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Abstract

(j-automata, Games, and Synthesis

by

Sriram C. Krishnan

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Robert K. Brayton, Chair

In this dissertation we investigate the complexity of translation among determin

istic u;-automata (DOA), employ our new and improved translations among DOA to

derive improved property synthesis algorithms, and consider games to model synthesis

problems that arise in practice.

tj-automata are finite state automata that accept infinite strings. The acceptance

condition can be one of many types: Buchi, Co-Buchi, Rabin, Streett, etc., each spec

ified by a set of pairs of subsets of states. Restricting the number of pairs permitted

in the acceptance condition induces an infinite hierarchy on the languages accepted

by DOA. The minimum number of pairs required to accept a language by a DOA—

the Rabin Index—is a function of the topological complexity of the language, and

determines the structural complexity of any DOA accepting the language. Given a

DOA, we address the problem of decidingits Rabin Index; wepresent a translation of

a DOA into an equivalent minimum-pair DOA whose size is exponential in the Rabin

Index of the language. We also prove lower bounds to establish the optimality of our

translation procedures.

The synthesis of a Finite State Machine (FSM) that satisfies a property specified

as a DOA can be viewed as a two-person Gale-Stewart game of perfect information

(GSP game) played onthe DOA, called the game automaton, between the FSM and its

adversarial environment (that supplies the FSM's input). We relate the complexity

of synthesis to the complexity of the language describing the property—the game



language; we employ our translations among DOA to derive a synthesis algorithm
that decides the winner in a GSP game on a DOA in time that is exponential only in
the Rabin Index ofthe game language (rather than the number ofpairs ofthe game
automaton). For instance, we can decide thewinner ofa GSP game played on a Rabin
DOA with n states and h pairs in time where k is Rabin Index ofthe game
language; this algorithm is optimal. The size ofthe winner's winning strategy is also
at most exponential in the Rabin Index of the game language. We investigate lower

bounds for strategy size in relation to the size of the game automaton, and also
examine the problem of synthesizing minimum-state strategies.

We study variants of the GSP game on DOA: incomplete information and fair

Gale-Stewart games on DOA, aswell as GSP games requiring a strategy FSM with no
initial state (uninitialized GSP game). These games enable the modeling ofsynthesis

problems arising in practice. AH these games are not determined, i.e., there may not
be a winner with a deterministic winning strategy. While incomplete information

and fair Gale-Stewart games on DOA may be decided by dehning appropriate GSP

games, this does not appear possible for the uninitialized GSP game. We have devised

a synthesis algorithm for the uninitialized GSP game when the game language is a

topologically closed set. This yields a synthesis procedure to utilize the maximum

flexibility afforded by the safe-replaceability [46] criterion which permits a FSM with

no initial state to be replaced by another uninitialized FSM such that the change is

not detectable by any environment.
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Chapter 1

Introduction

Today's Very Large ScaleIntegrated (VLSI) circuit designs are conceived of zls a set

of interacting Finite State Machines (FSMs) and described in a hardware description

language (HDL) such as Verilog. The specification or requirement of the design is for

the most part stated informally. Validation, or verification that the design behaves as

intended, is performed by simulating the design with a set of input stimuli (vectors)

and checking that the behavior of the design meets the specification. Validation is

essentially an ex-post-facto act, engaged in after the design effort. Once a design has

been validated or verified it is optimized and fabricated on silicon.

The increasing complexity of designs has found the present approaches to obtain a

validated design wanting. Recently, formal verification, verification methods involving

proving that a formal mathematical model of the design conforms to a mathemat

ical specification, has received much attention. A related, promising, and different

approach is formal property synthesis—^the synthesis of a design from the properties

required of the design (thereby rendering verification unnecessary).

The problems addressed in this thesis relate to formal property synthesis. In par

ticular we treat the case that the property required of the interaction between the

design and its environment is specified as an w-automaton. u-automata are finite

state automata that accept infinite sequences, and were historically first introduced

by Buchi [6] to decide the monadic second-order theory of one successor (SIS), u-

automata enable both the modeling of the design at a high level of abstraction, as well



as the specification of properties required of the design. For instance, a;-automata

enable us to specify that a resource such as a bus is eventually granted upon re

quest without specifying an explicit deadline. Furthermore, since computing systems

maintain an ongoing nonterminating interaction with their environment, a;-automata

provide a natural mathematical tool for their modeling. Amongst formal models,

w-automata are closer to the heart of computer hardware designers, being simple gen

eralizations of finite state machines (FSMs). For a;-automata, acceptance is defined

by Boolean formulae of infinitely repeating distinguished states; different commonly

used Boolean formulae have given rise to the different a;-automata in the literature:

Buchi, Co-Buchi, Rabin, Streett, Chain, Muller, etc. These Boolean formulae are

given as a set of pairs of subsets of states.

When cj-automata are employed as the modeling tool, the verification problem,

amounts to checking that the language of (the set of behaviors of) the design is con

tained in (admitted by) the language of the property. Verification using cj-automata

is efficiently solvable [16] and there are commercial tools available [28].

The sequential synthesis problem is: Given an cj-automaton, the property, spec

ifying the proper interactions between the sequential circuit to be designed and its

environment, is there a sequential circuit, namely a FSM, admitted by the property.

This problem has come to be known as Church's problem [9].

Sequential synthesis of a property is not mere optimization like combinational

logic synthesis. A property for a combinational circuit is a Boolean relation R C

{0,1}" X{0,1}'". Since there always is a Boolean function / : {0,1}" —> {0,1}*"

satisfying the relation R, i.e.,such that forevery x € {0,1}", if there existsy € {0,1}*"

such that (x^y) G R, then (x,/(x)) € R [4], the combinational circuit synthesis

problem amounts to picking a function subject to optimization objectives. Whereas,

for a sequential circuit, a property relation R C x given as an tj-automaton,

indicates the allowed output sequences for input sequences. A FSM that satisfies

the property is essentially a function f : I* O such that for all 20^122^3 ••• ^

(io, /(io)), (iu ••• , (ij, f{ioh ... 2j))... € R. It is no longer true that every
property is feasible, i.e., there is not always a FSM that satisfies the property. For

instance, it is easy to see that the relation R C {0,1}*^ x {a, b}'̂ with i?(01{0,1}'̂ , a'̂ )



and i^(00{0,is not feasible. Therefore sequential synthesis involves checking

for feasibility and if feasible, synthesizing an "optimal" circuit.

Church's problem or sequential synthesis is significantly more complicated than

combinational synthesis. Church's problem was solved by Buchi and Landweber in

1969 [7]. Following McNaughton, it is pointed out in [7] that a FSM that satisfies the
property is a winning finite state strategy in a two-person Gale-Stewart game played

on an w-automaton. Viewing the synthesis problem as a game provides a convenient

and natural metaphor for the adversarial interaction between the environment of the

module to be synthesized and the module. In addition, we show that it leads to

efficient algorithms for synthesis and have developed variations of the Gale-Stewart

game to model and solve other practical synthesis problems (that cannot be posed as

Church's problem). The flexibility afforded for synthesis will be the set of winning

strategies for the module to be synthesized in an appropriate game,and if the property

is feasible, i.e., if the module wins the game, the objective would be to pick out a

winning strategy subject to optimization objectives.

Translation between different deterministic a;-automata (DOA) has an intimate

relation to deciding the feEisibility and synthesis of properties specified as w-automata.

In this dissertation we present optimum translations between deterministic cj-autom-

ata, and utilize these to obtain new improved decision procedures for Church's prob

lem. We also study variants of the two-person Gale Stewart game on an cj-automaton

to model practical synthesis problems, and present synthesis algorithms for them.

Chapter 2 investigates the structural complexity of a;-automata. The structural

complexity of a deterministic cj-automaton is determined by the transition structure

of the automaton and the number of pairs used to specify the acceptance condi

tion, and this is also related to the topological complexity of the language. Given

a deterministic cj-automaton, we consider the problem of determining the structural

complexity of the automaton, and translate the automaton into an equivalent au

tomaton with a minimum number—the Rabin Index number—of pairs. Our new

translations are exponential in the Rabin Index rather than the number of pairs, and

are asymptotically no worse than previous constructions [45]; we prove lower bounds

showing the worst-case optimality of our translations. We also enquire if there is a



determinization of cj-automata whose complexity is a function of the Rabin Index of

the language.

Our results build on the structural characterization of the minimum number of

pairs provided by Landweber [29], Wagner [55], and Kaminski [24], to derive algo

rithms to effect optimal translations between deterministic a;-automata. These results

add to Safra's [45] to give us a better picture of the relative succinctness and complex

ity of the different deterministic w-automata, within the subclasses of the a;-regular

languages arising from restricting the number of pairs allowed.

In Chapter 3 we consider two-person Gale-Stewart games played on determinis

tic (^-automata, and problems of deciding the winner and synthesizing the winner's

strategy; these games are equivalent to Church's problem. The time to decide the

winner and the size of the winner's strategy vary quite widely depending on the type,

whether Buchi, Rabin, etc., of automaton the game is played on—the game automa

ton. We employ the translations from Chapter 2 to derive synthesis algorithms that

run in time exponential in the Rabin Index of the game automaton, and synthesize

winning strategies whose size is at most exponential in the Rabin Index. Previous

algorithms [38, 14] were exponential in the number of pairs; ours is better in general,

and asymptotically no worse. In terms of time complexity previous results [14] rule

out an improved procedure. We also attempt to prove lower bounds on the strat

egy size as a function of the size of the game automaton, as a means of ruling out

the existence of a synthesis algorithm that can produce smaller winning strategies.

Gale-Stewart games can also model tree automata [40]; our results imply improved

decision procedures for testing nonemptiness of tree automata, and hence imply im

proved decision procedures for testing satisfiability of branching time temporal logics

[14].

Small winning strategies translate to smaller VLSI circuits. In Chapter 6 we ad

dress the synthesis of minimum-state strategies. We prove computational complexity

lower bounds as well as present exact algorithms for the problem.

The game corresponding to Church's problem is a Gale-Stewart game of perfect

information on a deterministic cj-automaton. Property synthesis problems arising in

practice, such as to synthesize a component that interacts with a set of previously



synthesized components, do not always fit this paradigm. We propose and investi

gate variants of the perfect information Gale-Stewart game to model these synthesis

problems.

Chapter 5 examines two-person Gale-Stewart games of incomplete information

on deterministic (j-automata. Here, each player may only observe, and has to base

strategic decisions on, the observable part of the opponent's actions. The winner

in this game can be decided, and his winning strategy derived, by considering an

appropriate Gale-Stewart perfect information game, but at a higher computational

cost. These games are not determined, in that some games do not have a winner with

a deterministic winning strategy.

Fairness constraints aid in more accurately modeling the behavior of modules

upon abstraction. In Chapter 6, we study fair Gale-Stewart games on determinis

tic w-automata. These games can again be decided by defining appropriate perfect

information games. If neither player's fairness constraint is a topologically closed

language, these games may not have a winner. We also consider a small illustrative

example.

Recently [46, 47] the design of uninitialized FSMs—sequential circuits without

specified initial states—has become important. Given a property specified as a de

terministic a;-automaton, we address, in Chapter 7, the problem of synthesizing an

uninitialized FSM satisfying the property. We consider an appropriate game and solve

the case that the language of the game automaton is a topologically closed set. This

also yields a method to exploit the complete flexibility for safe-repleiceability [46]: the

problem of replacing an uninitialized FSM by another uninitialized FSM such that

no environment is able to detect the change. Unlike incomplete information or fair

games, we have not been able to transform the game appropriate to the problem of

synthesizing an uninitialized FSM to a Gale-Stewart perfect information game on an

cj-automaton. These games (even closed games) are not determined.

We conclude in Chapter 8 by summarizing our results and indicating directions

for ongoing and future work.

Chapters 2 and 3 set out the definitions of (j-automata and games of perfect

information and should be read before the subsequent chapters. Chapters 4 through



7 are fairly independent and may be read in any order.



Chapter 2

Structural Complexity of

cj-automata

2.1 Introduction

cj-automata are finite state automata that accept infinite sequences. The run of

an infinite sequence on a finite state transition structure visits some set of states

infinitely often, call the infinity set. The sequence is accepted provided it satisfies the

acceptance condition, which is a Boolean formula over Boolean variables, one for each

state. The acceptance condition is satisfied provided the truth assignment that makes

variables in the infinity set true is a satisfying assignment for the Boolean formula

defining the acceptance condition.

Restricting the syntax of the Boolean formulae used to define the acceptance

condition, gives rise to the different a;-automata in the literature—^Buchi, Co-Buchi,

Rabin, Streett, Chain, and Muller. The Muller acceptance condition is the minterm

canonical form of the acceptance condition, and is hence the most verbose. The Buchi

and Co-Buchi acceptance conditions are the simplest, and hence the most succinct.

The Buchi condition is defined by a disjunctive formula, and the Co-Buchi conditions

by the negation of a disjunctive formula. Particular forms of Boolean combinations of

Buchi and Co-Buchi conditions define the Rabin and Streett acceptance conditions.

Deterministic cj-automata have varying degrees of expressiveness, depending on
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the form and size of the acceptance conditions used to define them. The size, refers

to, for instance the number of disjuncts or pairs in the Ilabin condition. Deterministic

Buchi and Co-Buchi automata can express a strict subclass of the cj-regular languages.

Restricting the number of pairs in deterministic Rabin and Streett automata induces

a strict hierarchy of languages within the w-regular languages.

Given a deterministic ci;-automaton, we consider the question of translating the

acceptance condition, i.e., constructing an equivalent w-automaton with a different

acceptance condition. This often entails a change in the transition structure. The

different acceptance conditions vary quite widely in their succinctness; an acceptance

condition may be able to express an a;-regular language exponentially more succinctly

than another acceptance condition. We are interested in effecting the translation effi

ciently, minimizing the size of the acceptance condition and the transition structure.

This problem may be viewed as a logic minimization problem of sorts, with the added

factor of the transition structure.

The minimal form of the acceptance condition that a given deterministic w-

automaton can admit is a function of the form and size of the formula used to describe

its acceptance condition, as well as the transition structure of the automaton. The in

teraction between the two—the structural complexity of the cj-automaton—influences

characteristics of the automaton that determine the location of the language in the

hierarchy of a;-regular languages, and the minimal form of the acceptance condition

that may be used to define the language as a deterministic w-automaton. The chain

condition is a special form of the Rabin and Streett acceptance conditions that admits

an easy minimization of its formula. The hierarchy on the w-regular languages also

has a strong connection to the topological properties of languages [55, 50], as well as

the descriptive complexity of properties of systems [31].

We provide essentially optimum translations between the acceptance conditions,

as well as minimizations of the acceptance conditions. The complexity of our trans

lations is a function of the location of the language in the hierarchy on the w-regular

languages. Our results add to Safra's [42, 44, 45] results in understanding the com

plexity ofcj-automata. Our results show that the relative succinctness of the diflferent

acceptanceconditionsgets amplified higher in the hierarchy. Wealsoconsiderdecision



problems relating to locating a given language in the hierarchy.

cj-automata are used to construct qualitative abstractions of reactive systems to

be modeled for analysis, and stating the properties that the systems satisfy [31]. The

results in this chapter are of interest from an automata-theoretic perspective, with

important applications in the area of synthesis, the subject of subsequent chapters of

this thesis.

This chapter is structured as follows. Section 2.2 presents the notation and an

introduction to w-automata. In Section 2.3 we describe the topology relevant to

cj-regular languages, and in Section 2.4 we consider translation of open and closed

languages. Sections 2.5 through 2.8 deal with the class of languages realizable by

deterministic Buchi automata. Sections 2.9 through 2.13 deal with translation in

the (full) class of cj-regular languages. In Section 2.14 we consider the problem of

minimizing the number of states in a deterministic w-automaton. In Section 2.15 we

investigate if the complexity of determinization is a function of the structural com

plexity of the resulting deterministic automaton. Section 2.16 deals with minimally

certifying the nonemptiness of an a;-automaton. We summarize the results of this

chapter in Section 2.17.

2.2 Background & Notation

An alphabet is a finite non-empty set of letters. For example, alphabet E =

{a, 6, c}, consists of three letters a, 6, and c. Let u denote the set of natural numbers

{0,1,2,3,...}. For n € cj let n be the set {0,1,2,... ,n-l}. A word or string is a

juxtaposition or concatenation of letters. A finite word over alphabet E, or *-E-word,

of length n is a concatenation of n letters, i.e., a function from n An w-word,

or cd-sequence, over alphabet E or u-E-word is an infinite concatenation of letters

from E, i.e., a function from w to E, and we say that the word has length u. For

an alphabet E, E* is the set of all finite words, E'^ the set of all infinite words, and

E^ = E* UE'̂ . For x € E^ let [xj denote the length of the word, and x[i] denote the

i''̂ letter in the word, i <\X\. If E = Si XEz, and s = (si,S2) € E, the projection

of s to El, nEj(s), is defined to be si. For x = (xo,,xo2)(a:i,,xi2) ••♦ € (Ei x E2)^
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IlsiCa:) = xojXii For x^y £ the concatenation of x and y, denoted xy, is xy

if X € E*, and x otherwise; we say x is a prefix of y denoted x < 2/ if y = X2 for

2 € E^ and x is a strict prefix of y, denoted x < y if x < y and x ^ y. L C E* is

called a *-language and L C E*** is called an (j-language. The concatenation of a *-

language and an w-language is denoted and is {xy|x € L* and y € L^;}.

Given a language L C (Ei x E2)'̂ , the projection of L to Ei, Tl^i(L) is {a®a}... €

Ey1302^2 ... GEg such that (crj, o-2)(a}, <J2)(o"i, af)... € L}.

A traditional finite automaton [41, 22], or *-automaton, is a quintuple A =

(Q,qo,T.yS,F), where:

• Q, is a finite set of states^ also called the state-set or state space, or simply

states of the automaton

• 9o ^ Qj is the initial state

• E, is a finite alphabet

• (jCQxExQ, is the transition relation

• Q Qj is the set of final states

The first four components (Q,qo^ll,S) comprise the transition structure. The transi

tion structure defines a directed graph, the State Transition Graph (STG), on vertex

set <3, with E-labeled edges corresponding to elements of 6. Figure 2.1, shows a tran

sition structure on state-set {A,B}, initial state A (indicated by an arrow), alphabet

{a, 6}, and transition relation depicted by the edges of the STG.

A *-E-word a has a run r^ € Q', provided = yo) (^<7[i]»cr[2]»7'a[«+l]) € (5, and

|r<y| = \a\ -I-1. The word aabba has the run AAABBA on the transition structure of

Figure 2.1. If for some state q and letter x G E, a transition is not defined, i.e.,

W € Q, (y, X, i 5, the transition structure is said to be incomplete^ and otherwise

it is complete. If 5 could be equivalently expressed as a function from Q x E —> Q,

then we say the transition structure is deterministic, and nondeterministic otherwise.
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: Q XE —> Q is naturally extended to (5: Q x E"^ —> Q as follows: for c € E"^,

S( c) =/ ^/H =i
I <^(%>c[0]),c[l]...c[|c| - 1]) otherwise.

Every word has a unique run on a complete deterministic transition structure. We

say a state q € Q is reachable^ if for some *-E-word a, some run contains g, i.e.,

rg[i] = g for i < |(7|; in this case we also say the run reaches or visits q. Run r is

accepting if r[|rl —1] € F, i.e., if the run ends in a final state.

The *-E-word a is said to be accepted provided it has an accepting run The

language, of, accepted by, *-automaton ^4, denoted L»(^), is the set of all accepted

words. A language L C E* which is the language accepted by a *-automaton is

called a ^-regular language. The language of a *-automaton, A = (Q,90)S,5, F) is

empty if no final state is reachable. Every *-regular language is in fact accepted

by a deterministic *-automaton. Also, *-regular languages are closed under union,

intersection, complementation, and projection [22].

Figure 2.1: Finite state transition structure

We say an automaton is (non-)deterministic, (in-)complete if its transition struc

ture is respectively (non-)deterministic, (in-)complete. Figure 2.1 shows a simple

complete deterministic *-automaton. There is only one final state, the state labeled

A. The *-regular language accepted by the *-automaton is all finite strings that end

in a, and is represented by the regular expression {a-hb)*a. We use the acronym DFA

for deterministic *-automaton, and NFA for nondeterministic *-automaton.
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2.2.1 a;-automata

An cj-automaton [52] is A = {Tj(j))i where T is a transition structure and <l> is

the acceptance condition. The transition structure is T = (Q,?ojS,<y), analogous to

♦-automata, as are the notions of deterministic, nondeterministic, and complete. We

use the acronym DOA for a deterministic and complete u;-automaton, and NOA for

a non-deterministic cj-automaton. The run for an a;-word a, is defined similar to

the case of ic-automata, but it is now an w-Q-word.

Since Q is a finite set, the run of an w-word will necessarily visit some states

infinitely often. The infinity set of a sequence tjj over a finite set Z, i.e., xp £

denoted inf{xp), is the set of elements in Z that occur infinitely many times in i.e.,

inf(ip) = {z\z £ Z and |{i|i > 0 and xpli] = z}\ = oo}. The infinity set of the run

r<7, is thus the set of states that are visited infinitely often by r^. Beyond

some index 7, all the states visited by will be from inf{ra). And, for any i>

and any states q\^q2 € inf[ra)t there exist indices I > k > i, such that r<y[fc] = qi and

r^[/] = q2. Thus, the subgraph of the STG T on the vertex set inf[r<r) is strongly

connected^ since for every ^1,92 € inJ{Tff) there is a directed path (along To) from qi

to q2] we say in/(ra) C Q is a Strongly Connected Subset (SCS) (of T). A maximal

SCS is called a Strongly Connected Component (SCC); for every q £ the SCC q is

contained in, SCC{q) is unique. 5 C Q is said to be a non-trivial SCSif the subgraph

of T on the vertex set 5 is a SCS with at least one edge. For every non-trivial SCS

5 C Q, with at least one reachable state, for some word c, m/(r<,) = S.

The acceptance condition <f>, the condition to be satisfied by an accepting run, is

a Boolean formula, where the Boolean variables are the states 0 = {^i, ••• }9n}-

Definition 2.2.1 A Boolean formula is generated by the following rules

1) qi ^ Q is a Boolean formula

2) If (f>u(l>2 Boolean formulae, then -Kpi, (piV (j)2,0'Tid <^iA^2 0,1^^ Boolean formulae.

The truth of G Q is determined by the run r^. For C CQ define the assignment

Qi = true provided qi £ C. Let 0[C] denote the truth valueof (p under this assignment.

Wesay C is accepting or positive if 0[C] = true, and is rejecting or negative otherwise.

The polarity of a SCS S is if S is accepting, and if S is rejecting.
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Definition 2.2.2 The language generated or accepted or realized by the uj-automaton

A = (T, (f>), denoted L{A), is{a|a G such that for some runr„ <l>[inf{ra)] = true}.

Note, \i A = (T, 4>) is a DOA, the DOA accepting \ L{A) is A = (T^ -<0).

Definition 2.2.3 An lj-language L Ciy is called cj-regular if L = L{A) for some

w-automaton A. The class of w-regular languages is {L\L is u-regular }.

Definition 2.2.4 We define various types of Boolean formulae which are used to

define acceptance conditions [16, 45]:

1. A disjunctive formula (DF), also called a Buchi formula, is a disjunction of

Boolean variables, i.e., <^ = V... VQk; if S = {gi, ^2, ••• ?Qk}f write S to

denote the disjunctive formula 9i V... V corresponding to the subset S CQ.

2. A Co-Buchi formula, is ->F, where F is the DF for the subset Q\F.

3. AMuller formula is V (A/€f(/) hq)), where T C 2^.
FeF

4. A Rabin formula is A-"(C/t)), where Li,Ui,l < i <n are DF.

5. A Streett formula is A5Li(L, V-'(Ui)), where Li,Ui, I <i <n are DF.

6. A Rabin Chain formula is Ai^) where Fi,Ei,l<i<n are DF, and

^ m a =>

7. A Streett Chain formula is A;Li(Fi V->Ei), where Fi,Ei, I <i <n, are DF,

and (M,{Fi =» Ei)) A{f^l](Ei F^i).

Each of the above defined Boolean formulae defines an acceptance condition and an

a;-automaton by the same name.

A disjunctive or Buchi formula identifies a subset of states. Therefore, the final

states of a *-automaton may be viewed as defining a Buchi formula, and so the

states identified by the Buchi formula have come to be called final states (a more

appropriate term would perhaps be recurrent states). In a Buchi automaton, a SOS



14

would be accepting provided it contains a final state; accepting runs visit final states

infinitely often.

Suppose A = (T,F) is a deterministic Buchi automaton (DBA). Let L(A) =

and viewed as a DFA let Lt{A) = L*. Since T is deterministic, each cj-word a has

a unique run on T. If a € the unique run visits a final state infinitely often,

and hence infinitely many prefixes of a are in L,. Therefore, w-word a is in iff

infinitely many prefixes of a are in L^. This is written as = limL*. For example,

the automaton of Figure 2.1 viewed as a DBA has the language consisting of all

u;-{a, 6}-words with infinite occurrences of o; let Y denote this language.

So the language of a DBA is of the form limW^ for some *-regular language

W. However, the same is not true for all tj-regular languages. Let us consider the

complement of the language of the DBA shown in Figure 2.1, Z = Y = \ T;

this language consists of all cj-words with finite occurrences of a. It is well known

[45, 29, 52] that this language is not realizable by a DBA. Assume otherwise for

contradiction. Since b'*' € Z, the run will visit some final state (say fi) infinitely

often, and therefore for some index the run is at fi. Now, consider € Z. Its

run has to visit some final state infinitely often. Therefore for some index i > ii the

run is at a final state (say) /2 for word b^^ab'̂ . Now /z ^ /i, since otherwise 6*^

would be accepted. Proceeding in this manner we deduce by a pumping argument

that any DBA accepting Z has to have an infinite number of states.

However, Z is accepted by a deterministic Co-Buchi automaton (DCBA). Since a

Co-Buchi formula, ->F, is the negation of a disjunctive formula, i.e., the complement

of the Buchi condition, a set 5 satisfies the Co-Buchi acceptance condition provided

S C F. The Co-Buchi acceptance condition identifies a subset of the states called the

co-final or persistence set, and any SCS is accepted provided it is contained in the

persistence set; a run is accepting provided it finally never leaves the co-final set. In

particular, the language Z is accepted by the Co-Buchi automaton with the transition

structure of Figure 2.1 and co-final set {B}.

Thus neither DBA nor DCBA are closed under complement; and, they accept a

strict subset of the class of a;-regular languages. It is a simple exercise to construct a

nondeterministic Buchi automaton (NBA) to accept Z, and hence not all NBA can
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be determinized into DBA. Every tj-regular language is accepted by some NBA.

In a Muller formula, V (^/€f(/) ("^g)) each accepted set is explicitly iden-

tified as a minterm; thus the Muller formula is the minterm canonical form for the

acceptance condition, and each set identified in the formula is called an acceptance

set. Any acceptance condition is readily translated into the Muller condition, by enu

merating the positive SCSs in the automaton. For instance, the language Y is realized

by the transition structure of Figure 2.1 with acceptance sets {A,B} and {A}. Mc-

Naughton showed that every cj-regular language can be accepted by a deterministic

Muller automaton (DMA) [52].

In a Rabin formula VjLi(Li A -"(C^t)), each disjunct Li A is the conjunction

of a Buchi, Lj, and a Co-Buchi formula, and identifies a pair of subsets of the

states, (Li,C7j). A set 5 C Q satisfies the Rabin formula, provided it satisfies some

pair, (Li,Ui). S satisfies pair (Li^Ui)^ provided it "touches" Lj, i.e., 5fl Lj ^ 0, and

is "trapped" in Ui, i.e., S C Ui. If S does not satisfy a pair, it is said to violate the

pair. Rabin formulae clearly subsume Buchi and Co-Buchi formulae.

In a Streett formula, AjLi(LiV-i(f/t)), each conjunct, Lj is the disjunction of

a Buchi and a Co-Buchi formula, and identifies a pair (Lj, Ui). A set 5 C Q satisfies

the Streett acceptance condition, provided for each pair {Li^Ui), S either "touches"

Li or is "trapped" in C/,. Streett formulae also clearly subsume Buchi and Co-Buchi

formulae.

The negation of a Rabin formula is a Streett formula, and vice-versa. For instance,

-> V"_i (Li A-'(Ui)) = A"_i(C/j V->Li); Rabin pair (Li.Ui) gets transformed to Streett

pair (Ui^Li). The Rabin and Streett acceptance conditions are thus syntactically

complementary; a set S satisfies Rabin formula 0 iff it does not satisfy Streett formula

-10. Therefore, if A = (T, 0) is a deterministic Rabin automaton (DRA), then the

deterministic Streett automaton B = (T, -i0) has complementary language, L(B) =

UA).

Remark: Our syntax for the Rabin and Streett condition differs from the standard

definition in the literature, where a Rabin formula is A-if/j); a run is accepting

(for Rabin acceptance), if for some i, it visits L, (the GREEN states) infinitely often.
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but Ui (the RED states) only finitely often. Complementing C/,- translates between

the standard syntax and ours. Also, in the standard syntax, the Streett condition

A5L,i(Li V-^Ui) is often written as AjLi(t/i =» Li).

The Rabin chain formula, AFj), is an instance of a Rabin formula in the

traditional syntax, where, in addition the sets Fj, Fj form a chain under set inclusion,

i.e., Fi C Fi C F2 C F2 C ... C F„ c Fn. If a set S satisfies a Rabin chain formula,

it satisfies exactly one disjunct (pair). The negation of a Rabin chain formula is also

a Rabin chain formula:

n-l

- Wti (-^Ei AFi) = (Bi) VV (-Fi AFhi) V(-F„).
t=l

The Streett chain formula, A"_i(FtV-»Fi), is a Streett formula (in the traditional)

syntax where, in addition the sets Fj, F, form a chain under set inclusion, Fi C Fi C

F2 C F2 C ... C F„ C F„. If set 5 satisfies the Streett chain formula, then either

S C F„, or 5 n Fi / 0, or S n Fj 7^ 0 for some j G {2,... , n} and S C Fj_i. The

negation of a Streett chain formula may be written as a Streett chain formula.

Also, clearly the negation of a Rabin chain formula is a Streett chain formula and

vice-versa. We use the acronym DRCA for deterministic Rabin chain automata, and

DSCA for deterministic Streett chain automata. Since we can readily translate a

Rabin chain formula to a Streett chain formula, and the Rabin and Streett chain for

mulae are syntactically complementary, we use DCA for deterministic chain automata

when we don't care particularly whether it is Rabin or Streett chain.

Although not every tj-regular can be realized by a DBA or a Co-DBA, for every

tj-regular language there exists some NBA, DMA, DRA, DSA, DRCA, or DRCA

that accepts it. The class of a;-regular languages is closed under union, intersection,

complement, and projection [52]. For all acceptance conditions we have discussed,

deciding if the language is empty is in polynomial time [16], while allowing other

general Boolean formulae leads to the emptiness problem becoming NP-hard.

Given two cj-automata ^ and F, we say they are equivalentprovided L{A) = L{B).

Given an a;-automaton A = (T, (f>} weare interested in translating it into an equivalent

a;-automaton B = {T\(l)') with a different acceptance condition. As we observed
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earlier, the Buchi condition is readily translatable to any other acceptance condition

(except Co-Buchi). Also, any acceptance condition is readily translated to the Muller

condition, and the Rabin and Streett chain conditions are easily translated between.

Translating between other pairs of acceptance conditions may require changing

the transition structure. The issue here is the size of the equivalent automaton B as a

function of the size of the automaton A. The size of a Buchi automaton is measured

by just the size of the transition structure, while for the other acceptance conditions,

the number of pairs or acceptance sets is also critical. The size of the equivalent

automata, especially for deterministic automata, is determined by two important

characteristics: alternation and closure properties, which we describe next.

For an w-automaton A = {T,<l>), define C to be the set of Strongly Connected

Subsets (SCSs) of T. There is a partial order on C induced by set inclusion (c).

A chain is a linearly ordered set Si C 52 C ••• C 5^, where each Si is a SOS. In

an alternating chain, the polarity of 5,+! is opposite of 5,. The index of an alternating

chain of length m is fy]. A positive (negative) chain is an alternating chain in which

the polarity of the first set in the chain. Si, is The Rabin Index (RI) is the

index of the longest positive chain. The Streett Index (SI) is the index of the longest

negative chain. The difference between the SI and RI (and vice-versa) is clearly at

most one.

Figure 2.2 shows the SCSs of an cj-automaton. An edge from i to j indicates

that i C j. The longest negative chain is (1,2,5,6), and the longest positive chain is

(4,5,6). Therefore, the RI and the SI are both 2.

Let K C C. We say K is superset closed if for any SCS Si € K, every superset,

i.e., SCS S2 such that Si C S2, is also in K, i.e., S2 € K. Similarly define K C C

to be subset closed. For S € C, we say S is superset (subset) closed if every superset

(subset) of S in C has the same polarity as S. In Figure 2.2, the positive SCSs 6,7,

and 8 are superset closed.

In a Buchi automaton, the set of positive (negative) SCSs is superset (subset)

closed and each positive (negative) SCS is superset (subset) closed; whereas in a

Co-Buchi automaton the set of positive (negative) SCSs is subset (superset) closed

and each positive (negative) is subset (superset) closed. The RI and SI of Buchi and
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Figure 2.2: Hasse Diagram of SCSs of an automaton

Co-Buchi automata is 1.

Definition 2.2.5 Given a DOA A = {T^(j>), we say A is positive union closed

('negative union closedJ provided for SCSs Si Q Q, S2 Q Q, if both Si and S2 are

positive (negative) then Si US2, if a SOS, is positive (negative).

From the form of the Boolean formula defining the acceptance conditions, it follows

that (just syntactically):

1. The Buchi and Co-Buchi acceptance conditions are both positive and negative

union closed.

2. The Streett acceptance condition is positive union closed; the Rabin condition

is negative union closed.

3. The chain acceptance condition is both positive and negative union closed.

Although, for instance, a Streett formula may not be negative union closed, the SCSs

in the transition structure of a Streett automaton may be such that it is negative

union closed.
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In general, the Rabin and Streett indices (i.e., the alternation) of deterministic

(j-automata, and their closure properties are a function of the form of the accep

tance condition, the size of the acceptance condition (number of pairs, acceptance

sets), and the transition structure (what subsets are strongly connected)—^we use
the term Structural Complexity of the w-automaton to collectively refer to these

characteristics.

The relative expressiveness of the different acceptance conditions, the structural

complexity of a;-automata, and the relationship of *-regular and u-regular languages

have a strong connection to the topological complexity of these sets.

