

Copyright © 1998, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ACCURATE TIMING ANALYSIS IN THE PRESENCE

OF CROSS-TALK USING TIMED AUTOMATA

by

S. Tasiran, S. P. Khatri, S. Yovine, R. K. Brayton,
and A. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M98/25

20 April 1998

ACCURATE TIMING ANALYSIS IN THE PRESENCE

OF CROSS-TALK USING TIMED AUTOMATA

by

S. Tasiran, S. P. Khatri, S. Yovinc, R. K. Brayton,
and A. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M98/25

20 April 1998

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Accurate Timing Analysis in the Presence of Cross-Talk using
Timed Automata

S. Taiiran * S. P. Khatri * S. Yovine ♦ R. K. Brayton *
A. Sangiovanni-Vincentelli *

Abstract

We present a timed automaton-based method for accurate combinational circuit delay
computation. Circuits are represented asnetworks oftimed automata, one per circuit element.
The state space of the network represents the evolution of the circuit over time. Delay is
computed by performing a symbolic traversal of this state space.

Based on the topological structure of the circuit, a partitioning of the network and a
corresponding conjunctively decomposed OBDD representation ofthe state space isderived.
The delay computation algorithm operates on this decomposed representation and, on a class
ofcircuits, obtuns performance orders of magnitude better than a non-specialized traversal
algorithm.

Wedemonstrate the useof timedautomata for accurate modeling of gate delay and cross
talk. We introduce a gate delay model which accurately represents transistor level delays.
We also construct a timed automaton for two capacitively coupled wires to model their delay
variations due to cross-talk.

On a benchmark circuit, our algorithm achieves accuracy very dose to a transistor level
circuit simulator. We show that our algorithm is a powerful and accurate timing analyzer,
with a cost significantly lower than transistor level circuit simulators, and an accuracy much
higher than that of tra^tional timing analysis methods.

1 Introduction

The computation of delay for combinational circuits is a well-studied problem. In fact, until
recently, it was considered a solved problem. Efficient exact methods have been devised for
computing the delays of acyclic combinational circuits ([DKM93], [LB94], [MSBS93], [YH95]).
However, with the feature sizes ofintegrated circuits shrinking to sub-micron levels, some ofthe
underlying assumptions of existing delay analysis methods are no longer valid. First, higher dock
speeds require more accurate modding of circuit delay. Therefore, more sophisticated gate delay
models are needed. For instance, for complex dynamic logic gates, gate ddays depend on the
relative timing of the input signals, as well as their values. Second, drcuit level effects such as
capacitive coupling between wires (also referred to as cwss-tdlk) need to be taken into account.

'Department ofElectrical En^eering and Computer Sdences, University ofCahfomia at Berkeley. Supported
by SRC under grants DC-324-026 and DC-324-040.

♦VERIMAG and Califomia-PATH, University of California at Berkeley.

As a result, it is now commonly accepted that existing methods for modeling and computing
delays are inadequate for deep sub-micron circuits (See, for instance, [CWS97], [TKB97] and
other related papers in the TAU '97 Workshop). Existing timing analysis schemes do not use
sufficiently accurate gate delay models, and do not account for cross-talk.

Timed automatahave been used tomodel thedelay characteristics ofgates and drcuits ([MP95],
[TAKB96], [TB97]). Previously, this technique has been restricted to the analysis ofasynchronous
circuits. This isbecause asynchronous circuits are generally smaller than synchronous circuits and
require a more detailed analysis than delay computation.

Today's circuits with sub-micron feature sizes place stronger demands on timing analysis tools,
and this new setting makes the expressiveness oftimed automata desirable for modeling combina
tional circuits. Timed automataenable very general gatedelay models - ones in which a different
delay can be specified for every pair ofinput vectors. Moreover, the effects ofcross-talk on delay
can be incorporated as well.

For large portions of a typical design, a less powerful modeling framework suffices. However,
the analysis of certain critic^ paths in a high performance design must be performed with great
accuracy, which is currently provided only by transistor level simulators. Exhaustive simulation of
these paths, ontheother hand, isnotcomputationally feasible because oftheexponential number
ofpossible input patterns. In this study, we present a timed automaton-based delay computation
method. Input waveforms andcircuits are represented bynetworks of timed automata, with each
automaton modeling a drcuit element. The state space of this network describes the possible
behaviors of the circuit over time. Delay computation is then posed as a modified state-space
traversal problem. Because all input patterns are covered, unlike simulation, the circuit delay
computed by this algorithm is guaranteed to be correct.

Another contribution of this work is to introduce a new and accurate gate delay model, which
accounts for input sequence dependent delays in a compact fashion.

State-spacetraversaloftimedautomata is a PSPACE-complete problem, and, likeother traversal-
based methods, it suffersfrom the state-space explosion problem for systems with a large number
of components. However, the method we present in this paper exploits the special structure of
combinational circuits and is able to handle systems that are much larger than could be handled
with non-specialized traversal methods.

The structure of the paper is as follows. In Section 2 we introduce timed automata. Section
3 discusses how circuits and waveforms can be represented using timed automata. Section 4 de
scribesour algorithmfor computing maximum delays. Section5 presentsexperimental results and
contrasts our method with other approaches for delay computation. Finally, Section 6 summarizes
our work, and discusses avenues for future research in this area.

