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Abstract

In this paper, vision theory for Euclidean, spherical and hyperbolic spaces is studied in a
uniform framework using differential geometry in spaces of constant curvature. It is shown
that the epipolar geometry for Euclidean space can be naturedly generalized to the spaces of
constant curvature. In particular, it is shown that, in the general case, the bilinear epipolar
constraint is exactly the same as in the Euclidean case; also, there axe only bihnear, trilinear and
quadrilineaur constraints associated with multiple images of a point. Differential (continuous)
case is also studied. For the structure from motion problem, 3D structure can only be determined
up to a universal scale, the same as the Euclidean case. Approaches are proposed to reconstruct
3D structure with respect to a normalized curvature.

Key words: space of constant curvature, spherical space, hyperbolic space, computer vision,
epipolar constraint, motion recovery, structure from motion, absolute geometry.

1 Spaces of Constant Curvature

Spaces of constant curvature are Riemannian manifolds with constant sectional curvature. In
differential geometry, they are also referred to as space forms. A Riemannian manifold of constant
curvature is said to be spherical, hyperbolic or flat (or locally Euclidean) according as the
sectional curvature is positive, negative or zero. Geometry about spaces of constant curvature is
also called absolute geometry [1], due to one of the co-founders non-Euclidean geometry: Janos
Bolyai.

Not until Einstein's general relativity theory, non-Euclidean geometry, or Riemannian geometry
in general, is just a pure mathematical creation rather than geometry of physical spaces. In general
relativity theory, the physical space is typically described as a (3 dimensional) Riemannian manifold
(with possibly non-zero curvature). In such a space, light travels the geodesies of the manifold
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(corresponding to straight lines in the Euclidean case). Locally, the curvature of a Riemannian
manifold is approximately constant. Thus the study of vision theory in spaces of constant curvature
will help understand vision problems in general Riemannian manifolds.

In this paper, we study vision theory in 3 dimensional spaces of constant curvature, as a natural
generalization of the vision theory in 3 dimensional Euclidean space. In particular, we study vision
in spherical and hyperbolic spaces since the Euclidean case has been well studied. On the other
hand, the Euclidean case will always show up in discussion as a special (limit) case of the general
theory.

Geometric properties of n dimensional space of constant curvatures have been well studied in
differential geometry [2, 3, 9] (as an important case of symmetric spaces). In the rest of this
section, we reviewsome of the main results which are important for studying vision.

1.1 Characteristics of Spaces of Constant Curvature

In this section, we characterize 3 dimensional spaces of constant curvature. In fact, most of the
results directly follow from general results about n dimensional spaces of constant curvature, in
Kobayashi [2, 3] and Wolf [9].

The next theorem following from Kobayashi [2] (Theorem 3.1 Chapter V) characterizes the 3
dimensional space of constant curvatures:

Theorem 1 (Three Dimensional Spaces of Constant Curvature) Let (2:1,3:2,2:3,2:4) he the
coordinate system o/E'^ and M be the hyper-surface o/R^ defined by:

+ a:! + ^ ®nonzero constant). (1)

Let g be the Riemannian metric of M obtained by restricting the following form to M:

dx\ + d2:2 + dx\ + r dx\.

Then

1. M is a 3 dimensional space of constant curvature with sectional curvature l/r.

2. The group G of linear transformations of E^ leaving the quadratic form 2:5 + 2:2 + 2:3 + rx
invariant acts transitively on M as the group of isometries of M.

3. If r > 0, then M is isometric to a sphere of a radius y/r. If r < 0, then M consists of two
mutually isometric connected manifolds each of which is diffeomorphic with E^.