2.3 Topology on

The languages identified by different finite state automata can be identified with

levels in the Borel hierarchy in the space of

Considerthe following distance function d:T,^xT,^ —> on defined as follows:

( ^ where n = min{i\a{i) ^ /3{i)}

The resulting metric is called the Cantor metric, and the resulting metric topology

on E'*' is called the Cantor topology. The set E'̂ endowed with the Cantor topology is

called the Cantor space [52, 54]. The basis ofthe topology is thus all ^-neighborhoods
of all sequences a € E'̂ . For a given cj-word a € E"', its ^-neighborhood consists

of all w-words that share an n-length prefix with a, i.e., the set afO...(n —1)]E'̂ .

An open set would then be a set of the form PFE'*', where W C E*: € Wiy if for

some k e uj^ /3[0]/?[l]... p[k] € W. It follows then that for every V C E* there exists

a closed set consisting of all w-E-words each of which has all its prefixes in V.

In classical terminology the class of open w-languages is denoted by G and the

closed languages by F. The Borel hierarchy is obtained by alternately taking count

able intersections and unions starting from the languages in G and F respectively.

Gs {Fff) denotes the class consisting of countable intersections (unions) of sets in G

(F), and similarly G^a denotes the class consisting of countable unions of sets in Gj,
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and so on.

The inclusions depicted in Figure 2.3, where A B A C B, and A B

L € i4 iffL € B, can be easily derived (see [54] for details).

open =G

closed = F

Figure 2.3: Borel hierarchy in Cantor space

The class of open and closed languages are based on finite properties of the words.

For every open a;-language there exists a *-language L* such that an tj-word is in

if and only if some prefix of it is in L». Similarly, for every closed w-language La,,

there exists a *-language such that an w-word is in Lu, if and only if every prefix

of it is in L».

It can be shown that an w-language L^^ is in Gs if and only if = limW for

some*-language W. Therefore an a;-regular language L is in 0$ (Fa) iffL is accepted

by a DBA (Co-DBA). Also, it can be shown that every w-regular language is in the

class Gsa n Fcs [52, 54]. Thus the regular w-languages occur very low in the Borel

hierarchy on the Cantor space.

Also, as we see in the subsequent sections, when we specialize to w-regular lan

guages the inclusions indicated in Figure 2.3 are easy to see. In the sequel we shall

not be concerned with non-regular u-languages. In the subseqent sections we consider

the translation of DOA of increasing complexity.

2.4 Open and Closed w-regular languages

The Buchi and Co-Buchi acceptance conditions are the simplest acceptance condi

tions, and we show that any open or closed language presented as a nondeterministic

cj-automaton can be realized equivalently either as a Buchi or a Co-Buchi automaton
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on "essentially" the same transition structure.

Let L be an open language presented as a nondeterministic Muller automaton

A = {T = ((3,goiS,5),(^). Recall, an open language is of the form VE"', where

V C S*. Let F = {g|L((T' = (Q,g,E,(5),<^)) = E"'}, i.e., these are the states in A

from which all w-words are accepted. Delete from <5 any triple (/, a, q) where f G F

and / 7^ g, and add to S triples (/,cr, /), for each f £ F and a € E, i.e., add a self-

loop under every letter of the alphabet for every state in F. Let the new transition

relation be denoted by 5'; in S' the only edges for / € F are self loops.

Proposition 2,4.1 Suppose A = {T = (Q,go,E,^),<^) is a NMA for an open lan

guage. Then the automaton A^ = {T' = (Q,go,E,(y'),< '̂), where either denotes the

Buchi final set F, or the Co-Buchi final set F, i.e., (j) = F or <j) = -iF, and 5' and F

are as defined above, accepts the same language as A.

Similarly consider a NMA A = (T = (0, go) S, 5), (^) representing a closed language.

Recall that corresponding to a closed a;-language is a *-language such that

cr € iff every prefix of a is in L*, and if some prefix of a is not in L, then

a ^ L(^. If F is the set of states from which the language generated is empty, i.e.,

E = {glL({T' = (Q,g, E, = 0}, delete edges out of states in E and add a

self-loop for each state in E under each letter of the alphabet. Suppose 5' is the

new transition relation, consider A! = (T' = (Q, go,E,<5'),( '̂) with <!>' denoting either

Buchi final set Q\E, or Co-Buchi Co-final set Q\E; then, L{A) = L{A') (see also

[3]).
Thus every closed or open regular w-language, represented by a nondetermin

istic w-automaton, can be equivalently realized with any acceptance condition on

essentially the same transition structure. Since language emptiness for cj-automata is

decidable in polynomial time, the equivalent NBA for a closed w-regular language can

be computed efficiently. However, since language universality, i.e., is L(A) = E"^, is

PSPACE-hard, the equivalent NBA for open w-regular languages cannot be computed

efficiently.

From this section on we will mostly discuss deterministic cj-automata, for reasons

that become apparent as the chapter progresses (there isn't a hierarchy on the w-
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regular languages induced by restricting the number of pairs in nondeterministic

Rabin/Streett automata).

2.5 Gs languages-DBA-realizable languages

As we had seen earlier the language (a + b)*lf cannot be realized as a DBA.

Landweber has given a structural characterization of when a DOA can be equivalently

realized as a DBA.

Theorem 2.5.1 (Landweber [29]) Let A= (T = be a DMA.

There is an equivalent DBA to A if and only if every accepting SCS is superset closed.

Proof: "=^": Let 5 be a positive SCS, and T be a negative SCS containing S. It can

be shown by a pumping argument, similar to the proof that the language (a + b)*lf

cannot be realized as a DBA, that the language of the DOA cannot be realized as a

DBA.

Let be a DMA such that the set of acceptance sets T is superset

closed. The equivalent DBA Al = (T', F'), where T' = {Q x 2^, (go) {^o})?^,^');

S'{{q, M),a) = (q\ M') where q' = 6(q,a) and

, f 0 \f<fuMDS€T
M = <

( ^ UM otherwise.

The final state-set, F', of the DBA .A' is Q x 0.

M remembers the states visited since the last time an acceptance set was included

in the run. M will be reset infinitely often, i.e., F' visited infinitely often, iff an

acceptance set is included in the run infinitely often. •

Definition 2.5.1 Given a DOA A = {T = (Q,^o,S,<y),(^), define the superset

closed sublanguage of A, supLan{A), to be {a\o- € L(A) andinf{r„) is superset

closed }.

Thus the superset closed sublanguage is the set of sequences in the language with

superset closed infinity sets.
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Definition 2.5.2 A DOA A is DBA-realizable if there exists an equivalent DBA

A'. From the topological characterization, we can also say A is in Gg or L(A) € Gg

if A is DBA-realizable; this (by Landweber's Thm.) is also equivalent to saying that

supLan(A) = L{A).

The question arises: if given two equivalent DOA Ai and A2, is supLan{Ai) =

supLan{A2)'^

Proposition 2.5.2 For a DOA A, supLan(A) is not an invariant of L(A); i.e.,

there exists equivalent DOA Ai and A2 such that supLan{A\) 7^ supLan{A2).

Proof: DRA Ai is defined by the transition structure on the left in Figure 2.4, and

b

%

Ai

Figure 2.4: supLan not an invariant of the language

acceptance condition comprised of a single Rabin-pair ({52}, {52}).

DRA A2 is defined by the transition structure on the right in Figure 2.4, and

acceptance condition comprised of Rabin pairs ({53},{53}) and ({55}, {55}).

L{A\) = L{A2)^ but ab*^ ^ supLan{A\) because (in Ai) {52} is not superset

closed, whereas ab^ € supLan(A2) because (in A2) {53} is superset closed. •

We now consider the question of constructing the equivalent DBA for DOA with

different acceptance conditions. In the proof of Theorem 2.5.1, to construct the

equivalent DBA we had to augment the state space of the automaton by an auxiliary

set M G 2^ that remembered the states visited since the last time an acceptance

set was completed. We call this auxiliary set memory. We shall be interested in

minimizing the size of this memory. In certain cases, we can do without any memory,

by identifying final states on the transition structure.
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Definition 2.5.3 Given an u-automaton A= {T = (Q, go, E, S), (/)), a state q ^ Q is

termed final provided every SCS C containing q is accepting.

The terminology, final state, comes from Buchi automata where every SCS containing

a final state is accepting; every accepting SCS is superset closed.

Definition 2.5.4 An u-automaton, A = (T = (QjqojH,6)y^), is Buchi-type (BT)

if there exists a subset F CQ such that the Buchi automaton, B = (T, F) is equivalent

to A.

Theorem 2.5.3 Let A = (T, cj)) be a DOA that is negative union closed. Suppose

A € Gs, i-e., L{A) is DBA-realizable. Then, L(A) is equal to the language of the

DBA A' = (T, F), where F is the set of final states of A.

Proof: Assume that there is a positive SCS 5 in .A such that 5 n F = 0.

By assumption q € S q ^ F. Thus for every q ^ S, there exists a SCS Cq such

that Cq is negative. Now consider C = Uq^sCq. Since SCO, and each Cq is a SCS,

C is a SCS. C is negative since it is a union of negative SCSs. This contradicts A

being in Gs, because S, a positive SCS, should be superset closed. •

Since the Rabin, Chain, and Co-Buchi conditions are negative union closed we

have;

Theorem 2.5.4 Let A = (T, (j)) be either a DRA, DOA, or DCBA. Then A is in Gs

if and only if A is Buchi-type. Also, supLan{A) = L(A') where. A' is the DBA on

transition structure T and final state set the final states of A.

However, neither the Muller nor the Streett condition is negative union closed and:

Proposition 2.5.5 There exists DMA & DSA which are DBA-realizable but not

Buchi-type.

Proof: The example of Fig. 2.5 is a DMA that is not Buchi-type (because no state is

final) but whose language is generated by a DBA. The same automaton is a counter

example for DSA as well, with Streett pairs {({1},0),({2},0)}. •

But, for a one pair DSA the superset closed sublanguage can be realized as a DBA

on the same transition structure.
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Figure 2.5: DMA not Buchi-type but DBA-realizable

Lemma 2.5.6 For DSA Ai = (T = {Qjqo,J1^6)^Li V->{Ui)), an accepting SCS C is

superset closed if and only j/C DFj 0, where Fi is the set of final states of Ai.

Proof: Note that q G F^ provided either q ^ Li ox after deleting L^, SCC{q) C Ui.

Consider a superset closed accepting SCS C. Assume for contradiction that C Pi

Fi = 0; therefore C D Lj = 0. Consider the subraph of STG T on vertex set Q \ Ff.

Since C is an accepting SCS, C C Ui. Since C is superset closed, SCC(C) C 17,, and

therefore every state s € C is final, i.e., s ^ C => s £ Fi. •

Theorem 2.5.7 Given DSA A = (T,AjLi(Lj V^{Ui))), an accepting SCSC is su

perset closed if and only if for each i, 1 < i < h, C n Fi ^ where Fi is the set of

final states of Ai= (T, L,- V -^(Ui)).

Proof: If for each i, C D ^ 0, then C is superset closed in A since C is superset

closed for each pair, i.e., in each At.

Conversely, assume C is superset closed. Since L(A) = DiL(>!,), considering each

pair (L,, 17,), C is superset closed. By Lemma 2.5.6, C DF^ ^ 0 for each i. m

Given a DSA A = (T,AjLi(Li V-•(C/j))) we apply Theorem 2.5.7 to construct a

DBA with language supLan(A)^ the DBA for (T,Af_iFi). The basic idea is to make

h copies of the transition structure and direct the transitions from the states in Fj in

the i*"^ copy to the corresponding states in the [i -I-1)®' copy.

DSA2DBA Construction

INPUT: DSA A = (T = (Q,go,2,(5), AjLi(Li V-n(C^)))

OUTPUT: DBA A'= (r = ((3',gJ,i:,5'),5), where

Fi is the set of final states of {T^LiV -^Ui)

Q' = Q X{1,..., ft}, ?o = (90,1)

25
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26

Thus the equivalent DBA for a DSA in Gs on n states and h pairs has nh states,

polynomial in the size of the DSA. This is in contrast to a result of [44] that there

is a family of DSA such that any equivalent NBA is of size exponential in the size of

the DSA; in Gg DSA and DBA are polynomially related.

Next we revisit DMA in Gg. We present another translation of a DMA in Gg

into an equivalent DBA whose size is a function of the number of minimal acceptance

sets in the DMA. Let A= {T = be a DMA with h minimal positive

superset closed SCSs, Fi,F2,... ^Fh. Assume that the states of A are numbered

1,2,... , n. The equivalent DBA A' = {T' = {Q\ qQ, E, ^'), F'), where Q' = Q x (Q\J

0)\ gh = (go,0,0,... ,0). S'((g,gi,g2,. - ,gh),(T) = (S(g,<r),g'i,g'2,... ,gi), where gj
is defined as follows. Let g' = <5(g,cr).

• If = 0 then q'i = the least numbered state in Fj.

• If g' = Qi then:

—if Qi is the highest numbered state in Ft, = 0,

- else q'i is set to the next numbered state in Fi after Qi.

• If Qi / 0 and q' ^ then q^ = qi.

The final state set, is F' = {{?, qu 92, ••• ,qh)\qi = 0 for some i}. The state qi records

the target state to be reached in the positive SCS Ft, and is advanced every time the

target state is attained. If it is set to 0 infinitely often, the set Fi will be included in

infinity set of the run.

Thus the equivalent DBA for a DMA in Gg has n(n + 1)'' states where n is the

number of states in the DMA, and h is the number of minimal superset closed SCSs

(see also [30]). This construction, which we shall refer to as the structural approach^
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may produce a smaller equivalentDBAthan that in the proofof Landweber's theorem,

especially when the number of minimal positive superset closed SCSs, /i, is small.

The question arises if for DMA and DSA in Gs there is always an equivalent DBA

with a polynomial number of states as the DMA or DSA, and if the constructions

defined in this section are optimum in any sense.

2.6 Lower bounds for translating into DBA

We collect a couple of lemmas and definitions first.

Lemma 2.6.1 Suppose a € D'*' is a periodic sequence, i.e., o =• df for some c € S"*",

\c\ > 1, and A = (T = {Q,qQ,i:,6),(f>) is a DOA. The (unique) run, r^, of a on

A is ultimately periodic with period some multiple of |c|, i.e., r^ = ra[0].. .ra[2|c| —

••-^ab'lcl - l])'", or r„ = (r£,[0].. .r^[j|c| - 1])'*' where 0<i<j< \Q\, and
the run of on A from ra[2lc|] is exactly r<y[2|cl]. •.r<r[j|c|].

Proof: Let S(qo,c) = qi. If gi = go? then is already periodic and j = 1 and i = 0,

i.e., ra = (ra[0].. .re,[|c| - 1])'̂ . Otherwise, consider S(qi,c) = g2- If Q2 / go and

g2 7^ gi, then consider 6(q2, c) = ga, and so on until qj = qi for i < j. Since Q is finite

we are guaranteed the existence of j and i such that 0 < i < j < IQl- •

Definition 2.6.1 Given a DOA A = (T = (Q,go,D,5),(^), and a SOS C C Q, and

a state q GC we say a word c € describes C starting from q provided 5{q, c) = g

and 6(q,c) = C, where 6{q,c) {g'|g' = <5(g,c[0].. .c[z]) for some z, 0 < z < |c| —1}.

Definition 2.6.2 The transition structure T" is defined on the state set

Qn = {1,2,... , n}, alphabet E„ = {1,2,... , n}, initial state 1, and transition func

tion Sn, where for i,j, 1 < z,j < n, j) = 3-

Lemma 2.6.2 Let A = (T = (Q, go,E,5),^) be a DOA. Let c € E* describe SOS Ci

from q and d € E* describe SOS C2 from p, and s GCi DC2 ^ 0. Then, there exists

/ € E* such that f describes Ci UC2 from s, and inf(f^) = zn/(c^) Uinf(d^).
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Proof: Let i, 0 < z < |c|, be such that 6{q,c[0.. .z]) = s. Then d = c[z + 1... |c| —

l]c[0...i] describes Ci from s.

Similarly there exists d! describing C2 from s. f = dd! will describe Ci UC2 from

s, and inf{f'^) = inf{cd) Uinf{d^), •

Theorem 2.6.3 For every n > 2, there exists a DMA on n states such that any

equivalent DBA has at least 2^^^ states.

Proof: For every n > 2, consider the language Ln on En = {!,••• ,n}, of all w-words

over En, where at least [|J +1 distinct numbers appear infinitely often, Ln = {aja G
S;; and \inf(a)\ > [fJ + 1}.

This language is accepted by the DMA An = (T",<^n)) where (^n denotes as

acceptance sets any subset 5 of Qn such that |S| > (LfJ "h Definition 2.6.2 for

T"").

Let S be a subset of Qn of size J. For s e 5, a word c € (En)* describes S from

s in An, i.e., Tn, if and only if inf{cd) = S.

Let A'n be an equivalent DBA. Let the infofthe run of cd on A'̂ be S'. By Lemma

2.6.1, 3m > 0, such that describes S' from some s' € S'.

Let Si and $2 be two distinct subsets of Qn of size [|J. Therefore, there are

Ci,C2 € (En)* that describe Si and S2 in Tn respectively from some Si G Si and

S2 G^2, such that inf{di) = Si and inf{d2) —S2.

Now ford( and Cj, let the infsets oftheir runs in the equivalent DBA Ain be S'l and

Sg. The claim is that SJ n SJ = 0. Assume otherwise for contradiction. By Lemma

2.6.2, for s' GSJ nS^, there exists / G (En)* such that / describes SJUS2 from s' and

zn/(/'^) = inf((c^^)'^) Uinf{{d^^)'̂ ) = inf(ci) Uinf(02). Thus the inf of the run of

on An will be inf{ci) Uinf(02), an accepting set since |m/(ci) Um/(c2)| > [fj.

But a DBA is negative union closed, and therefore S[ USJ will have negative polarity

in AUn—a contradiction.

Therefore corresponding to every distinct subset of Qn of size [|J there is at least

one distinct state in the equivalent DBA A^. Thus any equivalent DBA has at least

states, and this is greater than or equal to 21-2J. •
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Theorem 2.6.3, implies that the number of states in an equivalent DBA may

be exponential in the number of states of a DMA in Gs- Also, the construction

outlined in the proofofLandweber's theoremisessentially (asymptotically) optimal—

the lower bound is (.nj) > = 2^^*^^ and the upper bound is n2" = 2^^"^. The
' n

structural approach in this case computes an equivalent DBA with states,

doubly-exponential in the number of states of the DMA.

Theorem 2.6.4 For every n there exists a DSA with n states and h = (|-|i) pairs
such that any equivalent DBA has to have at least (pi) states.

Proof: The same language-family as in the proofof Theorem 2.6.3 will suffice. Ln is

accepted by DSA An = (T", where ipn denotes the set ofStreett pairs {(5,0)|5 C

{!,... ,n} and \S\ = \n/2'\}. •

Thus, although the equivalent DBA for a DSA in Gs is of size polynomial in

the size of the DSA, it could be exponential in the number of states of the DSA. In

addition Theorem 2.6.4 establishes that DSA2DBA is essentially optimal, the upper

and lower bounds differ by a constant factor in the exponent.

2.7 Testing for DBA-realizability

Not every deterministic cj-automaton can be translated into a DBA. In this section

we devise algorithmsto test if a given DOA is Buchi-type or if it is DBA-realizable but

not Buchi-type, and if so to effect the translation into an equivalent DBA discussed

in Section 2.5.

2.7.1 Checking for Buchi-typeness

Conceptually, we check if DOA A = (T, <t>) is BT, by finding the DBA B = (T,F)

which has the largest language such that L(B) C L(A) (note that if for DBA B =

(T,F) L(B) = L{A), then L{B) C L{B)). We then check whether L{A) - L(B) = 0.

If so, A is Buchi-type. Otherwise L{B) is a proper subset of L{A) and therefore there

is no Buchi automaton on the same transition structure as A accepting the same
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language (thus, A is not BT), although A may be DBA-realizable. Algorithmically,

checking if a given DOA is BT involves the following two steps:

Step 1: Finding the set of final states, F (see Definition 2.5.3). We check if a state

s is final by testing for the existence of a negative SCS through s.

Step 2: Checking if L{A)—L(B) = 0. This is not performed by the traditional algo

rithm for language containment. Since A and B have the same transition structure,

it suffices to delete the states in F and then check if the resulting graph contains a

positive SCS. If it contains a positive SCS, the DOA A is not Buchi-type, since the

positive SCS discovered did not pass through a final state. Checking for the existence

of a positive SCS, is straightforward and algorithms are well known [16].

We describe next how to compute the set of final states F (the non-final states

are AT = Q \ F) and check if a given DBA is DBA-realizable (and not Buchi-type).

Muller Automata

Let A = (T = (Q, go> <^)j be a DMA, where (j> denotes the set of acceptance

sets F C 2^. Define the Haase diagram H on the vertex set T as follows. There is a

directed edge from vertex Ci to vertex C2 iff Ci C C2 and there is no acceptance set

C3 such that Ci C C3 C C2. We assign a weight of 1 to the edge Ci —)• C2 if there is

some SCS C3 sandwiched between Ci and C2, i.e. such that Ci C C3 C C2; if such a

SCS C3 exists, it has negative polarity, and otherwise the edge is assigned a weight

ofO.

Determining if edge F = Ci -> C2 should be labeled 1 or 0 goes as follows. Let

D = C2 \ Ci. Edge E is assigned a weight of 1 provided for some g G D, in the

subgraph of T on the vertex set C2\g, the polarity of SCC(Ci) is —. Since the SCCs

of a directed graph can be computed in linear time, i.e. 0(|T|) time, the weight of

an edge in the Haase diagram can be determined in 0(|Q||T1) time.

We augment the Haase diagram H with a bottom vertex corresponding to the

empty set </>, and a top vertex corresponding to the set Q, if Q is not an acceptance

set. Add edges from the bottom vertex to the vertices Cm^ such that Cm is a minimal

acceptance set, and from each maximal acceptance set to the top vertex. If I is
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the number of acceptance sets in the DMA then labeling the edges of H takes

0(/2|0||T|) time.

Define a valuation function on the vertex set of Val : Hy u as follows.

The top vertexQ is assigned a value of0. The value ofevery vertex other than Q in

Hy is computed as: Val{v) = max{«:(!;,+ Val{u)}^ where w(v,u) is the
weight of edge {v^u). Since the value of vertex v is greater than zero iff there exists

a negative SCS v' containing v, the set of non-final states, iV, is (U{t;:Vai(v)>o}v) U

(U{5:Sis anegative scc}S)- The Set of final states is Q \ iV.
Since the valuation, Val, can be computed in time linear in the size of the Haase

Diagram H, the set of final states can be computed in time 0(l^\Q\\T\). DMA A is

in Gs if the only edges with weight one, if any, are those from the bottom vertex.

Rabin Automata

Without loss of generality let DRA A= {T = (Q,qo^ E, S), A-^Ui)) have a

single see C. For the Rabin condition, a SeS is negative if all the pairs are violated.

If for each pair (Li,C/i), C g f/j, then no state in C is final, i.e. F = 0 and N = C.

On the other hand, if C C f/^, then Li C F. Let / C {1,2,... , h} be the indices of

pairs such that C C Uj for j € I. Then C F. eonsider the Sees , Vi? ••• jV'p)

of the subgraph of T on the vertex set C \ (Ujg/Lj). The trivial Sees amongst the

^'s are also final states. Recurse on the non-trivial Sees with pairs indexed by the

set {1,2,... ,/i} \/.

If no more pairs remain to be considered, the states in the See are non-final. The

recursive algorithm sketched above to determine the final states of a Rabin automaton

has time complexity 0(|T|h^).

If a DRA is not Buchi-type then it is also not in 0^ (Theorem 2.5.4).

Streett Automata

In a Streett automaton, A = (T = (Q, ^oj <5), V->17,)), a SeS is negative

provided it violates at least one of the pairs. For each pair (Lj, C/j), compute the SCCs

of the subgraph of T on the vertex set Q \ Li. Any non-trivial SCC not contained in
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Ui is comprised of non-final states. Thus the set of states Q can be partitioned into

final and non-final states in a Streett automaton in time 0(\T\h).

If the given DSA is not Buchi-type is it in Gg? We point forward to Section 2.10.1,

where we define the StrExcl construction. The given DSA A is in Gg iff L(A') = 0,

and the procedure has time complexity 0(nh^).

2.8 Fjy-languages—Co-DBA realizable languages

Since the classes Gg and Fa are complementary, and the Streett and Rabin accep

tance are syntactically complementary, the dual of the results of the previous section

hold for F<y-languages.

The language of a DOA is realizable as a Co-DBA iff it is positive subset closed.

The language of a positive union closed DOA is in Fa iff the language can be equiv-

alently realized as a Co-DBA on the same transition structure. The subset closed

sublanguage of a positive union closed DOA, and in particular a DSA, can be real

ized as a DCBA on the same transition structure as the DOA.

There exist efficient algorithms to check if a given DOA is Co-Buchi type, as well

as to construct the equivalent DCBA in case the language of a DOA is in Fa.

2.8.1 Gs n Fa regular languages

In a DOA that is in Ggf) Fa &positive SCS is both positive superset and subset

closed. Therefore a positive SCO can be thought of being comprised entirely of final

states or being included in the co-final set, while every SCS in a negative SCC is

negative. Thus every DOA in Gg DFa can be realized as either a DBA or a DCBA

on the same transition structure.

2.9 Gsa n Fas—w-regular languages

In a DBA, the accepting SCSs are superset closed. Not every language can be

accepted by a DBA. However, any cj-regular language can be accepted by a deter-
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Figure 2.6: Positive chain of index 2 in a 2-pair DRA

ministic Rabin or Streett automaton (DRA or DSA). Even amongst DRA and DSA

the number of pairs induces a hierarchy of languages, i.e., there are certain languages

that require at least a certain number of pairs to be realized as, say, a DRA.

For instance consider a 2-pair DRA with pairs (Li, Ui) and (L2, U2)' We can have

an alternating positive chain Gi C Bi C G2 C B2, as indicated in Figure 2.6 (+

marks states in Li and x marks states in L2).

It is easy to see that a 2-pair DRA cannot support a positive chain of index

greater than 2. It was shown by Wagner [55] and Kaminski [24] that the index of the

longest positive (negative) chain is the minimum number of pairs required to realize

the automaton equivalently as a DRA (DSA).

We prove this result in a more general form next.

Theorem 2.9.1 (Chain Correspondence) Let Aq^ = (T = (Q,qQyT.^S)j<l)) and
A'̂ , = (T = ((3',gJ,E, '̂),</>') be two DOA each of whose states is reachable. Given
a chain Ci C C2 C Cz C ... C Cn in DOA Aq^ and q € Ci, there exists a chain

C C2 C C3 C ... C Ci in a,7 e q' e C[, and words Ci,C2,.. • ,Cn GE*,

such that for each pair (Cfc,CJ.), Ck describes Ck from q in A, and C'̂ from q' in A!^^y
and 5(qo, aj) = q and 5'(9o> a = e if q = qo, and 7 describes Cn in Aq^

from q.

Proof: The proof is by induction on the length of the chain.

The base case: Since q is reachable in Ago apply (say) the shortest string, a G E*,

from qo to reach q, i.e., an a such that S{qo,a) = q. Let (5'(q4,Q!) = p. Let ^ G E*

describe Ci from q in Ago- Apply 0 = from p in A^^. By Lemma 2.6.1 the run
of ^ in AL will be ultimately periodic, and let the infinity set of the run be C[. For

9o
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some positive integer I > 0, S'{p,^^) = ^ £ C[. Again, by Lemma 2.6.1, for some

0 < m < IQ'I, = q' and = C}, i.e., describes C'l from q' in

It is clear that f"* also describes Ci from q in Aq^. Thus the required word is Ci =

and 7 —f'.

Induction step: Consider chain Ci C C2 C C3 C ... C C„ C Cn+i, and ^ G Ci, in

Aqq. We shall repeatedly apply the induction hypothesis to the prefix of the chain:

= Ci C C2 C C3 C ... C Cn- Let ^„+i describe Cn+i from q in Aqq.

By the induction hypothesis for g, and Ag^, and A'̂ ^^ there exists 01,71 € E*
and chain Cf C Cj C C3 C ... C C^, gj € C}, and c}, 4,... , € E* such that:

1. 7i describes C„ in Ag^ from q.

2. 5(go,Q!7i) = q and S'iq'Q.aji) = q].

3. For 2, 1< 2< n, cj describes C, from qin Ag^ and C} from q] in A'̂ ^.

Next apply ^„+i from q\. Let (5'(g},^„+i) = g].

If ql ^ g}, then applying the induction hypothesis for Kn, g, and Ag, and A'̂ ^ there
exists 72 € E* and chain Cj C Cf C Cf C ... C gj € Cj, and cf,C2,.. - , 4 ^

such that:

1. 72 describes Cn in Ago from g.

2- i5'(g2,72) = 9i-

3. For 2, 1 < 2< n, c? describes Ci from g in Ago and Of from gj in

If 9? ^ {91.92}. then let i'(9i.?n+i) = 92-

92 ^ {9} >92 >9?}) we continue the process alternately applying the induction
hypothesis for i^„, g, and and Aj-i, getting € E* and chain €( C C C3 C

92

•••QCj) 9i ^ C'l, and c{, cj,... ,cj € E* such that:

1. 7j describes On in Ago from g.

2. s'(4~\ti) = 'A-

3. For i, 1 < i < n, 4 describes Cj from 9 in ^ and C- from 4 in .
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If 9i i {?}, Qh 9i»Qh ^ 92 ^}> then let 6'{qly ^n+i) = 92-
And so on. Since Q' is a finite set, we reach an index k such that one of four cases

holds:

(a) Qi = qi^ for some j, 1 < j < A:; or

(b) = q^ for some j, 1 < j < /c; or

(c) q2=gi,l<j <k\ or

(d) 9^ = ^, 1 < i < k.

In each of the these four cases we can establish the required result. We take up

here only one case, (say) case (c), i.e., where = 9i-

In general we choose the leftmost "gi" for In our case, case (c), q' = gj. In
cases (b) and (d) it would be Let d = 7i?n+i72^n+i •••7j- In case j = 1, 7i = ^

will not describe Cn+i from q in .4,0, and therefore we let 7 = dcn+u where Cn+i is

defined below.

For i, 1 < i < n, Ci = c(, C- = C/; Ci describes Q in A from q and C- in A' from

9'-

Let Cn+i = ?„+i7j+i^n+i •. •7/fc^n+iCn. By the construction of Cn+i it is clear that

5'(q\cn+i) = q'- We define = <J'(9',c„+i). It is clear that contains Q,
and that Cn+i describes C„+i in A from q (because it contains and the gamma's

describe Cn).

By virtue ofc^+i describing Cn+i from 5 in 4., 7 is as required, and 5{qo,a'y) = q

and (5'(gJ,a7) = 9^- •
If we consider alternating chains, and equivalent automata, we get the following

as corollary to Theorem 2.9.1 (see also [55, 24]):

Theorem 2.9.2 (Alternating Chain Correspondence) Let A= {T = (Q,qo, E,

5),(/>) and A' = {T = {Q\qQyll^6')^(l>') be two equivalent DOA, each of whose states

is reachable. Given an alternating chain Ci C C2 C Cz C ... C Cn in DOA A

and q € Ci, there exists an alternating chain C[ C C2 C C ... C C'n in A',

P G E*, and q' € €[, and words Ci,C2, ••• ,c„ € E* such that for each pair (Cifc,Q),
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polarity(Ck) = polarity(Cf.), and Ck describes Ck from q in A, andCjJ from q' in A',
and S{qo,/3) = q and = q".

Proof: By Theorem 2.9.1, the required p is 0:7. For each z, 1 < z < n, cr^ = pcif

has run with infinity set Ci and C,- respectively in A and A'. Since L{A) = L{A')i

polarity(Cj) =polarity(C^). •

Since a /c-pair DRA (DSA) cannot support a positive (negative) chain of index

greater than fc, it follows from Theorem 2.9.2 that:

Theorem 2.9.3 [55, 24] Suppose A is a DOA. The index of the longest positive

(negative) chain in A, the Rabin (Streett) index of A, is the minimum number of

pairs required to realize L(A) as a DRA (DSA).

Also, the following facts are easily observed:

1. The index of the longest positive and negative chain in a DOA can differ by at

most one, i.e., the Rabin Index (RI) and Streett Index of a language can differ

by at most one.

2. If Rn{k) (St(k)) denotes the set of a;-regular languages that can be realized

as DRA (DSA) with fewer than k -^1 pairs, Rn{k) C St{k + 1) and St(k) C

Rn(k +1).

3. More pairs lets you recognize a larger class of languages, i.e.,

(a) Rn(k) C Rn{k + 1).

(b) St(k) C St{k + 1).

(c) Rn(k) C St{k + 1).

(d) St(k) c Rn{k +1).

Thus the number of pairs induces an infinite hierarchy within the class of ti;-regular

languages. As in the case of DSA in Gs (see Prop. 2.5.5), realizing either a DSA or

DRA by an equivalent DRA or DSA or DCA with a minimum number of pairs re

quires "expanding" the transition structure. We next describe algorithms to construct

equivalent minimum-pair automata.
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2.10 Translating to a minimum-pair automaton

We present algorithms to translate a given DRA or DSA into a minimum-pair

DRA, DSA, or DCA. We first motivate the spirit of our algorithm informally before

formally delving into it.

In Section 2.5 we saw that the superset closed sublanguage of a DRA could be

realized on the same transition structure as a DBA, whereas DSA required an /i-fold

expansion of the transition structure, h being the number of pairs in the DSA. Based

on the constructions to isolate the superset closed sublanguage, we may also exclude

the superset closed sublanguage, i.e., given a DSA or DRA construct a DSA or

DRA A' with language L[A) \ supLan(A).

Armed with a method to exclude supLan^ the basic idea then is to employ in

succession this supLan exclusion construction, along with the syntactic complement

between the Streett and Rabin acceptance conditions.

The effect of the algorithm on the polarity of the set of SCSs of the automaton

is illustrated by means of an example. Consider the set of SCSs of a DRA shown

in the top-left section of Figure 2.7. The Rabin Index of the automaton is 2, since

the longest positive chain is of index 2, for instance the chain 4 C 5 C 6. After

the first complement, the language corresponding to the negative superset closed

SCSs is identified, i.e., the set Li = {9}. Then, after a complement, the language

corresponding to the SCSs, Ui = {6,7,8,9}, is identified, and then to the set of SCSs

L2 = {3,5,6,7,8,9}, and finally to the set ofSCSs U2 = {2,3,4,5,6,7,8,9}. The sets
form a chain Li C C/i C L2 C C/2. A SCS 5, is accepting provided either S € {U\\Li)

or 5 € {U2\L2). Since at each step the superset closed sublanguage will be identified

as a Buchi-language, i.e., by means of identification of a set of states on a transition

structure, as we see below we get a chain automaton.

