Copyright © 1998, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

CONCURRENT REACHABILITY GAMES

by

Luca de Alfaro, Thomas A. Henzinger,
and Orna Kupferman

Memorandum No. UCB/ERL M98/33

16 June 1998

CONCURRENT REACHABILITY GAMES

by

Luca de Alfaro, Thomas A. Henzinger,
and Orna Kupferman

Memorandum No. UCB/ERL M98/33

16 June 1998

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Concurrent Reachability Games*

Luca de Alfaro Thomas A. Henzinger Orna Kupferman

Department of EECS,
University of California at Berkeley,
Berkeley, CA 94720-1770, USA
Email:{dealfaro,tah,orna}@eecs.berkeley.edu -

Abstract

An open system can be modeled as a two-player game between the system and its
environment. At each round of the game, player 1 (the system) and player 2 (the
environment) independently and simultaneously choose moves, and the two choices
determine the next state of the game. Properties of open systems can be modeled
as objectives of these two-player games. For the basic objective of reachability —can
player 1 reach a given set of target states?— there are three types of winning states,
according to the degree of certainty with which player 1 can reach the target. From
type-1 states, player 1 has a deterministic strategy to always reach the target. From
type-2 states, player 1 has a randomized strategy to reach the target with probability 1.
From type-3 states, player 1 has for every real ¢ > 0 a randomized strategy to reach
the target with probability greater than 1 —¢.

We show that for finite state spaces, all three sets of winning states can be computed in
polynomial time: type-1 states in linear time, and type-2 and type-3 states in quadratic
time. The algorithms to compute the three sets of winning states also enable the
construction of the winning and spoiling strategies. Finally, we apply our results by
introducing a temporal logic in which all three kinds of winning conditions can be speci-
fied, and which can be model checked in polynomial time. This logic, called randomized
ATL, is suitable for reasoning about randomized behavior in open (two-agent) as well
as multi-agent systems.

*The work was partially supported by the SRC contract 97-DC-324.041, by ARO under the MURI grant
DAAHO04-96-1-0341, by the ONR YIP award N00014-95-1-0520, by the NSF CAREER award CCR-9501708,
by the DARPA/NASA grant NAG-2-1214, and by the NSF grant CCR-9504469.

1 Introduction

One of the central problems in system verification is the reachability question: given an
initial state s and a target state t, can the system get from s to t? The dynamics of a closed
system, which does not interact with its environment, can be modeled by a state-transition
graph, and the reachability question reduces to graph reachability, which can be solved in
linear time and is complete for NLOGSPACE [Jon75). By contrast, the dynamics of an open
system, which does interact with its environment, is best modeled as a game between the
system and the environment.

In some situations, it may suffice to have the system and the environment take turns
to make moves, yielding a turn-based model. In this case, the game graph is an AND-OR
graph. A (deterministic) strategy for the AND player maps every path that ends in an AND
state to a successor state, and similarly for the OR player. Thus the reachability question
(can the system get from s to ¢t no matter what the environment does?) reduces to AND-OR
graph reachability (does the ORr player have a strategy so that for all strategies of the AND
player, the game, if started in s, reaches t?). This problem can again be solved in linear
time and is complete for PTIME [Imm81]. With respect to AND-OR graph reachability,
randomized strategies are no more powerful than deterministic strategies. A randomized
strategy for the AND player maps every path that ends in an AND state to a probability
distribution on the successor states, and similarly for the OR player. It can be seen that
the reachability question has the same answer as the probabilistic question “does the ORr
player have a randomized strategy so that for all randomized strategies of the AND player,
the game, if started in s, reaches ¢ with probability 1?”.

The turn-based model is naive, because in realistic concurrency models, 'in each state,
the system and the environment independently choose moves, and the parallel execution
of the moves determines the next state. Such a simultaneous game is a natural model
for synchronous systems where the moves are chosen truly simultaneously, as well as for
distributed systems in which the moves are not revealed until their combined effect (the state
transition) is apparent. In particular, the modeling of synchronization between processes
often requires the consideration of simultaneous games.

The simultaneous case is more general than the turn-based one, and deterministic strate-
gies no longer tell the whole story about the reachability question. The fact that random-
ized strategies can be more powerful than deterministic ones is illustrated by the game
LEFT-OR-RIGHT, depicted in Figure 1. Initially, the game is at state t;prow. At each round,
player 1 can choose to throw a snowball either at the left window (move throwL) or at the
right window (move throwR). Independently and simultaneously, player 2 must choose to
stand behind either the left window (move standL) or the right window (move standR). If
the snowball hits player 2, the game proceeds to the target state tp;; otherwise, another
round of the game is played from ;hrow-

For each move of player 1, player 2 has a countermeasure. If we consider only deter-
ministic strategies, then for every strategy of player 1, there is (exactly one) strategy of
player 2 such that tp;, is never reached. Hence, if we base our definitions on deterministic
strategies, we obtain to answer NO to the reachability question. The situation of player 2,
however, is not nearly as safe as this negative answer implies. If player 1 chooses at each

throwR, standL
throwlL, standR

throwR, standR s
throwL, standL m -
tthrow @

Figure 1: Game LEFT-OR-RIGHT.

round the window at which to throw the snowball by tossing a coin, then player 2 will be
hit with probability 1, regardless of her strategy.

The coin-tossing criterion used by player 1 to select the move is an example of ran-
domized strategy, and the game illustrates the value of randomized strategies for winning
reachability games. If player 1 adopts a deterministic strategy, the moves he plays during
the game are completely determined by the history of the game, which is visible also to
player 2. Once player 1 has chosen a deterministic strategy, player 2 can choose her strategy
to counteract every move of player 1, as if she were able see it before choosing her own move.
Randomized strategies postpone the choice of the move until the game is being played, pre-
cluding this type of spying behavior. Another way of thinking about randomized strategies
is through the concept of initial randomization. The choice of a randomized strategy is
equivalent to the choice of a probability distribution over the set of deterministic strategies
[Der70). By choosing such a distribution, rather than a single strategy, player 1 prevents
player 2 from tailoring her strategy to counteract the strategy chosen by player 1. The
greater power of randomized strategies is a well-known fact in game theory, and it has its
roots in von Neumann’s minimax theorem [vN28].

Once we consider randomized strategies, we can answer the reachability question with
three kinds of affirmative answers. The first kind of answer is the answer SURE:

Player 1 has a strategy so that for all strategies of player 2, the game, if started
in s, always reaches 2.

To establish this type of answer, it suffices to consider deterministic strategies only. The
second, weaker kind of answer is the answer ALMOST-SURE:

Player 1 has a strategy so that for all strategies of player 2, the game, if started
in s, reaches ¢t with probability 1.

To establish this type of answer, it is necessary to consider randomized strategies, as previ-
ously discussed. The third, yet weaker kind of answer is the answer LIMIT-SURE:

For every real € > 0, player 1 has a strategy so that for all strategies of player 2,
the game, if started in s, reaches ¢ with probability greater than 1 —¢.

The three kinds of answers form a proper hierarchy, in the sense that there are cases in
which ALMOST-SURE reachability holds whereas SURE reachability does not, and cases in
which LIMIT-SURE reachability holds whereas ALMOST-SURE reachability does not hold.
Note that the second gap does not appear in reachability problems over Markov chains,

2

hide, wait

Figure 2: Game HIDE-OR-RUN.

or Markov decision processes [KSK66, BT91). While the game LEFT-OR-RIGHT witnesses
the first gap, the second gap is witnessed by the game HIDE-OR-RUN, adapted from [KS81]
and depicted in Figure 2. The target state is Spome, and the interesting part of the game
happens at state spige. At this state, player 1 is hiding behind a small hill, while player 2
is trying to hit him with a snowball. Player 1 can choose between hiding or running, and
player 2 can choose between waiting and throwing her only snowball. If player 1 runs and
player 2 throws the snowball, then player 2 is hit, and the game proceeds to state Syet.
If player 1 runs and player 2 waits, then player 1 gets home, and the game proceeds to
state Spome- If player 1 hides and player 2 throws the snowball, then player 1 is no more in
danger, and the game proceeds to state Sgafe. Finally, if player 1 hides and player 2 waits,
the game stays at Spide.

In this game, from state sp;ge player 1 does not have a strategy (randomized or deter-
ministic) that ensures reaching shome With probability 1: in order to reach home regardless
of the strategy of player 2, player 1 may have to take a chance and run while player 2 is
still in possession of the snowball. On the other hand, by choosing an appropriate strategy,
player 1 can be sure of reaching shome With probability arbitrarily close to 1 [KS81]. In
fact, if player 1 runs with very small probability at each round, it becomes very difficult
for player 2 to time her snowball to coincide with the running of player 1 —and a badly
timed snowball enables player 1 to reach Spome. Thus, if player 1 runs at each round with
probability p, when p goes to 0, he is able to reach spome With probability approaching 1.
Hence, the answer to the reachability question is LIMIT-SURE but not ALMOST-SURE.

In this paper, we consider simultaneous reachability games, and we consider strategies
for the players that can be both randomized and history-dependent. The game itself can
be either deterministic, if the current state and the players’ moves uniquely determine the
successor state, or probabilistic, if the current state and the players’ moves determine a
probability distribution on the successor state.

The contributions of this paper are as follows. First, we provide efficient algorithms
that, given a finite simultaneous game and a set of target states, determine the set of
initial states for which the answer to the reachability question is SURE, ALMOST-SURE, and
LiMIT-SURE. The set from which the answer is SURE can be determined in linear time using
the methods of [AHK97]. By contrast, the sets corresponding to answers ALMOST-SURE
and LIMIT-SURE require quadratic time. All three algorithms are formulated as nested
fixed-point computations, and can be implemented using symbolic state-space traversal
methods [BCM+92). Our algorithms can also be used to compute the set of states of a finite-

state discrete-time pursuit-evasion game from which the pursuer can catch the evader with
SURE, ALMOST-SURE, and LIMIT-SURE confidence [Isa65]. Our algorithms also enable the
effective construction of winning strategies for player 1, and spoiling strategies for player 2,
for the three types of answers.

Polynomial-time algorithms for the reachability problem are known for turn-based
games [Yan98], as well as for one-player games such as Markov decision processes
[HSP83, Var85, CY88, dA97]. Moreover, by associating rewards to the transitions that
lead to the target set, or to the states in the target set, our reachability questions can be
phrased as questions about the total reward or the average reward of stochastic games. This
observation yields successive approximation methods for the computation of the maximal
probability of reaching the target [TV87, FV97]. A review of the classes of games for which
polynomial-time algorithms are known is presented in Section 2.4.

Second, we characterize the three kinds of reachability in terms of the time (i.e., the
number of rounds) required to reach the target state, and in terms of the types of winning
and spoiling strategies available to the two players. In particular, while the time to target
is bounded if the answer to the reachability question is SURE, only the expected time to
target can be bounded if the answer is ALMOST-SURE but not SURE. If the answer is
LiMIT-SURE but not ALMOST-SURE, neither the time to target nor the expected time to
target are bounded. We also prove prove that the spoiling strategies for ALMOST-SURE
reachability must in general have infinite memory, in contrast with the common situation
for Markov decision processes [Der70, HSP83, Var85, BT91] and for limit-sure reachability
[KS81, Sec97].

Third, we introduce a temporal logic for the specification of open systems, which can
be used both for two-agent systems (system vs. environment) and for more general, multi-
agent systems. The logic, called randomized ATL (RATL), is an extension of the logic ATL
of [AHK97]. Both logics let us specify that a set of agents has strategies to ensure that
the paths of the global system satisfy given temporal properties. The logic ATL follows the
pragmatic approach of considering only deterministic strategies, with the motivation that
deterministic controllers are easier to implement than randomized ones. The semantics of
ATL is defined on the basis of the SURE answer for reachability questions. The logic RATL
considers instead the general class of randomized strategies, and it distinguishes between
three kinds of satisfaction for path properties: sure satisfaction (as in ATL), almost-sure
satisfaction, and limit-sure satisfaction. The proper hierarchy between the SURE, ALMOST-
SURE and LIMIT-SURE answers to the reachability question implies a proper hierarchy for
the three kinds of satisfaction. We show that this hierarchy collapses in the special case of
safety properties, such as invariance. Qur algorithms for solving the reachability question

for simultaneous games lead to a symbolic, quadratic-time model-checking algorithm for
RATL.

2 Reachability Games

For a finite set A, a probability distribution on A is a function p: A — [0,1] such that
YacaP(a) = 1. We denote the set of probability distributions on A by D(A). Given a
distribution p € D(A), we denote by Supp(p) = {z € A | p(z) > 0} the support of p.

A (two-player) game structure G = (S, Moves,T'1,T'3,p) consists of the following com-
ponents:

o A finite state space S.
o A finite set Moves of moves.

¢ Two move assignments I',T2: § — 9Moves \ 0. For ¢ € {1,2}, assignment T;
associates with each state s € § the non-empty set I';(s) C Moves of moves available
to player i at state s. For technical convenience, we assume that T;(s) N T;() = 0
unless i = j and s = ¢, for all ¢,5 € {1,2} and s,t € §.

o A probabilistic transition function p: S X Moves x Moves — D(S), which associates
with every state s € § and moves a; € I'1(s) and a; € T'y(s) a probability distribution
p(8,@1,a2) € D(S) for the successor state.