Let Q be the 4x4 matrix associated to the quadratic form defining M:

The isometry group G of M is then given as a subgroup of GL(4, E):

G={seR^'<''|s^Qs = <3}. (2)



For an element ^ € <j, it has the form:

with W € y € z € w eR and the conditions:

W'̂ W + r •zz^ = /s, W^y + r •tyz = 0, y^y r - = r. (3)

It follows that the Lie algebra 0 of the group G (as a Lie group) is the set of the matrices of the
form:

(4)

where A 6 6 € R® and c € R^ satisfy the conditions:

A^ + A= 0, 6+r-c=0. (5)

The isotropy group H of G which leaves the point o = (0,0,0,1)^ € M fixed is isomorphic to
0(3):

?)•
As a result, the manifold M is identified with the homogeneous space G/H, In fact, the or-
thonormal frame bundle of M is isomorphic to G as a principle H bundle, Kobayashi [2].

Let m be the linear subspace of the Lie algebra 0 of G consisting of matrices of the form:

(7)

with 6,c € R^ and 6 + rc = 0. Let f) be the Lie algebra of i? as a subspace of 0 consisting of
matrices of the form:

(-) e R^""^ (8)

with A e R^^^ and + A = 0. Then we have a canonical decomposition:

fl = f) + m. (9)

It is direct to check the following relations between the subspaces hold:

[f),m]Cm, [m,m]Cf) (10)

where [•,•] stands for Lie bracket. Let f) be the vertical tangent subspace of G and m be the
horizontal tangent subspace. Then this decomposition gives a canonical connection on the
principle bundle G{G/H^H) (Theorem 11.1 of Chapter II, Kobayashi [2]) which induces constant
sectional curvature 1/r on G/H = M.



The space M is a symmetric space with the symmetry $o of M at the point o = (0,0,0,1)^
given by:

So'. M -> M

(^1} ^2? ^4) { ®lj ®3j ^4) •

Obviously, si = Id[M). Due to Kobayashi [3] (Theorem 1.5 of Chapter XI), this induces a (sym
metric) automorphism cr on G such that H lies between G„ (subgroup of G fixed under a) and the
identity component of G^.

Denote the projection from G to G/H as tt and Let exp(-) be the exponential map from g to
G. Then according to Kobayashi [3] (Theorem 3.2 of Chapter XI), we have:

Theorem 2 (Geodesies in 3D Spaces of Constant Curvature) Consider the 3 dimensional
space of constant curvature M = G/H as above. For each X € m, 7r(exptX') = (exptX) - o is a
geodesic starting from 0 and, conversely, every geodesicfrom o is of this form.

As we will soon see, this theorem is very important for modeling and studying vision in the spaces
of constant curvature.

Let T be the subset of G consisting of all the matrices of the form exp(X') with A e m. Then
T corresponds to transvection on M (see Kobayashi [3]), an analogy to the translation in the
Euclidean space. Notice that in general T is not a subgroup of G (although it is in the Euclidean
case) and its representation depends on the base point. Naturally, the subgroup H of G corresponds
to rotation on M. As in the Euclidean case, for a "rigid body motion" on M, it is natural to
consider the rotation is in the special orthogonal group 50(3) instead of the full group 0(3). One
of the reasons for only considering 50(3) is that it preserves the orientation of the space.

1.2 Euclidean Space as a Space of Constant Curvature

Theorem 1 requires the curvature parameter r € K \ {0} hence only the spherical and hyperbolic
spaces were considered. However, the Euclidean case can be regarded as the limit case when r goes
to infinite, i.e. the curvature l/r goes to zero.

When r = 00, a point in which satisfies the quadratic form (1) always has the form
{xi,X2,X3,1)^ € E^. This is just the homogeneous representation of the 3 dimensional Euclidean
space E^, see Murray [7]. From (3), we have = 1, z = 0, W^W = I3 and y € E^. Thus the
group G is just the Euclidean group E{d). In particular, the special Euclidean group SE{3) with
elements:

•(??) >4X4
(11)

with R 6 50(3) and p € E^ is a subgroup of G = £"(3). SE(Z) then represents the rigid body
motion in M = E^.