We now formally describe the construction to translate a DRA into a minimum-

pair DCA and prove its correctness.
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2.10.1 Excluding supLan

In this section, we build on the constructions of Section 2.5 that realize the superset

closed sublanguage of both DSA and DRA as DBA, to delete or exclude the supLan.

We define two constructions, RabExcl and StrExcl^ that take as input respectively a

DRA and a DSA A-, and return respectively:

1. a DRA and DSA, A\ such that L{A!) = L(A) \ supLan{A)^ and

2. A state-set, F, being the final state-set for a DBA on the transition structure

of A! and realizing language supLan{A).

RABIN EXCLUSION CONSTRUCTION {RahExct)

INPUT: DRA A = (T = (Q, go, S,5), (^ = V^i[U A-(f^))>.
OUTPUT: DRA A! = = V,ti((Li \ ^) A-.(Ui \ F))>, and F, the set of

final states of A.

Lemma 2.10.1 RabExcl has the property that L[A!) = L{A) \ supLan{A), and

L({T,F)) = supLan(A), where (T^F) is a DBA with final states F.

Proof: Theorem 2.5.4 gives us ^((T, F)) = supLan(A).

L(A) \ supLan{A) = L{{T, cf) A-iF>). The Boolean formula (j) A-»F

vjLi(L,A-iC/i)A-iF <=> VJ_i{LtA-iC/tA-iF) vjLi(LtA-»?7t AF) ^i=i(LiA->Ui \ F)

v{Li((Lt\F) A-iC/j \ F) where the last equivalence follows because a Rabin formula

Li A -^Ui is equivalent to (L, \ Ui) A-*Ui. •

Note that we did not need an extra pair to exclude the supLan from a DRA,

and we used the same transition structure. However, since the Streett condition is

conjunctive, excluding the supLan from a DSA requires adding an additional pair (to

make the language smaller) as well as modifying the transition structure.

STREETT EXCLUSION CONSTRUCTION (StrExcl)

INPUT: DSA A = (T = (Q, go, S, J), V-.(C^)))
OUTPUT: DSA A'= (F = ((3',gt,E,5'), A?+i^(L; V-^(C^))) and FCQ\ where
if Fi is set of final states of Ai = (T = (Q, go, V)

Q' = (3 X{1,... ,h}, gj = (go,l)
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(%,a),j) if 9^-Pj
(5(9,0), j + 1) if 9 € Fj zni j <h

(5(9,o),1) if 9 e Fa

•F'= {(9.j)l(9)0 e Q' and 9 € Fj,
Lj = ii X{1,2,... , ft}, £/•/ = {/i X{1,2,... , ft}. and

Lemma 2.10.2 ieJ A = {T = (Q,9o,S, 5), V -'(Ui))) and A' = (T' =

(Q', 9'o, E,5'). A,t"i (Li V-.(t^))) 6e as inStrExcl. Then ifA= (T\ A,ii (Li V->(t^))),
L(.4) = L{A).

Proof: Let be the run of a € on and r'̂ be the run of a on A. Then,

nQ(r^) = Ta, and hence T{Q{inf{r'̂ )) = inf(Ta), and

in/(r„) 1= AiL,(Li V-.(I^)) ^ inf{r'J |= Aj,,i(Li V-.(jft))

Thus L(.4) = L(A). m

Lemma 2.10.3 StrExcl has the property that L{A') = L{A) \ supLan{A) and

supLan{A) = L((T', F)). A' has n.h states and /i + 1 pairs, where n and h are

respectively the number of states and pairs in A.

Proof: That supLan(A) = L{{T',F)) follows from Theorem 2.5.7.

From Lemma 2.10.2 we have L{A) = L({T' = V

Since a SCS C can satisfy Streett pair (0,F) only if C H F = 0, L(A') = L{A) fl

supLan{A); L{A') = L{A) \ supLan{A). m

The next two lemmas assert that if we exclude the supLan, complement, and

again exclude the supLan, the state-set identifying the second language excluded will

include the state-set identifying the first language excluded.

Lemma 2.10.4 Suppose A= {T = (Q, qo, E, 6), (f> = A->(C/i))) is a DRA. Let

{A',F) = RabExcl{A), and {A", E) = StrExd{A'). Then F x {1,2,... , /i} C F.
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Proof: Each Rabin-pair (Lj,Ui) of A gets transformed to Rabin-pair (Lj \F^Ui\ F)

of A', and corresponding to this pair, in DSA A' we have Streett-pair (LJ,Ul) =

(Q \ (Li \ F)^Q \ (Ui \ F)). Thus, since LJ C F, for each i, 1 < i < h, the final

state-set of (T,LJ V-^U-) contains F, and hence F x {1,2,... , h} C F. •

Similarly:

Lemma 2.10.5 Suppose A= (T = (Q,qo^ E,J), = A{Li(Lj V-•(C/t))) is a DSA. Let

(A'jE) = StrExcl(A), and (A"jF) = RabExcl(A'). Then E C F.

2.10.2 DRA to DRCA construction

We now apply the constructions RabExcl and StrExcl to devise a translation from

a DRA to an equivalent minimum-pair DRCA.

Algorithm: DRA2DRCA

INPUT: DRA A={T = (Q, go, S, 5), A

OUTPUT: DRCA A'

Begin

2 = Oj Aq —A

Repeat

i = i + 1;

1. Ail —Ai—i

2. (Ai2^Ei) = StrExcl(Aii)

3. Aiz = Ai2

4. (Ai = (Ti = ) = RabExcl(Ai3)

until L(Ai) = 0

Return DRCA A' = A7rj/(Fj)) ),

where k is the RI of L(A).

End

Each iteration of the algorithm, DRA2DRCA, consists of four steps:
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1. complementing the DRA Ai-i to yield DSA An.

2. Excluding the supLan from DSA An to get DSA Ai2'

3. Complementing DSA Ai2 to get DRA ^-3.

4. Excluding the supLan from DRA Aiz to get DRA Ai.

Step 2 is the only operation that expands the transition structure. If An has h pairs

then StrExcl expands the transition structure /i-fold. Therefore the state space of ^1,

Qi, is Q X{1,2,... , h}. Although StrExcl adds a pair, as we show in Lemma 2.10.6,

A has exactly h-pairs. Therefore Qi = Qi-i x {1,... ,h}, and for 0 < z < j < fe,

Q, = Q,x{l,2,...,hp-\

Notation: nji : Qj —> Qn when j > z is the natural projection map; : Qi Qj

is the inverse projection map: TTji^(qi) = {QjWji{qj) = qi].
We characterize DRA2DRCA and establish its complexity through a sequence of

lemmas.

Lemma 2.10.6 In each iteration of DRA2DRCA, the pair added in step 2 is redun

dant after step 4-

Proof: StrExcl excludes the superset closed sublanguage at step 2, adding a pair

(0,jEt). On complementing, this becomes a Rabin pair {E^Qi). Lemma 2,10.5,

implies that the state set returned at step 4, Fn contains i.e., Fi D E^ In RabExcl

Fi is deleted from each set in each pair, transforming the 2idded Rabin pair (EnQi)

to (0,Qt \ Fi)—a Rabin pair with empty language that can be deleted. •

Hence at the end of each iteration we have exactly h pairs in A-

Notation: C = A UB, is defined to be A U B if and only if A n B = 0.

Lemma 2.10.7 In DRA2DRCA, L[A-i) = E{A) DL[ (Tj, (-iBj A ) ).

Proof: L{Az) = L{A-\) UsupLan[A-\)- Now, supLan[A-\) = L{{TnEi))y

and LiAs) = L{A) U L((TnFi)). Therefore, L{A-i) = L(A) U {L{{TnFi)) \

L{{TnEi)). m
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Lemma 2.10.8 In DRA2DRCA, if L{Ai) 0, then the Rabin Index of Ai is one

less than the Rabin Index of Ai-i, i.e., RI(Ai) = RI(Ai-i) —1.

Proof: From Lemma 2.10.7, L(Ai-i) = L{{Ti,<l)i V(-^Ei AFf))), and thus the RI of

Ai-i equals the RI of5 = (Tj, V(-"jFj AFj)). Note also that L(Ai)r\L{{Ti,Fi)) = 0.
Consider a maximal positive chain in B. It either ends in a positive ("+") SOS

or a negative SOS. If it ends in this SOS intersects Fi and its polarity is

reversed in Ai, and the polarity of all other SCSs in the chain remain unaltered.

If the majcimal positive chain ends in let the last two sets in the chain be

Ci and C2', C\ C C2, polarity (Ci) = +, and polarity(C2) = —• It follows that C2

intersects Ei and C\ intersects Fi\Ei, and thus in Ai both SCSs will have polarity

the polarity of the other SCSs in the chain will remain unaltered since they do

not intersect Fi. Thus the index of the chain has decreased by one in Ai.

Every maximal positive chain in B gets transformed to a positive chain of index

one less in Ai. •

Theorem 2.10.9 Let A= (T = (Q, qo, L, (5), vjLi(Lt A-^{Ui))) and

A' = A5rj/(Fj))) be as in DRASDRCA. ThenL(A) =
L{A'), and A' is a DRCA with nh^ states and k pairs, where n = \Q\ is the number
ofstates ofA, h is the number ofpairs, and k is the Rabin Index ofA. DRA2DRCA

has time complexity 0{\T\h '̂̂ '̂ ).

Proof: Since each iteration reduces the index of each maximal positive chain by 1,

we have k—the RJ of the language—iterations, before L{Ak) = 0; at this stage is

unsatisfiable.

Lemma 2.10.2 and 2.10.7, imply that for each 1 < i < A;,

t

L{A) = L{ (Ti, V V( A)) ) (2.1)

Since is unsatisfiable, we have L{A) = L{ {T/t, Vj=i( ^ ) ))•
From Lemma 2.10.5, for each i, 1 < i < A:, Ej C Fi; and, from Lemma 2.10.4, for

each i, 1 < 2< (A: - 1), 7r(7+i),(Fi) C Ei+i. Together with Lemma 2.10.2 we deduce
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that the sets comprising the pairs of ^ form a chain, i.e.,

7r,-/(Ei) C C ... C C (2.2)

Thus is indeed a deterministic chain automaton.

Now we address the number of states in M. Lemma 2.10.6 asserts that in each

iteration An has exactly /i-pairs. Therefore step 2, the only step where the transition

structure is expanded, expands the number of states Mold in each iteration, i.e.,

IQtl = IQt-i| * h. Therefore = nh'̂ .
Time complexity: From the nature of StrExcl, i.e., because it "copies" the transi

tion structure, it follows that |Tfc| = iTIh'̂ . The non-trivial steps of the iteration

of DRA2DRCA: step 2, step 4, and the stopping test, take the following time:

Step 2: 0{\Tk\h) = 0(\T\h''-^^).

Step 4: Since, Fk D (Lemma 2.10.4), all transitions "leaving a copy" will be from

states in Ek. Therefore Fk\Ek can be computed in each copy separately, taking

0{h''\T\h?) time, being the number of copies, and \T\{h -t-1)^ = 0(|T|h^)

being the the time it takes to compute Fk \ Ek on one copy. Thus step 4 takes

0{h^-^^\T\) time.

Stopping test: Checking if L(Ak) = 0 takes 0(\Tk\h) time, i.e., OdTlh'̂ "^^) time.

Thus the iterations takes time. Since the k^^ iteration is the compu

tationally dominant iteration, DRA2DRCA takes OdTlh^"^^) time. •

DRA2DRCA produces an equivalent DRCA with n.h^ states and k pairs. This

is also an equivalent DRA with a minimum—Rabin Index—number of pairs. Since

a Rabin chain formula may also be written as a Streett Chain formula, we also have

an equivalent DSA with the same number of states and A: -I-1 pairs.

The difference between the Streett and Rabin Indices could be at most one, i.e.,

\SI —RI\ < 1. Therefore the number of pairs in the DSA, A: -1-1, could be at most

two more than the Streett Index—the minimum number of Streett pairs required to

realize the language. We show in Section 2.11 that the number of pairs in a DCA can

be minimized on the same transition structure, in polynomial time.
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Nevertheless, we give a construction slightly different from DRA2DRCA to pro

duce now a deterministic Streett chain automaton, with nh} states, where I is the

Streett Index of the language.

Algorithm: DRA2DSCA

INPUT: DRA A={T = (Q, 50, S,5), vjLi (Li A-.(t^)))
OUTPUT: DSCA A'

Begin

i = Ao = A = (To = (Qo, qo, ^ ""(^t)))

Repeat

i = i + 1;

1. {Aii,Fi) = RabExcl{Ai-i)

2. Ai2 —Ail

3. (Ais^Ei) = StrExcl(Ai2)

4. Ai = (Ti —(Qi)90i) ^t)> ~ «^t3

until L{Aiz) = 0

Return DCA A' = A|=i(-'7r;Ti(Ej) V7r^7t-i)(-P't)))>
where / is the SI of L(A).

End

The difference between DRA2DSCA and DRA2DRCA is the reordering of the

steps. Also note that in DRA2DSCA the termination test is L(Aiz) = 0. The spirit

of DRA2DSCA is the same as that of DRA2DRCA. Each iteration reduces the Streett

Index by one.

Theorem 2.10.10 Let A = (T = vjLi(Li A-•(C/t)))

-A! = A^i(->7r;T^(Ei)V7r7/_i)(jPi))) be as in DRA2DSCA. ThenL{A) =
L{A'), and A' is a DSCA with nh} states and I pairs, where n = |(3| is the number

of states of A, h is the number of pairs, and I is the Streett Index of A. DRA2DSCA

has time complexity OdTlh^"^^).
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2.11 Characterizing deterministic Chain automata

We characterize DOA that can be realized as DCA on the same transition struc

ture.

Theorem 2.11.1 Let A = {T = (Q,go, E, 5), 4>) be a DMA. Then there exists a DCA

A' = {T, (j)) such that L(A) = L{A') if and only if A is positive and negative union

closed.

Proof: "=^:" If there exists an equivalent DCA A' on the same transition structure

as A then A is certainly both positive and negative union closed.

By Theorem 2.5.3 the superset closed sublanguage of negative union closed

DOA is the language identified by the DBA with the final state set the final states of

the DOA.

Since A is also positive and negative union closed, let Ei C Q capture the positive

superset closed SCSs, Ni, of A, i.e., the negative superset closed SCSs of A. Exclude

Ni from the set of acceptance sets of A, i.e., 2idd Ei to the set of acceptance sets of A

to get DMA A'l. It is easy to see that A!i is also positive and negative union closed. Let

Fi capture the positive superset closed SCSs of Pi. Clearly iVi C Pi, and Pi C Pi.

Now delete Pi from the set of acceptance sets of A!i to get DMA Ai. The Rabin Index

of Ai^ RI(.4i) = RI(.4) - 1, and L(A) = L(A\) U L((T, -"Pi A Pi)). Repeating the

process on .4i and so on, yields a Rabin chain: Pi C Pi C P2 C P2 C ... Pa: C Pjb,

where k is the RI of A^ such that L[A) = P({T', Vi_i(-iPi APi))). •

Thus a DOA can be realized as a DRCA or DSCA on the same transition structure

iff it is both positive and negative union closed.

Corollary 2.11.2 Let A = {T,<j)) be a DSA that is negative union closed, or a DRA

that is positive union closed. Then there is an equivalent DCA A! = (T, <)>').

Proof: The Streett (Rabin) condition is a priori positive (negative) union closed and

so Theorem 2.11.1 is applicable. •

Applying Corollary 2.11.2 to the algorithms DRA2DRCA and DRA2DSCA yields

algorithms to minimize the number of pairs, in deterministic Chain automata without

altering the transition structure:
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Theorem 2.11.3 Let A = (T, (^) be a DCA (DRCA or DSCA). A can be translated

into a minimum-pair DRCA or DSCA on the same transition structure as A in time

0(k\T\h) and 0{l\T\h) respectively, where k = RI{A) and I = SI{A).

Therefore the RI or SI of a DCA can be determined in polynomial time. How about

DMA, DSA, and DRA?

2.12 Computational complexity of determining

RI/SI

2.12.1 DMA

The Rabin and Streett Indices for a DMA can be determined in polynomial time

as we detail below.

Consider the Haase diagram and the valuation function Val defined in Section

2.7.1. For determining the RI, we compute the valuation function Val, by initializing

the value of the top node, Q, to 1 if it is an acceptance set, and 0 otherwise. The

Rabin Index of the DMA is max Val{v).
{t;:v is a minimal SCS}

For computing the SI, the value of the top node is initialized to zero. The Streett

Index is the value of the bottom node (0).

2.12.2 DSA DRA

In this section we consider the complexity of determining the Rabin and Streett

Index of DSA and DRA. By Theorem 2.11.3, the RI and SI of DCA can be determined

in polynomial time.

Given a DSA with h pairs we can check in polynomial time if the SI or RI is < c

(for c a constant): if DRA2DRCA (DRA2DSCA) terminates within C iterations, the

SI (RI) is < c.
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2.12.3 Determining the Streett/Rabin Index is NP-hard

We show that determining the Streett Index of a DSA is NP-hard. It can also be

similarly shown that determining the RI of a DSA is NP-hard.

Consider the following decision problem.

LONGEST NEGATIVE CHAIN (LNC)

INSTANCE: A DSA A = (T = (Q,go,S,5), V-Ml)) such that the STG

induced by 6 is strongly connected, and a positive integer k < h.

QUESTION: Does there exist a negative chain of index > k7

Theorem 2.12.1 LNC is NP-complete.

Proof: LNC is clearly in NP. To show it is NP-hard we will transform the problem

MCC, which we define first and then show to be NP-complete.

MAX CONTAINED CYCLE (MCC)

INSTANCE: A strongly connected directed graph G = (V,E),

subsets Ui,... yUm of y, and a positive integer k' < m.

QUESTION: Does there exist a strongly connected subset of the vertices C, such

that C is contained in at least k' of the U sets, i.e., \{j\C C Uj}\ > k'?

Lemma 2.12.2 MCC is NP-complete.

Proof: MCC is clearly in NP. To show that MCC is NP-hard we transform MIN

COVER [18] to it. The construction is due to McMillan [33].

MIN COVER (MC)

INSTANCE: A set a = {1,... , /}, and a set 5 = {5i,... , 5n} of subsets of a, and

a positive integer k.

QUESTION: Does there exist a subset of S of size < k whose union is a?

Given an instance of MC the corresponding instance of MCC is: a directed graph

G = (V,£^), where V C {1,2,...,/} x {1,2,... ,m} is comprised of I "layers" of

vertices:

V = {(i,j)|i€S,}

and the edge set E C V x V is:

E = {((i,j), (i\f))\i' = i-\-l or i = l and i' = 1}
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In addition, we create n subsets C/i,... , ?7ni where Uj = Rj^ and Rj = {(z, j)|l <

i <l A (i^j) € V}. k! = n —k.

Note that the graph G created is strongly connected and there are no self-loops

and hence no cycles involving single vertices. Furthermore any strongly connected set

has to involve at least onevertex from each layer. Observe that Uj is the set ofvertices

not in Rj] therefore, ifSCS C C Uj then "Cn Sj = 0," i.e., for any z€ {1,2,... , /},

fliij) € C.

Assume there is a SCS C contained in > k' Uj^s. (Say) C C Ui for each i G

{zi,Z2,... Jr} C {1,2,... ,n}, where r > k'. It is easy that {Sj :j ^ {zi,Z2,... ,Zr}}
is a cover of a of size < n — k' = k.

Conversely, let {Sj : j E J} where J C {1,2,... ,7z} and jJ| < A: be a cover ofa.
Then the simple cycle C formed by picking for each zG{1,2,... , /} some j E J such

that z GSj is contained in Up for J. •

We now transform MCC to LNC. The transition structure of the DSA, the LNC

instance will augment the graph G of MCC, i.e., the STG will contain the graph
G = (V,E) assi subgraph. Create a pair (V \ {sJ, 0) for each Si E V, ensuring that
no singleton subset ofV can be an accepting SCS. For each set Ui ofMCC construct
a pair (L;,C7;). Start with LJ = 0 and UI = Ui. The next part of the construction
involves adding states to the pairs (L'̂ jUl) and adding states/edges to the transition
structure. The new states we add will comprise the set V, and the state-set of the

DSA will be V U V.

For each state Sj GV such that Kjl^t € C/j}! > k':

1. For each j s.t. Si^Uji create a state Siji and add edges

Add Siji to L'j euad to C/J for every 9 s.t. SjeUJ.
2. For each j s.t. SiEUji create two states Syi and Sy2-

Add edges (SnSyi), (siji,5t)j and (Sy2,Si)- Add 5^1 and Sy2

to all Uln s.t. SiEU^ and m^j. Also add Sij2 to Lj.

Mark any state of V as initial state. Augment the alphabet suitably to result in

a deterministic structure, k for the LNC instance is (A:' -f 1).
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The transformation is clearly computable in polynomial time. We prove next that

the MCC instance has a SCS that is contained in > k' C/'s iff the DSA created has a

negative chain of index > {k' + I).

=»: Assume a SCS C such that C C Uj for at least k' distinct j. Since C cannot

be a singleton C (1 (V \ {5,}) ^ 0 for each Si € V. Also C cannot be contained in

all the subsets U since the NP-hard instance of MC has to have at least one set in

the cover. Thus C %Uj for some j, and therefore C is a rejecting SCS (call it Bi)
in DSA A. For each j such that C % Uj^ 3s, GC such that s, ^ Uj. Use states Sgji

to construct accepting SCS Gi. Now every state s, G C is in > k' t/'s. Use Sqji and

Sqj2 states for j such that s, G Uj to alternately create rejecting and accepting sets

to increase the chain index by k'.

<=: first note that in any negative chain, Gi has to have at least two states from

V. Furthermore by virtue of all additional states in the LNC instance being added as

"loops" on states of V it follows that any accepting SCS of the DSA projected to V

is strongly connected in U as well. Therefore Gi projected to V, call it C, is strongly

connected and since the index of the chain is > (/:' + !) it follows that C C C// for at

least k' such C/'s. But since C CV and C C C//, it follows that C C Ui for k' such

C/i's. •

Remark: Although, in the transformation above, the alphabet is a function of the

MCC instance, we can modify it to result in an LNC instance with an alphabet of

size 2, still resulting in a polynomial transformation.

2.13 Lower bounds for translation in Gga n Fus

In this section we assess the upper bounds established by our constructions of

the previous sections vis-a-vis other constructions in the literature, and also consider

lower bounds.

We presented constructions to translate a DRA on n states and h pairs, into either

a DRCA or DRSA with states and k and I pairs respectively, where k is the RI of

the language, I is the SI, and m = min{k, I). We use Safra's notation and represent the

transformations as DR(n,h) DRG(n2"^^°^^^k) and DR{n,h) DSC(n2^^°^^J).
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The previous best construction was Safra's [45] achieving the transformation

DR(n^h) —> 1). Our construction is superior when m < and

is asymptotically no worse; it is to be noted that k < min(h^ [|D. There is also

another construction, DR(n^h) DRC{n^4^^^) [8].
Algorithms to translate DRA into DSA [45, 26] have been adapted to yield DCA

[15, 27] on the same transition structure as the DSA. The question arises as to why

this was possible.

The constructions of [45, 26] were memory-based in the following sense.

Let Ai = (Ti = (Qi,go,,S,(5i),</»i) and A2 = {T2 = (Q2,902,S,(^2),<^2> be two

equivalent DOA. If Q2 = Qi x Af, and V(gi,m) € Q21 and a € E, S2((qurn)ja) =

{q'l.m!) with q[ = <^1(^1,a), we say A2 is Ai with memory, i.e., the Qi part of 62
matches Si.

If Ai is a DRA and A2 is a DSA, and A2 is Ai with memory, then A2 which is

a priori positive union closed is also negative union closed: let S be a SCS in A2-

Since Ai and A2 are equivalent, the polarity of S in A2 has to be the same as the

polarity of nQi(5) in ^1. Therefore DSA A2 is also negative union closed. Thus as
a corollary to Theorem 2.11.1 we have:

Corollary 2.13.1 Suppose Ai and A2 are two equivalent DOA. If Ai is a DSA
(DRA) and A2 is Ai with memory, and A2 is a DRA (DSA), then A2 rnay be con
verted into an equivalent DCA on the same transition structure.

2.13.1 Lower bounds for translating DSA &: DRA

Theorems 2.6.3 and 2.6.4 already establish an exponential lower bound on the

number of states of the equivalent DBA for a DSA or DMA in Gs- Furthermore, this

establishes the essential optimality ofour translations from DSA and DMA in Gs into

equivalent DBA. However, for DSA in Gs there is always an equivalent DBA of size
polynomial in the size of the DSA.

For general DSA, i.e., in Gsa HF^s, with n states and h pairs our construction

results in an equivalent DCA with states, where k the RI of the language, is

less than or equal to min([|l,h).
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Safra and Vardi [44], have shown that for every n > 2, there exists a DSA on 3n

states and 2n pairs such that every equivalent NBA has at least 2" states. Since for

every n-state /i-pair DRA there is an equivalent NBA with n[h +1) states, it follows

that in the equivalentDRA for the DSA of [44] either the number of states or number

of pairs is exponential in n. There is still a gap of logh in the exponent between the

inferred lower bound from [44] and our upper bound.

We show a better lower bound next that bridges this gap.

Theorem 2.13.2 Fot every n> 2, there exists a DSA (DRA) with 3n states and 2n

pairs such that any equivalent DRA (DSA) has at least 2"n! states.

Proof: We use the same language-family as in [44]. The alphabet S = {0,o, 6}. A

word a G E'*' is viewed as an infinite sequence of vectors each of size n. The language

Ln is all sequences where for alH, 1 < i < n, a appears infinitely many times in

position z iflp 6 does too. That is, for a sequence a consider:

infa(a) = {ie[l...n]:\{j :j mod n = i, a(j) = g}| = oo}

and:

i^ifbicr) = {z € [1... n] : |{j : j mod n = i, a(j) = 6}| = cx)}

£7 € Ln iff infQ(cr) = infi,(£7).

L„ is accepted by the DSA An = <(Qn,9o„, {0,a,6},(5„), Ar=i({(i,o)} {(^,^^)})A

{(^5®)}))- The state-set Qn = {1»2,... ,n} x {0,a,6}, the initial state

90n = (f>0)> alphabet is {0,a, 6}, and the transition function, Jn, induces the STG
shown in Figure 2.8; the label on the arc should be the label of the destination state.

There are 2n pairs: a run is accepting provided at esich level the a-state is visited

infinitely often iff the 5-state is visited infinitely often.

Consider a maximal positive chain in .4n. A maximal positive chain is C = Ci C

C2 C ... C C2n+i, where Ci = {1,2,... ,n} x {0}, C2n+i = {1,2,... ,n} x {0,a,6},

and there is a sequence /i C /2 C ... C where for h 1 < j < ri.Ij C {1,2,... ,n},

and either is Cij-i U(/j \ Ij-i) X{a}, or ^2^—1 U{Ij \ Ij—\) X{5}, and C2j+i —

C2j-i U[Ij \ Ij-\) X{a, b). Ci is positive for odd z. The RI of At is n -f 1.
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n — 1 n

Figure 2.8: DSA An accepting Ln

Given such a maximal positive chain C, and q = Qoni by Theorem 2.9.2 (Alter

nating Chain Correspondence), in any equivalent DRA A'n there exists a correspond

ing chain positive chain C = C[ C C2 C ... C and state gj;, and words

Ci,... , C2n+i € {0, a, b}* such that Cixdescribes Q from q = go„ in An and C- from

in^n-

Let C = Ci C C2 C ... C C2n+i and )C = Ki C K2 C ... C Ar2„+i be two distinct

maximal positive chains in DSA An- For the corresponding chains C and K' in an

equivalent DRA An^ the claim is that q'c ¥" q'tc-

Assume not for contradiction, i.e., let q'c = q'fc —q'- ^et 2p be the first index

where C and JC are different, C2p ^ K2p\ the first index where the two chains differ
has necessarily to be even. As was mentioned earlier there is a sequence ofsubsets of

{1,2,... ,7i}, /, corresponding to a maximal positive chain in An. Let this sequence

hQ h C h C ... C In for chain C, and Ji C J2 C ... C Jn for K. Let Ip \ Ip-i = {2}
and Jp\ Jp-i = {j}. There are two cases to consider now:

1. Ip = Jp. In this case, j = i, and either (j,a) G C2p and (j,6) € ^"2^, or
GC2p and (j,a) GK2p' Either way, consider the run of word a = {c2pk2pY

from q! G A!^ and q in An- Its infinity set will be C2p UK2p in An, a positive

SCS, and in A'̂ it will be CJp U a negative set (DRA are negative union
closed)—a contradiction.

2. Ip Jp. Let q be the least index (necessarily greater than p) such that j G
and r the least index (again necessarily > p) such that i £ Jr. Now consider
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word a = (c2qk2rY. Its run in An from gon infinity set C^q UK2t a positive

SCS, whereas the run of a in from cf has infinity set Q, U a negative

SCS being the union of two negative SCSs—contradiction.

Therefore there is at least one distinct state in an equivalent DRA for every distinct

maximal positive chain in DSA An- It is easy to see that there are 2n(2n —2)(2n—

4)... 1, i.e., 2"n!, distinct maximal positive chains in An- •

The upper bound established by our construction would be 3n(2n)""^^ which is
20(niogn)^ as is the lower bound. Thus we have established a tight lower bound for

the translation of DSA into DRA.

It is interesting to note that for the same family of languages the lower bound

[44] for translation into NBA is 2", and the lower bound for translation into DRA is

2^*71!. Both lower bounds are asymptotically tight; there is a translation DS{n^h)

NB{nh2'').

2.13.2 Lower bound for translating DMA

There is an elegant translation from a DMA into a DCA based on the latest

visitation record (LVR) [20, 34, 53]. The LVR is a permutation of the set of states, Q,

of the automaton. If |(3| = n the LVR, /?, may be thought of as a vector i?[l, 2,... , n]

that is associated with each state of a run over Q, where R[n] is the most recently

visited state and R[l] is the least recently visited state in the run. If R is the LVRat

the current state R[n] of the run, and q' = R[j] is the next state in the run, the new

LVR at R'̂ is defined to be /?'[!, 2,... , n] = /2[1... (j —l)]i2[(i +1)... n]R[j], i.e.,

we move the current state to the "front" of the LVR.

To transform a DMA into a DRA, in addition to the LVR we maintain a hit value

h, 1 < h < IQl, that records the index in the previous LVR of the current state; for

instance, in R and R' considered in the previous paragraph, the hit value for R' is j.

Thus, corresponding to a run we have a sequence of LVRs and hit values.

The equivalent DCA A' for a DMA A = {(Q,9ojS,<^)) V (^/€f(/) (~^Q)))y
F€F

is defined over state space, Q' = Perm(Q) x {1,2,... ,n}, where Perm(Q) is the set

of permutations of Q and |Q| = n, and the second component is the hit value. Let
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the initial state be (P, n) where P is some permutation ofQ such that P[n] =
the initial hit value is n. Given a current LVR and hit value and a letter from E,

the next LVR and hit value are determined as discussed earlier. The chain condition,

with a chain of length 2n, Ei C Fi C E2 Q F2 Q -••^ Q Pm arises as follows:

• Ei consists of states in Q' with hit value greater than n + 1 —i.

• Fi = PfU{(P,n+l-i)|(P,n+l-z) € Q' and is an acceptance set}.

It is clear that the Ei C Pj and Fi C Pt+i? 2ind that DCA A! is equivalent to the

DMA A

The equivalent DCA produced may have up to n\n states. We show an n! lower

bound.

Definition 2.13.1 Consider the power-set lattice (also called the subset lattice) on

a finite set {1,2,... ,n}. Level i in this lattice refers to all sets of cardinality i, and
we say level i is marked + to denote that every set in level i is a positive set. In the

alternatingpower-set lattice level n is marked +, level n —\ is marked level n —2

is marked +, and so on with every alternate level marked +.

Theorem 2.13.3 For every n > 2, there exists a DMA on n states such that any

equivalent DCA has at least n\ states.

Proof: For every n > 2, consider the DMA An = where T" is defined in

Definition 2.6.2 and (/>„ denotes the positive acceptance sets of the powerset lattice.

Let C = Ci C C2 C ... C C„, and K. = Ki C K2 C ... C Kn he two maximal

chains in An- Every maximal chain in An is alternating and has the same index.

Let An be an equivalent DCA. By Theorem 2.9.2, there are chains C and JC in

An corresponding to C and /C in An-

Since Qn, the state set of T", is of size n. On = Rn and has polarity +. Assume

that Cn-i / Kn-i- Consider and K^-i if f-he claim is

that Cn_inKn_i = 0. Assume otherwise forcontradiction. By Theorem 2.9.2 and the

nature of T", there exists c G S* and d G E* describing respectively and

in Any and Cn-i and Kn-i in An from appropriate states, such that inf{(P) = C„_i,
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and m/(cP) = Kn^i. By Lemma 2.6.2, there is an f € E* such that / describes

Cn_i\JKl^_l from some state in nsuch that inf(f^) = inf(&')Uinf(d*').

will have the run in An with infinityset inf(f'^) = C„ = and thus G L(An)'

A!n being claimed equivalent to An implies U should have polarity +. But

since DCA are negative union closed C^^iUK'n^i will have polarity —, a contradiction.

Now assume that C„_i = Kn-i^ but Cn-2 = ^n-2- The claim is that even if

C4 n ^ 0, and C^_i n ^ 0, Cn_2 ^'n-2 == 0- The argument is similar to

the n —1 case coupled with the observation that the Chain condition is also positive

union closed.

Therefore, if i is the greatest index where chains C and JC differ, then C,- fl K[ = 0.

Also there is at least one state unique to (at "level" i+1). Since

there are n distinct subsets of Qn = {1»2,... ,n} of size n —1, we have at least n

states at level n —1, and for each of these sets of size n —1 there are n —1 distinct

subsets of size n —2, and so on.

Therefore the number of states in DCA AH^ is at least:

n! n! ,

which is clearly greater than n!. •

We can similarly derive lower bounds for the translation of DMA into DSA and

DRA.

Theorem 2.13.4 For every even n > 2, there exists a DMA on n states such that

any equivalent DRA (DSA) has at least n{n —2)(n - 4)...l states, which is 22 (n/2)!.

2.14 Minimization of DOA

Thus far we have addressed the problem of simplifying the form and size of the

acceptance condition. In this section, we consider the problem of minimizing the num

ber of states in a DOA. Given a DOA, we are interested in computing the equivalent

DOA with the fewest number of states among all equivalent DOA.