2 Timed automata

2.1 Notation

Let JIT be a finite set of real-valued variables. An X-valuation v assigns a nonnegative real value
i/(r) to each variable x € X. An X-predicate ^ is a positive Boolean combination of constraints

of the form xok^ where ik is a noanegative integer constant, x € X is a variable, and o is one
of the following: <, >, =. Let P be a finite set of variables, each ran^ over a finite type. A
P-valuation (is an assignment of values tovariables in P. AP-event is a pair (^, ^) consisting
ofP-valuations ^and denoting the old and the new values of the variables in P. AP-predicate
is a Booleanpredicate on ^ and p.

2.2 Timed Automata

A timed automaton A is a tuple {5,5o,0,/,X,a,/i,P), where
a S is the finite set of locations, and So Q S is the set of initial locations.
• 0 is the set ofoutput variables, each ranging over a finite domain. An output ofAis an

0-valuation.

• 7is the set ofinput variables, each ranging over afinite type. An input ofAis an /-valuation,
an input-event is an /-event, and an input-predicate is an /-predicate. An observation of A
is a (/ UO)-valuation, and an observation-event ofAis a (/ U0)-event.

• JiC is the fi^te set of real-valued variables, called timers.
• o is the invariant function that assigns an X-predicate 0(5) to each location 5 € 5.
• /X is the output function that assigns the output /i(s) to each location s£ S.
• E is the finite set of edges. Each edge c is a tuple (s,t, x* R) consisting of the source

location s, the target location t, the A^-predicate (p, the input-predicate x» and a reset
function R that specifies for each timer x its value after theedge is taken, P(x):

(i) R{x) = 0: Xis reset to 0.

(ii) P(x) = y, where y^ X: x takes on the value of yright before the transition. Ify= x,
X is left unchanged.

A state o- of Ais a pair (s, u) containing the location s € 5 and the X-valuation u € q(s).
The set of all states of A is denoted by E^. The state {s,i/) is initial if s € 5o and i/(x) = 0 for
all X€ X. Consider a state <t = (s,i/) ofthe timed automaton Aand a time increment 6. The
automaton Acan wait for €in state written toatt(<T,^), ifffor all 0 < N
timed event 7ofthetimed automaton Aisa tuple (6,^, '̂) consisting ofa non-negative real-valued
increment S and the observation-event Such an event means that the automaton can wait
for the time period ^ if ^ > 0 and then update its output variables from ^(0) to f (O) while the
environment is updating the input variables from ^(/) to ^'(/). The set ofall timed events ofA
is denoted T^.

The timed automaton A corresponds to a labeled transition system over the state-space
with labels from Ta- For statesa = {s,i/) and t = (t,/x) in E>i, and a timed event 7 = in
Ta,define a r iff C(O) = ^\0) = v>ait(a,S), and there exists an edge (s,t, v>,x,P>
such that (1/ -I- tf) [= y>, (^, (') [= Xi and Is obtained from 1/ by applying R as explained above. A
timed event sequence 7 = 7o,7i,...,7ib-.i is a finite sequence of timed events 7,- = such
that for 0 < t < - 1. A run of A on a timed event sequence 7 is a sequence of states

<ro,<ru<r2,...,<rk such that o-q ^ ^ 0-2 ^ ... <rk in A. The timed event sequence 7 is
called a trace of A if there exists a run in A on 7 starting from an initial state.

Composition of Timed Automata
A timed automatonrepresenting a drcuit is obtained by composing the timed automatarepresent
ing each component. The composition operation is analogous to that for FSMs; the product of
thediscrete statespaces is taken, and thesetoftimer variables for the composition consists ofthe
union of the timers ofthe components. The composition of timed automata A and B is denoted
by A\\B, For a precise d^inition of composition for timed automata, please see [TAKB96].

3 Modeling Circuits and Waveforms

In this section, we formalize ourmodel for input waveforms, gate delays, and cross-talk between
wires.

3.1 Modeling Sets of Waveforms
For combinational circuits, the two interesting kinds of primary input waveforms axe:

• Floating-mode delay. Inputs are allowed to change their values arbitrarily until time 0. After
time 0 all inputs remain stable.

• Two vector delay. Inputs (and allintermediate nodes of the circuit) arestable until time 0,
At time 0 the inputs may switch to new values and must remain stable thereafter.

Both sets ofinput waveforms can berepresented concisely by timed automata. Figure 1 shows
the timed automaton for the two-vector delay model), toi^and tncw represent the vectors of pri
mary inputs before and after time 0 respectively, ioid and incw selected non-determimstically,
whii enables the automaton to represent all input vector pairs.

2sii.

Figure 1: Input Vector Automaton (Two-vector Delay Model)

It is also straightforward to model different arrival times at different primary inputs, asyn
chronous inputs, etc., with timed automata using extra timers.

3.2 Modeling Combinational Gates
Timed automata have been used to represent gate delay models ([MP95], [TAKB96], [TB97]) for
the verification of asynchronous orcuits. For example, in [TB97], timed automaton representa
tions for the inertial delay model for a buffer were described. The timed automaton method was
able to account for the possibility that short pulses may not be reflected at the output of the
buffer.