At every state s € S, player 1 chooses a move a; € I'y(s), and simultaneously and indepen-
dently player 2 chooses a move a; € I'z(s). The game then proceeds to the successor state
t with probability p(s,a;,a2)(t), for all t € S. For all states s € S and moves a; € T'1(s)
and a; € I'z(s), we indicate by

6(3’ a, a2) = Supp(p(sy ai, 02))
the set of possible successors of s when moves a;, a2 are selected. A path of G is an infinite
sequence $ = Sg, S1, S2, . . - Of states in .S such that for all £ > 0, there are moves a{‘ € T'1(sk)
and a¥ € I'y(sx) such that sg4; € (sk,a¥,ak). We denote by Q the set of all paths.

A reachability game (or game, for short) G = ((S, Moves,I'y, ', p), R) consists of a game
structure G and a set R C S of target states; the set R itself is called the target set. The
goal of player 1 in the game G is to reach a state in the target set R, and the goal of player 2
is to prevent this. Thus, a reachability game is a special case of a recursive game, in which
all absorbing states are equivalent from the point of view of the reward [Eve57, Sec97). In
the following, we consider a game G = ({5, Moves,I';,T'y, p), R), unless otherwise noted.

To simplify the presentation of the results, we assume that the target set R is absorbing;
that is, we assume that for every state s € R and for all moves a; € T'y(s) and a2 € T'2(s),
we have 6(s,a1,a;) C R. If R is not absorbing, it is trivial to obtain an equivalent game
with an absorbing target set.

We define the size of the game G to be equal to the number of entries of the transition

function p: specifically,
IG1=3" > X li(s,ana)l.
3€S ay€l1(s) az2€l2(s)

Note that this definition of size assumes that each transition probability can be represented
in a constant amount of space. Note also that this definition of size is not affected by our
assumption that the moves available to different players or at different states are distinct.

5

Special classes of reachability games. We distinguish the following subclasses of game
structures (and, accordingly, of games):

o A game structure G is deterministic if |6(s, a1,a;)| = 1 for all s € S and all a; € T'y(s),
az € T'y(s). To emphasize the fact that in the general case p yields a probability distri-
bution, rather than a single state, we refer to general game structures as probabilistic
game structures.

o A game structure G is turn-based if at every state at most one player can choose among
multiple moves; that is, for every state s € S there exists at most one i € {1,2} with
IT:(s)] > 1.

e A game structure G is one-player if one of the two players has only one poésible move
at every state, i.e. if for some ¢ € {1,2} we have [T;(s)] =1atall s€ S.

2.1 Strategies

A strategy for player i € {1,2} is a mapping m;: St +— D(Moves) that associates with every
nonempty finite sequence o € St of states, representing the past history of the game, a
probability distribution (o) used to select the next move. Thus, the choice of the next
move can be history-dependent and randomized. The strategy =; can prescribe only moves
that are available to player ¢; that is, for all sequences o € S* and states s € S, we require
that Supp(m;(os)) C I'i(s). We denote by II; the set of all strategies for player 7 € {1,2}.

Given a state s € § and two strategies 7y € II; and 7, € II,, we define Paths(s,m,72) C
Q2 to be the set of paths that can be followed by the game, when the game starts from s and
the players use the strategies 7; and 3. Formally, sg, $1, S2,... € Paths(s,my,m2) if 8o = 8
and if for all k£ > 0 there exist moves a¥ € T'1(sx) and aX € T'(sk) such that

7l'1(80, . -»3k)(a’f) > 07 1l’2(80, see ’sk)(alé) >0, p(ska afs aé)(sk-l-l) > 0.

Once the starting state s and the strategies 7, and 7, for the two players have been chosen,
the game is reduced to an ordinary stochastic process. Hence, the probabilities of events are
uniquely defined, where an event A C is a measurable set of paths!. For an event A C Q,
we denote by Pri!'"2(,A) the probability that a path belongs to A when the game starts
from s and the players use the strategies #; and ;. Similarly, for a measurable function f
that associates a number in R U {oo} with each path, we denote by EJ*""2{ f} the expected
value of f when the game starts from s and the strategies 7y and 7, are used. For k > 0,
we also let X} be the random variable denoting the k-th state along a path. Formally,
Xi: Q@ — S is the (measurable) function that associates with each path 3 = sg, s;,83,...
the state sx. Given a subset U C S of states, we denote the event of reaching U by

(OU)= {80,81,32,...69'3]‘.‘.8}; € U} s

and we denote the random time of first passage in U by Toy = min{k | X € U}.

!To be precise, we should define events as measurable sets of paths sharing the same initial state, and
we should replace our events with families of events, indexed by their initial state [KSK66]. However, our
(slightly) improper definition leads to more concise notation.

6

Types of strategies. We distinguish the following types of strategies:

o A strategy 7 is deterministic if for all 0 € St there exists a € Moves such that
7(c)(a) = 1. Thus, deterministic strategies are equivalent to functions S +— Moves.

o A strategy 7 is counting if v(018) = m(0g2s) for all s € S and all 01,02 € §* with
|o1| = |o2|; that is, the strategy depends only on the current state and the number of
past rounds of the game.

o A strategy = is finite-memory if the distribution chosen at every state s € S depends
only on s itself, and on a finite number of bits of information about the past history
of the game.

o A strategy 7 is memoryless if 7(0s) = n(s) for all s € § and all 0 € S*.

2.2 Classification of Winning States

A winning state of game G is a state from which player 1 can reach the target set R with
probability arbitrarily close to 1. We distinguish three classes of winning states: 0

¢ The class Sure(R) of sure-reachability states consists of the states from which player 1
has a strategy to reach R: -

Sure(R) = {s € § | 3m € Iy . ¥r; € Iy . Paths(s, m,m5) C (OR)} .

o The class Almost(R) of almost-sure-reachability states consists of the states from which
player 1 has a strategy to reach R with probability 1:

Almost(R =4se€§|3Im €Il; .Vr € I, . PrIV™(OR) =15 .
s

o The class Limit(R) of limit-sure-reachability states consists of the states such that for
every real € > 0, player 1 has a strategy to reach R with probability at least 1 — e:

Limit(R)={s€ § | sup inf Pr*™(0R)=1}.
= €1, m2€M;

Clearly, Sure(R) C Almost(R) C Limit(R). There are games for which both inclusions are
strict. The strictness of the inclusion Sure(R) C Almost(R) follows from the well-known fact
that randomized strategies are more powerful than deterministic strategies [vN28, BO82],
and is witnessed by the state tihrow Of the game LEFT-OR-RIGHT. The strictness of the
inclusion Almost(R) C Limit(R) is witnessed by the state spige of the game HIDE-OR-
RUN [KS81].

Winning and spoiling strategies. The winning strategies of a reachability game are
the strategies that enable player 1 to win the game whenever possible. We define three
types of winning strategies, corresponding to the three classes of winning states:

e A winning strategy for sure reachability is a strategy m, for player 1 such that, for all
states s € Sure(R) and all strategies 72 of player 2, we have Paths(s,m1,m2) C (OR).

e A winning strategy for almost-sure reachability is a strategy m; for player 1 such that
for all states s € Almost(R) and all strategies 73 of player 2, we have Pr;»™(OR) = 1.

e A winning strategy family for limit-sure reachability is a family {m1(¢) | € > 0} of
strategies for player 1 such that for all reals ¢ > 0, all states s € Limit(R), and all
strategies 7, of player 2, we have Prs’ (e)im2 (CR)21-c¢.

The spoiling strategies of a reachability game are the strategies that enable player 2 to
prevent player 1 from winning the game whenever it cannot be won. Again, we distinguish
three types of spoiling strategies:

e A spoiling strategy for sure reachability is a strategy w2 for player 2 such that, for all
states s ¢ Sure(R) and all strategies m; of player 1, we have Paths(s,71,72) € (OR).

o A spoiling strategy for almost-sure reachability is a strategy w2 for player 2 such that
for all states s ¢ Almost(R) and all strategies 7, of player 1, we have Prg*"™(OR) < 1.

e A spoiling strategy for limit-sure reachability is a strategy m for player 2 such that
there exists a real ¢ > 0 such that for all states s ¢ Limit(R) and all strategies 7; of
player 1, we have Prj*™(OR) < 1-g.

We will show that for all three types of reachability, winning and spoiling strategies always
exist.

2.3 Time to Reachability

For a state s € S and an integer ¢t > 0, we say that the time from s to target R is bounded
by t if there exists a strategy m; for player 1 such that for all strategies w2 of player 2,
sup {Tor(3) | 3 € Paths(s,m1,72)} < t. If the time from s to R is not bounded by any
integer ¢, we say that the time from s to R is unbounded. We say that the ezpected time
from s to R is bounded if there exists a strategy 7y for player 1 such that for all strategies
7y of player 2, we have ET"™{Top} < co. Given a subset U C S of states, we generalize
these definitions to U: the time (or the expected time) to R is bounded from U iff it is
bounded from all s € U.

2.4 Previous Results on Reachability Games

Since SURE reachability can be studied by considering deterministic strategies only, the
algorithms of [AHK97] enable the computation of the set Sure(R) in linear time in the
size of the game. Algorithms to compute the sets Almost(R) and Limit(R) are known

for one-player games (or Markov decision processes) and turn-based games. Moreover,
the maximal probability of winning a general reachability game can be computed using
successive approximation methods [FV97].

For every state s € S, denote the maximal probability of reaching the target by
pt(s) = sup mf P1jv™(OR) .

m €Il m2€
Clearly, s € Limit(R)iff p*(s) = 1. Some of the results and algorithms are obtained through
the observation that pt(s) corresponds to the maximal average reward or to the maximal
total reward of stochastic games constructed from our reachability games. Stochastic games
associate with each s € § and each a; € I';(s) and a; € I'y(s), a reward r(s,@a;,a;) € R.
For every s € S, the (undiscounted) average value v,,4(3) and the (undiscounted) total
value vy,1(8) of the game at s are defined by:

-1
Vavg(8) = sup mf liminf — ZE””"’{r(Xk,Yk,Yk)}

"lenl 126 2 n—00

n—1
vgot(8) = sup Linf lim inf Z: EM 72 {r(X, Y2, Y2)},

where Y} is the random variable denoting the k-th move played by player i, with £ > 0 and
i € {1,2}. Consider a reachability game G = (G, R). If we let

r(31al,a2)= {1 lfseR (1)

0 otherwise
for all s € § and a; € T'y(s), a2 € T'y(s), then the average value of the stochastic game is
equal to the maximal probability of reaching the target, or vg,,(s) = p*(s) forall s€ §. If

we let E
p(s,a1,a2)(t) ifsé R
r(s,a1,a2) = { teR (2)
0 otherwise
for all s € S and a; € T'y(s), a2 € Ta(s), then on S\ R the total value of the stochastic
game is equal to the maximal probability of reaching the target, or v;oi(s) = p*(s) for all
s€ S\R.

2.4.1 One-Player Games

A one-player game is equivalent to a Markov decision process [Der70], in which the controller
has as objective to maximize or minimize the probability of reaching the target set R.
Under the reward structure (1), the problem of computing the maximum and minimum
probability of reaching R is equivalent to the problem of computing the maximum and
minimum undiscounted average rewards of the Markov decision process. This latter problem
can be solved in polynomial time by a reduction to linear programming, providing an
algorithm? for the computation of set Limit(R) [Der70, Ber95]. The existence of optimal

2t is possible to obtain a polynomial-time algorithm for the computation of set Limit(R) also by con-
sidering the reward structure (2) and the problem of computing the total reward of the Markov decision
process [Ber95].

strategies for the single player then implies Almost(R) = Limit(R). Additionally, it is
known that there are deterministic optimal strategies [Der70, Ber95).

We can obtain more efficient algorithms for our reachability questions on one-player
games as follows. If player 1 is the only player having non-singleton move sets, the problem
of computing Almost(R) is equivalent to the problem of computing the set of states of a
Markov decision process from which R can be reached with maximal probability equal to 1.
This problem can be solved using the algorithms described in [dA97]. If player 2 is the only
player having non-singleton move sets, the problem of computing Almost(R) is equivalent
to the problem of computing the set of states of a Markov decision process from which R
is reached with probability 1 under any strategy. This problem can be solved using the
algorithms of [HSP83, Var85, CY88).

2.4.2 Turn-based Games

Due to their simpler structure and their ability to model interleaving, turn-based games are
commonly considered in computer science and game theory (see for example [Fil81]).

Deterministic turn-based games. As we prove later, for deterministic turn-based
games the three types of winning states coincide: that is, Sure(R) = Almost(R) = Limit(R).
As mentioned earlier, the problem of computing Sure(R) is equivalent to the AND-OR reach-
ability problem, which can be solved in linear time and is complete for PTIME [Imm81]. The
existence of memoryless deterministic winning and spoiling strategies follows from an anal-
ysis of the algorithms.

Deterministic turn-based reachability games have “0-1 laws”; that is, for all states s € S
of a turn-based game,
sup inf Pri»™(OR) € {0,1}. 3
sup inf, PCV(OR) € {0,1) 3
This 0-1 law only applies to deterministic, turn-based games. As an example of a (non-
turn-based) deterministic game without a 0-1 law, consider a one-round version of the game
LEFT-OR-RIGHT. After the only round, the game moves from the state ¢;prow either to the
state tp;, or to the state ¢psseq- Then,

1
. w1,72 . — =
roeh, rath, Prthron (Oni}) = 3
In the case of general reward structures, [ZP96) showed that the average value of a deter-
ministic turn-based game can be computed in pseudo-polynomial time.