This problem is well characterized for DFAs, i.e., deterministic *-automata, by

the Myhill-Nerode theorem [22] which guarantees that every *-regular language is
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Figure 2.9: Counter-examples to DBA minimization possibilities

represented by a unique (up to isomorphism) minimum state DFA, and thus can be

computed in time polynomial in the size of the (unminimized) automaton.

A closed or open cj-regular language is essentially a *-regular language. Given a

DOA representing an open or closed (j-regular language, the transformations of Sec

tion 2.4 define equivalent DBA that denote a special and unique *-regular language.

For a closed language we get a unique prefix closed *-language, and for an open lan

guage we get a unique ^-language L such that if a word a ^ L then a(3 € L, where

p is any word. These DFA can be minimized to yield a unique minimum DFA and

viewed as DBA they are also the unique minimum-state DBA for the corresponding

a;-regular language.

Unfortunately, even for DBA there is not a unique minimum-state DBA. In Figure

2.9, DBAs B and C are two clearly non-isomorphic 2-state DBA accepting sequences

over a and h with infinite occurrences of a's (minimum?—a one state automaton can

only accept the empty language or E'^).

Since the language of a DBA is of the form limW where W is the *-language of

the "underlying" DFA, minimization of the DFA is a sound procedure to (possibly)

reduce the number of states of the DBA. Automaton A in Figure 2.9, is an instance

of a minimum state DFA but a non-minimum state DBA; the minimum-state DBA

is either B or C.

A certificate for minimality of DFAs is the non-existence of equivalent states. This
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is however not the case for DBA, as automata B and C in Figure 2.9 exemplify—all

states are equivalent, i.e., generate the same language.

Staiger [49] showed that the language equivalence based procedure, i.e., that of

"collapsing" equivalent states a la DFA-minimization, works for a subclass of DBA-

realizable languages, the class fi

Definition 2.14.1 Given L C E"*, and w we define the left quotient L/w of

L by the word w as L/w = {6 : 5 G and w.b GL}.

Definition 2.14.2 Suppose L C E'*'. The transition structure associated with L is

the deterministic automaton on alphabet E, state set {L'\L' = L/w for some lu GE*},

initial state L, and transition function 6 with 5[L^a) = L/{a}.

Trachtenbrot considered a class of tj-languages (not necessarily regular) that were

defined by finite state associated transition structures. Staiger [49] showed that every

(j-language with a finite-state associated transition structure in the class n is

regular, and is accepted by a DMA on the associated transition structure.

We give a simple proof of Staiger's theorem next.

Theorem 2.14.1 (Staiger [49]) Let A = {(Q, go? <^)j 4) ^ DOA such that L{A) G

Gsn Fff, andT' —{Q\ E,S') be the associated transition structure for L(A). Then
for some F' C Q', the DBA {V, F') is equivalent to A.

Proof: We first show that if ai,<72 G E"* are two sequences such that ai G L{A)

and (72 i lihe infinity sets of the runs of these, r[ and rj respectively, on the

associated transition structure, T', cannot intersect, i.e., inf(r[)ninf{r2) = 0.

Assume for contradiction that q' Ginf{r[)r\inf{r2) ^ 0. Let ri and r2 be the runs

respectively of ai and (72 on A- From some index, / > 0, all the states occurring in

7*1, ^2, r[, and ri^ are in their respective infinity sets. Let ij > I be indices such that
r'Jz] = q' and rj^] = q'. Let C7[ = (7i[i](Ti[i -I-1]..., the suffix of ci starting at i, and

a'2 = a2[j]a2[j +1].... Let S(qo, ai[0... (i - 1)]) = ql and S{qo, a2[0... (j - 1)]) = ql
i and j have been chosen so that the language generated from q}, L(((Q, q}, E, (5),

(^)), equals the language generated from q^, L(((Q, gj,E,<5), <^)), equals q' (recall states
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in T' denote languages), aj € ^ and ag q'- From q] we will alternately apply

and crj to arrive at a contradiction.

Since ai £ L(A)y gj will be in a SCC comprised entirely of final states (because

L{A) is in Gs n Fa). Therefore the run of aj from gj, r}, has to "descend" to a
negative SCC, and let q^ £ m/(rj) be such that language generated from q^ is ^
(such ql has to exist since application ofeither <j[ or aj from ^ causes repeated visits

to q').

Now applying aj from q^ necessitates another descent into a positive SCC. Pro

ceeding in this manner, alternately applying and oj requires an infinite number of

descents in the DAG of SCCs of A, clearly impossible because Q is finite.

Therefore, the infinity sets of accepted and rejected sequences cannot intersect in

T'. Therefore each SCC is comprised of SCSs of the same polarity. The polarity of a

SCC C is + if L({T\C)) C L(«4), where (T',C) is the DBA with final states C. m

Therefore a DOA on n states in Gs n Fa can be minimized in polynomial time to

yield an equivalent minimum-state DBA or Co-DBA with a unique transition struc

ture, requiring O(n^) language equivalence tests to construct the associated transition

structure (T') and 0(n) language inclusion tests to determinethe polarityofthe SCCs

ofr.

Since DOA equivalence checking for DMA, DSA, and DRA, is in polynomial time,

it follows that the state minimization problem for these automata is in NP, but it is

not known if the problem is NP-hard or in P. For DOA not in GsC\Fa^ we know of no

better procedure than to enumerate all DOA of smaller size to find the minimum-state

equivalent DOA. Characterizing the minimum state DOA remains an open problem.

2.15 Determinization

Until now we have mostly considered deterministic w-automata except for Section

2.4, where we showed that any nondeterministic cj-regular language that is open or

closed can be realized as a NBA on essentially the same transition structure. While

determining the Rabin Index of a DMA is in polynomial time, and for DSA and DRA

it is in polynomial time to check if the RI is less than a constant c and NP-hard in
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general, it is not difficult to see (it entails solving language universality) that even

determining if a NOA is an open language, is PSPACE-hard.

Furthermore, restricting the number of Rabin and Streett pairs in nondeterministic

a;-automata does not induce a hierarchy on the cj-regular languages, as every w-regular

language is accepted by some nondeterministic Buchi automaton. Nondeterministic

automata can be much more succinct than deterministic automata, and translating

between nondeterministic automata is often not as expensive. An interesting and

relevant question here is if the complexity of the determinization of a nondeterministic

w-automaton is a function of the Rabin Index of the language.

Let A = ((<3,90) F') be a nondeterministic Buchi automaton. We are in

terested in computing the deterministic Rabin automaton, B =

equivalent to A. The transformations of Section 2.4 yield special *-languages for

closed and open w-regular languages that can be determinized, by the classical subset

construction [41], to yield an equivalent DBA with at most 2" states, where n is the

number of states in A.

Safra's determinization [42] construction yields a transformation

NB(n) —^ There is a gap of a factor of logn in the exponent

between the number of states in the deterministic automaton for closed and open

languages and Safra's construction. If L{A) € then the equivalent DRA can be

realized as a DBA on the same transition structure; the number of pairs needed is

one. This fact, along with our construction DR{n^h) —> DRC{n2''̂ °^^,k)y makes us

wonder if perhaps we could achieve NB{n) —> where k is the RJ

of L(A)i i.e., if the complexity of determinization is a function of the RI.

Unfortunately, we observe that there is a family of NBA, where for an 0{n) state

NBA every equivalent DRA has at least n!, i.e., 0(2*^^°®") states.

Proposition 2.15.1 For every n > 2, there exists a NBA An on n A-2 states such

that L{An) € Gs, and every equivalent DRA has at least n\ states.

Proof: We consider the same family of languages considered by Michel [35] to prove

the n! lower bound and observe that the languages are in Gg.

For every n > 2, consider the alphabet = {ai,a2,... ,an)5}- For a word
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w e we associate a directed graph G(w) on vertex set {01,02,... ,o„}, and edges

defined as follows. There is an edge (oi,Oj) in G{w) if and only if akdj appears

infinitely often as a subword of w. The language Ln consists of all words over En,

w, such that G{w) contains a cycle, i.e., Ln = {<t\(7 € E^^ and G((7)contains a cycle}.

Michel showed that this language is accepted by a NBA on n + 2 states and every

equivalent DBA has at least n! states.

We argue that the language Ln is in Gg- For contradiction assume that the

equivalent DRA Bn = {(Qm 9o„) S„), <t>n) has 2 SCSs Ci and €2 such that Ci C C2,

and Ci is positive but C2 is negative. For g € Ci, let a € EJ take gon to i-O-)

Sn(qon,oi) = qi. Let Ci G E* describe Ci from q and C2 G E* describe C2 from q.

Since Ci is positive oi = adi G Ln and therefore (j(o'i), the graph on the vertex set

{oi,02,... ,o„}, will have a cycle. Now consider 02 = a:(ciCiC2C2)'*'. If OfOj appears

infinitely often in ai then it appears infinitely often in (72 also. Therefore G{ai) is

a subgraph of ^(<72), and hence G(a2) contains a cycle also, implying that (T2 G Ln.

But C2 is negative, a contradiction. •

Therefore the factor of logn blow-up in the exponent is an artifact of considering

(j-languages ("passing to infinity") versus *-languages, and is not a function of the

RI of the cj-language.

2.16 Minimum witnesses for non-empty w-auto-

mata

In this section we consider the minimum witness problem (MWP) for w-automata.

Given an cj-automaton A = {T = (Q,go}5!I,<J), (^), if L{A) ^ 0, we are interested in

finding a, c G E* such that a leads from go to g, i.e., g G 5(go,o"), and c describes

a positive SCS C from g, and such that (o", c) is a minimal witness in the following

sense. If W is the set of witnesses to the non-emptiness of L{A), W = {(a',c')|£7', d G

E* and q' G S(qo,a'), and d describes positive SCS C from g'}, (a, c) is a minimal

witness in W, i.e., (a,c) = arg min {\g'\ -I- Ic'l).

The verification question—does a system satisfy a property—can often be trans-
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lated to a language emptiness question. The MWP arises thus in returning an "error

trace", i.e., a witness to the non-emptiness of an w-automaton, to the designer on a

failed verification '^un" [21]. The returned witness is also used to modify an abstrac

tion of a system in a verification scheme based on verification by iteratively refining

an abstraction [2] of the system.

Although, testing for language non-emptiness for Buchi, Rabin, Streett, and

Muller automata is in polynomial time [16], we observe in this section that the com

plexity of the MWP varies depending on the form of the acceptance condition. It is in

P for Buchi and Rabin automata, but NP-complete for Streett and Muller automata.

The MWP may be posed as a decision problem as follows:

INSTANCE: A= {T = (Q, qo, S, 5), (^), and a positive integer K.

QUESTION: Does there exist cr,c € E* such that for some q € S(qo^(T)^ c describes

a positive SOS C from q, and |(t| + |c| < K.

If L{A) 0, then there is some witness (a,c) such that lcr| -f |c| = 0(|Qp)

and therefore MWP G NP. MWP for Streett and Muller can encode the Directed

Hamiltonian Circuit Problem (DHCP). The DHCP, is to decide if a given directed

graph has a simple cycleor circuit that includes each vertex, and is NP-complete [22].

An instance of DCHP, G = (V, E), is transformed into an instance of the MWP with

Streett or Muller condition as follows: Q = V, can be any state in Q, S = {0,1}, (5

denotes edges of E labeled with 0 or 1 arbitrarily. as a Muller formula denotes one

acceptance set Q, and as a Streett formula, the pairs {({9},(f>)\q GQ}; a SCS has to

contain each q €Q to satisfy (j). K for the MWP instance is |Q|. The MWP instance

has a positive SCS described by c G{0,1}'^' ifand only if the DHCP instance admits

a Hamiltonian circuit.

For each 5 G Q if we could determine the minimally described positive SCS

containing 5, 5^, then the required minimum witness would be (<t, c), such that

Qmin € <y(go><^)> and c is the shortest word that describes from:

9mtn = argmin{|7r(go,9)| + l^^l} (2.3)
q^Q

where 7r{qoj q) denotes the shortest path from ^0 to 9, and allowing ourselves a little

abuse of notation |5^1 denotes the length of the smallest word describing Sq. There-
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fore, ifwe could compute Sq efficiently we could determine the minimum witness. For

Streett and Muller automata computing Sq is NP-hard.

For a Buchi automaton, if g € F, Sq is the smallest simple loop containing g; if

5 ^ F, = 7r{9) fmin )U7r(/mm,9), where fmin = argmin{|7r(?, /)| + |7r(/, g)|}.

For a Rabin automaton, for each pair (Lj, Ui) such that q € Ui, Siq, the minimally

described positive SCS containing q, and satisfying the pair is computed

treating the subgraph of S on the state set C7i as a Buchi automaton with final states

Li. 5g = arg min {|5i,|}.

Since the Buchi and Rabin conditions are negative union closed, Sq^.^, is a simple

cycle; in this case, the length of the shortest word describing is indeed

2.17 Summary

In this chapter we have studied the relative complexity of the different w-automata

within subclasses of the oj-regular languages. Corresponding to the *-regular lan

guages are the open and closed w-regular languages, and every NOA representing

such a language can be converted into an equivalent NBA or nondeterministic Co-

Buchi automaton (NCBA) on essentially the same transition structure.

In the class, Gs H F^,, represented by DOA that are both positive superset and

subset closed, every DOA may be converted into an equivalent DBA or DCBA on the

same transition structure. Every DOA in Gs n is accepted by a unique minimum-

state DOA. Within the class Gg—the DBA-realizable languages, i.e., DOA with posi

tive superset closed SCSs—negative union closed DOA, and in particular a DRA can

be translated into a DBA on the same transition structure, i.e., DF(n,/i) —^ DB{n),

and for DSA we have a translation DS{n,h) -4 DB{nh). We presented polynomial

time algorithms to decide if a given DOA is in G^, and to effect the translation into

the equivalent DBA. We also provided instances of DMA and DSA, whose equivalent

DBA has to have exponentially more states than the number of states in the DMA

or DSA.

For every alternating chain in a DOA there is a corresponding alternating chain in
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any equivalent DOA. We presented a translation, DR{n^h) DRC{nh"^^k)f where

m = min(A;,/), and k (I) is the RI (SI) of the language. Positive and negative union

closed DOA can be converted into DCA on the same transition structure. The number

of pairs in a DCA can be minimized in polynomial time, and DCA can be translated

into other w-automata on the same transition structure. The RI/SI of a DMA or

DCA can be determined in polynomial time, whereas it is NP-hard to determine the

RI/SI of a DBA or DRA. We showed a lower bound D5(3n,2n) —> jDil(n!2", —),

and also proved that the LVR-based translation of a DMA into a DCA is essentially

optimum.

The complexity of determinizing a NBA is not a function of the RJ of the lan

guage. While language emptiness for Buchi, Rabin, Streett, and Muller automata is

in polynomial time, we can produce a minimum-size certificate for the nonemptiness

of a Buchi or Rabin automaton in polynomial time, whereas it is NP-hard to do the

same for Streett or Muller automata.

In the next chapter we build on the results of this chapter to formulate algorithms

to decide the winner, and derive the winner's strategy, in two-person games of perfect

information played on w-automata.
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3.1 Introduction

Consider the following game between two players, player-0 and player-1. In a

single-step of this game, player-0 picks a letter from his finite alphabet Eq, and then

player-1 picks a letter from her finite alphabet Ei. These single-steps repeat ad

infinitum to form a play of the game. Player-0 wins the game if the play is in the

game language, F C (Eq x Ei)*^; otherwise, player-1 wins, i.e., when the play is in F.

A strategy for a player is a rule that tells the player what letter to pick at each

instant; and, a winning strategy is one that ensures a win for the player no matter

how the other player behaves. Each player observes the choice of the other player

at each step, and the strategy may be a function of the entire history of the play—a

game of perfect information. The game is determined if one of the players has a

winning strategy.

This infinitegame of perfect informationwas first considered by Gale and Stewart

[17]. They showed that open and closed games, i.e., when F is either an open or a

closed set, are determined; [59] showed determinacy for and Fa games; [11] showed

that Gsa n Fas games are determined; and, Martin [32] showed that all Borel games

are determined.
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IF r is presented as an a;-automaton, we have a Gale-Stewart game of perfect

Information on an cj-automaton. In this case, the winner has a finite-state strategy

implementable by a finite state machine (FSM). Buchi and Landweber [7, 40, 20]

gave a constructive procedure to solve—decide the winner and synthesize the winner's

strategy FSM—games on cj-automata.

Solving a game on an w-automaton is also known as Church's problem [9]. If F is a

property or synthesis requirement for a synchronous digital circuit to be synthesized,

we are interested in knowing if the circuit to be synthesized has a winning strategy

against its (adversarial) environment, and if so, we want a FSM implementing a

winning strategy subject to certain implementation constraints.

In this chapter we study the complexity of solving two-person games of perfect

information on cj-automata. We build on the results of Chapter 2 to devise a synthesis

algorithm whose complexity is a function of the structural complexity of F.

Section 3.2 sets up games on w-automata. In Section 3.3 we consider graph

games—a variant of games on w-automata that are convenient for developing decision

and synthesis algorithms. Sections 3.4-3.7 contain decision and synthesis algorithms

for games of increasing structural complexity in the game language; Section 3.7.3

contains the main result of this chapter. In Section 3.8 we review the correspondence

between tree automata and games, and point out the relevance of our results to tree

automata. In Section 3.9 we show some lower bounds for the size of strategies required

in Muller and Streett games. Section 3.10 summarizes this chapter.

3.2 Game on a;-automaton

The game is played on a deterministic w-automaton Q = ((Q,9o»So x

called the game automaton. The game starts at state qo; player-0 picks or plays some

(7q € Eo, and then player-1 plays some aj € Si, and the game advances to state

qi = ^(9o, player-0 then plays some ctq € Eq, followed by player-1 picking

some a} € Ei, and so on ad infinitum. The infinite sequence a = (o"o,o-i)(ao,<7i)...

so constructed forms a play of the game; a prefix of a is a partial play. The acceptance

condition of the game automaton, (j), is called the winning condition for player-0. The
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type of the game is inherited from the type ofcj-automaton the game automaton is,

which in turn is determined by the form of the Boolean formula defining the winning

condition; for instance, a Buchi game automaton defines a Buchi game also called a

Gs game.

The language of the game automaton, L{Q)j is called the game language. The

play a € (Eq x is a win for player-0 if a GL{Q)y i.e., if the set ofstates visited

infinitely often by the play, in/(ro^), where r„ is the runofa on satisfies the winning

condition if in/(r<y) |= (j). Otherwise, inf{T„) ^ <^, and the play is a win for player-

1—her winning condition is -x^. In a Buchi game, player-l's winning condition is a

Co-Buchi winning condition; in a closed (open) game, player-l's winning condition is

an open (closed) winning condition, i.e., the set of winning plays for player-1 forms
an open (closed) set.

Figure 3.1: Simple Buchi Game

Figure 3.1 shows a simple Buchi game. Eq = {o^b} and Ei = {0,1}. (—,—)

represents Eq x Ei. The play (6,1)(6, l)(a,0)'^ is a win for player-1, whereas the play

(6,1)*^ is a win for player-0.

3.2.1 Players' strategies

A strategy for a player is a rule for picking the next letter based on the play

constructed up to the current instant. A strategy for player-0 is a function ^ : EJ —>

Eq, and a strategy for player-1 is a function r : Ef Ei.
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Strategy for player-0 is a winning strategy if every play that results from him

playing according to ^ is a win for him, i.e.,

Vcr?V£r}VaJ... [(^(«),ct?) ... € 1(9)]

Thus no matter how player-1 plays at each instant, player-0 is ensured a win when he

plays his winning strategy. Similarly, a strategy r for player-1 is a winning strategy

if by playing according to r she is guaranteed a win however player-0 plays, i.e..

VagVCTjV(rJ...[(ag,T(<7S)) ((7j,T(aSo-^)) (cTlT(aSa}<r^)) ) € L(g)]

A strategy for player-0 can also be thought of as partial function ip : (SoSi)* So

requiring only that it be defined for partial plays that arise from him playing axjcording

to Similarly, player-l's strategy is a partial function r : Eo(EiEo)* Si, requiring

that it be defined only for partial plays arising from her playing r.

Clearly at most one of the players can have a winning strategy. A player with a

winning strategy is called the winner of the game, and is said to win the game. A

game with a winner is said to be determined.

Theorem 3.2.1 (Buchi & Landweber [7]) Let Q = ((Q,90, Eq x Ei,5),0) be a

Gale-Stewart game on a DOA. This game is determined, i.e., either player-^ or

player-1 has a winning strategy, and the winner has a regular or finite-state strat

egy-

A regular strategy for player-0 is a Moore FSM Sq = (Qq, gj) Sq, Ei, 5o, Aq), where:

Qo is the finite state set, and ^ Oo is the initial state

• Eq is the output alphabet, and Ex is the input alphabet

• Aq : Qo —> Eq is the output function, and

(Jq : Qo XSi —> Qo is the transition function.

It is easy to check that FSM Sq defines a strategy for player-0.

We can associate an cj-regular language L(So) C (Eq x Ei)'^ with the strategy

FSM So; (o-J,aJ)(aJ,a})... G L{So), provided ag = Xo(qo), and for each i > 0,
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aj = Ao(^o(9o5'̂ i<^i ••where (Jo is assumed to be inductively extended to

<Jo • Qo X —> Qo- L(So) is a closed set. We can thus think of the FSM as an

w-automaton.

Since Sq and Q are deterministic w-automata, there exists a unique relation r C

QqxQ such that:

• (9o>9o) 6 r, and

• (9.9') € Vcti 6 Ei[ {5o(g,(Ti),S(tf,{Xo(g},Ci))) £ r ]

We call such a relation a tracking relation [36]. We say state s € Qo is tracked by the

set of states r(s) C Q in the game automaton and state q € r{s) tracks state s, where

'•(«) = {9l(«.9) € r}
L{So) represents a winning strategy provided L(Sq) C L{Q). In this case the

unique tracking relation is called a simulation relation [36], and we say state s £ Qo

is simulated by the set of states r(s) C Q in the game automaton and state q € r(s)

simulates s.

Player-I's strategies

Similarly, a regular strategy for player-1 is a Mealy FSM Si = (Qi, ^O) Ai),

where:

• Qi is the finite state set, and ^ Qi is the initial state

• El is the output alphabet, and Eq is the input alphabet

• Ai : Qi X Eo -> El is the output function, and

• 5i : Oi X Eo -> <3i is the transition function

Notice, the output function Ai is a function of the input alphabet and the state,

appropriate for representing regular strategies for player-1 who plays second. We can

again associate a closed w-regular language L(Si) C (Eq x Ei)*^ with the strategy Si

for player-1; (cro,cri)(cro,cri)... £ L(Si), provided af = Ai(5o)^o)» ^

a\ = Ai((5i(gJ, (Joaj ... aj). Si is a winning strategy if L(Si) C L{G). Since the
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game automaton ^ isaDOA, ^ = {(Q,^o5SoxSi><^))'^0) has

language L{Q)^ and hence if L(Si) C L(^), there is a unique tracking and simulation

relation r CQi x Q with the properties:

• (9o>9o) er

• {9.9') € r V<7o € Eo[ (<5i(9.'fo),<S(9'.('70iAi(5,ao)))) €r]

Figure 3.2: Mealy winning strategy for player-1 starting from state A in game of
Figure 3.1

Figure 3.3: Moore winning strategy for player-0 starting from state C in game of
Figure 3.1

In the game of Figure 3.1, player-1 has the winning strategy shown in Figure 3.2.

In this game, player-1 does not have a winning strategy that is implementable as a

Moore FSM.
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If we were to consider the game of Figure 3.1, but with the game starting from

the state labeled C, player-O's winning strategy is shown in Figure 3.3. The output

at a state is the letter written above the state. The simulation relation between the

winning strategies and the game automaton, for the winning strategies in both Figure

3.2 and Figure 3.3, is the identity relation on the state labels. The set of states of

the game is partitioned into two sets {A^D} and {C,B}, such that player-1 and

player-0 respectively win the games starting from states in these sets, i.e., when play

starts from any state in these sets. For the game starting from state B, the winning

strategy for player-0 is essentially embedded in the winning strategy for the game

starting from state C. Why?

Lemma 3.2.2 [84] Suppose Q - ((Q,go,So x Ei,(5),</»} is a game automaton, and

S is the strategy FSM for the winner. If there is a partial play p that arises from

the winner playing his/her winning strategy S, and the partial play reaches q, i.e.,

6{qo,p) = q, then the winner also wins the game starting at state q, and his winning

strategy FSM is S with initial state being the state the FSM is in at the end of partial

play p.

Amongst the regular strategies we identify a useful special class of strategies.

Memory based strategies

Definition 3.2.1 Given a game automaton Q = ((Q, qo, Eq x Ei, 5), </»), and a Moore

strategy FSMfor player-0, So = (Qo, qSi <^0j Ao), if the unique tracking relation

r C Qo X Q is such that:

• € Qo, ^ Q (Qi ^ •S'o is memory-

based

• € Q, there exists at most one q £ Qo such that (q, (/) € r, we say So is a

memory-less strategy

In a memory-based winning strategy, a state, s € Qo? of the strategy FSM is not

simulated by more than one state in the game automaton, i.e., |r(s)| = 1. Therefore
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Qo be expressed as M x Q, where the set M is called the memory^ and such

that:

• <^0 = X and

• if So{(m,q),ai) = then g' = S{q,{Xo{q,Tn),ai))

The part" of the transition function of the strategy FSM is consistent with the

transition function of the game automaton. The amount of memory used by the

strategy is |M|. A memory-less strategy is a memory-based strategy with M = 0.

Notice that in a memory-less strategy every state in the game automaton tracks at

most one state in the strategy FSM.

In the Gale-Stewart game, player-0 and player 1 are not treated alike: Player-0

plays first, and as a result Player-l's winning strategy may not always be imple-

mentable as a Moore FSM. We consider next a related game played on a finite

bipartite graph, popularized by McNaughton [34], where both players are treated

symmetrically. This game makes for a cleaner development of algorithms to solve

Gale-Stewart games on w-automata, by synthesizing memory-based strategies for the

winner.

3.3 McNaughton's graph game

A (McNaughton) graphgame\sQ = (G, 0). The gameis played on a finite directed

bipartite graph G = {N = NqU Ni^E = EqU Ei)^ called the game graph. The game

graph G has node-set N = NqU Ni and edge-set E = EqUEi^ with Eq C Nq x Ni^

El C Ni X No, and where for each node n € N there is at least one out-going edge

(n,n') G E. The game is played between the players player-0 and player-1. Player-O's

node-set is Nq and player-l's Ni. At any instant of a play of the game the place-

marker for the game is on a node n G N; for i G {0,1}, if n is in Ni player-i moves

the place-marker along one of the edges (n, n') G Ei to node n' in Ni-i. It is now

player-(1 —i)'s turn to move; and, this repeats ad infinitum.

Figure 3.4 shows a game graph. Player-O's nodes, {B, D, F} are drawn as circles.
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Figure 3.4: A Game Graph

and player-l's nodes G} as squares. Notice that each node has at least

one-outgoing edge, and all edges are to the other player's nodes.

We shall find it convenient not to designate a start node for the game. A play is an

infinite sequence rj = nonin2... € such that for each 2 > 0, (ni,ni+i) € E. The

winning condition ({> is defined in a manner analogous to the acceptance condition for

w-automata, as a Boolean formula over the nodes N. The type of the graph game is

determined by the type of the winning condition: for instance, a Streett graph game

has a Streett formula specifying the winning condition for player-0. A play 77 is a win

for player-0 if inf(7}) |= (^; otherwise it is a win for player-1.

Let us usethe Streett pairs ({D}^ {B, C, D, E, F, G})and ({F}, {J5, G,£>, F, F, G})

to specify the winning condition for the game graph of Figure 3.4, to define a Streett

graph game. The play {ABEDy is a win for player-1.
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3.3.1 Players' strategies

For i € {0,1}, a strategy for player-2 is a partial function xjj: N*Ni —> Ni-i, that

for each partial play noUi ...rik ending in Ni gives the edge (n^, rp(noni... n^)) € Ei,

to move the place-marker along.

Definition 3.3.1 Given a graph-game Q = {G = (N = NqU Ni^E = EqU Ei)^(l)),

a regular strategy for player-0 is a game graph S = {C = {N' = N'^U N[^E' —

jFq UEJ), -^N'), called the strategy graph, such that:

1. there is a function r N' N, where r : Nq —i' Nq, and r : N{ Ni, labeling

nodes of the strategy graph S with nodes of the game graph, and

2. every node in Nq should have exactly one out-going edge and this should match

the game graph, i.e., VnJ, € Nq, 3! n[ € N[ such that

(a) {nQ,n[) € E', and

(b) (rK),r(n'i)) € E

3. every move of player-1 in the game graph should be tracked in the strategy graph,

i.e., Vrii G N[, if r{n\) = rii, then for every edge (ni,no) € E, there should he

an edge {n[,nQ) € E' such that r(no) = no, and

4. every move of player-1 in the strategy graph should correspond to a move of

player-1 in the game graph, i.e., let n\ € N[ and r{n[) = ni; for each edge

(ni,no) € E', there should be an edge (ni,no) € E such that no = r(no).

In the strategy graph the moves of player-0 are fixed, and each move of player-1 is

tracked. Playing according to strategy S works as follows. Assume the place-marker

is at some player-0 node no £ Nq, and the strategy place-marker is at node nj, € Nq

such that r(no) = no- Player-0 moves the place-marker in the strategy graph along

the unique edge (nj,, ni) € E', and the place-marker in the game graph along the edge

(r{no), r(n\)) € E. If player-1 now moves the place-marker along edge (r(n\), no) GE

in the game graph, the place-marker is moved along the edge (ni,no) G E', where

r(no) = no; this repeats.
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The regular strategy is a winning strategy for player-0 if every play that results

from him playing according to the strategy is a win for him, i.e., for every play

noni72^... € inf(r(nQ)r{n[)r{n2)...) \= <l>. A winning strategy for player-0,

represents a winning strategy for him from the set of nodes of the game graph that

occur as labels of nodes in the strategy graph; we also say that player-0 wins the

game starting from this set of nodes, or the nodes in this set are his winning nodes.

A regular strategy for player-0 in a graph game (as in Definition 3.3.1), can be

expressed as a game graph on node set N' = M x N, where M is a finite set

called the memory, with the property that for (m,n) G N', r((m,n)) = n, and

((7n,n),(m',n')) € E' only if {n,n') € E. The amount of memory necessary to

express a regular strategy graph in this form as a memory-based strategy graph is

\M\= max |{n'ln' € N' and r(n') = n}|
n&N

In other words, the amount of memory is the count of the most popular game graph

node labeling the strategy graph. If |M1 = 1 the strategy is termed a memory-less

strategy. In this case, player-O's strategy is obtained by choosing one edge out of each

player-0 node in the game graph that occurs as a label of some node in the winning

strategy graph.

Figure 3.5 shows the memory-less winning strategy for player-0 for the Streett

graph game of Figure 3.4.

The graph game is perfectly symmetrical; a regular strategy, memory, and winning

strategy for player-1 are defined identically for her by interchanging the roles of the

players and negating the winning condition.

3.3.2 Translating a;-automaton games into graph games

Given a game automaton Q = ((Q,9ojSo x fhe corresponding graph

game is Q' = {G = {N = NqU Ni, E = Eq UEi), <j>'), where:

• Nq = Qo, Ni = Qq X So

• Eo = {(9, (q,ao))\q € Q and ctq € So}
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Figure 3.5: Memory-less winning strategy for player-0 in game of Fig. 3.4

• El = {((9,tTo), 9^)19 € Q and for some d € Ei 6{q, (ao,ai)) =

• <{>' is defined to be such that for 5 C iV, 5 |= 5 n iVo |= 0. If ^ is

a Habin or Streett formula, then a pair (L„ 17,) in (f) gets translated to pair

(L;,Ul) = {Li U(Li XSo),Ui U{Ui XSo))

It is easy to see that there is a one-to-one correspondence between the plays and

strategies, between the (j-automaton game and its corresponding graph game, as

defined above. The regular strategies of the graph game correspond exactly to the

memory-based strategies for the automaton game.

Given a game automaton the size of the corresponding gamegraph is linear in the

size of the automaton.

Sometimes it is useful to think of a game graph as an w-automaton. Given a graph

game Q = {G = (N = Nq UNi, E = Eq UEi)y(l>)^ \ei d he the maximum out-degree

of any node in N. Let alphabet = {1,2,... ,d}. For each node n G AT, assign the

set Ed to the edges making sure each edge has at least one symbol. A play is now

equivalent to a sequence in Ejf; given a sequence in EJ( starting from a given node, we
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have a unique play corresponding to it. If we were to fix the start state of the game

(from TVq), we have thus a deterministic w-automaton whose language is the "set of
winning plays" of the original graph game, the game language C (E^ x Erf)*^. We can

interpret any DOA equivalent to this DOA as a game again (by making two copies of

the states and having transitions between the copies giving rise to a bipartitegraph),

and solve this game to derive winning strategies for our original graph game. When

we talk of the topological and structural properties of a graph game, we mean the

properties of a DOA as defined above.

Next we consider the question of solving games of increasing complexity in the

winning condition. Wefocus on the Rabin and Streett conditions, and referthe reader

to [34] for a good exposition on Muller games. We develop the algorithms on game

graphs. We will show that for a given game Q = {G = (AT, E),(f>)i the node set N is

partitioned N = WqUWi, where Wo (Wi) is the set of winning nodes for player-0

(player-1).

3.4 Open and Closed games

Consider a graph-game Q = {G = {N = NqU Ni^E = EoUEi)^F)^ with an open

language. Recall that in this case player-0 wins a play if it includes a node from F.

If Wq denotes nodes from which player-0 can win the game, clearly F C Wq. For

W C Wq, if node n is a player-0 node with an edge into W or a player-1 node with

all edges into W, then n € Wq.

Thus, let WS = F. For i > 1, WJ = UW^o U where

WJo = {no € No\3n € Wt\ (no,n) € E}

WSx = {ni € M|(ni,n) £ E n e

The sequence WJ is non-decreasing. Since AT is a finite set, for some f, WJ = Wq^^; let
I be the least such i. Wq can be computed in 0(|.E1) time. It is clear that Wq C Wq;

before we prove that Wo = Wq we'll need a couple of definitions.
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Definition 3.4.1 Given a graph-game Q = {G = {N = NqU 7Vi, E = EqU Ei)^ (j)),

and a subset of nodes S C N, if every node n £ S has an edge in S, i.e., if there exists

n' £ S such that (n,n') € E, then the subgame of Q on the node-set S is said to be

well defined and is the graph game Qs = (G' = (N' = NqU N[,E' = EqU E'l)^ </)'),

where Nl^ = SnNo, N{ = SnNi, E'q = EoniNf^x N[), E[ = Ein(N[x and<l>'

is a Boolean formula over S such that for CCS,C\=(I>'^C\=<I>. If is a Rabin

or Streett formula, pair {Li, Ui) of Q gets transformed to {L\, Uf) = [Li n 5, C/i n S)

in Qs.

