyzed automatically.

1 Introduction

A hybrid system typically consists of a collection of
digital programs that interact with each other and
with an analog environment. Examples of hybrid
systems include manufacturing controllers, automo
tive and flight controllers, medical equipment, micro-
electromechanical systems, and robots. When these
systems occur in safety-critical applications, formal
guarantees about the absence of logical and timing
errors are desirable. The formal analysis of the mixed
digital-analog nature of hybrid systems requires a
mathematical model that incorporates the discrete be
havior of computer programs with the continuous be
havior of environment variables, such as time, posi
tion, and temperature. The model of our choice is
the hybrid automaton—a finite automaton augmented
with a finite number of real-valued vairiables that

change continuously, as specified by differential equa
tions and differential inequalities [2].

" To appear in the Proceedings of the S6th International
IEEE Conference on Decision and Control (CDC 1997).

f This research was supported in part by the ONR YIP
award N00014-95-1-0520, by the NSF CAREER award CCR-
9501708, by the NSF grant CCR-9504469, by the AFOSR con
tract F49620-93-1-0056, by the ARC MURI grant DAAH-04-
96-1-0341, by the ARPA grant NAG2-892, and by the SRC
contract 95-DC-324.036.

' CIS Dept, Univ. of Pennsylvania, Philadelphia, PA 19104,
alur®cis.upenn.edu.

^ EECS Dept, Univ. of Cadifornia, Berkeley, CA 94720,
tah@eecs.berkeley.edu.

^ Cadence Berkeley Labs, 2001 Addison Street, Third Fl.,
Berkeley, CA 94704, howard@cadence.com.

For analyzing hybrid systems, we build on the
model-checking technology, in which a formal model
of the system is checked, fully automatically, for cor
rectness with respect to a requirement expressed in
temporal logic [7, 12]. Model checking requires ex
ploration of the entire state space of the system. For
discrete finite-state systems, this can be done enumer-
atively, by considering each state individually, or sym
bolically, by computing with constraints over boolean
variables that encode state sets. Because of its ability
to deal with very large state spaces, symbolic model
checkinghas been proven an effective technique for de
bugging of complexhardware [6]. For hybrid systems,
the state space is infinite, so an enumerative approach
is impossible, but the symbolic approach can be ex
tended to a class of hybrid automata called linear hy
brid automata by admitting linear constraints on con
tinuous variables, namely, disjunctions of inequalities
of the form Ax c, where A is a constant matrix, c is
a constant vector, and G {<>>} is an inequality op
erator [4]. In a linear hybrid automaton, the dynamics
of the continuous variables are defined by linear dif
ferential inequalities of the form Ax c, where x is
the vector of first derivatives of the variables x.^ Even
though termination of the model checking procedure
is not guaranteed—the model checking problem for
linear hybrid automata is undecidable—the method
is still of practical interest, because termination hap
pens naturally in many examples and can be enforced
in others, say, by considering the behavior of a sys
tem over a bounded interval of time. The procedure
is implemented in the verifier HyTech [9].

Model checking can be used to provide more than a
mere "yes" or "no" answer to the question of whether
a system satisfies a correctness requirement. HyTech
provides also diagnostic information that aids in de
sign and debugging. If a system fails to satisfy a
correctness requirement, then HyTech generates an
error trajectory, which illustrates a time-stamped se-

^It is important to realize that the definition of linearity for
hybrid automata differs from the definition of linearity com
monly used in systems theory. In particular, the differential
inequalities of linear hybrid automata may not depend on the
value of the variables, and thus dynamics of the form x = x are
prohibited.



quence of events that leads to a violation of the
requirement. High-level system descriptions often
use design parameters—symbolic constants with un
known, fixed values. The goal of parametric analysis
is to determine necessary and sufficient constraints on
the parameters under which safety violations cannot
occur. HyTech can perform such analysis for linear
hybrid automata.