Probabilistic turn-based games. In the case of probabilistic turn-based games, our
results indicate that Almost(R) = Limit(R). The set Almost(R) = Limit(R) can be com-
puted in polynomial time [Yan98], and the problem of deciding which player has the greatest
probability of winning is in NP N co-NP [Con92). Under the reward structure (1), proba-
bilistic turn-based reachability games are a special case of switching-controller undiscounted
games. The algorithm of [VTRF83a] enables the computation of vg,e(s) = p*(s) at all
s € 5, and hence the determination of Almost(R) = Limit(R). The algorithm may require
an exponential number of iterations to converge.

10

" SURE ALMOST-SURE LIMIT-SURE

REACHABILITY REACHABILITY REACEABILITY
Complexity linear quadratic quadratic
N . deterministic and
Winning strategies memoryless memoryless
memoryless
Spoiling strategies memoryless counting memoryless
Time to target bounded unbounded unbounded
Expected time bounded bounded unbounded
to target -

Table 1: Overview of results about sure, almost-sure, and limit-sure reachability.

2.4.3 General Reachability Games

For general reachability games, the existence of memoryless e-optimal strategies was shown
by [KS81, Sec97]. These results imply the existence of memoryless winning and spoiling
strategies for limit-sure reachability. The proofs of existence of these strategies do not
provide methods for the effective construction of winning and spoiling strategies.

The total reward v;0¢(s) of a stochastic game with non-negative rewards can be computed
using a successive approximation method [TV87, FV97]. Under the reward structure (2),
this method enables the computation of successive approximations for pt*(s) at all s € S.
Used jointly with a convergence criterion for establishing whether a sequence of successive
approximations pg (s), 7 (s),p3(s),... for p*(s) converges to 1, this method could be used
to compute the set Limit(R). Such a convergence criterion has not been studied, to the
best of our knowledge.

2.5 Overview of Our Results

In Table 1 we present an overview of the main results on reachability games that are
presented in this paper. The first row lists the complexity of the algorithms for computing
the sets of winning states with respect to the three types of reachability. The second and
the third row list the types of winning and spoiling strategies available to the players. For
each type of reachability, we list the tightest class of strategies that surely contains at least
one such winning and spoiling strategy (according to the classification of Section 2.1). The
last two rows state whether the time to the target, and the expected time to the target,
are in general bounded on the sets of winning states. In the paper, we also present several
refinements of the results given in the table, corresponding to special classes of games. We
also show that, for games that are both deterministic and turn-based, we have

Limit(R) = Almost(R) = Sure(R)
while for turn-based (but not necessarily deterministic) games we have

Limit(R) = Almost(R) C Sure(R) .

11

3 Computing the Winning States

In this section we present three algorithms for computing, respectively, the three sets
Sure(R), Almost(R), and Limit(R). The correctness proofs for the algorithms, as well
as the proofs of the theorems presented in this section, will be given in Section 5.

3.1 Building Blocks for the Algorithms

A move subassignment v for player ¢ € {1,2} is a mapping 7: § — gMoves that associates
with each state s € S a subset y(s) C I';(s) of moves. We use move subassignments to limit
the set of moves from which the players can choose when trying to accomplish a goal. We
denote by A; the set of all move subassignments for player i.

The function Pre;: 2% x A; X Ay — 25 is defined by
Pre;(U,m,72) = {3 €S l 3a; € 11(s) . Vaz € 72(8) . 6(s,a1,a2) C U} .

Intuitively, Pre;(U,71,72) is the set of states from which player 1 can be sure of entering U
in one round, regardless of the move chosen by player 2, given that player ¢ chooses moves
only according to ¥;, for i € {1,2}. The function Pre;: 25 x Ay X Ag — 25 is defined in
a symmetrical way. The function Stay, : 25 x A; x Az = A is defined such that for all
states s € 5,

Stay,(U, 7, ‘/2)(3) = {al € ’71(3) I Va; € ‘)’2(3) -5(3a 01,‘12) - U}-

Note that if we regard both move subassignments as set of pairs in § X Moves, then
Stay,(U,71,72) € 71- Intuitively, Stay;(U,¥1,72) is the largest move subassignment for
player 1 that guarantees that the game stays in U for at least one round, regardless of
the move chosen by player 2, given that player ¢ chooses moves only according to 7;, for
i € {1,2}. The function Stay, : 25 x A; X Az — A is defined in a symmetrical way.

For ¢ € {1,2}, the function Safe;: 25 x A; X Ag — 25 associates with each U C S and
each 11 C Aj, 72 € A; the largest subset V C U such that Pre;(V,71,72) € V. Set V
represents the largest subset of U that player ¢ can be sure of not leaving at any time in
the future, regardless of the moves chosen by the other player, given that player ¢ chooses
moves only according to «;, for i € {1,2}. This set can be computed in time linear in the
size of the game using the following well-known algorithm.

Algorithm 1

Input: Game structure G, subset U C S, two move sub-assignments 7; and 7 for players
1 and 2, and 7 € {1,2}.

Output: Safe;(U,m,72)-

Initialization: Let Vo = U.

Repeat For k > 0, let Viy1 = Vi N Prei(Vi, 11, 72)-
Until Vk+1 = Vk.

Return: V.

12

A naive application of this algorithm runs in time quadratic in the size of the game.
However, using an appropriate data structure, as suggested in [Bee80, CS91], it can be
implemented to run in linear time. The algorithm can also be implemented symbolically as
a nested fixed-point iteration.

3.2 Sure-Reachability States

The set Sure(R) satisfies the fixed-point characterization given by the following theorem.

Theorem 1 Sure(R) is equal to the smallest subset U C S such that R C U and
Pnel(U, I‘1,I‘2) g U

The set Sure(R) can be computed using the following algorithm.

Algorithm 2
Input: Reachability game G = (G, R).
Output: Sure-reachability set Sure(R).

Initialization: Let Uy = R.

Repeat For k > 0, let Upyy = Ux U Pre;(U,T4,T2).
Until Uk+1 = Uk.

Return: U;.

The algorithm can be implemented to run in time linear in the size of the game [AHK97].
The algorithm can also be implemented symbolically as a fixed-point computation. The
theorem below summarizes some basic facts about the set Sure(R).

Theorem 2 For every reachability game with target set R:

1. Algorithm 2 computes set Sure(R). The algorithm can be implemented to run in time
linear in the size of the game. '

2. Player 1 has a memoryless deterministic winning strategy for sure reachability.

3. Player 2 has a memoryless spoiling strategy for sure reachability. This spoiling strategy
cannot in general be deterministic.

4. For every state s € Sure(R), the time from s to R is bounded by the size of the state
space.

Theorem 2(2) indicates that the consideration of deterministic strategies only is appro-
priate for the logic ATL, whose semantics is based on sure reachability [AHK97]. For deter-
ministic games, the existence of a memoryless deterministic winning strategy for almost-sure
or limit-sure reachability indicates that these two notions of reachability coincide with sure
reachability. This result can be interpreted as a converse of Theorem 2(2).

13

Theorem 3 Consider a deterministic reachability game with target set R.

1. If player 1 has a memoryless deterministic strategy m for almost-sure reachability,
then Sure(R) = Almost(R), and is also a winning strategy for sure reachability.

2. If player 1 has a family of deterministic winning strategies for limit-sure reachability,
then Sure(R) = Limit(R) = Almost(R).

If the game is both deterministic and turn-based, then it is possible to strengthen Theo-
rem 2(3), obtaining the 0-1 law (3).

Theorem 4 If a reachability game with target set R is both deterministic and {urn-based,
then player 2 has a deterministic spoiling strategy w2 such that Pr;*™(OR) = 0 for all
strategies my € II; for player 1 and all states s ¢ Sure(R).

As an immediate corollary, we obtain the equivalence of the three reachability criteria for
deterministic turn-based games.

Corollary 1 If a reachability game with target set R is both deterministic and turn-based,
then Sure(R) = Almost(R) = Limit(R).

The following theorem provides us with winning and spoiling strategies for sure reachability.

Theorem 5 Given a reachability game G = (G, R), we can compute winning and spoiling
strategies for sure reachability as follows:

1. Assume that Algorithm 2 terminates at iteration m, and let Uy, . .., Un be the sets of
states computed during the ezecution of the algorithm.

Define b : Up \ R— N by h(s) = min{j € {1,...,m} | s € U;} for each s € Un \ R,
and define v : U, \ R — Moves such that, for all states s € Up, \ R, we have

7(s) = Stayy(Un(s)-1,T1,T2)(s) -

Let w7 be a memoryless deterministic strategy for player 1 that at all s € Un \ R
deterministically chooses a move from v(s) (note that y(s) # 0). At other states, 7]
is defined arbitrarily. Then, 7} is a winning strategy for sure reachability.

2. Let w3 be the memoryless strategy for player 2 that at every s € § chooses a move
from T'a(s) uniformly at random. Then, 7} is a spoiling strategy for sure reachability.
3.3 Almost-Sure-Reachability States

Given a subset U C S of states, denote by 8Y = Stay,(U,T;,T2) the move sub-assignment
for player 1 that guarantees remaining in U for one round (note that it may be 6y (s) = 0
for some s € §). The set Almost(R) satisfies the fixed-point characterization given by the
following theorem.

14

Theorem 6 Almost(R) is equal to the largest subset U C S such that:
Safe,(U,T1,T2) = U, Sofe;(U\R,67,T2)=0. (4)

The set Almost(R) can be computed using the following algorithm. The algorithm has
running time quadratic in the size of the game, and it can be implemented symbolically as
a nested fixed-point computation.

Algorithm 3
Input: Reachability game G = (G, R).
Output: Almost-sure-reachability set Almost(R).

Initialization: Let Uy = S, 70 =I';.
Repeat For k£ > 0, let

Ck = Safey(Uk \ R, 7k, T'2),
Uk+1 = Safe; (Ui \ Ck, 75, T2),
Yr+1 = Stay; (Uk41, 74, T2)

Until Ugyq = Ui
Return: U;.

The algorithm can be understood as follows. The set Cgp is the largest subset of S\ R to
which player 2 can confine the game. Player 1 must avoid entering Co at all costs: if Co is
entered with positive probability, R will not be reached with probability 1. The set U is the
largest set of states from which player 1 can avoid entering Co. The move subassignment
71 then associates with each state the set of moves that player 1 can select in order to avoid
leaving U;. Since 13 C Iy, by choosing only moves from 7;, player 1 may lose some of the
ability to resist confinement. The set C; is the largest subset of U; \ R to which player 2
can confine the game, under the assumption that player 1 uses only moves from 7;. The
set U, is then the largest subset of U; from which player 1 can avoid entering C;, and the
subassignment 72 C ; guarantees that player 1 never leaves U;. The computation of C,
Uk41, and Yg41, for £ > 0, continues in this way, until we reach m > 0 such that:

o if player 1 chooses moves only from vy,, the game will never leave Up,;

e player 2 cannot confine the game to Un \ R, even if player 1 chooses moves only
from 7.

At this point, we have Uy, = Almost(R).

Theorem 7 For every reachability game with target set R:

1. Algorithm 8 computes the set Almost(R). The algorithm can be implemented to run
in time quadratic in the size of the game.

15

2. (a) Player 1 has a memoryless winning strategy for almost-sure reachability.
(b) This winning strategy cannot in general be deterministic.

3. (a) Player 2 has a counting spoiling strategy for almost-sure reachability.
(b) This spoiling strategy cannot in general be deterministic, nor finite-memory.

4. For every state s € Almost(R), the ezpected time from s to target R is bounded.

Results 1, 2, and 3a follow from the correctness proof of of Algorithm 3, given in Section 5.2.
Result 3b is proved by an analysis of the game HIDE-OR-RUN, considering the strategies
available to the players at the state spiqe & Almost(R). Result 4 then follows from result 2a,
and from results about the stochastic shortest-path problem [BT91]. Note also that

o For every state s ¢ Sure(R), the time to R is unbounded, since not all paths reach R.

e For every state s ¢ Almost(R), the expected time to R is unbounded, since R is
reached with probability always smaller than 1.

If the game is turn-based, then by analyzing the spoiling strategies for player 2 we can prove
that Almost(R) = Limit(R). Moreover, in turn-based games deterministic strategies are as
powerful as randomized ones.

Theorem 8 If a reachability game with target set R is turn-based, then:
1. Almost(R) = Limit(R).

2. There is a memoryless and deterministic strategy that is winning for both almost-sure
and limit-sure reachability, and there is a memoryless and deterministic strategy that
is spoiling for both almost-sure and limit-sure reachability.

The following theorem provides us with winning strategies for almost-sure reachability.
The construction of spoiling strategies for almost-sure reachability is more involved, and is
presented in Section 5.2.

Theorem 9 Assume that Algorithm 3 terminates at iteration m, and let Uy, ...,Un and
Y1,.-+,7m be the sequences of sets and move sub-assignments computed by the algorithm.
Let w7 be the memoryless strategy for player 1 that at each state s € Un chooses uniformly
at random a move in v,,(s), and at each state s € S\ Uy, is defined arbitrarily. Then 7y is
a winning strategy for almost-sure reachability.

3.4 Limit-Sure-Reachability States

In this section we describe an algorithm for the computation of limit-sure reachability states.
Given a reachability game, both Algorithm 3 for almost-sure reachability and the algorithm
for limit-sure reachability iteratively compute two sequences of sets Co, C1, ..., Cm and
Uo, Ui, ..., Un. The difference between the two algorithms lies in the way the sets Ci
are computed, for 0 < k£ < m: in Algorithm 3 for almost-sure reachability, these sets are
computed with respect to safe escape; in the algorithm for limit-sure reachability, they are
computed with respect to limit escape.

