

Copyright © 1998, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

IT'S ABOUT TIME: REAL-TIME

LOGICS REVIEWED

by

Thomas A. Henzinger

Memorandum No. UCB/ERL M98/40

22 June 1998

<

irS ABOUT TIME: REAL-TIME

LOGICS REVIEWED

by

Thomas A. Henzinger

Memorandum No. UCB/ERL M98/40

22 June 1998

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University of California, Berkeley

94720

It's About Time:

Real-time Logics Reviewed***

Thomas A. Henzinger

Electrical Engineering &: Computer Sciences
University of California at Berkeley

tahOeecs.berkeley.edu
VS9.eecs.berkeley.edu/~tah

Abstract. We summarize and reorganize some of the last decade's re
search on real-time extensions of temporal logic. Our main focus is on
tableau constructions for model checking linear temporal formulcis with
timing constraints. In particular, we find that a great deal of real-time
verification can be performed in polynomial space, but also that consid
erable care must be exercised in order to keep the real-time verification
problem in polynomial space, or even decidable.

1 Introduction

The execution of a reactive system results in an infinite sequence of observations.
Requirements on execution sequences can bespecified in (linear) temporal logic.^
The model-checking problem asks, given a reactive system and a temporal for
mula. if all execution sequences of the system satisfy the formula.

Temporal logic is a popular specification language for two reasons. First, tem
poral logic is reasonably erpresswe. In practice, temporal logic allows the spec
ification of important requirements such as invariance and response [MP92]. In
theory, the expressive power of temporal logic is robust: temporal logic is as ex
pressive as a certain first-order monadic logic on the natural numbers [GPSS80],

To appear in the Proceedings of the Tenth International Conference on Concurrency
Theory (CONCUR), Lecture Notes in Computer Science, Springer-Verlag, 1998.
This research was supported in part by the Office of Naval Research Young Investi
gator award N00014-95-1-0520, by the National Science Foundation CAREER award
CCR-9501708. by the National Science Foundation grant CCR-9504469, by the De
fense Advanced Research Projects Agency grant NAG2-1214, by the Army Research
Office MURI grant DAAH-04-96-1-0341, and by the Semiconductor Research Cor
poration contract 97-DC-324.041.
There are also other, branching varieties of temporal logic, for specifying require
ments on execution trees [Eme90]. In this paper, we are solely concerned with
the linear view. For model checking with integer-time branching temporal logics,
see [EMSS90, Eme92]; for model checking with real-time branching temporal logics,
see [ACD93, HNSY94].

and with the addition of a (second-order) hiding operator, as expressive as Biichi
automata [Buc62].

Second, temporal logic is reasonably efficient. In practice, model checkers have
been successful both in hardware and protocol design [CK96]. In theory, the
complexity of temporal logic is not dominant; if a reactive system is given as
a product of Biichi automata, the model-checking problem can be solved in
polynomial space [LP85], and thus is no harder than the most basicofverification
problems —invariance checking.'̂ The efficiency of temporal logic is due to a
careful choice of operators. For example, the addition of the hiding operator
would cause an exponential increase in the complexity of model checking [Sis83].
We illustrate that with a careful choice of operators, both pleasing properties of
temporal logic —reasonable, robust expressiveness and reasonable, polynomial-
space efficiency— can be maintained when moving from reactive to real-time
systems.

The execution of a real-time system results in an infinite sequence of observa
tions that are time-stamped with reals. A paradigmatic language for describing
real-time systems is obtained by considering Alur-Dill automata with parallel
composition [AD94]. Invariance checking for products of Alur-Dill automata can
still be performed in polynomial space. We present several operators that re
fer to time stamps but can be added to temporal logic without increasing the
polynomial-space complexity of model checking. The careful choice of real-time
operators is even more critical than in the reactive case, because a wrong choice
can easily render the model-checking problem undecidable.

In Section 2, we review in some detail the properties of temporal logic that
are relevant to this discussion. In Section 3, we classify integer-time operators
into operators that can be model checked in polynomial space, and operators
that demand exponential space. In Section 4. we see that when interpreted over
real time, the first class of operators can still be model checked in polynomial
space, while the second classofoperators becomes undecidable. The polynomial-
space real-time operatorswe advocate are also expressively robust: the extended
temporal logics are as expressive as a certain first-order monadic logic on the
reals, and with the addition of hiding, as expressive as Alur-Dill automata.