Previous timing analysis research used somewhat simplistic gate delay models. The simplest
delay model is the unit delay model, where each gate is assumed to have a unit delay. This was
supplanted by the fixed delay model, where each gate was allowed tohave a constant delay. This
model too was found to be very simplistic. Another model is the min- max delay model, where

a gate is assumed to have a maximum delay dmaxt ^ minimum delay dmin' Whenever a gate
transitions, it is assumed to have a dday t, where dmm ^ ^ ^ dmoar* This model suffers from the
drawback that it ^ves rise to uncertainty intervals which usually grow with circuit depth.

vdd vdd

out

out

Figure 2: AND gate: Transistor Level Description

Another gate delay model allows separatedelays for the different inputs ofa gate. In practice,
however, ddays are input sequence dependent rather than pin-dependent. This is illustrated by
means of the static CMOS AND gate shown in figure 2. For this gate, under the input sequence
a = 6 = 1 a = 1,6 = 0, let the gate delay be The superscript / indicates that the
output is falling, and the subscript represents the appli^ input vector sequence. Asuperscript r
is used when the output rises. Similarly, under the input sequence a = 6= 1 —> o = 0,6 = 0, let
the gate delay be tn^oo- ^ second case, the delay ofthe gate is smaller in practice. This is
because after the inputs transition, both transistors T1 and T2 are on, effectively doubling the
current to charge the capacitance of node outJb. This results in a faster falling transition. In
the first case, only transistor T2 is on after input 6 has switched, hence the falling transition is
slower. The pin delay model cannot distinguish between these two input sequences, and hence is
not powerful enough for high performance designs.

A third delay model allows separate rising and falling delays on the gate output. This is a
useful property to model, but in the absence of input sequence dependence of the output dday,
this model is not very useful for designs where accurate delay modeling is critical.

In general, for an n input gate, timed automata allow ustheflexibility to assign a distinct delay
for every possible sequence of input vectors (thereare 2** •(2" —1) of these). However, in practice,
there areonly a few sequences ofinput vectors that have distinct delays. Many sequences ofinput
vector transitions result in the same gate delay, and we make use of this property to simplify the
timed automatonofa gate. Forexample, in figure 2, the delays l^^ve the same
value, and so do the delays *oo-ii- Therefore we group together these delays
in our timed automaton modd for the AND gate, resulting in a simpler model. In this way, our
model incorporates input sequence dependent delays.

The timed automaton for an AND gate is shown in Figure 3. In this figure, the inputs to the
AND gate are called a and 6. Oo represents the old value of the input a, and On represents its
new value. Similarly for input 6. If the input a = 6 = 1 is followed by a = 1,6 = 0, then this
condition is represented by Oohoanb^. Each oblong boxrepresents a location. A location is shaded

>&f».

out = 1

(x < if) •(a^o®n^+

AoboOftbfi

X 4- 0

SofcoOn^n + Oo6oflntn+

aJSoOft + ®o6o®n^ir+
HoioOfibn OoboOfibfi

OobeOfibft + ®ofro®nftn*t'

IS^boOnbft

X ♦- 0
aoboOfibn

.'J WJJil'JW

hiMHi

®o®c»®n6

®oio®n^n

out = 1

Figure 3: Timed Automaton for AND gate in Figure 2

if it is a "temporary* location. For each location, the value ofthe gate output is listed on top.
The invariant condition associated with the location is listed below its output value. If Co = On
and bo = 6n» we stay in the same location by means of a sdf-loop arc (not shown). Also, if an
input changes and then returns to its original value while the automaton is still in its temporary
location (rrferred to as a glitch)^ we return to the starting location. These "glitching* arcs are
not drawn for ease of readability.

For example, if we arein the location corresponding to out = 0, we continue in this location if
condition a^bpOn^ occurs. This is because an AND gate has a 0 output under both the old and
new input vectors.

If, from the location corresponding to out = 0, condition a^boOnhn occurs, then timer x is set
to0, and a transition is made toa temporary location where out = 0. After a delay of tj)&final
transition is made to a location where out = 1. This corresponds to the gate output changing
from 0 to 1 after a delay of tj, when inputs change from a = 0,6 = 1 to a = 1,6 = 1. However,
if a = 1,6= 1is followed by « = 1,6= 0 and x < tj, theautomaton returns to the location with
out = 0.

When inputs change from a = 1,6= 1, the gate can have two delays, depending on whether
one or both inputs change to a 0 value. If only one of the input changes to a 0, then the delay
of the gate is t}. If both inputs change to a 0, then the delay of the gate is tJ. As discussed
earlier in this section, because corresponds to the case where the current charging

node oiit-b of figure 2 is doubled. In either case, the timed automaton makes a transition to
a temporary location, after setting timer x to 0, from which it makes the final transition to
the location corresponding to out = 0, after the appropriate delay. In case both inputs don't
aimultaneoualy change to a 0 value, the timed automaton makes a transition to the temporary
location corresponding to one input change, from which it makes a transition to the temporary
location corresponding to two input changes, if the second input arrives before fy.

Timed automata for other gates are constructed similarly. The electrical node in the circuit
whidi is at ground potential is referred to as gndj and the node which is at supply potential is
called vdd. For the transistorlevel representation ofanygate, suppose there are n paths from the
evaluation node to vdd, and m paths from the evaluation nodeto gnd. In figure 2, the evaluation
node is out.b. Assuming that allpaths to vddand gnd have the same effective size of transistors,
the timed automaton for the gatewill have n distinct rising delays, and m distinct falling delays.
In general, for a k input gate, each of the 2*^ •(2*^ -1) input sequences give rise to distinct delays
at theoutput, as was suggested in [CL95]. However, in practice, the delays are tightly clustered
around the n + m distinct values we use.

For a general gate, we first determine the values of m and n. After this, we compute each
distinct rise and fall delay by means of SPICE [N75], a transistor-level simulator, which gives us
the exact delay taking into account the transistor level net-list of the gate. For drcuit elements
for which such an analytic argument is not possible, the element can be exhaustively simulated
and its delay parameters can then be encapsulated into a timed automaton. While exhaustive
simulation for the entire circuit is not feasible, for a circuit element it is typically possible to do
so.

