
 

 

 

 

 

 

 

 

 

Copyright © 1998, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



ON THE OPTIMIZATION POWER OF RETIMING

AND RESYNTHESIS TRANSFORMATIONS

by

Rajeev K. Ranjan, Vigyan Singhal, Fabio Somenzi,
and Robert K. Brayton

Memorandum No. UCB/ERL M98/26

10 April 1998



ON THE OPTIMIZATION POWER OF RETIMING

AND RESYNTHESIS TRANSFORMATIONS

by

Rajeev K. Ranjan, Vigyan Singhal» Fabio Somenzi,
and Robert K. Brayton

Memorandum No. UCB/ERL M98/26

10 April 1998

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



On the Optimization Power of Retiming and Resynthesis
Transformations

Rajeev K. Ranjan* 'Wgyan Singhal^ Fabio Somenzi* Robert K. Brayton^

Abstract

Retiming and resynthesis transformations can be used for op
timizing the area, power, and delay of sequential circuits.
Even though this technique has been known for more than a
decade, its exact optimization capability has not been for
mally established. We show that retiming and resynthe
sis can exactly implement1-step equivalentstate transition
graph transformations. This result is the strongest to date.
We also show how the notions of retiming and resynthe
sis can be moderately extended to achieve more powerful
statetransitiongraphtransformations. Our workwillprovide
theoreticalfoundationfor practical retiming and resynthesis
based optimizationand verification.

1 Introduction

In combinational synthesis [1,8], the positions of the latches
are fixed and the logic is optimized for area, delay, or
power. In retiming [5], the latches are moved across com
binational gates. Retiming canchangethe numberof latches
(and hence the area) and the minimum cycle time (i.e.,
the clock rate). Retiming can also change the interaction
between interaction between different combinational logic
blocks, so retimingfollowed by combinational synthesisal
lowslogicoptimization not possible by combinational opti
mization alone. Moreover, combinational synthesis can gen
erate new latch locations, perhaps leading to further opti
mization. A sequence of retiming and combinational resyn
thesis steps can provide a powerful way to optimize a se
quential circuit [2, 7]. Iyer et al. [3] used a "retiming-
reencoding" method thattransforms a circuitwitha given en
coding intoa circuit with arbitrary encoding andcodelength,
and an equivalent, but not necessarily identical state transi
tion graph.

Even though retiming and synthesis techniques have ex
isted for over a decade, the optimization capability of a com
bination of these transformations has not been formally es
tablished. Given a circuit, the transformations brought in by
retiming and resynthesis operations can be analyzed at the

*Synopsys Inc., Mountain View,CA
^Cadence Berkeley Labs, Berkeley, CA
^Dept. ofECE, University ofColorado, Boulder, CO, Cadence Berkeley

Labs, Berkeley, CA
SDepartment ofEECS, University ofCalifornia, Berkeley, CA

Structural level. However, structural analysis gives only a
local view of the transformation. A more global approach
is to analyze the related STG transformations since there
couldbe manycircuit implementations of a givenSTG. Ma
lik [6] characterizes the optimization capability of retiming
andresynthesis by relating themto STG transformations. In
particular, he states a certain subset of STG transformations
("/io«-CP") can be implemented using retiming and resyn
thesis. We prove the above classification result to be in
correct by two examples. We showthat the mistake in the
proof reduces to the notion of equivalent states which can
be merged, split, or switched in STG transformations. Our
first contribution is to correct the above result and towards
that we establish that iterative retiming and resynthesis can
implement a different subset ("J-step equivalent") of STG
transformations. A more significantcontributionof our work
is proving the converse of this result, i.e., we show that the
STGs of the original circuitand of the transformed circuit
areJ-step equivalent. Toourknowledge this is thefirst result
which gives a complete andtight bound ontheoptimization
capability of retiming and resynthesis transformations. Here
it is worth mentioningthat in this work we are concerning
ourselves only with theoretical bounds on the optimization
potential and not with actual algorithm which could achieve
the optimization.

