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Abstract

Resource Allocation for Multimedia on Wireless Networks

by

Yuming Lu

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University ofCalifornia at Berkeley

Professor Robert W. Brodersen, Chair

The personal communication industry has experienced phenomenal growth in thepast
few years. With the steady increase in demand for cellular telephones, wireless modems
and other emerging wireless technologies, it has become evident that the next generation
wireless system will integrate voice, video, image, and data. Transmitting multimedia data
overa wireless channel presents a new setof challenges: datademands willsometimes ex
ceed thesystem capacity, in which case the system must make themost efficient useof its
limited resources.

This thesis addresses design and control issues for multiuser,multimedia indoor wire

less communication systems. The firsthalf of this thesisfocuses on network resource allo

cations for supporting various quality of services imposed by multimedia traffic; the
resources we consider in this work are link bandwidth and transmit power. We present our

approach forunifying power control, variable forward errorcorrection (VFEC), and sched

uling for a downlink system by allocating the system resources. Our objective is to maxi

mize the overall system satisfaction, which we call "system utility". This objective is

achieved by applying a distributed algorithm which divides the overall optimization prob

lem into a hierarchy of three levels (system, cell and user), with each performing indepen

dent and parallel optimizations. Following this theoretical fi'amework, we then perform

simulation-based evaluation of the system performance with a simple cell structure and

uniformly distributed users. The overall performance is studied in detail as a function of

user distribution, trafiic statistics, FEC coding types. We also evaluated the effectiveness of

power control comparing with variable forward error correction, the impact to the overall

system performance due to the imposed fairness constraint, and finally, the performance

gain due to hand-off.



Variable forward error correction is the generally the most performance critical part

among three control variables. It is often implementedon customIC or programmable logic

devices. The second half of the thesis investigates the implementation of 63-bit family

BCH codes with the error correction capability t = 0,1,2, 3,4, 5, 6,7,10,11,13,15,31

errors (in a block of 63 bits). The core of the decoder adopts an iterative algorithm called

Berlekamp's algorithm. By exploitingthe redundancies between BCH codes of the same

length, the architecture ofa VFEC decoder is only slightly more complicated than a single

FECdecoder.Withpipelining,the decoding canbe completed withinoneblocktimeframe.
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1 Introduction

1.1. Global wireless network for multimedia communications

Over the past few years, the personal communication industry has experienced phe

nomenal growth in providing new types of services and technologies. With the steady

increase in demand for cellular telephones, paging services, wireless modems and other

emerging wireless technologies, it has become evident that the next generation wireless

system will integrate voice, video, image, and data. This system will not only provide the

freedom for people to communicate at anytime from anywhere, it will also distinguish

itselffrom the existing wireless systems byproviding information that has been only avail

able through wired networks.

Under the existing infrastructure for voice and data communications, it is likely that

current wireless networks will be connected via wide-area network (WAN) for providing

wide-area wireless services, as shown in Figure 1-1. The gateways are used for protocol

conversion and adaptation of new network constraints. A couple of assumptions must be

made for this proposed framework. First, the backbone network is assumed tohave abun

dant bandwidth comparing to the wireless network. This assumption makes wireless net

work management possible when control information is exchanged between nodes, for

functionality such as location tracking, handoff, packet forwarding, etc. In addition, this

abundance in bandwidthalso allows accesscapability to databases froma largenumberof

users simultaneously. The second assumption is that basestations are installed in the ser

vice area,whereeachbasestation transmits andreceives from a set of portableunits reside

in its coverage area. These basestations areconnected to thewired backbone network and

are acted as gateways to the wireless networks.
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Figure 1-1. Global network for multimedia wireless communications.

1.2. Design issues

From the past research and development effort in this area, this next generation wire

less system willhave to address the following issues:

• Low powerdesign for the portable unit

The transmit power and the computational power inaportable unit must beminimized

in orderto maintain a reasonable battery life. Extensive research hasbeendonein this area

with approaches ranging from high level algorithmic and architecture design to transistor

level CMOS design [21][37][6]. The results have shown that the power consumption can

be reduced significantly when low power design techniques are properly applied.

• Efficient use of limited network resources

The success ofsuch global wireless services highly depends ongaining more in-depth

understanding and making more efficient use of the underlying time-varying wireless

channel. From asystem's prospective, the wireless channels are often treated as the bottle

neck asfar asthe channel capacities are concerned, for the available wireless bandwidth is



significantly less than what has been provided by the traditional wired network. In addi

tion, the channel quality is always subject tohighly time-varying interference. To adapt to

this environment, system design must focus on better utilization ofthe limited bandwidth.

We will describe some key characteristics of wireless channels in the next section. The

bandwidth allocation aspect ofthe channel will bediscussed inthe proceeding chapters of

this thesis.

• Additional design constraints imposed by multimedia traffic

As thenext generation wireless system will support multiple traffic types, thedesign

hastoaddress several user imposed system performance requirements. These requirements

can bemost easily understood if weconsider the differences between this new system and

conventional wireless systems.

The first difference is that conventional portable communication systems have been

designed mostly for low-rate, single-data-type applications such as mobile voice and

paging services; the new system, on the other hand, supports multimedia data consisting of

real-time video, audio, text/graphics and control data. This difference yields several design

requirements: (1) thebandwidth requirements are orders of magnitude greater. (2) Multi

media data consist of several data types with highly variable qualities of service (QoS)

(e.g., typical speech data can tolerate a BER around 10'̂ , whereas control data require a

BER around 10"^). (3) A multimedia system requires a scheduler because bandwidth

demandsvary greatlyandwill sometimes exceed channel capacity. This schedulerdynam

icallyallocates bandwidth foreachapplication, leading to a priorityscheme formultimedia

data.

The second difference is the relative burstiness of multimedia data as compared to

voice data. For example, the channelthat carriesX-serverdisplay data is only active when

there is a screen update. To fully utilize the available bandwidth, statistical sharing

between multiple data streams is necessary.

The last difference is that the traditional voice/data communication systems respond to

congestion by blocking or dropping calls. However, the more acceptable strategy is to pro-



vide a partial service during congested periods, and thereforegracefullydegrade the QoS.

This is possiblebecausethe use of variable rate compression algorithm for video and text/

graphics,and degradationcan be achievedthroughthe controlofbothbandwidthand error

rate.

1.3. Quality of service and network resources

In contrast to traditionalvoice/data-onlycommunications, multimedia applications are

diverse and require a larger set of metrics to characterize their quality of service (QoS).

Thesemetrics will provide guidelines to wireless network for resource allocations. Let us

first examine these in more details.

• Data rate

As we have discussed earlier, data rates for multimedia applicationsvary greatly from

highbandwidth video to low bandwidth control information. Fora system to accommodate

various datarateandunderlying behavior of thearrival process, a ratecontrol algorithm is

often employed to schedulemultiple data sources for transmission.

• Error rate

The reliability of an application is usuallymeasured by its received error rate. Many

factors contribute to receiving errors. For example, bufferoverflow result in packet loses,

or excessive interference causes received bit errors. Many error control algorithms have

beenintroduced during thepastthirty years, ranging from bit level errorcorrection coding

(ECC), to packet level automatic repeat-request (ARQ) protocol. Recently, Han[22] pro

posed a scheme based on ARQ protocol which asymptotically achieves reliable

transmission of multimedia/graphics over wireless channels. All these are very

effective techniques withemphasis on different layers of the network.

• Delay

Roughly speaking, applications can begrouped into three categories according to then-

delay tolerances: end-to-end delay sensitive, jitter sensitive, and delay tolerant. The first

group includes application such as interactive video-conferencing, inwhich case end-to-

end delay isabsolutely critical tovisual quality. However, for applications such asmovies,

therelative delay between frames ismore important than the end-to-end delay. And finally,

4



when itcomes todata transfer, delay may not bevery important as long as data are received

correctly (even though a timely transfer is still preferred).

These quality ofservice needs can be fulfilled via allocating the available resources.

This thesis ismostly focused on managing network resources, and by network resources,

we mean link bandwidth, transmit power level and buffer size. The allocation ofthe link

bandwidth is controlled by a multiplexer, which schedules packets fi'om various applica

tions to a shared link. Theamount of transmit power foreach useris controlled by a power

control algorithm. Itisworth pointing out that apower control algorithm has to be designed
from a system's perspective since increasing one user's transmit power increases overall
interference level, which may severely degrades other users' receiving quality. From infor

mation theory's stand point, link bandwidth, transmit power and interference noise power

ultimately define the upper bound on the channel capacity, which consequently determines

the throughput and the maximum number of usersa system can support.

The goal ofthis thesis istodesign afi-amework which maps the resources to the various

quality ofservice metrics. As we will see in later chapters, applications have flexibility in

trading offbit rate, error rate, and delay. For example, we may increase the channel reli

ability by giving up some bandwidth for error control coding. Similarly, we can also

achieved a higher data rate byincreasing transmit power and adopting a higher constella

tion, which consequently increase the spectral efficiency. Compare to a conventional

system which considers channel coding and source coding separately, wecan also trade off

between compression rate and channel coding rate. Many ofthese issues will bediscussed

in greater detail in the chapters of this thesis.

1.4. Network access technique

A communication system that allows multiple users to access the wireless network is

called amultiple-access communication system. Fora common shared bandwidth, there are

many ways to divide it. Three approaches arewidely used: (1) ffequency-division-multi-

ple-access (FDMA) divides the total bandwidth into small segments, and each user com

municates withinthe assigned frequency band; (2) time-division-multiple-access (TDMA)

is similar to FDMA except division is occurred in time domain rather than fi-equency



domain; and (3) code-division-multiple-access (CDMA) is a spread spectrum technology,

and it can be visualized as a combination ofFDMA and TDMA. Since most ofthe research

in this thesis is carried out under the framework of CDMA, this section therefore focuses

on CDMA technology, specifically, the direct sequence CDMA (DS CDMA).

1.4.1. The DS CDMA technology

In a DS CDMA system, each user's bit stream is modulated with a pseudo-noise (PN)

sequence,which is an output of the pseudo-random generator. A rectangularpulse in a PN

sequence is called a chip^ and let us denote its duration as If the total available band

width is the rate ofPN sequence is then Wchips per second. In other words, =^.

Suppose information stream has bit rate R(with bit duration = ^), most practical sys-
R

T
tems choose the ratio to be an integer, we call this ratio the spreadingfactor, and it is

^ c

denoted as A^. As a result, the modulated signal transmitting over the channel expands to

the entire available bandwidth. Because N is normally large, the PN modulated signals

from other users therefore appear as white noise. An example of a PN modulated signal is

shown in the next figure.
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+ 1
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-1-
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Figure 1-2. CDMA PN signal, data signal,modulated signal.

To reduce user-to-user interference, the user signals are multiplied with a set of

orthonormal codes, called Walsh codes. By definition, a set of codes

/ € {1,2, 3,...} is orthonormal over the interval 0<t<T if:

f W{t)Wj{t) -
Jo / •'

Figure 1-3 shows two Walsh codes: Wj and W2.

7
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Figure 1-3. Basic Walsh Codes.

Putting everything together, it has been shown this combination of Walsh and PN

codes will yield a processing gain of N, independent of how energy is distributed among

signal components [50]. A system schematic indicating Walsh and PN codes is shown

below:

transmitter

user

Walsh Code 1 PN 1

user i signa

Walsh Code i PN 1 A

user N sign

Walsh Code N PN N

receiver

user I signal

PN i Walsh Code i

Figure 1-4. Transmitter and receiver architecture with Walsh and PN modulated codes.

At the receiver's end, say for user /, the aggregated signals are first multiplied withuser

i's PN code and then with user /'s Walsh code. In a perfectworld where the transmitter

and the receiver are synchronized, and there is no noise and interference, then the desired
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signal can be perfectly detected since all user signals are orthogonally coded. However, it
is known thata wireless environment can be full ofbackground noise, and there areinter

ferences from reflected signals and nearby transmitters; therefore, the received signal is

imperfect with added interference andnoise components.

1.4.2. Interference model for CDMA systems

Generally, thereceived signal for user i can bedivided into four parts:

where s^{t) is the desired signal component, and are the intra-cell and

inter-cell interference, respectively, and w,(0 is the background noise. Two sources of

interference are present in the system. The intra-cell interference, on one hand, isgenerated

by the signals inside the same cell coverage. The inter-cell interference, on the other hand,
isgenerated by the signals from nearby cells which arrived atuser Vs receiver. Both inter-

cell and intra-cell interference appear in uplink and downlink channels.

During a downlink transmission, signals arrived at the receiver through a direct path

and multiple reflected paths, as shown below:

1

1

inter^cgfr— ^^^...Jntra^cST
interference — interference

1
1 B

Figure 1-5.Interference sources for a downlink system.

For intra-cell, if the transmitter and the receiver are synchronized, the received signals

would still remain orthogonal when arrived at the receiver, thus donot interfere with one

another. However, the intra-cell interference is not completely eliminated because signals



reflected from walls or objects would arrivewith time delays, which would then destroy

theorthogonality. Aswehave also indicated inFigure 1-5, theinter-cell interference exists

for downlink transmission because signals transmitted from other basestations are non-

orthogonal to the desired signal as they travelled completely different paths. Even though

thereflected inter-cell signal is also a partof interference, the direct arrival paths areusu

ally the strongest and are used toapproximate the total inter-cell interference. Because sig

nals are PN coded, and there is a large number of them, both intra-cell and inter-cell for

downlink channel can be modeled as white Gaussian noise.

For uplink communications, there isno difference between the nature ofinter-cell and

intra-cell interference, because each usersignal travels through a different pathtoreach the

receiver. As they differ in travelling distances, there is no orthogonality between them.

Since users reside in the same cells are closer to the receiver, they appear as a stronger

source of interference (than users from nearby cells). Again, since they areall PN coded,

and there is a large number of them, inter-cell and intra-cell interference for both uplink

channel can be modeled as white Gaussian noise as well.

1.5. Power control

To combatexcessive interference andimprovethe received signal to noise ratio,power

control is an effective technique that has been applied to many wireless systems. Power

control is a method which adjusts the transmit power level so that the received signal to

noiseratio adapts to the interference and channel variation.

In general, power control has been applied to both uplink and downlink channels for

different purposes. Previous research inthis area has mostly been focused onuplink power

control tosolve the near/far problem [50]. This problem iscaused byusers having unequal

distances to a commonreceiverbasestation, so the received signals vary widely in signals

power. Uplink power control can mitigate this effect as well as being used to minimize the

transmit power level which critical due to the limited battery life atportables. The down

link communications, on the other hand, experiences no near/far effect since all signals

propagate through the same path when arrived atthe portable, but isused instead to combat

10



interference and channel fading. Since the downlink isassumed tooriginate atawired bas-

estation, battery life is not a concern.

A power control algorithm can be either caitralized or distributed, synchronous or

asynchronous. For a centralized algorithm [19], information onevery user's channel qual

ity, power level and traffic demand is processed at a central unit, and the signal transmit

power levels for allusers are determined simultaneously. Centralized algorithms areusu

ally synchronous, in which all transmit power levels areupdated at the same time. Since

all information is available at the time when decisions are made, centralized algorithms are

often simpler toanalyze, easier toimplement and control. Itisalso non-iterative astheopti

mum can be computed in a singleiteration. However, sincewireless communication sys

tems shouldbe designed to be scalable to servehundreds or thousands of activeusers at

any given time, a centralized approach is usually not practical because of the computa

tional complexity involved. This shortcoming makes a centralized algorithm imsuitable for

large scalesystems, but can be used as a performance upper-bound of whatis achievable.

A distributed algorithm [20], on the otherhand, uses the local powerand interference

information to make independent decisions. Algorithms in this case are often scalable,

meaning adding new users to the system imposes no increase in algorithm complexity.

This property makes distributed algorithms highly desirable for practical systems. How

ever, the distributed algorithms are generally more difficult to analyze, since the algo

rithms ar usually iterative. For this type ofalgorithms, convergencebecomes an issue, and

even when an algorithmdoes converge, the rate ofconvergencemust also be considered.

Early work has shown a significant increase in the system capacity after applying

power control [34][58]. Foschini and Miljanic proposed a distributed algorithm that uses

local measurements on power and interference in order to meet the required carrier to inter

ference ratio (CIR) [15]. In [55], Yates proves the existence ofa transmit power vector that

satisfies the given interference constraint. In addition, Yates also proved the convergence

of synchronous and asynchronous power update to a unique fixed point at which total

transmitted power is minimized. This result will be applied in Chapter 3 to proved conver

gence of our power control algorithm. Both Hanly and Yates et. al. have independently

11



come up with algorithms the combines basestationselection and power control [24][56].

They presented distributed algorithms that converge to an allocation whichhas the mini

mum interference.

Recently, power control has also been applied to multimedia systems for delivering

multiple datatypes having a wide range of SNR requirements [57][29]. In [57], the trans

mitted poweris adjusted at the packet level according to bothdatatypeandchannel qual

ity;in otherwords, different segments of a packet maybe delivered withdifferent transmit

power; this isa form of fast power control. In [29], power control has been combined with

FECand scheduling to optimize the system utility, andwill be presented in laterchapters

of this thesis.

1.6. Case Study: InfoPad

TheInfopad is a multimedia wireless system developed atUCBerkeley [40]. This sys

tem, shown in Figure 1-6, is a wide-band multimedia communication network which is

designed to serve a large number ofusers simultaneously through portable terminals. The

communication channels for this system areasymmetric as the highspeed, real-time video

is only available for the downlink transmission. We assume the downlink transmission

employs DS CDMA. Since measuring absolute phase of arrival signals is a difficult task,

differential QPSK is adopted asthemodulation scheme, inwhich heinformation is carried

by the phase difference between two consecutive arrival symbols. Each user transmits at

12



the rate of IMsymbols per second (2Mbit per second). 64 distinct Walsh codes are

employed, corresponding to a coding gain of 64.

High Speed Backbone Network (e.g., ATM network)

Base
Station

Base
Station Database

and
Compute Servers

CDMA

Wireless Multimedia Terminal
- X-terminal
- Video and Text/Graphics
- Audio & Handwriting I/O

Figure 1-6. Infopad system overview.

For low power, cost and usability reasons, these terminals have minimal general pur

pose computational power; instead, only computations that are absolutely necessary are

carried out by the portable units. The computations that arenot so time critical are pushed

offto compute servers connectedthroughthe a high speedbackbonenetwork.The compu

tationalresults, togetherwith othertypesof multimedia datei, are sentback to the terminals

via backbone network, basestation, and wireless channel.

1.7. Thesis outline

As will be presented in the proceedingchapters, the main contributionof this thesis is

to provide a systemicapproachwhichefficientlyallocateswirelessnetworkresources.The

resulting allocation corresponds to a wide range of QoS imposed by multimedia users.

Simulation ofthis system further provides a more in-depthunderstanding ofthe dependen

cies and relative effectiveness ofdifferent parts of the system.

The thesis outline is the following. We begin Chapter 2 with a detailed description of

basestation architecture and resource constraints for a DS CDMA system. We then claim
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the system design is sub-optimum ifthe techniques ofpower control, forward error correc

tion and scheduling are not considered simultaneously. As a result, we propose a frame

work for unifying power control, variable forward error correction, and scheduling for a

downlink system. Our objective is to maximize the overall system satisfaction, which we

call "system utility."This objective is achievedby applying a distributed algorithm which

divides the overall optimization problem into a hierarchyof three levels (system, cell and

user), with each performing independent and parallel optimizations.

Chapter 3 is focused simulation-based evaluation of the system performance with a

simple cell structure and uniformlydistributed users. The system is simulatedusing a spe

cific utility function: the step function. This utility function coincides with conventional

design objectives for many wireless or cellular systems, where a BER (or SNR) require

ment is imposed. The objective of this chapteris to gain a more in-depthunderstanding of

the system performance with concrete metrics. The system performance is studied as a

function of user distribution, traffic statistics, EEC coding types. We also evaluated the

effectiveness of power control comparing with variable forward error correction, the

impact to the overall system performance due to the imposed faimess constraint, and

finally, the performancegain due to hand-off.

In most wirelesssystems,powercontroland scheduling algorithmsare implementedin

software since they operate at the packet level thus are not very timing critical. The error

correction, on the other hand, performs in real time at data rate, which can be as high as

2Mbit/sec such as in the case of the Infopad. In order to achieve this high performance

requirement, EEC decoder design is oftena critical part of the overall system design. The

rest of the thesis is devoted to architecture design of a variable forward error correction

decoder based on 63 bit family BCH codes. This decoderhas the correction capability of

/ = 0,1,2, 3,4, 5,6, 7,10,11,13,15, 31 errors (in a block of 63 bits).