As the above demonstrate, timed automata provide the expressiveness to model effects not
taken into account by conventional delay models.

3.3 Modeling Cross-Talk between Wires
As the minimum feature size of VLSI fabrication processes continues to decrease, some new
problems are bring faced. Figure 4shows a graphical view of two wires on a integrated circuit. In
most VLSI processes, TV = 5. As minimum feature sizes decrease, H (and S) decrease linearly,
but T, the distance between wires on different metal layers decreases sub-linearly. As a result,
the ratio of the capacitance between a wire and its neighboring wire to the capacitance between
a wire and wires on other metal layers increases with diminishing feature sizes [NTRS97].

One of the effects of this increased capadtance to neighboring wires is a large variation in the
delay ofthe wire. If the neighboring wires switch in the same sense as the wire ofinterest, the
delay ofthewire isdecreased, and ifthey switch intheopposite direction, its dday increases. The
effect of the transition activity of a wire on its neighboring wires is referred to as cross-talk. We
ran SPICEon a configuration of three neighboring wires of length 150 /xm in a 0.1 /xm process,
and found a 2:1 variation in the delay of the center wire due to cross-talk. VLSI processes with
a 0.1 gm feature size are still a few years away, but the above simulation indicates that delay
variation effects due to cross-talk will be a major problem in the years ahead. For this reason,
it is becoming increasingly important for circuit timing analyzers to incorporate the effect of
cross-talk.

We modd the effect of cross-talk between two wires by the timed automaton shown in Figure 5.
In this figure, the location changcQ represents thecondition when both wires have a stable value.

Figure 4: Two Wires on a VLSI Integrated Circuit

From thislocation, ifone ofthe wires switches, a transition ismade to temporary location change\
orchange\. While in these temporary locations, if the other wire switches, an transition is made
to a location which models both wires switching. There aretwo such locations, chanpcifwhich
models the two wires switching in the same direction, and change^^*^^ which models the two
wires switching in unlike directions. The delay associated with changei and change^ is i\. The
delays associated with ckange\^^^ and change^^*^^ are tjf*® and respectively. These delays
are determined by running SPICEon the physical conhguration of wires encountered. In general,
tlike tunlike
•'2 < tl < ^2

4 Delay Computation with Timed Automata
We pose the delay computation problem as follows: Given a combinational circuit, described
as an interconnection of circuit components, and a set of primary input waveforms, we want to
determine the latest time that primary outputs become stable. The set of input waveforms is
represented by a timed automaton I as described in section 3.1. The circuit is described as an
interconnection of timed automata, C7i,...,Gii. The delay parameters of these are determined
by SPICE simulation of the transistor-level circuit description, as described in the example in
Figure 2. The delay computation problem is then formally stated in the following manner: Let

F = (/|| Gi II Gall -4Gn)

represent the evolution of the circuit over time for the primary input waveforms described by
/. Let us denote by Go,,...,Go^ the drcuit components whose outputs are primary outputs of
the circuit. For each y, define Eoj to be the edges of Goj for which the primary
outputs at Soj and ioj are different. The delay ofthe drcuit is the latest time that edge in some
Eoj can be traversed in F. Denote by Egwtch the set ofedges of F whose projection onto some
Goj lies in Eojt and let Sswitch C Ef be the set of states ofF that have an outgoing Eswitch
transition. The goal is then to compute the largest timeelapsed on paths from initial states of F
to Sswitch' The most straightforward way to obtain this information is to traversethe state-space

8

changeo

SoboOfiO

«nli«e

n^n + loi'oOn '̂n + Ao® »On6n

tto^An^n + o« ^oOnfc

Oo^eOn^n + AofcoOn^n

nbn + Oo^oflnbn

Oo^oOnOn H ao6oCintn

B-!rl;^v.f.y.;.>...;.:;:^^^

Figure 5: Timed Automaton Model for Delay ofa Pair ofWires

of F. However, the size of this state-space is often very large. Automata networks describing
circuits have certain spedal properties, which enable significant improvements to the traversal
techniques. The rest of this section elaborates on these properties and how they are used for
making state-space exploration more efficient.

4.1 A Region Automaton with Integer Delays
Traversal techniques for the dense state-spaces of timed automata can be broadly classified into
two categories. The first dass of methods use a set of inequalities to represent a convex subset
of the timer space, and state sets are represented by pairing locations with sets of such convex
subsets (See, [LPW97], for instance). These methods are not suitable for our purposes because
they represent locations explicitly, and the boolean component (therefore the number of locations)
ofthe automaton F isoften considerably large. Our delay computation technique isbased on the
second category of methods, called "region automaton''-based methods ([AD94]). The key feature
ofthese methods is the division ofthestate-space into a finite number of"regions", each ofwhich
is one equivalence class of a relation ("region equivalence") defined on Ef- Each region makes up
one stateofa finite automaton, called the region automaton, and a transition relation is defined

on the Tenons such thnt the essential information about F is captured. This finite automaton
can then beanalyzed using BDD-based methods. In many cases this enables one to handle large
state spaces.

Region equivalence for timed automata as defined in [AD94] has to distinguish between clock
valuations which have different orderings of the fraction^ parts of dock values. This contributes
a factor ofib to thestate-space, where k is thetotal number oftimers used in F. For a subdass of
timed automata, this component ofthestatespace can beeliminated by using thefollowing fact
proven in [HMF92]: ifa timed automaton uses no strict inequalities in dock predicates, for each
run ofthe automaton, there exists a run that makes transitions only at integer time points, and
goes through the same sequence oflocations. For dday computation purposes, this allows timers
to be treated as int^er valued variables which increase at the samerate.