2 Temporal Logic

Let 77 be a set of propositions. An observation is a mapping from 77 to the set of
truth values. A trace a = sqSiSo . •• is an infinite sequence of observations. The
positions ofcr are the nonnegative integers. Fora positionp of <r, the observation
of a at position p is denoted (r[p] = Sp. The temporal formulas are defined by
the grammar

(f> TT \ <f>V <i> \ —>0 I 0U0

* Invariance checking on a single Biichi automaton can, of course, be performed in
linear time. But a language without parallel composition (product) is not useful for
describing nontrivial reactive systems.

where tt is a proposition from 77. The temporal operator U is pronounced "un
til." Given a position p of a trace tr, and a temporal formula the relation
(<T,p) ^ pronounced "the formula ^ is true at position p of trace <t," is de
fined inductively:

{cr,p) 1= ST if o"[p](7r) = true]
((r,p) 1= 01 V if (<T,p) 1= 01 or {<T,p) 1= 02;
(<7, p) ^-.0 if not ((T,p) 1= 0;
{a,p) }= 017/02 if there existsa position r > p of trsuch that (cr, r) |= 02,

and for all positions g of <7, if p < g < r then (c, g) ^ 0i.®

The trace a satisfies the temporal formula 0 if (o*, 0) }= 0. The temporal formula
0 defines the set of traces that satisfy 0.

Useful defined operators are Q ("next"), O ("eventually in the future"), and •
("always in the future"): 00 = falseU<f>, O0 = trueU4>, and 00 = -i<>-i0. For
example, the response formula •((! —' Ob) asserts that every observation of a
is followed by an observation of 6.

Satisfiability. In order to solve the model-checking problem, it is useful to study
the satisfiability problem for temporal logic: given a temporal formula 0, is there
a trace that satisfies 0? The satisfiability problem can be solved by constructing
a Biichi automaton B^,. called the tableau of 0, which accepts precisely the traces
that satisfy 0 [Wol82]. Then, 0 is satisfiable iff B^ is nonempty.

In this method, it is the size of the tableau B^ which determines the efficiency
of solving the satisfiability problem. Every location (of the Biichi automaton

is a set of subformulas of 0. When an execution of B^ visits location £, the
subformulas in Crepresent constraints on the remainder of the input trace, which
must be satisfied in order for the automaton to accept . The tableau construc
tion is possible, because all temporal constraints can be propagated from one
location to the next: if Ccontains the until formula i/'i 7/V'2, then each successor
location of Cmust contain either v''2> or both V'l and Since the number
of subformulas of 0 is linear in the length of 0, the number of locations of B^ is
exponential in 0. Since Biichi emptiness can be checked in space polylogarithmic
in the number oflocations [SavTO. VW94], the satisfiability problem for temporal
logic can be solved in polynomial space.

This is also a lower bound [SC85]. Given a polynomial / and a Turing machine
M that uses space /(n) for inputs ofsize n, we can construct a temporal formula
4>m of lengthpolynomial in n which issatisfied precisely bythe traces that do not
encode accepting computations of M. Then, M has an accepting computation
iff -10A/ is satisfiable. The key to the construction of 0a/ is the formula 0(p A
O •••O "•?)' /(") operators. Formulas of this form can be used to
encode the fact that the contents of one of the f(n) tape cells is not properly
maintained from one configuration of M to the next.

^ The strictness of the until operator, which does not constrain the current state, will
facilitate the move to real time: in real time, strict until cannot be defined from weak
until and next (Ras98].

Model checking. Afinite-state reactive system isnaturallydescribed bya prod
uct 5s = x ••• >< Bm of Biichi automata, which represent the state-transition
graphs and the fairness assumptions of the individual system components. This
leads to the following formulation ofthe model-checking problem :given a product
55 of Biichi automata and a temporal formula <f>, do all traces that are accepted
by Bs satisfy 0? The model-checking problemcan be solved in polynomialspace,
by checking the emptiness of the product automaton Bs x B-,<i, [LP85]. This is
again a lower bound [SC85]: the model-checking problem is no simpler than
the satisfiability problem, because a temporal formula <}> is unsatisfiable iff the
negated formula -i<j> is satisfied by all infinite paths of the complete observation
graph.

