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Abstract

Communication networks shared by selfish users are considered and modeled as noncooj>-
erative repeated games. Each user is interested only in optimizing its own performance by
controlling the routing of its load. We investigate the existence of a Nash equilibrium point
(NEP) that achieves the system-wide optimum cost. The existence of a subgame-perfect NEP
that not only achieves the system-wide optimum cost but also yields a cost for each user no
greater than its stage game NEP cost is shown for two-node multiple link networks. It is
shown that more general networks where all users have the same source-destination pair have
a subgame-perfect NEP that achieves the minimum total system cost, under a mild technical
condition. It is shown that general networks with users having multiple source-destination pairs
do not necessarily have such an NEP.

1 Introduction

Traditionally the network was designed and operated as a single entity with a singleobjective under
the assumption that users were passive and would cooperate for the good of the entire network.
In modern networking, however, this assumption is no longer valid since many networks, each of
which belongs to a different administration and shares resources with others, are internetworked to
form a coalition of networks. Furthermore, different service providers compete to provide services
to users over the network.

Thus, an alternative approach is required that views the network as a resource shared by active
players, where players may have different performance measures and demands, which may even be
contradictory in some cases. One natural way of managing such a resource is letting the players
compete with one another and allow themselves to settle to an equilibrium where each of them
reaches its optimum working state. Obviously, in this kind of environment, players change their
behavior according to those of others, trying to achieve the best performance, and this gives a
rise to a dynamic system. The behaviour of players in such an environment can be addressed in
the framework of game theory. Of key importance here is the notion of an equilibrium where no
user finds it beneficial to change its behavior unilaterally. Such an equilibrium is called a Nash
equilibrium point (NEP).

There has been some prior work on applying game theory in many different areas of networking.
For instance, Douligeris and Mazumdar [2], Bovopoulos and Lazar [12] and Hsiao and Lazar [13]
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discuss flow control problems. Lee and Cohen [15] study the problem of customer allocation in a
system of parallel M/M/c queues. Dziong and Mason [3] considera call admission control problem.
In [14], Lazar, Orda, and Pendarakis investigate the problem of assigning bandwidth to diflferent
virtual paths and show that the Nash equilibrium satisfies a certain fairness criterion. Shenker
in [19] investigates an internetwork gateway problem, where users are assumed to be selfish, and
discusses the issue of designing resource allocation mechanisms that produce efficient throughput
and congestion allocations despite the selfish user behavior. Routing problem is also studied in
game theoretic framework by Economides and Silvester [5] and Yamaoka and Sakai [20], [21].

Most of the past research on the use of game theory in networking problems, including all of
the papers cited above, has restricted itself to the use of static games as models. In an attempt
to understand the dynamics of modern networks, we address the routing problem from a game
theoretic point of view, but using the concepts and techniques of dynamic game theory. Our
starting point is a paper of Orda, Rom, and Shimkin [16], where a routing problem, formulated
precisely in section 3, is considered using a static game theoretic model. The agents in this routing
game are naturally thought ofas being the networkaccess providers. In this context the users would
typically interact with each other several times before the nature of the game changes significantly,
which might happen, for instance, because of the addition of new network access providers, a change
in the topology of the network, or a significant change in the net load being handled by a network
access provider. Thus, it is interesting to approach this routing problem as a repeated game rather
than just a single shot game. While a network access provider might typically handle loads between
several origin-destination pairs, we focus here on the situation where each of the competing users
carries flow between a specific origin-destination pair. In a repeated game there is the possibility
of strategies that result in NEPs which are more efficient than in the single shot game. In this
paper we are interested in investigating the implications of the existence of such new NEPs in the
dynamic routing game. In particular, we are interested in how efficient such Nash equilibria are
relative to the system wide optimum cost that might be achievable if the network could force all
the users to operate cooperatively to minimize the overall cost.

In the static game model considered in [16], the uniqueness of the NEP in the routing problem
for a two node network with parallel links is proved, for a wide class of cost functions. It is shown
that the overall system cost at this unique Nash equilibrium can be substantially larger than the
minimum system cost that could be achieved if all the users cooperate. In more general networks,
the situation is even more complicated, because uniqueness of NEP does not hold even for rather
natural cost functions. An example is given in [16] where there is more than one NEP when the
cost functions are of what they call type-A.

In this paper we restrict ourselves to cost functions that are of type-C in the terminology of
[16]. Such cost functions are motivated by the delay formula in an exponential server queue. See
section 3 for more details. We prove that, in the two node routing problem with parallel links,
in a dynamic game theoretic framework, there are NEPs where the agents operate at the unique
system-wide optimum point, while at the same time, each user's cost is no greater than it would
be in the unique stage game NEP. Such strategies are supported by credible threats or rewards
that the users might make or offer to one another. In the language of game theory, this says that
any such strategy is not only an NEP but also a subgame-perfect NEP (SPNEP); in fact, it can
be shown that no user will be able to reduce its own cost in any subgame by deviating from such
an equilibrium. Section 2 contains the basic definitions and results from dynamic game theory
that we need to develop our results. In more general networks, it is much harder to determine if
strategies exist in the repeated game that yield a cost for each user that is smaller than or equal
to its cost in every stage game NEP. Much of the difiiculty lies in the analysis of the stage game



and the characterization of its NEPs. Nevertheless, in networks where there is a fixed source node
and a fixed destination node common to all the users, we show, under a mild technical condition,
that there exists a SPNEP that drives users to operate at a system-wide optimum point. When
different users may have different source-destination pairs, we show by means of an example that
the existence of an NEP for the repeated game which achieves the systemwide optimum cost cannot
be guaranteed in general. On the positive side, we show that there always exists an NEP in the
repeated game which achieves a total system cost that is no more than the minimum total system
cost over all the NEPs of the static game played between "class users", where a class user between
a given source node and a given destination node is defined to be the coalition of all the actual
users that have that particular source-destination pair. However, we show by means of an example
that the systemwide minimum cost could sometimes be strictly smaller than this minimum, so the
preceding result, while encouraging, is not strong enough.

We should mention that, since the appearance of [16], a number of other works have also
appeared that discuss extensions of this model. Korilis, Lazar, and Orda [9] show that in a parallel
link network, with selfish users that attempt to optimize their individual performance objective, the
capacity allocation problem has a simple and intuitive optimum solution that coincides with that
of the single user case. In another paper [10] they show that in a parallel link networkenvironment,
under certain conditions, the network manager, who is aware of the noncooperative behavior of the
users, can use its own flow to drive the users to operate at an equilibrium point that is oftentimes
more efficient than the Nash equilibrium point. The existence of maximally efficient strategies
for the manager is investigated, and the necessary and sufficient conditions for the existence of a
maximally efficient strategy are derived in that paper.

This paper is organized in the following way : we begin in section 2 with a brief summary
on the language of game theory. Here we also state, with precise references, the results from the
theory of dynamic games that we will be referring to. We discuss two node parallel link networks
in section 3. In section 4 we discuss general networks, both in the case where all the users have
a single source-destination pair and in the case when there are multiple source-destination pairs.
Some summarizing remarks are made in the final section.

2 Game Theory

In this section we will briefly review the language of game theory. For more details, refer to [6],
[7], and [17]. One can model a game in many different ways, depending on the properties and
information available to the users. In static games, the interaction between users occurs only once,
while in dynamic games the interaction occurs several times. An example of a dynamic game is a
repeated game where the same static game is played many times.

Depending on whether each player knows the other players's payoff functions or not, a game
can be formulated either as a complete or incomplete information game. If every player is aware of
history of all the plays made, the game is said to have perfect information. If not, the game is of
imperfect information.

A Nash equilibrium of a game is a choice of strategies by the players where each player's strategy
is a best response to the other players' strategies. This implies that no player can increase its payoffs
by unilaterally deviating from the equilibrium. One problem with Nash equilibria is that some Nash
equilibria involve players choosing irrational plays. A simple refinement, called a subgame-perfect
Nash equilibrium eliminates many such Nash equilibria involving irrational plays. A subgame is by
itself a well defined game that starts from a decision node n that is not the beginning node of the



game, and includes all the decision nodes and terminating nodes following n in the game tree. A
Nash equilibrium is a subgame-perfect Nash equilibrium if the players' strategies constitute a Nash
equilibrium in every subgame. Consider the example in Figure 1, where the pairs of numbers at
the terminal nodes of the game tree give the payoffs of the two players, and the player who plays
at any node of the game tree is indicated in the figure. This is a game of complete information.

Player 1

Player 2

Player 1

Figure 1: A Nash equilibrium that is not a subgame-perfect Nash equilibrium.

Playing (L, L, L) is a Nash equilibrium in this game since neither player can increase its own
payoffs by deviating from the equilibrium. However, (jL, L, L) is not a subgame-perfect Nash equi
librium because player 2 playing L at the decision node m does not lead to a Nash equilibrium in
the subgame starting at m. If for some reason player 1 plays R at the beginning, then player 2
should play R whether player 1 plays L or at the information node n. This implies that player
2 playing L at node m is not a credible threat and that player 1 should always play R at the
beginning of the game.

We will now discuss a result due to Rosen [18], which is used to establish the existence of a
Nash equilibrium of the stage games that will be discussed in the following sections. Consider
an /-player game, where the strategy of the ith player is represented by the vector /' in the
subset F* of the Euclidean space =1,...,/, and the vector / € R^ denotes the simultaneous
strategies of all players, where m = mi + ... + m/. Thus f ^ F = x ... x , which we
assume is a convex, closed, and bounded set. The cost function for the ith player depends on
the strategies of all the other players as well as on its own strategy, and is given by the function
F{f) = J*(/\..., /O- We assume that for all f ^ F, 7'(/) is continuous in / and is convex in /'
for each fixed Then Theorem 1 in [18] states that there always exists a
Nash equilibrium point for such a game.