The rest of the paper is organized as follows. Wepresent
preliminary material andestablish our terminology in Sec
tion 2. In Section 3 we present the exposition on the op
timization power as given in [6]. Section 4 forms the core
of thepaper. We indicate themistake in the exposition us
ingcounter-examples. We also correct and extend theresults
on the relationship between retiming and resynthesis steps
and related STG transformations. In Section 5, we discuss
simple extensions to traditional notions ofcombinational op
timization and retiming which can improve their optimiza
tion capability without asignificant increase inthealgorithm
complexity.

2 Preliminaries

In this section, we establish our circuit model and make our
notions of retiming andcombinational synthesis precise.

Circuit model: A sequential circuit is an interconnection
of combinational gates (no combinational cycles) and
memory elements along with input and output ports.



Typically variousnotionsof sequentialcircuitsdiffer in
the definition of the memory elements. We focus on
sequential circuits where all the memory elements are
edge-triggered latches driven by the same clock.

Combinational synthesis: In this optimisation only combi
national part of the circuit is changed. Any logic opti
mization which preserves the I/O functionality between
the combinational outputs (primary outputs and latch
inputs) and the combinational inputs (primary inputs
and latch outputs) falls under combinational synthesis.

Retiming: Retiming is the operation of assigning lag val
ues to each combinational gate which corresponds to
the number of latches moved from the outputs to the in
puts of the gate (a negative lag value indicates the latch
movement from the inputs to the outputs) [5].

State transition graph(STG): An STG is a labeled di
rected graph G(V, E), whereeach vertexv 6 V corre
sponds to a state s, defined by the values of the latches,
of the circuit. An edge Cij € E with label a connects
Vi to Vj if the circuit transitions from state Si to sj on
primary input a.

3 Malik's Results

In this section we present the results given by Malik [6]'.
The two theorems presented here consider the cases of iden
tical and distinct STGs.

The following theorem asserts the state encoding power of
retiming and resynthesis operations.

Theorem 3.1 (Encoding power of retiming and resynthesis)
Given a machine implementation M\, corresponding to a
state transition graph G, with a state assignment S\, it is
always possible to derive a machine M2 corresponding to
the same state transition graph G, and a state assignment
S2 by applying only a series of resynthesis and retiming
operations on Mi.

The proofof the theorem made use ofone-to-one mapping
between the states of Mi and M2, thereby transforming one
state assignment to another using appropriate logic.

Malik also discussed the case where the STGs of Mi and
M2 are different. It is asserted that under restricted state-
transformations of the STG, the final circuit can be obtained
from the initial circuit using retiming and resynthesis opera
tions. The following basic transformations are introduced to
wards establishing the result. Suppose Gi and G2 are STGs
corresponding to Mi and M2 respectively. Gi may be mod
ified to obtain G2 through a series of three basic transfor
mations. These transformations may create states that are
equivalent to existing states, merge states that are equiva
lent to each other, and modify state transitions to go to states

'Theseresults paitially appeared in[7]aswell.

equivalent totheoriginal destinations. Thedefinitions ofba
sic transformations are given below:

2-way split A statesi in Gi is split to twoequivalent states
in G2 (Figure la).

2-waymerge TWo equivalent states sn and S12 in Gi are
mergedto a singlestate si in G2 (Figure la).

Switch A transition in Gi to a state sn is modified to go to
an equivalentstate S12 in G2 (Figure lb).

The 2-way split and 2-way merge constitute primitive
transformations, a 2-way switch, multi-way splits and
merges can be accomplished by a sequenceof 2-waysplits
and merges (Figure Ic).

Definition 1 A labeled cycle of equivalent states in an
STG is a directed cycle such that all state vertices in the
cycle are equivalent and all transition predicate vectors on
the edges in the cycle have the same label

Definition 2 A cycle preserving (CP) transformation does
not create or destroy a labeled cycle ofequivalent states.

A non cyclepreserving tran^ormation (NON-CP)creates
or destroys a labeled cycle of equivalent states.

Theorem 3.2 Let Mi be an implementation corresponding
to the state assignment Si and STG Gi and M2 be an im
plementation corresponding to the state assignment S2 and
STG G2. If G2 is obtainedfrom Gi using only CP trans
formations then M2 can be obtainedfrom Mi using only a
sequence ofretiming and resynthesis operations.