Symbolic analysis methods can be applied to the
problem of generating controller designs in addition
to verifying existing designs [11, 13]. This approach
provides a methodology to synthesize provably correct
controllers, thereby avoiding the need for verification.
The plant is modeled as a linear hybrid automaton
whose mode-switches are partitioned into controllable
and uncontrollable. Then, control for a given safety
requirement can be formulated as a two-player game,
which can be solved using a symbolic fixpoint com
putation procedure. This procedure, if it terminates,
automatically generates a finite controller such that
the closed loop system is correct with respect to the
requirement.

The remaining paper consists of three sections. Sec
tion 2 presents the model of hybrid automata. Sec
tion 3 illustrates the analysis techniques, A simple pur
suit game is used as a running example to demonstrate
modeling, safety verification, parametric analysis, and
controller synthesis. Section 4 gives pointers for fur
ther reeuling.

2 Linear Hybrid Automata

2.1 Example: a simple pursuit game

A linear hybrid automaton consists of a control graph
with conditions on real-valued variables. Each node

of the graph represents an operating mode of the sys
tem, and is annotated with differential inequalities
that prescribe the possible evolutions (flows) of the
real variables while the system remains in the given
mode. Each node is also annotated with an invari
ant condition: while control of the linear hybrid au
tomaton remains in a node, the variables must sat
isfy the node's invariant condition. Each edge of the
graph represents a switch in operating mode, and is
annotated with a condition that prescribes the pos
sible changes (jumps) of the real variables when the
system executes the given mode switch.

We use a simple two-person game of pursuit as a
running example. There is a pursuer in a golf cart
chasing an evader on a circular track 40 meters long.
The cart can travel up to 6 meters per second in the

1/2 m/s

track

e = 40

p = 40

p := 40

20

Pursuer

Evader

helicopter

Figure 1: Pursuit game

rescued

e = 0 A ji = 0
A t = 0

t = 2 A e ^ 0

(40- e)/5 > (40-p)/6

^ 5m/s
Position 0

40m

5 m/s

e = 0 —> e := 40

p = 40 p := 0

p = 0 -+ p := 40

—^ t I— 0

counter

0 < e,p < 40 0 < c,p < 40

A t < 2 A t < 2

e = 5 Ap e 1-1/2,6) e = SAP € [-1/2,6]
A t = 1 A t = 1

t = 2 A

t =:

Acs

A p =

e ^ 0 A
(40 - c)/5 < (40 - p)/6
~-¥ t ;s 0

t = 2Ae^0 t = 2 A e 0
(40 - e)/5 < (40 - p)/6 (40 - c)/5 > (40 - p)/6
-+ f := 0 t := 0

Figure 2: Automaton for pursuit game

clockwise direction, but only up to 1/2 meters per sec
ond going counterclockwise, since it must use its re
verse gear to travel in this direction. The evader is
on a bicycle, and travels at 5 meters per second in ei
ther direction. However, it makes a decision whether
to change its direction only at fixed points in time,
separated by exactly two seconds. The goal of the
evader is to avoid the pursuer. The evader has the
auided advantage that there is a rescue helicopter at
a fixed position on the track. The game scenario is
depicted in Figure 1. The evader uses a very sim
ple strategy. It determines whether it will win the
race to the helicopter if both parties proceed clock
wise at full speed. If so, it heads clockwise, otherwise
it goes counterclockwise. The game, together with
the evader's strategy, is modeled by the linear hybrid
automaton in Figure 2, The vsiriable p models the po-



sition of the pursuer on the track, measured in meters
in a clockwise direction relative to the helicopter at
position 0. The evader's position is modeled using the
variable e. The clock t measures the delay between the
choices made by the evader. There are three operat
ing modes for the evader; going clockwise, modeled
by the mode labeled clockwise, going counterclock
wise, modeled by the mode labeled counter, and a
rescued mode, labeled rescued. The variables evolve
in mode clockwise according to the differential equa
tions c = 5 and < = 1, and the differential inequality
p e [—1/2,6]. The invariant conditions 0 < e,p < 40
and the mode switches appearing as selfloops above
the modes reflect the fact that the track is circular

and 40 meters long. All equalities and inequalities
are over arithmetic modulo 40, and thus e ^ 0 rep
resents e ^ 0 A e ^ 40. The switches to the mode
rescued model the evader's successful escape by he
licopter. The other switches model the decisions of
the evader. These switches are only enabled when the
clock reaches the value 2. The time for the evader

{resp. pursuer) to reach the helicopter is calculated as
(40—e)/5 {resp. (40—p)/6). The evader is initially at
position 20 directly opposite the track from the heli
copter, and the pursuer between them at position 10.