Let us now define player i's reservation cost, a concept which is used later in stating the folk
theorem for repeated games. Player t's reservation cost is denoted by and defined as

u,- = maxj-iQp-i[minji^piJ*{f\

where F* is player t's strategy space, F~' is the product space of the strategies of all playersexcept
for player t, and J* is player t's cost function. The significance of player t's reservation cost is as
follows : if the other players are colluding to punish player t, player t can guarantee itself a cost
no greater than its reservation cost. In other words, player t's reservation cost is the highest cost
player t's opponents can hold it to by any choice of /"*.

We will now state two key theorems in game theory for repeated games, which will be used to
prove the results of this paper. For more details on the theorems and their proofs, refer to [6], [7],



and [17]. These theorems are about repeated games with discounting. Namely, the same static
game, called the stage game, is played an infinite number of times. At the end of each stage n,
each player is aware of all the actions of all the players at times 1 through n —1. The overall cost
of player i is the discounted sum of its costs at each stage, for some discount factor 0 < 6 < 1,
normalized by 1 —

The first theorem of interest to us is the folk theorem for repeated games, which says that for
every feasible cost vector v with v,- < u,- for all players i, where u,- is player i's reservation cost,
there exists a £ < 1 such that for all S € (5,1) there is a Nash equilibrium in the repeated game
with cost vector v. Moreover, if rational feasible region, i.e. the portion of the feasible region that
Pareto-dominates the reservation cost vector, i.e. {uru,- < u,- for all 1 < z < /}, satisfies the full
dimensionality condition, i.e., it has nonempty interior or has same dimension as the number of
players, then there is a subgame-perfect Nash equilibrium with cost vector u.

The second theorem of interest to us is called Friedman^s theorem, and says that if a stage game
Nash equilibrium a* has the corresponding cost vector e, then for any feasible cost vector v with
Vi < e,- for all players z, there is a ^ < 1 such that for all <5 € (£,1) there is a subgame-perfect Nash
equilibrium in the repeated game with cost vector v.

In the following sections thesetheorems will be used to establish the existence of Nash equilibria
and/or subgame-perfect Nash equilibria in the dynamic routing game of interest in this paper.

3 A Network of Parallel Links

3.1 Model and Problem Formulation

Source Destination

Figure 2: Parallel link network.

We are given a network with a set 7 = { 1, 2, ..., I}, I > 2, of users that share a set of parallel
communication links X= { 1, 2, ..., L} interconnecting a common source to a common destination
node. Without loss of generality, we assume that the links are ordered by decreasing capacity, i.e.,
Ci > C2 > ''' > C\j. Each user 1 € 7 is assumed to be selfish in the sense that it attempts to
minimize its own cost regardless of what the other users are doing. User z has a demand, which
is some ergodic process with an average rate of r'. Without loss of any generality, we will assume
that users are ordered in order ofdecreasing average rate, > ••• > r^.

We will first describe the stage game, which we assume is repeated many times. If each user
is not sure when the game will end, we can model this as an infinitely repeated game with an
appropriate discounting factor 0 < <5 < 1. In the stage game, each user splits its demand over the
communication links, i.e., user i decides how much of its demand, //, it will send on link 1. We
must have// > 0 (nonnegativity constraint) and YlieLfi* — (demand constraint). Let// denote
the total flow on link /, i.e., // = YlieiU- The flow configuration of user z is denoted by /*. and
the system flow configuration by / = (/^/^, •••,/^)- A user flow configuration f* is said to be



feasible if it satisfies the nonnegativity and demand constraints. We denote the set of all feasible
fiow configurations for user i by F\ Similarly, a system flow configuration /, is feasible if every
user flow configuration is feasible, and F = x ... x F^ denotes thesetofall feasible system fiow
configurations.

In order to compare the performance of each user i € /, we need to havea performance measure.
This performance measure is given bya cost function F{f) defined for each user i. The goal ofeach
user is to minimize its cost by distributing its demand over the links. The cost of user i generally
depends not only on its fiow configuration but also on those of other users. Since we are assuming
that every user is selfish, the problem can be modeled as a noncooperative game where each user
is trying to minimize its cost [16]. A natural question that arises in this type of setting is whether
there is a Nash equilibrium of the game or not. In other words, we are interested in finding a
system fiow configuration such that no user finds it beneficial to change its own flow configuration
assuming that no other users do. Mathematically a system flow configuration / = (/^ /^,P) is
a Nash Equilibrium Point (NEP) if, for all i € /, the following holds:

JV) = J'u' /')
= /•, /'+' /')

The importance of an NEP is that it is a point at which no user has an incentive to deviate.
However, one problem with an NEP is that it is not necessarily very efficient. In fact, Korillis,
Lazar, and Orda [10] give numerical examples with natural cost functions where the difference
between the total cost at the system-wide optimum point and that at the NEP could be more than
20 percent.

In our analysis, we use what are called type-C cost functions in [16]. The cost function for
user i, J\ is the sum of link cost functions, J/, i.e., J'(/) = =
// • Tiifi), where

lie, w
where Q is the capacity of link I. Such a cost function is very natural in this context as it is directly
motivated by the delay formula in an exponential server queue for a given throughput.

Throughout the paper, we will assume that the stability condition is satisfied, i.e., <
Then it is easy to see that at any NEP the costs of all users are finite. Otherwise, at least

one user with infinite cost can change its own fiow configuration to have finite cost.
It turns out that, under these assumptions, the routing game satisfies the conditions of the

theorem of Rosen [18] described in section 2 and so the existence of an NEP is guaranteed. Also,
Kuhn-Tucker conditions constitute the necessary and sufficient conditions for a feasible system
configuration to be an NEP. These say that for every t € / there must exist a Lagrange multiplier,
A*, such that, for every link / € I,

//• > 0 =4> A:/(f/) = A"
fj = 0 => Ki(fi) > A'

where K] is the partial derivative of J/ with respect to fj. We will call A* user i's marginal cost at
the NEP.

Orda, Rom, and Shimkin prove in [16] that in the parallel link case with type-C cost functions
there is a unique NEP. An important consequence of this is that given a set of demands for all
the users, there is a unique system flow configuration, that achieves the smallest total system



cost. This can also be seen directly by observing that this flow configuration is the solution to a
convex optimization problem. Unfortunately, in most cases where multiple selfish users compete
overthe network, the resulting unique NEP doesnot result in the samelinkflows as the system-wide
optimum point.

From the theory of dynamic games we know that it is possible to get NEPs in the repeated
game that are different from merely repeating the NEP of the static game at every period. Some
of these NEPs may be more efficient than repeating the stage game NEPs at every period. Thus,
it would be interesting to see if the system-wide optimum point can be supported by an NEP in
the repeated game. The folk theorem and Friedman's theorem, which were stated in section 2 give
us considerable information about the cost vectors that can be supported by NEPs in the repeated
game. We will use these theorems to analyze the issue of when it is possible to get NEPs in the
repeated game that are efficient (achieve a total cost equal to the minimum cost achievable if all
the users were to collaborate for social good).

3.2 Properties of the unique stage game NEP

In this subsection, we will briefly describe the properties of the unique stage game NEP. For more
details, refer to [16]. Assume that users are ordered by decreasing demand and links are ordered
by decreasing capacity. Let / denote the unique stage game NEP and Li denote the set of links
used by user i at the NEP, i.e., L, = {/ € L : f} > 0}. Then, at the unique stage game NEP /, the
following are true.

(1) /i > A > •• • > /l- For 1 < / < L, if C/ > Ci+i and fi > 0, then // > /j+i, while if
Ci = C/+1 then // = //+i.

(2) /i > A > ••• > /l» for all i € /. For 1 < / < L, ifC/ > Ci+i and // > 0, then ff > //+i,
while if Ci = Ci+i then // =

(3) Ci - /i > C2 - A > • •• > Cl - /l- For 1 < / < I, if Ci > Q+i and fi+i > 0, then
Ci —fi > Ci+i —fi+i.

(4) // > ff for all / € L if i < j, i.e., r' > rf Moreover, if r* > H and ff > 0, then // > ff.
(4') Li D Lj if i < j.

3.3 Existence of SPNEP that yields the optimum system cost

We now assume that the stage game of section 3.1 is repeated infinitely often, with discounting.
We will show the existence of a system flow configuration that is an NEP of the repeated game
and achieves the minimum total system cost C. Furthermore we will also show the existence of
an SPNEP for the repeated game achieving the minimum total system cost, where the cost of each
user is no more than its cost if play proceeds by repeating the unique NEP of the stage game.

We first need to define user i's reservation cost. This is defined to be

u," = maxj-i[minjiJ\f\ /"*)] (2)

where /"* = In words, if other users collude to punish user i, it can
guarantee that it incurs a cost no more than t;,-. Let v = (v.;, Ug,..., V/). The folk theorem for
repeated games, which was also stated in section 2, says that any cost vector that strictly Pareto-
dominates v in each coordinate can be supported by an NEP in the repeated game, for any discount
factors sufficiently close to 1. Our first result is the following :



Theorem 1 If the discount factor in the repeated game is sufficiently close to 1 there is an NEP
in the repeated game that achieves the minimum total system cost, C.

Let / denote the unique stage game NEP and J* the cost of user i at the stage game NEP. To
prove theorem 1 we need the following :

Lemma 1 ^ if i < j.