To understand the decoder architecture, the work is divided into two parts. In Chapter

4, wefirst provide readers withsufficient background on algebraic coding theory, sincea

cyclic code is used as thebuilding block forvariable forward error correction. In Chapter

5, an architecture is presented together with its control logicwhichis implemented using
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finite state machine. By exploiting the redundancies between BCH codes that have the

same block length, we observe that a majority of the decoder hardware can be reused

among codes. Therefore, the implementation of a VFEC decoder is only slightly more

complicated than a single FEC decoder. With pipelining, we discover the decoding can be

completed within one block period. However, the control logic will be simpler if more

pipeline stages are introduced.

This thesis is concluded with Chapter 6, in which we will discuss the possibility of

introducing delay as an additional system constraint. Other system control technique such

as automatic repeat-request (ARQ) will alsobe discussed.
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2 utility Based System Control

2.1. Goals

This chapter addresses design and control issues for multiuser, multimedia indoor wire

less communication systems. The motivation ofthis work is theInfoPad system, which is

a multimedia wireless downlink system developed atUC Berkeley. However, theapproach

and thetechniques described here can be extended to other wireless systems as well.

This system is designed to fully utilize theavailable resources while meeting thevari

ous QoS requirements ofmultimedia data. In order to achieve theoptimal system perfor

mance, we consider three control "knobs" for fulfilling various bandwidth or BER

requirements. These knobs are: variable forward error correction (VFBC), power control

and scheduling. Among them, VFEC selects a particular FEC code; this PECthen intro

duces redundancy to combat transmission errors. Downlink powercontrol varies the trans

mitpower toadjust thereceived signal quality. Together VFEC and power control areused

to support applications with widely varying QoS and to mitigate excessive interference.

Finally, prioritizing (i.e. scheduling) allocates bandwidth among data types; this is espe

cially neededwhen application demands exceedchannel capacity.

The goal of our design is to unifyVFEC, powercontrol and scheduling into one sys

tem. We claimthat the systemdesignis incomplete ifthemethodsofVFEC,powercontrol

and scheduling are not considered simultaneously. For example, let us consider a design

that only controls power. Sincedata in our system are timevarying, it is verypossible that

all activeapplications would sometimes consume lessthanthe available bandwidth. In this

case, the remainingbandwidthis wasted.Comparethis to a systemthat, instead ofwasting

this bandwidth, uses it for FEC coding. Due to the coding gain, we are able to reduce the
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transmit power while maintaining thesame QoS; and theconsequence oflowering transmit

power is the reduced interference to the rest of the system. This example illustrates the

interaction between power control and FEC. Finally, the result from scheduling affects

both the VFEC selection and the transmit power level in order to meet the specific QoS of

that data type.

2.2. Downlink system architecture

It has been discussed in Chapter 1 that a CDMA system has a limitedcapacity due to

resource constraints that arise from the nature of the multiple access scheme. These con

straints are: (1)each useris allocated a fixed linkbandwidth; the total bandwidth allocated

to a user's applications with or without FEC encoding must be less than this linkband

width. In thecaseof the Infopad, each useris given a 2Mit/sec linkbandwidth; and (2) the

total transmit power from a basestation (which serves all users in a cell) must be less than

an allowable power level setby implementation constraint and FCC regulation. Figure 2-

1 shows the downlink radio structure together with these practical constraints.

video
audio user 1

text
control

video
audio user N

text
control

VFEC
Encoder

VFEC
Encoder

2Mbit/sec

2Mbit/sec

Bandwidth

Constraint
Bandwidth PowerPower

Constraint

Figure 2-1. Basestation architecture andthe system constraints.

Foreachuser, themultiple datatypes aremultiplexed and send toaVFEC encoder. The

data are then encoded with the most suitable FEC code (according to individual data type's

QoS specification) and passed to the power amplifier, where the data are amplified accord

ing tothepower control algorithm. Finally, the amplified data are summed and transmitted
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to all users simultaneously. In the aboveFigure, we have only shownthe modulesthat are

relatedto this study,in otherwords, we haveleftout the partofthe systemsuchas PN gen

erator and Walsh code.

2.3. Concept of capacity

2.3.1. Conventional measure of capacity

A large set ofsolutions are feasible by various combinations ofVFEC, power control

andscheduling, whereeachcombination yields a setofresource allocation resulting in dif

ferent bandwidth and BER received for each data type. It is therefore crucial to define a

design objective, or the notionof capacity, that can be used as a guideline to control these

techniques.

In the past, extensivework has been carriedout to analyzethe wirelesssystem in terms

of the Shannon capacity [17][18]. For a time-invariant channel such as the telephone net

work, the Shannon capacity is the mutual informationbetween channel input and output

maximized over all possibleinput distribution. The mutual information is defined as:

I{X\Y) = y\o%[p{x,y)/p{x)p{y)]

where p{x,y) is the joint distribution of the channel input and output, p{x) and p{y)

denote the distribution for channel input and output, respectively. Shannon also proved

that, for any data rate below capacity, there exists a block code at that rate with an error

probability that goes to zero; however, the block code has no restriction on its code com

plexity or delay. For a time-varying channel, there is no analogous definition of mutual

information, as the conditional input-output probabilities are time dependent. Therefore,

the channel capacity is defined to be the maximum achievable rate with arbitrarily small

probability oferror (without restriction on the code complexity or delay). Even though this

whole fi-amework built around the Shannon capacity inherits a very rich mathematical

structure that provides an upper bound on how well a system can perform, it is nevertheless

impractical for designing practical systems as delay and implementation complexity are

often important issues.
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Until now, existingwirelessand cellularsystemsare designedto maximizethe average

number ofusers at a given time with a given quality, which is called the Erlang capacity.

This conceptof Erlang capacity stems from the telephony industry, wherethe capacity is

established around the availability of assigned slot for wired telephone traffic. The avail

ability is defined as the probability a userdoes not receive service at anytimebecause all

slotsareassigned to othercalls, which would consequently evokea busysignal. Inwireless

systems, the concept of the availability becomes more complicated as it depends on the

channel quality, data rate, total bandwidth and many other factors. However, fortheexist

ing wireless systems, the concept of Erlang capacity has been widely applied, mostly

because thesesystems aredesigned to support a single datatype, suchas voiceor dataser

vice. In these cases, QoS for a user can be concretely defined as a function of received

SNR, thus the number of active users is also well defined.

2.3.2. Utmty

Complications arise after introducing multimedia data to oursystem. One difficulty is

that thesedatatypes havea wide range of errortolerances, withBERranging from 10" to

10'̂ . In addition, with theinvention of layered coding [31] [45], partial delivering is made

possible for achieving graceful degradation. As a result, the notion ofanactive user isnot

well defined because the amount ofnetwork resources a user needs is highly dependent on

thetype of requested service. For example, suppose a user can choose receiving low reso

lution video together with text graphics or just highresolution video; or, the system may

either support 6 users with high QoS or 10 users with medium QoS, how do we choose

between these alternatives?A multi-user,multimedia system is ultimately designed to sat

isfy users; therefore, we argue that any design decisions should bebased onuser satisfac

tion. For instance, if users prefer receiving more dataat costof having a higher errorrate,

the system design should reflect that accordingly. Therefore, our objective is tomaximize

total user satisfaction, which we call "system utility".

In general, the concept of system utility is somewhat vague. However, if we assume

that utility is additive, then system utility becomes the sum of user utilities, and a user's

utility is the sum ofthat user's application utilities. For each application, the performance
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clearly depends on both quality and quantity of delivered data. In this study, we express

application utility interms ofdelivered BER and bandwidth.^ An example on application

utility function is shown in Figure 2-2.

Utility Bandwidth

Figure2-2. A typical application utility function.

At this point, let us discuss the qualitative properties of the application utility func

tions.^ We proceed by first holding BER constant so that utility only depends on delivered

application bandwidth.

Forallapplications, the application utility isa monotone non-decreasing function with

respect to thebandwidth. We can categorize applications into many classes; nevertheless,

we will discuss and contrast only two such classes. One class includes applications for

which performance gradually improves as their allocated bandwidth increases; however,

with a decreasing marginal utility (e.g., video and text/graphics). Theutility functions for

this class of applications are therefore concave everywhere, as shown in Figure 2-3 (a).

Another classincludes applications such ascontrol information forwhich thereceived data

are of no value to users if only partial information is delivered; however, once the neces-

1. End-to-end delay is not considered in this study.
2. Theactual utility ftmction foranyparticular application canbedetermined through either simulations or experiments with users.
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sary amount ofdata isdelivered, there isno extra benefit for receiving more data. Figure 2-

3 (b) shows the utility function for thisclass of applications.

Utility

Bandwidth

(a)

Utility

Bq Bandwidth
(b)

Figure 2-3. Two types of utility functions with respect to application bandwidth.

Let us now turn our attention to the other parameter of the utility fimction, the error

rate. When the received BER is high, users are generallyunsatisfiedwith applicationper

formance. As the error rate improves, their satisfactions rise as well. However, once the

BER improves beyond a certain level, very little additional satisfaction is achieved. For

instance, the reception quality of video is nearly identical betweenBERsof 10' and 10' .

Figure 2-4 illustrates theutility function with respect to BER. As a final remark, the appli

cation utility as a function ofbandwidthand BER shownin Figure 2-2 is obtainedby mul

tiplying utilities from Figure 2-3 (a) and Figure 2-4.

Utility ,

ow error rate

•0 "1 BER

Figure 2-4. Utility function with respect to the error rate.
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2.4. Layered Approach to UtUity Maximization

Now that we have discussed the qualitative behavior of the application utility func

tions, letusreturn to the problem ofmaximizing the system utility subject to constraints.

Suppose auser has several applications, each with utility ,where isthe appli

cation bandwidth, and is thereceived BER (after FEC decoding). Recall theutilities are

assumed to be additive, therefore, theuser, cell, andsystem utilities canbe expressed as:

L L

userutil = (appl. util),. = (2*^)
/= 1 1 = 1

M

cellutil = ^(userutil)y (2.2)
j= 1

M L

= I ^{Ui{B,E,):
y=i/=i

N

system util = 21 ^til)^ (2.3)
k= 1

N M L

= I I I (",(5,
it = I y = 1 /• = I

With this formulation of the utility ftmctions, we are able to overcome the shortcom

ings from the previous design objectives. First, a user may prioritize various data types

using theutility functions according to (2.1). Second, by introducing anappropriate weight

factor, users in the system can be prioritized as well by (2.2).

Our objective is to maximize (2.3)subject to constraints, whereparameters and E^

are controlledby powercontrol, VFEC, and scheduling. One approach to this globalopti

mization is to apply a centralized algorithm which considers all users' utilities in the

system simultaneously. The advantage of this approach is that it doesnot requireany iter

ative steps for achieving the optimum; however, the computational complexity and com

munication requirements are impractical for any reasonable sized system.
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Instead, we proposea distributed algorithm that divides the systemoptimization prob

lem into three separatelevels: user level,cell level,and systemlevel.Figure 2-5 showsthe

optimizationhierarchy, in which the optimizations are representedby nodes and commu

nications are represented by edges.

System Level
(inter-cell)

Cell Level

(intra-cell)

User Level Q (j O O O 6

Figure 2-5. Three levels ofoptimizationhierarchy.

The nodeswithin each level are independent and canbe optimizedin parallel.The opti

mization results, expressed in terms of the resource requirements, are passed up to the

higher level. For example, the optimal user utility, expressed in terms of user's channel

SNR, is directly proportional to the transmit power level; the transmit powerlevel is then

determined by the cell level optimization which performs intra-cell power allocation. In

addition, at the system level, a cell communicates with its interfering neighbor cells to

negotiate its cell power budget soas tomaximize the entire neighborhood utility. Thislay

ering approach yields a distributed algorithm, and thedetails areexplained in thefollowing

section usinga bottom-up strategy: from user level to cell level, to system level.

For the rest of the chapter, we assume the feedback loop from portable to basestation

gives thebasestation aperfect estimate ofthechannel SNR. Thebasestation then calculates

the propagation loss and the interference factors for each user, based onthe user's channel

SNR andthe transmit power levels of theneighbor cells. In Section 2.4.3, we will discuss

how channel estimation can be done in reality by having a synchronized power control

algorithm.
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2.4.1. User Level Optimization

Attheuser level, weoptimize user utility. Two techniques are applied: first, thesystem

performs scheduling by allocating bandwidth to each application. Second, the system opti

mizes error rate byapplying VFEC; WEC enables the system totrade-offthe quality with

quantity ofdelivered data for each application.

Recall that the user utility is the sum of the applicationutilities:

=t (2.4)
/= 1

Our objective is to maximize (2.4), over the variables B = (.5j,52, and

E - (£j, £2* •••' ^i)' subject to the link bandwidth constraint:

L

^ Bj' ^{SNR, E^) <Link Bandwidth (2.5)
i= I

where

r^iSNR,E,) = ""febandwidA (2.6)
' data bandwidth

»

The maximal value of user utility is denoted as C/,user'

Tomaximize theuser utility, wedonotdirectly choose thereceived BER E^; instead,

we select the level of VFEC which, together with the known link SNR, to determine the

received BER. The choice of PEC code is reflected by the ''bandwidth expansion func

tion", 11(5^^, £,.), which corresponds to the PEG code that achieves (after decoding)

for a given channel SNR. T\{SNRi E^) is the ratio ofthe link bandwidth to the data band

width of the PEC code, as in (2.6); thus B^ •r[(SNR, £,) is the actual channel bandwidth

consumed by application /.

Maximizing (2.4) under the constraint (2.5) is an optimization problem over 2L vari

ables (B and E). The optimal B and E can beobtained byapplying theLagrange multi-
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pliers. Observe that the channel SNR is the only undetermined variable during the

optimization; as a result, both the optimal B and E, and thus the optimal user utility are

functions of the channel SNR, as shown below:

^user(SNR) = Max U^seriB.E)
B,E

L

such that X ^{SNR, E^) <Link Bandwidth
/= 1

Let usnow focus onthe characters of U^^^^{SNR). Since theuser utility isamonotone

increasing function with respect to application bandwidth, higher link bandwidth would

always yield higher user utility. Therefore, the maximum user utility would occur when all

availablelinkbandwidthis consumed, i.e. at theboundary of the inequality (2.5).Thus this

inequality can bereduced to equality, which isa convex set. Since our objective function,

theuser utility, is a concave continuous function, and theconstraint setis a convex set, by
*

the fundamental theorem of mathematical programming, C/ (SATR) is a global opti

mum.

To summarize, two results are achieved through this user level utility optimization.

First, forany given channel SNR, wecan apply scheduling and FEC selection (i.e. choos

ing 5 and £) such that the user utility is maximized. Second, the maximum user utility

can beexpressed asa function ofSNR (presuming anoptimal choice ofB and E). As will

be shovm in the next section, this maximal user utility function becomes the cornerstone

ofthe cell level power allocation.

2.4.2. Cell Level Optimization

2.4.2.1. Derivation of user SNR

Before weproceed with thecell-level optimization, letus first derive theuserchannel

SNR. This will help us understanding the intra-cell power allocation which will be pre

sented later.
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An indoor wireless communication environment is interference limited. In such an

environment, usersare subject to threesources of interference andnoise: intercell interfer

ence, intracell interference and background noise. Let us assvime we are interested in user

i located in cell #0, the channel SNR for user /, is the ratio ofthe received signal power to

the noise power:

SNR = received signal power ^2 7)
' total interference and noise power

Letus first derive the received signal power. Let Pq be thetotal available transmit power

for cell #0, and (j), be the fraction of Pq allocated to user /. The transmit power level for

user i, denoted as /?,, is /?, = ^^Pq •In most radio applications, the transmission over the

free space is given by the approximation [25]:

Pr = PtSbSr

where

P^: received signal power;

P^: transmitted signal power;

gfj: basestation antenna gain;

: receiver antenna gain;

: basestation height;

: receiver height;

d: distant between basestation and receiver.

Therefore, the received signal power for user / can be written as:

26



Pr = SiPi (2-8)

where represents theoverall antenna gain, height factors and path lossof user i.

Let us now derive the total interference and noise power which includes inter-cell,

intra-cell and background noise. For illustration purposes, we assume a hexagonal cell

topology as shown in Figure 2-6., where a center cell has six neighboring cells. Suppose

cell #/ isinthe center, and let P\yP\) be the total power level atthe bases-

tation for each one oftheseven cells, where (Pj,..., P^) are neighboring cell power levels

with ith cell being the center cell. Using this notation, for example, Pq represents the

powerbudgetfor a cell neighborhood where#0 is in the center.

Figure 2-6. Cell topology.

As we have discussed earlier, the intra-cell and inter-cell interference are modeled as

white Gaussian noise. Without loss of generality,our focus is on user i in cell #0 with six

adjacent neighbor cells. Theintra-cell interference results from reflected signals from the

same cell, thus it only depends on the total powerlevel of the residing cell, which is Pq.

Byassuming a large number of reflective paths, theintra-cell interference canbemodeled

as white Gaussian noise and is a fraction ofcell power level [50]:
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(ofnw), = «/ ••Po (2.9)
where a,- iscalled the intra-cell interference coefficient, and itequals to reflection coeffi

cient divided by path loss and the spreading gain N.

The inter-cell interference, on theotherhand, is generated by the signals fi*om interfer

ingneighbor cells thus it depends onthe total transmit power level fi*om these cell bases-

tations. Recall (Pj,..P5) represents the power levels ofsix neighbor transmitters when

cell#0 being thecenter cell, the inter-cell interference canthenbe expressed as:

(O, = P,,,•P^p2,,•P^••• +p6.^P6 (2-10)
where is the inter-cell interference coefficient for user i generated by cell i^n. For

simplicity, we only consider LOS interference, thus p equals to attenuation dividing the

spreading gain. Asa remark, these interference coefficients should always be verified and

updated with measurements.^

Combining (2.9) and (2.10), wecanusea vector notation to represent theoverall inter

ference noise power,

(Ointra), +(Winter)/ = ^ ^ (2-11)

where fj = (a^, P, P^ ^), ^ = (Pq, Pp •••. P"), and • is the vector dot product.
Consequently, substituting theexpression of interference noisepower (2.11) into(2.7), the

channel SNR for user i in cell #0 is:

SNR^ = —5 (2.12)
(Oinw).- + (®inter), + Y, • Pq + (Ofi),

1. Throughout this study, weonlyconsider the first orderintercel! interference, i.e. interference coming fromtheadjacent cells.
2. The intracell and intercell interference coefhcients fora userdepend on the location of the userandthe indoorenvironment, bothof

whichare time varying. These interference coefficients can be estimated by correlatingtotal noisepower (whichcan be measured)
with this and neighboring cell power levels.
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where g,- is the product ofantenna gain, path loss and the spreading gain ofuser /, Pq is

thetotal transmit power forentire neighborhood of cells when cell #0 is in the center, and

(a^),- background noisepower.

2.4.2.2. Cell level optimization

During thedownlink transmission, a CDMA radio transmits to all users within a cell

simultaneously and is subject to a power budget which is determined through the higher

layer optimization. Thegoal of performing cell level optimization, for cell #0 in our case,

isto distribute the power budget Pq to each user, i.e. finding (jjy so that the total cell utility

is maximized.

Suppose cell #0hasA/users, the total cell utility is therefore thesum of maximal user

utilities:

_ ^ »
t^ceiioCt'.-Po) = (2.13)

j= 1

^ J 2-^'Pn ^
= V ^

Ourobjective is to maximize (2.13) subject to thepower budget constraint:

M

X<1.;^1 (2.14)
y= 1

Maximizing cell utility isan optimization problem ofAfvariables. The optimal power allo

cated to each user, can again be obtained by applying theLagrange mul

tipliers.

Notice that the cell power budget for the entire neighborhood, Pq, remains unknown

during the optimization; therefore, the optimal user power allocation, (<|>i, <|)2» •••> <I>a/) »

thus the maximal cellutility, denoted as q»is a fimction of Pq :
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M ,

I ^j^SNRj) (2.15)
" ' 7 = 1

M

such that X <l>y 1
y = 1

The constraint function expressed in (2.14) can again be reduced to equality; since

higher power budget yields higher cell utility, all the available power budget would becon

sumed by users. Again, the objective function is continuous and concave over the con

straint set, the optimum t^ceiio('̂ o) obtained by the Lagrange multiplier is a global

maximum.

Itisnot difficult to prove that the two-step optimization process (i.e. the user level and

then thecell level optimization) for maximizing the cell utility isequivalent toanone-step

optimization at the cell level. This one-step optimization determines the , the for each

application among all users, and <j)y for each user in the cell. However, the layered

approach introduces parallelism thus reduces the intercell commumcation.

Tosummarize, we have achieved the optimal user power allocation for multiple users

within acell. The optimal cell utility depends on the cell power levels for the entire neigh

borhood. This result provides us with a platform to perform intercell power allocation,

whichis to determine the total cell powerbudget for eachcell.

2.43. System Level Optimization

Our ultimate goal isto maximize the overall system utility which isachieved by setting

the cell power budget for each cell. Since a large number ofusers and cells are in the sys

tem, weseek a distributed algorithm that is scalable inboth computation and commumca

tion.