16

3.4.1 Safe Escape

To illustrate the concept of safe escape, assume that Algorithm 3 terminates at iteration m,
after computing the sets Cy, C1, ..., Cyr and Up, Uy, ..., Up. Each set Cy, for 0 < k < m,
is computed in two steps. First, the algorithm computes the sub-assignment

T = olU" = Stayl(Uk,I‘hh) ’

consisting of all the moves that enable player 1 to remain in Uy for one round. Then, to
compute

Ck = Safey(Ux \ R,8%%,T,) (5)

the algorithm sets Vo = Ui \ R, and for j > 0, it iteratively removes from V; all-the states
s € Vj such that

8 ¢ Pre?(Vj’ Yk PZ) . (6)

If (6) holds, so that state s is removed, it means that player 2 has no single move at s that
can keep the game in Vj for all moves in 4x(s) of player 1. Hence, if player 1 plays at s all
moves of 7(s) uniformly at random, he can leave V; with positive probability, regardless
of the move chosen by player 2. Moreover, the escape from Vj is safe: it involves no risk of
leaving Uy, since it is achieved using only the moves in ;. We say that a state s as above
is safe-escape with respect to V; and Uy.

We now define safe-escape states formally. Given a state s, two probability distributions
& € D(I'y(s)) and & € D(T'2(s)), and a subset V of states, indicate by p(s,&1,£2)(V) the
one-round probability of going from s to V when players 1 and 2 select the moves according
to distributions £; and &2, respectively. This probability can be computed as

Boen&)V)= Y T X [a(e)éalaz) pls, a1,a2)(2)] -

21€T1(s) az2€l2(s) teEV

Given two subsets of states C and U such that C C U and a state s € C, we say that s is
safe-escape with respect to C and U iff there is a distribution & € D(T'1(s)) such that:

Ezegl(lrfz(a))‘ﬁ(s, 61’62)(3 \ C) >0 (7)
sup p(s,£1,6)(S\U)=0. (8)
§2€D(I2(s))

If we think of C as the set from which we must escape, and of S\ U as a set where capture
occurs, then safe-escape states are the ones from which it is possible to escape with positive
one-round probability (bounded away from 0), while incurring no risk of capture. From (7)
and (8) we can check that s is safe-escape with respect to C and U iff

s ¢ Prey(C,0Y,T5). (9)

From this characterization of safe-escape states, by comparison between (6) and (9) we see
that for each 1 < k < m, the set Cix computed in (5) is the largest subset of Ui \ R that
does not contain any safe-escape state with respect to Cy and Ug.

17

3.4.2 Limit Escape

Safe escape is at the basis of the algorithm for almost-sure reachability because, in order
to reach the target with probability 1, no risk, however small, can be taken. On the other
hand, if the goal is to reach the target with probability arbitrarily close to 1, as is the case
for limit reachability, then a small amount of risk of capture can be tolerated, provided the
ratio between the one-round probabilities of escape and capture can be made arbitrarily
high. We call this type of escape limit escape.

Before discussing limit escape in general, let us consider the situation of state spige of
game HIDE-OR-RUN. As we mentioned in the introduction, spige € Limit(R) \ Almost(R),
where R = {Shome} [KS81]. If we consider the execution of Algorithm 3 on game HIDE-
OR-RUN, we see that Co = {Swet}, C1 = {Shide}, and Ur = {Shides Ssafes Shome}. While
player 1 cannot escape from Co, he can escape from C; and reach Spome With arbitrarily high
probability by being “patient enough” and playing move run with sufficiently low probability
at each round. Precisely, for every 0 < ¢ < 1, define the distribution &[] € D(T'1(s)) by:

Glef(run) =¢, &e](hide)=1-¢. (10)

By using distribution & [¢] and letting ¢ — 0, player 1 can make the ratio between the
probability of escape from C; and the probability of capture in §\ U; diverge: in fact,

(s, &), £2)(S\ C1) .. E(l-g)+(1-¢€)g
eh—»o EzGD(Fz(s)) p(s,&1le], &2)(S\ Uh) y—% og}fsl £q

1-¢
= lim —— =00 .
e—0 £

(11)

The divergence of the ratio between the one-round probability of escape and the one-round
probability of capture enables player 1 to eventually escape with probability arbitrarily close
to 1. To verify this, let 7 [¢] be the memoryless strategy for player 1 that uses distribution
£1[€] at state spide. Once 7y [¢] is fixed, results on Markov decision processes ensure that the
optimal strategy for player 2 to avoid reaching R is memoryless (and also deterministic)
[Der70, Ber95). Hence, simple calculations show that [KS81}:

wigﬁz Pr:lln!;];"z(o{shome}) =1l-¢,

so that

m [e],m2 =1 —£) =
:ggl ”;nf Prgy (o{shome})—g-‘f})(l e)=1.

In the general case, limit escape is defined as follows. Consider two sets of states C and
U such that C C U, and a state s € C. We say that s is limit-escape with respect to C and

U iff
‘ o BeE6)5\0) _ 12)
slev(rl(s)) £26D(0a(s)) B(s,61,6)(S\U)

Comparing this definition with (11), we see that state sp;qe is limit-escape with respect to
C1 = {Shide} and U1 = {Shide, Ssafes Shome}-

18

The key idea to obtain an algorithm for limit-sure reachability is to replace safe escape
with limit escape in the computation of the various sets Cy, for k¥ > 0. In the algorithm for
limit-sure reachability, for each £ > 0 we compute C}. as the largest subset of Uy \ R that
does not contain any limit-escape state with respect to Cx and Ui. This intuition will be
justified by the correctness proof for the algorithm, presented in Section 5.3.

3.4.3 Computing Limit-Escape States

The following lemma provides an alternative characterization of limit-escape states, which
leads to an algorithm for their determination.

Lemma 1 Given a state s and two sets of states C and U, withs € C C U, lét
Ey = {(a,b) € T1(s) x Ta(s) | 6(s,a,0) 2 C}, (13)
E; = {(b,a) € T3(s) X T (s) | 6(s,a,b) 2 U}, (14)
and let A C T'1(s) and B C T'3(s) be the least sets such that:
1. for alla € Ty(s), if {b| (b,a) € E2} C B, then a € A;
2. for all b € T2(s), if there is a € A with (a,b) € E,, then b € B.

Then, s is limit-escape with respect to C and U iff B = Ty(s).

From the lemma, we obtain the following algorithm for the determination of limit-escape
states.

Algorithm 4 (test for limit-escape states)
Input: Game structure G, two sets C C U C § of states, and a state s € C.
Output: YEs if s is limit-escape with respect to C and U, No otherwise.

Initialization: Let B_; = 0, and let E; and E; be defined as in (13) and (14).
Repeat For £ > 0, let

A= {a € T1(s) | Vb € Ta(s) .if (5,a) € E; then b € Bi1},
Bi={beTy(s)| e e A (ab)€ Ey}.

Until Ax1 = A and Biyq = Bk
Return: YEs if Bx = I'z(s), No otherwise.

If the above algorithm returns an affirmative answer with input s, C, and U, we write
lim-esc(s,C, U) = YEs; similarly, we write lim-esc(s,C, U) = No in case of negative answer.
The algorithm, and the lemma, can be understood as follows. First, we construct a bipartite
graph with sets of vertices I'1(s) and I'z(s) and sets of edges E; and E,. The sets of vertices
correspond to the moves available to players 1 and 2 at s. There is an edge in E; from

19

Figure 3: Bipartite graph generated by Algorithm 4 for state spide of game HIDE-OR-RUN,
with respect to C = {Snide} and U = {Shide, Ssafes Shome}. The labels £(-) of the-moves are
written above the corresponding vertices.

a € Ty(s) to b € T(s) if a,b played together lead to an escape from C with positive
probability; there is an edge in E; from b € I'2(s) to a € T'y(s) if a,b played together lead
outside U, i.e. to capture, with positive probability. The graph corresponding to state shide
of game HIDE-OR-RUN, and sets C = {Shide}, U = {Shide> Ssafes Shome} is depicted in Figure 3.

Once the graph is constructed, we let Ag C I'1(s) be the set of moves for player 1 that
are safe with respect to capture, i.e. that lead inside U regardless of the move played by
player 2. We let By be the set of moves for player 2 that, if played together with some
move in Ag, enable the escape from C with non-zero one-round probability (and zero risk
of capture). From this, we see by comparison with (6) and (9) that s is safe-escape with
respect to C and U iff By = T'z(s): we will later return to this point. The construction of
the sequences of sets Ag,A1,.Asz, ... and Bo, B1, By, ... continues then as follows. At round
i > 0, we let A; C T;(s) be the set of moves for player 1 whose incoming edges all originate
from B;_;. We then let B; C I';(s) be the set of moves for player 2 that have at least one
incoming edge originating from A;. The construction continues until, for some k > 0, no
more moves can be added to A; and Bg.

We say that a move a € I';(s) has been labeled if a € Ag; if a has been labeled we define
£(a) = min{i | @ € A;} to be its label. Similarly, b € I'z(s) has been labeled if b € By, in
which case its label is £() = min{i | b € B;}. The algorithm declares state s limit-escape
w.r.t. U and C iff all the moves I';(s) for player 2 at s have been labeled. The labeled graph
for state spjge of game HIDE-OR-RUN is depicted in Figure 3.

To understand why the algorithm is correct, assume first that s is declared limit-escape.
By definition, this means that all moves of player 2 at s have been labeled, implying that
also all moves of player 1 have been labeled. The labels of the moves for player 1 provide us
with an e-indexed family of distributions that make the ratio (12) diverge. Given 0 < € <
1/(2|T1(3)]), let &[] be the distribution that plays move @ € I';(s) with probability etl@) if
£(a) > 0, and that plays all the moves in {a € T'1(s) | £(a) = 0} uniformly at random with
the remaining probability. From Figure 3, we see that the distribution constructed in this
fashion for state spige of game HIDE-OR-RUN coincides with the one given in (10). To see

20

that (12) holds, we show that

: : #(s,&[e), £2)(S\ C)
2 Bzt 5o, Gl &)\ D) -
In fact, consider any move b € I'z(s) for player 2. Since b is labeled, there is a move a € T'1(s)
labeled with £(a) = £(b) with an edge from a to b. Hence, playing b will cause to leave C
with one-round probability at least proportional to the probability with which a is played,
or £/®), On the other hand, all the moves a that played together with b leave U have a
label strictly greater than £(b), since there is an edge from b to all these moves. Hence, the
one-round probability of leaving U will be proportional at most to |I'1(s)|“®)*1. Since this
reasoning can be repeated for all the moves of player 2 at s, the ratio between the one round
probabilities of leaving C and of leaving U diverges as ¢ — 0, and (15) holds (a rigorous
proof is presented in Section 5.3).
Conversely, assume that that s is not declared limit-escape. This implies that some of
the moves of player 2 at s have not been labeled. To see that in this case (12) does not hold,
suppose that player 2 plays the unlabeled moves in I'z(s) uniformly at random. For each

move a € T'y(s) of player 1, there are two cases, depending on whether a has been labeled
or not:

(15)

e If a has been labeled, then playing a will keep the game in C: in fact, if a move b of
player 2 leads outside of C when played with a, then (a,b) € E, so that b is labeled
and hence not played. Thus, (12) will not hold.

e If @ has not been labeled, then there must be an unlabeled move b € I'z(s) with an
edge from a to b (or else @ would have been labeled). Since b is played with constant
probability, the one-round probability of leaving U is proportional to the probability
of playing a; and of course the one-round probability of leaving C is either 0, or
proportional to the probability of playing a. In either case, we see that the ratio
between the probability of leaving C and that of leaving U cannot diverge, so that
(12) will again not hold.

The correctness of the algorithm then implies that of the lemma.

As we remarked earlier, the method (9) for the determination of safe-escape states is
equivalent to executing only the first round of Algorithm 4, and checking whether By =
T'5(s). Executing only the first round corresponds to computing only Ao and Bo, and using
only the label 0. This equivalence is not a coincidence. For safe escape, player 1 must
keep the probability of risk equal to 0. Thus, playing moves in I';(s) with probability that
tends to 0 is not useful to player 1: either a move incurs no risk, and it can be played at
will, or it incurs some risk, and it cannot be played at all. Hence, to establish whether a
state is safe-escape, player 1 does not need to consider distributions that play moves with
probability ' with i > 0 as ¢ — 0, and only the exponent 0 for ¢ must be considered.

3.4.4 Computing Limit-Sure Reachability States

Given two subsets of states W, U with W C U, we denote by Lim-safe(W,U) the largest
subset V C W that does not contain any limit-escape state with respect to V and U. This
set can be computed with the following algorithm.

21

Algorithm 5

Input: Game structure G, and two sets W C U C § of states.
Output: Lim-safe(W,U) C §.

Initialization: Let Vo = W.

Repeat For k > 0, let Viyy = {s € Vi | s not limit-escape w.r.t. Vi and U}.
Until Vk+1 = Vk.

Return: V.

As mentioned above, the set Limit(R) satisfies the fixed-point characterization given by the
following theorem.

Theorem 10 Limit(R) is equal to the largest subset U C S such that
Safe,(U,I'1,T2)=U Lim-safe(U\ R,U)=90. (16)

The set Limit(R) can be computed using the following algorithm, obtained from Algorithm 3
by replacing safe escape with limit escape in the computation of the sets Ci, for k£ > 0.

Algorithm 6
Input: Reachability game G = (G, R).
Output: Limit-sure-reachability set Almost(R).

