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Abstract

This paper introduces Rectification Neural Networks (RNNs), a novel adaptive structure
composed of layers of simple linear perceptrons connected through simple rectification devices.
The teaming algorithm is constractive, i.e. it adds new synaptic and rectification units until the
specific problem is teamed. To demonstrate the capabilities of the novel architecture, the design
of local logic for Cellular Neural Networks was considered as a particular application. It is
proved that any Boolean fimction with any number ofinputs can beimplemented using the RNN.
The RNN in the form presented in this paper can be used as an efficient and fast design
altemative to the classic digital systems. However, the RNN architecture is not restricted to
binary inputs andit cancover theareaof classification problems aswell.

1. Introduction

Rectification, one of the basic non-linear phenomena, is observed in differentphysical
mediums and has also foxmd a lot of applications, particularly in the field of electronics.
Among other nonlinear operators, including the widely used sigmoid, the rectification
operator, mathematically denoted as r\(x) =(.r +\x\) / 2 oras r2{x) = \x\ has the simplest
implementation in either analog or digital technologies. For example, a simple PN
junction or a CMOS transistor having its gate coimected with the source can act as a
current rectifier, thus implementing the rJ operator. In digital systems, r2 rectification is
obtained by simply ignoring the sign bit (assuming the use of a sign plus magnitude
code). It is thus natural to consider such non-linear functions fi-om the perspective of
designing adaptive neural networks with convenient implementation. However, little or
no interest was shown for such structures in the artificial neural networks commumty;
most of the "classic" neural network architectures [7] employ smooth nonlinearities, such
as the sigmoid. The reason may be related to the differentiability of the absolute value
function, such functions beingregarded by many scientists as beingnot well-suited, from
theperspective of gradient search. Onthe other hand, in [2] it was shown thatan elegant
formula, which is essentially based on the absolute value function, can be used as a
canonical representation for anypiece-wise linear (PWL) function of one variable given



through a set of input-output pairs. Successive improvements of this technique were
published in [3],[8]. However, it is difficult if not impossible to compute analytically the
coefficients for such structures, particularly in the case of a large number of inputs, l^e
only adaptive versions of the PWL-canonical representation reported to date [9],[10] are
restricted to a particular class of problems, i.e. signal processing, and they deal with
relatively simple PWL structures. In this paper, we introduce a novel approach for
designing adaptive structures based on rectification, namely the RNN structure. Its basic
building block is a single-nested, piece-wise linear adaptive structure (here referred to as
PWL2cell)f for which the gradient descent was employed simultaneously with an
annealing scheme. This cell and its training algorithm are described in section 2. The
PWL2cell has excellent capabilities, being proved that it can implement any arbitrary
Boolean function with up to 4 inputs and a significantly large number of Boolean
functions with more than 4 inputs. Among them, a 4 to 1 multiplexer, which is the key
element inbuilding the RNN structure is introduced in section 3. The RNN architecture is
able to adjust its complexity to the complexity of the particular function to be
implemented. Moreover, the existence ofthe solution isguaranteed and the learning time
was found smaller when compared with other solutions recently developed for the design
of local logic [5],[14]. Several such applications are presented in Section 4. Among them,
the RNN implementation of the Conway's **Life" Boolean function [1], responsible for
producing a universally computational medium in a OW [6] was found to be the
simplest reported up to date.

2. The single-nested PWL adaptive cell (PWL2cell)

In this section, the structure and the learning law fora novel adaptive module, called a
PWL2 cell, are presented. The PWL2cell is the basic building block which allows for the
easy construction of a RNN structure able to implement any desired Boolean function
with any number of inputs.