One difficulty for updating power levels for multiple cells independently and simulta

neously is that they can introduce great amount of inaccuracy to channel estimate. For

example, let us reconsider the cluster of sever cells as shown in Figure 2-7. If the power

budget for two adjacent interfering cells, say cell #1 and cell #2, are changed independently

and simultaneously, then the channel estimators in cell #1 would not react to the change
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made incell #2 immediately, and thus produce a wrong estimate for some period oftime.

To overcome this problem, we developed a scheduling scheme for achieving our goal.

As intercell interference is localized to a finite region, changing the power level for a

cell only affects its nearby cells; we call this interference region a celTs ^^neighborhood".

This observation suggests that we are able to simultaneously change power levels for sev

eral cells (without concerning of their cross-interference), provided that their neighbor

hoods do not overlap. For this discussion, we assume only first order interference^
Figure 2-7 shows several non-overlapping neighborhoods (indicated by the"stars" super

imposed on the cell topology).

Figure 2-7. Non-overlapping interference neighborhoods.

Several keyproperties result if we restrict ourselves to changing powerlevels onlyfor

the center cells of these non-overlapping neighborhoods. First of all, the effects fi"om

changing a centercell's power level are limited to the neighborhood boundary; therefore,

cells only need to communicate within the neighborhood. Secondly, a centercell faces a

fixed interference environment; therefore, calculating the power budget is simplified.

Finally, the remaining cells within the neighborhood have exactly one interfering cell

changing its power. Therefore, estimating intracell and intercell interference coefficients

1. First order interference meansthat a basestation only interferes with its six immediate neighbor cells.This assumption is only for
illustrative purposes, andisnot necessary forourdistributed algorithm. Iftheassun^tion does nothold, wecan increase theneigh
borhood size, which will decrease the rate ofconvergence.
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can bemade with a single measurement, with the new interference noise power yielding

an updated intercell interference coefficient.

So far, we have updated cell power budgets for only a fraction of cells. Our ultimate

goal is to update power budgets for all cells in the system. This is achieved by iterating

according to a periodic schedule\ where the system adjusts a different subset of cells at

eachiteration; afteroneperiod, all cells in the system areupdated at leastonce.

We will demonstrate this algorithm using the example of first ordCT interference and

hexagonal cell topology. Figure 2-8 shows the assignment of cells to iteration steps, and

theiteration period equals to 7 in this case. Notice at every time step, the subset of cells

whichchangepowerlevels havenon-overlapping neighborhoods.

Figure 2-8. Iteration step assignments.

Now we need to determine the cell power budgets. The procedure is the same for all

cells; however, we will only focus on cell #0 at this time, with neighboring cells 1 through

6. When updating the power budget for cell #0, its power level is chosen so as to maximize

its overall neighborhood utility. We know fi*om the previous section that the maximal cell

utility for each cell in the neighborhood of cell #0 depends on Pq- Therefore, the total

1. This schedule is fixed and determined by the system designer.
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neighborhood utility, which is thesum ofthemaximal cell utilities, is also a function ofPo»

as shown below:

^Neighborhood1» •••»-^6) (2.16)

/= 1

While Pq is upper bounded by the implementation limit, the goal of adjusting Pq is to

maximize the total neighborhood utility, thus Pqhas to satisfy:

^Neighborhood•••'^6)1 ~ ®

This is equivalent to:

3 TT* /TTx 3 ^ ^0^^cell o("^o) 3^ X ^cell_ (2.17)
0 =1 J

Notice the left side of (2.17) is cell #0's marginal utility as a function of Pq, and on the

rightis the total marginal utility of theneighbor cells. At theoptimal point, withrespect to

Pq , the marginal utility ofcell #0 offsets the marginal utility ofthe neighbor cells.

2.4.4. Computational complexity

Theutility optimization algorithm isfully distributed, with itslevel ofcomplexity inde

pendent of the number of cells in the system. The optimizations are performed indepen

dently and are inparallel at each level. Atthe highest system level, the iterative algorithm

determines power level for a cell at each iteration (with given information on inter-cell

interference), thus the algorithm only deals with one variable at each iteration. Atthecell

level, thecomplexity ofcell utility optimization depends onthe number ofusers ina cell.

This step can bequite computational intensive for a cellular environment where hxmdreds

ofusers maybe present during a congestion period; however, inapico-cell situation where

a cell usually hasjust a few users, the complexity is easily manageable given thatcompu

tational power is not a concern atthe basestation. Finally at the user level, the number of

variables for user level optimization is twice the number of applications (since both band-
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width and error rate are determined for each application). For example, if a user has three

distinct applications, then the control algorithmhas six variables.

Since the wireless environment and user behaviors are time varying, this optimization

algorithm is dynamic and updates itselffrequently with thelatestchaimel information and

user demands. In a mobile cellular environment where a car may move as fast as 70 mile

perhour, theupdates have to be carried outvery frequently (intheorder of seconds), espe

ciallyat the celllevel foradapting thefasttime-varying channel. As a result, implementing

this algorithm under this time constraint can be very challenging, especially when the

numberofusers in a cell can also be large. On the other hand, in an indoor pico-cell envi

ronment where channel quality varies slowly, the algorithm focuses more on changes in

userbehavior in terms of requested applications. Therefore, updates occur mostfrequently

at the user level.,which is a more manageable problemas the complexityofuser level algo

rithm is only a function of the application count.

2.5. Study of Constraint Set and Feasible Region

The system utility optimization algorithm we described above is indeed an iterative,

one-dimensional search algorithm, in which we optimize along each iteratively imtil

reaching the maximum. There areknown numerical algorithms [8][37] that meetthis pur

pose. However, ourobjective function, thesystem utility, isnon-concave, thustheiterative

algorithm provides no guarantee thatit willconverge to the global maximum (instead of a

local maximum). The problem of solving the global optimization is a very difficult one

indeed. In this case, either additional constraintsare added as a part ofthe problem formu

lationfor eliminating the localoptima, or the utilityfunction has to be restricted to certain

classes of functions in order to guaranteethat any optimumis a global optimum.

The fundamental theorem ofmathematical programming states that a continuous con

caveobjective function witha convex constraint set guarantees the uniqueness of a global

optimum. Therefore, wewillapproach thesameoptimization problem froma different per

spective by transforming the objective function into a concave function. The goal here is

to study the property of the constraint set in this new domain.
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Recall that the system utility is the sum of the cell utilities, and the cell utility is the

sum of the user utilities. Therefore, the system utility can be expressed as the sum of all

userutilities. The optimum user utility is a function of the channel SNR, which is denoted

by Uj{S^) for user /.

system utility = (2.18)
/

Wehavemade theassumption thattheuserutility isanon-decreasing function with respect

to the channel SNR, indicating higher SNRwould always bring a user more satisfaction.

Furthermore, we assume the marginal utility (i.e. the first derivative of utility function)

decreases as a function of SNR, indicating diminishing marginal satisfaction for every

user. Therefore, the system utility is a non-decreasing and concave function withrespect

to individual user's SNR.

Let us now focus on the constraint set. To demonstrate the non-convexity of the con

straint set, we consider a simple example consisting of a single cellwith two users; these

users have transmit power levels p j and P2, respectively. Recall that the total cell transmit

power is subject to a constraint, for convenience, wesetthis power constraint equals to 1,

which can then be expressed as:

+/?2 ^ 1 and/?, >0,/72> 0- (2.19)

Now we want to rewrite the aboveinequalityin terms ofusers' SNR, so that the objective

function (2.18) and the constraint function (2.19) are expressed in the same parameters.

Using the channel model we have developed earlier, the SNR for each user can then be

written as:

5 =
a,(Pi+P2) + Ci

^2 =
Pi

"2(^1 +/"a)+ ^2

where is the intracell interference coefficient, and c,- is thebackground thermal noise

power received by each user. Both and Cj arenormalized by thepath loss and antenna
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gain ofuser /. Notice there is no intercell interference term because we have a single cell

system here.

Letus first focus onthe power level for user Px- Solving thesystem of linear equa

tions for /7j, we have:

_ {axC2 - a2C\)S\S2
l-aj5j-a2'^2

Since /?j +/?2 - 1 ^md 0</?! < 1, we can rewrite the above equation as:

(QjC2 —02^1)5152— 1 ^1*^1 ^2^2

or

5o<
1—(flj + C|)iS]

Now theconstraint set is expressed in userSNR 5j and ^2. Plotting it, wehave:

(2.20)

constraint set

Q1Ct — floC

Figure 2-9. Power constraints expressed in SNR.

Clearly, the constraint set shown in Figure 2-9 is non-convex. The second constraint set

derived from the inequality 0<P2^ I is similar to (2.20) and is also non-convex. The

overall constraint set is the intersection of these two, and the intersection of two non-
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convex sets is also non-convex. Therefore, we conclude the constraint set for the optimi

zation problem is non-convex. All of these proved thata maximum obtained by optimiza

tion may be a local maximum.

There exist powerful numerical techniques, suchas simulated annealing [46][33][25],

for searching theglobal optimum. However, these tools have been mostly used for non-real

time applications, such as routing in integrated circuit design. Fora real-time application

involving a large number ofvariables such asours, thecomputational delay is likely to be

intolerable.

Despite ofthedifficulties encountered inobtaining theglobal maximum, weshould not

feel despair. Observe thatanylocal maximum isassociated with a feasible region, suchthat

the local optimum is theoptimum within this feasible region. An example is illustrated in

Figure 2-10, where the shaded region corresponds to thefeasible region associated to the

local maximum x*. In general, if the feasible region covers the majority of the constraint

set, such as in this example, thenthe corresponding local maximum is quite superior with

respect to all achievable SNR. In other words, a local optimum mayserveas a goodalter

native to the global optimumwhen it out-performs a large set of SNR. For our power con

trol problem, we may combine the optimization algorithm with a fairness scheme to

eliminate the extreme SNR differentials among users, e.g., some ofthe blank areas shown
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inFigure 2-10. Inthis case, a local optimum may indeed become the global optimum. The

implementation and theimpact of a fairness scheme will be discussed in Chapter 4.

feasible region

local maximum

Figure 2-10. Feasibleregion subject to the constraint set.

2.6. A different approach to the problem: economics

2.6.1. Concept of pricing

Sofarwehave onlyapproached theoverall system optimization using puremathemat

ical techniques. The problem of optimal resource allocation has beenextensively studied

in the economics community, where the commodities are distributed through the interac

tions of supply and demand. On the demand side, users trade-offvarious service qualities

with their willingness to pay; whileon the supply side, producers trade-offthe provided

service quality withthe charge theyareableto collect. Forthe rest of this section, we will

explore the possibility of adopting pricing for allocating shared wireless networks

resources, the transmit power.

It has been argued that network users in fact can tolerate any kind of service quality,

and there is no required QoS as long as the price is right. This argument is supported by

examples suchas the internet telephone, wheredelayis unpredictable and data sometimes

get lost;however, thiskindof service stillremains popular among peoplewhodo not want

to pay the premium price for the toll-rate quality. In reality, pricing can oftenbe used as a

mean to reveal the true utility function for a user: when the asking price is higher than the

marginal utility, a user would be discouraged from requesting higher QoS. On the other
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hand, if theprice is lower than themarginal utility, this user would want toreceive service

at higherquality sincehe is willing to pay moremoney. To exploit this idea further, let us

first lookhowwemayusepricing to solvea day-to-day problem: theproblem of rushhour

commute. As we will see very soon, this problem is very analogous to the congestion in

wireless network, which is mainly caused by user interference.

In the caseof rushhourcommute, the public or collective goodsare the statehighway

systems with a finite number of lanes. When the vehicles per hour exceeds the highway

capacity, the highway becomes congested. As more andmore vehicles join the highway,

the congestion becomes worse. Notice each extra vehicle delays other vehicles taking the

same route. In other words, a commuter can only enjoy the goods at the cost of reducing

others' enjoyment. This phenomenon is called theexternality, where thepursuit of private

gainmay not promote the social welfare. When dealing with wireless network resource

allocations,we face the same kind ofexternality, for increasingone user's transmit power

level would always mean an increase in interference to others in the system. Thus a gain

inoneperson's satisfaction does not always lead toanimprovement inoverall system util

ity.

One possible solution forsolving this type of theproblem is to setprices for thepeak

and the off-peak periods so that they approximate themarginal costs in these respective

periods. Theresult is a form ofmarginal cost pricing. This policy is reasonable since mar

ginal cost tends to be higher during the peak hours so consumers are discouraged from

using it.Ofcourse, theoptimal price for a consumer iswhen themarginal consumer utility

equals to the marginal cost to the society, which is exactly what we have proposed in

(2.17). One such pricing scheme has been implemented inEngland where thecost of elec

tricity depends onthe time ofthe day [1]. Inthat case, the rates are higher during thetimes

ofday when electricity usage ishigh than the time ofthe day when the usage is relatively

small.

2.6.2. Congestion pricing for wireless network

Extending this concept on marginal cost pricing to wireless communication, we will

consider acongestion charge with the basic idea that the charge ishigher when the network
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is congested, andthereis no charge whenthe network is un-congested. The goalof impos

ing congestion chargesis to regulatethe network congestion level throughthe interactions

between prices and user demand, thus maximizing the overall system utility. The shared

resource is the transmit power, and the congestion is measured by the user SNR. The key

pointof this approach is to set the pricewhich equals (or approximates) a user's marginal

utility so that each user wouldpay for the overall damagehe has causedto others. Let us

now proceed and calculate the price.

Recall that a user's satisfaction is measured by channel SNR. The user utility, Ui^Sj),

for user i is the dollarvalue when data are received at SNR = , where S,. has the unit

in dB. Suppose that theuser is charged a congestion price of (perunitdB) forthe SNR

he received, thenthe user i willchoose to receive at a SNRsuchthat it solvesthe following

problem:

max uASi) - 7i, •5,
5, (2.21)

Note the term 7t,. •5,- isthe total price this user pays for 5,. The optimum SNR issolved by:

^",(5,) =Jl, (2.22)
This is equivalent to saying theprice is set to be theuser'smarginal utility. This result is

reasonable since marginal utility is the additional satisfaction (measured in dollar) a user

getfor receiving the extra AS^. If this additional satisfaction is less than the price hehas to

pay,then thisuserwould decide not to receive the extra AiS,-. In other words, the equilib

rium occurs at the point when price equals to the marginal utility.

Let us now obtain themarginal utility, thusthe congestion price,by considering all the

interfering usersin the system simultaneously. Thecellpowerconstraint is included in this

process. For convenience, we let total allowable powerfor eachcell equalto 1unit. Letus

consider the central controller that chooses transmit power level for every user i subject
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to this constraint formaximizing thetotal system utility. Applying theLagrange multipli

ers, the problem we need to solve is:

max

Pi

Xuj(Sj)-xi •fXpXx2• (£ pj^yxi• (X Ph)- -
y 6 y j\^ J\ Ji ^ A ^ *^3

where

J is the index for all users,

is the index for all users in cell /,

is the Lagrange multiplier for cell n as eachcell is subject to a totalpowerconstraint.

The optimum value of p -^ is obtained by solving the equations

+ Z Ph '̂̂ i Z + Z Ph^ •
"Pi "Pi^ J*l AS A Ae A

Therefore,

+ for some « (2.23)

Let us first discuss the value for the Lagrange multipliers, . Intuitively, we are max

imizing the sum of non-decreasing functions. During the optimization, each one of these

functions will keep increasing (at various rates) until one cell's power consumption

reaches the power limit. Therefore, there is always one cell that would consume all the

available power budget. In fact, this is the cell that has the highest marginal utility, i.e.

^ ^ being the largest for all J^-. So we know the maximum always
j G J J Ji G Jj

occurs at the boundary condition, thus € {0,1}: 0 when the cell / consumes less than

the total allowable power limit, and 1 when cell / consumes all the allowable power limit.

41



0
Letus go back to the optimization problem stated in (2.23). Expanding by

applying the chain rule, we have:

^ r) 55,• _ ^ dSj

or

_ 3 35' .

^u..(S..) = —^^ where {0,1} (2.24)
' ' 35,.

dpi

3
To obtain an explicit expression for •^W/(5,), we now need toderive the partial deriva-

d5,

35,. 35,.
tives •:?— and .

3/7,. dpi

First we rewritethe user SNRin terms of transmitpowerlevel of other users and inter

ference coefficients:

5.. =

k

where denotes the jfraction of userk's transmit powerthat interferes withuser /, and c,.

is the background thermal noise received by user i. Both and c,. are normalized by

path-loss, the antenna gain and the spreading factor ofuser /. Note a,y represents the inter-

user interference coefficient when / ^ y, and the self interference when i —j - With this
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notation, the SNR for user /, S-is: 5 = ——^ .Now taking the partial derivatives
k

ofSf and Sj with respect to pj, we have:

^"ikPk +'̂ i
_ k*i

^",(5,) =

dpi ^
'k

as, a,,p

'̂'"\L<'jkPk-c] '̂
Plug them into (2.24), the marginal utilities then becomes:

^j*r-j ^^CjkPk +'̂ i

Y.-ikPk^'i
k^i

\^<^ikPk-^c^
Recall from (2.22) that -^uAS:) = 7C -, i.e. the congestion charge for user /, and

dSj J J J

P • = Sj; we therefore can rewrite the above equation as:

k

^ ]*' ^^JkPk '̂̂ J
— (2.25)

k^i

\ '̂'ikPk-^
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This is the congestion prices for user / expressed in interference powerand SNR;note this

price is independent of user i. This implies that the congestion level seen by user / only

depends on the current activities ofother users in the system.

Let us simplify the above equation by making the assumption that the system has a

large number of users, thus the self-interference is negligible compared to the sum of all

inter-user interference power, i.e.

k

Therefore, the denominator of the above equation canbe approximated as — ,

k

which is the inverse of the total interference and noise power received by user i. Let us

denote this by ,thus Nj = +Cj. With this notation, the marginal utility, or the
k

congestion charge for user /, becomes:

JC, = +X e {0,1} (2.26)
' j * i j

The product term %jS. in (2.26) is congestion price (in dollars) paid by user7for SNR

equals to Sj (in dB). We can see that the unit price for user i is independent of his own
SNR; instead, the unit price islinear with respect to the SNR ofother users, which can be
understood as an indicator of the congestion level of thewireless network.

Finally, we want to make the remark that most users may find itconfusing to deal with
acomplicated pricing scheme such as congestion pricing, mostly because itdepends on the
system load and changes over time. One resolution for this is to have the service provider
purchase network resources according to the congestion market, and then resell them to the
consumers atafixed price orasimple peak/non-peak price that are higher than the average

congestion prices. This pricing model has been considered for wired networks such as the
internet, where serious congestion occurs from time to time [11].
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2.7. Summary and Conclusions

This chapter investigated design and control issues faced by multimedia indoor CDMA
systems. We have proposed adistributed algorithm that fully utilizes the system resources

such as bandwidth and transmit power. Our algorithm integrates three techniques for mul

timedia downlink transmission; these techniques are: power control, VFEC and schedul

ing. As amultimedia system is designed to satisfy users, our objective is to maximize the
overall user satisfaction, which we call the "system utility".

We divided this system optimization problem into a hierarchy of three levels: user

level, cell level and system level. This partitioning allows us to localize the problem, so

that wecan perform independent and local optimizations for each user and then each cell.

Because users and cells in a CDMA system are subject to bandwidth and power con

straints, weachieve theoptimization ateach level byapplying theLagrange multiplier. The

optimization results are then presented to the next level in the hierarchy. At the topmost

level, the system level, we allocated cell power to one set of cells while keeping their

neighboring cell power levels constant. The cell power level is determined based on its

contribution to the overall utility for its entire neighborhood of seven cells. This layering

approach yields a distributed algorithm, which is essential given any practical wireless

system has to be scalable.

We then studied the constraint set for the optimization problem and foimd out it is non-

convex. As a consequence, the optimization algorithm may sometimes converge to a local

optimum. For any local optimum, we can derive the feasible region indicating the domain

ofusers' SNR (within the constraint set) that this local optimum is the optimum. If a fea

sible region covers the majority ofthe constraint set, then this local optimum is quite opti

mum.

Finally in the last section of this chapter, we presented a new approach to the network

resource allocation problem using concepts from economics, namely, the concept ofcon

gestion pricing. With this approach, the interference introduced by each added user is

treated as additional congestion to the system from this user. By setting the congestion

prices according to the system load (measured in users' SNR), we can discourage users
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from heavy usagewhen the congestion level is high. The correctcongestion prices reflect

the optimumresourceallocation. The derivation of the congestion price is includedin the

chapter. The result showed that the price is user independent. When dealing with a large

system, we can simplify theresultandthe congestion pricebecomes linearwithrespectto

other users' SNR.
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3 Simulation Based Performance

Evaluation

3.1. Goal

In the previous chapter, we havepresented the **utility"-based approach to the overall

control problem. The main advantage of this framework is that it offers largedegrees of

flexibility to the system control, because the policy issues ofallocating resources are sep

arated from the design process. In other words, one can always choosea utility function

that reflectsa specific design objective. For example, ifwe let the application utilityfunc

tionbe a stepfunction (withrespect tobothbandwidth anderrorrate), thenthiswouldcoin

cide with conventional design objectives for many wireless or cellular systems, where a

BER(or equivalently SNR) requirement is imposed. However, this advantage of flexibility

makes it difficult to quantify and compare system performance with other approaches.