When r = 00, the Lie algebra se(3) of SE(d) or e(3) of E(3) then has the form given in (4) with
the condition c = 0. In robotics literature [7], an element this Lie algebra is usually represented as:

«=(o 0'®'"



where a;, u € and Co is the skew-symmetric matrix associated with uj = (u;i,a;2,a;3)^:

0 -W3 (02

W3 0 —u

—(02 foi 0

According to Theorem 2, the geodesies in are given in the form:

S) =(o 0)'^"
This is exactly the straight line in in the direction of v.

From the above discussion, the Euclidean space can be treated as a limit case of general spaces
of constant curvature given in Theorem 1. Because of this, the vision theory for Euclidean spax:e
should also be a limit case of vision theory for general spaces of constant curvature.

2 Camera Motion and Projection Model

Based upon the mathematical facts given in the preceding section, we are ready to study vision in
the spaoes of constant curvature. Similar to the Euclidean case, wefirst need to specify the (valid)
motion of the camera and the projection model of the camera, i.e. how the 2 dimensional image is
formulated in spaces of constant curvature.

First notice that, as in the Euclidean case, the transvection set T of the isometry group G acts
transitively on a space M of constant curvature. Then for any g there exists gt^T such that
gr^{g{o)) = o, i'C. g^^g fixs the origin 0. So g^^g = gh ^ H, the isotropy group of 0. It then
follows that the group G is equal to G = TH. This is the so-called Cartan. decomposition. By
rigid body motion in spaces ofconstant curvature, we mean the connected subgroupof G which
preserve the orientation of the space M. That is, the rotation group H is just 50(3) (the subgroup
of 0(3) which is connected to the identity element). We still use G to denote the group of rigid
body motion:

G = TH with He 50(3).

Assumption 1 The motion of a camera in spaces of constant curvature is the group G of rigid
body motion.

A point 9, in the space M of constant curvature, can be represented in homogeneous coor
dinates as g = (gi,g2) 93? 94)^ € E^ which satisfies the quadratic form:

9i + 92 + 93 + rql = r

with l/r the sectional curvature of M. Then under the motion g{t) e G,t € [to,tf] C E of the
camera, the homogeneous coordinates of the point g (with respect to the camera frame) satisfy the
transformation:

9(0 =9(^9(^0). (15)

Notice that, with this representation, the point o = (0,0,0,1)^ € E'* is always in M. We then
call the point o the origin in the homogeneous representation of M. It is natural to assume that

U3= \ u}^ 0 -wi I € (13)



Assumption 2 The optical center of the camera is the same as the origin o in the homogeneous
representation of M.

According to Theorem 2, any geodesic connecting a point q = (qi,q2i 93, € M to the origin
o has the form: q = (exp tX) •o for some t € K, A" € m. Without loss of generality, we may assume
X has the form:

^=(-6°/r
for some unit vector 6 e ||&|| = 1. It is then direct to check that:

,=(exptx).0=(g;;)3') (;) =(
for some real scalar functions /(r, t),5r(r,t),/ii(r, t) and h2{r,t) of r and t (the explicit expressions
of these functions are given in the next section). Thus the unit vector 6 is equal to:

. (9i,92,q3f , .
/"^ I 2 I 2* \ /

V9i + Q2+%

This is exactly the unit tangent vector of M at the origin o. In this way, we may identify the
tangent space To{M) of M at o to the subspace m by:

: To(M) -¥ m

66T„(M) J)6m.
Under this identification, the exponential map exp : To{M) M is given by:

exph = (exp<^(6)) •0, 6 € To(M).

In general relativity, it is assumed that

Assumption 3 In a Riemannian manifold M, light always travels the geodesies with constant
speed.

Then from previous discussion, the light from q = (^i, 92? 93} 94) 6 M to the origin o has the
direction 6 GTo{M) given by (16). In homogeneous coordinate, the vector h can be represented as

= (91} 92} 93)^ €

which only keeps the information of the direction of the light from 9. We may assume that

Assumption A In a Riemannian manifold M with the optical center at o, the image of a point
q ^ M is the directionof the tangent vectorat To{M) which corresponds to the geodesic connecting
q and the optical center o.