The proofconsidered G2 to contain a CP 2-way split of some
state Si in Gi. A transition to si in Gi corresponds to a tran
sition to either sn or S12 in M2 depending on the primary
input vector. It was stated that the primary input vector and
state Si uniquely determine which of sn or S12 is the desti
nation state in M2. Thus, the one-to-many mapping between
the state codes for Mi and the state codes for M2 is actu
ally a one-to-one mapping between the Mi state codes plus
the primary input and M2 state codes. This can be accom
plished through a combinational circuit C. Circuit C' per
forms many-to-one mapping from M2*s state codes to Mi's
state codes. The proof was illustrated with a figure that is re
produced in Figure 2. The figure shows how the circuit may
be retimed resulting in a circuit that corresponds to G2. This
may be further resynthesized to any circuit M2 that corre
sponds to state assignment S2.

4 Our Contribution

In this section we develop our result which establishes the
relationship between retiming and resynthesis steps and the
STG transformations. In Section 4.1, we establish the class



Swnch

J3 ŵay merge 2-way split

G1

Figure 1: State-graphtransformations (a) 2-way split and 2-way merge (b) switch (c) switch using 2-waysplit and merge.

In Mi's code

MS'scode

Out

MI'S code MI'S code

(a) Machine Ml (b) Resynthesize

Mi's code

M2'scode

Mi's code

(c) Retime to get M2

Figure 2: Obtaining equivalentFSM implementations(proof
for Theorem 3.2).

of STG transformations which can be implemented by re
timing and resynthesis and in Section 4.2 we prove the STG
transformations resulting from retiming and resynthesis op
erations.

4.1 STG Transformations and Retiming-
Resynthesis

Webeginwith indicatingthe errors in Malik's theorem(The
orem 3.2) using some counter-examples. After identifying
the sources of these errors, we provide our modifications to
the proof and the theorem and establish the result.

4.1.1 Errors in Malik's Exposition

Below we given two counter-examples to the Theorem 3.2.
The proof of the Theorem 3.2 assumes that given the des

tination state Si in Mi and primary input vector which leads
to the transition, destination state in M2 (one of an or ai2)
can be uniquely determined. This is not correct. Consider
the splitting of 3i in Gi as shown in the Figure 3. Given i

Split

Merge

Figure 3: Counter-example to the proof of the Theorem3.2.
The next state in G2 cannot be determined solely by the next
state in Gi and the input vector.

and 5i, we cannot determine which of sn or ai2 is the next
state in G2.

The other counter-example is shownin Figure 4 [10]. The
original circuitwiththe associated statetransition graph Gi
is shown on the left. A sequentially equivalent circuit is
shown on the right with the corresponding state transition
graph G2. It can be proven that neither the latches can be
retimed nor can the logic be optimized indicating that a se
quence of retiming and resynthesis moves cannotmakethis
circuit transformation [10]. However, Figure 5 shows a se
quence of CP transformations which transform Gi into G2
contradicting Theorem 3.2.

4.1.2 Impiementing Splitting of a State

We modify the transformations given in the proof for The
orem 3.2, to handle the problem shown in Figure 3. The
modified transformation is shown in Figure 6. The main dif
ference between this and the transformations shown in Fig
ure 2 is that we also make use of previous state information
of Ml in evaluating the state codes for M2. By using in
formation about previous state in Mi, next state in Mi, and
the input, we can uniquelydetermine the next state for M2.
The combinationallogic C performsmany-to-one mapping
from M2's state codes to Mi's state codes.



Present _ c

State (Ml)
Present -

I" State (M2)

Ml

Out

(a)

Next

State (Ml)

Next
State (M2)

Ml

(b)

Out

Next

State (M2)

C) In Present _
State (M2)

Next

State (M2)
Out

(d)

Figure 6: Illustration of STG transformation (splitting of states) which can be implemented by retiming and combinational
optimization: (a)Original machine Mi (b)Generation ofnext state bits forthenew machine (c) Retiming togenerate next state
bits (d) Combinational optimization to obtainnewmachineM2.

—°<C1—I
LI ^L2
• I • out

r°<hL1^

-•
out

0 10 1

(a)

(Oi)
(b)

Figure 4: Counterexample to the Theorem 3.2: Original cir
cuit in (a) cannot be transformed to the final circuit in (b)
using retiming and resynthesis. The outputs are shown in
boxes.