2.2 Formal definition

An atomic linear predicate is an inequality between
a rational constant and a linear combination of vari

ables with rational coefficients, such as 3xi — X2 +
7x5 < 3/4. A convex linear predicate is a finite
conjunction of linear inequalities. A linear predi
cate is a finite disjunction of convex linear predi
cates. A linear hybrid automaton is a system A =
{X,V, flow, inv,init,E, jump, Y.,syn) that consists of
the followingcomponents [2]:
Variables A finite ordered set X = {xi, X2, •..,Xn}

of real-valued variables.

Control modes A finite set V of control modes.

Flow conditions A labeling function flow that as
signs a flow condition to each control mode v £V.
The flow conditionflow{v) is a convex linear predi
cate over the variables X, where X = {xi,..., Xn}.
The dotted variable x,-, for 1 < f < n, refers to the
first derivative of Xj with respect to time. While
the control of the hybrid automaton A is in mode
V, the variables in X evolve along a differentiable
curve such that at all points along the curve, the
first derivatives of all variables satisfy the flow con
dition flow{v).

Invariant conditions A labeling function tnu that
assigns an invariant condition to each control mode

VEV. The invariant condition int;(u) is a convex
linear predicate over the variables in X.

Initial conditions A labeling function init that
assigns an initial condition to each control mode
V E V. The initial condition tnif(v) is a convex
linear predicate over the variables in X. The con
trol of the hybrid automaton A may start in the
control mode v when the initial condition mtf(v) is
true. In the graphical representation of automata,
initial conditions appear as labels on incoming ar
rows without source modes, and initial conditions
of the form false are not depicted.

Control switches A finite multiset E of control
switches. Each control switch (u, v') is a directed
edge between a source mode v E V and a target
mode v' EV-

Jump conditions A labeling function jump that
assigns a jump condition to each control switch
e E E. The jump condition jump{e) is a lin
ear predicate over the variables in AT U X', where
X' = {x'i,...,xj,}. The unprimed symbol x,-, for
1 < I < n, refers to the value of the variable x,-
before the control switch, and the primed sym
bol xJ refers to the value of x,- after the control
switch. Thus, a jump condition relates the values
of the variables before a control switch to the pos
sible values after the control switch. In the graph
ical representation of automata, we use guarded
assignments to represent jump conditions; for ex
ample, assuming n = 2, the guarded assignment
xi = X2 xi := 2x2 stands for the jump condi
tion Xi = X2 A x'l = 2X2 A X2 = X2.

Events A finite set E of events, and a labeling func
tion syn that assigns an event in S to each control
switch e E E. Though not used in our pursuit
game, events permit the synchronization of jumps
between concurrent hybrid automata.

2.3 States and trajectories

A state of the hybrid automaton A is a pair (v,a)
consisting of a control mode v eV and a vector a =
(ai,...,an) that represents a value a,- E M for each
variable x,- € X. The state (u,a) of A is admissible if
the predicate mt;(tj) is true when each variable x,- is
replaced by the value a,-. The state (t;,a) is initial if
the predicate init{v) is true when each x,- is replaced
by a, .

Consider a pair {q, q') of two admissible states q =
(t;,a) and q' = (v',a'). The pair {q,q') is a jump
of A if there is a control switch e E E with source

mode V and target mode v' such that the predicate



jump{e) is true when each variable x,- is replaced by
the value a,-, and each primed variable xj is replaced
by the value a-. We say that the switch e witnesses
the jump. The pair (9,q') is a flow of A if v = v' and
either (a) a = a', or (b) there exists a nonnegative real
S € K>o such that flow{v) is true when each variable
X,- is replaced by the value (aj- —ai)/S. If (q,q') is a
jump, we say that q' is a jump successor of q; if (q, q')
is a flow, then q' is called a flow successor of q (notice
that every admissible state is a flow successor of itself,
because there is always a flow of duration 0).