Then in the case of the space M of constant curvature, if the space M is represented by the
homogeneous coordinates as above, the image of a point q = (9i,92j93>94)^ € M is simply given
by X= A~^(gi, 93)^ € where A€ K+ and x € Define the projection matrix to be:

/ 1 0 0 0 \

P = 0 1 0 0 €

V0 0 1 0/

We then have the relation:

Ax = Pq. (17)

We call the scalar Athe scale of the point q with respect to the image x. The scale Athen encodes
the depth information of the point q in the scene.

Assumptions 1, 2, 3 and 4 specify the camera motion and projection model for a vision system
in spaces of constant curvature. They give a natural generalization of the model of perspective
and spherical projections in the Euclidean case (see [4] for a comparison).

3 Epipolar Geometry in the Spaces of Constant Curvature

In this section, we study the relation between the images of a point q £ M before and after a rigid
body motion of the camera. We know that the motion of the camera can be expressed in the form:

9 = 9t'9h, 9t^T^gheH.

The transvection part gt and rotation part gn respectively have the forms:

g. =expX=(^Yr ^), J). X€m,fi€50(3). (18)
We will later give the expressions of W e y 6 ^ € R^ and tu GR in terms of X.

Denote the images of g = (91, 92j 93? 94)^ before and after the transformation g are xi GR^ and
X2 GR^, respectively. Then according to (15) and (17) we have:

AiXi = Pq, A2X2 = Pgq.

It yields:

A2X2 = WR' AiXi + 942/ 2/ XA2X2 = y X{WR- Aixi) ^ xfP^W^yx2 = 0. (19)

In the Euclidean case, (19) would exactly give the well-known bilinear epipolar constraint. In
the case of spaces of constant curvature, the role of essential matrix is replaced by R^W^y. We
need to study the structure of such matrices.

Any matrix A" G m has the form:

(-jT/r



with vector b € To simply the notation, denote 7 = ||&|| and p = 6/7. We consider sin(-) and
cos(') as the complex functions:

sin(tt) = i(e'" - e-'"), «6C

cos(u) = ueC.

Also define p = y/ljr 6 C Then through direct calculation we get:

expa: =f ^ f +(C<«(w) - l)pp^ sin(7P)p \ ^0)
\ w J \ psm^ypjp^ cos(7p) J ^ '

Notice that we always have = 0. Then suppose sin(7p) ^ 0, (19) yields:

xfi2^W^^2 = 0 ^ xfi2^(/3 + (cos(7p) - l)pp^)^2 ^ xfi2^^2 = 0. (21)

This is exactly the well-known bilinear epipolar constrsiint in Euclidean space (fora comparison
see [5]). Here we see that this constraint also holds in spaces of constant curvature. Notice that in
the Euclidean case the matrix E = R^p is called (normalized) essential matrix.

Comments 1 The conditionsin(7p) ^ 0 is equivalent to the condition the translation p ^ 0 in the
Euclidean case. The reason is when sin(7p) = 0, we have exp A" = I4, i.e. the motion is equivalent
to the identity transformation on M. In spaces of constant curvature, we may have sin(7p) = 0
without p = 0. This occurs only when the curvature r is positive, i.e. the space is spherical. If
so, let 7 = 2k'Ky/r G R,k = 1,2,..., we then have sin(7p) = sin(2A;7r) = 0. This implies that
translation with distance 2iry/r along the geodesies (big circles) in a spherical space of radius yfr is
equivalent to the identity transformation (back to the initial position). One can simply check this
phenomenon on the 2 dimensional sphere S^.