Expressiveness. The expressive power of temporal logic is closely related to
Biichi automata. A trace set L is ui-regular if there is a Biichi automaton that
accepts precisely the traces in L. The tableau construction shows that if a trace
set L is definable by a temporal formula, then L is u;-regular. The converse is
not necessarily true, and the gap between temporal definability and tj-regularity
can be closed in several ways [Tho90] —for example, via the operat ion of hiding
propositions, which is an important operation in specification. A temporal for
mula with hidden propositions is has the form (Btti, .. .,'!r„)<p, where jri,..., n-,,
are propositions and o is a temporal formula. The semant ics of existential quan
tification is standard: (tr,p) |= (37r)<? if (<t',p) |= 0 for some trace <r' that differs
from a only in the values that are given to t by the observations of <t'.
Given a Biichi automaton B with the set {jtj ,7rn} of locations, we can con
struct a temporal formula 0b with the hidden propositions ttj ,..., tTo such that
(hs defines the set of traces that are accepted by B. Thus, a trace set L is defin
able by a temporal formula with hidden propositions iff L is w-regular.

Temporal logic with hidden propositions, however, is an expensive specification
language. Since the formula (37r)0 is satisfiable iff 6 is satisfiable, the satisfia
bility problem for temporal logic with hidden propositions can still be solved
in polynomial space. But the reduction from model checking to satisfiability in
volves negation, and the temporal formulas with hidden propositions are not
closed under negation. The model-checking problem for a Biichi system Bs and
a formula (37ri Jr„)d> requires exponential space, by checking the emptiness
of the automaton Bs x -i(3;ri,..., :r„)Bc. whose construction involves the com
plementation of a Biichi automaton [Saf88]. This is also a lower bound [Sis83].
For the hidden propositions tti,..., Tr^, we can assert by a formula whose length
is polynomial in n that each proposition tt,- is true precisely at all positions that
are multiples of 2'. In this way, we can define by a formula whose length is poly
nomial in n the traces that do not encode accepting computations of a Turing
machine that uses space 2".

3 Integer-time Logics

Temporal logic is good for specifying qualitative requirements on execution se
quences, such as response, but inconvenient for specifying quantitative require-

ments, such as bounded response. A bounded-response requirement may assert
that every observation of a is followed within 5 positions by an observation of 6.
This requirement can be specified, rather awkwardly, by the temporal formula

•(a - 0(f' V 0{l> V 0(i V0(b Vot)))))- (t)

In order to facilitate more succinct specifications of quantitative requirements,
we can annotate temporal operators with quantitative constraints.
Constrained temporal operators. The consirained temporal formulas are
defined by the grammar

(f) ::= Tr\4>W4)\->(j>\ \ <i>\ >l <t>

where tt is a proposition, ~ is an inequality operator from the set {<,<,>? >)»
the constant c is a nonnegative integer, and 7 is an interval with integer end-
points. Forour purposes, an interval is a convex subset of the nonnegative reals
—intervals can be open, half-open, or closed; bounded or unbounded. For an
interval I and a nonnegative real p, we freely use notation such as p -f 7 for the
interval {p+ 9 | 9 G 7}. and 7 ~ p for the condition that 9 ~ p for all reals
q E I. An overconstrained temporal formula is a constrained temporal formula
that may contain also subformulas of the form Oi U-c (Pi-

The truth of an (over)constrained temporal formula <p at position p of a trace a
is defined as follows:

(<T,p) ^ U^c <p2 if there exists a position r > p of er with r ~ (p -f c)
such that (cr, r) |= do- and for all positions g of <t. if p < 9 < r then
(<^i9) 1= <^1:

((T,p) \= >/p if there exists a position r € (p + 7) of cr such that
(tr, r) \= 0, and for all positions 9 of o", if p < 9 < r then {a,9) \= -><p.

The temporal operator >, which is pronounced "earliest, was introduced in
[RS97], motivated by the event-predicting clocks of [AFH94]. In words, the for
mula >/ <^ is true at position p iff there is a later position r > p at which <f> is
true, and the earliest such position lies in the interval p -H 7.