Proof; We will first show

ft+i > 0, (3)
h h+i

and show that equation (3) with property(3) of section 3.2 with Q —fi> Ci+i —fi+r, 1<1< L-1,
implies that

and this will prove the lemma.
Let us prove equation (3). There are two cases to consider :
(1) If ff^^ = 0, it's trivial.

(2) If >0, then from the K-T conditions and property (2) of section 3.2, we have

c,-f, {c,-f,Y

' (5)
Cm - /i+i (C,+i - fm? '

while from the K-T conditions and properties (2) and (4) of section 3.2, we have

1 . fiA- = r +
C,-f,

1 fUi. + . (6)
Cm - /i+i {Cm - fmV

Let a = ^ . If we subtract ^ ^ ; from both sides of equations (6) and (5), we
W+1-/J+1 ^l-Jl

have

1 fi= «+,^ (7){C,-f,Y ^(Cm-fmY'

and

!l—— =a+ . (8)
(Ci - fiY {Cm - fmV

Divide equation (8) by equation (7) and simplify.

• ff.
(9)

fi <^ + f'm
ft °:' + fi+l

8



where oi' = a -(C/+i - fi+i)^. Since, by property (3) of section 3.2,we have a' > 0 and, by property
(4) of section 3.2, we have // < //, we get

(10)
// <^ + fUi-fhi

which proves equation (3).
Now we will show that equation (3) implies that

k=i jfc=i

Assume the contrary, i.e., suppose that there exists I ^ L such that

E/i<7E/i- (12)
k=l k=l

If there is such an / 6 there must also be one for which we have, in addition, that

(13)

so we assume that both equations (12) and (13) hold. First note that equation (12) together with
property (2) of section 3.2 implies that > 0. This is because we cannot have Ylk=i fl ~
without violating the demand constraint for user i. Then, from equations (3) and (13), we have

^ >4- >-, (14)
fUx'fl

Equation (14) implies

(15)

and from equations (12) and (15)

'+' . ri
(16)

k=l k=l

Since equations (15) and (16) are just the same as equations (13) and (12) respectively except
that they now hold for link I + 1 instead of link /, we may repeatedly argue in exactly the same
way and conclude that

E/^<^E/^ (17)
A=i k=i

But this contradicts the demand constraints for users i and j. Therefore we have proved equation
(11).



Now, for any 0 < r < r*, let

' ft•/'» =E7r^ +/_i Ci - fi Ck+1 - fk+1'

where k and q are defined in terms of r by

k

0< r = 5^// + (? < r' and 0 < 9<
/=i

Similarly, for any 0 < r' < W, let

k'

k' ij

J'(<•') =117^+^Ci- fi Ck'+i - A'+i'

where k' and q' are defined in terms of r' by

0 < r' = // + 9' < Wand (? < 9' <
/=i

0 // •'3 •'4 •'$ ^6 •'7

(18)

(19)

Figure 3: Comparison of cost per unit flow.

Let Li, i € /, be the largest I ^ L such that fj > 0. Now, since Ci - fi > • • • > Cl - /li as
illustrated in Fig 3, using equation (11), the cost per unit flow of each block /, where I = l,...,Lj,
in the top graph is smaller than or equal to that of the corresponding block in the bottom graph.
This means that

and

/=i

T

1=1

I-1

1=1 1=1

2 < /"< Lj.

Sum equations (20) and (21) for all 1 < / < Lj and multiply by Then, we get

H • r' • • r-^ V•

10
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(21)

(22)



Another way of writing equation (22) is
fi j.i
4 > ^. (23)

- rJ

This completes the proof of the lemma. •

Let C denote the minimum total system cost that can be achieved given the set of demands
(r^..r^), and let R = J2iz=i ''*• Also, let /' = (/{,/£) denote the unique system configuration
that achieves C. Then we have:

Lemma 2 t;,- > C •^ for all i ^ I. Moreover, if there exists I ^ L such that fl > //^.j > 0, then
Vi >C. ^ for all i € I.

Proof: From Lemma 1, we know that at the unique stage game NEP with a finite number
of no less than two users

4 >4 i/ r" >H, (24)
where J* is the cost of user i at the NEP. Suppose the other users want to punish user i. We can
break up the other users to punish user i in the following way : split the other users into n identical

r-i . -.
users each with demand — < r'. Let J'(n) denote the cost of user i at the unique NEP
of this new problem. Then, we know at the unique NEP of the new problem with the n identical
users and user i

> fl
Jp{n) - rP'

where user p is one of the identical users and J^{n) denotes the NEP costofsuch a user in the new
problem. Therefore,

J'(n) >^ ^^ (25)
where Caysumi''̂ ) is the total system cost at the NEP of the problem with user i and the n identical
users. Thus,

a>^"''(n)>^-C'. (26)
Now suppose there exists I € L such that fl > //+i > 0. Note that, by property (1) ofsection 3.2
applied to the "game" consisting of a single user, this implies that C/ > C/+i. Pick the smallest
such I. From the K-T conditions for the "game" consisting ofa single user, and because fl > >
0, we have

1 . fl
Tt +Ci-fl [Ci-flf

^ • (27)

We will show that any stage game NEP with any finite set of no less than two users, /, results
in a strictly higher total system cost than C by showing that / ^ f. More specifically, we will

11



show that ^ Let / = {1,...,!} be the set of users, where I > 2. Let B be the set of users
that use Wnk) + l^at the stage game NEP. For all i € from the K-T conditions and property
(2) of section 3.2, we have

1 fi
A' =

Ci-fi (Q-/,)2

(28)fUi
Cl+I - //+! (C/+1 - fl+l^

Suppose /, = // and /,+i =//+,. Let 3;^ = =a and 5;;;^ = c.+.i/,;, =
property (3) of section 3.2 we have Ci —// > Cz+i — so that P > a. Let /? = a + 7 with some
7 > 0. Subtract a from both sides of equations (28) and (27). Because we assumed // = // and
//+! =//Vn we have

h— = iLti (29)

and

W.

- = 7 + r (30)
(C,-/,)2 (C,+:-/,+,)'

Divide equation (29) by equation (30) and simplify. Then we get

// 7' + fi+i
ft I'+fht

(31)

where 7' = 7* (C/+i -//+i)^. Note that //+i > because ifnot, then equation (31) implies that
= fi which contradicts the choosing of / as the smallest index such that fj > because for

the smallest such /, by property (1) of section 3.2, Ci = ••• = C/ and so, by property (2) of section
3.2, all I users use link /. Since 7' > 0 and //+i > //^j, we have

7'+/(+i<4±1 (32)

Therefore, we have

y'+fki fki

4 < (33)
fl //+!

/* /•If we multiply equation (33) by ', we get

T--si+t< fi (34)
fi+i
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Let A be the set of users that use link / at the stage game NEP. Then, for all i in >1 \ B, equation
(34) trivially holds since Vm = 0- If we sum equation (34) over all i € A, we have

Ji+i ieA Jt+i

= = (35)
ieA

which is a contradiction. Therefore, / ^ f. Since this is true with any finite set of more than one
user, the second inequality in equation (25) becomes a strict inequality in this casebecause Csystem
is greater than C. Hence, from equation (26), u, > ^ •C. - •

Proof: (^Theorem 1) We will show that, ifthe discount factor is sufficiently close to 1, then
playing / = (/^..., P) every period gives rise to an NEP in the repeated game, where

We need to consider two cases. First, suppose there exists / G L such that // > > 0. From
Lemma 2, / yields a cost to each user i that is strictly smaller than its reservation cost. By the
folk theorem it follows that, if the discount factor is sufficiently close to 1, there is an NEP of the
repeated game with cost vector (^C,...,^C), and this has total cost C, which is optimum.
Such an NEP can be supported by the following strategy profile in the repeated game : initially,
every user uses / every period until exaotly one user i deviates from / at some period k. Ifexactly
one user i deviates at period Ar, then starting at period k-{-l other userscollaborate and use a flow
configuration that yields to user i, when it best responds, a costequal to its reservation cost, which
we saw is strictly greater than its cost under /. Then, one can show that, if the discount factor is
sufficiently close to 1, the normalized total discounted cost of user i will be greater than if it
deviates at any period. Hence, no user i has the incentive to deviate from /.

Now, suppose that for every / € L we either have // = > 0 or //^.j = 0. Let be the
set of links such that // > 0. Then, by property (1) of section 3.2, Ci is same for all I € We
can now show that / is a stage game NEP. First, A'/, the partial derivative of J/ with respect to
//, is same for all / GL° because both C/ and f} are same for all I ^ iP. Hence, in order to show
that / is a stage game NEP, we only need to show that no users are tempted to use any other links

not in Clearly, A/(f/) = ^ ^

I' ^ This proves that no users are tempted to use any V^ Lq. Thus, / is a stage game NEP,
and repeating a stage game NEP is an NEP in the repeated game. In fact, it is an SPNEP. •

One thing to notice about / is that the costs of some users may be greater than their cost at
the stage game NEP. Friedman in [4] shows that any cost vector that strictly Pareto-dominates
a stage game NEP cost vector in each coordinate can be supported by an SPNEP for discount
faotors sufficiently close to 1. Thus, the following theorem shows that there exists an SPNEP, /,
that achieves C and yields a cost for each user that is smaller than or equal to its cost at the stage
game NEP, i.e., J* (f) < J' (f) for all i G /•

Theorem 2 There exists a system flow configuration, f, that yields the optimum total system cost
C' and a cost for each user that is smaller than or equal to its cost at the stage game NEP. Also,
ifC = ^{=1 J*{f) > C, then the cost of each user at this configuration is strictly smaller than its
NEP cost. A consequence is that, if the discount factor is sufficiently close to 1, there is an SPNEP
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for the repeated game in which every user has a cost that is at most equal to its cost in the unique
stage game NEP and the overall cost is optimum.