Therefore, in this chapter, we will simulate the systemusinga specificutility function, the

step function. This restriction will allow us to evaluate and quantify system performance

with numerical results. In addition, these results will uncover some interesting dependen

cies which differentiate the multimedia optimization problem we are investigating from a

single media application.

The goal of this chapter is to set up a system level simulationand use it to explore the

system behavior, including the interactions from various parts of the control algorithm in

detail. In order to do so, we will study the performance dependencies on user distribution

and traffic models. We will also study the individual control variables and compare their

relative effectiveness. In addition, the technique ofhand-offis applied to highly congested

"hot-spots" for studying the overall improvement. The range for the optimum packet sizes

will also be studied. Finally in this chapter, we will study performance ofvarious families
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of binary BCH codes (used for variable error correction purpose) while consider their

implementation complexities. As a remark, theunderlying system architecture forsimula

tion is assumed the same as the downlink system presented in Chapter 2.

Before discussing theactual simulation, wewill first present howsome of theprevious

workon powercontrol canbe applied directly to this fi*amework by proving convergence

ofthepower control algorithm. The purpose for doing this is toprove that byadopting this

special class of utility fimctions for ourmultimedia system, the power control algorithm

converges.

3.2. Convergence of power control algorithm

Yates [55] has proved the convergence of a general power control algorithm for the

uplink chaimel. Inhis work, heassumed users' basestation assignments are fixed, and each

user has a pre-determined BER (orSNR) requirement. The goal ofthe power control algo

rithm is to find a set ofminimum transmitpower levels which satisfies these requirements.

For both synchronous or asynchronous power update. Yates showed that for any initial

power vectorp, thepower control algorithm converges toaunique fixed point if a feasible

solution exists. The criteria for convergence are based on the observationon interference

function for each usery, Ijip\ has the following properties:

• Positivity: I{p) > 0

• Monotonicity: \ip>p\ thenI{p) > I{p')

• Scalability: for all a > 1, oJ{p) > /(op).

The first condition indicates that SNR for any user is always positive; this is derived

from the assumption that background noise is nonzero, and interference noise power are

all non-negative. The second condition indicates the monotonicity of the SNR, namely, a

user's SNR is always a monotone increasing fimction with respect to its transmit power.

The last condition implies that if transmit power for all users are scaled up by the same

fi-action ot, then everyuserwouldendup having a higherSNR, whichagainis due to non

zero background noise.

Once these three conditions are met, it has been shown that:
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(1) If thepower control algorithm has a fixed point then thefixed point is unique, and
(2) If there exist a feasible solution, then for any initialpower vectorp, the powercon
trol algorithm converges to a unique fixed point,/i*.

This is a very general result for it provides convergence of power control algorithm

without assuming a specific expression for the interference function /(p), whereI(p) is

highly dependent on the underlying wireless technology, whether it is CDMA, FDMA,

slotted-aloha, etc. However, thisresult proves theconvergence of powercontrol algorithm

only when a feasible solution exists. In the case when there is no solution satisfying all

users due to excessive interference or traffic demand, call admission problem need to be

solved in finding a subset of users that canobtain satisfactory connection [2] [7]; or in our

case, provide partial service that only a fraction of all requested data are transmitted, and

applyheavy error correction to achieve the desired BER.

Weare interested in this convergence property because it can be extended to a down

link system like the Infopad where multiple traffic types are present. However for adown

link CDMA system, we must first realize its underline interference model is completely

different from the uplink as the downlink channel is free of the near-far effect. This is

because signals transmitted from abasestation to all users are orthogonally coded and sent

to users simultaneously. As these signals propagate through the same path, they remain

orthogonal when reaching the receiver. In other words, signals generated from the same

basestation donot interfere with the main propagation path. Thereflected waveforms and

the waveforms from nearby cells are still treated as interference since orthogonality no

longer holds.

Using the interference model developed inChapter 1, it can beverified that the inter

ference function,

SNRj = •̂ 0

1. thefixedpoint is apoint x such that f{x) = JC; that is, apoint x that does not move when applying
function f.
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satisfies the three properties ofIjip).

Even though our proposed downlink system serves multiple data types that have awide

range of BER requirements, however, the multiple BER requirements are achieved by

applying VFEC, which iscompletely decoupled fi-om the power control aspect ofthe prob

lem. Therefore, this multimedia constraint impose no additional constraint on our power

control algorithm, thus the power control algorithm converges inour proposed fi*amework.

3.3. Algorithm discussion

For simulation purposes, we assume a linear cell topology asshown inFigure 3-1. This

layout is chosen because it is the simplest topology which contains all aspects ofa multi-

cell environment. Since the system performance is a fimction of user population, location

andtraffic, thesimplicity of thislayout makes thedependencies andcell interactions more

transparent foranalysis. We believe thegeneral results and trends from thiscasecarry over

to morerealistic topologies, because the effect of inter-call and intra-cell interference are

always present disregarding the number ofneighborcells.

0 1 /-I i z+l

Figure 3-1. Cell topology.

Let Py = (Py _ j, Py, Py +]) bethetotal power budget foreach oneof thethree adjacent

cells. Using the same model and the notation developed in Chapter 1, the channel SNR for

any user, say userj in cell#l is:

SNR, =
_ gj • <!>,• •Pj

Uj •P, +p; •Po +p; •Pi +(a^), yj • Po +(Ob)j
For the rest of the chapter, we assume a basestation transmitter is installed on the ceil

ing at the center of every cell. The basestation assignment is made based on the distance

between user and receiver, so that all users in cell #w would receive signals fi'om the bas

estation #«. Later in this chapter we will study some handoff schemes, in which case a user

may communicate with a less congested neighboring cell.

50



3.3.1. User level

Atthe user level, the techniques ofscheduling and VFEC are applied. Figure 3-2 illus

trates the architecture for this sub-system. As previously mentioned, the system sometimes

can only provide partial service due to excessive interference, inwhich case the scheduler

would only send the high priority data tothe VFEC encoder and then tothe transmitter. For

our purposes, we choose the rate-controlled static priority (RCSP) [59] scheduling scheme,

where all data types are classified according to aset ofpriority levels. The relative priority

levels are determined bymany factors, including the relative importance ofthe data, their

delay tolerance, and the amount ofnetwork resources needed for delivering them at the

required QoS. These priority levels are fixed (or static) for the entire connection. In the

case of Infopad, the priorities are set as: control, audio, text/graphic and video.

The scheduling decisions are simple: higher priority data are always processed ahead

oflower priority data, and within the same priority class, packet are served inan FIFO fash

ion. In other words, thelower priority data which arrived thesame time ashigher priority

data can only get ahead when there is insufficient network resource to transmit the higher

priority data. This scheduling algorithm is simple and well understood and its detailed

characteristics are not important when we later evaluate power control and VFEC. As a

final remark, a perfectchannel estimation is assumed for eachuser.

scheduling
&VFEC to power amplifier

channel estimate

Figure3-2.Architecture for user level resource allocation.

3.3.2. Cell level

At the cell level, the intra-cell power allocation is performed in such a way that users

reside in the samecell compete for transmit power subject to the total cell powerbudget.
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"Fairness" is imposed at this levelbecausesomeusers need more transmitpower to com

pensate for a poor channel and/or heavy traffic demand. In the case when there is not

enough power to meet everyone's demand, it is difficult to justify why one user should

receive more network resource than another. In Chapter 3, we presented a utility driven

optimization framework forallocating resources, inwhich case nofaimess wasconsidered.

In this chapter, we will implement a "faimess" policy(defined below). We will compare

theresults against the algorithm thatmaximizes thenumber of users laterin Section 3.5.2.

The"fair"power allocation consists oftwo stages: faimess-based power allocation fol

lowed by demand-based allocation, as shown in Figure 3-3. During the faimess-based

power allocation, thetotal cell transmit power isequally divided among allusers. Thepur

pose of this step is to guarantee each user with a fair share of theavailable resource, inde

pendent ofthe channel quality ortraffic demand. If the allocated resource is greater than a

user's demand, the excess resource is then collected and then redistributed among users

(within the same cell) whose demands are greater than the allocated power. We call this

redistribution the demand-based power allocation.

faimess based distribution

demand based distribution

Figure3-3. Two stageuser levelpowercontrol.

During each intra-cell iteration, more than two sets ofstate information are exchanged

between the user level and the cell level allocations. The first exchange occurred during

the faimess-based allocation, where the allocated power is sent to all users followed by

theirfeedbacks. The second exchange occurred during thedemand-based allocation, where

the excess power isredistributed. In case there isstill excess power and needing users after

this second exchange, same redistribution isperformed again. According tooxir simulation,

the number of total exchanges is usually less (butsometimes equals) to three.
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3.3.3. System level

Finally at the system level, the individual cell power budget is determined based on
inter-cell interference and the total cell demand. Since our system isinterference limited,

faimess issues again come up at the system level. However, the nature offairness at this
level is somewhat different from what has been discussed attheuser level. This isbecause

cells do not share any network resources; instead, cells interfere with one another. As a

result, allowing one cell too much power would generate excessive interference to its
neighbors, thus degrade theQoS for the overall system.

Taking this into consideration, we propose aSNR-based inter-cell power control algo
rithm. The principle for this algorithm is that no cell should get more transmit power unless
the increase in its average SNR isgreater than the total decrease ofaverage SNR from its
neighbor cells due to this increase ofpower. This concept has been described by the utility
model in Chapter 3, except we are now taking the cell utility function as the identical func
tion with respect to the channel SNR. The detail ofthis algorithm is described by the flow
chart below.

if(Avg SNRy <Avg SNRy+i) and (ASNRy >-ASNR^+i)

yes (interferencedominated)

r ^

no (noise dominated)

r

reduce power for cellj+\ if (Avg SNRy < Avg SNRy+i)

yes no

raise power for celly+l powerbudget xmchanged

Figure 3-4. SNR-based inter-cell power allocation.
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By now we have completely described our distributed algorithm. This algorithm is

implemented inthesimulation. Next wewill describe oursimulation setup and parameters,

followed by numerical results.

3.4. Simulation setup and parameters

3.4.1. Channel model

Ourbroadband CDMA multiple access scheme isdesigned based ontheIS-95 standard

[43]. The data for each user is spread bya PN code and then added to a Walsh code. As

mentioned inChapter 1, the reason for this is that when signals arrived atthe receiver, the

ones from other users would appear aswhite noise due tospreading. Therefore, wemodel

theinterference from nearby cells aswhite noise that depends on the spreading factor and

attenuation. The attenuation factor is set to be 4. The background noise is also modeledas

white Gaussian noise. Since oursystem is designed forindoor users, weassume people are

mostly stationary ormoving around slow, thus fading is not included inour model.

3.4.2. Simulation parameters

Recall thatweassume a linear cell topology. Four cells aresimulated; theyarelabelled

as0,1,2,3, and each has the population 4,6,5,5 users, respectively. The users are assumed

to be uniformly distributed in each cell. Each cell is 5x5 meter^ in dimension, and the ceil
ing is4 meters high. Since it is difficult to compare users when they have different traffic

profiles, we assume all users request four types of data. Each data type has a fixed BER

requirement, so data are only transmitted when the estimated received BER (after PEC

decoding) equals orexceeds this predetermined level. Inaddition, these are indoor users,

and we assume change inuser locations are negligible comparing tothe high data rate and

thefrequencies which inter-cell and intra-cell algorithms are performed.

Experimentally, we found it is sufficient to simulate the system for 50,000 iterations,

with each iteration corresponding to 1msec. Both user level and cell level algorithms are

executed at each iteration, whereas the system level algorithm is carried out once every

three iterations. Later in Section 3.5.3,we will presentthe systemperformance using var

ious traffic models, including Poisson arrival, constant-bit-rate, two-state continuous-time

54



Markov chain. However, for the mostpart of this study, the packets for eachdata type are

modeled by Poisson arrivals, unless it is specified otherwise. Table 3-1 shows the param

eters for the Poisson arrivals of all datatypesalong with theirrelative priorities.

priority
BER

requirement
packet size

(bits)
arrival rate

(msec)
data rate

(kbit/sec)

1 (control) 10-^ 100 8 12.5

2 (text/graphics) 10"^ 200 1 200

3 (audio) 10-^ 100 2 50

4 (video) 5x10^ 100 0.125 800

Table 3-1. Traffic proilie.

3.5. Results

Thesystem performance is evaluated using average aggregate throughput ofdelivered

data for each user. This average aggregate throughput is calculated with the data that are

received at therequired BER. Themaximum throughput atreceiver foranyuser, is aroxmd

1100 kbit/sec, according to Table 3-1.

3.5.1. Dependencies on user distribution

First let us explore the dependencies of throughput on user distribution. Ten indepen

dent and random sets of user locations are simulated while the population in each cell

remains the same. Figure3-5 shows the average aggregate throughput for all users in the

system. Users are ranked accordingto their throughput, from highest to lowest.

Clearly, the performance depends very much on the user distribution: the set of loca

tion which yields the best performance is shiftedto the rightby nearly five users comparing

the location yields the worst performance. However, despite of the variations fi"om one

location to another, all throughput distributions are nevertheless skewed with more users

residing on the left side, indicatingmajority of users have very little data loss.
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Figure 3-5. User throughputfor ten independent set ofuser locations

3.5.2. Fairness constraint

"Fairness"is imposed during the intra-cell powerallocation, becauseusers in the same

cell compete for transmit powersubject to the total powerbudget constraint. As we have

discussed earlier, the "fair" powerallocation consists of two stages: fairness-based power

allocation and demand-based power allocation.

In this section, we evaluate the impact of this "faimess" policy on the overall system

performance by comparing its result against the algorithm that maximizes the number of

"satisfied users"; a satisfieduser is definedas a user who receives all requesteddata. Note

this is not equivalent to maximizing throughput as in a voice-only system. When a system

hasmultiple data types and thus multiple QoS requirements, maximizing throughput may

allow lower priority data ahead of higher priority data, if lower priority data require less

resources to transmit. Since some high priority data, such as control, may carry crucial

56



information for decoding lower priority data, we want tomaintain a strict priority among

data types.

The system incorporating all three control techmques issimulated for both "fair" and

"competitive" cases. The results are shown in Figure 3-6. The "competitive" algorithm

slightly out-performs the "fair" algorithm for up to 14 users, but then becomes notably
inferior to the *Tair" system at the tail of the distribution. This is happening because the

objective for the "competitive" algorithm istomaximize the number ofactive users; there

fore, it tends to favor users who havebetter channels and thus allocates all resources to

theseusers. From this result, webelieve faimess benefits the overall system, especially to

users who have poor channels. Faimess is implemented as a part of the power control

unless it is specified otherwise. As a final remark, the users distribution used in this simu

lation is the one that yields the median throughput. This distribution will be used for the

remainder of the results.
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Figure 3-6. Performance comparison for systems with and withoutfaimess constraint.
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3.5.3. Dependencies on traffic profile

This system is designed to support traffic sources having diverse statistics. In order to

design a robust system that supports data types for a wide range ofarrival statistics, we test

the system through several traffic models. In this study, the traffic sources are: (1) Poisson

arrival (same as the one used in the previous section), (2) two-state continuous time

Markov chain (CTMC) for modeling highly bursty traffic, (3) constant bit rate, and (4) a

combination of two-state CTMC and constant bit rate. These traffic sources are chosen to

be diverse, spanningfi*om very bursty to constantrate transmission. The only characteris

tics they have in common are the mean arrival rate and the packet size for each data type.

The parameters for these four models are listed in Table 3-2.

type 1
(control)

type 2
(text/graphics)

types
(audio)

type 4
(video)

packet size (bit) 100 200 100 100

avg data rate (kbit/sec) 12.5 200 50 800

BER requirement 10-9 10-^ 10-5 5x10-^

Poisson Arrival refer Table 3-1

2-state continuous time

Markov chain

p(on-»off) 0.04 0.1 0.02 0.2

p(off->on) 0.01 0.2 0.01 0.8

constant-bit-rate/CTMC

2-state CTMC 2-state CTMC constant bit rate constant bit rate

Table 3-2. Parameters for various traffic models.

We choose the set of users from Figure 3-5 which yields the median throughput; this

set ofusers will again be used for the rest ofthe chapter unless specified otherwise. Again,

we assume a perfectchannel estimation. Figure 3-7presents user throughput forthesefour

scenarios, where no major performance variationwas present.We therefore conclude that
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mean data rate and packet size are good parameters for characterizing the overall received

data.
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Figure 3-7. Systemperformance with four traffic models.

To study thesystem dynamics in detail, wethen lookinto thetrace dataat receiver for

each datatype. Thisis done by computing themoving average on arrival datathroughput.

Themoving average window sizeis set to be 500msec, andthe consecutive windows are

skewed by 100 msec. These parameters are chosen because we felttheyare sufficient for

revealing thedynamic details of thesystem, and at thesame time, offera good approxima

tion for the packet level activity under various traffic model.

Since it is impractical topresent thetracedata ofalldatatypes forall system users, only

threeusers(with four data types each) arechosen foreach traffic model to demonstrate the

behavioral characteristics. These users are the ones who achieve the highest, the median,

andthe lowest throughput. Themoving average analysis performed on fourdatatypes for

the highest throughput user, the median throughput user, and the lowest throughput user
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areshown in Figure 3-8,Figure 3-9, andFigure 3-10 respectively. Despite the little differ

ence we saw in terms of the overall user throughput under various traffic, the trace data

behaved vastly different as we moved from one traffic model to another, with a near con

stant throughput in the constant-bit-rate case and a highly varying throughput when the

traffic is modeled by two-state CTMC.
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3.5.4. Power control or VFEC?

The distributed algorithm we have described involves a number of control variables

and thus has very complicated co-dependencies. To determine the necessity of this com

plexitywe investigate ifa simplified algorithm can offercomparable performance. For this

reason, only two out of threetechniques are applied: powercontrol combined withsched

uling, and VFEC combined with scheduling. In the case when power control is omitted

fi'om the control algorithm, we let each basestation transmit at its maximum allowable

power budget while thisbudget is equally divided among cell users. Scheduling is always

included since it is necessary to prioritize the data types.

From the traffic model, we know the average total traffic demand for each user is

greater than half ofthe availablelink bandwidth. As a consequence, we expect power con

trol to play a significant rolein theprocess ofoptimum resource allocation. Thesimulation

results arecompared against theoriginal algorithm which consists allthreetechniques. The

resultshowever, as shown in Figure 3-11 indicate powercontrol/scheduling, with or with

out the fairness constraint, is inferior to VFEC/scheduling. There are two possible reasons

to explain whypower control adopted by a multimedia system is notas critical as it is in a

single-medium case. First, the multimedia traffic we studied are highly diverse in band

widthand errorrate requirements. Thepowercontrol algorithm, however, adjusts transmit

power at thepacket level, with each packet usually consists ofmultiple segments ofdiffer

ent data types. Consequently, a packet is transmitted at the power level which fulfills the

moststringent BERrequirement among alldatatypes within apacket. As a result, not only

power is wasted on more error tolerant data, this allocation also introduces unnecessary

interference to the rest of the system. Fora single-medium system,thereis no suchproblem

because the data have only one BER requirement, so there is always the transmit power

level that is just right for meeting this requirement. Second, the EEC coding rate is nor

mally fixed in a single-medium system (because thedata rate and the channel bandwidth

are determined in advance); this constraint leavespower control to be the only parameter

available for adjusting the system performance, which consequently putting it at a domi

nate position.
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VFEC is different from the single forward error correction coding as it adepts to the

time-varying traffic at packet level by encoding each data segment with the most suitable

FEC; as a result, it is able to take full advantage ofthe total available bandwidth. Unless

we adopt a fast power control algorithm (at the cost ofincreasing overall algorithm com

plexity and itmay not converge) which updates transmit power at the packet level, power

control does not enjoy as much flexibility as VFEC, and thus isinferior. In conclusion, the

results here indicate the importance of providing direct error correction.
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Figure 3-11. Performance comparison when applying only two out ofthree techniques.

3.5.5. VFEC statistics

Now wehave seen the necessity of applying VFEC for ourproposed multimedia sys

tem. Let usnow investigate the statistics of the code rate among the FEC codes that have

been applied as a part ofthe overall optimization algorithm. The percentage ofthe code
usage isshown in Figure 3-12 for two independent sets ofuser distribution. It is clear that
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(1) most of the data transmitted over the wireless link are FEC coded; and (2) both
extremely low rate and high rate codes are rarely used. The most frequently used codes are

codes havingmedium rate,withrate around 1/2.
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Figure 3-12. Statistics on FEC code usage.