As a summary of the above discussion, we have the following theorem:

Theorem 3 (Epipolar Constraint) Consider a rigid body motion of a camera in a space M
of constant curvature. p € is the vector associated to the direction of the translation and
R € 50(3) the rotation, then the images xi € and X2 6 of a point q ^ M before and after
the motion satisfy the epipolar constraint:

y.jR^px2 = 0. (22)

As in the Euclidean case, the normalized essential matrix E can be estimated from more than
eight image correspondences {(xi,X2)}"=i, > 8 in general positions using linear or nonlinear
estimation schemes [8, 6]. The rotation matrix R and the translation vectorp can then be recovered
from the essential matrix E [5].

Comments 2 Notice that the epipolar constraint is independent of the scale X of the point q, the
scale 7 of the translational motion b and the curvature 1/r of the space M. The motion recovery
is then decoupledfrom the 3D structure, as in the Euclidean case.



It is already known that in the Euclidean case, m images of a point satisfy more general
multilinear constraints besides the bilinear epipolar constraint. Similar constraints exist in the case
of spaces of constant curvature. Suppose x,- 6 i = 1,2,..., m are m images of the same point q
with the camera at m different position. Suppose the relative motion between the and (i —
positions is gi £ G^i = 1,2,... ,m. Without loss of generality, we may always assume gi = I. Let
A,- € i = 1,2,..., m be the scales of Xj, i = 1,2,..., m with respect to q. Then we have the
following equation:

( Aixi ^
A2X2

V )

( P91
Pg2gi

\

\ Pgm ' "9l /

Now define the motion matrix A € to be:

( P91
P9291

\

\ P9m'"9l /

>3mx4

and the four columns of A are denoted by ai,a2,az,a4 respectively. Define the vector x,- € K®"*
associated to the image x, as:

X,- = (0,..., 0, xf, 0,..., 0)^G 1 < z< m.

Similar to the Euclidean case [4], in spaces of constant curvature, we also have:

Theorem 4 (Projective Constraint) Consider m images {xt}52;i € 0/ a point q in a space
M of constant curvature, and the motion matrix is A = (ai,a2,az,a^ 6 as defined above.
Then the associated vectors satisfy the following wedge product equation:

ai A 02 A as A 04 A xi A ... A Xm = 0. (23)

The proof is essentially the same as in the Euclidean case [4]. The reason that this wedge product
constraint is called projective constrsdnt is because it is invariant under projective transformation
(see [4]). For the same reasons as in Euclidean case, the non-trivial constraints given by the wedge
product equation are either bilinear, trilinear or quadrilineair [4]. One may use these constraints
to design more delicate motion estimation schemes.

4 Structure Prom Motion

Knowing the motion, the next problem is how to reconstruct the scale information from images.
The scale information includes the depth Aof the point q with respect to its image x, the scale
of the translational motion p and if possible the constant curvature 1/r of the space M (but we
will soon see, the curvature cannot be recovered from vision). Although our formulation allows to



study reconstruction from multiple image frames, we here only study the case of two image frames.
To generalize to the case of multiple image frames, one may refer to [4].

To simplify the notation, in this section, we assume the image x of a point q is always normalized,
i.e. ||x|| = 1 (in the Euclidean case, this corresponds to the spherical projection). Suppose the
distance from q to the optical center o is 77 6 K"*". Recall that ^(•) is the map from To{M) to m.
Then the homogeneous coordinate of q is given in terms of x and 77 by:

>4

Consequently, the scale Aof <7 with respect to x is given by X= p~^ sin(77/)). To differentiate from
the scale A, the distance quantity 77 will be called the depth of the point q with respect to the
image x.

Let 771 and 772 be the depths of the point q with respect its two images Xi and X2 taken by the
camera at two positions, respectively. Suppose the camera motion g ^Gis specified by the rotation
R € 50(3), the translation direction p € 5^ and the scale of translation 7 (as in the preceding
section). Then the first equation in (19) yields:

p~^ sin(772p)x2 = {h + (cos(7p) - l)pp^) R•p~^ sm{'nip)xi + cos{rjip)p~^ sm('yp)p. (24)