We need several lemmas to prove Theorem 2. Let / denote the stage game NEP and f the
flow conflguration that achieves the minimum total system cost.

Lemma 3 For all I ^ L, we have // > 0 // > 0.

Proof; We will show this lemma by contradiction. Suppose 3 / € L such that

// > 0 and // = 0. (36)

Let Lqdenote the set of links with // > 0 and Li the set of links that user 1 uses at the stage game
NEP. Then, by properties (1) and (2) of section 3.2, equation (36) implies that Lq C Li, which
means that 3 /' € Lq such that

fi' < f'v (37)

Suppose user 0 is the global user that attempts to minimize the total system cost and uses the flow
configuration f. Let A° and be the marginal cost for user 0 and user 1, respectively. From the
K-T conditions, we have

(C/-//)2 (Cv-fr) '̂ ^ ^
where Cj = Ci- //, and from the K-T conditions for user 0, i.e. for the "game" consisting of
a single user, we have

With equation (39), equation (36) implies

<1< g'. (40)
{c, - nv - cr {c, - f,r ^ '

But equation (37) implies
Cl C,.

(C,,-/,.)^ (C,.-//,)2-

Now from equations (38), (40), and (41), we have

Ch , C,. ^1
{Cl' — (Cl' - f'liY Cl

, C} _ C},
(Ci-fiY (Ci'-fvY

which is a contradiction. This proves the lemma.

Lemma 4 J2\=i fi > ELi //> 1< ^< L.
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Proof; We will draw a contradiction by using induction. Suppose that for some I £ L we
have

Eh<'tfL. (42)
k=l k=l

Then there must also be some / € L for which, in addition, we have

ft < // , (43)

SO we assume that both the equations (42 and (43) hold. We will show that this means that
equations (43) and (42) hold for all / > /. Let A be the set of users that use link / and B set of
users that use link /+! at the stage game NEP. By property (2) of section 3.2 we have A D B.
Since YlkeLfk = HkelfL equation (42) implies that I < L. Further, equation (42), together with
property (1) of section 3.2 implies that //+i > 0, which means B 0. Let C = A\B, From the
K-T conditions, we have for all i E A

Q. ^ q-r , (44)
{Ci-f,y (C,-/,)2'

where fl —fl~ fU all i 6 B we have

A-' = Ski = * '̂4' ~/'+' . (45)
(Cw-fw? (C,+,-/,+i)2

Lemma 3 tells us that > 0 implies //^.j > 0. From the K-T conditions for user 0 we have

C, Ci+i
(C,-//)2 (C,+l -//+,)'^ (46)

Let B be the number of users in B. If we sum equations (44) and (45) over i £ B, we get

BC,-B/,-I-E.6b//
(Ci-iiY

{Q-f,Y

^ BC,-(B-l)/,-E.ec//' (47,
{Q-f,Y

_ BQ+i -Si6g(//+i ~/i+i)
(q+<-//+i)'
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_ BCj-i-i —B/i-i-i + SigB/i+i
{CM-fwV

(c,+, -fi+iV

If we pull out (B-1) terms from equations (47) and (48), we get

(B-l)(C,-/i) C,-Zi^cfi
{c,-f,y (c,-SiY

_ (B - l)(Ci+i - /i+i) ^ C(+i
(Q+i - /i+i)^ (C/+1 - fi+iY

. B-l C,-E,ec//
(Ci-f,) (C,-/,)2

B —1 C|+i

(C,+.-/,+,) (C,+,-/,+i)2

(48)

(49)

Suppose /i+i > //. 1. From the assumption in equation (43) we have ft < ft- Hence, from equation
(49) we get

B-l .C,-T^^cfi
(Q-Jiy {Ct-flY

(50)
(a+i-//+i) (C/+i-/h.i)

If we subtract equation (46) from equation (50), we get

B- 1_ _ Zit^cfi > B-l
(C,-//) {C,-f!Y (Q+, -//+;)

If B > 1, then it implies

B-l B-l
>

(C,-//) (C,+,-/,;,)
1 1

^ {Ct-fD ^ (c,+i-//+,)
^Q- fi < C,+, - fU,

which contradicts that C/ - // > C/+i - //^i- If B = 1, then we get the contradiction that

{Ci-flV
>0.

Therefore, fi+i < fl^i and A < Efcta fk- We can successively apply this argument for all
I > I and show that for all / > / equations (43) and (42) hold. This leads to the equation

(51)
leL leL
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which contradicts the demand constraint. This contradiction proves the lemma. •

For 0 < r < iE, let

C(r) =y . + i—.—, (52)

where k and q are defined in terms of r by

k

^fl + q= r, 0<q< fk+i- (53)
/=!

Similarly, for 0 < r < J?, let

c"(r) =^ ci;—
^ O/ - /j Ck>+i - /jt'+i

where k' and q' are defined in terms of r by

i;//+9' =r, 0< 9'</^,+,. (55)
1=1

Lemma 5 C(r) > C'{r) for all 0 < r < R. Moreover, if C < C, then C{r) > C'{r) for all 0 <
r<R.

Proof: We will prove the first part of lemma by contradiction. We know from Lemma 4 that

0<J<L. (56)
/=1 /=!

Suppose 3 0 < r' < R such that
C{r') < C'{r'). (57)

From Lemma 4, we know fc+1 < fc'+l, where k and k' satisfy

i

+ 9 = o< q<fk+i
1=1

and

k'

53 -\-q' = r', 0 < q' < /jfi+i.
1=1

We will show that the assumption in equation (57) implies that either

(a) C(Ef=. fi) < C'(Ef=i fi)
or

(b)(?(Efi'/i)<c'(Ef^i'//)-
Suppose ^k+1 —f'k+i > Ck>+i —/it'+u then from equation (57) and property (3) of section 3.2

we have

C(E/0<C'(E//) (58)
/=! /=!
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because

h+i 1 1 k+i

6(E/')-<?('•') = _. )-(A+i-?) < ^ '̂(g/')- '̂( '̂)• (59)
where the last inequality follows from C/ - // < C '̂+i - fk>^i V/ > fc' + 1.

Similarly, if < Ck'+i - fl'+i^ f^en from property (3) of section 3.2 we have

C(r') -c(t it) = •̂9>r. -f—9̂ • (®'')
/=1 l^ifc+1 Jk+lf ^k'+l Jk'+l 1=1

where the last inequality follows from C/ - // > Cjt'+i - V/ < /:' + !. Thus, from equation
(57), we have

is k

/=i i=i

We will now show that /' is not system-wide optimum, which shows that the assumption in
equation (57) leads to a contradiction. If (a) is true, let V= k. Otherwise (b) must be true, and
we let /' = ^-f-1. With this notation, we have

C(Zfi)<C'(£fi) (62)
/=i /=i

First note that /' > 1 because (?(0) = C'(0) = 0. Let fi = (/i,...,//',0,...,0) and f2 = (0 ,... , 0,
9h fUv - ' /i)' SI+ Etr+1 fi=R- Etei h =Ete/'+i !i and 0< 91 <fj. From Lemma 4
we have ]C!Li fi ^ I3!=i //> which means that I > /'-f1. Let us consider the following configuration.

/= /l + /2 = (/l 5 ..,/£,)

Note that there are no zeros between /// and gj\{ I = I'+l. The cost incurred by / is

i:^+^+ E A (63)
From equation (62), the first term in equation (63) is strictly smaller than C'(23!Li //)i 2tnd because
/ > I'+l and gi < fj^ the sumofthe second and third termsis nogreater than C {R) —C'(Ya=i fl) =

• Therefore, the total system cost incurred by / is smaller than that of /',
which is a contraxiiction. This completes the proof of the first part of Lemma 5.

We now proceed to prove the second half of Lemma 5. Suppose that C < C. We will first
show that this implies that /i > /{. We already know from Lemma 4 that fi > f{. So suppose
that fl = /i- We first argue that there is some I for which fi>0 and Q < Ci. Suppose otherwise.
Then we have Ci = Ci for all / € L such that // > 0, and by property (1) of section 3.2 and fi = /{
we then get that // = // for all / € L. This, however, contradicts the assumption that C > C.