A trajectory of the hybrid automaton A is a finite
sequence 90) 9i> •••» 9a of admissible states qj such that
(1) the first state 90 of the sequence is an initial state
of A, and (2) each pair {qj,9j+l) of consecutivestates
in the sequence is either a jump of A or a flow of A.
A state of A is reachable if it is the last state of some

trajectory of A.

2.4 Safety requirements

A safety requirement asserts that nothing bad will
happen during the evolution of a system. Safety re
quirements can often be specified by describing the
"unsafe" values and value combinations of the sys
tem variables. Then, the system satisfies the safety
requirement iff all reachable states are safe. Safety
verification, therefore, amounts to computing the set
of reachable states.

For hybrid automata, we specify safety requirements
using state assertions. A state assertion tp for the
hybrid automaton A is a function that assigns to each
control mode v € V a predicate (p{v) over the variables
in X. We say that the state assertion is true (or
false) for a state (t;,a) of A if the predicate (p{v) is
true (false) when each variable x,- is replaced by the
value a,-. The states for which (p is true are called the
^states. If unsafe is a state assertion for the hybrid
automaton A, then A satisfies the safety requirement
specified by unsafe if the state assertion unsafe is false
for all reaw:hable states of A. For example, the unsafe
states of the evader automaton (Figure 2) are those
for which e = p.

3 Analysis of Linear Hybrid
Automata

3.1 Computing the reachable states

To check if the hybrid automaton A satisfies the safety
requirement specified by the state assertion unsafe,
we attempt to compute another state assertion, reach,

which is true exactly for the reachable states of A. If
there is any state for which both reach and unsafe are
true, then the safety requirement is violated, and we
produce an error trajectory from an initial state to an
unsafe state; if not, the safety requirement is satisfied.
We attempt to compute the state assertion reach as
follows. For a state assertion (p, let Post{<p) be a state
assertion that is true precisely for the jump and flow
successors of the 9?-states, i.e. Post((p) is true for a
state q' iff there exists a yvstate 9 such that (9,9') is
either a jump or a flow of A. The state assertion (pi =
Post(init) characterizes all states that are reachable
by trajectories of length 1 (i.e. by a single jump or
flow); the state assertion (p2 = Post{(pi) characterizes
all states that are reachable by trajectories of length 2;
etc. Finally, if for some natural number k, we find
that (pk and —Post{<pk) are equivalent, then we
can conclude that (pk characterizes all states that are
reachable by trajectories of any length, and therefore
reach = <pk.

A state assertion (p is linear if for every control
mode V E X, the predicate y>(v) is linear. If A is a
linear hybrid automaton, and <p a state assertion for
A, then Post {A) is computable, and is itself a linear
state assertion [4]. This theorem enables the efficient
automatic analysis of safety requirements and more
general temporal-logic requirements for linear hybrid
automata.

3.2 Safety verification of the pursuit
game

We wish to verify that the evader's strategy is a win
ning strategy for the given initial position. The un
safe states are specified by the state assertion unsafe
that assigns the predicate e = p to the control modes
clockwise and counter. The computation of the reach
able states starts from the state assertion ®

(po = init = {{clockwise, e = 20Ap = 10At = 2),
{counter,false), (rescued, false)}.