3.5.6. Power control with fixed FEC

The question then arises as to the importance of including the complexity of variable

rate error correction, since existing cellular standards, such as IS-95, implement power

control with a fixed-rate convolutional code for both uplink and downlink commumca-

tions. We will apply this to our multimediasystemusing block codes.

To conduct fair comparisons with the algorithm that incorporates VFEC, five 63-bit

BCH codes are chosen from the same family of codes used for VFEC. These codes range

from double-error-correction code to eleven-error-correction code; the parameters are
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listed in Table 3-3. Recall that the total link bandwidth for each user is 2000 kbit/sec, the

2000
net data bandwidth after applying FEC is then PEC expansion factor

kbit/sec

code type
(n,k,t)

bandwidth

expansion factor
data bandwidth

(kbit/sec)
index used in

the Figure 3-13

(63,51,2) 1.24 1610 <X>

(63,39,4) 1.62 1238

(63,36,5) 1.75 1143 <S)

(63,30,6) 2.1 952

(63, 16,11) 3.9 507

Table 3-3. FEC parameter.

The simulation results are shown in Figure 3-13, from which we observe a sigmficant

overall improvement in throughput aswe increase the error correction capability from 2-

error bits(shown by <D) to4-error bits (shown by(D), and finally to 5-error bits(shown by

(D) where the throughput reaches the maximum. As we move further in error correction

capability, the system begins to shift from interference limited tobandwidth limited. This

is clearly illustrated by ® when the extremely powerful 11 -bit error correction code is

applied. Inthis case, users are immune tointerference and noise sothat thethroughput for

allusers isnearly constant. However, thecostofthishighreliability is thelowtransmission

rate, which is near 500 kbit/sec for each user. The original algorithmthat has power con-

trolA^FEC/scheduling isalso shown inthefigure forcomparison purposes; thisis indicated

by "original". Thealgorithm thathasjustVFEC, is indicated "VFEC only". Clearly, when

powercontrol is combined properly withan FEC code, therecanbe a significant improve

ment over the power-control only system.
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3.5.7. Handoff strategies

The system has now been investigated as whole where users were not distinguished

fromone another. In otherwords, we havenot looked closely at the parameters that affect

individual user's performance, since aggregate throughput was used asthemetric. In this

section, we explore how a given user's throughput can beinfluenced bylocation, cell pop

ulation and interference. Moreover, we want to know if a technique such as handoff is

effective for alleviatingusers from excessive interference.

Let us go back to the original system where power control, VFEC and scheduling are

all applied; the overall system performance isindicated by "original" inFigure 3-14. The

users in the shaded region are clearly theones with thepoorest performance. It is notsur

prising that all these users reside in the most crowded cell, i.e. cell #1. However, the
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throughput for users inthe second most crowded cell, cell #2 (which isalso the cell expe

riencing the most interference) are marked by the circles. As we can see, cell #1 users

suffer asignificant quality degradation even ithas just one more user than the next crowded

cell.

One strategy to relieve the hot spot is to initiate handoff. The handoffhere is slightly

different from the conventional one, where it is only initiated when a useris at thebound

ary oftwo adjacent cells. In our situation, handoffisused as amethod for alleviating radio
network congestion. This goal isachieved by letting auser inthe most congested cell, cell

#1 in ourcase, to communicate directly with its least crowded neighbor cell, cell #0. The

user is chosento be the onewhois closest to cell#0, who is alsothe one furthest fromcell

#1.

The result ofthis handoff is compared with the case where the same user from cell #1

is removed and then randomly placed into cell #0. Physically relocating auser would def

initely yield better performance than merely reassigning basestation. However, the result
shown in Figure 3-14 indicates very small difference. Notice both techmques yield a sig

nificant performance gain (that can be as large as 350kbit/sec for some users) over the
"originaP* algorithm where auser only communicates with the closest basestation.

Just as a reference, we also show the situation where the same user from cell #1 is

removed from the system, which imply cutting off this user's service in a real system.
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Obviously having one lessuserwould relieve the system load, however, the gain is fairly

small comparing to what can be achieved with other strategy such as handoff.
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Figure 3-14. Effectiveness of two handoff schemes.

3.5.8. Study of packet size

So far we have only focused on the algorithmic aspect of the system design, such as

comparing the technique ofpower control verses VFEC and studying the effectiveness of

two handoff schemes. Those results will provide useful guidelines when we design the

overall system architecture. However, at the time of actual implementation, we need to

know more detailed system specification, such as the packet size for each data type, or the

ideal family ofBCH codes used for VFEC.

One difficulty arises when studying the optimal packet size is that the optimum packet

size for one set of users may not be suitable for another, since users have a wide range of

channel qualities. For those who have good channels, they probably would prefer longer

packets as to reduce the percentagebandwidth spent on the overhead. On the other hand,
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people with poorchannels maywant shorter packets since shorter packets arelesslikely to

be corrupted byerrors. Therefore, instead of searching fortheoptimum packet size, wecan

onlycome up with a range in which packet sizes areoptimal in onewayor another.

Fora given packet size, wedivide users into three groups, where each group consists

of users who achieved the highest, the median, and the lowest throughput, respectively.

Our goal is to find the most suitable packet size for each one ofthese three groups. Inthis

study, theheader is assumed tobe 16 bitlong. Since majority of traffic is made of type #4

data which has the data rate 800kbit/sec, we thereforeonlyvary its packet size (whilekeep

ingthedata rate constant) and use it asanapproximation for the entire wireless traffic. The

packet sizes areset to be 50bits, ICQ bits, 200bits, 400bitsand 800 bits.

User throughput of each group is plotted as a function of the packet size, which is

shown in Figure 3-15. The peaks ofeach curve correspond to the optimal packet sizes for
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each one of these threeuser groups. To conclude, the optimal packetsizes for our system

are in the range of 50 to 400 bits.

1200

o
o
CO

3

g.
M
D
p

00
CO

u

%

1000

800

600

400

200 - .

- highest throughput users

- - median throughput users

- lowest throughput users

200 400 600

packet size

800

Figure 3-15. User throughput as a function ofpacket size.

3.5.9. Study of FEC family

The decisionofusing a single familyofBCH code(i.e. codesthat share the sameblock

length) for VFECpurposes comespurely from implementation practicality. Comparing to

convolutionalcode or punctured code,block codes offer a much wider range oferror cor

rection capabilities at reasonable implementation cost. For codes having the same block

length, manybuilding blocks suchas syndrome calculation and polynomial manipulation

canbe sharedbecausethey all operateon the samefinitefield. In this section, we approach

the BCH code from the system level by deciding the most suitable family of BCH codes

for VFEC purpose.
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From a purely performance standpoint, longer codes have better code efficiencies than

shorter ones for the same percentage of bandwidth redundancy. In addition, longer codes

offer greater selections for obtaining the right code to adapt to the time-varying channel

and traffic. However, as the block length increases, more decoders have to be imple

mented; furthermore, as a code corrects more bit errors, the implementation complexity

increases aswell. Just asanexample, onestep in thedecoding procedure (proposed byW.

Peterson) involves computing the inverse of a f x / matrix, where t is thenumber of cor

rectable errors; the complexity for this step is in the orderof .

From these considerations, we study four families of BCH codes with block lengths

equal to 15, 31,63, 127 bits; these are allprimitive codes. The code redundancy and error

correction capability for each are listed in Table3-4. The algorithms that use power con

trol, VFEC and scheduling is simulated for each one of these four families of codes. The

results are shown in Figure 3-16.

block length # of information bits # of correctable bit errors

15 15, 11,75, 1 0,1,2,3,7

31 31,26,21,15, 11,6, 1 0,1,2,3, 5,7,15

63 63,57,51,45,39,36,30,24,18,16, 10, 7,1 0,1,2, 3,4,5,6,7,10,11,13,15,31

127 127,120, 113, 106,99,92, 85, 78,71, 64,
57, 50,43,36, 29, 22, 15, 8, 1

0, 1,2,3,4,5,6, 7,9,10,11,13,14,
15,21,23,27,31,63

Table 3-4. Errorcorrection capabilities and redundancies for four families ofBCH code.
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Figure 3-16. System performance withrespect to four families of BCH codes.

It is expected that there will be a performance gapbetween the 127-bit family and the

15-bit family, sincein thelatercaseonlythreenon-trivial errorcorrection codes are avail

able as oppose to seventeen in the 127-bit family. However, thenetperformance gain only

decreases by a factor of twoas we move up to larger codes, implying extreme finecontrol

ofbandwidth redundancy may not be necessary, especiallywhen the practical implemen

tation constraints are considered.

3.6. Summary

Thischapter is devoted to simulation based evaluation of thesystem performance with

a simple cell structure and uniformly distributed users. In the simulations, we focus on a

special case where each data type has a BER requirement: data areonly transmitted when

the expected received BER meet this requirement. This constraint is adopted by many
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existing wireless systems, expressed in terms ofreceived SNR. Notice thisis equivalent to

having a step utility function with respect to BER.

Theresults showed theperformance for an individual useris highly dependent on the

physical location, which agrees with our intuition. However, the system performance

showed very little difference (in terms of the aggregate throughput) as wevary the traffic

model for each data type from a highly bursty Markov chain toconstant-bit-rate traffic, as

long as thesetraffic sources havethesame average datarateandpacket size.

Later we studied the effectiveness of VEEC verses power control. The techmque of

VFEC showed to be significantly superior than power control. This is trueeven when the

average traffic demand isheavy, i.e. greater than halfofthe available link bandwidth. Then

weinvestigated thestatistics ofthe code rate among the EEC codes that have been applied

as a part of the overall optimization algorithm. The result indicated that most of thedata

transmitted over the wireless link are EEC coded; however, both extremely low rate and

high rate codes arerarely used. The most frequently used codes aremedium ratecodes with

the rate around 1/2.

When studying theoptimal packet sizes, since there isnosingle packet size thatis opti

mum for every user, we have derived a range of packet sizes that optimum. The ideal

packet size for a user depends mostly on her location.

In the study of hand-off, our results showed handoffimproves the system significantly

over the situation when users communicate with the nearest basestation. Finally, we exam

ined four families of BCH codes (block length = 15, 31, 63, 127) to study the trade-off

between implementation complexity and variable errorcorrection capability finding that

the shorter codes provide sufficient variability to be effective.
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4 Background on Forward Error
Correcting Codes

We have demonstrated through simulation results that a multimediawireless system

performsbest by employing power control, VFEC and scheduling. In general,power con

trol and scheduling algorithms are implemented in softwaresincetheyoperateat the packet

level thus are not very timing critical. The error correction, on the other hand, performs in

real time at the transmission data rate, which can be as high as 2Mbit/sec such as the case

of the Infopad. To achieve this high performance requirement, FEC decoding is often

implemented using custom IC or programmable logic device.

The rest of this thesis is devoted to a design architecture that is suitable for VFEC

decoder. This is done in two parts. In this chapter, we will provide readers with sufficient

background on coding theory with focus on BCH code, which is a class of block codes.

Both encoding and decoding algorithms for general BCH code will be discussed. Most of

the materials discussed in this chapter can be found in standard coding text books; those

who are familiar with coding theory are encouraged to skip this chapter. In the proceeding

chapter, an architecture which can be mapped efficiently to a VLSI implementation is pro

posed for a variable forward error correction decoder. The design of this architecture

requires a thorough understanding of the iterative decoding algorithm for BCH codes

described in this chapter.

4.1. Forward Error Correction

Forward error-control coding is a technique for providing reliable digital data transmis

sion over a noisy communication channel. The errors introduced by the noisy channel are

controlled through the insertion ofredtmdancies in the information messages. The concept

76



was first presented by Shannon [41], in which Shannon showed that for a system with

transmission rate R (in bits per second) that is less than the channel capacity C (in bits per

second), it is possible through the useof error-control codes to reduce the output bit error

probability toas small asdesired. Shannon theorem did not tell ushow to find such codes

to achieve the promised arbitrary small probability of error, but it proved that they exist.

Throughout 1950 and 1960, much effort was devoted to finding construction of thecodes

thatwould achieve the promised error probability performance. In general, two types of

codeswere found, namely, block codes and tree codes. Mostmodemdigital commumca-

tionsystems useblock codes, convolutional codes (which is a subset of treecodes) or con

catenated codes.

Thegoal ofthischapter is toprovide readers with sufficient background oncoding the

ory, as the proceeding chapter will be completely focused on the design architecture of a

variable forward error correction decoder. We will start this chapter by briefly discussing

convolutional codes. Since the implementation of the variable forward error correction

decoder is based on block codes, the emphasis of this chapteris on the linearblock codes,

specifically, the cyclic codes.

4.2. Convolutional Code

The convolutional encoder functions as a Markov-type finite state machine. A simple

encoder is shown below:

bn

a: D -

• ^/2

Figure 4-1. Rate-1/2, constraint length 2, convolutional encoder.

Some salient features of the above encoder include: (1) for each input bit, two output

bits are created; therefore, it is called a rate-1/2 coder (2) each input bit is stored for two

clock cycles; therefore, the constraint length K is said to be two. It is intuitively obvious
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that a largerKyieldsbetterperformance because it stores moreelements fromthepast into

the registers as redundancy for the current element.

For eachpossible stateand eachpossible inputbit, we need to knowwhichoutputbits

result so maximum-likelihood decoding can be accomplished. Such transitions are easily

represented by a trellis diagram and are shown in Figure 4-2 for K-2.

U-\ "i-2 '/-I "/-2

0 0 o

Typical branch is labelled as
a/bi]bi2

Figure 4-2. Trellis representation of a rate-1/2, K = 2 convolutional encoder.

For the K = 4 case, the trellis involves a rather large 16 states which is similar to

Figure 4-2. Output bits bj are trivially obtained via b = aG where G isa generator poly

nomial. The G matrices are shown below for the two cases considered: K=2 and K = 4,

both of whichare rate 1/2code. Theywerechosen because they are optimal for rate-1/2 in

the sense ofmaximal free distance. For AT = 2, the free distance is 5 and for K = 4, the free

distance is 7 [27].

G =
1 0 1

1 1 1

G =
10 0 11

1110 1

,K = 2

,K = 4

A very popular way to decode convolutional codes is by maximum-likelihood

sequence estimation (MLSE) using the Viterbi algorithm (VA). The VA (dynamic pro

gramming) is theoptimum symbol-by-symbol maximum-likelihood decision method fora
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bandlimited multipath channel with intersymbol interference. Theoverall system diagram

is shown below in Figure 4-3.

noise

a:
decoderreceiverencoder

x-mitter

channel

Figure 4-3. Block diagram ofcommunication system showing convolutional encoder and
decoder.

Forclarity and simplicity, wedemonstrate indetail therate-1/2, K = 2 case. Theobjec

tive of our VA is to recreate the trellis of Figure4-2. Note that each node has two paths

entering and exiting. Figure 4-4 shows the two entering paths for the "00" node at some

time n.

time time

cii_\Cii_2 n-\ n

0 0 O^o

0 1 O^O
1 0 O

1 1 o

o

o

Figure 4-4. Two input paths into node "00" at time n.

At time « - 1, the accumulated metric up to that time and the corresponding path back

for that metric is stored in each ofthe four nodes. We then form partial path metric for the

two branches coming into node "00", given by:

P/.0 = hir r/2

p/,1 = hi ®i|+h2® 'I
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where r,. are the hard decisions out ofthe sheer in Figure 4-3. Then, attime n, we consider

all incoming paths to a node. Foreach path, weform thesum oftheaccumulated metric up

to time n—\ and the partial pathmetric. Thepathwiththesmallest sumis retained while

the others are discarded - the essence ofthe VA is to keep the amount of information rea

sonable and still provide maximum-likelihood solutions. After repeating this forM steps,

we look at all four nodes and pick thesmallest accumulated metric, back-trace M steps and

output resulting bits. Thefinal consideration in implementing the VA is how long to wait

before making a final decision. We consider the best path coming into each node and

choose a truncation depth Af, meaning wewill look backM timesteps to obtain thetrans

mitted bit sentat that time. Ideally formaximum likelihood decoding, we would onlystart

decoding when allthebitsarereceived, this implies M is infinite. Buttoavoid highlatency

in practice, M canbe set to a few integer multiples of the number of states.

Even for the rate-1/2, K = 4 case,which functions analogous to the one described, the

process starts to become unwieldy. This is one disadvantage of a full-blown MLSE on a

general channel - itscomplexity isjusttoo large. Methods ofmitigating this effect include

truncating the overall channel impulse response [13] or a morerecent idea of combining

equalization and the MLSE [12].

Convolutional codes arewidely used because of theirease of implementation andtheir

abilities to utilize soft-decision information. However, convolution codes have difficulty

achieving very low output biterror rates even atrelatively low input biterror rates. There

fore, forhigh performance systems requiring low output error probability, block codes are

generally preferred.

The rest of this chapter is organized as the following. Section 4.3 gives an general

introduction to block codes. Section4.4 provides concepts on abstract algebra which are

necessary for understanding cyclic codes. Section 4.5.2 discusses the encoding rules for

general BCH codes. Thedecoding of BCH codes using matrix and iterative approaches is

discussed in Section 4.5.5; these twoapproaches arealso known asPeterson algorithm and

Berlekamp algorithm, respectively.
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4.3. Block Codes

Foranyblockcode, theinformation stream is grouped intoblocks whicharek symbols

in length. Theencoder takes theblockof k symbols andmaps theminto a blockof n sym

bolsbasedon an encoding rule,wheren>k. Theblockof n symbols is calleda codeword,

and n is the block lengthof the code. Somewellknown block codesare single-error-cor-

recting Hamming code and BCH codes.

A block code is normallycharacterized by its lengthn, the number ofinformationsym

bols k, and its minimum distance d. The ratio k/n is called the code rate and is used to indi

cate the bandwidth expansion or redundancy of the code. An (w, k) code is said to be

systematic iffirstk symbols areinformation symbols andthe lastn-ksymbols aretheparity

check symbols. Systematiccodes are generally implemented in practice because it is easy

for decoder to separate information symbols from parity symbols.

For a block code, the minimum distance d determines the random error detection and/

or correction capability of a code. It is defined as the smallest of all Hamming distances

between any two codewords. A code is guaranteed to correctany patternof t errors and e

erasures \flt + e<t. Therefore, when a code is used only for error correction, i.e. e = 0,

this inequality implies a code can correct all patterns of t errors when t < I. The-j
error correction capability ofa code can also be visualized through sphere packing where

each sphere has radius d- 1 .The codewords are the centers ofthe spheres, so the space
2 J

occupied by each sphere characterizes the number of tolerable errors.

The bit error rate (BER) is a good indicator of the channel quality when a channel has

uniform independent random errors. Let denote the probabilityof receiving a bit with

error, then mean bit error rate (BER) is . For a binary («, k) t-error-correcting code, the

decoder fails when there are /+1 or more bit errors in the received block of n bits. If we

assume a decoder introduces no extra errors in the case ofun-correctable errors (by leaving

the bits as they are received), the BER at the decoderoutput can be calculated as:
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(4.1)

/ = /+!

Figure below illustrate the error correction capabilities ofsome typical linear block codes.
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Figure4-5. Errorcorrecting capabilities of someBCHcodes.

The rest of the chapter will review various approaches to the coding theory. We will

startwithmatrix description ofblock codes andthenmove onto thecyclic codes andtheir

decoding algorithms. The emphasis willbe on the decoding of BCH codes, in which case

two algorithms will be presented: one by Peterson and one by Berlekamp.

4.3.1. Matrix description of a block code

4.3.1.1. Hamming code

The Hamming code is the simplest non-trivial linear block code which corrects all

singlebit errors. To illustrate the concept, suppose we have a binaiy code that has code
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length n=6, and k=3.A code word is represented by [cq, cp Cj, ..C5], where [cq, c j, Cj]

are the information bits. Note this code is systematic. Let the encoding rule be:

C3 = Cq+Cj

C4 ^2 (4.2)

Forexample, if the information bits are i> = [1,0,1 ], the aboveencodingrulewouldyield

the codeword t = [1,0,1, C3, C4, c^] = [1,0,1,1,1, 0].

This encodingrule can be described more conciselyvia a generatormatrix G, where G

issikxn matrix, and the codeword is the product ofinformation vector and the generator

matrix, i.e. t = ^ • G. For the above example, the generator matrix of a (6, 3) code is a

3x6 matrix, where G =
100101

0 10 110

001011

Gis of the form [/|/*], where/ is a kxk iden

titymatrixand P iseikx{n-k) matrixwhichcomputes theparitycheckbits by the above

encoding rule.