Consider now any I for which // > 0 and C/ < Ci, with the assumption that fi = f[ still in
force. Let Ii denote {i\fl > 0}. Then 7/ ^ 0. Also recall from Lemma 3 that // > 0 implies fl > 0.
We now argue that we must have // < fl- Suppose not, i.e.,

fl > fl' (64)
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Then, we may show that // > // for i G// asfollows. First, from the K-T conditions for user i GIi
and because // > 0, we have

y = + '
c,-fi (Ci-fiY

1 . a . (65)
Ci-h (Ci - hY '

while, from the K-T conditions for user 0 and because Lemma 3 implies that // > 0, we have

ci-fi^(Ci-nY

= —^ 1 — . (66)
ci-frici-fiy

Because < /i = /{, and by the assumption that /i = /{, we have from equations (65) and (66)
that

;^o _ ^ . fi > I q. . = X* . (67)
Ci-n^ {Ci-ny Ci-Ji{Ci-fiY

Also from the assumption in equation (64) that // > // and equation (64), we get

1 . //
(C,-f,Y

(C, - f',Y

Thus, from equations (66), (67) and (68), we have // > // for t G//.
From the assumption in equation (64)

Ci - fl ^ (C, - //)2 -Ci-fi (Ci - /i)2

Let 7 = ^ ^ ; > 0. If we subtract from equation (65), we get
Ci-ji c/i-Zi oi-yi

(Ci-/i)2 (Ci-/i)

and, using equations (64) and (66), if we subtract from (69), we get

(68)

<7+ (71)
[Cl-fiV (Ci-/i)2 - (Ci-/i)2

Divide equation (71) by equation (70) and simplify

4 <2l±4 <4 (72)
/i"7' + // fl
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where 7' = 7 •(C/ - fi)^. The last inequality follows from that 7' > 0 and // > //. From equation
(72) we have

I •// <fi (73)
Equation (73) holds trivially for all users in /\// because /{ > 0 for all i. Thus, ifwe sum equation
(73) over all i, we get

i-/l<fi (74)

Since 4 > 1from the assumption in equation (64), this is a contradiction. This proves that // < //
for all Z> 1 such that // > 0 and C/ < Ci- This proves that fi > /{ because weargued earlier that
there is at least one link I > 1 such that // > 0 and C/ < Ci, and so the assumption that fi = /(
would lead to the contradiction that

Continuing the proofof the second part of Lemma 5, now assume that there is some f > 0 such
that

C(f) < C'{f). (75)

We will first show that f > /(. This iseasy to see from observing that since /i > f[.
We will now show f > /i. Assume /{ < r < fi. We will show that this implies that f is not

system-wide optimum. Since C'(f{) =c/-j( c!-fi ~ assumption that C(f) <C'{f),
together with the fact that Ci - /( > C2 - /2 > •**> Cl - would imply that C'{fi) > C(/i).
Now, let / = (/i,0,..., 0, gj, ,..., /[), where 0< gj <f\ and // +S] = Efe=2 //• Note that
since /i > /{, the second element in /, /2, is strictly smaller than /2. This implies that

L >• ^ ff

<^7^7. (76)
1=2 ~ 1=2 ~

because and /) < // for all I > 2. Since C'(/i) > C(/i), the total cost incurred by
/ is strictly smaller than C. This, however, contradicts the assumption that f is system-wide
optimum. This proves that f > /i.

We will now complete the proof of the second half of Lemma 5 by showing that equation (75)
cannot hold for any f > 0. From the above result, f > /j. Define k and q by

k

Y,fl + 9= f,Q<9<h+x (77)
/=1

and define k' and q' by

|://+9' =f, (78)
1=1

Note that k > I since f > /i. As shown in the proof of the first part of the lemma, we can show
that C(f) < C'(f) implies that either
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(a.) C(EL ft) < C'(Et. fl)
or

(b)C(Efi'/i)<c'(Efi'/i)- . . .
If (a) is true, let I' = k. Otherwise (b) must be true, and we let I' = fc+1. Note that, since k >

1, we have /' > 1. With this notation, we have

6{j2fi)<C'(£fi) (79)
/=! /=!

We can construct a system flow configuration / = ...,0,^/-, fUv- ,/£) as in the first
part of the proof. The total system cost under / is given by equation (63). Since the first term
is no greater than C(52/=i fi) second and third terms is no greater than
C'{R) — fl) as explained before, the total system cost under / is smaller than or equal to
C. Since C is minimum possible achievable cost, the cost under / is equal to C. However, this
contradicts the uniqueness of system-wide optimum flow configuration because fi > f[ if C < C
as shown before. This proves that C'(r) < C{r), 0 < r < R. m

Proof: {Theorem 2) We consider three cases. The first case is when f = /. In this case the
theorem is trivial, since we may take f = f = f. Repeating the NEP of the stage game at every
stage of the repeated game is an SPNEP for the repeated game in which every player incurs a cost
equal to its cost at the stage game NEP.

In the remaining two cases we assume that /' 7^ /. Think of flow on each link I at the stage
game NEP as a flow vector yi = (0,...,0,//,0,...,0). This flow has an associated cost per unit flow,

j ' By property (3) of section 3.2, this cost per unit flow, /?;, is nondecreasing in LWe can
create another set of flows based on the optimum flow configuration f by filling up fl, I £ L, in
increasing order ofI. The /-th such flow is written as a vector i' = (a{,..., Ol), where I3m=i ®!n =
and for all I e L, x' = Z/Mfi'/'+i. 0,...,0) such that //+ 5/'+i = I3/=i//
9i'+i ^ //'+!• There is a unique set ofa:/'s that satisfies the above conditions.

Let or/, 1 < / < L, denote the cost per unit flow of the flow x'. This is evaluated by taking the
cost per unit flow on link / to be T^® second case is when on < /?/ for all I E L. Suppose we

allocate to user i the fraction ^ of a;/, for all I€L. Call the resulting flow configuration /. The
demand constraint of user i is met, because we have

EET='i' =Ef '̂ =E^='-'- (8»)
leLi'eL R leL R i£L

The overall cost under / is optimum, because the flow on each link under / is the same as that
under f. Also, the cost of user i under / is strictly smaller than its cost at the unique NEP of the
stage game because, first of all

E«1-//<EA-//. (81)
l€L leL

and further, since f'^fhy assumption, the proof of the second part of Lemma 5 showed that
C'{fi) < C(/i), and this implies that ai < so that the inequality in equation (81) is strict for
all i. Thus, the vector of costs under / is strictly Paretodominated by the stage game NEP costs,
strictly in each coordinate. By Friedman's theorem, which was stated in section 2, for discount
factors sufficiently close to 1 there is an SPNEP of the repeated game with cost vector equal to
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the cost vector under /. The overall cost at this SPNEP is optimum and the cost for each user is
strictly less than its stage game NEP cost.

The final case is when there is at least one link I e L for which a/ > /?/. In this case, let Aq
= {I : Qi < )9/}, Bo = {I : oai > /?/}, and Co = {I : ai = /?/}. Lemma 5 says that C{R) > C'{R).
Hence, if Bo ^ 0, then Aq ^ 0.

We will first argue that if / € Bo, then there exists another link V < I in Ao' Suppose not.
Then, this implies that ai > /?/ for all I < L However, this says that fi) = I3!=i Pi •fl <
ai' fI = C'(X)/=i //)» which contradicts Lemma 5. Thus, for each I € Bq, there exists another
V € Ao smaller than /.

Let us describe a mixing procedure between and a;'', where V< /, so that oci' < Pi' < pj^
and < fit. For 0 < u < 1 consider the fiows z^(u) and z '̂{u) defined by

z\u) =(1 - u) •x'+ u•ix'', (82)
fv

z''{u) =(1 - u••i)x' +u•x' . (83)
fv

Note that the total amount of fiow being sent in these fiows does not depend on u, because

Y^zj(u) =(l-u)'fi-hu' ^fr =fj, (84)
leL f '̂

(u) =(1 - u.^)fv +U'fj=h. (85)
Jvl€L

Further, note that the sum of the fiow configurations zj(u) and zl'(u) equals the sum of the fiow
configurations x' and x'', for all 0 < u < 1.

Now, let us define /^[(u) to be the cost associated with z'(u) and fii'(u) to be the cost associated
with z '̂(u). From equations (82) and (83) we have

fif(u) = aj • (1 - u)fi + a// •ufj (86)

and

M/' («) = •(//' - w/f) + oij' ufj . (87)

Since a// < < Pj < Qf, we see that fijiu) is decreasing in u and fif (u) is increasing in u. Since
fv > /p we also observe that

/^f(l) = or// •ff < Pi' •fj < Pj' fj, (88)

while

Hj(0) = O!j-fj> Pj' fj. (89)

Further,
= or///// < Pi>fi> , (90)
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while

= oci'ifi' - fj) + Qjff • (91)
This raises the natural question ofwhether, asu increases from 0 to 1,we first have fijiu) becoming
equal to fj for some u or first have /z/'(u) becoming equal to That one or the other of
these possibilities (or both) must occur as u ranges from 0 to 1 can be seen from equations (88)
-(91). Some algebra from equation (91) shows that if af •fj + a/' • < Pj•fj + /?/' •//' then the
former eventuality occurs first, while ifqj' fj+aii •//« > Pf fj + Pi' •fi' the latter occurs first, and
it is not the case that both occur simultaneously.

For eax:h 1 ^ Bq m increasing order, we may now perform the following procedure. Note that
this procedure is guaranteed to terminate after a finite number of steps with or/ < Pi for all / < /.

(1) Pick the largest I e Aq smaller than I. Such an Vis guaranteed to exist, as argued earlier.

(2) If ckj •fj -b ai> •/// < Pj' ff -H Pi' •//', let u' be such that fijiu') = Pj •fj and ni'{u') < Pi> •//».
Replace the flow configuration a;' by z'(u'). As shown in equation (84), the total amount of flow
in this flow configuration is still fj. The total cost associated to this flow configuration, with costs
still being evaluated based on cost per unit flow on link /, is /i/(u') = Pj •fj- Thus the cost

per unit flow of this flow configuration is equal to pf. We may thus remove / from Bq and put it
in Cq. Likewise, we replace the flow configuration x'' by z '̂{u'). Either /^/'(u') < Pi> •///, in which
casewe keep Vin Aq, or fii'{u') = Pi> •fi*, in which case we remove I' from Aq and put it in Cq.

If aj •fj -f a// •/// > Pi•fi -I- Pi'' fi>, let u' be such that /if(u') > Pj•fj and fjti'{u') = Pf •//» We
replace the flow configuration x '̂ by the flow configuration z' (u'). Since the cost per unit flow of
new flow configuration is /?/', we may remove I' from Aq and put it in Cq. Similarly, we replace the
flow configuration by the flow configuration z'(u'). Since the cost per unit flow of new Jj is still
strictly higher than Pj, go back to (1).