In what follows it is convenient to consider a differentiable approximation of the

standard rectification unit: abs{x, ^ + s , s>0. Indeed, it is obvious that
hmabs(x, ^ = \x\. For simplicity of writing, we will alternatively use the notation

(x) =abs(x^ ^. The approximated rectifier abs(x, ^ offers two advantages:
a) It is differentiable at the origin and its derivative is

^abs(x, ^ =sign{x, 4=x/ylx^ +s.
b) Itallows the employment ofan "annealing" scheme during learning. The use ofthis

scheme allows for a faster convergence towards the global optimum. According to this
scheme, at the beginning of the learning process, a relatively large value for s is
considered (usually 40)= 0.2). After each training epoch, the value of s, which may be
regarded as having the meaning ofa temperature, will be decreased in such away that at
the end of the learning process it will be close to 0. For example, the following simple
annealing schedule was found to be efficient: 40 = 40) •[l "• /̂ (^+1)]>where t is the
index of the actual training epoch and Tis the number ofepochs which should befixed at
the beginning of the learning process.



2.1. The structure of the PWLZcell

The following expressions describes the structure ofa PWL2cell for an n- dimensional
input vector u=[m, , j••w„ ]•

pwl2cell{u^ »..«„) = sgn(pw/2(M,,1/2 »W)), (1)
where,

;TO'/2(u,\V)=/>rC|(ii,w°)-2(prc,„(u,w"')-4{jwr,„(u,w""))+4(prC|„,(ii,w""))) +
+2(/>rc||(ii,w")-4(prc||o(u,w"''))+4(p«;„|(u,w"')))

and where

n

prcj (u,vi') =wi+'̂ u,wj (?)
1=1

is the defining expression ofa linear perceptron.
The expression (1) is employed during the retrieval process while (2) it is employed
during the training phase, following the idea of training the Adaline [13]. Observe, that
structurally, the PWL2cell is composed byatmost 7perceptrons, each of them defined by
a setof n+7 synaptic weights, where n is the number of inputs. The binary index of each
perceptron indicates its position within the whole structure. For convenience, in what
follows, we will use the decimal instead of the binary notation for indices; For example
prcji') is equivalent to pre,, (.). We should stress that the structure described by (2) is
maximal. Indeed, one can consider that up to six of the perceptrons have 0-valued
weights (i.e. they areremoved). Forsome particular problem, theperformance may be the
same with a reduced number of units than with the whole set of 7 units. This is why, in
trainingthe PWL2cell, the following strategy is implemented:

1.Consider only pre, ; Train thePWL2cell (in this casea linear perceptron)
2. If the performance is OK, STOP; Else train again the PWL2cell with prcj and
prCjadded.
3. the performance is OK, STOP; Else train again PWL2cell with prepre
prc5,prc7 added.

Hence, stopped after step 1, the PWL2cell is a linear structure, after step 2 a simple
(not nested) PWL structure and after step 3, a single nested PWL structure. In what
follows, the learning will be considered for the most general case (step 3) but the same
algorithm can be applied for any of the other steps by simply removing the lines
associated with updating the weights of perceptrons that are not considered as belonging
to the structure.



2.2. The training algorithm of the PWL2cell

In the case of batch training, for the SSE error criterion one should minimize the goal
ns 2

function E(t) - -pw/2(u^,W(t))J during each training epoch t. In this
q=\

expression, ns is the number ofavailable training pattems, q is the pattern index and d''
is the desired output associated with pattern q. According to the principle of gradient
descent, and since (2) is a differentiable function, one can now derive the weight update
rules for each ofthe perceptrons. Let us abbreviate with m? the input i associated with the
pattem q and -/?w/2(u^,w(t)) the actual output error obtained during the
presentation of the pair input-desired output associated with pattem q . The following

ns

Percepton : Aw) =
q=l

(4)

ns

Perceptrons prc2 and prc^: Aw,? =-'^e'^u^signlprc^iu"^
q=\

(5)

ns

Awf =~rj£^e'̂ u'!sign(prc^{vi\yf% ^
q-\

(6)

Perceptrons prc^, prc^, prc^, pre,:

s^ =sign(prc2(u', )- 4(^prc^(u^,w'̂ )) +4(jjrc^(u^,)), ^ (7)

ns

^wf =^^e''u^s^sign{prc^{u''^
q=\

(8)

ns

Awf =-'̂ ^e''ufs^sign(prc^iu'',yv^), ^
q=\

(9)

s' =si:gn(prC3(u',w')-4(prCj(u',w'))+4(prc,(u',w')), ^ (10)

ns

Awf =-l^e''u^s^sign{prc^iu'',yv^), ^
q=\

(11)

ns

Aw,? =l^e''ufs^sign{prc2iu\yv''),^
9=1

(12)

where ~q= rj\ ns

following ranges ofthe training parameters, were found by simulations as the best choices
in order to provide convergence towards a near global optimum in the parameter space:
Linear structure: ^£[0.3,0.7] and T€[10,100] ; Simple (not nested) PWL2cell.
7= [0.1,0.3], r €[100,500] ;Single nested PWL2cell: 7€[0.02,0.05], T€[500,1000].