Useful defined operators are unconstrained until, constrained eventually, and
constrained always: O1U02 = — trueU^cOi «ind =

For example, the bounded-response requirement (f) can be specified
by the formula 0(0 — <><5 b), or alternatively, by 0(0 — ^(O.s] ^)- While these
two formulas are equivalent, it is important to notice the difference between, say,
therequirements <>>5 6and >[5,00) fhe formula <>>5 6asserts that some obser
vation of b will occur after 5 positions or later; the formula >(5,c«) b makes the
stronger assertion that the earliest observation of b will occur after 5 positions
or later.

Model checking. Constrained and overconstrained temporal operators do not
add expressive power to temporal logic, only succinctness. While for the over-
constrained temporal formulas, the exponential increase in succinctness comes
at an exponential cost in efficiency, for the constrained temporal formulas the

exponential increase in succinctness comes at no cost: constrained operators can
be model checked in polynomial space; overconstrained operators cannot.

In the tableau construction, suppose that location £ contains the constrained
until formula V'l If<5 4^2• Then each successor location of £ must contain either V'2>
or both 4)1 and ^1 i/<4V'2- If £ contains 4'\ f£>5 4'2i then each successor location of
£ must contain both V'l and 4'i U>a4^2- If ^ contains the earliest formula >[5,5]
then each successor location of £ must contain both the complement® of 4> and
>[4.4] xb. Finally, if £ contains the overconstrained formula xb\ 4'2, then each

successor location of £ must contain both 4^i and U=4 4>2- Hence, the formula
xbiU^(^c-i)4'2 has to be declared a "subformula" of V'ii/^c '̂2i and the formula
>/_i V' has to be declared a "subformula" of >jrb. This, however, makes the
number of subformulas of a given formula 4> exponential in the length of 4>-' It
follows that the number of locat ions of the tableau is doubly exponential in 4>,
and the model-checking procedure for the overconstrained temporal formulas
requires exponential space.

For the constrained temporal formulas, a powerful optimization is possible (as
discussed for branching time in [EMSS90]). For given subformulas V'l and V'2
of d, a locat ion of needs to contain at most one formula of the form V'l V'2-
This is because the conjunction of t/'i W~ci V'2 and t"i ^~C2 V'2 is equivalent to
the single constraint V'l V'2 if {<,<}, and to V'l fy...max(c,,c2) V'2
if '-G {>.>}• Similarly, for a given subformula V'- a location of 5^ needs to
contain at most one formula of the form >/ r. This is because the conjunction
of >/, V and >/3 V is equivalent to the single constraint >/in/2 V*- Hence, if (f>
has length n and contains no integer constants greater than c, then the number of
locations of the tableau B^ can be reduced to This gives a polynomial-
space model-checking procedure for the constrained temporal formulas.

The optimization is impossible for overconstrained formulzis of the form 0=c V',
which are not closed under conjunction. Indeed, for every Turing machine M
that uses space 2", we can construct an overconstrained temporal formula 4>m
of length polynomial in n which is satisfied precisely by the traces that do not
encode accepting computations of M [AH94]. The key to the construction of
dM is the formula 0(p A 0=2" ''P)^ whose length is linear in n. By reducing
satisfiability to model checking as in the unconstrained case, we conclude that
exponential space is a lower bound for model checkingoverconstrained temporal
formulas.

AIur-Dill automata. If quantitative behavior is of interest, it is convenient to

®In this expository paper, we provide no complete definitions for tableau construc
tions, but only the key ideas behind the constructions. In particular, we leave it to
the reader to define the complement of an (over)constrained temporal formula. This
can be done, for example, by introducing duals of the constrained until and earliest
operators that allow all negations to be pushed to the front of propositions [AFH96].

" If the integer constants that occur in (over)constrained temporal operators are writ
ten in unary notation, then the number of subformulas of <l> remains linear in the
length of 0, and all overconstrained temporal formulas can be model checked in
polynomial space.