After the above procedure is completed for every / € Bo, every link / € L is either in Aq or in
Co, and thus, we have a new set of flows, JiJ € L, whose cost per unit flow, o;/, is no greater than

ft

Pi. Hence, for the same reason as in the second case, allocating a fraction, of xi, for all / € L,

to user i yields to user i a cost smaller than or equal to its stage game NEP. Again, let / be such
flow configuration.

Suppose C < C. We will show that / yields to each user a cost strictly smaller than its stage
game NEP cost. In order to show this it suffices to show that after each stage of the above procedure
we still have Qi < Pi^where ai is now defined for the flow configuration x^ that results after the
corresponding stage is completed. This may be argued as follows : at any stage the link / under
consideration satisfies / > 2, by the inductive hypothesis that ai < p\ at the end of the previous
stage. If the stage is being carried out with a value of /' > 2 then ai does not change, so there is
nothing to worry about. Thus we may assume that we have V=\ during this stage. Recall that we
always choose V to be the link in Aq with the largest index strictly less than I. Further we choose
/ to be the link in Bo with the smallest index. Thus, each of the links 2,... / —1 must be in Cq. If,

at the end of this stage we have ai = /3i, then we must also have C(^{_i //) = C{Yli=i //)» ^tnd
because / > 2, this contradicts Lemma 5. Thus, after the procedure terminates, qi < pi^ and this
proves that the cost of each user under / is strictly smaller than its stage game NEP cost. We may
now argue, using Friedman's theorem that the statements of the theorem are true in this case also,
exactly as we argued in the second case.

The SPNEP of the repeated game guaranteed by Friedman's theorem in the second and third
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case can be supported by the following strategy profiles : initially every user uses / until exactly
one user deviates from /. If exactly one user deviates at period fc, then staring at period k + 1 other
users use the stage game NEP flow configuration. Then one can see that, if the discount factor
is sufficiently close to 1, any gain at one period will be outweighed by the loss in later periods.
Also, since no user can gain anything by deviating from the second stage, where stage game NEP
is played every period, this is an SPNEP in the repeated game.

4 General Networks

4.1 Model

In this section we consider a network G{V, L), where V is a finite set of nodes and LC V x V is
a set of directed links. We will assume that there is at most one link between each pair of nodes in
each direction. As before we have a finite number of selfish users I = {1,2,...,I}, I > 2, that share
the network, and the demand for user i is denoted by r\ Again, assume that users are ordered in
order of decreasing demand.

A user sends its demand from its source node to its destination by splitting its flow on the
different paths that connect its source and destination nodes. A user is able to decide how to split
its flow as in the parallel links case. An important difference from the parallel link network is that,
in the general network, many paths can come together at some node, share certain links, and split
again at another node. Let Lp be the set of links on path p. The incoming link of path p at node
u is defined to be the link I = (v, u) such that / G Lp^ and the outgoing link of path p at node u is
the link I' = (u, v') such that V€ Lp. We say that path pi and p2 split at node v if their incoming
links to node v are the same but their outgoing links at node v are different, and that path pi and
P2 meet at node v if they both go through node v but their incoming links at node v are different.
The fact that many paths may share some links makes the analysis of the network much harder.
Some of the properties that hold in the parallel link networks and were crucial in the proofs of the
results in section 3 no longer hold for more general networks.

We will first discuss the single source-destination pair case, where each user has the same source
node and the same destination node. We then discuss the multiple source-destination pair case in
the next subsection.

4.2 Single Source-Destination Pair Case

4.2.1 Model and Problem Formulation

We are given a network modeled as a directed graph G = (V, E) with a set 7 = {1,2,...,1}, I > 2, of
users that share the network. Let r* denote user i's demand. All users have the same source node

and the same destination node. We will assume that the total demand of users, denoted by 72, is
strictly smaller than the minimal cut capacity from the source node to the destination node. If this
were not to hold, the static game would be of no interest since every user would have infinite cost
at every NEP.

A path is a sequence of links that leads from the source node to the destination node. Without
loss of generality, we may restrict attention to paths all of whose nodes are distinct. We may do
this because the problem of each user is one of minimizing it cost. If any user sends strictly positive
flow along a path with a loop, it can reduce its cost by removing the flow in the loop. Note that
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Figure 4: Single source-destination pair case.

the paths might not be disjoint, i.e., there might be two paths that sharesome links. Let V denote
the set of paths available from the source node to the destination node, and Lp the set of links on
path p €V. Let P = \V\. Since we only consider paths without loops, P is finite. We will assume
that P > 2.

The users share the P paths available from the source node to the destination node. Each user
splits its own flow over the paths available. Let /j* denote the amount offlow user i sends on path
p. We use the bar notation simply to avoid confusion between path flows and link flows. Then,
we must have fp>0 (nonnegativity constraint) and Ylpev fp ~ {demand constraint). Note that
the parallel link case is a special case of the single source-destination pair case. As in the case of
parallel link network, Ci denotes the capacity of link /, f} denotes user Vs flow on link I and //
denotes the total flow on link /.

User t's performance measure is given by thesame cost function used in the parallel link network
case, i.e., J'(/) = = Dcl// * where Ti{fi) isgiven by equation (1). Again since
we are faced with selfish users, we have a noncooperative game played by users that attempt to
minimize their own costs.

4.2.2 Existence of SPNEP that yields the optimum system cost

The first thing we investigate is the existence of an NEP in the stage game. This is guaranteed
by the result in [18] that was described in section 2. Kuhn-Tucker conditions for an NEP can be
written as follows : for every i € /, there exists a set of Lagrange multipliers {A|,)ue v such that,
for every link (u, v) G L:

fL>^=^K = ^L(fuv) + At
/:v = 0=4^At</C(fuv) + At (92)

where /fi„(fuv) = ^r^Li^uv)- See the paper of Orda et al. [16] for more details, if necessary.
' tlV

Uniqueness of the NEP has been proven for only a few special cases. However, the uniqueness of
the system flow configuration that achieves the minimum total system cost can be easily seen by
observing that this is just the solution to a convex optimization problem. Therefore, the minimum
total system cost, C, and the corresponding system flow configuration are well defined.

Suppose f is the system flow configuration that achieves the minimum total system cost, C'.
Throughout this section, we will assume that /' is such that there are two paths used under f
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with diflferent cost per unit flow, ]C/eLp Ct-j' • technical assumption alluded to in the
abstract.

We will first show the existence of a system flow configuration that is an NEP in the repeated
game with discount factor sufficiently close to 1, and achieves the total system cost, C. Then, we
will show that any such system flow configuration is an SPNEP.

Theorem 3 If the discount factor in the repeated game is sufficiently close to 1 there is an NEP
in the repeated game that achieves the minimum total system cost, C.

In order to give the proof of the theorem, we need the following.

Lemma 6 Given a fixed total demand R < C, where C is the minimal cut capacity from the source
node to the destination node, there exists a uniform bound on the total system cost'at any stage
game NEP regardless of distribution of demands among any finite number of users.

Proof:

In order to show the existence of such a bound it suffices to show that there exists € > 0 such

that, for any arbitrary set of users with an arbitrary distribution of demands among the users with
total demand i? < C, at any stage game NEP / of the routing game corresponding to these users
with these demands, we have Ci - fi > € for all I € L. We will show the existence of such e by
contradiction.

Let M be the maximum number of links on any path and recall that P denotes the number of
paths available from the source node to the destination node. Order the paths in some way from
1 to P.

Suppose there exists no such c > 0. Then, for any € > 0, there exist a set of finitely many users
and a distribution of demands among these users with total demand R < C and some link I € L
such that, at some stage game NEP for the routing game corresponding to these users with these
demands, we have Q- fj < €. Let user i be such that fj > 0. Such a user must exist ifc < min/ Ci.
From the K-T conditions at this NEP, see equation (92), we have A' > ^, where A' is A5 —AJj in
the notation of equation (92) and 5 and D are source and destination nodes, respectively. This is

ji
because A5 - A^ > Cj-Jj ' which is easily seen from equation (92) and the existence of
a path from 5 to D going through / along which user i sends strictly positive flow, which must be
the case because fj > 0. From the K-T conditions, for any p € P,

y ^ +—-—

^ r, ^ f, V-. Ji,

1
> A* > - (93)

c

This means that for all p € P, there exists / € Lp such that

1 R 1
+ TTT TTo > 777 (9^)Ci-fi (Ci - fi)^ ' M6

Let be the positive solution of the following quadratic equation.

26



It iseasy to see that the above equation hasonly one positive solution. Equation (94), now, implies
that

Ci-fi<S^ . (95)

Note that (5^ 0 as € 4 0. The set of all links that satisfy equation (95) is a disconnecting set
because there is no path available from the source node S to the destination D after removing all
such links. Denote this disconnecting set by L.

Let be the positive solution of

^ -y-fl=0
Mil

The importance of is that if a path p with positive flow meets another path p at some node v
and path p has a link I such that Ci —fi < 6^ between S and u, then there is a link Jon path p
between 5 and t; such that Cj- fi< This follows similarly as in equation (93). Again, <5^ 4- 0
as 4 0. Therefore, as € 4 0, <5^ 4. 0 because <5^ i 0 as € 4- 0. Now, we can see that if 1
<m< MP, is the positive solution of the equation

-y-R = Q, (96)
MS

then as €4, 0, <5"" 4 0, 1 < m< MP. Note that c< <5^ < <5^ < •••< <5^^.
We will now associate a link, which will be denoted by /p, to each path p £ P. Initially, we

will select Ip for each p € P to be the link in L that is closest to the destination node along path
p. Each Ip may be updated throughout the procedure described below. Let = {Ipi p £ P} and
Lj = n Lp for all pe P.