This is the coordinate transformation formula in spaces of constant curvature. It looks
kind of complicated. However, it is no more than a natural generalization of the Euclidean coordi
nate transformation formula which people are with. Notice when the curvature l/r goes to zero,
so does p. Since

lim cos(xp) = 1, lim p~^ sin(a;p) = x, a; € E,
p-¥0 p-^O

then when the curvature of the space goes to zero, we have:

Xi = lim sin(77i/>) = 77^, i = 1,2,
p-^O

and (24) simply becomes:

A2X2 = RAiXi + 7p. (25)

That it, in the limit case, the scale Aand the depth 77 are the same; and the equation (24) gives the
Euclidean coordinate transformation formula. The Euclidean transformation (25) is extensively
used for reconstructing Euclidean structure [4]. Naturally, to reconstruct structure in spaces of
constant curvature, the equation (24) has to be exploited.

Notice equation (24) is homogeneous in the scale of p. Since the quantities 771,772 and 7 are all
multiplied with p, they can only be determined with respect to an arbitrary scale of p. In Euclidean
case, this corresponds to the fact that the Euclidean structure can only be reconstructed up to a
universal scale [4]. Thus in the case of spaces of constant curvature, we may normalize everything
with respect to the scale of the curvature: if r > 0, let p = 1; if r < 0, let p = i = That is,
now the space M has constant sectional curvature of either -hi or —1. Then (24) becomes:

sin(772)x2 = {I3 + (cos(7) - l)pp^) R•sin(77i)xi -h cos(77i) sin(7)p, p= 1; (26)
sinh(772)x2 = (/s+ (cosh(7) - l)pp^) R•sinh(77i)xi-h cosh(77i) sinh(7)p, p= i. (27)

10



These two equations correspond to coordinate transformations in (normalized) spherical and hy
perbolic spaces, respectively.

From the preceding section, we know R and p can be estimated from epipolar constraints. The
problem left is to reconstruct 771,7/2 and 7. In computer vision, this problem is usually referred to
as structure from motion (this name is used by some authors for the problem of reconstructing
both motion and structure from images, but we shall maintain the distinction). One may directly
use the above coordinate transformation formula to formulate objective function for estimating
scales 771,772 and 7. In the Euclidean case, such objective functions are linear in the scales [4].
However, in the Non-Euclidean case, such objective functions are usually nonlinear.

In stead of directly using the coordinate transformation formula, one may use some well-known
constraints in spaces of constant curvature, i.e. Bolyai's law of sine and law of cosine (for
absolute geometry), which have been well summarized by Hsiang in [1]. Define functions:

o^(x) = l 3(x) = i^ ^ \ sinh(z), p= 7, \ cosh(a:).
P = h
p = i.

The next theorem follows from Hsiang [1] as a special case:

Theorem 5 (Laws of Absolute Trigonometry) Consider a geodesic triangle AABC in a space
M of constant curvature ±1, and let a, 6, c be the lengths of the opposite sides of angles A, B, C
respectively. Then we have:

sin(A) sin(B) sin(C) d , , /oQ^
—y-rr = —77T^ = —T-T^j Bolyat s sine law. (28)
Q!(a) a(6) o(c)

and

a(a)a(6)cos(C) = /3(c) -/?(a);0(6),

a(6)Qf(c) cos(A) = j3(a) —)0(6)/?(c), law of cosine (29)
a(c)a(a) cos(B) = /i{b) —p{c)p(a).

Suppose the two optical centers of the camera are oi and 02. A geodesic triangle is formed
by the three points (oi,02)9)j see Figure 1. The angle A is given by the angle between the two

Y

Figure 1: Geodesic triangle formed by two optical centers 01,02 and a point q in the scene.

vectors Bxi and —p; B is given by the angle between X2 and p; C is given by the angle between
Bxi and X2. The quantities sin(A),sin(B),sin(C), cos(A), cos(B),cos(C) can be directly calculated
from those vectors.