Definition 3.4.2 Given a graph-game Q = (G = {N = NqU Ni,E = EqU Ei),(f))

and a subgame Q' = {G' = {N' = NqU N[,E' = EqU E[), <j>') of Q, we say player-i

controls the exits from Q', or controls Q', if all edges out of subgame Q' are from

player-i nodes, i.e., if (ni,n2) € E, and rii € N' and n2 £ N\N', then (ni,n2) € Ei.

We can then observe the following easy lemma:

Lemma 3.4.1 Given a graph-game Q = (G = {N = NqU Ni,E = EqU Ei), (j>) and

a subgame Qs = {G' = {N' = NqU N[,E' = EqU E[), <j>') of Q on node-set S C N

controlled by player-i, i £ {0,1}, if player-i wins in Qs from Wq C S, then he also

wins in Q from Wq by the same strategy, i.e., Wq C Wq.

We now return to proving that for the open game Wq = Wq.

Proposition 3.4.2 The set of nodes N \ Wq induces a subgame of Q, and player-1

controls the exits from the subgame.

Proof: Let N' = N\ Wq. Consider n £ N\ Wq.

If n is a player-1 node and all its edges are to N \N' then n £ Wq^^. But
Wqi^ \ Wq = 0, a contradiction. Thus every player-1 node in N' has an edge in N'.

Ifn isa player-0 node with anedge to N\N', again n £ WIq^, but Woo"^\Wo = 0.
Thus every player-0 node in N' has all edges from it to nodes in N'.

Therefore N' induces a subgame of Q controlled by player-1. •

Since F C Wq, N' = N\Wq C F. By Prop. 3.4.2, player-1 controls the subgame

on the node-set N', and since she can stay out of F forever she wins from N', i.e.,

W\ = N'. Therefore, Wq C Wq = 0, and Wq —Wq.
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Both players have memory-less winning strategies: fora player-0 nodeno € Wq the

edge that caused its inclusion in WJo would suffice, and for a player-1 node ni € Wi

an edge from rii that lies wholly within Wi would suffice.

Since open and closed game are complementary, we have seen that we can decide

open and closed games, and derive memory-less strategies for the winner in time

linear in the sizeof the game graph. For the subsequent sections we shall assume the

following two procedures:

1. Open{G,F,i), for a game graph G and F a subset of its nodes, returns the

nodes from which player-z can win assuming that player-i's objective is to visit

a node from F.

2. Closed(G^T,i)^ for a game graph G and T a subset of its nodes, returns the

nodes from which player-i can win by ensuring that the play never leaves the

set T (T for "trap").

3.5 Buchi and Co-Buchi games

In a Buchi graph game Q = {G = (N = NqU Ni, E = EqU Ei), F), a play is a

win for player-0 if it includes infinitely many visits to F. Let Wq = N. For i > 1 we

compute Wq, WI, and Wq as follows.

Wq = Open{Gy^i^-^,F n Wq-\0)

T{ = Wt'\Wi

Wi = OpeTi{Gy^i-ii'Fl,l)

wi = wt'\wi

Wq is the set of nodes in the subgame Qw^-^ which player-0 can ensure a visit
to F. If the play remains in the subgame player-1 wins from the set Tf, since

she can ensure that the play stays out of F (trap it in F). And, here (in if

player-1 can reach Tf she wins also, namely from the set W^. The remaining nodes.
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Wq) induce a subgame of (and hence ^), exits out of which are controlled by
player-0.

Player-1 clearly wins from Tf, and hence from Wi. Player-1 can win from W}

within the subgame Gw '̂') if pi^-y were to leave Wj it would enter from
where player-1 wins. By induction on i, it can be shown that player-1 wins from

w, = Ui>iWl

w;

Figure 3.6: The partition of winning nodes in a Buchi game

Intuitively, Ui>iWi is comprised of funnels (WJ \ Tl) and traps (Tf) as shown in

Figure 3.6. If the play remains in a trap, player-1 wins by keeping the play out of

F. Player-0 can however cause a descent into a funnel/trap system indexed by a
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smaller number from where player-1 funnels the play into another trap. The play

may descend this way only a finite number of times, as it will eventually reach

from where no more descents are possible; player-1 wins from Wi as eventually the

play will remain forever in a trap.

Since WJ is a non-increasing sequence, for some e, Wq = Let I be the least

such i. The claim is that player-0 wins from Wq. Since Wq"^^ = Wq, W/ = 0, and

Wq = Wq , and from every node in Wq player-0 can ensure a visit to F. Since Wq

induces a subgame controlled by player-0, every player-0 node in Fn Wq ^

into Wq, and all edges from player-1 nodes in FhWq are into Wq. Player-0 can thus

repeatedly visit F from Wq, and hence wins the game from Wq.

Therefore player-0 wins from Wq = Wq and player-1 from W\ = and

both have players have memory-less winning strategies. Since 1 < / < I^V], deciding

a Buchi or Co-Buchi game takes 0(lAr||Fl) time. It is interesting that given a partition

of the nodes N = WqUWi in a Buchi game into nodes from which player-0 and player-1

win, we can derive a memory-lessstrategy for player-0 in linear (0(|F|)) time, whereas

it is not clear how to avoid deciding the game again to derive a memory-less strategy

for player-1 from the set Wi. However, given the winning nodes for a game in GsHFa,

we can derive memory-less strategies for both players in linear time.

3.6 1-pair Rabin and Streett games

In a 1-pair Rabin game Q = {G = {N = NqU Ni,E = Fq U Fi),Li A -^Ui), a

play is a win for player-0 if it includes infinitely many visits to Li and is eventually

contained in U\. We compute the nodes in Ui from which player-0 can ensure that

every play remains in Ui and visits L\ infinitely; and, any nodes from which player-0

can reach such nodes is also winning for him. This is somewhat analogous to the case

of computing the set of states in an a;-automaton from which the language generated

is non-empty, where we compute the strongly connected components that contain an

accepting strongly connected set, and then the states that can reach such SCCs.

We first compute Wq = Close{Q,Ui,0), the set of nodes in Ui that player-0 can

trap the play in. Wq induces a subgame of Q controlled by player-0, and he can win
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in this subgame Gw^ provided he can ensure visits to Li infinitely often. Thus he wins
from the winning nodes in the Buchi subgame Gw^ ^ memory-less strategy. Let
Wq be the set of nodes in Wq from which he can win the Buchi game Gwg- He can

clearly also win from Wq = Open{G, Wq ,0) with a memory-less strategy. Ar\ Wq is a

subgame, exits out of which are controlled by player-1 (and all exits are to winning

nodes for player-0). Therefore, a winning strategy for either player in this subgame

will also be a winning strategy in the game G- We recursively repeat the computation

of Wq, Wq, and Wq, in the subgame Gnxwq^ and so on.

Finally, in some subgame, let it be ^ = (G = (iV = iVoUiVi, E = EqUEi), LiA-»Ui)

without loss of generality, Wq = 0.

We claim that player-1 wins here by a memory-less strategy. Within the subgame

Gw§ she wins by her memory-less strategy to satisfy -iLi. If player-0 gets the play to
stray out of Wq into N \ Wq, she can force a visit to U\. Thus either:

1. the play remains eventually in Wq, and player-1 wins by satisfying -iLi, or

2. the play enters N \ W§ infinitely often and player-1 wins again by visiting Ui

infinitely often.

Thus, either way player-1 is able to win by satisfying her winning condition UiW->Li.

Theabove algorithm to decide the 1-pair Rabin game has time complexity 0(n^|^|)

{WS is computed in 0{\E\) time; Wq in 0{n\E\) time, at most n times). It is inter

esting to note that given a partition of the nodes of a 1-pair Rabin game into the

winning nodes for player-0 and player-1, we can derive a memory-less strategy for

player-1 (as above) in 0{n\E\) time, whereas it is not clear how to derive player-O's

strategy without repeating the computation to decide the game again.

Our algorithm to decidea 1-pair Rabin game is different from Emersonand Jutla's

algorithm [14] to decide a 1-pairRabin game, although they share the same complex

ity. However, our algorithm is simpler, easier to prove the correctness of, and is

constructive in the sense that we also derive player-1's memory-less winning strategy.

We present their algorithm next and supply our constructive correctness proof.
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3.6.1 Emerson-Jutla's zilgorithm

Let W§ = N. For i > 1, compute WJ", W^, juid as follows:

Wt = Open(e^i-., Li n 0)

W!'' = Open(gyy^i, \ WS", 1)

Wi = Ctose(e(H'j.\M.j»), Ui n (tFi" \ TFf), 0)

is the set of nodes from which player-0 can ensure a visit to Li, and of these

nodes, from those in Wq^ pIayer-1 can take the play out of Wq", WJ" \ induces a

subgame controlled by player-0, and Wq is the set of nodes in this subgame that are

in Ui and from which player-0 can ensure that the play never leaves Ui. Wq again

induces a subgame controlled by player-0. For increzising i, Wq is a non-increasing

sequence, and for some i > 0,

If I is the least such i and Wq is non-empty, then it is clear that player-0 has a

memory-less winning strategy from Wq. Also, nodes from which player-0 can "reach"

Wq, namely Wq - Open{Q, Wo^0), are also winning for him, N\ Wq is a subgame

exits out of which are controlled by player-1 (and all exits are to winning nodes for

player-0), and we recursively repeat the above computation in the subgame. The form

of Emerson-Jutla's algorithm is different from ours: they first enforce "touching" Li

and then remaining in C/i; we do the reverse. Their proof of correctness is based on

properties of temporal fixed-point logic operators and is not intuitive. We give below

a new game-theoretic proof of the correctness of their algorithm.

In some final subgame, the set of winning nodes for player-0 will be empty. We

argue that player-1 has a memory-less winning strategy in this subgame. Let the final

subgame he Q = {G = (N = NqU Ni, E = EqU Ei), Li A

Let Wo~^\WJ define the layer; Wo~^\Wo = where W} = Wo~^\Wo\
Wi. In Wl^ player-1 has a memory-less strategy to ensure that the play is eventually

contained in Thus, if the play remains in and enters W}^, player-1 wins. If

the play visits the layer but not i.e., it visits W^, then player-1 can ensure

that the play visits Ui. Therefore, if the play remains in a certain layer player-1

ensures that she satisfies the condition Ui V -«Li.
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What changes of layers are possible? Recall that Wq is a subgame controlled by

player-0. If the play leaves the layer from it h£is to go to a layer indexed by a

lower i; call this a descent. Since exits from are controlled by player-1 she wins

from there. Thus if the play always descends the play will eventually come to

and player-1 will win by guaranteeing -iLi. During any ascent of layer, player-1 can

ensure that the play transits through Ui. Therefore player-1 wins even if the play

changes layers.

3.7 General Rabin and Streett games

In this section we consider deciding graph games where the winning condition is

specified by two or more Rabin or Streett pairs. If we consider Streett games where

the winning condition is specified with two or more pairs, it is no more true that the

winner necessarily has a memory-less strategy. Consider the game graph of Figure

3.7 with player-O's winning condition specified by two Streett pairs: ({B},0) and

({C},0). The only node with a choice is the player-0 node labeled A. Fixing the edge

from A results in a loss for him.

Figure 3.7: A Game where player-0 wins but only with memory

Unlike with deciding non-emptiness of Rabin (j-automata, for deciding a Rabin

game it is not sufficient to decide the winner of appropriate 1-pair games—the inter

action between the pairs has to be considered.

Consider the game graph of Figure 3.8, with winning condition for player-0 spec

ified by the Rabin pairs: {{C}, {A, B,C,B}) and ({B},{A,jB,C, D,B,F,G,i7}).

From no node can player-0 ensure that every play satisfies one of the pairs (notice
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Figure 3.8: A Rabin game where 2 pairs togetherdetermine a win for player-0
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player-0 has only one edge out of each node).

Therefore, the "interaction" between pairs has to be considered and the algorithm

to decide a multiple pair Rabin game Q = {G = (N = NoUNiyE = EoUEi)^

-iZ/j)) is recursive. For the pair, (Lj^Uj) we compute the set of nodes in t/), Wq?

from which player-0 can ensure that the play remains in Uj, and visits Lj infinitely

often or satisfies one of the other pairs.

Any node from which player-1 can take the play to a node in Uj cannot be in Wq.

Wi is computed as the limit ofthe non-increasing sequence, where

Wi^ = Close{g,Uj,0),

and for i > 1, Wq* computed as follows:

Ai* = Open(G^w-n,Lj D
'•^0

jBJ* = DecideRabinGame{Q^j(i-i)y^j^ji, {1,2,... ,h}\{j})

Wi' = Close{G^ni-n,Ai' U 0)

AJ* is the set of nodes in the subgame from where player-0 can ensure

a visit to Lj. In the game in the subgame on the node set \ Aj*,
is the set of nodes from which player-0 can win by satisfying one of the other

pairs. DecideRabinGame is the recursive procedure being defined here, that returns

the winning nodes for player-0, given the game as the first argument, and the indices

of the relevant pairs as the second argument (for an empty set of pairs it returns the

emptyset). is the subset ofAj* UB^* in the subgame that player-0 can
trap the play in.

To win from player-0 has to be again be able to either ensure a visit to

Lj or satisfy the other pairs. The sequence is non-increasing and for

some least Ij, Wq^ = It is clear that player-0 has a memory-less strategy
from nodes in to ensure that the play remains in C/j, and either visits Lj

infinitely often or satisfies one of the other pairs, and thus win from Wq.
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Lemma 3.7.1 In a graph game Q —{G = (iV, E)^<f>), if player-i has a memory-less

winning strategy from Xi C N and a memory-less winning strategy from X2 C N,

then he has a memory-less winning strategy from X\\JX2'

By Lemma 3.7.1 (easy to prove), player-O also has a memory-less winning strategy

from uJ_iWo and hence from any nodes from where he can reach uJ-jPTo»
Open{Q, Wq ,0). The remaining nodes are a subgame controlled by player-1, and

we recompute, as above, WJ and so on.

In some final subgame, let it be 0 = {G = {N = NqUNi^E = EqUEi)^ Vj=i(^j ^

-Uj)), for each pair, j € {1,2,... , h}, WJ = 0. We show next that player-1 wins in
this subgame.

For i > 1, define the i^^ layer to be the set \ PF'o\ = PP^o^"^^ \
{A^q UBJ*). The i^^ layer is also the set = Open(0^i{i-i),Bj\l). If the play
remains in PP'o^*~^\ and enters the i^^ layer, player-1 wins as she can drive the play to
Dq and win in Bj* by beating the other pairs and, of course, the pair as Dq C Lj.

However, Q m-i) is controlled by player-O and he can divert the play out of

In this case, the play would have to descend to a lower layer—a layer indexed by a

lower i. If the play eventually descends out of layer 1 (out ofPFq^), player-1 can drive
the play to Uj.

For an /i-pair Rabin game where /i > 1, as in Figure 3.7 (complement the pairs),

player-1 may need memory to win. We synthesize here a strategy for player-1 that

uses h\ amount of memory. For each of the Rabin pairs (Z/j,Bj), player-1 has her

strategy against the pair, as discussed above, that ensures she can either discharge

Uj, or eventually trap the play in layer z > 1 and Lj and beat the other pairs.

Player-l's strategy to win the game uses her strategy against the various pairs as

follows. She first plays her strategy against the 1®' pair. Either the play reaches Ui or

she wins the game. When the play reaches Ui, if it does, she switches to her strategy

against the 2^^ pair. In this manner, while playing her strategy against the pair,

ifthe play reaches Uj, she switches to her strategy against the (j +1)*'̂ pair; from Uh^
she switches to her strategy against the 1®* pair. Thus she wins, as she guarantees

her winning condition A^_i(t/j V^Lj), with h amount ofmemory and her strategies
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against the h pairs. Her total memory requirement is hi, as the strategy for each

pair involves a subgame with one less pair and the 1-pair game admits a memory-less

strategy.

Time complexity of DecideRabinGame

The dominant step in the computation of Wq* in the subgame is the
"0

computation of that involves a recursive call to DeddeRahinGame on a smaller

game with one less pair. Since Ij < n, computation of Wq requires at most n recursive

calls. Deciding a game, may require computing the Wqs-t most n times. Therefore it

takes < n^/i*n^(/i—1)*.. time,which is n^^h\\E\, and 0({n^hY\E\) time,

to decide the Rabin game Q —{G = {N = NqU Ni,E = EqU Ei), A-*Ui)).

3.7.1 Emerson-Jutla's algorithm

Emerson-Jutla's algorithm [14] differs from ours presented above: the steps are

reordered, and the proof is a little more complicated, but the computational com

plexity of the algorithms is the same as ours. They again compute Wq , but start with

= N, and for z > 1, compute:

4' = Open{g^^,H>-u,Lj n

Bq* = EJDecideRabinGame{Q^Hi-i)^^ji, {1,2,... ,h}\ {j})

Cf = Open(g^H,.n, \ (4" UBJ"), 1)
"0

Wi' = Close{g^Hi.r),Uj n (4* UBi%0)

Note that BJ* is different as it calls EJDecideRabinGame. Cf is the set of nodes

in the subgame from which player-1 can ensure that the play reaches the set
^ y therefore wins in the subgame from the set C(\

is the set of nodes in Uj, and either Aq or Bq, that player-0 can trap the play

in.

To win from player-0 has to be again be able to either ensure a visit to Lj

or satisfy the other pairs. The sequence Wq^, ... is non-increasing and for some
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least Ij, Again, player-0 has a memory-less strategy from nodes in

= Wq^ to ensure that the play remains in Uj, and either visits Lj infinitely often
or satisfies one of the other pairs. Also, player-0 wins from any nodes from where

he can reach Open{Q,\j'̂ _iWQ^0). The remaining nodes are a

subgame controlled by player-1, and we recompute, as above, Wq and so on.

In some final subgame, for each pair j € {1,2,... ,/i}, = 0, and we show

next that player-1 wins in this subgame. Let the final subgame he G = {G = (N =

NqUNi.E = EqUEl), Vj=i(^j A-^))' As before we shall define player-l's strategy
against each pair, and compose her winning strategy from these pairs giving a strategy

that uses at most h\ memory.

Her strategy against a pair is expectedly defined a little differently . Let Df =

\ {-^0 UBj*). Within subgame G^m-Di player-1 wins from Df, and Cf, but
player-0 could cause the play to stray out of the set However, player-1 clearly

wins from as she clearly has the play trapped in D{^.
Let E(^ = \ Wq* \ Cf. From E{* player-1 can force a visit to Uj. For

2 > 1, define the layer to be the set nodes Ej^ Li Thus, for j G {1,2,... , /i},

N = ujLiE{* Li C{\ For 2> 1, player-0 may be able to divert the play out of
but the play would have to descend to a lower layer—a layer indexed by a smaller

2. If the play ever visits a node in , player-1 can discharge Uj. If the play

forever remains in player-1 wins by guaranteeing that the play eventually

gets trapped in Lj, and satisfies each of the other pairs.

3.7.2 Deciding Chain games

In a chain game, both players' winning conditions can be written as Rabin formu

lae, and therefore both players have memory-less winning strategies from the nodes

that they win from. In this section we evaluate the complexity of deciding a chain

game and deriving winning strategies for both players.

Let g = {G = (N = NoU NuE = EoU £i), A U,)) be a Rabin chain

game; the sets comprising the pairs form a chain:

LiCUiCLiCU2C...LkCUk
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The winning condition, ^ ^») expressed equivalently in our favored

syntax as Vi=i{-^5 ^ where LJ = Ui \ Li and U- = Li = N\ Li. For p,q such

that 1 < p < 9 < A;, Lp n = 0.
Deciding the game applying the algorithm DeddeRahinGame^ consider the com

putation of for 1 < j < A;. Recall that Wq is the set of nodes in Uj from which

player-0 can ensure that the play remains in Uj and either reaches LJ infinitely often
or satisfies one of the other pairs. Since C/j n Xj, = 0, for 1 < p < j, the computation

of involves a recursion on the set of pairs with indices greater than j, i.e., the

pairs indexed by the set j < p < k. Therefore the dominant step in deciding a chain

game is the computation of Wq (Bq^), and the chain game can be decided in time

* ... * n^lB|, or 0{n'̂ ^\E\) time.

It is also easier to derive the winning strategy for player-1 in a chain game. Her

winning strategy is just her strategy against the Rabin pair (L[,U[). Even upon

reaching C/{, player-1 continues with her strategy against Rabin-pair {L'i,U[). There

are two possibilities:

1. Either the play eventually remains in Wj® and player-1 wins by trapping the

play in L[ and beating the other pairs, or

2. the play visits ?7{, i.e., Xi, infinitely often. This is again a win for her as her

winning condition is:

fc-i

- (-^Lj At/j) = (ii) V (-^Ui Aii+l) V(-.f/,)
J=1

Since player-1 sticks to her strategy against the first pair, it can be shown formally

by induction on the number of pairs that her strategy is memory-less.

3.7.3 Deciding a Rabin game in "Rabin Index time"

One ofthe main results ofChapter 2was the translation DR{n, h) DRC{nh^^ k).

This algorithm can also be used to translate a Rabin game Q = {G = {N =

NqU Ni,E = Bo UEi)^\/'l^i(Li A->Ui)) into an equivalent Rabin chain game Q' =
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{G' = {N' = iV^ U N[,E' = U£70. ^i)>' where k is the Rabin In

dex of the game language. The resulting chain game can be decided in 0{m^^\E'\)

time, where m = \N'\^ or 0{{nh^)'̂ ^h'̂ \E\)^ i.e., 0(n^^h'̂ ^ '̂̂ ^\E\) time. This time-
complexity may not compare favorably with 0{n^h^\E\)—the time to decide the

Rabin game via DeddeRahinGame—especially if the Rabin Index is high. Further

more, the memory-less strategy derived for player-0 in Q' may be needlessly large

when compared to the memory-less strategy that Q admits for him. We show next

how to decide the Rabin game and derive a memory-less strategy for player-0 in time

that compares favorably with deciding the Rabin game (via DeddeRahinGame) no

matter what the Rabin Index of the game language is.

We exploit the special structure of the chain game (automaton) returned by

DRA2DRCA (Section 2.10.2, Chapter 2), to devise a procedure to decide the winner

in a Rabin game Q= {G = (N = NqU Ni^E = EqU £"1), \/t=i(^i ^
0(n'̂ ^h^\E\)^ and derive a memory-less winning strategy for player-0 from hiswinning

nodes, and a strategy that uses at most amount of memory for player-1 from her

winning nodes. Note 0(n'^''h''\E\) compares favorably with 0{n^^h^\E\) no matter

what the RI ^ < h is.

Theorem 3.7.2 Let Q= {G = {N = NqU ATi, E = EqU £1), V?=i{£i ^ ^
Rabin game withgame language ofRabin Indexk, and Q' = (G' = {N' = NqUN[^ E' =

£oU£[), vJ_i(-«Cj-A£J)) be the equivalent minimum-pair Rabin chain game produced

by DRA2DRCA. I/Wq uWi = N, is the partition of the nodes N into respectively

the nodes from which player-0 and player-l win, then:

1. Player-0 has a memory-less winning strategy to win from Wq,

2. Player-1 has a winning strategy from Wi that uses at most h^ memory, and

is a memory-less strategy for her in the subgame of Q' on the node set Wi x

{1,2,... ^hy, and

3. Wo, Wi, and the players' winning strategies (as above) can be computed in time

0{n^^h^\E\) time, where n = \N\.
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Proof: By induction on the Rabin Index, A:, of the game language.

Base case: the game language of Q has Rabin Index 1. The minimum pair equiv

alent Rabin chain game is Q' —{G' = {N' = Nq\JN[,E' = EqU E[)^-^C[ A DJ),

and the winning condition may be rewritten as L[ A where L'l = D[\C[ and

U[ = €[. Recall, Q' has h copies of the game graph G, i.e., AT' = iV x {1,2,... , h},

where edges from nodes in C( are redirected to point from copy i to copy i +1.

Consider the behavior of DeddeRabinGame on Q'. The first step, computation of

Wq^ = Close(Q\C[yO)^ "decouples" the copies of Q into h disjoint subgames. Thus,

Wq = is comprised of h disjoint sets, each existing wholly within a copy

of Q. Since is essentially a subgame of Q controlled and won by player-0 with a

memory-less strategy, he has a memory-less strategy to win from and

Zq = Open(^,ujLinA^(iyo\)»0) in and Zq x {1,2,... ,/i} in Q'.

Induce a subgame of Q' on the node set N'\(Zq x {1,2,... , h}). On this subgame

again compute Wq®, and so on. In some final subgame, Wq = 0, and we

claim that player-1 wins from each of the nodes in this subgame (let it be Q' without

loss of generality). In piayer-1 has a memory-less strategy to win in the Buchi

game GLio- From N' \ lyj®, she can force a visit to i.e., C[. Therefore player-1
^Oi

can guarantee her winning condition, U[ V from all of N' and win.

Complexity analysis: Wq® is computed in 0{h\E\) time, VFq 0{hn\E\) time, Zq

in 0(\E\) time, and since a maximum of n subgames can be induced, the partition

N = WqUWi and the associated winning strategies can be computed in 0(n'^h\E\)

time.

Induction step: The basic ideais, as in DeddeRabinGame^ to compute W^, the set

of nodes in C/j from which player-0 has a strategy to keep the play in Uj and either
visit Lj infinitely often or satisfy the pairs indexed by m > j (need only consider
larger indices for a chain game). Before we describe the computation of Wq let us

recollect some characteristics of DRA2DRCA. At the end of iteration i, 1 < i < A:,

the game graph Gi = (Gi = (AT^, Ei), <f>i Vipi) has node set ATj = AT x {1,2,... , A}*,
= V5-^i(-«niVj(Cj) Anjv, (jDJ)), and 4>i is equivalent tothe formula Ai^j);

pair (C'i^D'i) ((Lj, DJ)) gets defined on A/i. The game Gi is equivalent to and

transitions between copies of G in Gi are from nodes in n;Vi(G,-).
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Wq is computed starting on Qj. Wq® decouples the game Qj into disjoint
subgames, one on each copy of Q in Qj. can therefore be computed separately

on each of the copies by computing as in DecideRabinGame^ Aj*, Bq, and Wq until

Wq* = The dominant step in each iteration, the computation of Bj*, by the
induction hypothesis, can be done in time, as the Rabin Index of

the subgame of is k-j (for j < k). Thus, computing on each copy

takes time, and on the copies 0{n^^^~^ '̂̂ ^h^\E\) time. By
Lemma 3.7.1, being comprised essentially of memory-less strategies for player-0

on disjoint subgames of G^ yields a memory-less strategy for him from nA^(kro)-

The computationally dominant among the is Wq taking 0(n'̂ ^~^h'̂ \E\) time.
From Wq^ Wq^ ..., Wq, we canconstruct a memory-less winning strategy for player-0

in Gfrom uJ^iIlArCW '̂), and Zq = Open{G, uJ=injv(Wo)> 0)- Repeat the computation
ofWi on the subgames Gn\Zo. and

Note that the "copy replication" property holds of the subgames also. There are

at most n such subgames, and Wq can bedetermined in 0{Tt^^h^\E\) time. If PFi ^ 0,

in some final subgame on the node set Wi = N\Wq, Wq = ® 1 ^ ^

We claim that player-l's winning strategy against the first Rabin pair is

a strategy that uses memory and is a memory-less strategy for her from W\ x

{1,2,... ,/i}* in G'- Consider the computation of Wq as described above on G\ =

(Gi = (iVi,Bi),0i V^i>. From Ni \ Wq® player-1 has a memory-less strategy to

drive the play to Il^^i(U[), and hence from (iVi \ Wq®) x {1,2,... , h}^~^ a memory-
less strategy to drive the play to C/{. Wq on copy m, 1 < m < h, can be written

^ ^om ~ ^Om ^Om bl... U where = Open(Gi
•*0m

By the induction hypothesis, within player-1 has a strategy to beat the Rabin

pairs indexed 2 through k, i.e., ensure ->01, and this strategy uses amount of

memory, and is a memory-less strategy for her in the subgame of G' on the node set

BJi, X{1,2,... , From \ x (1,2,... , she has a memory-less

strategy to reach x {1,2,... ,

Player-1's strategy on each copy of G in Gi thus requires and is a memory-less

strategy on an appropriate subgame of G'] the h copies of G in Gi together yield a

winning strategy for player-1 of the desired form. •
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The special structure of the game returned by DRA2DRCA can be exploited to

not only decide a Rabin game faster via DecideRabinGame, but it also makes it par

ticularly suited to a parallel implementation. All the computations are restricted to

copies, and the computation of Wq on the copies in Qj can happen in parallel; the in

formation flow (arising from the recursion) also gives the algorithm a nice hierarchical

property.

3.7.4 Putting it in perspective

As we saw, Rabin games admit memory-less winning strategies for player-0, and

both players' winning strategies can be memory-less in chain games. Emerson [13]

proved the existence—without synthesizing a strategy—of a memory-less strategy for

player-0 in a Rabin game, and his proof can be inherited with almost no modification

to yield the following theorem and corollary.

Theorem 3.7.3 Let Q = (G, <^) be a graph game that is negative union closed. Then

player-0 has a memory-less strategy.

Corollary 3.7.4 (see also [34]) Let Q = (G,(f>) be a graph game that is both positive

and negative union closed. Then player-0 and player-1 have memory-less winning

strategies from their winning nodes.

It follows from Theorem 3.7.3 [13] that deciding if player-0 wins a Rabin game is in

ATP, and deciding the winner in a Chain gameis in NPn Co-NP. Emerson &: Jutla

[14] proved that the problem of deciding if player-0 (player-1) wins a Rabin game is

NP-hard (Co-NP-hard).

Our main technical contribution is an algorithm to decide a Rabin game that is

polynomial in the number of states and exponential only in the Rabin Index, of time

complexity 0(n'̂ ^h^\E\), and is essentially optimum because the problem is NP-hard.

McNaughton, in a very nice paper [34], introduced game graphs and considered

games with Muller winning condition. His paper is particularly noteworthy for its

clean and clear development of game graphs, and useful notions such as subgames.

He clarified and gave a simple exposition of the earlier work [7, 20] on deciding Muller
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games, and the existence of Latest Visitation Record (LVR)-based—a particular form

of memory-based—strategies for both players in Muller games.

Besides the technical merits of our synthesis algorithm, inspired by McNaugton, we

believe we have given a simple, natural, and intuitive treatment of Rabin and Streett

games. The form of our algorithm is related to and influenced by that of [14], where

they consider the problem of checking the nonemptiness of tree automata. There is

an intimate connection between tree automata and games, and this connection and

the relevance ofour results to tree automata is treated in the next section. In [14], the

problem of deciding tree automata nonemptiness is viewed as a pseudo-model checking

in a temporal logic with a fixed point construct. Their algorithm is exponential in

the number of pairs and polynomial in the number of states, their proof technique is

more complicated, and their algorithm is not constructive—they appeal to Martin's

theorem on the determinaoy of Borel games to deduce the winner in a Streett game,

and do not exhibit the strategy for the player with Streett winning condition.

[38] is another algorithm that is exponential in the number ofpairs and based on
translating the problem into one of checking nonemptiness of a finite tree automata.

[51] considers the supervisory control problem of Rabin automata and adapts [14]'s
algorithm, but supplies a different proof. [38, 51] also do not construct a strategy for

the player with Streett winning condition.

One way to extract a winning strategy for the player with the Streett winning

condition is to translate the game into an equivalent Chain game. McNaughton [34]

provides an algorithm for deciding a chain game that is exponential in the number

of nodes of the game graph. Recently, Puri [39] has devised an algorithm to decide

a chain game that is exponential in the number of nodes, and is based on iteratively
improving players' strategies.

3.8 Games and tree automata

Tree automata—finite automata accepting infinite trees—were introduced by Ra

bin in 1969 and suggested as the tool to solve Church's problem [40]. We consider
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finite automata on labeled, infinite binary trees^. The set {0,1}* can be viewed as

the infinite binary tree, where the root node is the empty string e and eaoh node 77

has two successors: the 0-successor 77O and the 1-successor rjl [14]. An infinite path

through the tree is a sequence 7; € {0,1}*^. If E is a finite alphabet, a E-valued tree

is a labeling t: {0,1}* —> E.

A finite automaton A on infinite binary E-valued trees (henceforth tree automa

ton) is ^ = (T, ^), where T is a transition structure and is the acceptance condition.

The transition structure is T = {Q, E, S) where Q is a finite set of states, qo€Q is

the initial state, E is a finite alphabet, and (JCQxExQxQis the transition relation.

If the transition relation is alternately expressible as a function S:QxT,—>QxQ

the tree automaton is termed deterministic, and nondeterministic otherwise. The

acceptance condition is a Boolean formula over the states Q (as with w-automata),

and using (for instance) a Rabin formula for the acceptance condition gives rise to a

Rabin tree automata (RTA).

A run of ^ on a E-valued tree t is a Q-valued tree vt : {0,1}* Q, such that

= Qo and for all 77 € {0,1}*, (ri(77),t(77),rt(770),rt(77l)) G 6. We say that A
accepts tree t provided in the run rt of t on A^ for every infinite Q-labeled path a of

n, <l)[inf(ce)] = true. The language of a tree automaton A= {T = (Q,9o?S,5),0),

denoted Lt{A) is the set of all E-valued trees that it accepts.

There is a close relation between tree automata and two-person Gale-Stewart

games.

A tree-automaton can be viewed as a game between the two players: the E-player

(player-0) and the path-player (^layer-1). More formally, given a deterministic TA

A = ((Q, S, (J), <^), define the corresponding game automaton as = ((Q,qo^ Eq x

Ei,(y'),(^) where Eq = E, Ei = {0,1}, and %,a) = (S'(q,{a,0)),S'(q,{aA)))' Sim

ilarly, given a deterministic game automaton a corresponding DTA can be inferred.

Hence, for a DTA the corresponding Game automaton (GA) is well-defined and unique

and vice-versa.

A E-valued tree accepted by a tree automaton can be viewed as a strategy for

^extension to k-aiy trees is straightforward
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the E-player in the corresponding game automaton. Hence, Player-0 has a winning

strategy in the game automaton iff the corresponding tree automaton has a non

empty language. A regular strategy for player-0 defines a regular tree accepted by

the tree automaton.

Can nondeterministic TA be translated to games? Let tt : E' —> E be a function

between two finite alphabets E' and E. Given a E'-valued tree ti : {0,1}* E', let

7r(ti) denote the E-valued tree t2 : {0,1}* E obtained by composing ti and tt.