Let m = 2 and execute the following procedure :

(*) Let Lp be the set of links in Lp that lie between the source node 5 and lp along path p, not
including lp. If for every path p with strictly positive flow we have LpflL^ = 0, then the procedure
terminates and we are done.

Otherwise, pick a path p GP with strictly positive flow for which LpOL^ ^ 0. Let Pp = {p' \
Ipf € ip n L^}. For each path p' € Pp, find a link Ip> between lp' and the destination node D, such
thatCjfj, < S"^. The existence of such a link is guaranteed by that lp lies between Ipi and the
destination node D along path p and that fp > 0. Let L' = {lp \p € P \ Pp] U{/p | p' € Pp}. Let
the new lp for each p GP be the last link in L' along the path p. Let the new = {lp \p e P}.
Increment m by 1 and return to (*).

Note that every time we perform procedure (*), lp for some p £ P gets at least one link closer
to the destination node D along path p. Thus we can repeat (*) at most (M-l)P times before the
procedure terminates, because there are at most MP links along all P paths. When the procedure
terminates, we have such that, for each path p £ P with fp > 0, fl Lp = 0. Since for each
p £ P, when we update lp at the end ofthe procedure we pick the link in L^ that is closest to the
destination node D along path p (and this was also true at the beginning of the procedure), one
can see that each path with positive flow goes through exactly one link in L^, and the total flow
on links in L^ must therefore equal the total demand of users R. Moreover, since (1) cannot be
repeated more than (M - 1)P, every link in L^ satisfies C/ - // < < 6^^, because P >
2.
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From the beginning of the proof, we know that if e is sufficiently small, then 6^^ <
We will show that this leads to a contradiction. If 6^^ < then we get "" fi) ~
ICieL' Ci - R < P ' < P• = C- R. This is, however, a contradiction because C is the
minimal cut capacity and no greater than E/eLi

•

Proof: (Theorem 8) Let u,- denote the reservation cost of user i. In order to show the existence
of such an NEP, we will first show that the reservation value of each user is greater than or equal
to ^ •C. We call ^ •C user Vs cost of proportional sharing.

Let r~* denote R —r'. Since the reservation cost denotes the worst cost a user can guarantee
itself when the others attempt to punish it, we consider a game where one user, denoted -i, with
demand r~' attempts to punish user i. Now suppose that user —i splits itself into n identical users
with demand Take an NEP / of the game with user i and these n identical users. Since all
user i does at the NEP is take away some capacity from each link it uses, we may reduce C/ by
fj(n) for eaoh I € L and consider the resulting network with n identical users. From Theorem 5 of
[16] each of the identical users in this network uses the same set of paths. Let V(n) be the set of
paths used by user i at the NEP and Voin) the set of paths used by each of the other n identical
users. For any p ^V(n)^ let

£ C' - /'(") w-/'(»))' •
By the Kuhn-Tucker conditions for an NEP, this is the samefor all p € P(n). We also have, by the
Kuhn-Tucker conditions, that for every p € P,

//W

For any p G Voin) let

£ C, - h(n) (C, -

"£ C' - /'(») (Ci - Mn)V '
By the Kuhn-Tucker conditions for an NEP, this is the same for all p GVo(n). We also have, by
the Kuhn-Tucker conditions, that for every p G P,

£ C, - Mn) +(C, -Mn)y -
In each of equations (97) and (99) the sum of the first terms is the cost per unit flow along the

corresponding path. From the previous lemma, because the total system cost is bounded as n goes
to infinity, we can see that the sum of the second terms of the RHS in equation (99) or the LHS of
(100) goes to zero, i.e., for every p GP,

lim»-»<» {C, - //(n))2

Since the total system cost is bounded from the lemma, the sequence (A°(n), n > 1) hasa converging
subsequence, i. e.

lim X°(nk) = A* (102)
k-¥oo
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for some subsequence [rik^k > 1). Combining equations (100), (101), and (102), we see that, for
every jp € "P,

while, if we combine equations (99), (101), and (102), we see that for p € Po we have

The cost per unit flow along a path p is Ci-fi' average cost
per unit flow of user i along any path that it uses is at least as large as the average cost per unit
flow of the Uk identical users into which user —i (the coalition of the usersother than-user i) splits
itself, in the limit as k oo. As the total system cost in the limit is no smaller than C, the cost
of user i is greater than or equal to that of proportional sharing. This proves that the reservation
cost of user i is greater than or equal to the cost of proportional sharing. This gives rise to three
diflferent possible scenarios.

(1) Every user's reservation cost is strictly greater than that of proportional sharing.

(2) Some users have reservation cost strictly greater than that of proportional sharing, and some
users have reservation cost equal to that of proportional sharing.

(3) Every user's reservation cost is equal to that of proportional sharing.

In case (1), the existence of an NEP that achieves the minimum total systemcost follows directly
from the folk theorem, which was described in section 2, see [6]. Consider the following strategy
profile in the repeated game. Initially each user i uses the flow configuration ^ until
exactly one user deviates at some period k. If exactly one user deviates at period A:, then starting
at period A: + 1, other users use a flow configuration that yields to user i, for its best response, a
cost of Vi- Then, it is easy to see that, if the discount factor is sufficiently close to 1, no user has
an incentive to deviate from / = (/^, ...,/^), which we call proportional sharing.

In case (3), since any NEP in the stage game Pareto-dominates the reservation cost vector and
the total system cost at the stage game NEP cannot be smaller than C, the stage game NEP
achieves the total system cost C. Repeating a stage game NEP in each period is an NEP, in fact
an SPNEP, in the repeated game.

Consider case (2). Let A be the set of users whose reservation cost is equal to that of proportional
sharing, and let B be the complement, I\A. Recall the technical assumption we made that, under
/', two paths exist that are used and have different cost per unit flow. For any user k, let =
(Pi» —j^Pq) be the flow configuration under proportional sharing, where g^ denotes the amount of
flow user k sends on path p, and Pq is the number of paths used under f by the global user 0
that attempts to minimize the total system cost. Without loss of generality assume that paths are
ordered by increasing cost per unit flow, i.e., Oi-fi ^ ^ Ci-Ji' Suppose user i is
in B and user j is in A. Now, consider the following flow configurations of user i and user j.

9' = (p1 -€»•••> ^Po + ^)

and
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Since the cost per unit flow of path 1 is strictly smaller than that of path Pq from the technical
assumption, the cost yielded to user j by is strictly smaller than its proportional sharing cost,
which is equal to its reservation cost. Also, since the reservation cost of user i is strictly bigger
than that of proportional sharing, if € is sufficiently small, then the cost yielded by g* will still be
strictly smaller than its reservation cost. For every user in A this can be done with some user in
B. Thus, we can find a system configuration that yields to every user a cost strictly smaller than
its reservation cost, while the overall cost is optimum. By the folk theorem, this proves that if the
discount faotor is sufficiently close to 1 there is an NEP in the repeated game for which the overall
cost is optimum. •

Let us first define the rational feasible cost region to be the subset of the feasible cost region
that Pareto-dominates the reservation cost vector. We will now define full dimensionality. Suppose
V* is the rational feasible cost region. Then, we say that V* has full dimensionality if there exists
V6 V* and e > 0 such that all v' for which | v,- —v,- |< e for all i G / are in V*. This means that
the interior of V* is nonempty in R}.

We will now show that any NEP of the repeated game is also an SPNEP of the game by showing
that full dimensionality holds.

Theorem 4 If the discountfactor is sufficiently close to 1, there exists an SPNEP in the repeated
game that achieves the minimum total system cost, C.

Proof: We need to show that the rational feasible cost region has nonempty interior. We need
to look at two cases.

(1) Every user's reservation cost is equal to that of proportional sharing.

(2) Some user's reservation cost is strictly greater than that of proportional sharing.

In case (1), the stage game NEP achieves the minimum total system cost C, and repeating a
stage game NEP is obviously an SPNEP in the repeated game.

In case (2), we know that there is a system flow configuration that yields every user a cost
strictly smaller than its reservation cost, from the proof of Theorem 3. Let one of such system flow
configurations be / and the associated cost vector v. Further, from examining the proof ofTheorem
3, we see that there is an open neighborhood of cost vectors whose intersection with the hyperplane
of constant total cost equal to the optimum cost consists entirely of feasible cost vectors that Pareto
dominate the reservation cost vector (i.e. rational feasible cost vectors). Since the rational feasible
region is convex, we see that there is an open neighbourhood in the rational feasible region. This
means that the full dimensionality condition holds, and so, by the folk theorem, if the discount
factor is sufficiently close to 1 there will be an SPNEP for the repeated game that achieves optimum
total cost.

We now describe the nature of the strategies that result in such an SPNEP. Since the cost
vector corresponding to / Pareto dominates the reservation cost vector, we may in fact find an
open neighbourhood in the rational feasible region centered around a vector v that satisfies for
each user i, u,- > u, > u,-. Also, for each i let f*(i) denote the system flow configuration that yields
cost vector u*(i) = (ui —e,..., u,_i - e, v,, v,+i - e,..., ui - e) such that each user j's cost in
t;*(t), is strictly greater than Vj. Also, let /(i) denote the system flow configuration that yields to
user i its reservation cost when it best responds. Then, consider the following strategy profile in
the repeated game.
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(X) Initially users use / until exactly one user deviates from /* at some period k. If exactly one
user i deviates at period then go to (A^i).

(X,) Users play /(i) for N periods. If every user cooperates for N periods, go to (Vf). If exactly
one user j deviates at some period A;', then go to (Xj).

(li) Users play /*(«) in each period. If exactly one user j deviates, then go to (X,).