We compute the state assertion <pi = Post{(po) in two
steps. First, we find that all jump successors of (po-
states are those states for which the state assertion

{{clockwise, e = 20Ap = 10Af = 0),
{counter,false), {rescued, false)}

is true. This is because the only mode switch that
is enabled is the selfioop at the bottom of mode

®We write {{clockwise,pi),(counter,p2), {rescued,p^)} for
the state assertion that assigns pi to the control mode clockwise,
P2 to counter, and p3 to rescued.



clockwise, since (40 —20)/5 < (40 —10)/6 and t = 2.
The values of e and p are unaltered by the switch,
while t is reset to 0. Second, we find that the only
flowsuccessors of the v?o-statesare the y?o-states them
selves since the invariant t <2 together with the dif
ferential equation t = 1 and the fact that t has value 2
implies that no further time can evolve in this mode.
Thus we obtain the state assertion

ipi = Post{(po)
= {{clockwise, c = 20 Ap = 10 A (t = 0 Vt = 2)),

{counter,false), {rescued, false)}.

For computing (p2, there are no new jump successors
since there is no control switch for which the guard is
enabled when < = 0. The addition of all flow successors

for mode clockwise results in

y>2 = Post{(p{)
— {{clockwise, (e = 20 Ap = 10A<= 2)

V (0 < << 2 A e = 20 + 5t
AlO-t/2 <p< 10 + 60),

(counter, false), (rescued,false)}.

After two more iterations, we obtain

(pS = P0St{(p4)
— {{clockwise, (e = 20 Ap = 10A<= 2)

V (0 < i < 2 Ae = 20 + 5<
A 10 - </2 < p < 10 + 6<)

V (0 < < < 2 A e = 30 + 5t
A9-</2 <p< 22 + 60),

{counter, false),
(rescued,<= 2Ae = 0A8<p< 34)}.

Since Post{(pz) = ipz, we conclude that <p5 = reach.
HyTech performs these computations for us, fully au
tomatically, and determines that no reachable state is
unsafe.

3.3 Parametric analysis

In a linear hybrid automaton A, a design parameter
Q can be represented as a variable whose value never
changes, i.e. all flow conditions must imply d = 0
and all jump conditions must imply a' = a. Then,
in all states of a trajectory of A, the parameter or has
the same value (but the value of ot may differ from
trajectory to trajectory). The value a G M is called
safe for a if whenever we add the conjunct or = a
to all initial conditions of A, then no unsafe state
is reachable. This is the case precisely when there
is no trajectory of A such that (1) the last state of
the trajectory is unsafe, and (2) the parameter a has
the value a in the last state. Thus, the predicate

3X\{a}.V„ev(reach{v) Aun5a/e(t;)) is a predicate
over the variable a which is true precisely for the un
safe values for o. If reach and unsafe are linear state
assertions, then the existential quantifier can be elim
inated effectively, and we obtain, by negation, a linear
predicate that characterizes exactly the safe values for
the parameter a.

For the given evader strategy, we can use paramet
ric analysis to determine the exact set of initial posi
tions for the pursuer for which the evader can win the
game. For this purpose, we introduce a parameter a
to represent the initial position of the pursuer. The
unsafe states are as the same as before. We then let

HyTech compute the values of a for which an unsafe
state is reachable. HyTech generates the condition
0 < a < 2 A 16 < a < 40, implying that the evader
wins precisely when the pursuer starts at a position
strictly between 2 and 16.

3.4 Controller synthesis

To formulate the controller synthesis problem, we
must first embellish our definition of linear hybrid au
tomata to enable a means of control. We let the event

set E of the automaton be partitioned into a set Ec
of controllable events and a set Eu of uncontrollable
events. Mode switches labeled with controllable events
are called controllable; they can occur only when the
controller designates. Mode switches labeled with un
controllable events are called uncontrollable; they may
occur whenever they are enabled. Intuitively a con
troller continually observes the state of the plant and
chooses at any time to force a controllable mode switch
to occur, provided it is enabled, or to let time pass.

A controller for a linear hybrid automaton A is a
function / from the states of A to Ec U{J.}, where the
symbol ± represents a null control action. Let g =
(t;,a) and g' = (v',a') be two admissible states. The
pair (g,g') is a controlled jump if /(g) = and there
exists a control switch e ^ E with event label c € Ec
that witnesses the jump (g,g')- The pair (g,g') is an
uncontrollable jump if there is a control switch with
event label in E^ that witnesses the jump. The pair
(g,g') is a controlled flow if it is a flow and f{v, a) = _L
fbr all a on the straight line between the points a and
a', excluding possibly a'. A controlled trajectory of a
linear hybrid automaton A and the controller / is a
finite sequence go,gi, • ••, of admissible states such
that go is initial and each pair of consecutive states is
either a controlled jump, an uncontrollable jump, or a
controlled flow.