Lemma 3.8.1 Suppose A = {T = (Qj9ojS,5),(^) is a nondeterministic TA. Then

there exists a DTA A' = {V = (0,gojS',(5'),<A>, a projection tt : E' -> E such

that L(A) = {t\t' GLi(A') and t = 7r(t')}

Proof: The construction is simple and and a well known folk fact. E' = E x Q x Q,

and for a G E, 7r{a,gi,g2) = a. (0,91,92)) = (91,92) provided (91,92) ^ <^(9,0).

A' can be completed if necessary by the addition of a "dead" state. •

From Lemma 3.8.1 and the correspondence between DTA and games, we deduce

that we can decide the non-emptiness of Rabin and Streett TA with our algorithms

for deciding games, and extract a regular tree accepted by the TA if it has a non

empty language. For a DRTA A= {T = (Q, 90, E,<5), vjLi(LiA-•C/t), the translation

implies that we can decide if Lt{A) ^ 0 in 0{n'̂ ^h^\S\), which is time as

|(5| = 0(n) assuming E is of constant size, and where n = |Q|, and k is the Rabin

Index of the game language of the game automaton corresponding to the DRTA A.

However for nondeterministic TA the translation to a game automaton results

in an alphabet of non-constant size, which in turn results in an equivalent graph

game where the number of nodes is quadratic in the number of states of the TA, and

the number of edges is also possibly larger than the size of the transition relation

of the TA. We can avoid some of this blow-up by translating the TA A = (T =

(Q,9o, E, 5), (p) directly into a graph gameQ= {G = {N = NqUNi,E = EqUEi), < '̂),

where:

• No = Q, Ni = {{?,<7,9i,92)1(9, <7,91,92) e 5}

• Eo = {(9,(9,<7,9i,92))I(9,«7,9i,92) ^ <S}
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• El = {{(«,o-,9i,92),9i)1(9,<7.9i.92) € <5} U{((?,a,9i,g2).92)l(5i<7>?i.92) € 5}

• (!>' is defined to be such that for 5 C iV, 5 ^ 5 fl ATq f= If is

a Rabin or Streett formula, then a pair (Lj, C/i) in <t> gets translated to pair

{LJ,C/;) = (Li U (Li X{(9,(7,91,^2)1(9,0^,91,92) € Ni and 9 G Li}),Ui U (Ui x

{(9,^^,91,92)1(9,^^,91,92) e Ni and 9€ C/i}))

Therefore \E\ = 0(1(J|), and jiVj = 0(1(^1) and we can check for the nonemptiness of

an /i-pair RTA in 0(m^^*'"^/i^) time, where m = jjj and k is the Rabin Index of the

corresponding game language (of the graph game).

Our translations between different types of deterministic cj-automata can thus be

used to also translate between different kinds of tree automata. Also, we can check for

nonemptiness of a DRTA in time that is exponential in the Rabin Index of the game

language of the corresponding game automaton. For a given DRTA, let us define

the Rabin Index of the language of the tree automaton as the minimum number of

pairs required to realize the language of the tree automaton as a DRTA. In fact, tree

automata are more intricate than (j-automata, and the nondeterministic variants of

all acceptance conditions are strictly more expressive than the deterministic variants;

one can therefore also define the Rabin Index for nondeterministic TA.

While the general problem of the minimization of the number of pairs in a deter

ministic Rabin TA and nondeterministic RTA is more difficult than for deterministic

cj-automata, we identify a special case that we can solve.

Definition 3.8.1 We say aTA A = {T = (Q, 90, S, S), <f)) is trim provided for every

s eQ the TA As = (T = (Q, s, S, (5), <l>) accepts some tree, i.e., Lt{As) # 0.

Theorem 3.8.2 Given a trim DRTA A, let Ac be the corresponding game automa

ton. Suppose Bq is obtained from Ac by minimizing the number of pairs. Then

the DRTA B corresponding to Bq has the minimum number of pairs among DRTA

accepting Lt(A).

Proof: Let be a minimum pair equivalent DRTA, i.e., such that Lt(fA) = Lt(A).

M can be trimmed, i.e., states from which the language accepted is empty deleted,

giving an equivalent DRTA with the same number of pairs.
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We claim that L{Bc) = L{Mg)' Observe that in a trim TA every sequential

accepting run is "part" of some accepting tree run. In a DTA a sequential run denotes

a unique sequence in (E x {0,1})"'. Since the language of the game automaton is

exactly the set of accepting sequential runs it follows that L(Bg) = L(Mg)-

Therefore B is a DRTA with no more pairs than the minimum pair DRTA Ai,

and is a minimum pair DRTA for A. •

3.9 Lower bounds for memory and strategy-size

While the playerwith the Rabin winningcondition has a memory-less strategy, the

player with the Streett or Muller condition may need memory to win. For a Streett

game, we presented an algorithm that synthesized a strategy that uses amount of

memory, where h is the numberof Streett pairs used to specify the winning condition,

and s is the Streett Index of the game language. For Muller games on n nodes, n! is

sufficient amount of memory to implement a winning strategy for either player (see

[34] for this synthesis procedure; alternately the translation from a DMA to DCA
presented in Chapter 2 in conjunction with the algorithm to decide a Chain game

discussed in this chapter yields a synthesis algorithm for Muller games).

How do these synthesis algorithms for Streett and Muller games perform? Is

there an algorithm that can consistently synthesize strategies using less memory, i.e.,

a better upper bound? In this section, we consider lower bounds for the memory

required to implement the winner's strategy when his winning condition is a Streett

or Muller formula. We shall aim to prove, when possible, lower bounds on the sizeof

the smallest FSM implementing the winner's strategy in a game on an w-automaton.

This also implies a lower bound on the memory requiredofa memory-based strategy—

if m is a lower bound on the strategy size, then ^ is a lower bound on the amount

of memory required of a memory-based strategy. Considering only memory-based

strategies overlooks the possibility of minimizing the strategy viewed as an FSM.
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Memory Bounds for Games in Gs

Consider a game defined by the following transition structure (GT) : GT(n) has

n states respectively labeled 1,... , n. Player-O's alphabet is Eq = {S\S C {1,... , n}

and |5| = ff]}, and Player-l's alphabet isEi = {1,... ,n}. IfPlayer-0 plays 5 € Eq,
then player-1 can play any / € 5 (if player-1 plays any I ^ 5 she immediately

forfeits the game), and I is the next state. The transition structure GT along with

an acceptance condition completely defines a game. We will use the same transition

structure, GT, more than once in this section with different acceptance conditions.

The n-state G^-gsune is defined by GT(n) and an acceptance condition in either

Streett or Muller form. In Streett form the pairs are {(5,0)|5 C {1,... ,n} and

|5| = [|]}. In other words a set ^ C {1,.., ,n} is accepted provided |^| > [|J + 1.

There are (p.|) Streett pairs. In Muller form, the acceptance sets are all subsets of
{1,2,... , n} with > elements, i.e., the upper half of the subset lattice.

In a game, in general the next state in the game automaton depends on: the

current state, the choice of player-0 (from Eq), and the choice of player-1 (from Ei).

It is noteworthy that in the transition structure GT, the next state is a function of the

choice made by player-0 and player-1, and is independent of the current state from

which this "1-step" play is made. For example, in GT(4) if player-0 plays {2,4},

player-1 may play either 2 or 4, and if player-1 plays (say) 2, the next state is 2.

Proposition 3.9.1 Player-0 wins the n-state Gg game using memory.

Proof: Player-O's memory at any instant of the game will be a subset of {1,2,... , n}.

Initially let the play be at state mo and the memory be Mq = 0. Player-0 picks

aj € Eo such that mo ^ aj. Let player-1 play to mi € aj; clearly mi ^ mo.
Ml, the current memory is set to {mo}. Now player-0 picks otq € Eo such that

(Tq n (Ml U{mi}) = 0. Let player-1 play to m2 € aj; m2 ^ {mo, mi}. M2 is set to

Ml U{mi}. In this manner, from the current state m^, for i < [§J, player-0 plays

such that H(M,- U{mj) = 0. Mj+i = Mj U{mj until i = LfJ ~

point, we reset the index z, i.e., let mo = m|̂ aj and Mo = 0.

The strategy is winning for player-0, since from mo player-0 is able to ensure visits

to [|J additional distinct states, mi, ..., m^nj. •



101

Next, we establish a lower bound on the size of the strategy required in the Gs-

game.

Theorem 3.9.2 Given n>2, every winning strategy FSM forplayer-0 in the n-state

Gs-game has at least (|-«-|) states.

Proof: Suppose a winning strategy for player-0 has less than (|-|i) states. Since a
strategy for player-0 is a Moore FSM, there exists 5 € Eq that is never selected by

player-0. Player-l's strategy then is to always pick her choice from {1,... ,n} \ 5.
She is guaranteed a "hit", as the only choice by player-0 that will deny her a hit,

namely 5, has been disallowed by assumption. She thus wins as the set of states

visited infinitely often would be smaller than f§].

Therefore player-0 has to choose each distinct ao € Eq; hence every winning

strategy FSM for him (being Moore) has at least as many states as distinct outputs,

i.e., at least (p-j) states, which is also greater than 2^^^. •
The upper bound for the winning strategy for player-0 in the n-node G^-game is

n.(p"ij) and the lower bound is (p-j), asymptotically tight. Since the G<j-game can
be cast with both Muller and Streett conditions, we have Streett and Muller games

in Gs such that the smallest strategy is exponential in the number of states in the

game automaton. The memory furnished by translating the DMA or DSA into an
equivalent DBA may in fact be required.

Bounds for General Muller Games

In a general Muller game (i.e., not necessarily in G^), a sufficient amount of

memory to implement a winning strategy is n! [20, 34], which is where n is

the number of states in the game automaton. What is the lower bound?

Consider the following game (called the n-state general Muller (GM) game): the

transitionstructure isGT(n), and the acceptance condition is induced bythe following

assignment of+ and —to the sets in the subset lattice: S C {1,2,... , n} is assigned
-1- if and only if l^j is even; otherwise it is assigned —.

Proposition 3.9.3 Player-0 wins the n-state GM game if n is even, and player-1

wins if n is odd.
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The strategy used is an LVR-based [20, 34] strategy, where LVR stands for least

visitation record. The LVR is an n length vector of states of the game automaton,

where the state indexed by 1 is the most recently visited state and the state indexed

by n is the least recently visited state. Thus R[l] is the current state. Assume that

the next state is m = R[j]. The LVR at state m \s R' = R[n]... R[j + —

When n is even, player-0 plays the following strategy, called the even-index strat

egy: play ao € Sq such that ao is the set of labels of the even indexed states in the

LVR. So if the LVR is i?, player-0 plays {Rfij | i is even}. To show that this yields a

winning strategy for player-0 it suffices to show that the set of states visited infinitely

often has even cardinality. Since player-0 plays the same set of indices of the LVR

every time, no matter what player-1 does, there is going to be some largest index that

she visits infinitely often; let this index be m; m is even and 2 < m < n. The set of

states visited infinitely often, {R[i] | 1 < i < m}, would then be of size m—an even

number.

Let us illustrate the even-index strategy on the 4-state GM game. Let us say the

game is initially at state 1. Assume without loss of generality that the LVR is [4321];

the only check we need to make now is that 1 is the most recently visited state—the

current state. At this point player-0 plays the set {2,4}. Say player-1 now moves to

state 2. The LVR becomes [4312]. Then player-0 plays {4,1}. Say player-1 plays to

state 4. The LVR becomes [3124]. Now player-0 chooses {2,3}, and so on.

When n is odd, player-1 plays the following strategy: play <7\ G Ei such that Ei is

the set of odd indexed states of the LVR. So if the LVR is R, then player-1 plays from

the set {R[z] | i is odd }, choosing the highest indexed element in case of a choice of

more than one odd-indexed state. Note that since n is odd and player-0 has to choose

a set ofsize f|l, player-0 has to present at least one odd-indexed state, and therefore

player-1 is guaranteed a "hit" every time.

Since player-1 has a set of ff} states to choose from, she is guaranteed a "hit"

no matter what player-0 plays. It is easy to see that no matter what player-0 plays,

player-1 can guarantee that the set of states visited infinitely often is of odd cardi

nality.
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3.9.1 A lower bound for the General Muller game

In this sectionwe attempt to establish an n\ lower bound for the size of a winning

strategy for player-0 in the n-state GM game, for even n.

Definition 3.9.1 In the GM-game on n states, we sayplayer-0 presents the index,

if his play 5 C {1,2,... ,n}, where |5| = ff], contains R[i], i.e., R[i] € S.

Let us consider the GM-game for even n. Consider the following specific strategy for

player-1. She plays the highest odd-indexed state, and if no odd-indexed states are

presented to her, she picks the least even-indexed state (i.e., the state indexed by 2).
Against this strategy of player-1 we first claim that player-0 cannot present any

odd index greater than 1 infinitely often. Suppose not for contradiction. Let the

largest odd index presented infinitely often be A:. It follows that the set of states

visited infinitely often is of size k—an odd number—and therefore player-1 wins.

It is clear that player-0 should never present the index 1, as player-1 can play the

state indexed in the LVR by 1 and the LVR will remain unaltered; this state can be

eliminated from the strategy (there cannot be a self-loop under the state that presents

index 1, as this would mean a loss for him) to result in a smaller strategy.

It thus follows that player-0 can only present the even indices infinitely often.

Therefore, from some point onwards player-0 has to play {R[i] | i is even }. This is

the unique winning strategy for player-0.

Therefore to compute the lower bound, we need to see how many states the small

est strategy FSM employing the even-index strategy has.

We first claim that employing the even-index strategy FSM every distinct LVR

can be reached, i.e., n! different LVRs can be reached. Assume the current LVR is

R[n... 1]. R[2] and R[l] can be exchanged if, of the even-indices presented, player-1
chooses 2. To exchange any two adjacent elements in the LVR, player-1 chooses the

index n, until the two elements occupy indices 1 and 2, and then they can then be

easily switched. After this, player-1 chooses the n^^ index till the states (except the

two exchanged states) have rotated back to their old indices. It thus takes n + 1

1-step plays to exchange the two adjacent states. It follows that player-1 can force
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any arbitrary permutation as the LVR, since we have shown that any transposition

can be achieved.

Is the even-index strategy FSM for player-0 where each distinct LVR is a differ

ent state minimum-state? States with different output cannot clearly be equivalent.

Consider two states with the same output. Can they be equivalent? If they are dif

ferent states then they have different LVRs. The claim is that these states are not

equivalent.

Let the least index where the two states differ, be i. We consider two cases:

1. 2 is even. Consider the choice of index i by player-1. Their outputs in the next

state will be different.

2. i is odd. Consider the choice of index i -}-1 by player-1. The claim is that the

output in the next state will be different.

The two different strategies for player-1, one to force player-0 to play the even-index

strategy, and the second to force n! LVRs when player-0 plays the even-index strategy,

seem to be incompatible. We think they can be "reconciled" into one strategy to give

an n! lower bound. We are currently working on the details, and are hence obliged

to call the following two results conjectures.

Conjecture 3.9.4 For every even n > 2, every winning strategy for player-0 in the

n-state GM game has at least n\ states.

Conjecture 3.9.5 For every odd n > 3, every winning strategy for player-1 in the

n-state GMgame has at least ^ states.

Recently it has been shown [12] that there are n-node Muller game graphs where a

player needs memory to win, strengthening our conjecture.

3.9.2 Lower bound for general Streett games

The game already shows an exponential (in the number of states of the game

automaton) lower bound on the strategy size for Streett games in G^. However there
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is always a strategy FSM that is linear in the size of the game automaton, namely

of size n/i, where n is the number of states and h is the number of pairs in the

game automaton. For general Streett games, our synthesis algorithm establishes an

upper bound of on the strategy size, where s is the Streett Index of the

game language. The question arises if a strategy exponential in the size of the game

automaton is ever required.

Theorem 3.9.6 For every n > 1 there exists a Streett graph game on 5n nodes

and 2n pairs such that player-0 needs at least 2" amount of memory to implement a

winning strategy.

Proof: For each n > 1, consider the graph game Qn = {Gn —{Nn = =

U El),<l)n), where iV® = {(i,a:)ll < i < n, x € {A,B}}, = {(z,a:)ll < i <

n, X € {0,a,6}},

U {((z,>1),(2,6))11 <z <n}

U {{(2,B),(2,0))|1 < 2< n},

= {((2,c), (j,C))|l < 2< n &i = 2mod n +1 &c € {a,5} & C € {A,B} }

U {((2,0), (j, C))ll <i <n and j = i mod n + 1 and C € {A, B} }.

The acceptance condition, (j)n, consists of 2n Streett pairs, two for each level i €

{1,2,... ,n}: {{(i,a)} => {(2,6)}), and ({{i,6)} => {{ha)}).

The game graph On is shown in Figure 3.9. The game is won by player-0, if

for each 2 € (1,2,... ,n}, either both (2,0) and (2,6) are visited infinitely often, or

neither is.

There is an interesting relationship between the family of games Qn and the

language-family used to prove the lower bound for the translation of DSA into DCA

(Theorem 2.13.2). Associate with the edges in En the letter corresponding to the

label of the terminal node; thus player-O's alphabet is Dq = {0, a, 6}, and player-l's

alphabet is Ei = {A,B}. In order to define a Gale-Stewart game, assume that play

ing from {a, b} from a player-0 node labeled B, and playing 0 from a player-0 node
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Figure 3.9: Streett game where player-0 needs 2" memory

labeled A takes the play to a "dead" subgame from where player-1 wins trivially. Now

project the game language, r„, down to Eq, i.e., from the winning plays for player-0,

drop player-l's choices—to get each sequence so obtained, a € is also in

Lfi ofTheorem 2.13.2, and also every cr € is included in r„j,^ except for the first
letter in the sequence.

It is easy to see that player-0 can win Qn with 2" amount of memory. For each

of the player-0 nodes (z. A) he remembers what he played the last time the play was

at (2, A)—a or b—and plays the other letter next. We show next, by induction on n,

that he needs at least 2" amount of memory to win in Qn-

Base case: Recall that in a memory-based strategy for player-0, each node in his

strategy graph is labeled by (the name of) some player-0 node in the game graph and

the amount of memory used is determined by the number of occurrences of the most

popular node from the game graph. It is clear that in Qi no memory-less strategy

for player-0 earns him a win; therefore any memory-based strategy graph for him

contains at least 2 nodes labeled A.

In the game graph it is clear that player-1 can take the play to any player-0

node she wants, and if player-0 wants to win, to any player-1 node as well. Recall

that in a strategy graph for player-i, i € {0,1}, the play finally settles in a SCC, and

player-1 —i can take the play to any node of the SCC. We shall prove by induction on

n that every terminal strongly connected component (tSCC) of the winning (memory-

based) strategy graph for player-0 in Qn contains at least 2" nodes labeled (1,A), i.e..
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at least 2" amount of memory to win. Note that the base case has been validated.

Induction step: Consider the subgame of Qn on the node set \ {(n,i4), (n,a),

(n,6)}. Let Q!^ denote this subgame. It is easy to see that and Gn-\ are equivalent

in the following sense:

1. Player-0 wins both games, and

2. A memory-based winning strategy for player-0 in Q^-i can be esisily translated

to a memory-based winning strategy (MBWS) for player-0 in Q'̂ using the same

amount of memory, and vice-versa.

Now, in Qn, player-1 can force the play to be in the subgame Q'̂ , and by the

induction hypothesis each tSCC of player-O's memory-based winning strategy graph

will have at least 2""^ nodes labeled (1,A). Notice that it is also true in Q'̂ that if

player-0 plays to win player-1 can take the play to any node in Qn- Therefore each

tSCC of player-O's MBWS graph contains all the node labels in Q'̂ . Thus from each

node in the tSCC Ci of the MBWS of player-0 for Q!^, player-1 can take the play to

some designated player-1 node with label (n—l,a), from where she can play the edge

(say) ((n - 1, a), (n,A)) taking the play out ofthe subgame Q'n-
(Say) player-0 now plays the edge ((n. A), (n, a)), and the play reaches (1,A).

Player-1 can again restrict the play to subgame Qn-, and again by the induction hy

pothesis the tSCC Ci that the play settles to contains at least 2""^ nodes labeled
(1, A). Now C2 n Ci = 0; otherwise, player-1 can win by playing to the designated
node labeled (n —l,a) in C\ again and create a unaccepted loop. From C2, again
player-1 can play to a designated node labeled (n —1,o), from where no matter what

player-0 plays she can bring the play to (1, A). She can again restrict the play to

and let the play settle to tSCC C3 in player-O's MBWS graph. Again we can reason

as beforethat CaflCa = 0. Thus reasoningin this manner weget a sequence of tSCCs

Ci for z> 1 such that C,- DC,+i = 0, and each Ci contains at least 2"~^ nodes labeled
(1, A). Therefore, the winning MBWS for player-0 in Qn contains at least 2*2"~^
nodes labeled (1, A), and hence player-0 needs at least 2" amount of memory to win.
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Lescow [30] shows another family of games to prove an exponential lower bound for
the memory needed to win in Streett games. We are currently working on improving

our memory-bound to a strategy size bound for Streett games, as well as looking to

close the gap between the upper bound and the lower bound

3.9.3 Relationship between automata bounds and

game bounds

The winning strategy for player-0 is a closed language contained in the game

language, and so there is no reason to expect that a lower bound on translating a

deterministic automaton into a minimum-pair deterministic chain automaton will be

related to the lower bound on the memory required to win a game on an automaton

with similar structural complexity. Translating a deterministic game automaton to

a deterministic chain automaton furnishes both players with enough memory to win.

Therefore, a strategy size lower bound on a particular game type also implies a lower

bound for the translation of the game automaton into an equivalent chain automaton:

but the reverse implication is not necessary, i.e., the strategy size upper bound may

defy the translation lower bound. It is therefore interesting that there are many

analogous results between translation of DOA into DCA and memory required to win

in games on a;-automata.

Consider the game languages employed for proving the lower bounds for Muller

games, and project down to player-l's alphabet, we get exactly the language family

used to prove lower bounds for translating DMA into DBA and DCA (Section 2.13).

Also, the bounds match up. However, the lower bound for the memory in general

Streett games and the lower bound for translating DSA into DCA do not match

up—2" for memory and 2"n! for DS —> DC—although the game language projected

down to player-O's alphabet now is exactly the language used to prove the automata

translation lower bound.

Two more noteworthy analogous results are:

1. Theorem 2.5.3 vs. Theorem 3.7.3. Negative union closed DOA can be realized

as a DBA on the same transition structure, and negative union closed games
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admit memory-less strategies for player-0.

2. Theorem 2.11.1 vs. Corollary 3.7.4. Positive and negative union closed DOA

can be realized as DOA on the same transition structure, and positive and

negative union closed games admit memory-less strategies for both players.

3.10 Summary

We considered a particular two-person game of perfect information played on

an ij-automaton—the Gale Stewart game. These games admit a winner, and we

characterized a special class of finite state strategies for the winner called memory-

based strategies. These games can be equivalently viewed as a game played on a finite

bipartite graph that considers both players symmetricallyand makes the development

of algorithms to decide the winner in the Gale Stewart game more convenient. We

presented algorithms to decide the winner in Buchi, Rabin, and Streett games and

to synthesize the winner's strategy for an n-node /i-pair Rabin (Streett) game in

0{n'̂ ^h''\E\) (0{n^^h^\E\)) time, where k (s) is the Rabin Index (Streett Index) of

the game language, and E is the edge relation of the game graph.

Tree automata and games are closely related and can be translated between easily;

trees accepted by automata correspond to winning strategies for player-0. Thus, our

nonemptiness algorithms for tree automata have applications to decision problems of

branching time temporal logics [14]. We also proved and conjectured lower bounds for

the smallest strategy admitted by the playerwith Streett or Muller winningcondition.

In the next chapter we relax the constraint of perfect information and consider games

of incomplete information.
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Chapter 4

Two-person Games of Incomplete

Information on a;-automata

4.1 Introduction

Consider the following two-person game played between two players: player-0 and

player-1. In a single-step of the game player-0 chooses a letter from his alphabet Eq =

Eq^® XEg*'', followed by player-1 picking a letter from her alphabet Ei = Ej''® x Ef*''.

These single-steps repeat ad infinitum to form a play of the game. Thus far the game

defined is no different from the game defined in Chapter 3 except for the special form

of the alphabet.

The following additional constraints define a modified Gale-Stewart game that

we call a Gale-Stewart game of incomplete information or partial observation. Each

letter in the players' alphabets is comprised of two parts: the observed and the hidden,

indicated respectively by the superscripts obs and hid. A player only sees the observed

part of his/her opponent's play: for instance, if player-0 picks <Jo = player-

1 can only see similarly player-0 only observes the obs part of player-l's "aictions."

Both the players are however privy to both the observed and hidden parts of their

own actions.

A player may choose his/her next action based solely on the observed parts of the

opposing player's play thus far. We define the Gale-Stewart incomplete information
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game and the kind of strategies admissible, in Section 4.2. We also show that such

games are not determined in Section 4.2. We consider the problem of deciding the

winner and synthesizing the winner's strategy in Section 4.3; Section 4.3.1 consider's

the computational complexity of the same problem. Section 4.4 considers two ap

plications of GSI games: one in logic synthesis and the other in supervisory control.

This chapter is summarized in Section 4.5.

4.2 Strategies for playing

The Gale-Stewart game of incomplete information (GSI game) is played on an u-

automaton, the game a;-automaton Q= ((Q, go) So x <^)} where Eq = EJ^^ x Ej*®'

and El = Ef^ x Ef*''. The game is played like a Gale-Stewart game of perfect

information played on an u;-automaton; plays, winning plays, and partial plays are

defined analogously to the case of the Gale-Stewart game of perfect information played

on an w-automaton. Strategies however are different.

A strategy if) for player-0 is a function tp : (EJ''®}* —> Eq, or alternately a partial

function ip : (Eq x Eq (we shall prefer the partial function form in the

sequel), cueing his actions at every step. If player-0 plays according to his strategy

ipy the following play evolves:

(^(^(£)£rr>{V'(€)ar or? = a?*'"))... (4.1)

Similarly a strategy r for player-1 is a function r : (Ej''®)'̂ —> Ei, or alternately and

preferably a partial function r : Eo''̂ (Ei x Eg''̂ )* -¥ Ei.

A regular strategy for player-0 is a Moore FSM So = (Qoj9o>^o>Ef''®,5oj'̂ o)-

So defines a closed language C (Eq x EJ^®)*^ as discussed in Section 3.2. In ad
dition, we will find it useful in the sequel to associate a closed language L{So) C

(Eq XEi)*^ with So by basically replacing the label ao/of^ on an arc ofthe FSM So

by the labels aol{af'where Ef =
{fff"'',<7iand (7i More formally:
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Definition 4.2.1 Given a strategy FSM Sq = for player-O is

a GSI game Q = ({(3,go)So x

(<7»,CT? = {ar"A''*^)){c7la\ = (c^}'"^<7}'"''))(<7„^crJ = "))... € L(So),

providedCTq = Ao(go) ondfor each i > 0, aj = Ao(<5o(9o> agai'^'aoa}''"...

A regular strategy for player-1 is a Mealy FSM 5i =

associate a closed language L(Si) C (Eq x Si)'" as follows:

Definition 4.2.2 Given a strategy FSM Si = (Qi,ql,Si, SJ^^, (Ji, Ai) for player-l in

a GSIgame G= (((3,9o,SoxSi,5),(^), (ag =

(ag = ... € L{Si) provided af = Ai(9o, o,nd for each i > 0,

0-1 = Ai(gJ, ag''''V?aJ''^V}... aj"''"}.

Basically, we insert every possible letter from Sg*'' to get the labels on the arc of the

corresponding w-automaton.

A winning strategy is one that ensures a win for the player when he/she plays ac

cording to the strategy. For a GSI gameplayed on a gameautomaton Q = ((Q, qq^EoX

Si,5),0), a regular strategy Sq = (Qo,?g, So, Sf%(5o, Aq) (Si = (Qi,9j,Si,Sg''%(5i,

Ai)) is winning for player-O (player-1) if L(So) C L{Q) {L(Si) C L{Q)). As with Gale-

Stewart games of perfect information, given a regular strategy for either player, there

is a trsLcking relation between the strategy FSM and the game automaton, that is a

simulation relation if the strategy is a winning one. We can thus also talk of memory-

based strategies and memory-less strategies. Recall, in a memory-based strategy each

state of the strategy FSM is tracked by exactly one state of the game automaton.

In a Gale-Stewart game of perfect information, since both players' actions are

visible to each other, the concept of memory is useful to synthesize winning strategies.

Whereas, in a GSI game, at the end of a one-step play (say) from the initial state,

each player is (has to be) under the impression that the play could now be in any of a

set of states (recall: the game automaton is known to both players but eaoh can only

observe the other's observable actions). We therefore add all unobservable actions of

the opposing player to come up with the w-automaton corresponding to a strategy
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FSM; therefore memory based strategies would suffice only for the most trivial of GSI

games.

Are all GSI games won?

Proposition 4.2.1 GSI games are not determined.

Proof: Consider the game shown in Figure 4.1. The alphabets of the players are:

'V/

Figure 4.1: GSI game without a winner

= {a,6}, Ej*'' = {0,1}, = {a',6'}, and Ef*'' = {0,1}. The game automaton

has three states labeled /, 0, and 1. We can impose a suitable acceptance condition

(to result in an open or closed game language) to ensure that player-0 wins from the

state labeled 0 and player-1 wins from the state labeled 1.

Observe that, to win, from state / player-0 has to play a, and player-1 has to play

6', in the observable part of his/her action. It is then clear that neither player has

a winning strategy. For instance, if player-0 plays (a, 1) player-1 wins but only by

playing (6',0), and if player-0 plays (a,0) player-1 wins only by playing (6^1); but.
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player-l can only observe that player-O has played a. Similarly it can be argued that

player-0 cannot guarantee a win either. •

Thus there is not always a winner in a GSI game. How does one decide the winner

if one exists, and synthesize his/her winning strategy?

4.3 Deciding GSI games on w-automata

_Consider an open GSI game Q= ((0,9o>(So'' x Ej"') x x E^),5),F).

Definition 4.3.1 Let Q= ((Q, 9o. x x x Sj"), S), <i>) be a GSI game.
Given 5 € Q, ctq € So, and € E"'^, the possible next states of q are defined to be

6(S,ao,<7f') = {g'13g 6 S and of*"' € Sf'" such that q' = S(q,(<To,(rt",a^**))}.

We compute the states from which player-0 may win, Ho, as the sets of cardinality

one among winning subsets of Q, Wq, as follows. Any state in F is a priori a winning

state for player-0, i.e., F C Wq; therefore {S\S C F} C Hq. Since player-0 cannot

observe the hidden actions of player-l he assumes that the play can be in any state

in a subset of states. He can win from a state-subset S from which he can choose ao

such that every possible choice of and every choice of by player-l puts the

game in Ho, i.e.,

5 € Wo if for some ao,Vorf^^,5(5, cro,<7f''̂ ) C Wo-

This basic idea can be generalized to other acceptance conditions as follows. Notice

that So = (Qof 9oj <^0) Ao) is a winningstrategy FSM for player-0 provided for

every sequence:

(ag,of<")... € L(So). (4.2)

it is the case that for every sequence ... €

/_0 _0o6s -Ohid\f„l ^^obs -\hid\(„2 -2obs „2hid\ h T(n\ fA(o-o,<Ti ,<7i )(c7o,ai ,(7i )[(ro,ai )...^L[y). {^.6)

(4.2) and (4.3) imply that player-O's objective is to produce a strategy FSM So such

that L{So) C n£;jj,^j;o6a(Z;(^)).
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We observe a simple lemma before proving the main theorem for the synthesis of

strategies for GSI games.

Lemma 4.3.1 Suppose A = ((Q,Qot Lq x S), <j>) is a DOA, and Ta = Tl's:^(L(A)).

Let crlalal... € TJ'. Then for every sequence cr^ala^ ... GEJ', (crj, crl){al, al)

...^L{A).

Theorem 4.3.2 Let Q = (Q,9oj (^o = x Sj*'') x (Ei = Ef^ x Ei*'̂ ),<5),0) he a

GSI game. Let T = L(Q), Fq = (ind Fi = n2o6»j^2j(F). Then player-^

wins Q iff he wins the Gale-Stewart game of perfect information with game language

Fo where he plays from Eq and player-1 plays from player-1 wins Q iff she wins

the Gale-Stewart game of perfect information with game language Ti where player-0

plays from Ej''̂ and player-1 plays from Ei.

Proof: First we consider Fq and the c£ise that player-0 might win. Assume that

pIayer-0 wins the GSP game with language Fq and he has winning strategy if) :

(Eo X Eq. By Lemma 4.3.1, tp is also a winning strategy for him in game Q.

Now assume that player-0 loses the GSP game with language Fq; call this game

Qq. Let ip : (Eq x > Eq be some strategy for him in Q. We will show that

player-1 can beat player-0 in Q when he plays according to V- By the determi-

nacy of GSP games, player-1 has a winning strategy, r : Eo(Ei''̂ x Eq)* —>•

to win in the GSP game Qo] in particular, r can beat ip {in Qq. Let the play

that evolves in Qo when player-0 plays according to ip and player-1 according to

T, be Q= Now a G1^ =

n^oxEj^^Cn- Thus, there exists /? = ... G(Ef*'')'*' such that:

_ _ {„Oobs -Ohid -Oobs oO\{^lobs ^l/wd ^lo6s /3lw_2o&s -2hid _2oi>s o2\ ^ p M
7 = Wo Wo >^i )\<^o >^0 Wi >P ;Wo Wo Wi ,pj...fci. (4.4;

We can thus define player-1's strategy t' : E5''®(Ei x Eg''̂ )* —> Ei as follows:
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If player-1 plays according to t' and player-0 according to ^ in ^ the play 7 will

emerge and it will be a win for player-1 (by (4.4)). Therefore, we have shown that

player-0 wins the game Q iff he wins the GSP game Qq.

We show next that player-1 wins the GSI game Q iff she wins the GSP game with

language Pi—Qi.

Let player-1 win the GSP game with language Fi with strategy r : Eo''̂ (Ei x
Yii. When player-1 plays according to r, let (<7o°''̂ ,<Ji)(o'o°^^,a})... be an

arbitrary play that evolves. Since r is a winning strategy for player-1 in Qi,

/-Oobs _0w_lo6s _1"\ c T~

Then for all ... € (Ej*'')'*', by Lemma 4.3.1,

/-Oobs —Qhid -0\/„lobs -Ihid -In /- P((7o jCTq ,<7i)(cro ,ao ,ai}...€i.

Therefore r is also a winning strategy for player-1 in the GSI game Q.