The initialization of the weights is done with random small values (a magnitude of 0.001
was considered in practice).

23, Pruning and optimization of weights

Additional pruning and optimization of the resulting set of weight parameters can be
done, using the method described below. This method is essentially based on exploiting
the hard non-linearity of the sign function in (1) so that the resulting weights can be
represented as integers and some of them will become 0. In order to have a robust
solution (i.e. to accept tolerances for weights) one has also to check that

min [a^5(/7w/2(u^ ,W))] >tol where tol is an arbitrary tolerance threshold. In practice,
the value of tol is imposed by the implementation technology. The larger the tol the
better the robustness, but at the expense ofa larger variation domain for the weights. The
following algorithm ensures the generation of a robust PWL2cell realization with integer
weight parameters:

1. res=l;

2Compute aquantized matrix ofweight parameters: qw^ = •res^ \ /=0,..«;/? =1,..7
3. Check if the performances of the PWL2cell withquantified parameters changed;

3.1. IfYES, then res=res+l; go to step 2 ;

ELSE, then check the robustness criterion: min j^bs{pwl2{u'',QW))] >tol
qwl .. qw[

3.1.1. IfYES. thenSTOP: QW = represents a good set of

qwl .. qw]
parametersensuring both functionalityand robustnessas well as
the simplicityof implementingintegersynapticcoefficients.

ELSE, then res=res+l: go to step 2.

2.4. Realization ofBoolean logic functions with the adaptive PWL2cell

When ns = 2" , the defining truth table of a Boolean function can be considered as
training set. The specific Boolean function is now encoded by the binary vector:

]while the set of input pattems is tmchanged for any Boolean
function. In this case, any input vector is the binary representation of q; For
example, if q-13, for n=4 inputs, 13io =11012 = [1,1,-1,1]. Observe that,
our convention for representing binary numbers isbipolar, i.e. d'' e {-1,1} aswell asany
ofthe inputs.

In order to test the capability of the PWL2cell to implement Boolean functions for
different number of inputs, a set of 1000 arbitrary Boolean functions were randomly

denotes here the rounding operator, i.e. the result is the closest integer to the real value jc.



generated and for each of them the PWL2cell was trained. For the case «=5 , the entire
set of 256 Boolean functions was considered. The percentage of Boolean functions
correctly learned is presented in Table 1 for each of the following three cases: (PWLO)
Linear perceptron (allperceptrons except 1,removed); (PWLl) no nesting (perceptrons 4-
7 removed); (PWL2)The maximalstructureofPWL2cell.

inputs PWLO PWLl PWL2

3 40.62% 100% 100%

4 2.87% 80.2% 100%

5 less than 0.1% 13.8% 88%

6 less than 0.1% less than 0.1% 2%

It is important to observe that the complete PWL2 structure is able to implement any
arbitrary Boolean function with less than 5 inputs. Moreover, if the Boolean function has
only 3 inputs, it was foxmd that a reduced PWLl structure having only one absolute value
term (and thus only two perceptrons), can represent 254 of the 256 possible Boolean
functions. The only 2 exceptions, requiring the maximal PWLl structure with 3
perceptrons, were represented by the "parity" function and its negate. Even if, apparently,
for larger numbers ofinputs (e.g. «=6) the PWL2cell seems tobeinefficient, it was found
that the probability to represent a meaningful Boolean function is considerably higher
than the probability to represent arbitrary, randomly chosen Boolean functions. Here, by
meaningfiil we mean Boolean functions which are the result of a human process of
thinking or arise from modelling some real world processes. Such examples include: the
PARITY function; the MUX41 function and the LIFE function. As it will be shown in
section 4, all of them were found to have very simple PWLl or PWL2 implementations
even for numbers of inputs larger than 5. In what follows, the PWL2 implementation of
MUX41 will be considered since this is a basic building block for the RNN.