Given a linear hybrid automaton A and a safety re
quirement unsafe, the controller synthesis problem is



e = 40 e := 0

p = 40 -> p := 0

p = 0 p := 40

e = 0,

rescued

e = 0 A p = 0

A t = 0

go-COunter

t =: 2 A e 0

e = 0 e := 40

p = 40 p ;= 0

p = 0 -4^p := 40

,e = 0

^ t 0

clockwise counter

0< e,p < 40 0 < e,p < 40
A t < 2 A t < 2

e = SAP € [-1/2,6] e = 5 Ap € [-1/2,6]
A t = 1

go-clock
A t t= 1

go-clock
t = 2 A e 7^ 0
—f t rs 0

e ^ 0 A

go^counter

t = 2 A e ;£ 0
"f t I— 0

Figure 3: Evader automaton for control

to find a controller such that there are no controlled

trajectories for which the last state is an unsa/e-state.
Starting from the state assertion <pq = unsafe, we
compute a state assertion (p\ = Inevitable{<po) for the
states from which it is impossible for any controller to
avoid entering an unsa/e-state within at most a single
uncontrollable jump or a controlled flow, i.e. for every

-state q, there exists a ^o-state q' such that either

(1) (9,9') is an uncontrollable jump, or (2) {q,q') is
a flow of A such that for all q" along the witness for
(9,9'), if there exists a jump successor of q" for a mode
switch labeled with ctc € Ec, then there exists a <po-
state that is a jump successor of q" for a mode switch
labeled with <Tc. From (pi, we compute the state as
sertion <p2 for the states from which it is impossible to
avoid entering a (pi state within at most a single un
controlled jump, controlled jump, or a controlled flow.
The algorithm continues to compute the state asser
tions <pk, similarly defined. If, for any k, tpk — v?fc+i,
then the algorithm terminates, and the ipk-staites are
precisely those states for which there exists no con
troller that meets the safety requirement.

The control strategy given for the evader in the pur
suit example is non-optimal. Recall that from a start
ing position of 20, the evader wins iff the pursuer's
initial position lies in the range (2,16). The linear hy
brid automaton of Figure 3 is a model of the plant
representing the evader's potential moves. The con

trollable events are go.clock for moving counterclock
wise and go.counter for moving counterclockwise. The
synthesis procedure generates a winning strategy for
all starting positions of the pursuer other than those
in the range [16,20]. Intuitively, the strategy is to
head for the helicopter in a clockwise direction unless
either the pursuer can intercept the evader immedi
ately or going continually counterclockwise will guar
antee reaching the helicopter successfully. The evader
however is not assured of reaching the helicopter. It
may move back and forth along the track continually.
For example, if the pursuer remains at position 30,
then the evader must shuttle back and forth between

positions 10 and 20; it may never progress to the heli
copter itself, for fear that the pursuer will meet it just
before, and it may never move to position 30, since
the pursuer might be waiting there.

We illustrate the beginning of the synthesis proce
dure. The procedure starts with <pq :

{{clockwise, e = p mod 40), {counter,e = p mod 40),
{rescued,false)].

To compute Inevitable{<po), we must consider the un
controllable jumps and the controlled flows leading
into y?o-states. Since the only mode switches with un
controllable events either (a) have target mode rescued
to which v?o assigns the predicate false, or (b) are self-
loops which do not affect the truth of the predicate
e = p mod 40, we need only consider flows. The de
sired <pi is

{{clockwise, {0<t<2A0<e,p< 40)
A((p -t- 40 —e) mod 40 < ^(2 —t)

V {e-h40 —p) mod 40 < 2 —<)),
{counter, {0<i<2A0<e,p< 40)

A (e + 40 —p) mod 40 < 11(2 —<)),
{rescued, false)}.