Applying Bolyai's sine law (28) to the geodesic triangle, 0(771), (^(772) and 0(7) are determined
up to a unknown scalar k eRhy linear equations:

sin(A)Qr(77i) =sin(B)a(772), sin(C)0(772) = sin(A)0(7). (30)

11



The scalar k can be then determined by using one of the cosine law (29). Suppose

(si, S2, = (koi('ni), A;a(7?2), koi(-f))'̂ €

is a solution of (30). In the hyperbolic case, from the first equation of (29), the scalar k satisfies:

S1S2 cos(C) = - yj(sj - . (52 _^2)^ (31)
In the spherical case, we may assume 0 < 771,772,7 < 7r/2 (i.e. comparing to the size of the whole
space, the structure we consider is relatively small). Then the first equation of (29) yields:

S1S2 cos(C) =kylk^ - s§ - yj{k^ - sj) •(k^ - s^). (32)
In order to calculate fc, the above equations can be easily reduced to algebraic equations in k^ of
degree 4. Since there is a general formula for roots of algebraic equations of degree 4, k has a
closed-form solution. Knowing k, o;(77i), 0(772) and 0(7) can be calculated hence 771,772 and 7.
This approach is obviously easier than directly optimizing the (multi-variable) objective functions
associated with the coordinate transformation formula.

5 Differential Case

Suppose the motion ofthe camera is given as flf(t), t € [to> ^/]j a smooth curve in the isometry group
G. Without loss of generality we may assume g(to) = I. Then according to (15) and (17), for the
image x 6 E^ of a point q = {qi,q2i 93,94)^ € M:

X(t)-x.{t) = Pg(t)q, to<t<tf. (33)

Since g(to) = /, the derivative ^(to) is an element in the Lie algebra g hence it has the form:

iW - (J,r ;)
where w, u 6 E^. The vector uj then corresponds to the angular velocity of the camera and v the
linear velocity. Now differentiate (33) at time t = to then we have:

Ax -1- Ax = a;Ax -\-q4v u x Ax + u x Ax = u x wAx ^ x^ux-h x^uwx = 0. (34)

This is exactly the differential version of the bilinear epipolar constraint in the Euclidean case. It
also holds in spaces of constant curvature.

Theorem 6 (Differential Epipolar Constraint) Consider a moving camera in a space M of
(instant curvature. If v ^ E^ is the linearvelocity and u € E® the angular velocity, then the image
XGE^ ofa point q £ M and its optical flow x € E^ satisfy the differential epipolar constraint:

x^Ox + x^vLJX = 0. (35)

12



Given more than eight optical flow measurements {(X"^,x-')}J_i,n > 8 in general position, the
velocities u and v are recoverable with v determined up to a scale using the same linear or nonlinear
estimation schemes designed for Euclidean case [5, 6].

As a generalization of the bilinear epipolar constraint, we give the multilinear constraints sat-
isfled by higher order optical flow. At time t = £o, differentiating the equation (33) (m - 1) times,
we obtains:

f X

X

:(0

2^(m—2)

0

X

X

0 \
0

0

X /

( A

A

a(»)

\ )

\ ( Pg
Pg

Pg(i)

Pgim-2)

\

where € Z"*" for 0 < j < t < (m —1). The quantities x'*', 0 < i < (m—1) are the «"•

order derivatives of the image point. If we define c*- = 0 for i < j, the entry (in fact a tuple)
of the first matrix in the above equation has the unified form 0 <i,j < (m —1). We may
define matrices U € K^mxm p ^

U= (c}x<^-^)), B= (P/)), 0<i,i<(m-l). (36)

Let Uj G 1 < 2 < m be the column of the matrix U and hi,625^>3>h4 € be the four
columns of the matrix B. We then have the differential version of the Theorem 4.

Theorem 7 Consider the image x(£) GE^ o/a point q under the camera motion g(t) G SE(Z).
Then for the matrices U G and B G defined in (36), the column vectors {u,}5^i G
R3m matrix U and the columnvectors hi,b2,bz,b^ ^ E^"* of the matrix B satisfy thefollowing

wedge product equation:

6i A 62 A 63 A 64 A Ui A ... A Um = 0. (37)

The proof is the same as the Euclidean case. See [4] for the proof and for more detailed discussion
of this wedge product equation.