The punishment period N above is chosen such that, for all i, + N - Vi >
(iV+1)•Uj, where denotes the flow configurations ofall users otherthan user i under /*(i)-

Then, for a discount factor suIRciently close to 1, one can showthat if user i deviates from /, i.e.,
(X), its average cost will be bigger than C Also, any user who deviates from the punishment
period, i.e., (X,), gets a bigger average cost greater than the average cost it would receive if it
cooperated in the punishment stage. The intuition behind this is that any gain by some user i at
any period will be outweighed by a penalty imposed on it during the N punishment periods plus
the penalty imposed on it forever after the punishment periods. The details are part of the proof
of the folk theorem, see [6], pp. 158 -160. Thus, playing / every period leads to an SPNEP in the
repeated game. •

4.3 Multiple Source-Destination Pairs Case

4.3.1 Model and Problem Formulation

Figure 5: Multiple source-destination pairs case.

In this subsection, as in the preceding subsection, we consider a network with a set of users, I
= {1,2,...,1}, I > 2, but now different users may have different source-destination pairs. User i's
demand is again denoted by r* and the capacity of link I is denoted by C/. Each user splits its
demand among the available paths from its source node to its destination node. The performance
measure of user i is given by the same cost function J*(/) = ' ^'(//)» where
Ti{fi) is given by equation (1). User i's flow configuration can be written similarly as in the single
source-destination pair case. However, one has to be careful with notation since there are different
paths available for different source-destination pairs. Again, since each user attempts to minimize
its own cost, the problem is modeled as a noncooperative game.
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The existence of an NEP for the stage game is guaranteed by the result due to Rosen [18] which
was described in section 2. However, the uniqueness of the system flow configuration that achieves
minimum total system cost hasn't been proven yet. Rather than attempting to prove or disprove
such uniqueness, we will show that even when there exists a unique system flow configuration that
achieves the minimum total system cost, C'^ and the full dimensionality condition is satisfied, there
may not exist an NEP of the repeated game that achieves C, however close the discount factor is
to 1.

0 d\d^

C.= 2000
Cp2000

Figure 6: Multiple source-destination pairs case.

Consider the network with two users as shown in Figure 6. The reservation costs of user 1
and user 2 are 4.326 and 0.6416, respectively. Also, if we consider a global user who attempts to
minimize the overall system cost, the unique system flow configuration that minimizes the total
cost is / = (/i, /2, /a, /4, /s, /s) = (1.5,1.5,38.5,0,0,4.857), which yields costs 3.81 and 0.944 for user
1 and 2, respectively. It is easy to see that this is the unique system flow configuration that achieves
C because in order for any system flow configuration to be optimum, it cannot send any flow on
link 4 or link 5. Notice that even though the total system cost is smaller, the unique system-wide
optimum flow configuration, /, requires user 2 to incur a cost that is greater than its reservation
cost. Therefore, there exists no NEP of the repeated game that achieves C and yet Pareto-
dominates the reservation cost vector. This proves that it is not always possible to find an NEP
of the repeated game that achieves the minimum total system cost in multiple source-destination
pairs case.

Let us now consider the system flow configuration (/\/^) = ((1.33,1.33,35.368,3.302,0,3.302),
(0,0,3.428,0,3.428,1.429)) which yields = 4.1839 and = 0.5772 for user 1 and 2, respectively.
It is easy to see that 3 € > 0 such that all J with | —J' |< € for i 6 {1,2} are in the rational
feasible cost region. This proves that the above example satisfies the full dimensionality condition.

Suppose that we are given a network with a finite number of users. Let 5 = {si, •••,Sm) be the
set of source-destination pairs, and h the set of users that have source-destination pair sjt- Class
user A: is a user whose source-destination pair is Sk and which has demand Each
class user can be considered to represent the coalition of the users in the original network having
a given source-destination pair. We will now consider the stage game NEPs of the network with
only class users. Let C be the smallest among the total system costs achieved by such NEPs.

Theorem 5 There is an NEP in the repeated game with the original users that achieves overall
cost C.

Proof: Suppose / is a system flow configuration with class users that achieves C, Then, given
the flow configurations of other class users, class user k cannot reduce its cost by changing its own
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flow conflguration. Thus, from class user fc's point of view, all that the other class users do is to
take away someof the capacities from each link used by them. Thus we are now back to a problem
of routing with a single source-destination pair, with link /'s capacity reduced by the total flow of
the other class users, so that it is now C/ - //"*. Thus, if the cost incurred by class user k at the
NEP is denoted Ck then, from the proofof Theorem 3, the reservation cost of each user i of class k
in the original game is nosmaller than the cost user i would incur when it used a flow conflguration,

and this would be -^—Ck' The existence ofan NEP ofthe original repeated game that
^class ^class

achieves a total system cost of C now follows similarly as in the proof of Theorem 3. •

An interesting question now would be whether C is the smallest total system cost that can be
achieved by any NEP or if there is an even smaller cost achievable by some NEP. It. proves to be
very difficult to characterize the set of NEPs that achieve the minimum total system cost among
the class user NEPs. However, it seems that in most cases there exists an NEP for the game among
the original users that achieves a smaller cost than the minimum among the NEP costs with class
users.

t^=:48.9

0 Di,Ih,&D

Cj=2000 0=2000

/2=|3 =2.-f2W

Figure 7: Multiple source-destination pairs case.

For an example of this, let us look at the network in Figure 7. There are three users, and user
2 and 3 have same source-destination pair and same demand while user 1 has a different source-
destination pair. If we consider a global user who attempts to minimize the overall system cost, the
unique system flow configuration that yields the minimum total system cost C is f = (/{,...,/6)
= (1.5,1.5,47.4,0,0,4.857). Note that /' requires users 2 and 3 to use link 6 only, which has much
higher cost per unit flow than path along link 3 and 5. Now, let us investigate the network with
class users. Suppose class user 2 represents users 2 and 3. The reservation costs of user 1 and
class user 2 are 4.778 and 0.5963, respectively. The minimum cost that is achievable among the
NEPs in repeated games with class users can be shown to be 5.181 and the corresponding system
flow configuration is /= (/\/^) = ((1.2765,1.2765,44.15,3.4735,0,3.4735), (0,0,3.18,0,3.18,1.677)).
Now, note that both links 4 and 5 are used in /. Let us go back to the original game now.
Suppose users 1 and 2 use flow configurations (0,0,48.9,0,0,0) and (0,0,1.76425,0,1.76425,0.66425)
respectively. Then, user 3's best reply is (0, 0,1.21425,0,1.21425,1.21425), which yields a cost
0.299 for user 3. Since user 2 and 3 are identical, the reservation cost of each user 2 and 3 is
greater than orequal to0.299. Repeating / = (/\ /^, /^) = ((1.2765,1.2765,44.16,3.4635,0,3.4635),
(0,0,1.585,0,1.585,0.8435), (0,0,1.585,0,1.585,0.8435)) yields a cost 4.579, 0.299, and 0.299 for users
1, 2, and 3, respectively, and a total system cost of 5.177. Hence, this is an NEP that achieves
a total system cost smaller than 5.181. Note that this decrease in the total system cost comes
from the reduction in the flow on link 4 and 5. This phenomenon is because users 2 and 3 can
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punish each other, and the presence of this threat drives the users to operate at an NEP closer to
the system-wide optimum point. This proves that in some cases there is an NEP that achieves a
smaller total system cost than the smallest NEP cost with class users.

5 Conclusion

Due to the steady increase in the demand for bandwidth, it is becoming increasingly important
to find routing schemes that use resources efficiently. Since IPv6 allows routers to decide to some
extent which path their packets will take, it is crucial to understand how network access providers
will interact with each other given such capabilities. Because this is essentially a situation with
selfish users who attempt to minimize their own costs, it is appropriate to model.the network
routing problem as a noncooperative game, where the agents playing the game are thought of as
the network access providers. If the strategies of the users are such that no user finds it beneficial
to deviate unilaterally, it is natural to believe that this represents an equilibrium situation for the
network. The concept of an NEP captures exactly this idea. NEPs are, however, not necessarily
efficient since users are interested in optimizing their own costs but not the total system cost.
Since the network access providers will typically interact with each other several times before the
structure of the game they are playing changes significantly, it is natural to investigate the problem
of finding an NEP in the repeated game that achieves the system-wide optimum cost.

In this paper we have shown that in parallel link networks, there always exists an NEP that
achieves the system-wide optimum cost and yet yields a cost for each user that is no greater than
that of the unique stage game NEP. Further, this NEP is subgame-perfect (SPNEP), i.e., the
strategies involved result in an NEP in every subgame of the overall game. This means that the
strategies involved are based on credible threats and incentives. In general networks where every
user has same source and destination nodes, we again show there exists an SPNEP that achieves
the minimum total system cost, assuming that the network satisfies a mild technical condition.
However, the existence of an SPNEP that not only achieves the minimum total system cost but
also yields eaoh user a cost no greater than that of any stage game NEP is still an open problem in
this case. In more general networks where different agents have different source-destination pairs,
we have shown that it is not always possible to find an NEP that achieves the system-wide optimum
cost even when the full dimensionality condition holds. This is due to the fact that in order to
achieve the minimum total system cost, some users are required to incur costs greater than their
reservation costs. We have proved that there is an NEP that achieves the smallest cost among
the NEP costs with class users. This, however, may not be the best one could do. We have given
an example where there exists an NEP that yields a smaller total system cost than the smallest
among the NEP costs with class users. This shows that it is not always good enough to consider
the network where each source-destination pair is represented by a class user. More work needs to
be done on characterizing the NEPs that achieve the smallest total system cost in general network
with multiple source-destination pairs.
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