In our context, timer predicates refer to the time dapsed between two transitions in node
voltages, which are analog waveforms over real-valued time. It does not mahe any physical sense to
specify thatthetime dapsed between two analog transitions can be any value less than (or greater
than) but not equal toctime units. The set ofpossible dapsed times is simply rounded up tothe
nearest dosed interval with integer end-points. Therefore, combinational circuits can bemodded
without strict inequalities and the above integer interpretation for timers can be used. Then, a
run o-Q ^ O"! ^ <72 ^ ... Ok can be viewed asan interleaving of time passage transitions and

control transitions as follows: 0*0 ^ {oo +^o) ^ (<ri +^i) ... —> o*/., where
ai + 6i is shorthand for all timers in cr,- being incremented by € IN. Note that time passage
transitions with 6i > 1 can be a realized by a sequence of = 1 transitions. We have found
that taking time steps of at most oneresults in more effident OBDD based analysis algorithms
and makes the formulation of the dday problem easier, as will be seen in Section 4. Clearly, the
reachability and dday properties of the automaton remain the same.

With these observations, the timed automaton takes the form of a finite-state machine with
states ofthe form a = (s, x/), where 1/ is an integer-valued dockevaluation. The transition rdation
Ta of a timed automaton A is given as U where

Ta = ^,01 ^ = 1, and wait{a'̂ 6) and ^ is an observation}

represents the time passage transitions, where all variables except timers remain constant, and

Ta = {{^t C)\o,(r' Ay o* isobtained from a by the traversal ofsome edge ee E,
on observation event

represents the control transitions, where the location of the automaton changes. In the rest of
the paper, the timed automata will be identified with this discrete transition structure. Our
dday computation algorithm is essentially a breadth-first search of this discrete state-space using
ordered binary dedsion diagrams (OBDDs) to represent state sets and transition rdations.

4.2 The Region Automaton is Acyclic
The transition structure of a timed automaton representing a combinational circuit is acyclic.
The primary input waveforms that we consider in dday analysis remain constant after a certain
point in time(Section 3.1). Combinational circuits aredesigned to stabilize to a certain final state
after the inputs become constant. If F had a cyde, it could be traversed an unbounded number

10

of times, which would point to an instability in the circuit.^ A cycle in the transition stmctureof
F corresponds to a cycle in each component of F. Observe that all such cycles involve a change
in some signal in the drcuit. Therefore, sudi a cycle in F points to oscillations, in some drcuit
nodes.

Wlule exploring a large state transition graph, the bottleneck is often the size of the represen
tation for the set ofexplored states. However, if an acyclic state transition graph is traversed in
breadth-first manner starting with the set of initial states, one does not need to store all of the
traversed states: Denoting by the setofstates that can be reached from the initial statesby
traversing exactly k edges, it suffices tostore at the kth step of the traversal.^ This allows
a (heuristic) memory-time trade-off: Typically, memory is saved by storing a smaller set, but a
state may be virited more than once, which results in re-computation. For an arbitrary system,
theamount ofre-computation could be prohibitively large. However, thedelay ofa combinational
rircuit is bounded by thedelay ofthelongest topological path, which places a polynomial bound
on k.

In practice, we found that this approach results in significant savings in memory (See Section 5).
Our technique, like many OBDD based methods, is memory limited, and by representing
only, we were able to handle orcuits that we could not have handled otherwise.

4.3 The Algorithm
For uniformity ofnotation, let us rename the automata comprising F toCi,..., Cmy such thatF —
(Ci II... II Cm), bet r/uTiSTj^UTI,... ,T^ur,^ be the transition relations of Ci,..., Cm- Recall
that the outputs Oj ofeach timed automaton Cj are adeterministic function ofits location given by
Oj = /ij(5j)« Therefore, for the purposes of traversing the state-space ofF,itis possible to express
all transition relations in terms of the state variables ofthe C,'s. Then the transition relation of
component j can be expressed solely in terms ofstate variables in the form
Here is the set of state variables of fan-ins of Cj.

With these, the structure ofour delay computation algorithm is described as follows
Algorithm ComputeDblay

(0)
m. *4- 0, 5'") = 5{°' A A... A5;

repeat

repeat

• fc 4- fc -i-1

whne

• s(*+') = OHESTEP(5W,(r/,...,T;^))
• k ^ k + 1

while ^ S^^\<r)

'Note that F incorporates automata that generate the primary input waveforms, and is thus a dosed system.
Therefore, it is possible for every path in F to be traversed.

^Provided that it is not costly, information about states in 5^°' U...U can be used to minimize the size
of the representation or to reduce repeated visiting of the samestate.

11

where Onbstep (described below) computes the states reached from by traversing one edge
in the tranintion relation given by T = Ti A72 A... ATm

Algorithm ONESTEF(5t*), ...,Tm))

• = (3a)5(*'*+i)(<r,€r')

The relation represents theoutgoing transitions from asa function of<r where the
<T and arevariables corresponding to the present and next states, respectivdy. The algorithm
repeats thefollowing loop until the circuit stabilizes: First, control transitions are explored until
aH states readiable through them axe computed, then a timeincrement of 1 is tahen. The delay
of the circuit is then the maximum k such that includes an edge for which there is a
change in a primary output^. Note that tniTiiniiiTn delay computation, as well as any timed safety
property check can easily be incorporated into this scheme.