The defining table of the MUX41 function is presented in Table 2: This Boolean
function has 6 inputs (uO, ul, u2, u3, cl and cO) but it can be better specified as a 4
inputs - to - 1output multiplexer. From this perspective, its output copies one ofthe four
inputs uO, ul, u2 or u3 depending on the particular configuration of the two control
inputs cO and cl.

Table 2: The definition of MUX41

output uO ul u2 u3

cl -1 -1 1 1

cO -1 1 -1 1

The PWL2cell structure which implements the MIJX41 Boolean function is presented
in Table 3.



Table 3: The realization ofMUX41 with a P\VL2cell

perceptron bias cO cl uO ul u2 u3

w' 2 -1 3 5 5 5 5

w' -8 0 13 -3 3 -3 3

w' 0 -12 0 -3 -3 3 3

0 3 0 -1 1 1 -1

Observe that only 4 perceptrons (23 non zero synapses) and 3 rectification units are
needed. For comparison, the representation of the same function with [14] requires 8
perceptrons (55 non zero synapses) and 7 2-inputs XOR operators. The method presented
in [5] generates a structure with 9 perceptrons and 8 logic operators with 2 inputs.
According to Table 3 and the definition (1) of the PWL2cell, one can express the
multiplexer function as a simple piece-wise linear expression which can be, for example,
implemented with a few lines in MATLAB:

function y=mux41 (c1 ,cO,uO,u1 ,u2,u3)
prc1 =2-c0+3*c1 +5*(u0+u1 +u2+u3); prc2=-8+13*c1 +3*(-u0+u1 -u2+u3); (13)
prc3=-12*c0+3*(-u0-u1 +u2+u3); prc5=3*c0-u0+u1 +u2-u3;
y=sign(prc1 -2*abs(prc2+4*abs(prc5))+2*abs(prc3));

Using current mode techniques [11], this expression can be implemented in CMOS
technology with less transistors than required by its digital counterpart (i.e. where
MUX41 is implemented as a combination of basicdigital gates).

3. Rectiftcation Neural Networks

Using the PWL2cell together with its particular case, the MUX41 cell, a rectification
neural network structure able to implement any givenBoolean function with any number
of inputs can be constructed: The algorithm is simple and it is based on the "divide and
conquer" principle which can be applied to Boolean functions using the multiplexer
MUX41;

1. Train a PWL2cell to solve the given Boolean function with n inputs (called B for
convenience)
2.Jf training ended OK then STOP;

Else, consider the two mostsignificant input bits in the truthtabledefining the function
5 as the control inputsofa MUX41 cell, and the outputof the MUX41 cell as the
outputassociated with the function B. Thus, eachof the 4 "m" inputs of the MUX41
cellwill correspond to one of the 4 sub-functions ,5,,^2, B^ withn-2 inputs each;
For example, 5 = ioiiOlOO is a Boolean function with3 inputs, decomposed

Ba B, B1 By

into4 functions BQ,B^,B2iB^ with 1input, using the MUX41 cell.
3. For each ofthe sub-functions, repeat the procedure starting with Step 1.



Observe, that by successive division into 4 sub-functions with the number of inputs
reduced by 2, even if the initial Boolean function is too complex to be represented by a
PWL2cell structure (the learning fails), its implementation complexity is decreased until
the point where it can be represented by a PWL2cell. Here we should recall the results
presented inTable 3 showing that statistically any function with 4 inputs has a PWL2cell
realization and that by simple enumeration, the whole set of 256 Boolean functions was
found to be realizable with a PWLl structure. Hence it is obvious that the complexity of
the RNN structure adapts to the complexity of the Boolean functions to be represented
and any arbitrary function with any number of inputs has a realization with a RNN
structure. It was found for example, that some usefol local logic functions for Cellular
Neural Networks (CNN) [4] canbe implemented with a very lowcomplexity as the RNN
structure. For example, the function associated with the Conway's game of life [1] can
be represented with a single reduced PWL2cell with only two perceptrons, even if it has
9 inputs (see section 4).