Initialization: Let Uy = S, 70 = I'1.
Repeat For £ > 0, let

Ci = Lim-safe(Ux \ R, U),
Uk+1 = SafeI(Uk \ Ck, 1‘1,1‘2).

Until Uy = Us.
Return: Uj.

For example, in the game HIDE-OR-RUN Algorithm 6 computes Cop = {Swee}, U1 =
{Shides Ssafes Shome}, C1 = @, and finally, Limit(R) = Uz = Uy = {Shides Ssafe Shome}, in
agreement with our previous analysis of the game.

Theorem 11 For every reachability game with target set R:

1. Algorithm 6 computes set Limit(R). The algorithm can be implemented to run in time
quadratic in the size of the game.

2. Player 1 has a family of memoryless winning strategies for limit-sure reachability.
These winning strategies cannot in general be deterministic.

3. Player 2 has a memoryless spoiling strategy for limit-sure reachability. This spoiling
strategy cannot in general be deterministic.

22

Result 1 is proved through a detailed analysis of Algorithms 4, 5, and 6. In particular, to
obtain a version of the algorithm that runs in quadratic time it is necessary to optimize
the implementation of Algorithm 5. The optimized version is given as Algorithm 8 of
Section 5.3. :

Results 2 and 3 are from [KS81). However, while previous results were concerned only
with the existence of particular types of winning and spoiling strategies [Eve57, KS81,
Sec97), our algorithms provide methods for the effective computation of such strategies.
These methods are presented in Theorems 15 and 16 of Section 5.3.

4 Randomized ATL

For the specification and verification of open systems, [AHK97] introduced the temporal
logic ATL. The logic ATL is interpreted over multi-player game structures, and includes
formulas of the form {{A))%, which asserts that a team A of players (called agents) have
a strategy to ensure that all paths of the game satisfy the temporal property . The
semantics of the logic ATL is defined with respect to sure reachability, For example, in a
two-player game structure, if g is a formula that is true exactly for all states in R, then the
ATL formula {{Player1))O¢p is true exactly in the sure-reachability states. The definition
of semantics of ATL formulas considers only deterministic strategies for player 1:* from
Theorem 2(2), we see that this suffices for the analysis of sure reachability.

In this section, we introduce the logic randomized ATL (RATL). The logic RATL is
defined with respect to randomized strategies, and distinguishes between three kinds of
satisfaction for path properties: sure satisfaction, almost-sure satisfaction, and limit-sure
satisfaction; correspondingly, the single quantifier (()) of ATL is replaced by the three
quantifiers { Msure, {)almost, and {{ M simit- The RATL formulas {{(A))suret (resp. {(A))almost®
or ((A)imity) asserts that the set A of agents have strategies to ensure that the spec-
ification ¢ holds surely (resp. almost-surely or limit-surely). For example, the formula
{(Playerl)} aimosteOwr Will be true exactly in the almost-sure-reachability states.

4.1 Systems

Formulas of randomized ATL are interpreted over systems with multiple agents. A system
S = (n, S, Moves,T',p, Q, L) consists of the following components:

e A number n > 0 of agents.
¢ A finite state space S.
e A finite set Moves of moves.

e A move assignment I': § x {1,...,n} — 2MOvVeS \ @ that associates with each agent
i € {1,...,n} and each state s € S the set I'(s,) C Moves of moves available to agent
i at s. Again, for technical convenience we assume that I'(s,7) N T'(¢,7) = § unless
i=jand s=t,forall i,5 € {1,...,n} and s,t € S.

3In ATL, the behavior of the second player is not defined using the notion of strategy.

23

e A transition probability function p: § x Moves™ — D(S), that associates with each
s € S and each list of moves a; € I'(s,1),...,a, € I'(s,n) a probability distribution
p(s,a1,...,a,) € D(S) for the successor state.

e A finite set Q of propositions.

o A function L: S — 2° that labels each state with the propositions that are true in
the state.

Thus, a system with n agents is a labeled n-player game structure: at every state s € §, each
agent i € {1,...,n} chooses a move a; € I'(s, i), and the game proceeds to a successor state
chosen according to distribution p(s,ay,...,an). Typically, the agents model individual
processes or components or the environment of a reactive program, and the game structure
is deterministic.

The paths of § are defined in analogy to two-player game structures. A strategy w4
for a (possibly empty) set A = {41,...,4} C {1,...,n} of agents is a mapping 74: St -
D(Moves*) such that 74(as)(a1,-..,ax) > 0 implies a; € I'(s,i;) for all 1 < j < k. Given a
set A of agents, we denote by IT4 the set of strategies for A, and we let B = {1,...,n}\ A.

4.2 Randomized ATL Syntax and Semantics

Syntax. The temporal logic RATL is defined with respect to a set Q of propositions and
a set {1,...,n} of agents. A randomized ATL formula is one of the following:

e g, for propositions ¢ € Q.
e - or ¢, V ¢, where ¢, 1 and ¢, are randomized ATL formulas.

o {(A)) winOp or {A)winOw or {A)winp1Usps, where A C {1,...,n} is a set of agents,
win € {sure, almost, limit} is a type of winning condition, and ¢, ¢; and ¢, are
randomized ATL formulas.

The operators {{))wjn are path quantifiers, and O (“next”), O (“always”), and U (“until”)
are the usual temporal operators [Eme90, MP91].

Semantics. We interpret randomized ATL formulas over the states of a system S that
has the same sets of agents and propositions used to define the formulas.

The subformulas of randomized ATL of the form O, Ogp, or ¢ U, are called path
subformulas, and they are interpreted over the paths of S. For a path subformula ¢, we
denote by [¢] the event consisting of all the paths that satisfy . For path subformulas ¢,
¥1, P2, this event is defined using the standard semantics of the temporal operators:

® S0,51,82,... € [Op] iff 51 .
® S0,51,82,-.. € [O¢p] iff s; = for all ¢ > 0.

® 50,51,82,... € [@1Upy] iff there is £ > 0 such that sy = ¢z and s; = ¢ for all
0<i<k.

24

It is not difficult to show that [+] is measurable for any path subformula %, under any
strategies [Var85).

Subformulas of randomized ATL that have the form p, =@, 1 V 2, or {A))win ¥ are
called state subformulas, and they are interpreted over the states of S. For a state sub-
formula ¢, we write s |= ¢ to indicate that the state s satisfies ¢. For ¢ € Q, for state
subformulas ¢, ¢, ¢2, and for path subformulas 1, we define:

s = g iff g € L(s).
s | ~p iff s £ .
s|=<p1/\<p2iﬁ's|=(,a1 a.nds}:cpg.

s | (A)sure® iff there exists 74 € II4 such that for all 7p € Ilp we have
Paths(s, TA, 7TB) c [[7/)]'

s E {A)almost ¥ iff there exists 74 € II4 such that for all 7 € Ilg we have
Pri4m8([¢]) = 1.

o sk (AViimicw iff sup inf Pri47E([¢])=1.
n4€ll, "BElB

From these definitions, we see that the logic ATL corresponds to the fragment of randomized
ATL that includes only the path quantifier {{A))sure-

From the classification of winning states in Section 2, it follows that s | {(A)sure ¥
implies s = ((A)) aimost ¥, Which in turn implies s |= ((A)limic ¥; the reverse implications do
not necessarily hold. Interestingly, the implications can be strict only for path subformulas %
of the form ¢ U+, which specify liveness properties (such as reaching a target R, truel{pr).
By contrast, for path subformulas 7 of the form O and D¢, which specify safety properties,
the three winning conditions are equivalent, as stated by the following theorem.

Theorem 12 Consider a path formula ¥ of the form Op or Op. Then, for every state s
of a system S, we have s |= {(A)sure ¥ iff s E (AN almost ¥ iff s |E (A timic ¥-

4.3 Model Checking for Randomized ATL

The model-checking problem for randomized ATL asks, given a system S and a randomized
ATL formula ¢, for the set of states of S that satisfy . A model-checking algorithm for
randomized ATL can proceed bottom-up on the state subformulas of ¢, as in CTL and
ATL model checking [CE81, QS81, AHK97]. There are two cases of state subformulas that
have no equivalent expression in ATL: {A))almost Y1 U2 and {A)iimit p1 Up2. In order to
check these subformulas, we first construct a two-player game structure, in which player 1
corresponds to the set A of agents, and player 2 corresponds to the set B. We define the
target set R to be the set R = {s € § | s |F 2} consisting of the states that satisfy
the eventuality ;. If this set is not absorbing, as required by the reachability algorithms,
then the game structure should be locally modified to make R absorbing. Then, we modify
Algorithms 3 and 6, substituting the ordinary computation of set Cp with

Co= Safe2(S\R’ r17r2) U {3 €S I s b‘é PV 992} . (17)

25

Intuitively, while in the OR reachability game player 1 only has to avoid states in which
player 2 can keep him away from the target set R, in the p; U ¢, game player 1 also has to
avoid states that satisfy neither ¢; nor ;. The following theorem and corollary summarize
the relevant results on the model checking of randomized ATL specifications.

Theorem 13 The model-checking problem for randomized ATL specifications can be
solved by combining the algorithms of [AHK97] for {()sure with the modification (17) of
Algorithms 3 and 6 for {{)aimost and {{ iimit-

Corollary 2 The model checking problem can be solved in time quadratic in the size of
the system.

5 Proofs of the Results

In this section we provide the correctness proofs of the algorithms for the computation of
the sets Sure(R), Almost(R), and Limit(R), as well as the proofs of the theorems presented
in the previous sections. While proving the correctness of the algorithms, we also describe
how to construct the winning and spoiling strategies for the various types of reachability.
To simplify the notation, given a subset U C S of states, we denote by U= S5\Uits
complement with respect to S.

5.1 Sure Reachability

Proof of Theorems 1, 2 and 5. Assume that Algorithm 2 terminates at iteration m,
and let Uy, ..., Un be the sets of states computed during the execution of the algorithm.

Define h : U, \ R — IN by h(s) = min{j € {1,...,m} | s € U;} for each s € U, \ R,
and let 7], 73 be the winning and spoiling strategies described in Theorem 5.

For s € Uy,, consider any 73 € Il and any path 3 = sq, 81, S2, . . . € Paths(s, 7], 72), with
s0 = s. From the definition of 7}, it is immediate to see that for all j > 0,if s; € Un \ R
then 8;41 € Un and either sj41 € R, or h(s;) > h(sj41). This shows that 5 € (OR).
Theorem 2(2,4) and Theorem 5(1) follow from this analysis.

In the other direction, if s € U, then for all @ € T'y(s) there is b € T'y(s) such that
6(s,a,b) € Un. Hence, for all s ¢ Uy, and all strategies m; € II; there is a path 3 €
Paths(s, 71, 73) such that 3 ¢ (OUn), and therefore 5 ¢ (OR). This proves Theorem 5(2),
and together with the above argument, also Theorem 2(1). The correctness of Algorithm 2
also leads to the fixed-point characterization expressed by Theorem 1.

To see that player 2 may not have a deterministic spoiling strategy, it suffices to consider
state t¢prow Of the LEFT-OR-RIGHT game. Clearly, tihrow & Sure(R); yet, given any deter-
ministic strategy m, for player 2, we can construct a deterministic strategy m; for player 1
so that the target t4; is reached surely in one round. This proves Theorem 2(4). #

Proof of Theorem 3. Consider a deterministic reachability game. For the first part of
the theorem, assume there is a memoryless deterministic winning strategy =7 for almost-sure

26

reachability. From the point of view of player 2, the game under strategy =7 is equivalent
to a directed graph (S, E) with set of edges

E = {(s,t) | Ib € T'y(s) .t € 8(s,as,b),

where a, € T'y(3) is the single move such that 77(s)(a;) = 1. Consider an arbitrary state s;
there are two cases:

o If there is an infinite path in (S, E) that originates from s and never enters R, then
player 2 has a (memoryless deterministic) strategy m, to emsure that this path is

followed. Hence, Pr:;'”'(oR) = 0. Since 7y is a winning strategy for almost-sure
reachability, s ¢ Almost(R), and s ¢ Sure(R). .

o If all infinite paths in (S, E) that originate from s eventually reach R, then all the
paths originating from s of length greater than |S| have a state in R. Using this fact,
it is not difficult to prove by comparison with Algorithm 2 that s € Sure(R), and
hence s € Almost(R).

These two cases together prove Sure(R) = Almost(R).

For the second part of the theorem, note that there is only a finite number of memoryless
deterministic strategies. Hence, there must be at least one of the winning strategies for limit-
sure reachability that is also a winning strategy for almost-sure reachability. The result then
follows from the first part of the theorem. 8

Proof of Theorem 4. Assume that the reachability game is deterministic and turn-
based, and let m > 0 and Up,...,Un be as in the previous proof. Consider s ¢ Up,. There
are two cases, depending on which player’s turn it is at s. If it is player 1’s turn, i.e. if
[T2(s)| = 1, then it must be §(s,a,b) N Uy, = @ for all a € T'y(s) and for the single b € I'z(s),
or else s would be included in U, 41 and the algorithm would not terminate at iteration m.
Similarly, if it is player 2’s turn, i.e. if [['1(s)] = 1, then there must be at least one b € I's(s)
such that 6(s,a,b)N Uy, = O, for the single a € I';1(s). In both cases, there is b € I's(s) such
that §(s,a,b)N U, = 0 for all @ € T¢(s), and this leads immediately to the existence of a
memoryless deterministic spoiling strategy w, for player 2 having the properties stated in
the theorem. @

5.2 Almost-Sure Reachability

Before proving the correctness of Algorithm 3, we need the following technical lemma.