The practical limitation in applying the algorithm above is the size ofthe OBDD for 5^*^ In
next section we present a method for efficiently computing and representing

4.4 A Conjunctively Decomposed Representation

typically has a large number of variables in its support. In order to get compact (mono
lithic) OBDD representations, it is necessary to choose a goodorderof the variables. Heuristically,
variables that are strongly correlated must be dose to each other in the order, and variables en
coding correlated integers must be interleaved. For the problem at hand, it is in general not
possible to find a total order that satisfies these constraints, espedally because all variables cor
responding to timers are correlated with each other [BMPY97]. To deal with this difficulty, we
employ a conjunctively decomposed representation for the state sets The decomposition
corresponds to a ''slicing" of the drcuit in the following manner. The circuit is partitioned into
slices 5Xi,...,5Xp, where each slice SLi consists of a set of circuit elements (C,-'s). The slices
cover the circuit and no C,* belongs to more than one slice. The SVs are ordered topologically,
i.e., if o < h no C,-*s in SLf, can be in the transitive fan-in of a Cj in SLa. (See Figure 6 for an
example.).

is then represented by a collection of relations, each corresponding to a slice. We construct
5i*^(<to), S'i''̂ (cro,<ri), 52*^(«ri,a2), ... ,Sp''̂ (o"p«i,o'p) such that each specifies the set of
states of SLj at step k of the algorithm. Note that each has *Tj-i in its support in addition

to ffj. Intuitively, specifies what assignments to Cj are part of for each assignment to
Cj-i, i.e., the correlation between the state variables of adjacent slices is captured. Since each

has much fewer variables in its support, the total size of the 5j^ '̂s is in general much smaller
than a monolithic representation for 5^^^.

^It is a simple OBDD operation to checkwhether contains snch an edge.

12

Algorithm Onestep'

• For j = 1 to p

• Asf Ahc^sLjTi

This modified algorithm performs one step ofrea>chability computation operating on one slice
at a time. For slice j, slice y —1 provides the inputs, and since the corrdation between the
statesis stored by for each state, the corresponding inputs are supplied. Ideally, for such a
decomposed representation, one would like the following equalities to hold: (i) 5^*^^ = AJ=i »
and (ii) 5^*^ = (3r,)5^*\ where Tj is the set of variables not in the support of This would be
the case if, at the kth iteration ofthe algorithm, the state variables ofslice kwere only correlated
with thoseofslice jfe -1. However, for an arbitrary slicing and arbitrary circuit components, state
variables in non-adjacent slices may be correlated. For algorithm Onestep', it can be proven
by induction that Ai=i « a superset of and thus the slicing based delay computation
method is conservative.

In practice, we have not found .any cases where the results of the slicing method is different
from the results of the monolithic but exact method. We offer the following intuitive explanation
for this fact: Combinational circuit dements have bounded memory, and thus, thdr states are
only strongly corrdated with the states of other dements dose-by. Let us call a drcuit component
"active" if it is not in a stable state. Suppose that the drcuit is sliced in such a way that the
topological dday through each slice is roughly equal. Then, at any given time, the active dements
are contained in a portion ofthe circuit consisting oftwo adjacent slices. Our algorithm performs
traversal by sweeping the drcuit using a window consisting of two slices. If transitions at any
point in time are confined to two adjacent slices, then next-state computation as performed by
Onestep' is exact. We are now working on an exact algorithm based on this intuition. The
algorithm dynamically focuses only on the active portion ofthedrcuit.

5 Experimental Results
We illustrate the efficacy ofour scheme by using a circuit consisting of2-bit Carry Skip Adder
(CSA) blocks. The circuit of a CSA is depicted in Figure 6. We constructed a 4-bit adder using
two such CSAs, shown infigure 7. These drcuits have false paths, therefore a topolopcal analysis
over-approfflmates dday.

We first created timed automata for each gate using the ideas described in section 3.2. This
was done for each of the 4 gate types in the circuit of figure 6. Similarly, a timed automaton
modding the cross-talk between two wires was constructed asdiscussed in section 3.3. The value
of different ddays was determined by a transistor levd simulation, using SPICE. For the gate
dday models, the numbers obtained were roimded to the nearest multiple of5 ps.

We then computed themaximum dday ofthe4-bit adder offigure 7using 4different algorithms.
We ran these experiments on two configurations of the 4-bit adder. In the first configuration,
(henceforth referred toas configuration A^i), the Cout output of CSAl and primary input A3 were

13

cjaut

Figure 6: Two-bit carry-skip adder block. The dashed lines indicate theboundaries between the
slices.

Cjn-

A1

A2

B1

B2

A3

A4

B3

B4

SI

S2

cjn

al

•2 CSAl
«2

bl

b2 c_€m\ cja

1al

«2 CSA2
t2

bl

b2

S3

S4

CjDOt

Figure 7: A 4-bit CSA

neighboring wires, resulting in a possible delay variation for both due to cross-talk. In the second
configuration, (called configuration K2), no cross-talk was modeled.

The input vectorsequence which results in the maximum delay for the 4-bit CSA alsoresults in
the Cottt output of CSAl switching in the same direction as the primary input A3. However, these
signals aresignificantly separated in time, sothereisno reduction in circuit delay dueto cross-talk
between the wires. An algorithm which is not cross-talk-aware will assign a worst-case delay for
each of the wires, and hence estimate a larger delay for configuration K\ than for configuration
K2.

The 4 algorithms that we compared are:

• The circuitoffigure 7was modeled in SPICE, and exact delays were determined for the worst
casetransitions. Extensive (though not exhaustive) simulations were done to determine the
worst case delay of the 4-bit adder. Transitions that could be analytically argued to result
in small delays were not simulated.