4. Applications of the RNNs.

The RNN network can be viewed as an altemative method for digital design and
implementation. The design using the RNN is quite simple, infact completely automated,
since it consists only in applying the RNN construction algorithm and the training
algorithm ineach phase where a PWL2cell is required. Moreover, it produces an optimal
structure, adapted to the complexity of the Boolean function to be implemented. In some
sense, the result of this design is similar to theresult of the much more elaborate process
ofgenerating optimal digital structures using Veitch-Kamaugh diagrams orother similar
methods. However, instead of the basic logic gates, the building blocks of the RNN
structures are rectifiers and modules which are able to compute weighted sums. Such
modules can be easily implemented in cheap CMOS technology using the current mode
approach. This allows for a significant reduction of the hardware requirements,
particularly for those functions with many inputs which are in fact not so complex. Most
of the local Boolean functions of CNNs describing specific image processing tasks fall in
this category, so the RNN method can be considered a valuable altemative to methods
proposed in [5] and [14] since the RNN stmcture can be easily be mapped into the CNN-
Universal Machine [15] firework. Moreover, since the inputs of the RNN structure are
not restricted to binary inputs, specific tasks for neural networks such as pattem
classification can be also considered. In fact, preliminary tests with the PWL2cell showed
that it can solve most of the classification benchmarks with performances which are close
to the best performances reported in [12]. However, the extension to more complex,
RNN-like stractures in order to increase the performance, caimot be done in this case
using MUX41 cells but rather considering additional degrees ofnesting. In the end, let us
consider several examples of CNN local logic Boolean function design and
implementation, using the concepts presented above.

1. The PARITY function; It can be easily checked that the function

ypari =l-K+"i| implements the tmth table of the XOR function (where 0 was
replaced by -1). This result was found by training the PWL2cell; what is appealing in this
case is the fact that the output function is implemented without the need of the hard



limiter sgn(x). Thus, such a piece-wise linear formula for implementing a parity function
with any number of inputs can be easily derived; Forexample, the parity function with 3
inputs can be represented as: ^^,4- =1- |mo +1 - |"i +"21| • Another interesting aspect is
that the implementation of the 2-input PARITY fimction, considered from the analog
input-output perspective when = m, is nothing other than a 'tent map", which was
found recently as a very convenient non-linear map for generating discrete-time chaotic
signals with cryptographic properties [16].

2. The LIFE function; It was first mentioned in the context of Cellular Automata
by Conway [1] and it is described by a set of logic rules instead of a truth table. It was
proved that the cellular medium resulted by connecting standard CNN cells through this
local Boolean fimction, has the property of universal computation [6]. It can be easily
checked that the following simple PWL2cell: =sgn[3 +M^-|5 +2m5.|] implements
the same local logic as the function described byConway. Here, Uj. means the sum of all
outputs of the neighbour cells and the output of the actual cell. Compared with other
implementations reported inthe CNN literature [6],[14] it is the simplest implementation
of Conway's Life and it opens an interesting perspective for building universally
computational mediums at low costand high density of cells.

Conclusions

A novel approach for the design and implementation of Boolean logic was described.
It is essentially based on employing adaptation inpiece-wise linear structures which have
a very simple analog implementation using only rectifiers and weighted summation. It is
able to implement any desired Boolean function with a structure called Rectification
Neural Network (RNN) which adapts its complexity to the complexity of the Boolean
function to be implemented. The basic cell of this network, here referred to as a
PWL2cell also has potential application in solving pattern classification tasks. Several
examples demonstrates that for most ofthe local Boolean functions defining meaningful
tasks, the RNN approach leads to very simple implementations, in most cases requiring
less hardware than their implementation using the standard digital approach. Moreover,
the design technique is quite simple and can be easily automated. Preliminary tests ofthe
PWL2cell withbenchmark classification problems [12] showed good performance if we
consider that it is a structure restricted to maximum 7 perceptrons. Further research will
focus on the possibility of building a structure similar to the RNN for improving the
performance when the tasks are analog pattern classification orsignal processing.
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