Lemma 2 Let 71,72 : § +— 2MOV€S\ § e two non-empty move sub-assignments for
players 1 and 2. Let w3 € II; be the memoryless strategy for player 2 that chooses at every
state s € § a move from y2(8) uniformly at random. Denote also with I;(7y1) C II, the set
of strategies for player 1 that at each s € S choose only moves from v1(s). Forany U C §,
let V = Safe,(U,71,72). The following statements hold:

27

1. There is ¢ > 0 such that for all s € U\ V and all strategies w1 € I1(71) for player 1,
we have -

Prem(\/ Xu ¢ U) 2 4.

=0
2. IfV =0, then Pr™"2(0U) = 1 for all s € U and all 7y € I1(m1).

Similar statements hold if the roles of player 1 and player 2 are ezchanged.

Proof. Under strategy 7, the game from the point of view of player 1 is a Markov
decision process [Der70]. The first statement can be proved by induction on the number
of the iteration at which s has been removed from U during the execution of Algorithm 1.
The second result follows by noting that the probability that a path from s € U has not left
U in the first i rounds is no greater than (1 — g)l¥/IVll] and by taking the limit for i — oo.
| |

Next, we describe how to construct spoiling strategies for limit-sure reachability. The

construction is slightly involved, since these strategies cannot be finite-memory, as stated
by Theorem 7(3b).

Theorem 14 Assume that Algorithm 3 terminates at iteration m, and let Uy, ..., Un and
Y1y-.-yTm be the sequences of sets and move sub-assignments computed by the algorithm.
Let go,q1,q2, . . . be an infinite sequence of real numbers such that 0 < ¢; < 1 for all j 2 0,
and [[20g; = 1/2. Such a sequence can be constructed by taking ¢; = 2(=1/2*) | for i > 0.
Construct the counting strategy 73 for player 2 as follows:

1. At s € C;, for 0 < i < m (note that Cr, = Safea(Um \ R, ¥m,T2) = 0), strategy 73
plays according to the number | of rounds played since the start of the game. At round
l, 75 plays as follows:

(a) with probability qi, strategy w5 plays uniformly at random a move from
Stay,(Ci,7i, T2)(8);
(b) with probability 1 — q;, strategy 75 plays uniformly at random a move from Ta(s).

2. Atse S\URy' Ci, strategy 3 plays uniformly at random a move from T'(s).

Then, 73 is a spoiling strategy for almost-sure reachability.

Proof of Theorem 7(1,2,3a), Theorem 9, and Theorem 14. Assume that the algo-
rithm terminates at iteration m, and let Up,...,Unm and 711,...,7m be the sequences of sets
and move sub-assignments computed by the algorithm. Let 7} be the memoryless strategy
for player 1 described in Theorem 9, and let 73 be the counting spoiling strategy described
in Theorem 14. Let also qq, q1, g2, - . . be the sequence of probabilities used to construct =3
in Theorem 14.

First, we prove that U,, C Almost(R). Since the algorithm terminates at iteration m,
we have Safeo(Umn \ R,Ym,I2) = 0. Hence, by the second part of Lemma 2, for s € Un,

28

and all m, € II; we have Pr™™2(&(Uy, U R)) = 1. Note that, under strategy =, once the
game is in Uy, it will never leave Uy, regardless of the strategy used by player 2. Hence,
we conclude that Pr7*"™2(OR) = 1 for all s € U, and 7, € I, as was to be proved.

To prove that Almost(R) C Uy,, we prove by complete induction on i, for 0 < ¢ < m,
that if s € U; \ Ui41 then for all 7; € II; we have

PV (OR) < 1.

Consider an arbitrary strategy m; for player 1. For each 0 < ¢ < m there are two cases,
depending whether s € C; or s € U; \ (C; U Ui4a).

o If s € C;, then let

k
A= {to,tl,tg,...e Q | 3k >0. [/\ t; € Ci A Supp(mi(to, t1,---%)) € 7¢(tk)]}

7=0
be the event of player 1 playing with non-zero probability a move selected outside of
7 while still in C;.

Assume first Pr3 2 (A;) > 0. Then, there is a finite sequence o : 8 = #o,11,...,% of
states of C; such that:

., k
Pry'™ (A\ X;= tj) >0, Supp(mi(0)) € 7i(t) -
=0
By definition of «;, if player 2 plays according to w5 and player 1 at t; € C; C U;
plays move a ¢ ¥;(tx), the game leaves U; with positive probability, since 73 chooses
each move in I';(2;) with positive probability. Hence, a behavior from s has a positive
probability of leaving U;, and the induction hypothesis leads to the desired result.

If Pr_f"";(A,-) = 0, let (OC;) = {to,t1,t2,... | Yk .tx € C;} be the event of being
confined to C;. Since Prs’ 2 (A;) = 0, as long as the game is in C; player 1 never
chooses a move outside of 4;. Hence, by definition of v;, we have

1
=35>
where the last equality is a consequence of the definition of 73. This indicates that if

Pr?’“5 (A;) = 0, then a path from s is confined forever in C; with positive probability,
which leads immediately to the desired result.

Pri"(0C:) 2 Pl (Vk . Supp(n3(Xo,. -, X)) € Stays(Cir i T2)(X))

If s € U; \ (Uig1 UC;), then strategy 73 in U; \ (U1 U C;) plays uniformly at random
from the sub-assignment I';. Since

Uit1 = Safey (Ui \ Ci, i, T'2) = Safe, (Ui \ Ci,T1,T2)
by Lemma 2 we have for all m; € II; that
Pr’ 3 (O(Ci u T]—.)) >0.

The induction hypothesis, jointly with the analysis of the previous case, leads then to
the result.

29

The above arguments prove Theorem 9 and Theorem 14, and thus also Theo-
rem 7(2a,3a). The lack of memoryless deterministic winning strategies (Theorem 7(2b))
is witnessed by the behavior of game LEFT-OR-RIGHT from state ¢¢hrow. Theorem 7(1) also
follows from the above arguments, and from an analysis of Algorithm 3. @

Proof of Theorem 7(4). Consider again the winning strategy #; for player 1 described
in Theorem 5, and let K = |Almost(R)|. Under strategy n} the set Almost(R), once entered,
is never left, regardless of the strategy chosen by player 2. By Lemma 2, there is ¢ > 0 such
that for all s € Almost(R) and all 7, € II; we have

K
Pr’;f""(\/ Xr€R)2¢q.

k=0
Hence, from any s, the probability that the time to R is greater than n is at most (1—g)"/%1,
and by standard arguments this yields the first part of Theorem 7(4). To prove the second
part of Theorem 7(4), note that if the time from s to R is bounded, then by definition
there is a strategy m; € II; such that Paths(s,m1,73) C (OR) for all 73 € I3, and hence
s € Sure(R). 1

Theorem 6 follows as a direct corollary of these results.

Proof of Theorem 6. Let U* be the largest set satisfying conditions (4). Assume that
Algorithm 3 terminates at iteration m with output Uy,. To prove that U* C Almost(R) we
can repeat the argument used to show that Up C Almost(R) in the proof of Theorem 7.
Since U, also satisfies (4), we also have Almost(R) = Uy C U*, and this concludes the
proof. 1§

It is interesting to note that, while we can prove the containment U* C Almost(R)
without reference to Algorithm 3, we have only been able to prove the reverse containment
Almost(R) C U* by analyzing Algorithm 3.

To prove Theorem 7(3b), we first restate more precisely the definition of finite-memory
strategy. We say that a strategy = is finite-memory if there is a deterministic automaton
(Q, 7, gin) With set of states @, transition function 7: @ x § — @, and initial state gin € Q,
and a mapping 7' : Q X S — D(Moves) such that for all o € §* we have

7!'(03) = W,(q.(qin’o)v 8) ’

where 7* : Q x §* — Q is the multi-step transition relation of the automaton, defined as
usual.

Proof of Theorem 7(3b). Consider the game HIDE-OR-RUN, and a finite memory
strategy m; € II; based on the deterministic automaton (@,7,¢in) and on the mapping
75+ S X Q — D(Moves). Define the strategy m; € II; for player 1 by

71(0 Shide)(hide) = { 1 if 72(0Shide)(throw) > 0
0 otherwise

71(0Shide)(run) = 1 — 71(0Shige)(hide)

30

for all 0 € S*. At states other than spig4e, the strategy is trivial, since it must always
choose the only available move. Note that 7y is a finite-memory strategy based on the
same automaton as 72, so that there is a mapping 71 : S x @ — D(Moves) such that
71(08) = 71(8, 7*(gin, 08)) for all o € S* and final states s € S.

We want to show that Prgy " (©O{3home}) = 1. By definition of 7y, the game when started
from sp;qe never reaches sye;. Moreover, once 7, and 7, are fixed, the game corresponds to
a Markov chain with set of states S X @ and transition probabilities

Pr((¢,q) | (s,0)) = D D (s,a,b)(s) 71(s,9)(a) m3(s, q)(b)

a€ly(s) belz(s)

for all s,s’ € § and ¢,¢' € Q. When the automaton is presented with the infmite input
Shide”, it will produce the infinite state sequence

Ginyq1,y - - °’Qka(Qk+lv qk42y- - -1qk+m)w)

for some m > 0. Whether the game reaches Spome, Or Whether it remains forever confined
tO Shide, clearly depends on the behavior of the Markov chain on the set of states

{(Sbide, Qr+1)s (Shides Qk+2)s + - +» (Shides ‘Ik+m)} .

By construction of 7y, this set of states is not a closed recurrent class. Hence, the game is
confined to spige With probability 0, and reaches spome With probability 1. This concludes
the argument. ®

The results on almost-sure reachability for turn-based games can be proved as follows.

Proof of Theorem 8. Suppose that the game is turn-based, assume that Algorithm 3
terminates at iteration m, and let Up,...,Un and v;,...,9m be the sequences of sets and
move sub-assignments computed by the algorithm.

First, we prove that player 1 has a memoryless deterministic winning strategy for almost-
sure reachability by constructing a memoryless deterministic strategy w} for player 1 as
follows. At s € Uy, \ R, strategy =} plays deterministically one of the moves that caused
the elimination of s from Safe;(Up \ R,Ym,T'2) = @ during the execution of Algorithm 1.
At s € RU U, strategy =} is defined arbitrarily. Define the move sub-assignment 6
corresponding to 7} by 6(s) = Supp(r{(s)) for all s € S. By construction of 7}, we see that
Safe,(Um \ R,6,T2) = 0. Hence, by the second part of Lemma 2, for all s € Uy, \ R and all
o € II, we have .

Prsi™(O(RUTR)) =1.

From this, and from the fact that 8 C v, = Stay;(Um,I'1,T2), we conclude Prf’."'r2 (OR)=1
for all s € Uy, \ R and all 73 € II,. This indicates that 7} is a winning strategy for almost-
sure reachability.

To show the existence of a memoryless deterministic spoiling strategy for almost-sure
reachability, we construct the memoryless deterministic strategy =3 for player 2 as follows:

31

e At s € C;, for 0 < i < m (note that Cy, = Safey(Um \ R, Tm,T'2) = 0), strategy =3
plays a move selected arbitrarily from Stay,(Cj,¥i, I'2)(s).

o At s € U; \ (Uiy1 U C;), for all 0 < ¢ < m, strategy 73 plays deterministically one
of the moves that caused the elimination of s from Safe,(U; \ C;,7i,T'2) during the
execution of Algorithm 1.

o At s € Up, strategy w3 is defined arbitrarily.

Proceeding as in the proof of Theorem 7(3a), we can prove that Pyt (OR) < 1 for all
s ¢ Up and all m; € II;. The argument is again an induction by cases, with the same
inductive hypothesis used in the proof of Theorem 7(3a). The case for s € U; \ (Ui41 U Ci),
for 0 < ¢ < m, can be proved essentially in the same way.

I s € C;, for 0 < i < m, we reason as follows. If player 1 plays a move in 7;(s),
then the game will remain in C;. If player 1 plays a move not in 7;(s), then it must be
player 1’s turn to move, i.e. |Ts(s)| = 1. By definition of v;, we know that the game leaves
U; with non-zero probability. Jointly, these considerations prove that 73 is a memoryless
deterministic spoiling strategy for almost-sure reachability.

Finally, the fact that Almost(R) = Limit(R) is a direct consequence of the existence of
memoryless spoiling strategies. In fact, from the point of view of player 1, the game under
strategy 73 is equivalent to a Markov decision process. Hence, if player 2 uses strategy 32
there is a (memoryless) strategy #§ for player 1 that maximizes the probability of reaching
R from every state [Der70, Ber95]. Therefore, for every s € §'\ Almost(R), thereis g, <1
such that . .

max Prs' "2 (OR) = Prs' "2 (OR) = g5 .
m €IL

This yields directly that Almost(R) = Limit(R), together with the fact that strategies)
and 7} are winning and spoiling also for limit-sure reachability. ®

5.3 Limit-Sure Reachability

In order to prove Theorem 11, we must first show that Algorithm 4 correctly determines
whether a state is a limit-escape state. In fact, we provide a stronger characterization of
limit-escape states than that provided by (12). The proof proceeds in two parts: first,
we prove that if lim-esc(s,C,U) = YEs, then s satisfies (12); next, we show that if
lim-esc(s,C,U) = No, then the ratio in (12) is bounded away from infinity. While proving
these results, we also define some distributions that are useful in the construction of the
winning and spoiling strategies.