Remark 1 Similarly, all the results about hybrid cases (when both image correspondences and
optical flows are available), which we have discussed in [4], can be similarly generalized to the case
of spaces of constant curvature. The structure from motion problem can also be generalized to the
differential case and hybrid cases in a similar fashion. We here do not discuss them in detail.

6 Discussions and Conclusions

In this paper, we have generalized basic vision theorems in Euclidean space to spaces of constant
curvature. A uniform treatment is possible because a unified homogeneous representation of these
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spaces exists and the isometry groups of these spaces have similar structures. As we have seen, the
Euclidean vision theory can aJways be viewed as a limit case of the general one.

One may have noticed that the epipolar geometry in spaces of constant curvature is remarkably
similar to that of Euclidean space. Especially, the bilinear epipolar constraint is exactly the same.
As in the Euclidean case, the motion is nicely decoupled from structure by the epipolar constraint.
This allows us to use most of the motion recovery algorithms which were previously developed only
for Euclidean space to spherical and hyperbolic spaces, without any modification. In the differential
case, the epipolar geometry also remains to be the same as in Euclidean case.

As for the structure from motion problem, the three dimensional structure can only be re
constructed up to a universal scale, the same as the Euclidean case [4]. In a space of non-zero
curvature, the curvature of the space can not be recovered from vision. However, the three di
mensional structure of objects can be determined with respect to the curvature. In this paper,
we normalize the curvature with absolute value 1. Although the structure from motion is a linear
problem in the Euclidean case, it is no longer linear in spherical and hyperbolic spaces. It is shown
in the paper that using sine and cosine laws for Absolute Geometry there is a closed-form solution
for the structure from motion problem.

Although any Riemannian manifold locally can be approximated by spaces of constant curvar
ture, it is still interesting to know if the results of epipolar geometry hold for more general classes
of Riemannian manifolds (for example, symmetric spaces); and how the structure from motion
problem needs to be changed in general. These will be our research topics in the future.

7 Acknowledgment

Wewould liketo thank professor Alan Weinstein (Berkeley MathematicsDepartment) for invaluable
discussions during the preparation of this manuscript.

References

[1] Wu-Yi Hsiang. Absolute geometry revisited. Center for Pure and Applied Mathematics, Uni
versity of California at Berkeley. PAM-628, 1995.

[2] S. Kobayashi and K. Nomizu. Foundations of Differential Geometry^ volume I. John Wiley &
Sons, Inc., 1996.

[3] S. Kobayashi and K. Nomizu. Foundations of Differential Geometry, volume II. John Wiley &
Sons, Inc., 1996.

[4] Yi Ma, Jana Kosecka, and Shankar Sastry. Euclidean structure and motion from image se
quences. UC Berkeley, ERL, 1998.

[5] Yi Ma, Jana Kosecka, and Shankar Sastry. Motion recovery from image sequences: Discrete
viewpoint vs. differential viewpoint. In UC Berkeley Memorandum No. UCB/ERL M98/11,
1998.

[6] Yi Ma, Jana Kosecka, and Shankar Sastry. Optimal motion from image sequences: A Rieman
nian viewpoint. In submitted to IEEE Conference on Decision and Control, 1998.

14



[7] Richard M. Murray, Zexiang Li, and Shankar Sastry. A Mathematical Introduction to Robotic
Manipulation. CRC Press, 1993.

[8] G. Toscani and 0. D. Faugeras. Structure and motion from two noisy perspective images.
Proceedings of IEEE Conference on Robotics and Automation^ pages 221-227,1986.

[9] Joseph A. Wolf. Spaces of Constant Curvature. Publish or Perish, Inc., 5th edition, 1984.

15


	Copyright notice 1998
	ERL-98-36