Now assume that player-1 loses the GSP game Qi (i.e., player-0 wins it). Let

r : Eg''̂ X(El x Eg^^)* —Ei be some strategy for her in Q. We show that player-0 can

beat player-1 in Q when player-1 is playing according to r. Let iIj : (Eg**® x Ei)* —

Eg^® be a winning strategy for player-0 in Qi. In particular tp beats r (in Qi). Let

the play in Qi when player-0 and player-1 play respectively according to and r

be a = (iTo®''̂ , erf®''̂ ,(7i'**'')(cro°''®,ai°''̂ ,ai'̂ *'')((Jo°''̂ ,cri®^^,(7i''*^) Now a G T\ =

n£o65xEi(r)- Therefore there exists p = ... € (Ej*'')'̂ such that:

fJHobs ioO „Qob$ -Ohid\(-lobs ol ^lo6s _lhid\/ -2obs o2 _2o6a J2hid\ g- p
7=(^'^0 »^1 JWO »P ;W0 >P ,<7i ;...€!.

From this we can define player-O's strategy ip': (Ef''® x Eq)* —> Eq such that player-0

can employ ip' to beat player-1 playing r in Q.

If neither player wins, the game is obviously undetermined. •

The game automata for the games with language Fq and Fi can be computed from

the game automaton for Q.
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4.3.1 Bounds

The crucial operation involved in the algorithm implied by Theorem 4.3.2 is a

"co-determinization" step to complement a nondeterministic automaton to result in

a deterministic game automaton. Closed and open GSI games can clearly be decided

in EXPTIME, because determinization by the subset construction is exponential and

deciding open and closed GSP games is in linear time.

For Rabin and Streett GSI games, Safra's determinizations [42, 43] (for nondeter

ministic Buchi and Streett automata respectively), can be employed in conjunction

with our constructions (DRA2DRCA or DRA2DSCA, see Chapter 2) to convert DRA

or DSA into DCA to obtain DCA of size exponential in the size of the original game

automata. This is possible because Safra's determinization constructions result in a

deterministic Rabin automaton with an exponential number of states but linear num

ber of pairs, and our construction is exponential in the Rabin Index. Since deciding a

GSP game on a chain automaton is in NP n Co-NP, deciding a Rabin or Streett GSI

game turns out to be in NEXPTIME fl Co-NEXPTIME, certainly in deterministic

2EXPTIME. How about lower bounds?

Proposition 4.3.3 Deciding ifplayer-0 wins a given Co-Buchi GSI game is PSPACE-

hard.

Proof: Wetransform NBA non-universality shown to be PSPACE-hard in [48]. Given
7

a NBA A = {(Q,qQ^T:^S)^F)j the non-universality question is to test if L(A) =

ly. The corresponding Co-Buchi GSI game is ^ = ((QU /, x x x

S'), --{Qu{f})\F), where = E, Ej*'̂ = 0, Ef = 0, and Ef'^ = Q;

/ if9 = /

g' else if (9, (f)GS

f otherwise

Basically, we use a suitably large hidden alphabet for player-1 to simulate the nonde

terministic transitions in A. A play in ^ is a won by player-0 if its infinity set does

not contain a state from F. The game Q can be constructed in polynomial time.
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Assume that for some a e a ^ L(A). If player-0 plays the sequence a he is

guaranteed a win, as every run of a in ^ eventually is contained in F.

Similarly, a winning strategy for player-0 in Qyields a sequence o ^ L{A). There

fore L(A) ^ Jy iff player-0 wins Q, •

Proposition 4.3.3alsoimpliesthat decidingRabin or Streett GSIgamesin PSPACE-

hard. In addition, although we have not shown that deciding open or closed GSI

games is PSPACE-hard, we conjecture that:

Conjecture 4.3.4 Deciding the winner in an open or closed GSI game is EXPTIME-

complete.

4.4 Applications of GSI games

In this section we consider two applications: one in logic synthesis and the other

in supervisory control, where we apply the Gale-Stewart games of incomplete infor

mation that we defined and developed algorithms to decide. Both situations involve

the following: there is a FSM (say) M and the problem is to design a FSM C that

when "wired-up" with M satisfies a specification on their composed behavior.

4.4.1 Watanabe-Brayton FSM-component synthesis problem

The problem of synthesizing interacting FSMs was recently studied in [58, 1].

Figure 4.2 indicates the FSM to be synthesized, C, in dotted lines. The FSM M's

input wires are named x and u, supplied respectively from the environment and C.

M's outputs are y and v, where v is an input to C. The wires a;, y, u, and v take

on values over the sets E^, Ey, Eu, and E„ respectively. The specification S on their

combined behavior is a language C (E^ x Ey)'̂ given as an u-automaton.

The composed behavior of M and C is defined as follows. Notice L{M) C (Ex x

E„ XE„ XEy)*** and L{C) C (E^, x E^)*^. When M are C are wired-up together as in

Figure 4.2, their composed behavior has to agree on the common wires u and v. The

composed meichine MoC denotes the languageL{MoC) C (ExXE„xEt,xEy)'^, where
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Figure 4.2: The Watanabe-Brayton component-FSM synthesis problem

L{MoC) = L{M)nL(C), and L(C) = {a|nE^xEv(<^) ^ HQ}- The requirement on

a permissibleFSM C is that o C)) C L{S).

We show next that permissible FSMs C are regular winning strategies for player-1

in a GSI game.

Theorem 4.4.1 Let T = L(M) n C, where C = {crlcr G {T,x x x x Ej,)'*' and

game language for a GSI game with Eo*® = Et,, Ej*^ =

Ejc XEy/ EJ''̂ = Eu and Ef*'' = 0. The set of winning strategy FSMs for player-1
in this GSI game is the set of permissible FSMs C for the Watanabe-Brayton FSM-

component synthesis problem.

Proof: Let C be a Mealy FSM that is a winning strategy for player-1 in the GSI

game. Therefore, L{C) C T. Now F = £ UL(M). Therefore (intersecting by L{M)

on both sides) L(M) HL{C) C £ fl L(M). Therefore, Tl^^x^y(L{M) DL{C)) C
nE«xEy(^n L(M)) C IIe.xEvC^} = L{S). Hence C is a permissible FSM.

Conversely, let C be a permissible FSM. Thus, Tl^^xi:y{L{M) n L{C)) C L(S).
Therefore, L(M) n L(C) C C. Unioning L{M) on both sides, yields L(C) C £ U

L(M) = r, and therefore C is a winning strategy FSM for player-1. •

Theorem 4.4.1 characterizes the E-machine [58,1] as a game automaton on which

a GSIgame is played, and a permissible FSM is a winning strategy FSM for player-1.
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4.4.2 Supervisory control of FSMs

In the supervisory control problem for FSMs, a plant FSM P has to be controlled

by a controllerFSM C so that the composed behavior of the plant and the controller

has to satisfy the specification. The difference between the supervisory control prob

lem and the FSM-component synthesis problem lies is which signals are observable.

The interconnection topology between the plant and the controller is shown in

Figure 4.3. The controller C receives two inputs: x and j/, supplied respectively by

the environment and the plant. The controller's output u is the only input to the

plant. An admissible controller C satisfies Tl^gx7:y(L{P) x L(C)) C L{S). We can
again pose the problem of finding an admissible controller as a GSI game.

Theorem 4.4.2 Let F = L(P) n L{S) be the game language of a GSI game where

= S-c XSy, Ej*'' = 0, = E„, and Ef*'̂ = 0. Then, player-1 's regular
winning strategies are exactly the set of admissible controllers for the supervisory

control problem of FSMs.

Figure 4.3: The FSM supervisory control problem

However, in the case of the supervisory control problem, neither player has any un-

observable actions and we, in fact, have a GSP game.

In both the component-FSM synthesis and supervisory control problems, we can

construct the game automaton for the game with language F by constructing a prod

uct automaton on the cartesian product of the state sets of the plant (or FSM M) and

specification automata. Whereas the supervisory control problem results in a game

of perfect information, the component-FSM synthesis problem results in a game of

incomplete information (for player-1 at least). Therefore, we can check if the set
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of admissible FSMs/controlIers is non-empty in time linear in the size of the game

automaton for the supervisory control problem [25], whereas it appears to take expo

nential time for the FSM-component synthesis problem.

4.5 Summary

We considered an incomplete information version of the Gale-Stewart game played

on an cj-automaton—the Gale-Stewart game of incomplete information (GSI). At each

step only the observable part of the choice of letter by a player is visible to his/her

opponent, and "strategic" decisions may be based only on the opponent's observable

actions. GSI games are not determined. We converted the problem of deciding the

winner in a GSI game to checking the winner in two GSP games. It is more difficult

to decide GSI games than GSP games: while a Buchi GSP game can be decided in

quadratic time, deciding a Buchi GSI game is PSPACE-hard. GSI games seem tailor

made for modelingand solvingthe supervisory control and component FSM synthesis

problems.

Two interesting questions on GSI games remain to be answered:

1. The conjectured EXPTIME lower bound for deciding open and closed GSI re

mains to be proved, and the lower bound for deciding other games also needs

to be pinned down.

2. Minimum winning strategy size also needs to be studied. Even the case where

the GSP gameadmits a memory-less strategy, we conjecture that the GSI game

(of the same type) might need exponential-sized strategies, i.e., even a closed or

open GSI game might require a strategy that is exponential in the size of the

game automaton.
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5.1 Introduction

Formal verification of large systems necessitates employing simplified models of

systems. These simplified models are usually created by hiding detail—abstraction—

and the use of non-determinism. In order to better approximate the real behavior of

the system being modeled restrictions on the admissible infinitary behavior are im

posed, resulting in cj-automata. Imposing such restrictions on the infinitary behavior

of systems captures semantic constraints on the systems such as fairness, progress,

eventuality, justice, liveness, etc. [31]. Therefore, the restrictions on the infinitary

behavior that arise in this context are called fairness constraints^ since they constrain

the behavior of the systems being modeled.

In order to be able to model the synthesis of components in a network of FSMs,

some of which involve fairness constraints, we define a fair two-person Gale Stewart

game of perfect information (FGSP game). In Section 5.2 we consider fair games on

(j-automata, and in Section 5.3 we consider an example of synthesis illustrating many

of the concepts considered in the thesis so far.
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5.2 Fair games

A fair two-person GaleStewart gameof perfect information(FGSP) gameis played

on a game automaton Q = ((Q, 9o> ^i>^)) 4*) just like a two-person Gale-Stewart

game of perfect information. However winning plays and strategies are different.

In addition to the game automaton, there are two w-regular languages, C

Eq and C E^, respectively the fairness constraints for player-0 and player-1

given as DOA and = L{To) and = L{Ti). Given a play tt =

cr?)..., player-0 (player-1) is said to have engaged in fair play or

played fairly provided IIso € (He, € Play tt is said to be a win for player-0

(player-1) if he (she) has engaged in fair play and either tt € L{Q) (tt € L(Q)) or

player-1 (player-0) played unfairly. Thus if a player plays unfairly he/she cannot win.

A winning strategy for player-0 (player-1) is required to guarantee a win for him

(her). That is, a winning strategy for (say) player-0 has to ensure that he always

plays fairly, and either ensures a play in the game language or induces an unfair play

from player-1.

5.2.1 Deciding FGSP games

The FGSP game can be solved as a GSP game. Player-O's winning plays are the

set To = n (F Ui^i); player-l's winning plays are Fi = n (F UL^q), where
for i e {0,1}, = {(T £ (Eo x Ei)'^|nE. € and F = L{Q). Game automata

representing the game languages Fq and Fi can be computed from the deterministic

w-automata for and the game automaton for the FGSP game, in polynomial

time.

The inclusion relationship between F, F, and L^f,^ is depicted in Figure 5.1.

The region shaded with horizontal lines is Fq; Fi is shaded with vertical lines. The

winning plays while being orthogonal do not necessarily exhaust the space of plays

(Eo XEi)'^, i.e., Fq UFi ^ (Eq x Ei)'^. The interesting cases are when and

are both non-empty; if they are both empty the game is not determined, as neither

player can play fairly. If either fairness constraint is trivial, namely Eq or E^, again
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Figure 5.1: The game language and fairness constraints: containment relationship

ToUFi = (Eo X Ei)'^ and the game is determined. How about when and are

both non-trivial and non-empty? Fq fl Fi = n is it possible that the players

force each other to play unfairly?

5.2.2 (Non-)Determinacy of FGSP games

Theorem 5.2.1 There exists a fair GSP game Q = ({Q,9o»^o ^ Ei,<5),(^}, =

L{Tq = <(Qo,go>^o,<^o),«^o», and = L(J^i = {{Quqo,^uSi),d>i)) that is non-

trivial, i.e., Eq ^ ® ^ ^4>\ ^ that is not determined, i.e., where

neither player has a winning strategy.

Proof: Consider the game where: Eq = {a, 6}, Ei = {a',h'}, = (a*6){a, 6}'̂ ,

1^01 = {{a')*b'){a',b'y, and L{Q) = (a,a'y(b,b'){a,b}*^.

The game automaton for the game is shown in Figure 5.2.

First notice that player-0 playing fairly requires that he produce a "6" at some

time. If he does that, player-1 can follow by showing a b', thereby ensuring fairness

and a win simultaneously. Therefore, if player-0 plays fairly he loses, so we can safely

assume that he plays unfairly, i.e., plays a^.

Now, can player-1 play fairly thereby ensuring herself a win? Assume, player-1

does play fairly: at some time she produces a b' in response to player-O's a. But any

continuation of this partial play is in L(Q), and he can "restore fairness" to his play

by putting out a b sometime, and thereby secure a win. Therefore player-1 will not

play fairly either, she will play (a'y.
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(a,a')

Figure 5.2: A fair GSP game with no winner

Thus both players are forced to play unfairly and neither can win. The game has

no winner—it is not determined. •

It is interesting that fair GSP games, although being games of perfect information

are not determined. In the counter-example showing non-determinacy both players'

fairness constraints are open languages.

Theorem 5.2.2 LetQ= ((Q,go,x 5),(f)), = L{To = {(Qq, gg, Sq,(Jq), ^q)),

and Lfj,^ —L(T\ = ((Qi, gj, <^i), <^i)) be a fair GSP game, where either or

is a closed language. Then the game is determined.

Proof: Assume that player-0 does not win. We will show that player-1 wins.

By the determinacy of GSP games, player-0 not winning implies that player-1 has

a regular strategy p to ensure that the play is in Pq = jL^(,U(L(^)nL^i). We modify p

to yield a strategy ff for player-1 that will guarantee that the play will be in nPo.

When player-1 playsaccording to p let the partial playtt = (o-g, ^i)

... (crj, crj)... arise. There are two possibilities:

A. For some least j > 0, agaj... ^ Wo —0- Since is non-empty and

p ensures that it € Fq, there exists ..., a continuation of ajcrj...

for player-1 such that erfa}... ... € p' plays this continuation

resulting in the play

(o-g,af)((Tj,CT})(ao,c7?)...... €
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B. For every j > 0, crjaj ... ojEJ' fl # 0. (Note that this do not imply that

ao<Jo ... ... € unless is a closed set.) Therefore:

{(^1 CT[)(al <7l){al a?)... (oj, ai)(Eo x Ei)- H{L{g) n # 0

which implies that:

(cl a})(ag,<r?)... <^)(So x Ei)'- n # 0,

and this implies that:

ajcr} ... a{T,i fl 0.

if Lfj,^ is a closed set.) In this case we set // to play

according to p.

The claim now is that if either or L^j,^ is a closed set, p' is a winning strategy

for player-1. When player-1 plays according to p' let the play p evolve. Either:

1. p G Ltf,^: In this case p' plays according to p and the play is a win for player-1

because p G L{Q) n .

2. p ^ 1/00: In this case, either:

(a) Case A applies: nEi(p) G I/^, and p is a winning play for player-1. If L^o

is a closed language only this case applies.

(b) Case B applies: We may assume that is a closed set. Again TIej (p) G

and p is a winning play for player-1.

5.3 Example

We consider the problem of the re-synthesis of a component in the "Traffic Light

Controller" example distributed with the VIS formal verification system [19]. A little

used farm road intersects with a multi-lane highway, and a traffic light controls the
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traffic at the intersection. The light controller is implemented to maximize the amount

of time the highway light remains green.

The architecture of the system is shown in Figure 5.3. The system is comprised

of three modules: the timer, the highway (light) controller, and the farm-road (light)

controller.

Sensor

CP?
^ Property ^

Highway PF Farm-road

Controller jd\ Controller

TMER

Figure 5.3: Architecture of the traffic light controller

The timer. Figure 5.4, serves to time the sojourns of the highway and farm-road

lights through yellow and green. Rather than specify the timer as counting "ticks"

it is modeled at a high level using non-determinism as composed of three states:

START, SHORT, and LONG. Asserting hst (highway start timer) or f st (farm-road

start timer) causes the timer to (reset to) START. If neither hst nor f st is asserted,

a SHORT (LONG) duration nondeterministicallyexpires from the START (SHORT)

state. The same timer simultaneously serves both the highway and farm-road lights.

The deterministic FSMs representing the highway and farm-road traffic light con

trollers (HLC & FLO) are shown respectively in Figure 5.5 and Figure 5.6. The

signals EE (enable-farm-light) and EH (enable-highway-light) outputs respectively of

the HLC and FLO cause the FL and HL to transition from red to green. If a forward

slash does not follow the input on a transition it means the output is not asserted.

The signal CP (car-present) indicates if a car is present at the traffic intersection

on either the farm-road or the highway. The FL goes to red if either CP is asserted or
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-• 1 hslv ISB

(hstv kq

fsQ

START SHORT

httvfst

hstv tsi

LONG

(hstv fsQ

Figure 5.4: The timer

'(CPa TIMERsLONG)

(CP A TIMERS LONG)/hst

GREEN YELLOW
(TIM^sSHORT)

EH/hst
-(TIMERS SHORT)/EF

Figure 5.5: HLC: Highway traffic light controller FSM
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riER-LONG)

Figure 5.6: FLC: Farm road traffic light controller FSM

a "long" duration of time has elapsed, whereas the HL goes to red only if both CP is

asserted and a long duration of time has elapsed. Both lights transition to red from

yellow after a short duration of time has elapsed.

We consider next the problem of synthesizing permissible replacements for the

highway control module, where permissible would be determined by the satisfaction

of properties that we would require of the traffic light controller; three important ones

proved in the VIS test suite are:

1. Safety: Both the highway light and the farm-road light are not green simulta

neously. The deterministic u;-automaton (DOA) representing this property is

shown in Figure 5.7; the acceptance condition is a single Streett pair: (0, {A}).

2. Justice: If a car is present on the farm road and the timer has expired then

eventually the farm-road light should be green. The acceptance condition for

the DOA in Figure 5.8 uses a single Streett pair: ({A}, {A, B}).

3. Recurrence: The highway light will be green repeatedly regardless of what hap

pens on the farm-road. The acceptance condition for the DOA for this property

uses one Streett pair: ({B},{A, B}).
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- ((FL= GREEfcHA (HL = GREEN ))

((PL = GREEN )a(HL= GREEN ))

Figure 5.7: Safety: HL and FL not green simultaneously

- (CP ATIMER= LONG) v ( FL= GREEN )

(CP ATIMER= LONG)a - ( FL= GREEN )

IT GREEN)

(FL = GREEN)

Figure 5.8: Justice: If car present and timer expired, eventually FL is green

(HL = GREEN )

(HL = GREEN )

Figure 5.9: Recurrence: HL green infinitely often
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The system as specified already fails some of the properties above. For instance the

trace of the system: (CP=NO, FL=RED, HL=GREEN, TIMER=START)(YES, RED,

GREEN, SHORT)(YES, RED, GREEN,LONG)(YES, RED, YELLOW, START)'̂ ,

fails the recurrence property as the timer forever stays in the state START although

both hst and f st remain unasserted. To ameliorate this defect arising from the sim

plicity of our modeling, we impose the fairness constraint that if hst and fst remain

unasserted continuously then timer cannot remain in the short or start state forever.

For the system in consideration this requirement is effectively imposed by imposing

a fairness constraint comprised of two Streett pairs: (0,{START}), (0,{SHORT}).

The set of permissible replacements for the highway controller module are com

puted as follows:

1. We compute a composite property P by constructing the intersection of the

automata describing the safety, recurrence, and justice properties.

The composite property automaton (P) in Figure 5.10 is not complete; for

instance, HL = GREEN A FL = GREEN would cause a transition to a

"dead" state. The Streett pairs are: (0,{A,B, C, D}), ({A,C}, {A,B, C, D}),

and ({C,Z)},{A,B,C,D}).

2. We compute the synchronous product machine (M) of the modules timer and

farm-road control to get the automaton shown in Figure 5.11.

Notice the state (LONG, YELLOW) is not reachable. The fairness constraint

is composed of the two Streett pairs: (0, (START,—)) and (0, (SHORT, —)).

3. Following Section 4.4.1, we construct the automaton corresponding to the in

tersection of ->P and M. Permissible replacements for the highway control

module are winning strategies for player-1 in the incomplete information game

with game language L(P) nL(M) where = {CP,->CP} x {EH,-tEH} x

{START,SHORT, LONG},

= {EF,->EF} X{hst,^hst}x {RED,GREEN,YELLOW}, and all the

other signals appear in
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{- (CPATIMER = LONG )v (FL =ff-een))a - (hl = green ) - (HL= green )a (FL =green)

(CPATIMER = LONG )a - (FL= green )a - (HL=green )

(FL= green) a ^ (hl = green )

(CP ATIMER =LONG)a-(FL =green)A (HL =green )

= LONG)a-'(FL= green)a -(HL =green )

(- (CPATIMES[^NG)v{FL =green))A(HL =green )

Figure 5.10: Composite property P
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Figure 5.11: Product machine of timer and farm-road control modules
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The deterministic game automaton for the incomplete information game discussed

above is too large to draw on a single sheet. We instead "guess" some strategies and

verify that they are indeed winning strategies using the VIS tool, and then successively

augment the property.

The first module we consider is that in Figure 5.12.

"(CPa -nMERnLONQ)

pB SHORT)
GREEN YELLOW

EH/(h»t\EF) -(TIMERS SHORT)/EF

Figure 5.12: Highway Light Control Module I: HLCI

The difference between HLCI and the original highway light control module (HLC)

is that EF is asserted on every transition. Using VIS it was verified that the original

three properties proved were satisfied when HLCI replaced HLC. However, the system

can now get into a state where PL is green and HL is yellow ( {CP=NO, FL=RED,

HL=GREEN, TIMER=START) (YES, RED, GREEN, SHORT) (YES, RED, GREEN,

LONG) (YES, GREEN, YELLOW, START) ...), or FL and HL are yellow, both

clearly unsafe states that need to be excluded.

We now add requirements that HL and FL are not simultaneously YELLOW, or

one is YELLOW and other GREEN. After adding these requirements, a permissible

FSM is shown in Figure 5.13.

Although HLCII satisfies all the properties we have required so far, it transitions

from GREEN directly to RED. We further stipulate that the next state from GREEN

is YELLOW or GREEN, from YELLOW is YELLOW or RED, and from RED is RED

or GREEN. This in addition ensures that permissible FSMs are also "Moore in the
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(CPA TIMER = LONG)

(CP ATIMER = LONG)/ (hst a EF)

GREEN

EH/hst

Figure 5.13: Highway Light Control Module II: HLCII

light."

Figure 5.14 shows, HLCIII, a HLC FSM that conforms to all the properties we

have required of the system so far.

"(CP* TIMERa LONG)

(CPv TIMERa LONG)/h3t

GREEN VELLOW
-(TIMraaSHORT)

EH/hst
(TIMERS SHORT}/EF

Figure 5.14: Highway Light Control Module III: HLCIII

Module HLCIII yields the intersection to farm-road under the same condition

that the farm-road yields the intersection to the highway. However, we had originally

set out to maximize the time the highway light remained green, although we didn't

codify it into a property—it was more an informal requirement. Amongst the inputs,
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EH is the signal from the farm-road light controller that it is transitioning to RED,

so HLC's exit condition from GREEN has to be predicated on the signals CP and

TIMER only. Furthermore, the predicate has to imply the farm-road GREEN-exit

condition, as we want to maximize the time the highway light turns green. Also,

CP A TIMER = LONG has to cause an exit from GREEN (as required by the

justice property). Putting these conditions together we are left with two possible exit

conditions: -^CP A TIMER = LONG or CP A TIMER = LONG.

Therefore we have characterized the permissible replacements for the HLC module:

modulo a choice of initial state of YELLOW or GREEN, and a choice of exit condition

from GREEN (as discussed above), and a choice of sojourn-time through YELLOW

(but weshould additionallystipulate that is only a short duration), the original HLC

is essentially the unique module up to isomorphism.

5.4 Summary

In this chapter we considered games where each player had a fairness constraint

to adhere to. Although a game of perfect information. Fair Gale-Stewart games on

cj-automata are not determined; however, if either player's fairness constraint is a

closed language the game is determined. Fair games enable the modeling of synthesis

of systems with fairness constraints on components.

We discussed the synthesis of a component in an example — the traffic light

controller, involving both fairness constraints and incomplete information. A major

problem is that of completely characterizing the property required of the permissible

FSMs to replace a component in a network of interacting FSMs. The permissible

FSMs we synthesized turned out to be minimum-state. In the next chapter we con

sider the problem of synthesizing minimum-state strategies.
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6.1 Introduction

A game automaton and the game language viewed as a synthesis requirement,

represents a set of FSMs in the form of the different winning strategies the module

to by synthesized has against the environment it is to function in, if the synthesis re

quirement is feasible. In choosing a particular winning strategy to be pushed through

logic synthesis (to be implemented as a VLSI circuit), a minimum state strategy is

considered a good starting point for deriving an efficient implementation.

In this chapter we consider the problem of synthesizing state-minimum strategies

for Gale-Stewart games of perfect information on w-automata (GSP games). Games

of incomplete information on w-automata as well as fair games can be translated to

games of perfect information on a;-automata.

In Section 6.2 we consider the computational complexity of deriving minimum size

memory-based as well as non-memory-based winning strategies. In Section 6.3 we ar

gue that even when memory-less strategies are admitted the minimum state strategy

may not lie in the space of memory-less strategies. In Section 6.4 we introduce subset

FSMs, and employ them to compute the minimum state winning strategy FSMs for

the player with the closed winning condition in Section 6.4.1. We investigate the syn

thesis of the smallest memory-based strategy in Section 6.5 and consider the synthesis

of minimum sized non-memory-based strategies for non-closed winning conditions in
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Section 6.6. Section 6.7 summarizes this chapter.

6.2 Computational complexity of deriving

minimum-sized strategies

While deciding the winner in a Rabin game is NP-hard, we show next that syn

thesizing the smallest memory-less strategy for even a closed game is NP-hard.

The problem of deriving the smallest memory-less winning strategy (SMLS) for

player-0 in a closed game may be stated as a decision problem as follows:

INSTANCE: A closed graph game^ G = {G = (N —N^U N\^E =• Eq UEi),no,T)

and a positive integer k.

QUESTION: Does player-0 have a winning memory-less strategy containing < k

player-0 nodes?

Theorem 6.2.1 SMLS is NP-complete.

Proof: Given a ML-strategy for player-0 that includes no, we can check that it is

winning in time linear in the size of the strategy, putting SMLS in NP.

To show NP-hardness we reduce 3-SAT to SMLS. Let C be a 3-CNF formula

with m clauses Ci,C2,... ^Cmy over n variables 2:1,0:2,... ^Xn- The corresponding

SMLS instance has 3n+m-l-l player-0 nodes labeled r, Ci, C2,... , Cm,1,2,... , n, xi,

X2,... ,Xn, -iXi, -1X2,... , -"X^, and 2n I player-1 nodes labeled r,Xi,X2,... ,Xn,

-«Xi,-iX2,... ,-'Xn.

Each player-0 node with label from the set {r,xi,X2,... , Xn, -"Xi, -«X2,... , "'Xn}

has exELctly one edge to the player-1 node with the same label. Each player-0 node

labeled z, for i G {1,2,... , n}, has two edges out of it: one to x, and the other to -»Xj.

A player-0 node labeled C, has three edges, to the respective player-1 nodes labeled

by the literals in Cj.

The player-1 node labeled r has edges to player-0 nodes with labels from the set

{Ci, C2,... , Cm, 1,2,... , n}. Each player-1 node with label from the set {xi, X2,... ,

^In this chapter we considergraph games with an initial player-0 node, no € IVq, from which the
play begins.
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x„, -ixi, -1X2,... , ""Xn} has exactly one edge to the player-0 node with the same label.

Example of the reduction: for the 3-CNF formula (xi + X2 + 0:3) (-"Xi + X4 +

-«X3)(-«X4 + -<X2 + the corresponding SMLS instance is shown in Figure 6.1.

Figure 6.1: SMLS instance for 3-CNF instance (xi +X2 +X3)(-<Xi 4-X4 + -<X3)(-«X4 -i-
-1X2 + ~'a:3)

If N = NqU Ni denotes the node set of the SMLS instance, we set T = iV and

k to 2n 4- m + 1. Clearly, the SMLS instance for a given 3-CNF instance can be

constructed in polynomial time.

Given a 3-CNF formula that is satisfiable we can derive a ML winning strategy

for player-0 with exactly 2n H- m + 1 player-0 nodes in the corresponding SMLS

instance. The ML strategy is the subgraph of the game graph on the node set

N' = NqU N[y where the player-0 nodes are iVJ = {r,Ci,(72,... ,Cm, 1,2,... ,n,

/i, ^2, ••• ,ln}i player-1 nodes are N[ = {r,/i,/2, ••• ,^n}, and /i,/2, ••• Jn are the lit

erals that constitute the satisfying assignment. The ML winning strategy is obtained

by choosing from the player-0 node labeled t € {1,2,... ,n} the edge leading to the
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player-1 node labeled by the literal k (in the satisfyingassignment); and from player-

0 node labeled Cj, 1 < j < m, again an edge leading to a literal in the satisfying

assignment. For example, in Figure 6.1, the satisfying assignment {a:i,-iX2,a;3,a;4}

induces a winning ML strategy with 12 player-0 nodes.

Similarly, it is easy to see that a winning ML strategy for player-0 with 2n -f- m -4-1

player-0 nodes induces a satisfying assignment for him.

Thus we have a polynomial time reduction from NP-complete 3-SAT problem to

SMLS, showing that SMLS is NP-complete. •

We can similarly also show that it is NP-hard to compute the smallest memory-

less winning strategy for player-0 in an open game or for player-1 in either an open

or a closed game.

As we might expect, synthesizing the smallest (minimum-state) strategy FSM

(MSFSM) is at least as hard as synthesizing the smallest memory-less winning strat

egy:

Theorem 6.2.2 Let G = {(Q,Qo,^o x Si,(J),F) be an open game, and k a positive

integer. MSFMS is NP-complete, i.e., it is NP-complete to answer if player-1 has a

winning strategy FSM with < k states.

Proof: There is a somewhat related problem in the literature, that of deriving the

smallest (completely specified) deterministic Finite State Machine (DFSM) that is

an extension of a given incompletely specified FSM. More precisely, given a sextuple

1 = (Q, qo, Ei, Eo,S,A) where 6 : Q xEi Q and A: Q x Ej Eo, respectively the

transition and output function, are partial functions; the question is if 6 and A can be

extended to total functions such that the resulting DFSM after state-minimization has

< k states, where k'lsa. positive integer. This problem was proved to be NP-complete

in [37].

Making all possible completions obviously results in a nondeterministic automa

ton. However, as we show below, we were able to modify the transformation in [37]

from Graph A:-colorability [18] to the reduction of an incompletely specified finite

state machine, to result in a deterministic game automaton.

MSFSM is clearly in NP, as player-1 has a memory-less winning strategy in an open
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game, and language containment between deterministic u-automata for closed/open

languages is in polynomial time.

The translation from Graph A;-colorability to MSFSM closely follows that in [37].

The graph A;-colorability problem is to determine if for a given graph^ G = (V, E)
there is a (coloring) function >{1,...,A;} such that no adjacent vertices are

assigned the same color, i.e., if (u,u) G E then ip(u) ^ tpiv).

Given a graph G = (V^E) we construct a game automaton Q = ((Q,90)So =

y XEl = {0,1},S),F), where Q = VU {qq,0,1,Z)}, F = {D}, and 5 is defined next.

For each v gV:

<5(90, 0)) = u, (5(go,(t^,l)) = A <5(0, (u,0)) = 0,

(5(l,(z;,l)) = l, <5(0,(u,l)) = D, <5(l,(u,0)) = JD,

6{v,(v,0)) = D, <5(u,(t;,l)) = l, 6{D,(v,0)) = D,

6{D,(vA)) = D

For each (u,t;) € F, <5(u, (u,0)) = 0, and S{u,{v,l)) = F, and for (u,v) ^ F,

S(Uy (u,0)) = 0, and S(u, (u, 1)) = 1.

Figure 6.2 illustrates the translation defined. Transitions from Ui,U2,^^3, and V4

that are not shown are to the state labeled D.

It is clear that player-1 can keep the play within the set of states Q \ {D} and

win. At a node labeled u € V, if player-0 plays u, player-1 has a choice of playing

either 0 or 1 provided (u,u) ^ F; if (u,u) G F she is forced to play 0 to win.

The difference between our translation and that in [37], is that for (v,u) ^ F, in

[37] (5(t;, u) is unspecified, and hence can be assigned to any state, whereas we restrict

the choice of next state to the set {0,1}.

The resulting game automaton is clearly of size that is linear in the size of the

graph. We claim that the graph G is fc-colorable iff player-1 has a winning strategy

FSM with at most k-\-S states (after state minimization). The proof is very similar

to that of Theorem 1 in [37], and for completeness sakewe briefly sketch out the main

ideas.

^Assume without loss of generality that there are no vertices with "self-loops" or without any
edges.
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(a)

(V4,1)(b)

Figure 6.2: Transformation of A;-colorability instance (a) to MSFSM instance (b)

Assume that G is fc-colorable, by coloring function ^:V—^ fc}. Player-1

picks her winning strategy as follows. Recall, she has a choice of play from node v,

on player-0 picking u only if (u, u) ^ E. She picks 0 ifffor some v': {v\u) £ E and v'

and Vare colored the same, i.e., ^(u') = We claim now that for vi^V2 € V, if

ip(v\) = ip(v2)i states vi and V2 are equivalent. Assume otherwise for contradiction,

that for some w € V, player-1 plays (say) 0 from Vi and 1 from V2' Player-1 playing

0 from v\ implies that either:

(i) (vi,u) € E, or

(ii) {vuu) ^ E and 3?;' such that (v\u) € E and ipivi) = il^{v').

Player-1 playing 1 from V2 implies that either:

(a) V2 = u, or

(b) V2^ u and Vu' either (u', u) ^ E or tp{u') ^ tp(v2).

It can be shown that in each of the four cases, namely (i)(a), (i)(b), (ii)(a), and

(ii)(b), we get a contradiction. For instance, consider the case (ii)(b): let u' = v'.
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Since (v'̂ u) € £7, (b) implies that i){u') ^ ^(^2)- This contrgidicts the assumption i)

colors vi and V2 the same, since it implies that ip{vi) = = ip(u') ^ il^(v2).