In these arguments, we are often interested in the behavior of parameterized strategies,
for the value of the parameter close to 0. To simplify the notation, we call we call a
right neighborhood of 0 an interval [0,d] for some d > 0. We indicate by § a generic
right neighborhood of 0, and by = the set of all right neighborhoods of 0. Let also M =
max{|Ti(s)| | i € {1,2} A s € §} be the maximum number of moves available to a player
at any state. For each a € Moves, denote also by £° the distribution that selects move a
deterministically: these distributions are called singular distributions.

32

Given s, C, and U such that lim-esc(s,C,U) = YEs and 0 < € < 1/(2M), we construct
a distribution evasion(s,C, U)[¢] € D(T1(s)) that enables the limit-escape from s as ¢ — 0.
Let k be the number of iterations required for the call lim-esc(s,C,U) to terminate, and
let Ag,...,Ar and By,...,B; be the sets of moves computed during the iterative execution
of the algorithm. All moves in I'y(s) are labeled, since lim-esc(s,C,U) = YEs: define
{(a) = min{j | a € A;} for each a € T';(s). For all a € I'y(3), we define evasion by

gt if £(a) > 0;

evasion(s,C,U)[e}(a)=¢ 1 (1 - g‘(“)) otherwise.
IT1(s) \ Aol aep%\ Ao

The following lemma uses the above distribution to prove that Algorithm 4 answers YEs
only for limit-escape states. The lemma provides a stronger characterization of limit-escape
states than that provided by (12), which follows as a corollary. The stronger characterization
is used to prove Theorem 11.

Lemma 3 Assume that lim-esc(s,C,U) = YEs, and let £[¢] = evasion(s,C,U)|e], for
0 <e<1/(2M). Then, there are constants o, > 0 and a right neighborhood £ of 0 such
that for every distribution € € D(I'2(s)) there is 0 < i < M such that

(s, &1[e], &)(C) > o', (18)
(s, &1e], £2)(T) < B+ (19)
Jor all0 < e < 1/(2M).

Proof. Let k be the number of iterations required for Algorithm 4 to terminate, let Ey, E,
be as computed in the initialization step of the algorithm, and let Ay, ..., A and By, ..., Bx
be the sets of moves computed during the iteration. Since the algorithm terminates with
an affirmative answer, we have I'y(s) = A and T'3(s) = Bi. To establish the result, note
that every distribution §2 € D(I'2(s)) can be written as the convex combination of singular

distributions:
=), &b)E.
bel2(s)

We first prove that the lemma holds for these singular distributions. Consider any move
b € T'y(s). Since b has been labeled, there is at least one a € I'y(s) with (a,b) € E;
and £(a) = £(b). Since (a,b) € E;, when both a and b are played the game leaves C
with probability 5(s,a,b)(C). Move a is played with one-round probability €4} = £4®) if
£(a) > 0, and with probability at least 1/(2M) if £(a) = 0. Taking

o = { Si-5(s,0,0)(C) if £(b) =0

| 7(s,a, b)(C'-) otherwise
and noting that ap > 0, for all 0 < ¢ < 1/(2M) we have

i)'(s, 51[5], £b)(_C") > abe[(b) .

33

Next, we consider the possibility of leaving U when move b is played. For a € Ty(s),
if §(s,a,b) € U, then (b,a) € E,, which implies £(a) > £(b), so that & [e](a) < /L.
Summing over all moves in I';(s), for all 0 < ¢ < 1/(2M) we obtain

(s, E1]€], €2)(T) < MO+

Let o = min{ap | b € T2(s)}/2, B = 2M and, for each & € D(T'z(s)), let i = min{£(b) |
£2(b) > 0}. The inequalities (18) and (19) follow by noting that

#s, 6L, &2)C) = Y &(b)B(s,&e), €)(C) 2 o’

beT2(s)

Bs,&le),&2)(T) = Y &(b)B(s,&e),£)(T) < Bt

ber3(s)

for ¢ in a sufficiently small right neighborhood of 0. @

Corollary 8 If lim-esc(s,C,U) = YEs, then (12) holds.

Proof. Assume that lim-esc(s,C,U) = YEs, and let &[] = evasion(s,C,U)[e], for 0 <
£ < 1/(2M). By Lemma 3, there is x = a/f > 0 and a right neighborhood £ of 0 such that
for all £; € D(T'2(s)) and all € € § we have

#(s,&:lel,)(T@)
‘ﬁ(s’ §l [511 62)((]) B

The result follows by taking the limit e = 0. &

K
E

Given s, C, and U such that lim-esc(s,C,U) = No, we construct a distribution
imprison(s,C,U, A,B) € D(T'2(s)) that enables player 2 to prevent a limit-escape from
state s. Let k be the number of iterations required for the lim-esc call to terminate, and
Bo, . .., Bi be the subsets of B moves computed during the call. For all b € T'3(s), define

1 .
imprison(s,C,U)(b) = { IT2(s) \ B_kl if b € T'(s) \ By
0 otherwise
Since lim-esc(s,C,U) = No implies By C B, the above is a well-defined distribution. The
following lemma is the counterpart of Lemma 3, and shows that if Algorithm 4 answers

negatively the limit-escape question, then indeed the ratio in (12) is bounded away from
infinity.

Lemma 4 Assume that lim-esc(s,C,U) = No, and let §& = imprison(s,C,U). Then,
there is k > 0 such that for all & € D(T'1(s)) we have

5(5)§1a£2)(ﬁ) 2> Kﬁ(S,fl,Ez)(a—) -

34

Proof. Let k be the number of iterations required for the call lim-esc(s, C, U) to terminate,
let E;, E; be as computed in the initialization step of the algorithm, and let Ay,..., Ak
and By, ..., B be the sets of moves computed during the iteration.

Consider a move a € I'y(s) that has been labeled (i.e. a € Ai). For any b € I'z(s), if
6(s,a,b) € C, then there is (a,b) € Ey, and b has been labeled by the algorithm. Since 3
does not play any move that has been labeled, we have 7(s,£%,£2)(C) = 0. Hence, for a
general distribution & € D(T'1(s)), we have

ﬁ(‘s, Ela 62)(-6-) < Z el(a) . (20)

a Ay

Conversely, consider a move a € TI'j(s) that has not been labeled. There must be an
unlabeled b € Ty(s) with (b,a) € E;. This b is played with probability at least 1/M,
and by definition of E; we have é(s,a,b) € U. Thus, for o = 7(s,£2,6)(T) > 0, we
have 5(s,£%,&)U) > ao/M. Hence, for a general distribution & € D(T'1(s)), letting
a = min{a, | a ¢ Ai}, we have

Bs,6,8)T) 2 35 2 &a). (21)

agAx
The result then follows from (20) and (21) by taking k = «/M. 1

From Lemmas 3 and 4, we obtain as a corollary the proof of Lemma 1.

Proof of Lemma 1. If Algorithm 5 terminates at iteration k, then Ax = A and By = B,
where Ay, By are the sets of moves computed by Algorithm 5, and A, B are the fixed-points
mentioned by Lemma 1. The lemma is then an immediate consequence of Lemmas 3 and 4.
[]

In the following, we consider a slightly modified version of Algorithm 5, which removes
the limit-escape states one at a time. The modified algorithm is given below.

Algorithm 7
Input: Game structure G, two sets W C U C S of states.
Output: Lim-safe'(W,U) C §.

Initialization: Let Vo = W.

Repeat For k > 0, let Ly = {s € Vi | s limit-escape w.r.t. V; and U}.
If Ly = 0, then let Viyy = Vi.
Otherwise, pick tx € Lx and let Vigq = Vi \ {tx}.

Until Vk+1 = Vk.

Return: Vi.

Clearly, Lim-safe(W,U) = Lim-safe'(W,U) for al W C U C S, since both algorithms
compute the largest subset C C W that does not contain any limit-escape state w.r.t.
C and U. We use this modified algorithm to define winning and spoiling strategies for
limit-sure reachability.

35

Theorem 15 Assume that Algorithm 6 terminates with output U. Clearly, Lim-safe’(U \
R,U) = 0: hence, we can write U \ R = {to,...,1x}, where to, ..., ti are as selected by
Algorithm 7 at iterations 0, ..., k. Given 0 < ¢ < 1/(2M), define the memoryless strategy
n}[e] € Iy for player 1 by taking, for for 0 < i<k,

T1[e)(t:) = evasion(t;, {tiytit1s. sk}, U) [s[(M "'2)‘]] , (22)

and define 77[¢] arbitrarily outside of U\ R. Then, {r}[e]|0 < € < 1/(2M)} is a family of
winning strategies for limit-sure reachability.

Theorem 16 Assume that Algorithm 6 terminates at iteration m, and let Ug,...,Un
and Cy,...,Cr be the sets computed by the algorithm, with Cp, = 0. Let 73 € Il be the
memoryless strategy for player 2 defined as follows:

e At s € C;, for 0 < i< m, we have w3(s) = imprison(s, C;, U;).
o At s g U5 Ci, 73 selects a move from T'a(s) uniformly at random.

Then, 7} is a spoiling strategy for limit-sure reachability.

Proof of Theorems 10, 11(2,3), 15, 16. Assume that Algorithm 6 terminates at
iteration m, and let Uy, ..., Un and Co, . ..,Cn be the sets computed by the algorithm, with
Cp = 0. Clearly, Lim-safe’(Up \ R,Um) = 0: hence, we can write Upn \ R = {to, .. st}
where g, ..., i are as selected by Algorithm 7.

First, we show Uy, C Limit(R). For 0 < € < 1/(2M), let 7}[e] be the strategy described
by Theorem 15. Qur goal is to show that for all s € Ur,,

lim inf Pril™(oR)=1. (23)
e—0 ma€lls
Since strategy }[¢] is memoryless, the game from the point of view of player 2 is equivalent
to a Markov decision process. The results on Markov decision processes mentioned in
Section 2.4.1 ensure that there is a memoryless strategy mo[e] realizing the inf in (23).
Hence, we can replace infr,en, with inf, cna in (23), where IIY is the set of memoryless
strategies for player 2. For all 0 < ¢ < k, define

exitf.] — i : 73 [elm2 . 4.
Pfeite] = ,r,‘é'ﬁy iz, Pri; (<>(Um \ {tis tiv1, - - -,tk})) : (24)
The quantity Pf*[¢] represents a lower bound on the probability of eventually leaving
{ti,ti+1,...,tx} and proceeding to Uy \ {?,-,t,-...l, ..., tx}. Since R = U \ {to,t1,...,tk}, we
can prove (23) by proving that lim._o P§**[¢] = 1. To prove the latter result, we show that
for every 0 < i < k there is k; > 0 such that, for ¢ in a right neighborhood of 0,

PEFit[e] > 1 — ;e M+2)] (25)

We prove (25) by induction on i, from ¢ = k down to 0. As the base case is a simplified
version of the induction step, we concentrate on the latter. To simplify the notation, we let
Vi={ti,tig1,.--rtk}, for 0 < i < k.

36

1 — o; eliM+2¥] _ g, l+n(M+2)]

a; elFM+2]

W-H »{ {. :{Um\V')

1 — Kig1 €[(}\/!+2)(-'+1)]

B; li+n(+2y7]

Figure 4: Worst-case transition probabilities for the escape from V; = {#;} U Vi1 to U \ V.

We now consider the worst-case escape scenario from V;, for 0 < i < k. By induction
hypothesis, the probability of eventual escape from Vi4; to Up, \ Viyy is at least

1 - Kip E[(M+2)(-‘+1)]]
In the worst case, these escapes lead to t;, rather than to Uy, \ Vi. Denote by
& =n(t), & =m(t)

the distributions used by players 1 and 2 at ¢;, respectively. By Lemmas 3 and 4 there are
a; >0, 8; < 00, and 0 < j < M such that

Bti, £, 60)(Um \ Vi) 2 0 eliM+2)] (26)
B(ti, €, E5)(S \ Um) < i elHDM+2)] 27)

The worst case is the one in which (26) and (27) hold with equality. Moreover, in the worst
case the remaining probability

1 — o eliM+2V] _ g c[l+1)(M+2)]

corresponds to transitions to V;4i, rather than also back to t;. The worst-case transition
probabilities out of V;4; and t; are summarized in Figure 4. Thus, as ¢ — 0 we can write

(1 — Kit1 e[(M+2)("+l)]) a; s[j(M+2)‘]

1- (1 - Kig1 e[(M+2>“'“’]) (1 — o litM+2)] _ 5,.€w+1)(M+2)"1)

Pie::it [51 _>_

a; 5[.7(M+2)'] + 0 (8[(M+2)(|+1)+J(M+2),])

o; eUM+2)] 4 B, lG+1)(M+2)] 4 O (E[(M.l.g)(i-l-l)])

a; + O (M)
T it B0 L 0 (6[2(M+2)‘1) .

37

Finally, from the Taylor series expansion of the last fraction, for £ in a right neighborhood
of 0 we have

PEitle] > 1 — 2; lM+2)]
which proves (25). This completes the proof of Uy, C Limit(R).