Fig. 1. Bounded response

havesuccinct languagesnot only for requirementspecification but also forsystem
description. A time-constrainedsystem is naturally described by a product As =
,4i X •••X Am of Alur-Dill automata [AD94]. An Alvr-Dill aulomalon A =
(B, A. Q,/?,7) consists of a Biichi automaton B, a finite set A of clocks, and
three labeling functions on the locations of B. The exit-guard function q and
the entry-guard function 0 each map every locat ion of B to a finite sets of clock
constraints, and the reset function 7 maps every location of B to a set of clocks
from A'. A clock conslraini is an inequality of the form x d. where x € A is a
clock, ~ G{<, <, =. >, >}, and d isa nonnegative integer constant.®
Under the assumption that consecutive observations in a trace are separated
by exactly 1 time unit, every Alur-Dill automaton accepts a set of traces. In
this case, the clocks behave like integer variables. If (x ~ d) G q(^), then the
execution of A can exit location Cif the value of x satisfies the constraint x ~ d.
Then 1 time unit expires, and all clock values decrease by 1. If (x d) G
then the execution of A can enter the next location C if the (decreased) value
of Xsatisfies the constraint x ~ d. If x G 7(f')< then once the the execution of A
has entered location the value of the clock x can change nondeterministically
to any nonnegaiive integer.^ For example. Figure 1 shows a (rather awkward)
Biichi automaton and a (more succinct) Alur-Dill automaton, both of which
accept precisely the traces that satisfy the bounded-response requirement (f).
Neither automaton has acceptance conditions, and it is assumed that a and h
are mutually exclusive.

Formally, the Alur-Dill automaton A accepts the trace a if (1) the underlying
Biichi automaton B accepts c, along some infinite execution that visits the se
quence ^0^1 ^2... of locations, and (2) for each clock x G A", there is an infinite
sequence «oViUit)2U2i'3... of (possibly negative) integer clock values such that

® It is convenient to label locations, rather than transitions, with clock constraints,
just like in Buchi tableaux it is convenient to label locations, not transitions, with
input observations.

®Our choice of decreasing clocks with nondeterministic resets, rather than increasing
clocks with resets to 0. will simplify later tableau constructions.

for all i > 0,

(2a) [exit guard] if (x ~ d) 6 then it,- ~ d,
(2b) [clock progress] = it,- —1,
(2c) [entry guard] if {x d) E (3{Ci+i) then i;,-+i d, and
(2d) [clock reset] if x 7(^»-i-i) <^hen u,-+i = else «,+i > 0.

Every Alur-Dill automaton A can be translated into a Biichi automaton B{A)
that accepts the same traces. If A has / locations, k clocks, and contains no inte
ger constants greater than d, then B{A) has locations: each location
of B{A) consists of a location of A and a vector of integers between —1 and
dH- 1, which represent clock values (the exact value of a clock is immaterial if
it is less than 0 or greater than d) [AH92b]. Hence, the emptiness problem for
Alur-Dill automata can be solved in polynomial space.

Integer-time model checking. This leads to the following formulation of the
inieger-iime model-checking problem: given a product As = Ai x ••• x Am of
Alur-Dill automata and an (over)constrained temporal formula <p, do all traces
that are accepted by As satisfy d>1 We can solve the integer-time model-checking
problem by first constructing a a Biichi system iB(As) and a Biichi tableau
and then checking the emptiness of B(As) x B-,^. Notice that if each compo
nent automaton A,- has /,- locations, ki clocks, and contains no integer constants
greater than d,, then the product automaton As has locations, ki
clocks, and contains no constant greater than maxJTj d,- [AD94]. It follows that
the integer-time model-checking problem can be solved in polynomial space for
the constrained temporal formulas (and in exponential space for the overcon-
strained formulas).

Clock tableaux. There is an alternative approach to integer-time model check
ing for constrained formulas: we can first construct, a suitable Alur-Dill au
tomaton A-,0 and then check the emptiness of the Biichi automaton B(As x
A-,,j) [AFH96]. Given a constrained temporal formula the clock tableau A^ is
an Alur-Dill automaton that accepts precisely the traces that satisfy <f>. For each
syntactic subformula of <f>, we define two copies —the initial copy and the
stale copy — and a clock x,/,. Every location of the clock tableau A^ is a set
of initial and stale copies of subformulas of 6. The initial copy V' indicates that
the remainder of the input trace must satisfy V- The stale copy V''̂ , which is
propagated from location to location, indicates that the remainder of the input
trace need not satisfy V' itself but an inherited constraint that also depends on
the current value of the clock x^.