G2G1

Q] [S Q] IS Q] IS Ql

(0

Merge 01,10
Merge 00,1 ?

Relabel

Figure 5: Using CP transformationsto obtain the final STG
from initial STG.

4.1.3 What STG Transformations can be Imple
mented by Retiming and Resynthesis?

Upon investigation we found that the problem with Theo
rem 3.2 lay in the notion of equivalence of states and the
related permissibletransformations. Below, we give the ap
propriate modificationsand extensions.

Definition3 For a given STG two states si and 82 are 1-
step equivalent, if they have the same output and iffor all
inputs i, the next state ofSi oniis the same as the next state
of82 on i and vice versa.

Note that this notion of state equivalence is very local. In
particular computing this equiv^ence does not require any
fix-point computation,e.g., reachability analysis.

Based on the notion of 1-stepequivalence,we modify the
meanings of 2-way transformations (as given in Section 3),
in the following way:

2-way split A state si in Gi is split into two 1-step equiva
lent states in G2. This also includes the splitting a state
with a self-loop into two 1-step equivalent states.

2-way merge Two 1-step equivalent states Sn and S12 in
Gi are merged to a single state Si in G2.

Switch A transition in Gi to a state sn is modified to go to
a 1-stepequivalentstate S12 in G2.

The 2-way split and 2-way merge constitute primitive trans
formations, a 2-way switch, multi-way splits and merges can
be accomplished by a sequence of 2-way splits and merges.

Definition 4 A transformation ofan STG G\ into another
STG G2 is a 1-step equivalent transformation if G2 has
been obtainedfrom Gi by either splitting a state into I-step
equivalent states, or merging two 1-step equivalent states, or
switchingbetweentwostates that are 1-step equivalent.



Theorem 4.1 Le/ M\ be an implementation corresponding
to state assignment Si and STG Gi and M2 be an imple
mentation corresponding to state assignment S2 and STG
G2 such that G2 is obtainedfrom Gi bya I-STEP Equiva
lent Transformation. Then M2 can be obtainedfrom
Ml usinga sequenceofretiming and resynthesis operations.

Proof:

The proof goes along the lines of Theorem 3.2. Suppose
G2 is obtained from Gi by splitting of some state into 1-
step equivalent states. Figure 6 illustrates how splitting of
1-step equivalent states can be implemented using retiming
and resynthesis. Hence M2 can be implemented from Mi
using retiming and resynthesis operations.

Since each step in the transformation in Figure 6 is re
versible, Ml can be obtained form M2 using retiming and
resynthesis operations. This amounts to merging of 1-step
equivalent states in G2 to give Gi.

Switching between two 1-step equivalent states can be im
plemented by a combination of merging the two states and
splitting as shown in Figure 1. •

Definition 5 Two STGs Gi and G2 are 1-STEP Equiva
lent if one can be obtainedfrom other by a sequence of
1-step equivalent tranrformations.

Note that retiming sometimes results in transient states. In
the presence of such states we use the notion of sufficiently
old configuration [5] or delayed designs [9] and ignore them
for the purpose of analysis.

The following theorem follows by applying induction on
Theorem 4.1.

Theorem 4.2 Let Mi be an implementation corresponding
to state assignment Si and STG Gi and M2 be an imple
mentation corresponding to state assignment S2 and STG
G2 such that G2 is 1-STEP EQUIVALENT to Gi. Then M2
can be obtainedfrom Mi using only a sequence ofretiming
and resynthesis operations.

4.2 What STG transformations are Gener
ated by Retiming and Resynthesis

In this section, we show retiming and resynthesis opera
tions only result in STG transformations which are 1-Step
Equivalent. Towards that direction, we make use of the
following lemmas.

Lemma 4.1 A general retimingoperation as defined in Sec
tion 2, can be constructedas the sequence ofretiming moves
across primitive elements as shown in Figure 7.