Notice the encoding rule expressed a system of linear equations in (4.2) can also be

written as:

Cq + C] + C3 = 0

Ct + C') + Ca = 0

Ca + Co + Cc = 0

This in fact describes the null space of G, and it can be characterized by Si kxn matrix

called parity check matrix, H. In this example, H -
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corresponds to Cq + Cj + C3 = 0, the second row corresponds to Cj + Cj + C4 = 0, and

the third row corresponds to Cq + C2 + Cj = 0. Therefore, ^ isa codeword if and only if:

(4.3)

To summarize, generator matrix G and parity check matrix H areorthogonal to each

other, i.e. G • = 0; they have the properties that rank(G)=^ and Tai)k(H)=n-k. Further

more, a linear block code be characterized either by its generator matrix or parity check

matrix.

For the rest of this section, we will describe the decoding procedure using the parity

checkmatrixH. The following notations will be used in our discussion.

t = transmitted codeword

f0 if /th bit is received correctly
I = error vector, where e,- = <

[ 1 otherwise

^ = received vector = t + k

Todecode, thereceived vector is first multiplied withtheparity check matrix H. Since

H = 0, the product (ofparity check matrix and thereceived vector) can be reduced

according to = H- + = H-+H- •1^, where the result only
depends onthe error position(s). This decoding algorithm istherefore called thesyndrome

decoding; thesyndrome ofa received vector f is defined as = i/ •^ .

In the previous example, the information bits ^ = [1,0, 1] yields a codeword

t - [1,0,1,1,1,0]. Suppose the 4th bit is received withan errorso the received vector

T
f - [1,0,1, 0,1,0]. Applying the syndrome decoding, the product is H -
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T T
which is the 4th column ofH. Because H f • I , we would observe the same syn

drome pattern if the 4th component of the error vector is non-zero, i.e.

I = [0, 0, 0,1,0,0]. Therefore, we know the 4th received bit is corrupted.

However, ifthere are two bit errors,say at 3rd and 4th position, then the received vector

is ^ = [1,1,1,1,1,1]. The product i/• = matches no column ofH, which indi

cate decoding failure and multiple errors have occurred during the transmission.

4.3.1.2. A double error-correcting block code

The (6,3) Hamming code we havejust described can correcta singlebit error out of6

transmitted bits. Some more elaborate codes such as BCH(15, 7) code can correct up to 2

bit errors from any position within a block of 15 bits. Note this double error-correcting

code is different from concatenating two Hamming codes; for Hamming codes to correct

two errors, each error has to reside precisely within each block of 6 bits. The difficulty in

correcting multiple consecutiveerrors is the reason why it took so long to develop a mul

tiple-error-correction algorithmafter the discoveryof a single error correction algorithm.

The generator matrix for BCH(15, 7) code is a 7 x 15 matrix, thus the parity check

matrix has dimension 8 x 15. To decode BCH(15,7) codes, we apply the syndrome decod

ing algorithm. Let us start with a parity check matrix of 8 rows with the following form:

H =
1 2 • • 15

1/(1)/(2) • • /(15)J

where the numbers 1,2,..., 15are 4 bits in binary representation, and / is a function which

has yet to be determined. If ^ is the receivedvectorwith 2 errors occurringin the / th and
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j th columns,the corresponding errorvector I wouldthen have two non-zerocomponents,

^ ~ [o ... 10 1 (^ ,with Ts at/th and/th positions. The syndrome of ^ is

Syn{>) = = +

i + j y\

/ii)+fUX A

which corresponds to two equations with two unknowns.

The goal here is to determine the function f so there are enough information to solve

for i and /. We know f can not be the identity fimction, since this will yield

yj = ^3 = / +/, which will not give a unique solution for / and /. Next we try

/(/) = /2. Since the space of possible codes is defined overa binary field, which implies

/2 + j2 = + 2z/+ /2 = (/ + y)2 Again, we have the same problem as we had with the

identity function. Let us try /(/) = (/)^ , the syndrome of ^ gives

5y«(^) = y\ i + J

T3
_/3+y3

and ^3 = /^ + = (/+j){i^ + ij+fi) so that y-^/y^ = /^ +ij +P = +V•Noticing

that / +y = yj, and ij = +^3/^1 = y?+ys/y1»we see that / andj are roots ofthe

equation {x + i){x +J) = x^ + (i +J)x + ij = +yjX + (y3/yj+y^). We know the

coefficients ofthis quadraticequation, so we can solve for its roots. Once again, the solu

tion for / andJ will correspond to the bit error positions.

The size ofgeneratormatrixandparitycheckmatrix is alwaysproportionalto the block

length n. This makes the overall matrix approach very inefficient for implementation

when long codes are used, because both encodingand decodingalgorithmsrequire matrix

multiplication. A subclass ofblock codes called cyclic codes are commonly used in prac-
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ticebecause encoding and decoding procedures are described in polynomials, and these

can be implemented efficiently using linear shift registers. The cyclic codes are widely

used with applications ranging from error detection (CRC) todeep space commumcations.

Before wecan describing cyclic codes, wewill review some basic concepts of finite field

algebra [4].

4.4. A quick introduction to abstract algebra

To define a field, we adopt a rather informal definition by Berlekamp [3]:

Afield is a set of elements, including 0 and 1. Any pair may be added or multiplied
(denoted by+ and ♦, respectively) andtheresult is a unique element inthesame field. The
addition and multiplication are associative and commutative, and multiplication distrib
utes over addition in the usual way: x*(y+z) = x*y + x*z. Every field element a has a
unique inverse, -a, that is also a field element such that a + (-a)= 0. Every non-zero field
element a hasa unique reciprocal field element 1/a,such that a * (1/n) = 1.Forevery field
element a, 0 + a = a, 1 * a = 1, and 0* a = 0.

Thesimplest finite field is thefield of two elements, 0 and 1. This field is often called

thebinaryfield which is useful when we laterstudy the BCH codes. A slightly morecom

plicated field is thefield of three elements. We may denote thefield elements as 0,1, and

-1. It canbe verified easily that thesethreeelements form a field usingthe abovedefinition.

All thesefinite fields areunique up to theirpresentation, meaning therealways exista one-

to-one and onto mapping of onefinite field to another finite field with thesame number of

elements.

It has been shown that for any prime number/?, there is a finite field ofp elements. In

eighteenth century, the French mathematician Evariste Galois discovered the existence of

unique finite fields aside from those ofp elements, namely, he discovered the field of/?'"

elements foranyintegerm. Thesefields of/?'" elements arecalledGalois fields andis com

monlydenoted by GF(p'"). A Galois field of order/?'" is saidtohavecharacteristic/?, given

p

^1=0. For error correction purposes, we will concentrate mostly on the field ofchar-
/= 1

acteristictwo, in which case sign canbe ignored because 1 + 1 = 0. Other fields are less

practical when implemented in hardware because of the necessity of having modulo p

adders (asoppose to exclusive-OR gates thatdoaddition modulo two). Fortherestof this
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section, we will illustrate how to obtain an extension field GF(2'") fi*om the base field

GF(2). The concept ofextension field will later beapplied tocoding theory, with each ele

ment in the extended field correspondingto an error position.

Let F[x] denote the set of irreducible polynomials with coefficients fi'om a field F, A

polynomials^) issaid tobe irreducible ifit can not befactored. For example, the polyno

mials^) ~ ^+Jc+1 is irreducible inthe binary field of0 and 1, since neither 0 nor 1is a

root ofS^). However, the polynomial g(x) = +1 can be factored into g(x) =(x+1)^, since
1+1=0 in thebinary field. Now thequestion is: given an arbitrary polynomial of positive

degree in F[x], is it possible to find an extension field F' containing F such that the irre

ducible polynomial has a root in F' ? The answer is revealed by the nineteenth century

German mathematician Kronecker, where he simply proved that: ifS^) is an irreducible

polynomial in F[x], then there is an extension field of F inwhichS^) has a root. In fact,

this theorem yields anextension ofthe field F inwhich the polynomials^^) can befactored

into a product of linear factors; that is, thefield F' is large enough to contain alltheroots

oifix)'

Letus now work through a concrete example on a finite field and obtain its extension

field; after that we will demonstrate how the concept of extension field canbe applied to

algebraic coding theory.

Letus consider thebinary field GF(2) with only two elements: 0 and 1.Thepolynomial

f{x) = + X+ \ is irreducible since neither of the elements 0 or 1 is a root. The Kro

necker theorem guarantees theexistence of an extension field, in which thegiven polyno

mial has a root. Let us denote this root by a; ofcourse, 1 + a + = 0. Since the field is

closed under the addition, the extension field F' must then be:

F' = {0. l.o, 1+<x,a^ 1+o^a +a^ 1+a +a^}. (4.4)
2

As an example of operating in thisnew field, let us calculate the inverse of 1+ a .As

we will see soon, computing inverse is a common operation in mostof the decoding algo-
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3 4 2
rithms. Before starting, observe that by using a = 1 + a, we have a = a + a ,

a=a+a =l+a + a andso on.Nowtheproblem is to determine elementsa, b, c

for which

(I +a^)*ia +ba+ca^) = 1.

3 4
Carryingout the multiplicationand substituting for a and a with lower order terms, we

have:

2
a + b + ca + aa = 1.

This yields a system of linear equations:

a + b = l,c = 0,a = 0,

2
with solutions a = c = 0, b = 1. Therefore, (1+a) =a. In addition,

/(x) = + X+ 1 factors completely into linear factors in the extension field and has

three roots a, and a + , i.e.

x^ +x+ \ = (x-a)(x-a")(x-(a +a^)).

f{x) is the smallest degree polynomial with coefficients in the base field GF(2) that

2 2
has a as a root in the extension field GF(2^). Note f{x) must also have a and a + a

as roots. Therefore /(x) is calledthe minimalpolynomial of a, the fieldelements that are

roots of the sameminimal polynomial are called conjugates. As a remark, minimal poly

nomials will be used for constructing generator polynomials for encoding.

3
Another way to express this concept is to use the relation of a = 1+ a,

= a +a^, and a^ = a^ +a^ = 1+a +a^ etc., and express the extension field F'

as
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F' = {0,1, a, a^, a^, a"*, a^}, and = 1. (4.5)
It can be verified that this is equivalent to the representation expressed in (4.4)). Conse

quently, the minimal polynomial f{x) of a can be written as

f{x) = (x - a)(x- a^)(x - a"*), where a, a^, are conjugates. In general, the conju

gate of any field element a in GF(q'") is the set ja, a^, ,..., Lwhere r is the

smallest integer such that o? = a.

To summarize, suppose f{x) is theminimal polynomial overGF(^) of a, where a is

an element ofGF(^), then f{x) is also the minimal polynomial ofo?. Consequently, the

minimal polynomial of any field element a can be determinedas:

f{x) = (x-a){x-a?)...{x-o? ) (4.6)
r

where r is the smallest integer such that c/? = a

90

Aprimitive element of GF(^) is anelement a thathastheproperty thatthe first - 1

powers of a are exactly all the q"^ non-zero field elements of the extension field

GF(g^), such as shown in (4.5). Anirreducible polynomial p{x) in GF(^) thathas a as a

rootin the entension field is called theprimitivepolynomial. Justas a remark, theprimitive

polynomial p{x) of the smallest degree overGF(^) withp{o.) = 0 is theminimal poly

nomial f(x) of a.

Letus illustrate the concept of extension field and its elements withonemoreexample.

Again, the binary field, GF(2), is chosen as the base field, we will extend itto GF(2^). Let



a denote a root of the equation x + jc + 1 = 0; this happens to be a primitive element.

Then the 15 non-zero field elements are given as:

aO 1 (1000)

a' a (0100)

a2 (0010)

(0001)

1+ a (1100)

a+ (0110)

a^+ (0011)

a' 1+ a+ (1101)

a« 1+ (1010)

a+ (0101)

a'O 1+ a+ (1110)

a" a+ a^+ (0111)

1+ a+ a^+ (1111)

1 + (1011)

1 + (1001)

a'5 1

Additionoftwo elementsis doneby bit-wise exclusive-OR. Multiplicationin the finite

field can be done with the powers of the primitive element a, according to:

a"*a" = a^, where k = m+n mod 15.

For example, (0111)*(0011) = = (0010). Later we will show the

implementation of themultiplication using shift registers. Thistable willbe referred often

when describing the decoding algorithm.

4.5. Cyclic Codes

A linear block code C is called a cyclic code ifevery cyclic shift ofa codeword in C is

also a codeword in C. In other words, if [cq, Cj, C2,j] is a codeword, then the
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shifted version [c„_,,Cq, Cj, c„_2] is also a codeword. Any (n, A:) cyclic code can be

completely speciiied by its generatorpolynomial g(x) ofdegree n-k, or the parity-check

polynomial h{x) degree k, where g{x) -h^x) = j:" - 1.

A cychc code with block length n = —1, where ^ is a prime number is called

primitive cyclic code. Since the field GF(g^) isan extension field ofGF(^), bythe umque

factorization theorem, the factorization

= fx{x)f2{x)...f^{x)

isunique over the field GF(^), where f i{x) denotes the minimal polynomial ofafield ele-

ment. Because the generator polynomial g{x) divides x^ - 1, itmust be aproduct of

some of these minimal polynomials. Therefore, if we wish to construct a generator poly

nomial g(jc) that has a,, a2,..., tt/ as zeros (which corrects / number oferrors), then

g(x) = /cm[/,(x),/2(x), ...,//(x)],

where //x) is the minimal polynomial of . The minimal polynomial ofany field ele

ment a can be obtained according to (4.6).

4.5.1. Example: Bose-Chaudhuri-Hocquenghem (BCH) Codes

One prominent subclass of cyclic code is the BCH codes. These codes have been

widely used inapplications such asdeep space commumcations, computer memory mod

ules, and CD players. BCH codes are popular inpractice mostly because oftheir relatively

simple decoding algorithms discovered by Berlekamp [3][30].

By definition, a code generated by g(x) isaBCH code ifg(x:) isapolynomial oflowest

degree over GF(^) for which a'"", a'"® ',..., a'"®^~^are zeros. As aresult, the mini
mum distance ofthe codes isat least dQ. One common type ofBCH codes are the binary

codes obtained by letting Wq = 1, ^a be a primitive element of
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2 3
GF(2'"); therefore, c(x) is acodeword ifand only if a, a , a ,a "arezeros. Since the

field is binary, every even power of a is a conjugate assome previous odd power of a,
2 4

i.e. they areroots of thesame minimal polynomial. For example, {a, a , a ,...} is a set

ofconjugates, and so is the set {a , a ,...}. Therefore, the previous defimtion ofbinary

3
BCH codes can bereduced to: c(x) isa codeword if and only if a, a ,..., a " are zeros

of the generator polynomial. Thus the generator polynomial ofabinary BCH code which

guaranteed to correct up to /g random errors canbe obtained as:

g{x) = /cm[/j(x),/3(x), ...,/2^^_,(x)]. (4.7)

For illustrative purposes, let us construct GF(2^) fi*om GF(2) using the primitive poly

nomial p{x) = x^ +X+ I. The field elements are listed in Table 4-1. Ifwe wish to obtain

a double error correction code ofblock length 15, then g{x) must have two roots, a and

a such that:

gix) = lcm[f^{x),f^{x)]

= +JC +1)(x^ + +jc^ +X+ 1) = +1

Another commonly practiced subclass ofBCH codes is theReed-Solomon (RS) codes.

Theseare theBCHcodeswhichthesymbol fieldGF(^)is the sameas the errorlocatorfield

GFC '̂"), i.e. m = \. If a is a primitive element, then the block length

« = - 1 = ^ - 1 symbols, which is the largest possible value.

The minimal polynomial ofa'' in G¥{q) is simply x-aK Because the generator poly-
2 It

nomial g(x) of a /-error-correcting RS code which must have a, a ,..., a as roots, it

therefore equals to:

g(x) = (x-a)(x-a^)...(x-a^').
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g{x) always have degree 2/. For example, for a (15, 11) /= 2 RS code over GF(16), it

can be verified (with the help ofTable 4-1) that

g(jc) = (x-a)(x-a^)(jc-a^)(x-a'*) = + + + +

Also note diat each symbol inGF(16) isfour bits inbinary representation. For block length

of 15 symbols, it is equivalent to bits in binary.

A RS code has minimum distance d = 2/+1 = w-^+l,soitisa maximum-dis

tance separable code. In other words, for any fixed (n, k) where aRS code exists, no other

code can have a larger minimum distance. Ofcourse, when there are (w, k) where noRS

codes exist, other codes are preferred.

Since RS codes are character oriented code, they have natural advantage in terms of

burst error correction, but have disadvantage with random errors. Therefore, in the case of

abinary symmetric channel, a binary BCH code would offer better error correction capa

bility than the RS code of the same length and redundancy. However if the channel is

bursty, then RS codes are oftenpreferred.

4.5.2. Encoding

For an («, k) cyclic code, suppose we want to encode the information sequence

[/o, Zj,..., -1] • sequence can be expressed with a polynomial i{x) ofdegree of

k-\, where thecoefficients of i{x) are the information symbols. The generator polyno

mial isobtained by(4.7). One simple way to encode is tomultiply the information polyno

mial with the generator polynomial such that the codeword polynomial

c(x) = z(x) •g(x). Figure 4-6 shows a shift register circuit which performs this type of

encoding.
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iix)

Figure 4-6. A non-systematic encoder for (15,11) Hammingcode.

Recall that a code is called systematic first k symbols are information symbols and the

last n-k symbols are the parity check symbols. Since the information sequence i{x) is

not directlya part of c(jc) , the aboveencoding processdoesnotproducea systematic code.

It can be shown that every linear block code is equivalent to a systematic code. A cyclic

code, c{x) = i{x) •g(x), can be made systematic by the codeword of the form

c{x) - x"~^ ' iix) +r{x), where r(x) is the negative ofthe remainder of •i(x)

dividing g(x). Figure 4-7 illustratesa systematicencoder for (15,11) Hanuning code, for

4

which the generator polynomial is g(j:) = x + x + 1.

iix)

open for last 4 bits

* up for last 4 bits
^ • c(x)

down for first 11 bits

Figure 4-7. A systematic encoder for (15,11) Hamming code.

Since g(x) = (x"- 1)/hix), encoding is also feasible by employing dn n-k stage

shift register that performs division of the parity check polynomial hix\ i.e.

cix) - iix) •gix) = iix) •(x" - 1)/hix). The decision on which encoding method to
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usedepends onthe relative size ofn and k. Inthe case when a codeword has fewer infor

mation symbols, i.e. k<n-k, then aA:-stage shift register isused for multiplying theinfor

mation polynomial with the generator polynomial. On the other hand, if a codeword has

more information symbols than parity check symbols, i.e. k> n—k^^n n —k stage shift

register is preferred.

4.5.3. Decoding

Assume the codeword is transmitted through a noisy channel and the received vector

is •••» **0] •Using the polynomial notation, the received polynomial is then:

r(jc) = + ... + /-Q. To decode, r(;c) is first divided by g(x); the

remainder s(x) is called the syndrome polynomial, and the corresponding coefficient

vector is the syndrome vector. Ifthe syndrome isazero vector, it indicates that thereceived

vector isacodeword; if the syndrome isnon-zero, it says there exist error(s) inthe received

vector. To correct theerrors, theprocedure involves multiple steps and hastwo outcomes:

if a syndrome is associated with a correctable error pattern, then the corresponding error

pattern is added to the receiving vector to recover the original transmitted codeword so

these errors arecorrected; if a syndrome is associated withanun-correctable errorpattern,

then this un-correctable-error result can only yield received word error. We will discuss

decoding algorithms starting with the binary Hamming codes and then moving on to the

BCH codes.

4.5.4. Hamming code

Hamming code is a single error correction code. The generator polynomial g{x) has

one root which we denote as a. At the receiver's end, the received vector can be written

as the polynomial r(x), where r(x) it is the sum of the codeword polynomial c(x) and

the error polynomial e{x), i.e. r(x) = c{x) +e{x). The syndrome is calculated byeval

uating the received vector at a. Since a isaroot ofg(x), it isalso aroot of c(x) because

the codeword is the product of the information polynomial and the generator polynomial.

Evaluating r(x) at a yields r(a) = c(a) + e(a) = e(a).
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Suppose we are decoding a («, ^) Hamming code. The error polynomial evaluated at

a is e(a) = +e^a +62^ +... + ,where e,. is 0when there is no error at ith

bit and 1 when there is an error. Thus r(a) = e(ot) = 0 when the received codeword is

correct. If there isa single error, then e,- = 1 for some i. The syndrome calculated bythe

decoder then equals to: syndrome = r(a) = e(a) = a . By consulting with a look-up

table, we canidentify ol thus know it is the i th bit thathas been corrupted. However, if

two bits are corrupted, i.e. e,- = 1, ej= 1 for some i and /, this decoding algorithm would

fail becauseoneequation, e(a), is not sufficient to reveal multiple unknowns. Thedecod

ing algorithm for a Hamming code is outlined in Figure 4-8.

received ^
evaluating at a

syndrome^
look-up table

codeword
output

Figure 4-8. Syndrome decoder for Hamming codes.