The proof of Limit(R) C Uy, follows the general lines of the proof of Theorem 7. For
al s€ S, let

Pyyp(s) = arSlelg Pr;' 6 (OR)
1 1

where 73 is the strategy described in Theorem 16. We prove that, for 0 < i < m, if '
s € U; \ Uiz1 then Pyp(s) < 1. The proof proceeds by complete induction on i, for
0 < i < m. Again, for each 0 < i < m there are two cases, depending whether s € C; or
s € U;\(CiUUip1).

e 5 € C;. At all t € C;, strategy 7} plays with distribution imprison(t,C;, U;). For each
t € C;, let k; > 0 be the constant given for ¢ by Lemma 4, and let « = min{x; | t € C;}.
As a consequence of Lemma 4,

Pr:"”i(o—l'f;) > nPr:"”;(o'C’_,-) .
Let ¢ = max{Py,(t) | t € U;}. Denoting by r = Pr’ " (&C;), we have
Pry"™(OR) < r(1-k(1-¢)) < 1-&(l-4q).

Since K > 0 and ¢ < 1, we have 1 — k(1 — ¢) < 1 and Pyyp(s) < 1 - &(1 — g), which
gives us the desired bound.

e 5 € U;\ (C; U Uiy1). Note that in U; \ (Ci U Uiy1) strategy 73 plays uniformly at
random moves from I';. Hence, the result follows easily by Lemma 2, and by the
induction hypothesis.

The above results prove immediately Theorems 15 and 16 on the winning and spoiling
strategies, and hence also Theorem 11(2,3). Theorem 10 follows easily from an analysis of
Algorithm 6. 1

Proof of Theorem 11(1). The correctness of Algorithm 6 is a consequence of the pre-
vious arguments. To prove the result about the running time of Algorithm 6, it suffices to
show that for each k > 0, the set Cy = Lim-safe(Uy \ R, U) can be computed in linear
time. In fact, for each k > 0 the set Upyr = Safe; (Ui \ Ck,I'1,T2) can also be computed
in linear time [AHK97], and the algorithm terminates after a number of iterations bounded
by the size of the state space. From the remarks of Section 3.4.3, with small modifications,
the argument also shows that the sets Cj of Algorithm 3 can be computed in linear time,
for k > 0.

To show that the set Cy = Lim-safe(Ux \ R,Ui) can be computed in linear time, we
examine in more detail the process of eliminating limit-escape states from Ui \ R. Algo-
rithm 5 is not a very efficient way of computing Cy, since it may invoke the limit-escape

test more than once for each state. To obtain a more efficient algorithm, we rely on the
following observations.

38

o To compute Cy, we initially set V := Ui \ R, and we progressively remove from V' the
states that are limit-escape w.r.t. V and Ui. Consider a state s € V, with its related
bipartite graph (T'1(s), [2(s), E1(s), E2(s)), where

Eq(s) = {(a,b) € T1(s) x T(s) | §(s,a,b) 2 V}, (28)
Eq(s) = {(b,0) € T2(s) x T (s) | 5(s,0,b) Uy }. (29)

Suppose that state t € V \ {s} is eliminated from V, and let V' = V' \ {t}. If Ej(s)
is defined similarly to (28) but with respect to V' instead of V, we have E(s) C
Ej(s). Hence, as we remove limit-escape states from V, the sets of edges Fy(-) for the
remaining states in V increase monotonically.)

o Given I';(s), '2(s) and the two sets of edges Fj(s) and Ey(s), let A(s) and B(s)
be the sets of moves satisfying the fixed-point characterization given by Lemma 1.
Suppose that new edges are added to E)(s), yielding Ej(s). The new sets A'(s) and
B'(s) computed with respect to Ej(s) and Ey(s) are such that A(s) C A'(s) and
B(s) C B'(s). Jointly with the previous observation, this indicates that as we remove
limit-escape states from V/, the sets of labeled moves at the other states in V increase
monotonically.

These observations lead to the following algorithm for the computation of Cp =
Lim-safe(Ui \ R, Ug).

Algorithm 8 _
Input: Game structure G, and two sets W C U C § of states.
Output: Lim-safe”(W,U)C S.

Initialization: Set V := W. For each s € V, construct the sets of edges
Ex(s) := {(a,8) € T1(s) x Ta(s) | 6(s,0,0) £ V'},
Ey(s):= {(b,a) € Ta(s) x T1(s) | 6(s,a,5) 2 U},

and let A(s) and B(s) be the least subsets of I'y(s), I'z(s) respectively that
satisfy:

1. for all a € T'y(s), if {b| (b,a) € Ea(s)} C B(s), then a € A(s);
2. for all b € T'5(s), if there is a € A(s) with (a,b) € E;(s), then b € B(s).

While there is t € V such that B(t) = I'z(t) do:
1. Let V':= V\ {t}.
2. For each s € V', let

E}(s) := Ex(s)u{(a,b) € T1(s)xT(s) | &(s,a,b) C V A&(s,a,b) € V'}.

39

3. For each s € V', update the sets A(s) and B(s) by labeling additional
moves, until the resulting sets A'(s) and B'(s) are the least sets satis-
fying Properties 1 and 2 above with respect to the sets of edges Ej(s)
and E,(s).

4. Rename V := V’, and for all s € V rename Ey(s) := Ej(s), A(s) :=
A'(s), and B(s) := B'(s).

Return: V.

From the above considerations, it is not difficult to see that Lim-safe”(Ux \ R,Ux) =
Lim-safe(Ui \ R,Ui). By introducing appropriate bookkeeping in Algorithm 8, we can
ensure that the changes in the sets of edges and labeled moves are propagated gradually.
Specifically, whenever a state ¢ is removed from V, the removal can be propagated (by
tracking backwards the combinations of moves that can lead to t), yielding the additional
edges described in Step 2 of the algorithm. In turn, the introduction of the new edges
can be used to trigger the propagation of move labelings in Step 3. Finally, once a state
t has B(t) = T5(t), the state becomes a candidate for removal from V at some following
iteration. We can implement this propagation process so that no move, edge, or state has
to be considered more than once, leading to an algorithm with linear running time in the
size of the game. B

5.4 Randomized ATL

Proof of Theorem 12. Without loss of generality, consider a two-player game structure,
and assume that the set of agents is A = {1}; i.e., it consists of the first player. The case
for 1 = Oy can be proved by inspection. If ¥ = Op, let U = {s € § | s |= ¢} be the set of
states where ¢ holds. Clearly,

S I= «l»sureD‘P iﬁ s € Safel(Ua rl: FZ) . (30)

By Lemma 2, the probability of staying forever in U (which corresponds to the probability
of satisfying OU) is bounded away from 1 for all states of U \ Safe,(U,T1,T2). Hence, we
have also

8 | (1) almostDp iff s € Safe,(U,T1,T2),

s | (1) imiDp iff s € Sofe,(U,T1,T2)

which, by comparison with (30), completes the argument. &

Proof of Theorem 13. Again without loss of generality, consider a two-player game
structure, and a formula {{1))aimost1 U2 (the case for {{1))jimicpr U is analogous). To
justify modification (17), note that the set Co of (17) can be written as Co = Cp U Cj,
where

Cy = Safes({s € S | s £ 2}, T1,T2)

40

is the set that would have been computed as Cp by Algorithms 3 and 6 prior to their
modification, and

Co={s€S|slpVpa}
is the set of states that do not satisfy neither ¢; nor the eventuality ;. Note also that,
while C{N R =0, it can be C{ N R # 0.

First, consider a winning state s € Almost(R), and let 7, be a winning strategy =, for
player 1. Under strategy m, we have for all w3 € II5:

Prmm(GR) =1, Prm™(0Co) =0

where the second equality is a consequence of the structure of Algorithm 3 and of Theorem 9.
In turn, these two equalities imply that the eventuality ¢, will be satisfied with probability 1,
and that ¢; will hold at all times prior to the satisfaction of @3, regardless of the strategy
used by player 2. Hence, we conclude s = {(1))almoste1 Uepa.

Consider then a state s ¢ Almost(R). By repeating the arguments used in the proof
of Theorem 7(1), we can prove that player 2 has a spoiling strategy =2 such that, for all
m € II,

[1 - P ™(OR)| + Prp™(0Co) > 0.

If Pr™'™(OR) < 1, then Priv™ ([p1Upz]) < 1. If Pr3*"™(OR) = 1, then it must be
PLm(0Co) = Prf™(0CH) > 0,

implying that with positive probability ¢; becomes false before ¢, becomes true. Also in
this case, we have Pr7"™([oo; Up2]) < 1. Hence, we conclude 3 £ (1) aimostpr Upz. 1

Proof of Corollary 2. The corollary is an immediate consequence of Theorem 13, along
with Theorems 7(1) and 11(1) on the complexity of computing the sets of almost-sure and
limit-sure reachability states. ®

Acknowledgments. We thank Rajeev Alur, Jerzy Filar, Christos Papadimitriou, T.E.S.
Raghavan, Valter Sorana, and Mihalis Yannakakis for helpful discussions and pointers to
the literature.

References

[AHK97] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In
Proc. 38th IEEE Symposium on Foundations of Computer Science, pages 1060-109,
1997.

[BCM+92] J.R. Burch, E.MM. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Sym-
bolic model checking: 10%° states and beyond. In Information and Computation,
95(2):142-170, 1992.

41

[Bee80]
[Ber95]
[BOS2)
[BT91]

[CES1]

[CS91]

[Con92]

[CY88]

[dA97]

[Der70]
[Eme90]
[Eve57]

[Fil81]

[FV97]
[Gil57]

[HSP83]

C. Beeri. On the membership problem for functional and multivalued dependencies
in relational databases. ACM Trans. on Database Systems, 5:241-259, 1980.

D.P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,
1995.

T. Bagar and G.J. Olsder. Dynamic Noncooperative Game Theory. Academic
Press, 1982.

D.P. Bertsekas and J.N. Tsitsiklis. An analysis of stochastic shortest path prob-
lems. Math. of Op. Res., 16(3):580-595, 1991.

E.M. Clarke and E.A. Emerson. Design and éynthesis of synchronization skeletons
using branching time temporal logic. In Proc. Workshop on Logic of Programs,
volume 131 of Lect. Notes in Comp. Sci., pages 52-T1. Springer-Verlag, 1981.

R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for the
alternation-free modal p-calculus. In Computer Aided Verification, volume 575 of
Lect. Notes in Comp. Sci., pages 48-58. Springer-Verlag, 1991.

A. Condon. The complexity of stochastic games. Information and Computation,
96:203-224, 1992.

C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite-state
probabilistic programs. In Proc. 29th IEEE Symp. Found. of Comp. Sci., pages
338-354, 1988.

L. de Alfaro. Formal verification of probabilistic systems. PhD thesis, Stanford
University, 1997. Technical Report STAN-CS-TR-98-1601.

C. Derman. Finite State Markovian Decision Processes. Acedemic Press, 1970.

E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, chapter 16, pages 995-1072. Elsevier
Science Publishers (North-Holland), Amsterdam, 1990.

H. Everett. Recursive games. In Contributions to the Theory of Games III,
volume 39 of Annals of Mathematical Studies, pages 47-78, 1957.

J.A. Filar. Ordered field property for stochastic games when the player who
controls transitions changes from state to state. J. Optimization Theory and
Applications, 34(4):503-515, 1981.

J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer-Verlag,
1997.

D. Gillette. Stochastic games with zero stop probabilities. In Contributions to the
Theory of Games III, volume 39 of Annals of Mathematical Studies, 1957.

S. Hart, M. Sharir, and A. Pnueli. Termination of probabilistic concurrent pro-
grams. ACM Trans. Prog. Lang. Sys., 5(3):356-380, July 1983.

42

[Imm81] N.Immerman. Number of quantifiers is better than number of tape cells. Journal

[1s265]
[Jon75)

[KS81]

of Computer and System Sciences, 22(3):384-406, 1981.
R. Isaacs. Differential Games. John Wiley, 1965.

N.D. Jones. Space-bounded reducibility among combinatorial problems. Journal
of Computer and System Sciences, 11:68-75, 1975.

P.R. Kumar and T.H. Shiau. Existence of value and randomized strategies in zero-
sum discrete-time stochastic dynamic games. SIAM J. Control and Optimization,
19(5):617-634, 1981.

[KSK66) J.G. Kemeny, J.L. Snell, and AW. Knapp. Denumerable Markov Chains. D. Van

[MP91]

[vN28]

[QS81]

[RF91]

[Sec97]

[TV87)

[Var85]

Nostrand Company, 1966.

Z.Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, 1991.

J. von Neumann. Zur Theorie der Gesellschaftsspiele. Math. Annal, 100:295-320,
1928.

J.P. Queille and J. Sifakis. Specification and verification of concurrent systems
in Cesar. In Proc. 5th International Symp. on Programming, Lecture Notes in
Computer Science, volume 137, pages 337-351. Springer-Verlag, 1981.

T.E.S. Raghavan and J.A. Filar. Algorithms for stochastic games — a survey.
ZOR — Methods and Models of Op. Res., 35:437-472, 1991.

P. Secchi. Stationary strategies for recursive games. Math. of Op. Res., 22(2):494—
512, 1997.

F. Thuijsman and O.J. Vrieze. The bad match, a total reward stochastic game.
Operations Research Spektrum, 9:93-99, 1987.

M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state pro-
grams. Proc. 26th IEEE Symp. on Foundations of Computer Science, pages 327-
338, 1985.

[VTRF83a] O.J. Vrieze, S.H. Tijs, T.E.S. Raghavan, and J.A. Filar. A finite algorithm for

the switching controller stochastic game. OR Spectrum, 5:15-24, 1983.

[Yan98] M. Yannakakis. Personal communication, 1998.

[ZP96)

U. Zwick and M. Paterson. The complexity of mean payoff games on graphs.
Theor. Comp. Sci., 158:343-359, 1996.

43

	Copyright notice 1998
	ERL-98-33