14

« The same 4-bit adder was implemented using interconnected timed automata for its con
stituent components (gates and wires). The maximum delay of the drcuit was computed
using the algorithm described section 4.

• Ddayestimation was also performed using '̂ exact timing analysis" as described in [MSBS93].
Thisalgorithm does not account for cross-talk, but reportsthe delay ofthe longest true path.
Although this method is not trudy exact, it is referred to as ''exact timing analysis" in the
delay computation literature. In the rest of this section, this is what is meant by "exact
timing analysis".

• Finally, a topolo^cal delay analysis was done using SIS [SSL+92]. This method does not
modd cross-talk, and does not eliminate false paths.

With cross-talk Without cross-talk

Method run-time(s) max delay (ps) run-time(s) max delay (ps)

SPICE 2.936 xlO® 611 3.09 xlO® 616

Timed Automata 602 660 617 660

Exact Timing 1.745 770 1.619 740

Topological Timing 0.1 920 0.1 890

Table 1: Experimental Results

The results of these runs are described in table 1. The rows of this table correspond to the
methods described above. The second and fourth columns correspond to the run-time of the
method in seconds. The third and fifth columns report the computed maximum delay in picosec
onds. Columns two and threereport the results for the experiment described in configuration fiTi,
and the last two colunms report the results for configuration K2-

The SPICE results give the most accurate delays for the 4-bit adder. The run-time for this
methodis an estimate, and represents the timeit would take to run SPICEon all input sequences.
We notice that the computed maximum ddiay ofthe circuits is almost the same for configurations
Ki and K2' This is because even though Cout of CSAl and A3 are neighboring wires in fifi,
their signals are separated in time. Hence there is no speedup or slowdown of these signals, in
configuration Ki, due to cross-talk.

We implemented the algorithms in the verification platform Mocha [AH-i-98]. The results are
promising:

• Our method correctly determines that the delay of the circuit is identical whether configu
ration Ki or K2 is used. This is because the algorithm correctly finds that the even though
Cout of CSAl and A3 switch in a like direction, they are temporally separated, hence the
delay for both Ki and K2 are identical.

• Farther, the computed delay is within 10% ofthe true circuit delay as computed by SPICE.
* The other two schemes have higher estimates.

*This discrepancy is partly due to the fact that in the timed-antomaton models for gates, delays are rounded

15

• FinaUy, the nm-time of the timed-automata scheme is three orders of magnitude less than
the estimated run-times for the SPICE method.

The exact timing analysis scheme does not model cross-talk, and so in configuration Kij it
reports a larger delay than for £2^ since it ^^modds** cross-talk as a buffer whose delay is conser
vative in figure 5). Also, the value of delay computed by this scheme for configuration K2
is larger than that computed by timed automata. This is because the delay model used by exact
timing analysis is a pin-delay model, and suffers from the drawback described in section 3.2.

The topological timing analysis scheme boasts the lowest run-times, but pves the most inac
curate results. False paths in the circuit are not detected, and further, cross-talk is not modded.

FVom the results above, it isdear that the timed automata method for circuit delay estimation
is a powerful one, significantly faster than transistor-levd simulation, and much more accurate
than other timing analysis methods.

We also applied our algorithm to compute the exact delay for n-bit carry-skip adders (n-CSA)
built by cascading the 2-bit CSA (CSA) blocks depicted in Figure 6. The experimental results
are presented in Table 2. To serve as a comparison, we tried to compute the dday of a 4-bit
adder using a monolithic representation for the 5^^)'s while still keeping the transition rdation
partitioned. The algorithm ran out of space (1GB) and was not able to complete even with
dynamic variable reordering turned on.

no. of no. of gate circuit no. of BDD time

CSAs timers delay delay BDD vars mem.(MB)

2 30 3 27 364 40 11 min.

3 45 3 33 540 56 28 min.

4 60 3 39 716 72 43 min.

5 75 3 45 892 85 51 min.

6 90 3 51 1068 85 0 2.6 hr.

8 120 1 21 1180 40 16 min.

16 240 1 37 2362 78(») 2.8 hr.

Table 2: Experimental Results for n-bit CSA Adders. (*) denotes dynamic OBDD variable
reordering.

6 Conclusions and Future Work
In thiswork, we have addressed delay problems due to decreasing minimum feature sizes ofVLSI
circuits. The need formore accurate timing analysis methods, and alsofor cross-talk-aware timing
analysis was fulfilled by:

« A new gate delay model, which modeled input sequence dependent delays.

up to the nearest multiple of5 ps. The more important reason, however, has to dowith the fact that we compute
gate delays assuming a nominal loading. In thedicuit, each instance ofany gate drives a different load. This fact
is naturally taken into account by SPICE. Ifwe had incorporated this factor into our dday models, we would have
had a larger number of models, but our results would have been closer to SPICE.

16

• Atimed automatabased analysis scheme which reports circuit delays within 10% ofSPICE.

The advantages of our approach axe:

• Circuit delay is much more accurate than topological or exact timing analysis, since the
delay model we use is more realistic. Even when cross-talk was not modeled, our scheme
was more accurate than even the exact timing analysis scheme, due to our more accurate
gate model.

• The method models cross-talk between wiresin an integrated circmt. This feature is absent
from both topological timiTig analysis and exact timing analysis. Cross-Talk effects are
malting integrated circuit design increasin^y difficult due to the unpredictability of the
delay of a signal due to the switching activity of its neighbors.