4.5.5. Binary BCH codes

The BCH codes is a class ofpowerful multiple error correction code. As a consequence

of its ability to correct multiple errors, the decoding algorithm is significantly more com

plicated than the Hammingcode. In this section,we will review two decoding algorithms.

The first one is conceptually clear but less efficient; it was first developed by Peterson [35].

The second decoding algorithm is more commonly used but harder to imderstand, it was

first discovered by Berlekamp [3].

4.5.5.1. The Peterson Algorithm

The received polynomial for an (w, k, t) binary BCH code is r{x) where

2 n
r(x) = c(jc) + e(:r). The errorpolynomial e(x) = eQ + e^x+ e2X + ... + e„x with the

error magnitude {0,1}. Supposethere are m errors occurred inside the block where
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m < /, and theseerrorsare at positions /j, /2,..., polynomial canbe sim

plified to e(x) = x '̂ + +... +x"".

For each received polynomial, the first 2/ syndromes are calculated in preparation to

correct up to t errors. The /th syndrome is defined as:

Sj = r(a-') = c{o/) +e(a-') =e{a/).

which does evaluation ofthe received polynomial at the; th root ofg(x).

For example, ^1 =e(a) =a''+ a''+ ... +a'"", ^2 =e(a^) =a '+a ^+... +a

and so on. To make things less confusing, we will adopt the notation = a', thus the

syndromes 5,, ^2,S21 are:

+^2 + ...

5, = x\+)A-\-

52, =^' +.*^'+...+4'

Because the codes are binary, it can be proved that Sij - Sj, which says only the odd

numbered syndromes have to be computed.

The goal here is to solve the above syndrome equations for error locations . How

ever, as thesearenon-linear equations, no systanatic method is available for solving them

directly. Fortunately, a less direct method has been discovered by introducing an error

locatorpolynomial A(jc) in x, where

A(x) = 1+AjX+... +A^_jx" '+A^x'" = (1-xA'j)(l-xA'2)-"(1
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The zeros ofA(x) are the inverse of the error locations , for z= 1,../w. Therefore,

ifwe can obtain the error locator polynomial, then we can find its zeros thus the error loca

tions. Now the decoding problem can be reformulated as finding the coefficients. A,- for

the error locator polynomial.

To proceed, let us first set x ~ so the left side of(4.8) equals to zero. Next we

multiply both sidehy so we have:

which hold for all X^ and /. Summing these equations up with the index i, we have:

or

m

£ +... +A„.' +Kjch =
1= 1

mm m

/ = 1 / = 1 / = 1

Notice the syndromes ^ ^; therefore, the above equation can be written in
j = 1

the form:

^\^j+m-\'^forall j= l,...,m (4.9)

Writing out (4.9) for all j using the matrix notation,we have:

99



S2 ... 5'^_i K ~^m+\

S2 ... ^m+l ^m-\ ~^m +2

^3 ^4 ^m+l +2 ^m-2 ~^m +3

^m+ \ ^2m-2 ^2m-\_ /^2m-\_
. _

(4.10)

Now Ay can be solved by taking the inverse ofthe syndrome matrix and multiply itatboth

sides. The / x / syndrome matrix

M =

5] ^2

•^2 ^3 7+ 1

S, Si+t ... S2/-1

isnon-singular if / equals to the number oferrors occurred, i.e. I - m. This property will

help us to determine the exact number oferrors occurred within ablock: first we let / = /,

whichis the maximum number of correctable errors and test ifthe syndrome matrixis sin

gular. Ifthe syndrome matrix is singular, then / is decreased by 1and the test is performed

again. This process repeats itself until the syndrome matrix becomes non-singular, in
which case it willbe inverted to compute the errorlocator polynomial.

To summarize, the decoding algorithm involves three steps:

• for received block r(x), compute the syndromes, where
Sj = r{a-') for j = 1, ...,t

• use the syndrome matrix to determine the number oferrors within the block and then
compute the error locator polynomial with the inverse ofthe syndrome matrix

• substitute each field element intotheerrorlocator polynomial anddetermine the actual
error location.

Nextwewill demonstrate theabove decoding algorithm witha (15,5) BCH triple error
10 g 5 4 2

correction code. Its generator polynomial is g(x) = x +x+x+x+x+x+l.Let

us assume information bits are all zero thus the information polynomial i(x) = 0. Sup-
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pose three bits are corrupted at locations 2,3, and 4(counting starts at 0), so the received
2 3 4polynomial r(:r) = x + x + x = e{x).

Using the finite field representation ofGF(2^) shown in Table 4-1, we have:

Step 1: compute the syndromes.

2,3,4 12
5| = a+a+a = a

52 = 5? = a'

o 6 , 9 , 12 1453 = a+a+a = a

54 = 5^ =

„ 10 , 15 , 20
= a +a +a =0

5g = 5^ = a'̂

Step 2: compute the coefficients (A^Aj, A3) for the error locator polynomial

A(jc) = 1+Ajjc +A2Jc^ +A3X^ .

The syndrome matrix

M =

12 9 14
a a a

9 14 3
a a a

14 3
0a a

is non-singular, so we know the received block has three errors. Taking inverse of M to

compute A,:
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ft 12Aj = 5i = a

^,s.+s.
Aj = = I, and

S^ +Sj

5]iS5+ 53+ sjs3 +S] 9
A3 5— a .

5^ +53

As aresult, A(jr) = 1+a'̂ j:+x^ +a'A:' = (1 +a^*)(l +a^*)(l +a x).

2 3 4
Step 3: the inverse ofzeros for A(x) are a , a , a , so the errors occurred atthe 2nd,

3rd, 4th bits.

Notice the step 2 is the most computational intensive step oftheentire algorithm, for it

calculates the inverse of the syndrome matrix. In general, the complexity of inverting an

/ X/ matrix is in the order / . Clearly, for codes thatcorrect a largenumber of errors, this

step can be very expensive. Fortunately, the syndrome matrix is not any arbitrary matrix,

and Berlekamp has discovered a recursive method that uses linear shift back registers for

computing the error locator polynomial. For the rest of this section, we will discuss

Massy's interpretation of Berlekamp's algorithm [30].

4.5.5.2. The Berlekamp Algorithm

The (4.9)) fi'om the previous section stated that

+ ~ ~^j+m J ~ !»•••»'''•
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Fora fixed setof Ay, thisis anequation of an autoregressive filter, as shownin Figure4-9.

... S3, $2, Sj
S/-7 Sj-3

Figure 4-9. Error locator polynomial as in an autoregressivefilter

The problem of finding the errorlocator polynomial A(jc) is nowreformulated as design

ing the autoregressive filter (with unknown taps Ay) that produces the right syndromes.

The procedurefor such filter design is also the procedure for solvingthe matrix equation

in (4.10)), which was first discovered by Berlekamp.

The steps for finding the right tap values are recursive. Let us assumethe syndromes

'..yS2, are already given. We start with iteration k = 1 with theinitial conditions

A^^\x) = 1, = 1, Lq ^ ^ iteration k, let L/^ be the length of the

shift registers, and let , 5(jc), 5 be the temporaryvariables, the followingcomputation

assures the shortest shift register that provides the correct syndromes.

/I-1

A.=
y = o

1 -Ai^x

-1
6 (l-5)jc
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where it = 1,2r,and 6 = 1 if 9^1 and 2Z,^_, <^-1 ,and 5 = 0 otherwise.The

algorithm terminates with the correctable error patterns when k —2t and

degA(j:) = Lf^_ j. Otherwise if A: = 2r and degA(x) i, it indicates more than t

errors haveoccurred, thus they areun-correctable. Inthefirst case, theresulting errorloca

torpolynomial is passed on to thenext step for finding thecorresponding error locations,

where the received bits are then inverted accordingly. In the case when the errors are not

correctable, instead ofpotentially introduce more errors, thedataareleftunchanged asthey

are received; in the mean while, a flag will indicate the errors being not correctable. The

step-by-step Berlekamp's algorithm is outlined in the following flow chart.
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initialization
B{x) = 1

A(x) = 1
Z, = 0

no

T{x) k{x) - hf^B{x)

yes

2L<k-\ ?
no

yes

yes

no [eg A(j:) =
yes

B{x) <r- xB{x)

more than t errors move on to Step 3
to correct the errors

Figure 4-10. The Berlekamp algorithm.
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Let us walk through the steps of this iterative algorithin using the same example on

(15,5) BCH code as we had earlier. In that example, the generator polynomial

g(x) = +X® + +jc +1, the information bits are all zero thus the informa

tion polynomial /(x) = 0. Ifthree bits errors are received atlocations 2,3, and 4, then the

received polynomial r(x) = x^ +x^ +x^. As aremark, please refCT to Table 4-1 for fimte
field addition and multiplication.

12 9
Thecorresponding syndromes for this received polynomial are: iS| = a , ^2 = ot ,

^3 = ^4 = ^5 = 0, and Going through the recursive steps

described in Figure 4-10, the values for all the parameters in each step are summarized

below:

k Ak T(x) B(x) A(x) L

0 1 1 0

1 1+a'^x 1+a*^ 1

2 0 1+a'^x a^x 1+a^^ 1

3 a® l+a'^+a"x^ a^+a'^x l+a'^+a^*x^ 2

4 0 l+a'^x+a''x^ a^x+a'̂ x^ 1+a^^x+a'^x^ 2

5 1+a'^x+x^+aV a'®+a^x+a^x^ 1+a'^+x^+a^x^ 3

6 0 1+a'^x+x^+aV a'°x+a'x^+a^x^ l+a*^+x^+a\^ 3

Table 4-2. Recursive steps in Berlekamp's algorithm.

The error-correcting procedure terminates at the sixth iteration, where k = 6 = 2t and

degA(x) = 1; thus errors are known tobecorrectable. The error locator polynomial

A(x) = 1+a^^x +x^ +a^x^, which agrees with the result derived using Peterson's
algorithm.

Observe that = 0 for all k even. This is true in general for binary BCH codes due

to the fact that S2j = 5^ in binary field. As aconsequence, the iterative algorithm can skip
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all evennumberediterations,so the totalnumberofiterationsrequiredto decodea («, k, t)

binary BCH code is t (as oppose to 2t for general BCH codes).

To summarize, the complete iterative decoding algorithm consists ofthree steps:

• for received block r{x), compute the syndromes , .^2,..., <52/'

• apply Berlekamp's algorithm to obtain theerror locator polynomial; this step takes 2t
iterations for the general BCHcodes and t iterations for the binaryBCH codes;

• substituteeachfieldelementinto the error locatorpolynomial and determinethe actual
error location.

Inthenext chapter, wewill present a decoder implementation ofbinary BCH codes for

correcting variable number of errors. Thebasic architecture will be based on Berlekamp's

algorithm.
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5 Architecture for Variable FEC
Decoder

5.1. Goal

Extensive work has been done in implementing Reed-Solomon (RS) codes which is a

subclass of BCH codes [3][9][42]. In this chapter, we will propose an variable forward

error correction decoder architecture based on binary BCH code. As will be shownlater,

this design can bemapped efficiently to a custom VLSI implementation orprogrammable

logic devices. We will first present an architecture and its control logic for a single binary

(63, /:) BCH decoder. This design will then beextended to a VFEC decoder design.

Referring back to the simulation results obtained in Chapter 3, the family of 63-bit

binary BCH codes appear to bethe most suitable choice for VFEC. This isbecause these

codes offer a good compromise between implementation complexity and variable error

correction capabilities. These are the codes generated by the finite field GF(2^), with the

primitive polynomial p{x) = +x + 1; and thus have the same block length. The range

of error correction capability for codes within this family is

r = 0,1,2, 3,4, 5,6, 7,10,11,13,15, 31, thecorresponding number of information bits

within the block is A: = 63, 57, 51,45,39, 36,30,24,18,16,10, 7,1. These codes have

the further implementation advantage that a majority of the decoder hardware can be

shared afterexploiting redundancies among codes. Anoverview of thesubsystem incorpo

rating VFEC is shown in Figure 5-1.
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Input blt§_ VFEC

Encoder

4 '
/

/

oaia

Receiver

Receiver

FE^ type

•data

channel

VFEC

Decoder

Corrected bits

Figure 5-1. An overview of a VFEC subsystem.

5.2. Basic circuits for GF algebra

Beforepresenting thedecoder structure, wewillfirstillustrate thebasiccircuits forper

forming finite field arithmetic, such as addition andmultiplication. Our examples will be

carried out in GF(2^); however, the concept can beapplied toany field.

5.2.1. Addition of two field elements

Any field element inGF(2^) isrepresented using 6bits. Therefore, addition oftwo field

elements can be made using six parallelbit-wide exclusive-OR gates. Let a be the primi

tive element ofGF(2^). Then any field element can beexpressed in terms of a. Let

2 3 4 5
a = <2o + UiOC + 02^* ^ ,and

b=bQ +b^o.-^b20?' -^b^CL +b^CL .
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Then a + b = c is achieved by:

Figure 5-2. Adding two field elements.

5.2.2. Multiplication of two field elements

The multiplication of two field elements is more involved. The steps can be seen by

explicitly carrying out the multiplication of two field elements, a and b. Let
2 3 4 5

a = + a20- +^301 +a5a and

b = b^-^ b^a+ b2CL ^ b^a + b^QL , where a is the primitive element, i.e.

+ a + 1 = 0. Carrying outthe algebra by first letting each term of a multiplying with

each term of b and then adding the termsof the sameorder, the result is:
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ab = {aQ +a^QL'̂ a2CL -^a^CL •^a^(x){bQ-^b^a-^b2CL -^b^^a -^b^a +b^a)

= (^0^0 •*• ^ 1̂ 5 ^2^4 ^3^3 ^4^2 "*" ^5^1)

(flQ^l <3[i ^0 "*" ^1 ^5 "*" ^2^4 ^2^5 ^3^3 "*" ^3^4 "*" ^4^2 ^4^3 "'' ^5^1 ^5^2)®^"''
2

(^0^2 •'"^1^1+ <^2^0 ^2^5 "*" ^3^4 "'' ^3^5 ^4^3 ^^4^4 "*" ^5^2 "*" ^5^3)^
3

(^0^3 ^1^2 "'" ^2^1 '*' ^3^0 "*" ^3^5 ^^4^4 '*' ^4^5 ^5^3 "*" ^5^4)^
4

(fl0^4 + ^1^3+ ^2^2"''̂ 3^1 +^J4^o"''^4^5'^''5^4'^^5^5)^

(a0^5 + ^1^4 + ^2^3 +03^2'''^4^1 •''̂ S^O"*"

Again, a,- and 6,- are binary, so the multiplication between any pair isdone using an AND

gate, and addition oftwo binary numbers is done with a XOR gate.

5.2.3. Inverse of a field element

Oneapproach for obtaining theinverse of a field element is to work out the arithmetic

that for a given a, we wish to find a field element b such that aZ> = 1. Multiplying out

the cross terms likebefore andapply this constraint, we canexpress all the b^ in terms of

. One example usingthis method has been described in Chapter two. Another approach

is more straight forward which requires a small lookup table with six input and six output

(384bit ROM). Even thoughthis latermethodmay requiremore logic gates to implement,

the circuit is however simpler and faster. As we will see later, only one field element

inverter is needed in designing VFEC decoder, so later approach will be adopted in our

architecture.

5.3. VFEC encoder design

The design of any error correctingsysteminvolves two parts: encoding and decoding.

Generally, the EEC encoding process is relatively simple and is implemented by a set of

shift registers. One such design is shown in Figure 5-3 where all encoders process data
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simultaneously. The final output isselected bythe output multiplexer according tothe FEC

type.

input outp^

FECtype

Figure 5-3. A VFEC encoder.

Theimplementation challenges of a FEC system often come from thedecoder design.

The decoder for VFEC is especially critical since multiple decoders have to be imple

mented simultaneously. We will first present an architecture and the control logic for a

single binary (63, A:) BCH decoder; this single decoder will then serve as the building

block for VFEC design.

5.4. Implementation of a single binary (63, k) BCH decoder

5.4.1. Review of error correction procedure

Let r(x) denote the received codeword. As stated in the previous chapter, the proce

dure to decode an (/i, k) r-error-correcting BCH code consists of three steps:

1. Calculate the first 2t syndromes, 5j, ^2,..., 52,, where 5,- = r(a) and a is the prim
itive element.

2. Compute the error locatorpolynomial A(x); this can be done through the Berlekamp's
algorithm.

3. Compute the error magnitude and then correct the errors.
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These three steps can be seen in an overall decoder structure illustrated below:

r(x)

syndrome
block Berlekamp A{x^ find error

= r(a')
Algorithm positions

•^2/^

corrected bits

Figure 5-4. Outline for error correction procedure.

Since VFEC is implemented usingbinaryBCH codes, the decoding algorithm is sig

nificantly simpler than a general decoding procedure. First, the received symbols are

2
binary, the error magnitude is always 1. In addition, since even syndromes S2j —Sj for

all /, the even numbered iterations of the Berlekamp algorithm are redundant because the

discrepancy factor, A, equals zero during these iterations. Therefore, instead of taking 2t

iterations to complete the Berlekamp algorithm, as for the general BCH codes, the error

locatorpolynomial A(:c) for binary BCH codes can be obtained in t iterations.

5.4.2. Syndrome block

To decode an arbitrary (63, A:) BCH code, the syndrome block computes the first 2t

syndromes, 5,, ^2,..., S21, for each received block of63 bits. The resulting syndromes are

field elements of GF(2^). One way to compute the /th syndrome is to employ a division

circuit that divides r(jc) by the minimum polynomial of a', denoted as The

remainder R^^\x) evaluated at a' is the desired syndrome S^. For example, to calculate

Sj, we first divide the r(x) by the minimum polynomial of a, . Suppose the

remainder is , then S, = . Similarly, to compute , wedivide the r(x)
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by the minimum polynomial of a', m^^\x) to get the remainder '(*), then

S5 =

Another approach toobtain isevaluating r(x) atthe /thpower ofthe primitive ele

ment a, i.e. Sf = r(a'). This can be done by observing the relation that:

'-(P) = r62p" +r6,p"+r«,p"'+...+'-0 = ((('•62p +'-6l)P +'-6o)P+•••)P +''o

where p isan arbitrary field element. Therefore, r(P) can beobtained through an iterative

operation which first multiplies p and then adds the result to the coefficient of the next

order. A shift register is a perfect choice for multiplying a' repeatedly. The circuit for

= ^((X) = + + •••+''0 relatively simple. This can beseenby express

ing afield element a = aQ +a^a +Ojoi^ + +a^a.^ +a^CL^. Because a is primitive,

then + a + 1 = 0. Calculating aa, we have:

2 3 4 5
aa = a(aQ+ a^a + a2a -^a^a +a4a a^a )

2 3 4 5 6
= aQa + a^a +a2a +a2a +a^a +a5a

2 3 4 5

= +^2^^ +^*3^ +a^a +05(1+a)
2 3 4 5

= 05+ (aq + ^5)0^ +^2^^ + a^a

The new value in the register 0 is the content of old register 5, and the new value in

register 1 is thesumof old content in register 0 and 5, thenew value of register 2 is what

was in register 1, etc. Therefore, a shift registerwith connection shownin Figure 5-5 com

putes iSj. After shifting this circuit for 63 clock cycles, the register contents are the desired
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S]. Just as a sidenote, thisshiftregister canalso be used forcounting in finite field, fi*om

a to a , with 1 placed in the lowest order register and Os elsewhere.

input
a-.

Figure 5-5. A circuit for calculating Koc).

Evaluating polynomial r(:)c) at a' for /^ 1 to obtain = r(a') ismore complicated.

3 . 3
We will illustrate the concept by implementing = r(a ). Calculating a a, we have:

3 3 2 3 4 5
a a = a iaQ + aia + 020. +a3a +a^a )

2 345= ^3 +(fl3 + a4)a +(fl4 + fl5)a +(flQ-i-fl3)a -^a^a +a2CL

This can then be mapped into a shift register with connections shown in Figure 5-6. The

other syndromes can be obtained by similar circuits.

Figure 5-6. A circuit for calculatingria ).

This syndrome computation therefore results ina setof syndromes at the end ofevery

63 clock cycles, these are then provided as input into the error locator module, where the

Berlekamp algorithm is performed.
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5.4.3. Berlekamp's algorithm

Our main contribution to BCH decoder design is efficiently implementing the error

locator module which computes the error locator polynomial, A(jc) .This isoften the most

challenging task of any BCH decoder design. For a /-error-correcting code, A(x) has

degree t and can be expressed as A(x) = hjX +A^_ ' +...+Aq ,with the roots of

A(x) corresponding tothe actual error locations. One efficient algorithm toobtain A{x)

is an iterative algorithm known as Berlekamp's algorithm[3]. The even numbered itera

tions ofthe Berlekamp algorithm will beskipped because the codes are binary which yields

a total of t iterations forobtaining A(x) for a / -error-correcting code.