Proof:

The proof follows from the fact that for any circuit with
plex combinational gates, there is a finite equivalent repre
sentation using Nand gates and the fanout junctions. Hence

com-

Forward (i) Forward (iii)

I0°~ f
Backward (ii) Backward (iv)

Figure 7: Primitive retiming operations. All general retiming
operations can be built from a sequence of these.

0-,-0

(b)

11 11 o-.-o

000

Figure 8: STG transformation when the latches are moved
from the inputs (a) to the output of a Nand gate (b). Only
partialSTG is shownin a. The outputsare shownin boxes.

retimingacross a gate is equivalent to sequenceof retiming
moves across the primitiveelements constituting the gate. •

Note that this notion is similar to the atomic retiming
moves considered by Singhal et al. [9] (Nand and fanout
gate being equivalent to "justifiable" and "non-justifiable"
element respectively).

Lenuna 4.2 Thebasic retimingoperations as shown in Fig
ure 7 result in STG transformations that are 1-STEPEQUIV
ALENT.

Proof:

Consider the forward and backward retiming operations
across the Nand gate. The corresponding STG transfor
mations are shown in Figure 8. For clarity's sake, only a par
tial set of edges are shown in this figure. States (00,10,01)
are pairwise 1-STEP Equivalent. The STG on the right
can be obtained by merging these three states into a single
one. Hence retiming across a Nand gate results in 1-Step
Equivalent STG transformations.

Now consider the forward and backward retiming opera
tions across the fanoutgate. Movinglatchesto the output of

ooc «

(a)

Figure 9: STG transformation when the latches are moved
from the input (a) to the outputs of a fanout gate (b).



the fanout gate results in two transient states as shown in Fig
ure 9. Ignoring these transient states, the STGs in Figure 9
are isomorphic (see the discussion for Definition S). •

Lemma 4.3 Suppose STGs Gi and G2 are 1-step equiva
lent, then Gi X G is 1-step equivalent to G2 x Gfor all G,
where x represents the composition operation.

Proof:

Suppose G2 is obtained by splitting of a state in Gi. Sup
pose si in Gi splits into two states sn and 812. Now
for every state {si,s} in G x Gi, there will be two states
{siijs) and{si2,s} inGxG2. SinceandS12 are 1-
Step Equivalent, all of them go to the identical next state
for the same input, i.e., Vi,({5i,a},t) = =
({si2>s},i)- Hence, {si,s} is 1-Step Equivalent with
{siijs} and {si2,5}. The merge transformation follows
since, Gi is obtain^ from G2 by merge of two 1-STEP
Equivalent states. •

Lemma 4.4 Given a circuit C consisting of Nand gates,
fanout gates, and latches. Suppose C' is the new circuit ob
tained by performing one of the primitive retiming opera
tions shown in Figure 7. IfG and G' are the STGj ofC and
C' respectively, then G' is 1-Step EQUIVALENT to G.

Proof:

Suppose X is primitive gate (Nand or fanout) involved in
the retiming operation. Think of the original circuit as com
position of gate X with the rest of the circuit. Suppose Gcx
is theSTGforthe primitive gate andG^^ is theSTGforthe
restof thecircuit, so G = Gc* x G^x • H is theSTG
for the primitive gate after retiming, then G' —Gq^^ xGcx'
Now from Lemma 4.2, Gcx are 1-Step Equiv
alent. Hence from Lemma 4.3, Gcx ^ G^x is 1-Step
Equivalent toG^^^ x G^x»implying that G and G' are
1-Step Equivalent. •

Theorem 4.3 Suppose Gi and G2 are STGj associated
with circuits Mi and M2 respectively such that M2 is ob
tainedfrom Ml usinga sequenceofretiming and resynthesis
operations. Then Gi are G2 are 1-STEP EQUIVALENT.

Proof:

Combinational synthesis does not modify the STG. From
Lemma 4.1, retiming corresponds to a sequence of retiming
steps across primitive elements. An iterative general retim
ing results in concatenation of sequences consisting of re
timing steps across primitiveelements. From Lemma 4.4, at
each step the resulting transformation is 1-Step Equiva
lent. Hence Gi and G2 are 1-Step Equivalent. •

Theorem 4.4 Let Mi be an implementation corresponding
to state assignment Si and STG Gi arui M2 be an imple
mentation corresponding to state assignment S2 and STG
G2. M2 can be obtainedfrom Mi using only a sequence of
retimingand resynthesis operations ifand only ifGi are G2
are 1-STEP EQUIVALENT.