• Our prelinunary implementation shows reasonable run-times. We expect to achieve signif
icant speed-ups in the future with a better implementation. Nevertheless, the run-time of
our method is threeorders of magnitude less than that ofa SPICE-based techmque.

• For large circuits, the scheme can be used to determine the delay of any path by modeling
only the path and other nodes in its "electrical neighborhood". By prumng away portions
of the circuit that are not part ofthe circuit path or its neighboring wires, we can handle
larger circuits.

Future work in terms of the computational approach will proceed in two directions:

• Our current implementation ispreliminary, and there is room for performance improvement

• We are working on an exact method thatdynamically determines the set ofactive elements
and performs computation only on that part of the circuit.

• We are investigating use ofanoutput load dependent delay model for this scheme.

References
[AD94] R. Alur and D.L. Dill. Atheory of timed automata. Theoretical Comp. 5ci., 126:183-235,1994.
[AH-l-98] R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K. Rajamani, S. Ta§iran MOCHA: Modu

larity inModel Checking To appear in Inil. Conf. on Computer-Aided Verification, CAV *98
[NTRS97] The National Tecnology Roadmap for Semiconductors, 1997

http:/ /notes.sematech.org/97melec.htm

[N75] L. Nagel SPICE: AComputer Program to Simulate Computer Circuits University of California,
Berkeley UCB/ERL Memo M520 May 1995

[SSL-f92] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P.
R. Stephan, R. K. Brayton, A. L. Sangiovanni-Vincentelli SIS: A System for Sequential Circuit
Synthesis Electronics Research Laboratory, Univ. ofCalifornia, Berkeley, CA 94720 UCB/ERL
M92/41, May 1992

[BMPY97] M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some Progress in the Symbolic Verification of
Timed Automata. In Proceedings of the 9th Intl. Conf on Computer-Aided Verification, CAV '97,
LNCS 1254, pages 191-201, Springer-Verlag, 1997.

17

[CL95] B. S. Carlson and S.-J. Lee. Delay optimization of digital CMOS VLSI circuits by transistor
reordering. In IEEE Transactions on Computer-Aided Design ofIntegrated Circuits and SystemSf
vol.14, (no.lO), pages 1183-92, Oct. 1995

[CWS97] V. Chandramouli, J.Whittemore, and K. Sakallah. AFTA; ADelay Model for Functional Timing
Analysis Proceedings of the 1991 ACM/IEEE International Workshop on Timing Issues in the
Specification and Synthesis ofDigital Systems^ pages 5-14,1997, Austin, Texas.

[DKM93] S. Devadas, K. Keutzer and S. Malik. Computation of Floating Mode Delay in Combinational
Circuits: Theory and Algorithms In IEEE Transactions on Computer-Aided Design, 12(12): 1913-
1923, December 1993.

[HMP92] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What good are digital clocks? In Pro-
clings of the 19ih International Colloquium on Automata, Languages, and Programming (ICALP
1992), Lecture Notes in Computer Science 623, Springer-Verlag, 1992, pp.545-558.

[LB94] W.K.C. Lam, and Robert K. Brayton. rimed Boolean Functions- A Unified Formalism for Exact
Timing Analysis. ISBN 0-7923-945402, Kluwer Academic Publishers, 1994.

[LPW97] Kim G.Larsen, Paul Pettersson and Wang Yi. UPPAAL: Status k Developments. In Proceedings
of the 9th IntemaUonal Conference on Computer-Aided Verification, CAV 97. Hmfa, Israel, 22-25
June 1997.

[MP95] O. Maler, A. Pnueli. Timing Analysis of Asynchronous Circuits Using Timed Automata In ACM
Intl. Workshop on Timing Issues in the Specification and Synthesis of DigitalSystems,pages 249-257,
November 1995.

[M96] K. L. McMillan. A coQjunctively decomposed Boolean representation for symbolic model checking.
In Proceedings of the 8th Intl. Conf. on Computer-Aided Verificaiion, CAV '96, LNCS 1102, pages
13-25, Springer-Verlag, 1996.

[MSBS93] P. McGeer, A. Saldanha, R. K. Brayton and A. L. Sangiovanni-Vincentelli. Delay Models and
Exact Timing Analysis In Logic Synthesis and Optimization, pages 167-189, T. Sasao, ed., Kluwer
Academic Publishers, 1993.

[TAKB96] S. Ta§iran, R. Alur, R. P. Kurshan, and R. K. Brayton. Verifying Abstractions of Timed
Systems. In Proceedings of the 7th Intl. Conf. on Concurrency Theory, CONCUR '96, LNCS 1119,
pages 546-562, Springer-Verlag, 1996.

[TB97] S. Ta§iran and R. K. Brayton. STARI: A Case Study in Compositional and Hierarchical Timing
Verification. In Proceedings of the 9th Intl. Conf. on Computer-Aided Verificaiion, CAV '97, LNCS
1254, pages 191-201, Springer-Verlag, 1997.

[TKB97] S. Ta§iran, Y. Kukimoto and R. K. Brayton. Computing Delay with Coupling Using Timed
Automata. In Proceedings of the 1997 ACM/IEEE International Workshop on Timing Issues in the
Specification and Synthesis of Digital Systems, pages 232-244,1997, Austin, Texas.

]YH95] H. Yalcin and John P. Hayes. Hierarchical Timing Analysis Using Conditional Delays. In Proc.
IEEE/ACM Intl Conf. on Computer-Aided Design, ICCAD '95, pages 371-377,1995

18

	Copyright notice 1998
	ERL-98-25