4 Discussion

We refer the reader to [9] for more information on
HyTech and its applications, and to [8] for a survey
of theoretical results. Here, we conclude with some
noteworthy aspects of symbolic analysis.

Timed Automata. A timed automaton [3] is a lin
ear hybrid automaton in which all continuous variables
change at the constant rate 1. Model checking of tem
poral requirements of a timed automaton, unlike a lin
ear hybrid automaton, is decidable [1]. Furthermore,
symbolic analysis of a timed automaton requires the
manipulation of a special class of linear constraints,
namely, disjunctions of inequalities of the form x c



and X —y ~ c, for clock vectors x and y [10]. Con
sequently, the analysis can be performed using more
efficient representations.

Linear Approximations. While linear hybrid au
tomata are expressive compared to other formalisms
for which model checking is possible, such as finite
automata and timed automata, many embedded ap
plications do not meet the linearity constraints. In
such cases, we have to conservatively approximate the
system using linear hybrid automata so that if the ap
proximate automaton satisfies a correctness require
ment, then the original system satisfies the require
ment as well. If, on the other hand, the approximate
system violates the requirement, and the generated er
ror trajectory is not a possible trajectory of the origi
nal system, then the approximation must be refined.

Divergence. To establish a liveness requirement,
e.g, the evader will eventually reach the helicopter, we
need to consider infinite trajectories of the system.
However, we wish to exclude unrealistic trajectories
along which time does not diverge. For instance, for
the evader automaton, we do not want to consider
the trajectory in which the control stays at the node
clockwise, with no jumps and infinitely many flows
whose durations form a converging sequence. In con
troller synthesis, this issue arises even for safety re
quirements: we do not want a controller which would
avoid the unsafe states by forcing infinitely many con
trolled switches within a finite duration of time. The

interested reader should consult [5, 13] for treatment
of the divergence problem.

References

[1] R. Alur, C. Courcoubetis, and D. Dill. Model checking
in dense real time. Information and Computation,
104(l):2-34, 1993.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. Hen
zinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis,
and S. Yovine. The algorithmic analysis of hybrid sys
tems. Theoretical Computer Science, 138:3-34, 1995.

[3] R. Alur and D. DiU. A theory of timed automata.
Theoretical Computer Science, 126:183-235, 1994.

[4] R. Alur, T. Henzinger, and P.-H. Ho. Automatic
symbolic verification of embedded systems. IEEE
Transactions on Software Engineering, 22(3):181-201,
1996.

[5] R. Aim- and T. Henzinger. Modulcirity for timed and
hybrid systems. In Proc. Ninth CONCUR, LNCS
1243, pp. 74-88, 1997.

[6] J. Burch, E. Clarke, K. McMillan, D. Dill, and
L. Hwang. Symbolic model checking: 10^° states and

beyond. Information and Computation, 98(2): 142-70,
1992.

[7] E. Clarke and E. Emerson. Design and synthesis of
synchronization skeletons using branching-time tem
poral logic. In Workshop on Logic of Programs, LNCS
131, 1981.

[8] T. Henzinger. The theory of hybrid automata. In
Proc. 11th Lies, pp. 278-292, 1996.

[9] T. Henzinger, P.-H. Ho and H. Wong-Toi. HyTecH:
a model checker for hybrid systems. Software Tools
for Technology Transfer, 1(1). Springer, 1997.

[10] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine.
Symbolic model checking for real-time systems. In
formation and Computation, 111(2):193-244, 1994.

[11] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis
of discrete controllers for timed systems. In STACS
95, LNCS 900, pp. 229-242, 1995.

[12] J. Queille and J. Sifakis. Specification and verification
of concurrent systems in CESAR. In Fifth Intl. Symp.
on Programming, LNCS 137, pp. 337-351, 1981.

[13] H. Wong-Toi. The synthesis of controllers for linear
hybrid automata. In Proc. 36th CDC, 1997.


	Copyright notice 1998
	ERL-98-23