(a)

(b)

Ql/Sl) Ijn'

» if:

OOC)
^ 111 ^

Figure 10: Original circuit in (a) cannot be transformed to
the final circuit in (b) using retiming and resynthesis. For
claritypurposesonly partialset of edges is shownfor circuit
a. The outputs are shown in boxes. The order of input labels
on edges is (a;,y,e).

Proof: Directly follows from Theorems 4.2 and 4.3. •
In view of this theorem, we make following observations.

• The counter-example described in Section 4.1.1 can be
explained in the following way. The transformation in
Figure 5 involves merging the state "01" with "10" and
state "00" with "11". However, since these states are
not 1-step equivalent, the STG transformation cannot
be implemented with retiming and resynthesis transfor
mations.

• Since 1-Step Equivalence is a local notion, in
tuitively 1-STEP EQUIVALENT TRANSFORMATIONS
cover only a small subset of all valid STG transfor
mations. For example. Figure 10 shows two circuits
along with their STGs (only partial STG is shown for
the circuit a). The circuits in Figures 10a and b are se
quentially equivalent, but one cannot be obtained from
the other using retiming and synthesis transformations.
This is because all three equivalent states (00,10,01)
have self-loops with predicate ( 0), implying they
are not 1-Step Equivalent. Hence dieir merger can
not be implemented using only retiming and resynthesis
transformations.

• We do not need the condition of CP preserving trans
formations. The counterexample is shown in Figure 11.
In STG Gi, the self-loop on si is a labeled cycle of
equivalent states (there is just one state in the cycle).
However, in STG G2, due to the self-loops on an and
ai2, we have two labeled cycles of equivalent states,
i.e., this STG transformation is non-CP. However, as
shown in Figure 6 we can implement splitting of states
using retiming and resynthesis.

Next consider Malik's examples of non-CP [6] shown
in Figure 12. The merger of states an and ai2 in Fig
ure 12a is not a valid 2-way merge because states an



G1

(a)

self-loog
splitting

Figure 11: STG transformations involving splitting a state
with a self-loop.

W Split ^
G1

switch

Figure 12: Non-CP transformations.

and 5i2 are not 1-step equivalent. In Figure 12b, the
transformation involves a switch. Notice that states

sii and Si2 are 1-step equivalent. However, after the
switch, states sn and si2 are no longer 1-step equiva
lent, making the switch transformation invalid.

5 Extending Notions of Retiming
and Synthesis

The examples given in the previous section illustrate the lim
itations of retiming and combinational transformations. In
this section we show how to increase the optimization capa
bility of these transformations by extending the notions of
conventional retiming and combinational optimization.

5.1 Eliminating Fioating Latches

The current combinational optimization techniques do lit
tle manipulation of latches (e.g., latch removal via constant
propagation). While gates that do not transitively fanout to
any primary output are eliminated during combinational op
timization, latches are treated as pseudo primary inputs and
outputs and hence are not eliminated even if they do not tran
sitively fanout to any primary output. Such latches also are
not eliminated during a retiming operation either. We can ex
tend the notion of combinational optimization to one which
trivially gets rid of such latches before proceeding to reg
ular combinational optimization. The process of removing
latches that do not fanout to any primary output is termed as

out IL
out

r«ChL1^
out

0 10 1 0 10 1 0^ al

(a)

Re-encoding

(b) (c)

Eliminate floating latch (L2')
>.

Figure 13: Circuit transformation using floating latch elimi
nation.

Figure 14: A latch with a feedback path can be modeled as
an enabled latch.

floating latch elimination. It does not add to the complex
ity of the synthesis algorithm. >\^th this extended notion of
synthesis, the circuit transformation shown in Figure 4 can
be obtained. The transformation process is shown in Fig
ure 13. Essentially, the first transformation re-encodes the
circuit, which can be implemented by retimingand resynthe-
sis as explainedin Theorem 3.1. This is followed by floating
latch elimination.

In general, this transformation will allow us to implement
STG transformations, where a circuit is properly reencoded
to expose redundant state bits that can be eliminated.