Therefore there are A;-equivalence classes of states comprising the states from V,

and the three additional states qo, 0, and 1, result in a strategy FSM for player-1 with

no more than k + 3 states.

Conversely, we can also show that if player-l's winning strategy FSM has at most

k states, G may be colored with k —S colors. First observe that from a state v € V,

player-1 has to play both 0 and 1 to win (if player-0 plays u, she has to play 1, and

since no vertex is isolated, if player-0 plays u such that (?;, u) € £7, she has to play

0). It follows that states qo^ 0, and 1, are in equivalence classes by themselves in any

winning strategy FSM for player-1. The k —S equivalence classes that comprise the

states in V we claim determines the coloring, i.e., ip(vi) = ip{v2) provided Vi and V2

are equivalent states. Assume for contradiction that ip is not a proper coloring; that

there are vi^V2 € V such that ip{vi) = 'ip(v2) but (vi,V2) € E. Since ip(vi) = "0(^2), vi

and V2 are equivalent states. Since (^1,^2) € £7, player-1 has to play 0 from Vi upon

player-0 playing ug, whereas player-1 has to play 1 from V2 upon player-0 playing V2,

a contradiction. •

Theorem 6.2.2 also shows that the problem of extracting a minimum state FSM

from the E-machine [58] is NP-hard.

6.3 Insufficiency of the enumeration of

ML-strategies

In an incompletely specified FSM one can enumerate the diflferent completions

of <5, minimize the resulting DFSMs, and so obtain the smallest DFSM that is a

completion of the given incompletely specified FSM. Therefore, Theorem 6.2.2, also

shows that it is NP-hard to determine the smallest strategy FSM that arises from

considering memory-less strategies alone (and minimizing them). The question arises

if a similar technique would work to obtain a state minimal strategy for GSP games.

Recall, every negative union closed winning condition admits a memory-less win-
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ning strategy. If every smallest strategy FSM could be obtained by minimizing some

memory-less strategy, or even if there is some memory-less winningstrategy that could

yield a minimum-state strategy upon state minimization, we could find a minimum

state strategy FSM by enumerating memory-less winning strategies.

Figure 6.3: A game automaton where player-0 needs memory to yield a minimum-
state strategy FSM

Unfortunately, Figure 6.3 illustrates that no memory-less strategy results in a min

imum state winning strategy. Player-O's alphabet is {0,1,2,3}; Player-l's alphabet is

{a, b}. The game automaton may be completed by the addition of a dead state with

a self-loop on every letter of the alphabet; all transitions not shown are to this dead

state. The game language is a closed language: player-O's objective is to keep the

play from getting to the dead state. The only state where he has a choice is the state

labeled 7. Picking (say) 1 from I results in a strategy FSM with 10 states, as states

D and E become equivalent as do states H and 7. Similarly choosing 0 from state

7 results in an FSM with 10 states. Wherezis, if player-0 plays 1 from state 7 when

the play comes from state E and 0 when the play comes from state 7^, the resulting

FSM has 9 states, with the equivalence classes of states being {A},{B}, {C}, {7),B},

{/0,{F,G},{i,/},and {L}.

Therefore, enumerating memory-less strategies as a means of deriving the state-

minimum strategy FSM is not an option even for closed games. One possibility is
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to enumerate strategy FSMs with at most a certain number of states determined by

the upper bound on the size of the winning strategy. For instance, for Rabin games

this upper bound is the number of states in the game automaton, whereas for Streett

and Muller games the upper bound is exponential in the structural complexity of the

game language.

However, enumeration by "brute force" doesn't exploit the structure of the game

automaton; can we do better?

6.4 FSMs on the state-subset space

Let So = (Mo,mo, Do, Ei,<5oj Ao), be a strategy FSM for (say) player-0 in a game

g = ((Q,5ojSo X Ei^S)y<t>). In general, a state m € Mq of the strategy FSM is

tracked by a set of states r{m) C Q, i.e., |r(m)| is possibly greater than 1, where

r C Mo XQ is the unique tracking relation between Sq and Q. The given strategy Sq

is thus isomorphic to the FSM {{R\R = r{m) for somem € Mo}, r(mo), So, Ei, Sq, Aq),

where ^J(r(m),ai) = r(5o(77i,cri)) and Ao(r(m)) = Ao(m).

Taking the cue from the above, we can enumerate strategy FSMs for a player in

a game on an u-automaton, by instead enumerating FSMs on the "subset space,"

i.e., FSMs whose states are comprised of subsets of the states of the game automa

ton and whose transitions are "consistent" with the transition function of the game

automaton.

Definition 6.4.1 Given a transition structure T = {Q,qQ,ll,5) and S C Q define

S(S,a) = {q'\q' = S{q,a) for some q € 5}.

Definition 6.4.2 Given a game automaton Q = ((Q,^oj5]o x Y,\,S^,^ a strategy

FSMM —(Mo, m§, Eo, Ei, (5o, Ao) for player-O is a subset strategy FSMprovided:

L Mo C 2^

2. qo €

3. For each m € Mo, if SQ{m,cri) = m' then 6(m, ai)) C m'
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Definition 6.4.3 Given a game automaton Q — ({Q,9ojSo x ^ strategy

FSM M —(Ml, mj, Ei, So? Ai) for player-l is a subset strategy FSM provided:

1. Ml C 2^

2. qo € mJ

3. For eachm€ Mi, if 6i(m, (ao,Ai(m, (Jq))) = m' then 5{m,(co,Ai(m, (Jq))) C m'

In addition, a subset-strategy FSM S for player-0 (player-l) is a winning strategy

FSM if L(<S) C L{Q) (L(S) C L{G), where ^ = ((0,9o,So x Ei, 5),--(?!»)}. This is

equivalent to checking that the associated tracking relation between the strategy FSM

and the game automaton is a simulation relation.

6.4.1 Finding the smallest strategy FSM for closed winning

condition

In this section we pose the problem of finding the smallest winning strategy FSM

for the player with the closed winning condition as the problem of finding an assign

ment to a set of Boolean variables that sets a minimum number of them to true and

simultaneously satisfies a set of Boolean formulae.

Let Q = ((Q,goj x be a closed game. Assume that the winning nodes

for player-0, Wq, contain ^O) i-e., Qo € Wq. Given C C if for some ctq G Eq, for

each Gi € Ei, S{C,go,gi) C Wq, we say C is a viable subset. Therefore, if C C Wq

is to be a state of a winning strategy subset-FSM for player-0, it is necessary that C

be viable.

We introduce a Boolean variable xc for each viable subset, C, of Wq. If C is a state

of a winning strategy FSM for player-0, then for some witness, gq, of its viability, for

each play gi € Ei by player-l, a state that contains 6{C,go,gi) has to be present in

the FSM. This is called the closure constraint and is expressed as a Boolean formula

as follows:

V ^ A V
ori€SiC'€B
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where A = {aolco is a "viability" witness for C} and B = {C'|<5(C,ao,ai) C C

and C is a viable subset}.

Since the game starts from the initial state go) the winning strategy FSM has to

include some state that contains q '̂. the initial state constraint expressed as a Boolean

formula is ^here I = {C\qo € C and C is a viable subset}.

A minimum state strategy FSM is obtained as an assignment to the Boolean

variables for the viable subsets that sets a minimum number of them to true and

satisfies the closure constraints and the initial state constraint. This optimization

problem as cast is a 0 —1 integer (non-linear) programming problem.

We next consider the problem of deriving the minimum state winning strategy

subset FSM for player-1 in a open game, i.e., when player-l's winning plays form a

closed set.

Let Q = ((Qj^oj^o X Si,5),F) be an open game won by player-1, i.e., qo £

Wi cT. A subset of Wi, C C Wi, is said to be viable if for each play ctq € Eq by

player-0, player-1 can respond with ai £ Ei such that 5(C, ctq, o"i) C Wi. The closure

constraints for player-1 take a form different from that for player-0. For each viable

subset C C Wi and ao £ Eq, if C is a state of a winning subset strategy FSM for

player-1, she has to be able to play some ai (in response to ao) and transition to some

viable subset; as a Boolean formula this is expressed as:

xc => V V
(ri€AC'eB

where A = {ai|5(C,ao,ai) C Wi] and

B = {C'|^(C,ao,ai) C C'and C is a viable subset}.

Note that the closure constraint does not involve any conjunctions and there is

one formula for each viable set and ao € Eo. The initial state constraint is identical

to the player-0 case, and a minimum state strategy FSM for player-1 is derived as a

satisfying assignment to the initial state constraint and closure constraints that sets

a minimum number of viable subset-variables to true. Interestingly, for player-1 the

optimization problem turns out to be a 0 —1 integer linear programming problem,

and also what is called a binate covering problem in the logic synthesis literature.
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We defer arguing that the procedure defined above to solve a minimum-variable

Boolean constraints satisfaction problem indeed does compute the minimum state

winning strategy FSM until after we discuss computing the smallest memory-less

strategies.

6.5 Computing the smallest memory-based win

ning strategy

If instead ofhaving one Booleanvariable for each subset of the winningset of states

of the player with the closed winningcondition, we have one Boolean variable for ezich

state of the winning set, we can in a similar manner as for the subset FSM cast the

problem of determining the smallest memory-less strategy as the problem of finding

a satisfying assignment for a set of Boolean constraints with a minimum number of

variables set to true. However, while the number of variables and constraints in the

subset FSM case is possibly exponential in the cardinality of the winning set, it is

linear for the problem of determining the smallest ML strategy.

The situation is a little different for non-closed winning conditions. Let's consider

determining the smallest memory-less strategy for the winning player whose winning

plays form an open language; let us consider an open game Q= ((Q, go> won

by player-0 (from Wo).

It is no longer sufficient for player-0 to remain within Wq to win; in addition, he

has to visit a state in F at least once. If 5 is a winning memory-less strategy FSM

for player-0, it follows that every infinite path in S starting from go (more precisely

the state in S simulated by go) has to pass through through F (states simulated by

n
We encode these constraints again as Boolean formulae. We introduce [Eol + 1

Boolean variables for each state g € Wq: a state variable Xq and choice variables

{xj|(7 € Eo}.
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The closure constraint takes on a different form:

V(a:, =mJ'' /\ S(g,(cro,cri))) (6.3)
ao€A

where A = {ao € Eo|forall ai € Ei S(g,aoy(Ti) € Wo}. The choice variables help to

track the choice of player-0 and hence paths in the strategy FSM. Besides the closure

and initial state constraints we need to ensure that a visit to F is guaranteed. We

impose this by disallowing infinite paths that steer clear of F. For each simple cycle

C in the STG that does not contain a state from F, for each possible traversal of

the simple cycle, we construct a Boolean cube by conjuncting the choice variables

describing the edges along the traversal. The disjunction of the traversal cubes for a

simple (negative) cycle forms the cycle constraint. The negation of the disjunction of

the cycle constraints (one for each negative cycle) forms the winning constraint.

From a satisfying assignment for the initial state, closure, and winning constraints

we may derive a memory-less winning strategy for player-0; and, a satisfying as

signment that sets a minimum number of variables to true, yields a minimum-state

memory-less winning strategy. This method could also be set up to work for deriving

minimum size memory-less winning strategies for either player-0 or player-1 in games

with more complicated winning condition such as Rabin, Streett, etc. Instead of con

sidering only negative cycles we consider all negative SCSs in forming the winning

constraint.

For the negative union closed winning condition, the smallest memory-based strat

egy is a memory-less strategy. Even for non-negative union closed conditions such

as the Streett or Muller condition the procedure above will compute a memory-less

strategy because we require that no negative SCS is traversed. Therefore if the player

wins the game but not by a memory-less strategy the procedure above will not find a

strategy. Also, for non-negative union closed winning conditions the minimum-state

memory-based strategy may have fewer states than the minimum-state memory-less

strategy. For all conditions, if the smallest memory-less strategy has (say) m states,

the procedure above will compute a minimum satisfying assignment with 2m vari

ables set to true; each state in the strategy will contribute 2 positive literals: one for

the variable and one for the choice from the state.
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For non-negative union closed winning conditions such as Streett and Muller, it

remains to devise a procedure to find the smallest memory-baised strategy other than

by enumerating memory-based strategies.

6.6 Computing the smallest strategy FSM for non-

closed winning conditions

Given a game Q = ({Q,^o,^o x and a memory-less strategy 5 for (say)

player-0, it is easy to check if the strategy is winning: check if L((5,-i0)) = 0, where

S specifies a transition structure on alphabet Eq x Ei as discussed in Section 3.2.

Similarly, it is easy to check if a memory-based strategy is a winning strategy. For a

subset FSM for the winner with the closed winning condition, it is sufficient to check

that the states are drawn from the winning set of nodes. Whereas, for a subset FSM

strategy for a non-closed winning condition (open, Buchi, etc..) it is not possible to

inherit the winning condition on the states of the subset FSM. We may however infer

a winning condition by "unrolling" the subset FSM.

Definition 6.6.1 Given a game automaton Q = ((Qj^oj^o x Ei,(5),0) and a subset

strategy FSM M = (Mo,mg,Eo,Ei,(Jo, Aq) (Jot player-Q), the unraveled memory-

based strategy FSM corresponding to M. is a strategy FSM

M! - (M^,m§',Eo,Ei,(JJ„ Aq), where:

1. Each state m = {91,52,-•• >9im|} € Mq, results in \m\ distinct states in Mq':

qT, 92*. •••.9h. and for mi, m, € Mq, mi # Tn,, {9 '̂. 9,". •••.9p,|} H
{9r,9r.---.9a}=0;

2. The output function Aq is consistent with Aq, i.e., Ao(9j") = Ao(m) for all 9J" €

m € Mo;

3. The transition function (5o is consistent with 60 and 6, i.e., ~ '''T >

where S{qi, (Ao(m),cri)) = rj, <5o(m, (Ao(m),cri)) = m', rf € m' , € m.
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Proposition 6.6.1 ForQ, subset FSM M, and unraveled FSM M' as in Definition

6.6.1, the subset strategy FSM M is winning provided L{{M',-^(t)')), where (j)' is such

that for S' C MJ, S'\= <l>'̂ 0^(50 \= (j>.

We can similarly define the unraveled memory-based strategy FSM corresponding to

a subset strategy FSM for player-1, as well as check that it is winning for her by

inheriting the winning condition on the states of the unraveled FSM.

We do not know how to pose the unraveling to check if a subset strategy FSM

is winning, as a Boolean constraint on the Boolean variables for the subsets. In any

event, for every strategy FSM and in particular the minimum-state strategy FSM,

there is an isomorphic subset strategy FSM.

Several interesting questions arise as to the kinds of subsets that can comprise a

minimum state winning strategy FSM:

1. Can be there be two identical subsets with different output?

2. Can there be two subsets with identical output?

3. Can there be two subsets where one is contained in the other?

The answers to the above questions determine how many variables per subset we

might need in enumerating subset strategy FSMs via a minimum variable Boolean

constraints satisfaction approach. Recall, we introduced one variable per subset for

the closed winning condition.

Proposition 6.6.2 Let Q —{(Q,go»5]o x Si,(^),<^) be a game automaton and M =

(Mo,mo,Si,Eo,^0}'̂ o) be a minimum-state subset winning strategy FSM (forplayer-
0). Then, if mi, m2 € Mq are 2 states in M, mi^m2 and m2%mi.

Proof: Assume for contradiction that (say) mi C mg. It is easy to see that we

can eliminate state mi from M and redirect all transitions into mi to m2, thereby

yielding a smaller strategy FSM. •

Therefore the answer to the three questions posed above for winning strategies

for closed games is no: given a winning subset strategy FSM, the maximal (in the
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partial order induced by C) sets, choosing one set in case of more than one set with

the same subset label, also comprise the state set of a winning subset-strategy FSM.

Therefore, the minimum variable Boolean constraints satisfziction approach of Section

6.4.1 indeed does compute the smallest winning strategy FSM for the player with the

closed winning condition.

We conjecture that for non-closed winning conditions, the answers to the three

questions about the nature of sets comprising the state set of a minimum-state win

ning subset FSM is yes. We would need more than one Boolean variable per subset

for the Boolean constraint based approach to minimum-state strategy synthesis; the

number of variables per subset is certainly bounded from above by the upper bound

on the size of the memory-based strategy admitted.

There are efficient practical solutions for binate covering problems [23,10] that we

can utilize to effectively synthesize minimum size memory-based strategies for games

on w-automata, as well as minimum-state strategy FSMs for the player with the

closed winning condition. For non-closed winning conditions, our inability to trans

late the winning condition as a Boolean formula over the subset variables suggests

that enumerating FSMs may be the only option to state-minimum strategy FSM

synthesis.

6.7 Summary

In this chapter we studied the problem of synthesizing minimum-sized memory-

based and non-memory-based strategies for games of perfect information on w-autom-

ata. It is NP-hard to synthesize a minimum-state memory-based strategy or a non-

memory-based strategy even for the player with a closed winning condition. The spEice

of memory-based strategies is insufficient to synthesize a minimum-state strategy FSM

even for winning conditions that admit memory-less strategies. FSMs with states

comprised of subsets of the states of the game automaton—subset FSMs—provide a

convenient abstraction to synthesize state minimal strategy FSMs. Minimum-state

memory-less strategy synthesis can be cast as a minimum variable Boolean constraints

satisfaction problem, as can minimum-state strategy FSM synthesis for the closed
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winning condition. Previously, Watanabe [57] has used a similar approach for the

extraction of a minimum state FSM from the E-machine.

In the next chapter we use subset FSMs to synthesize winning strategies that work

with any state 2is initial state.
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Synthesizing uninitialized

strategies
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7.1 Introduction

Thus far in this thesis, a winning strategy has been a FSM with a unique initial

state from which the FSM starts operating. In this chapter, we require that a winning

strategy FSM ensure a win no matter which state of the strategy FSM it starts

operating from. Given a game automaton, we consider the problem ofdeciding which

player wins with an uninitialized strategy FSM—an FSM with no initialstate.

In considering this problem we aremotivated by the industrial design ofsequential

circuits where the state holding circuit elements—latches—have noresetcircuitry and

as a result may power-up in any state [46]. While an FSM with an initial state has a

unique behavior, an uninitialized FSM's behavior depends on which state it starts in.

Therefore there is some flexibility afforded in resynthesizing an uninitialized FSM.

This flexibility can be cast as the set of winning uninitialized strategies for a Gale-

Stewart game on an td-automaton.

Sections 7.2 and 7.3 define uninitialized FSMs and subset FSMs. Sections 7.4

and 7.5 discuss the synthesis of uninitialized strategies for the player with the closed

winning condition.
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7.2 Uninitialized strategies

The game we consider is a two-person Gale-Stewart game of perfect information

played on a (deterministic) game a;-automaton. The notion of plays, winning plays,

and strategies is identical. Regular winningstrategies are however differently defined:

they are now FSMs with no initial state.

Definition 7.2.1 An uninitialized Moore FSM is a quintuple M. —(Q, So, St,(^,

A), where:

Q is a finite set of states,

So, a finite set, is the output alphabet,

Sj, a finite set, is the input alphabet,

S : Q xHi Q is the transition function, and

A : Q -> So 25 the output function.

An uninitialized Mealy FSM is similarly a quintuple M = (Q, So, Sj, 6,A), where

the output function A: Q x Sj -> So is dependent on the state and the input.

An uninitialized FSM M = (Q, So, S,-, (J, A) defines the closed language

Ug^QL( (Q, 6,A) ).

Given a game automaton Q = ((Q,go,^o x an uninitialized Moore

strategy FSM Mo = (Mq, Sq, Si, 5o, Aq) for player-0 is a winning uninitialized strategy

for him provided for every m§ € Mo the strategy FSM So = (Mo, mj, Sq, Si, (Jq, Aq) isa

winning (initialized) strategy FSM for him, i.e., if Ao))C

L{Q). Similarly, an uninitialized Mealy strategy FSM M\ = (Mi,Si,So,(yi, Ai) for

player-1 is a winning uninitialized strategy for her provided for every mj € Mi the

Mealy strategy FSM S\ = (Mi, mJ,Si, Sq,(Ji, Ai) is a winning strategy for her.

7.3 Uninitialized Subset FSM

We will show that uninitialized winning strategies can be synthesized as subset

FSMs.
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Definition 7.3.1 Given a game automaton Q = (((5,go>^o x uninitial

ized strategy FSM M = (Mo,Eo,Si,<Jo, Aq) for player-0 is an uninitialized subset

strategy FSM provided:

1. Mo C 2^

2. For every m € Mq, qo G m

3. For each mG Mo, if So{m,ai) = m' then 5(7n, (Ao(m),(7i)) C m!

Definition 7.3.2 Given a game automaton Q = ((Q,90)So x a strategy

FSM M = (Ml,El, Eo, 6i,Ai) for player-1 is an uninitialized subset strategy FSM

provided:

1. Ml C 2^

2. For every m G Mi, qo G m

3. For each m GMi, ifSi{m, (ao, Ai(m, ao))) = m' then S{m, (<to, Ai(m, ao))) C m'

Uninitialized subset FSMs are subset FSMs that not only do not have an initial

state, but also require that the initial state of the game automaton qo be present in

every state of the subset FSM.

For a game Q = {(Q,qo,^o x Ei,<5),(^), let Mo = (Mo,Eo, Ei,(5o, Ao) be an
uninitialized strategy FSM for player-0. For every m G Mo there exists a unique

tracking relation r^ C Mq x Q, between the states of the initialized FSM M^ =

(Mo, m, Eq, El, 5o, Aq) and Q. It follows that the relation

Ro = UmeMoT-o" = {(m,q)\(m,q) Grj' for some m € Mq}

is also a tracking relation. Therefore corresponding to the uninitialized strategy

FSM A^o, the (unique) tracking relation Ro defines an uninitialized subset FSM

S = (5,Eo,Ei,Jo, Aq) isomorphic to A^o on state set S = {Ro{m)\m G Mq}, where
Fio(m) = {q\(m,q) G Ro{m)}, <5o(i?o(m),ai) = Ro{5o{m,ai)), and Ao(J?o(m)) =

Ao(m). If Mq is a winning strategy, the tracking relation JEq is a simulation relation;

the unraveled FSM corresponding to S will contain |Mo| "copies" of go and any
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strategy with initial state within the unraveled FSM will be a winning memory-

based strategy FSM.

We can analogously show that player-l's uninitialized strategy FSMs are unini

tialized Mealy subset FSMs.

7.4 Synthesizing uninitialized strategies for closed

games

Consider a closed game Q —{(0,90}So x T,i,S),T). Assume game Q is won by

player-0 and his winning set is Wo C T; go ^ Wq. We compute the set of subsets

containing go that can comprise the states of a winning uninitialized subset strategy

FSM for player-0 iteratively as follows.

Consider subsets of Wq with go-

Pq = {S\S C Wo and go G5}

For i > 1,

Po = ^ Po~^ 3^0 € So s.t. Vai GEi ^(5,(7o,ai) C 5' G

For some 7,
/+! / def

Po =Po = Po

Theorem 7.4.1 Player-Q has an uninitialized winning strategy for closed game Q =

((Q,go,So XEi,(5),T) iff po ^ 0.

Proof: If Po # 0 it is clear that player-0 has an uninitialized winning subset strategy

FSM.

Let Mo = (Mo, Eo,Si, 5o» -^o) be a winning uninitialized strategy FSM for player-

0. This is isomorphic to an uninitialized subset strategy FSM with state set Q' =

{Ro(m)\m G Mo}. It can be shown on induction on i > 0, that Q' C pj. •
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7.4.1 E-machine for uninitialized strategies for player-0 in

closed games

We can define a nondeterministic automaton on state set po as follows. The

alphabet of the automaton is Eq x Si. For each state q' € po and each ctq € So such

that for each Oi € Si, (ao,(Ji)) C S' € po, we have transitions from q' under

((7o,oi) to every such state S' € po; it is possible that there might be more than

one allowed transition from a state for a given letter—a nondeterministic automaton.

There is no initial state and the language consists of sequences with defined runs—a

closed language.

This nondeterministic automaton can structurally simulate any winning unini

tialized strategy FSM for player-0 for the closed game Q\ it is the E-machine [58] for

uninitialized winning strategies for closed games won by player-0.

7.4.2 Uninitialized strategies for player-1 in open games

Assume that Q= {(Q,go>^o x is an open game won by player-1, i.e., if

Wi = Closed{QyT, 1), and qo £Wi CT. We compute the subsets of Wi containing
qo that can comprise the states of a winning uninitialized subset strategy FSM for

player-1 iteratively as follows. Start with:

P? = {S\S C Wi and qo € 5}

For i > 1,

p{ = {S\S € Po"^ and Vo-q GSq, B^i € Si s.t. 6{S, Co, ai) CS' € p]~^}

For some / > 0, p{"^^ = p{ '̂ = pi.

Theorem 7.4.2 Player-l has an uninitialized winning strategy in an open gameQ =

(((3,90,5^0 XSi,(5),F) iSp\ 7^0.

pi also defines an E-machine that structurally simulates all uninitialized winning

strategies for player-1 in an open game.
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7.5 Synthesis for safe replaceability

The synthesis problem for safe replaceability is: Given a (without loss of gen

erality) Mealy uninitialized FSM M = (Q, A) synthesize another Mealy

uninitialized FSM A4' = (Q', A') such that L{M.') C L{M)\ such an M! is

called a safe replacement for M. The objective is to synthesize an M! that has better

characteristics such as area, delay, power, etc. The flexibility afforded for synthesiz

ingM' is the set of all M' such that L{M') C L{M). Singhal [47] expolits a subset

of the flexibility afforded and states that exploiting the complete flexibility via "an

E-machine" is an open problem.

Since L{M) is a closed language, and defines an open game won by player-1, valid

safe replacements are exactly uninitialized strategy FSMs for player-1 for the open

game with language L(M).

7.6 Non-closed games

In this section we consider the case that the winner's plays do not form a closed

set. Consider game Q = ((Q, Let Wq be the nodes from which

player-0 wins, and q G Wq (obviously, for a player to have an uninitialized winning

strategy FSM he has to able to win with an initialized strategy).

We make a few observations about the existence of an uninitialized winning strat

egy for player-0.

Let L' = r\q^woL({{QiQ^^o ^ Lli,(5),(^ A-"Wq)). If player-0 wins the game with

language L', his winning initialized strategy FSM for such a game will also yield (by

dropping the initial state) an uninitialized strategy FSM for him, because L' is the

set of common winning plays from every node of Wq.

If there exists a subset Sq C Wq such that qo G 5o, and player-0 has a strategy

to keep the play in 5o forever, then again, if player-0 wins the game with language

L' = n,g5oL((((3,g, Eo X Ei,5),</> A -"^o)), his winning strategy yields a winning

uninitialized strategy FSM for him.



Finally, let

For i > 1,

pQ = {S\S C Wo and qo € S}

Qi-\ = {q\q ^ S £ pI^}

Po = {5|S € Po player-0 wins the game with language
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9, ^0 X El, 5), A-iQ.-i))}

For some /,

=Po = Po

The subsets in po are candidate subsets to comprise the state space of a winning

uninitialized subset strategy FSM for player-0. Therefore, if po = 0 player-0 does not

win with an uninitialized strategy. If po 0, however, unless L(Q) is closed, player-0

does not necessarily have a winning uninitialized strategy FSM.

Subsets not in po cannot participate in a winning subset strategy FSM. If we can

bound the size of a subset FSM, enumerating subset FSMs of size no larger than the

bound would yield an algorithm to decide the existence of a winning uninitialized

subset FSM. Other than for closed games, we have not been able to bound the size of

subset FSMs. While for the closed winning condition the answer to the three questions

on Page 151 is no (Prop. 6.6.2 holds), we conjecture the answers for other winning

conditions is yes. Unlike for initialized strategies amongst which are memory-based

strategies that always exist and hence give a resulting upper bound on the subset

strategy FSM size, for uninitialized strategies we do not have such a result.

We conjecture therefore that deciding the existence of uninitialized winning strate

gies would not be possible in general: the problem is undecidable.

7.7 Determinacy

The issue of determinacy is however easily settled: even closed games are not

determined when we require uninitialized strategies.
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Proposition 7.7.1 There exist closed games where neither player has an uninitial

ized winning strategy FSM.

Proof:

(a, 0)

(a. 1)

(b.O)

(b,1)

Figure 7.1: Closed game where neither player has an uninitialized winning strategy

Figure 7.1 shows a closed game won by player-0, Eq = {a, 6}, Si = {0,1}; his

objective is to keep the play in the two states indicated. However, he does not have

an uninitialized winning strategy: there is no common winning choice that works for

him from both states 1 and 2. •

7.8 Summary

In this chapter we addressed the problem of synthesizing uninitialized strategies for

two-person Gale-Stewart games of perfect information on a;-automata. FSMs with no

initial state are gaining industrial use and we have addressed the property synthesis

problem in this context. We presented an algorithm to decide if the player with

the closed winning condition h£is an uninitialized winning strategy. This procedure

also fgicilitates the exploitation of the complete flexibility available for synthesis for

safe replaceability: we provided the E-machine construction for synthesis for safe

replaceability.

Even closed games are not determined when we require uninitialized strategies. We

gave some sufficientconditions for deciding the existence of uninitialized strategies for

the player with the non-closed winning condition, and conjectured that this problem
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is undecidable in general. Settling this conjecture remains an important item for

future work.
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Chapter 8

Conclusion

In this dissertation we related the structural complexity of deterministic w-autom-

ata (DOA) to the synthesis ofFinite State Machines (FSMs) from properties specified

by deterministic cj-automata, as well as studied games that model synthesis problems.

We summarize the contributions of this thesis and indicate some avenues for ongoing

and future work.

The main results of Chapter 2 are summarized in Table 8.1. The second and third

columns indicate the complexity of translation: for instance, we have DS{n^h) —>

k), where n is the number ofstates, h is the number ofpairs and k (s)
is the Rabin Index (Streett Index) ofthe DSA, and m = min(/j, s). The optimality of

all the translations wereestablished by showing matching lower bounds. The column,

RI?, indicates the complexity of determining the Rabin Index for the automaton type

indexed by the row: for instance, if a DOA is both positive and negative union closed

DB DC RI? MinWit

DB(n) n (n,l) P P

DR(n, h) n
(„20(mlogft) j.) NP-hard P

DS(n,h) nh („20(n'IogA)^(i.) NP-hard P

DC(n,/i) n (n,k) P P

DM{n,h) 20(n) 20(nlogn) P NP-hard

Table 8.1: Chapter 2 results' summary
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such as a DCA, its Rabin Index can be determined in polynomial time. The last

column, MinWit, is the complexity of finding the minimum length witness for the

non-emptiness of the (nondeterministic) automaton type indexed by the row.

A language that is realizable as a DBA or a Co-DBA has a unique minimum state

automaton. State minimization of DBA and other DOA remains an important open

problem in the area of (j-automata.

In chapter 3, we addressed Gale-Stewart games of perfect information on (j-

automata (GSP games). These games admit a winner, and we synthesized memory-

based strategies by developing algorithms on game graphs. We presented algorithms

to decide the winner in Buchi, Rabin, and Streett games and synthesize the winner's

strategy for an n-node /i-pair Rabin (Streett) game in 0{Ti^^h^\E\) (0(n^®/i®|J?|))

time, where k (s) is the Rabin Index (Streett Index) of the game language, and E

is the edge relation of the game graph. Besides property synthesis, our results imply

improved non-emptiness checks for tree automata, and have applications to decision

problems for branching time temporal logics.

The computational complexity of deciding the winner in a Chain game is a signif

icant open problem with tremendous ramifications. In terms of assessing the worst-

case strategy size produced by a synthesis procedure, there is a gap between the lower

bound and upper bound for Streett games; there is possibly a better synthesis proce

dure for Streett games. In addition, we have to finalize a proof for the lower bound

on strategy size for the general Muller game.

In Chapter 6 we addressed the synthesis of minimum-state strategies for GSP

games. We proved that synthesizing the minimum-state memory-based or non-

memory based strategy even for the player with the closed winning condition is

NP-hard. We introduced subset FSMs as a means of synthesizing minimum-state

strategies. Minimum-state memory-based strategy synthesis was cast as a minimum

variable Boolean constraints satisfaction problem, as was minimum-state strategy

FSM synthesis for the closed winning condition.

Not every synthesis problem presents itself as a two-person GSP game. Chapter

4 examined two-person Gale-Stewart games of incomplete information (GSI game).

While we can decide which of the players wins and synthesize the winner's strategy by
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defining two GSP games, the complexity and the size of strategies required appears

higher, and these games may not have a winner. GSI games enable the modeling of

the Watanabe-Brayton [58] component FSM synthesis problem.

It remains to construct instances where the complexity of the larger strategies

required in GSI games is exemplified.

Fair games (FGSP game), where each player is required to adhere to his fairness

constraint or induce the other player to violate her fairness constraint, were considered

in Chapter 5. FGSP games were again decided by defining two GSP games. If either

of the player's fairness constraints is a topologically closed set the game has a winner,

otherwise the game may not have a winner.

In Chapter 7 we investigated the problem of synthesizing uninitialized strategies—

strategy FSMs with no initial state—for GSP games. These games, even closed games,

may not have a winner. We presented an algorithm to decide if the player with the

closed winning condition has a winning uninitialized strategy; this yields a synthesis

algorithm for synthesis for safe-replaceability that can exploit the maximum flexibility

available. The general case of non-closed winning conditions remains open, and we

conjecture that the problem may be undecidable.

While all the variants of the GSP game may not admit a winner with a determin

istic strategy, it would be interesting to consider randomized strategies and see if a

player can guarantee a certain probability of winning.

In this thesis, we presented algorithms for deciding the synthesis of properties pre

sented as deterministic cu-automata that was polynomial in the number of states and

exponential only in the structural complexity of the property. While combinational

logic synthesis has matured into commercialization, sequential synthesis has a long

way to go. There are two important issues that will need to addressed:

1. Binary Decision Diagrams (BDDs) [5] are a canonical data structure for the

representation of Boolean functions that has made tremendous advances in the

size of FSMs and representable and analyzed. Even though an algorithm's

computational complexity may be linear or polynomial in the number of states,

it is vital that the algorithm be able to exploit BDDs which enable several states
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to be dealt with "atomic" operations. We need to implement our synthesis

algorithm with BDDs and assess their performance.

2. Secondly, often properties and components in a FSM network are presented in

a multi-level logic form, rather than explicit state transition graphs [56]. This
adds another level of complexity to our algorithms that we need to cope with.

We have developed a simplegame program with a graphical interface to "play" with

games on game graphs. We plan to enhance this progressively and experiment in an

effort to push the frontier of practically solvable synthesis problems.
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