Suppose the computed syndromes are .Sp ^2,53,..., ^2^_ i •With the initial conditions

= 1 andB^^^(jc) = 1, the Berlekamp algorithm for binary BCH codes is:

^(2.) ^ .

J=0

A(2t +2)^^) ^

xV^*'(:c) if = 0, or deg >k

a'^'tsO, or degA'"*(x)<i

Conceptually, this algorithm can be carried outwith four sets ofshift registers: onefor

the syndromes S2, S3,..., »S2^_ j, one for the estimated coefficients of A(x), one for
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the coefficients of the intermediate polynomial B{x)^ and one for the product term

•This design is shown in Figure 5-7.

2{t
stac

-i-

stac

1)
es

>t+i

>t+2

>2t-1

St.t-1

J

Ajx) Bjx) AiSk_i

-1

GF
Inverter

-f

Control Logic

Figure 5-7. Shift register design for Berlekamp's algorithm.

The syndromeregisterhas size 2t to store all the syndromes; both A(jc) and B{x) reg

isters have size t since these polynomials have the maximum degree t\ and the AjSf^_j

register also hasthesize t which areused forcomputing thediscrepancy factor A. All the

register contents are field elements in GF(2^) and are thus represented by 6bits. To sim
plify theoverall control logic, weadd oneextra layerofregisters to store initial values. The

adder at the right end of the figure is a finite field adder that adds the field elements and

the discrepancy A is also a finite field element that goes into a finite field inverter. The

inverse ofAis denoted as A ' which is used for updating B{x).

As will be shown in Section 5.4.3, this design is highly desirable for VLSI implemen

tationas the updates of A, B{x) and A{x) are all performed in parallel. Furthermore, this

parallel structure introduces noextrahardware (except theadditional finitefield adders and
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multipliers) and also meets the low power design guideline. The later character is impor

tant when decoders are incorporated inside portable units for decoding received downlmk

data, in which case battery lifeis usually a crucial implementation constraint.

5.43.1. An example using this decoding structure

To fully understand how the algorithm operates under this frame work, we will work

through aconcrete example and show theregister contents ateach iteration. Since there are

no even numbered iterations, we numerate all the non-trivial iterations as 1, 2, 3, 4, ...

(instead 1,3,5,7, ...). To illustrate the approach of implementation, a shorter block code

is used in our example for the sake of clarity.

Once again we use the (15, 5) BCH code with generator polynomial

g(x) = + jc + 1; this is a triple error correcting code. Suppose the

7 5 2
transmitted bits are all zero,andthereceived bits are r(x) = x + x + x . Then threebits

errors have occurred at positions 2, 5, 7 (position count starts from 0). The first 6 syn

dromes are calculated to be: 5, = S2 = cx^^, - 1, ^4 = ,

Se = 1.

To differentiate the updated A(x) andthe current A(x) (which is needed for comput

ing jB(x) ), an intermediate term called A° '̂̂ (x) is introduced. The algorithm is initialized
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as A(j:) = 1 and 5(x) = 1. The register content at the beginning ofthe first iteration is

shown below:

initial stage:

shift

Inverter
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At the first iteration:

(1) shifting the Syn-register two times:

(2) multiplying Syn-register and A-register pair-wise to obtain A:

= Syn • A -

Syn Aix) B{x) Ay5^

0 0 0 0

0 0 0 0

1 0 0 0

Si 1 1

82

S3

S4

S5

(3) updating A(x):

+ = l+a'\

(4) updating B{x):

since A '̂̂ 0, therefore 5(j:) =(i)^n o/„N _ JcA®'̂ (x) _
(1)

= ajc

120



At the second iteration:

(1) shifting the Syn-register two times:

(2) multiplying Syn-register and A-register pair-wise:

= Syn-A = $20}^ = a'̂ +1 =

Syn A(:jc) 5(jc)

1 0 0 0

Si 0 0 0

82 a
^^2

S3 1 0 1

S4

S5

0

0

(3) updating A(jc):

A"'"''"'(x) = W = l+a'^ +a'V

(4) updating B(x):
old.

since A^^^ ^ 0, therefore: 5(jc) =
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At the third iteration:

(1) shifting the Syn-register two times:

(2) multiplying Syn-register andA-register pair-wise:
14,(3) ^ 12= Syn•A = S^cn + 54a + S

12 , 10 , 5 _ii
= a +a +a = a

Syn A(x) B(x)

$2 0 0 0

S3 a3

S4

S5 1 0 aS

0

0

1

Si

(3) updating A(x):
^upda.e(^) ^ ^

1 . 14 , 11 2 ^ _14 3
= 1+a jc + a X +a x

(4) updating B{x):

since ^ 0, therefore: B{x) =
old.

- (3^ =a^x +a^x^ +ax^

Now we have obtained an error locator polynomial A(x) which has degree 3. This

implies thatthree errors haveoccurred in thereceived block. In fact, A(x) canbe factored

as A(x) = 1+a''̂ jc +a '̂j:^ +a^V = (1 +a^x)(l +a^x)(l+a^x), indicating the
error positions are 2nd, 5th, and 7th bit, respectively.

122



5.4.3.2. Data path

The data path for Berlekamp's algorithm of a (63, k, t) binary BCH code consists of

five set ofregisters: Syndrome, B{x), and J^jSj^_j register. The register

initialization is shown in Figure 5-8. The mark "X"s are the don't-cares.

Syn

2(t+

St+1

St+2

^1) S2t-1

0

0

1

Si

S2

^ r S,

updated old

0 X 0

,/

X

-J

i i

0 X 0 X

0 X 0 X

1 X 1 X \

t+1

Figure 5-8. Register initialization for Berlekamp's algorithm.

The complete data path for Berlekamp's algorithm is shown inFigure 5-9. The connec

tionsbetween modules areall 6-bitbuses, as datapassed between modules are elements of

GF(2^). Ashift inSyn-register corresponds toashift oftwo positions, because all even iter

ations are skipped. Parallel adders and multipliers are adopted for updating A(j:) , 5(x) ,

and for computing AjSi^_j, so that these operations can be completed in one clock cycle.

Notice the algorithm requires multiplying x with a polynomial when updating A(j:) and
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B{x)i this is equivalent to a single shift of the shift register content. For example, the ith

element of is +A°'̂ where i istiie /thelement ofthe cor

responding register.
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Figure 5-9. Data path for (63, k, t)Berlekamp's algorithm asa part of thebinary BCH
decoder.
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5.4.3.3. Scheduling

Assume we have a finite field adderthat performs t additions in one clockcycle. We

also assume the inverse of a finite field element can be obtained in one clock cycle which

can besimply implemented asasmall 6-bit-input 6-bit-output lookup table (384 bitROM).

A complete iteration of Berlekamp's algorithm canbe expressed sequentially as:

• shifting Syn-register by two blocks,

• multiplying each syndrome with coefficients of A(x), i.e. ' ^k-i>

• summing the products: = A,

• load: register >register ,

• updating A(x): = AxB(x) + ,

updating B{x):

BM =

A0^^/ \
ifA^o

2
X B{x) otherwise

Some of the operations can be done in parallel, for example, and

shifting Syn-reg, since these two operations arecompletely independent. Therefore, after

incorporating parallelism into ourdesign, each iteration of Berlekamp's algorithm canbe

completed in three sequential clock cycles:

• shifting Syn-register by two blocks,

multiplying each syndromewith coefficients of A(x), i.e. /»

• summing the products: = A,
, , . ^ . updated • , .old
load: register A register A ,

• updating A(jc) : A"^®^®*^(x) = AxB(x) +A®'̂ (a:) ,
updating j5(x) :

B(x) =

AO'd/ \
^ ifAsiO

2
.X B(x) otherwise

126



In addition to parallelism, wecan also introduce pipeline to ourdesign to allow either

fastest possible operation or to allow lowest possible power[6]. When designing pipeline

stages, one has tobeparticularly carefiil ofdatahazards intheimplementation. These haz

ards occur when the pipeline changes the order of accesses to operands so that the order

differs from the order seen by sequentially executing instructions on an un-pipelined

machine. In our case,hazardscan occurin situations suchas whenloading . Ourpipe

lineconsists of twostages, it is shown together with the restof the scheduling in Figure 5-

10. Notice after the three cycles to complete the first iteration, each additional iteration

takes twoclock cycles. AsBerlekamp's algorithm requires a total of t iterations, the algo

rithm therefore takes 3 + 2(/-I) = 2/+1 clock cycles.
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5.4.4. Chien's search

The last stage of the decoding is todetermine the roots of the error locator polynomial

A(jc), where these roots correspond the actual error locations. Since only a finite number

offield elementshave to be checked, the most straight forward way to computethese roots

isbytrial and error, amethod known asChien's search. The procedure for evaluating A(x)

at 1, a, a^, a^,...»is similar to the one used for computing syndromes, except the

polynomial coefficients are now field elements (instead of0 or 1ofreceived bits). The

3
following example illustrates the concept for computing A(a ).

2 3 4 5
Expressing the field element Ay as Ay = ,

where a is the primitive field element, thus + a +1 = 0. Then

Aytt^ = 0^ +ia^ +a^)a +{0^ +a^)a^ +{aQ +a^)a a^a +a2a^. This can be

mapped into the circuit shown in Figure 5-11. The A(a^) is obtained after t shifts.

a, a.

rH+K]

Figure 5-11. Circuit for evaluating polynomial A(x)at a over GF(2 ).
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The polynomial evaluation A(a') - 0 for / = 0,1,2, ...,^-1 can bedone inparal

lel with k circuits. Since A(x) has degree t, each evaluationtakes t clock cycles to com

plete. Inorder tosynchronize this module with the serial output ofthedecoder, each circuit

starts oneclock cycle apart. After the initial t cycles forcorrecting thefirst information bit,

each additional cycle produces one corrected bit. Therefore, it takes a total of t-^k-\

cycles to completethe Chien's searchand outputthe data.

5.4.5. Control Logic

After the initial It cycles tocompute the syndromes, only Berlekamp's algorithm and

Chien*s search contribute tothe required clock cycles for decoding one block ofdata. With

our pipeline approach, Berlekamp's algorithm takes lt+ \ clock cycles, and Chien's

search combined with serial output takes t-^ k-\ cycles. Adding them together, we need

3t + k cycles to decode a single block of data. For all 63-bit binary BCH codes,

3t + k<63, which means that decoding can bedone in one block period. Consequently,
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only one register isneeded for buffering the data while decoding; this register isshown as

R2in Figure 5-12, andit hassize k to store theinformation bits.

1

R1

syndrome

k-bit register k-bit register

k

R2 R3

k

Berlekamp's
Algorithm

A{x)

-©
i

Chien's

search

corrected bits

Figure 5-12. High level schematics for a BCH decoder.

The control logic is implemented using a finite state machine. Three counters are

employed: 63-count, 2r + 1-count, and 2-count.The 63-count is the main controller ofthe

decoding algorithm, and both 2/ + 1-count and 2-count will be used during the Berle

kamp's algorithm. All counters operates at the data rate. Using the same notations from of

Figure 5-12, the finite state machine is implemented as follows:
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(2t+l)-coiin

CLR counters
start 63-count

shift R1

CLR counters
start 63-count
shift R1
start syndrome-block

load Syn-register (with shiftedcontent)

Frame Ready

Stan synarome-biock
. . . . updated
imtialize A

initialize B(x)

end of63-count

load R2
start (2r+l)-count
A»pdaKd . „

i
start 2-count

^ . updated «

shift R1 load A

f 2-count=l

shift Syn-register load a"""''"*
shift R1 load B(x)

^updated for alii

I end of (2t+l)-count

load R3
shift R1

T63-count=63-(k+t-1)

start A(a )
shift R1

1 63-count=63-(k-t+l)
^ A-f+i

start A(a
shift R3
shift R1

)

i 63-count=63-t-l

shift R3

shift R1

end of 6:

Figure 5-13. Control diagram for the decoding algorithm.
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5.5. Variable FEC decoder implementation

An architecture for a single {63, k, t) binary BCH decoder has now been presented.

Thedesign consists of a setof registers withtheirsizesproportional to the errorcorrection

capability t. This implies that if a decoder is designed to correct the largest possible

number of errors within the 63-bit family BCH codes (/^ax ~ majority of

the hardware can be used again as a decoder for correctingfewer errors. With this obser

vation, the architecture ofthe VFEC decoder is therefore based on (63, l)t- 15 decoder

design.

The high level schematics for VFEC decoder is shown in Figure 5-14. The FEC code

type is input into the decoder and stored in the FEC-type register. This register output is

connected to a lookup table which outputs the number ofinformation bits and the number

of correctable errors of this FEC code, i.e. k and t; these values are used as a part of the

finite state machine for controlling the counters. The input register, Rl, is still 63 bits long.

Both information registers, R2 and R3 store the largest number ofinformation bits among

all codes, so they each has size 57 bits.

In the arithmetic portion of the decoder, the syndrome block always compute the first

2/n,ax ~ syndromes, and the results are input into the Syn-register. Inside the error

locator module, the registers A°'̂ , B{x), and all have the size

^max +1 = 16 symbols, where each symbol is represented by 6 bits. Finally in Chien

searcher, = 57 circuits are used to perform polynomial evaluations. One possible

method to reduce the size ofChien searcher is to eliminate the case ofsingle error correc

tion that takes up 57 circuits; this may be done through a more sophisticated control algo-
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rithm that corrects the single error. In that case, the Chien searcher is reduced to A: = 51

circuits for double error correction.

rix)

CO
CO

X

R1

57-bit register 57-bit register

57

-7^
R2 R3

57

•7^

syndrome — Berlekamp's Chien's
block Algorithm search

F EC type

/ ^

k-reg

corrected bits

Figure 5-14. High level schematics for the VFEC decoder.

As far as the overall implementation complexity, all the multipliers shownin the data

pathare finitefieldmultipliers, andadders arefinite field adders. Sincecodesaregenerated

by GF(2^), each multiplier can be implemented using a shift register of6bits. Each syn-
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drome is also computed using a shift register of 6 bits. A summary of total hardware

required by the VFEC decoder is shownbelow:

data registers

2 4-bit reg

1 6-bit reg

2 57-bit reg

1 63-bit reg

finite field adders
15 two-input adder

1 15-input adder

6-bit shift registers 30 for syndrome

45 for multiplying

ROM (lookup table) 2

Thescheduling andthecontrol logic forVFEC is thesame as the single decoder case,

except thevalues for k and t used in63-count are now read fi*om thek-reg andt-reg. How

ever, if one prefers simple control, we can apply the maximum Berlekamp's algorithm

(^max ~ maximum Chien's search ~ received data, disre

garding thecoding type. With this approach, more pipeline stages are needed tobuffer the

input data while decoding takes place. This approach obviously takes more hardware, the

control logic, however, is indeed simplified. Therefore, the final decision on which

approach will be used is made by the hardware designer, after considering the trade-off

between area and the implementation complexity.

5.6. Conclusions

This chapter presents an architecture for a VFEC decoder. TheVFEC is achieved by

employing the family of63-bit BCH codes which consists of 11 non-trivial error correction

codes. These codes all have the same block length and are generated by the same finite

field, GF(2^). The difference between them is the wide range ofcoding rate. The decision

for adopting this approach for VFEC is made by exploiting the redundancies shared by

decoders. With the syndrome module, Berlekamp's algorithm, and Chien's search in
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common for all codes, our VFEC decoder is only slightlymore complicatedthan a single

decoder design.
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6 Summary and Future Work

6.1. Summary

This thesis is devoted to issues directly related to network resource management for

multimedia wireless networks. Thegoal of theresource allocation is tomaximize theover

all usersatisfaction, which we call **utility". Themajor advantage of thisproposed frame

work is that it is platform independent; in other words, it does not assume any prior

knowledge on specifics such as multiple access scheme, traffic sources, user danands, or

user distribution. These implementation details are introduced into this framework asa set

ofconstraints, expressed inbandwidth, transmit power, and interference models.

Chapter 2 focused on maximizing system utility for a downlink DS CDMA system.

Two key results arederived: first ofall, we presented a framework which integrates power

control, variable forward error correction, and scheduling; second, the algorithm isproved

to befully distributed with complexity independent of the number ofcells in the system;

in other words, this algorithm is scalable. The algorithm complexity depends on the

number ofinterfering cells and the number ofusers reside inacell. The first result isimpor

tant asit explores the design space ofthe available network resources. The second result is

important as it links the theoretical optimum with the implementation practicality, since

any large wireless network has tobescalable to bepractical. Inthe second halfofChapter

2,we presented a different approach tothis maximization problem: using congestion pric

ing, which is a concept borrowed from economics. The basic idea behind the congestion

pricing is setting the price for each user as an approximation ofthe total marginal cost for

therestofthesystem users; this marginal cost measures thecongestion level of thesystem,

so theprice is zero if a user introduces no congestion to thesystem. Inwireless commum-

cations, we measure congestion by signal to noise ratio. If increasing one usct's power
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level introducesvery little interference to rest of the users, then there is a strong incentive

to improve this user's received signal quality by increasing the power level. On the other

hand, if other users experience a lot of interference as a result of increasing someone's

power, then this user should not increasing her transmit power from an overall system's

perspective.

The flexibility of the utilityapproach alsomakes the evaluation of this framework dif

ficult. Therefore, in Chapter 3,we assumed a particular form of theutilityfunction for sim

ulationpurpose. Thesystem performance is studied in detail asa function of theparameters

such as: user population, user distribution, hand-offtechniques, power control fairness,

and FEC coding types. In addition, we also compared the effectiveness ofthe powercon

trol algorithm with variable forward error correction, with result indicating variable for

ward error correction is completely superior than powercontrol. This is becausevariable

error correction has the ability to quickly adapt to the highly varying multimedia traffic,

thus better utilizing the network resources. In the study of hand-off, we concluded the

system performancecanbe improvedsignificantly when the "hot spot" is alleviatedby let

ting a user communicate with his closest neighbor basestation.

The last two chapters of the thesis is focused on the implementation aspect of the pro

posed system. Since power control and scheduling are often not very performance critical,

they are normally implemented in software. The variable error correction, on the other

hand, operates at the bit rate thus requires high performance custom IC or special hard

wares. The goal of Chapter 4 is to provide readers with sufficient background on coding

theory, with emphasis on block codes. Chapter 5 presented a custom architecture for vari

able forward error correction decoder based on the 63-bit family BCH codes. The core of

this design is an iterative algorithm called Berlekamp's algorithm. After sufficient pipelin

ing, the decoding ofa data block can be completed in one block period.

6.2. Future Work

6.2.1. Introducing delay as a part of the utility function

Delay is often a very important measure of the application quality, but it has not been

considered in our formulation of the application utility. Ifdelay becomes the third param-
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eter ofthe application utility function (besides bandwidth and BER), it is most likely that

it will either bea step function (Figure 6-1(a)) —indicating the data isvalueless if itsdelay

isbeyond a certain threshold (dj), ordelay as a function shown inFigure 6-1(b) —indicat

ing a gradual decrease in user satisfaction as delay increases. In any case, utility with

respect todelay isamonotone non-increasing function. The addition ofdelay parameter to

the frameworkwill neverthelessinfluencethe schedulingdecision,the FEC code selection,

and the power control output.

delay delay

(a) (b)

Figure6-1. Application utility as a function of delay.

6.2.2. Introducing ARQ as an additional control variable

Ourresource allocation framework mostly operates at thephysical layerandlinklayer.

The system reliability may befurther improved byconsidering ahigher layer protocol such

as automatic repeat-request (ARQ). The basic idea behind ARQ is that at the receiver, if

erroneous coded data are detected, the received word is discarded and the receiver requests

a retransmission though some retransmission protocols. There are three basic types of

ARQ protocols: Stop-and-Wait, Go-Back-N, and Selective-Repeat [53][28][44]. Themain

drawbacks for an ARQ scheme are the retransmission delay, bandwidth redundancy, and

the additional control logic. However, wireless channels sometimes have long fade in

which case the entire packet is corrupted. Since FEC has a limitederror correcting capa

bility,ARQmaybe necessary for somehighquality dataas it achieves a greatertimediver

sity.
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6.2.3. Joint source and channel coding

As we have briefly mentioned in Chapter 2, a system should be designed to gracefully

degrade its quality of service (insteadof droppingpackets) when there is excessive inter

ference. This can be achieved through adopting a layered coding algorithm. In this case,

data are compressed and separated into multiple hierarchies; during a transmission, the

layerwith the highest priority is always first transmitted. Similar ideashavebeen adopted

for Mbone multicast video [31]. In this example, a receiver-oriented layered transmission

systemis combined with a layered compression algorithm for heterogeneous transmission

ofvideo data. As a result, the scheme adapts to variable bandwidth constraints imposed by

different networks. In addition to layered coding, a system may also benefit from tightly

coupled source and channel coding algorithm. This algorithm trades off data compression

rate with channel coding rate, and is worth further research for understanding the true

capacity gain.
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