5.2 Retiming Latches with Latch Enable
Signal

The direct feedback path to the latch in the circuit of Fig
ure 10can be thoughtof as an enabledlatchas shownin the
Figure 14. In [4], a retiming techniqueis proposedto handle
circuits containing edge-triggered latches with different en
able signals and different clocks. The retiming problem for
multiple-class sequential circuits was reduced to an equiv
alent retiming for single class sequential circuits, thereby
exploiting performance enhancements made in that domain.
In particular, their technique would allow the retiming move
as shown in Figure IS. >^th this extension tothe retiming
move, we can obtain the transformation shown in Figure 10.

e e

Backward

Figure 15: Retiming enabled-latcb across gates.



This extension to the notion of retiming enables us to
merge states which are 1-Step Equivalent except for the
identical predicate on the self-loop, i.e., the state holds its
value for a particular input combination.

6 Conclusion

Retiming and resynthesis are powerful tools to optimize a
sequential circuit. In this work, we have formally character
ized the optimization capability of retiming and resynthesis
steps in terms of the transformationson the respective STGs
of the circuits. We have shown that retiming and resynthe
sis steps are exactly the 1-step equivalent transformations on
STGs. To our knowledge this is the first result which gives
a complete and tight bound on the optimization capability of
retiming and resynthesis transformations.

We have demonstrated that by simple extensions to tradi
tional notions of retiming and combinational optimization,
we can achieve more complex STG transformations. These
extensions do not result in increased algorithmic complex
ity of optimization steps. It will be an interesting exercise
to obtain establish similar tight bounds on the optimization
capability of these extended notions.

References

[1] R. K. Brayton, R. Rudell, A. L. Sangiovanni-
Vincentelli, and A. R. Wang. MIS: A Multiple-Level
Logic Optimization System. IEEE Trans. Comput.-
Aided Design Integrated Circuits, CAD-6(6): 1062-81,
Nov. 1987.

[2] S. Hassoun and C. Ebling. Sequential Circuit Opti
mization Using Precomputation. In Proc. lEEE/ACM
Intl. Workshopon Logic Synthesis, May 1997.

[3] B. Iyer and M. Ciesielski. Metamorphosis: State As
signment by Retiming and Re-encoding. In Proc.
lEEE/ACM International Conference on Computer-
Aided Design, pages 614-7,1996.

[4] C. Legl, P. Vanbekbergen, and A. Wang. Retiming
of Edge-Triggered Circuits with Mulitple Clocks and
Load Enables. In Proc. lEEE/ACM Intl. Workshop on
Logic Synthesis, 1997.

[5] C. E. Leiserson and J. B. Saxe. Optimizing Syn
chronous Systems. Journal ofVLSI and Computer Sys
tems, l(l):41-67. Spring 1983.

[6] S. Malik. Combinational Logic Optimization Tech
niques in Sequential LogicSynthesis. PhD thesis. Uni
versity of California Berkeley, Nov. 1990. Memoran
dum No. UCB/ERL M90/115.

[7] S. Malik, E. M. Senlovich, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli. Retiming and Resynthesis:
Optimization of Sequential Networks with Combina
tionalTechniques. IEEE Trans. Comput.-AidedDesign
Integrated Circuits, 10(l):74-84, Jan. 1991.

[8] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon,
R. Murgai,A. Saldanha, H. Savoj, P. R. Stephan,R. K.
Brayton, and A. L. Sangiovanni-Vincentelli. SIS: A
System for Sequential Circuit Synthesis. Technical
ReportUCB/ERL M92/41, Electronics Research Lab,
Univ. of California, Berkeley,CA 94720, May 1992.

[9] V. Singhal, C. Pixley, R. L. Rudell, and R. K. Bray
ton. The Validity of Retiming Sequential Circuits.
In Proa, of the lEEE/ACM Design Automation Conf,
pages 316-21, June 1995.

[10] H. Zhou, V.Singhal, and A. Aziz. How Powerful is Re
timing? In Proc. lEEE/ACMIntl Workshop on Logic
Synthesis, May 1998. to appear.


	Copyright notice 1998
	ERL-98-26