The transition relation and guard functions of the clock tableau A^ are defined
by the following rules. If location I contains the initial copy of the constrained
until formula = {ipi U^c ^*2)1 then (x^ ~ c) € oi{£) and each successor location
of £ contains the stale copy - If ^ contains the stale copy , then either £
contains the initial copy V'2 = 0) € or £ contains the initial copy
il>{ and each successor location of £contains the stale copy . If £ contains the
initial copy of the earliest formula ^ = (>; ^0), then (x^ G/) € Q'(^)^° and

If the interval I is bounded from both below and above, then the condition Xtp E J

each successor of C contains the stale copy If f contains the stale copy
then either i contains the initial copy v''o = 0) ^ or ^ contains the
initial copy of the complement of ipo and each successor location of C. contains
the stale copy .

The reset function 7 of the clock tableau is defined as follows. For constrained
until formulas xl> = t '̂2) with {>,>}, we require that 6 7(^) iff
Ccontains the initial copy V''- For constrained until formulas V' = (V'iW^cV'2)
with as well as for earliest formulas V- = (>/V'o)) we require that
Xx{, € yii) iff (1) ^ contains the initial copy V'' and (2) if £ also contains the
stale copy then = 0) € 0{£)- These conditions are motivated by the
arguments for the optimization of the Biichi-tableau construction given above.
In summary, if the constrained temporal formula <f> has length rj, then the clock
tableau Aq has locations, 0(n) clocks, and contains no integer constants
greater than the largest constant in o. Together with the product construction
and emptiness check for Alur-Dill automata, this gives again a polynomial-space
algorithm for integer-time model checking of constrained temporal formulas.

4 Real-time Logics

While integer-time models assume that consecutive observations in a trace are
separated by exactly 1 time unit, real-time models admit arbitrary real-numbered
delays between observations. A timing t = tiinis - - is an infinite sequence of
positive reals whose sum diverges: X!,>i ti = oc. A timed trace {a, r) consists of
a trace a and a timing r. Each real /,• represents the delay between the (? —l)-st
and j-th observation of a. The positions of (<t, r) are the nonnegative reals in the
set I > 0}, which represent the times at which observations occur.
For a position p of the timed trace [a, r). the observation of {cr, r) at position p
is defined by (cr, r)[p] = sjt if p = particular, (<t, r)[0] = so)-
The (over)constrained temporal formulas can be interpreted over timed traces,
simply by replacing the trace a in the definition of the relation {<r,p) <i> by a
timed trace (o", t). For example, the constrained temporal formula a A 0(0 —'
>[11] o) asserts that the proposition a is true exactly at the integer points in
real time.

Alur-Dill automata can also be interpreted over timed traces. The Alur-Dill
automaton A accepts the timed trace (<t, r) if in the definition of trace accep
tance, the sequence of integer clock values is replaced by a sequence of real
clock values, and the clock-progress condition (2b) is replaced by the condition
t',+1 = ui - /j+i. We say that the Alur-Dill automaton A defines the set of
timed traces that are accepted by A. The real-time emptiness problem for Alur-
Dill automata asks if a given automaton accepts any timed trace; the real-time
universality problem asks if a given automaton accepts every timed trace.

gives rise to two clock constraints.

Every Alur-Dill automaton A can be translated into a Biichi automaton 7v(.4),
called the region auiomaion of A, such that 7S(-4) accepts a trace a iff there is a
timing r so that A accepts the timed trace (<7, r). If A has I locations, k clocks,
and contains no integer constants greater than d, then Tl{A) has I • •
0(2*lb!) locations: each location of Tt{A) consists of a location of A, a ^-vector
of integers between —1 and d4-1, which represent the integer parts of the clock
values, and an ordered partition of the clocks, which represents the ordering
of the fractional parts of the clock values [AD94]. It follows that the real-time
emptiness problem for Alur-Dill automata can be solved in polynomial space.

This leads to the following formulation of the real-time model-checking prob
lem: given a product As = Ai x ••• x Am of Alur-Dill automata and an
(over)constrained temporal formula <f>, do all timed traces that are accepted
by As satisfy <f)l For the constrained temporal formulas, the real-time model-
checking problem can be solved using the clock-tableau approach: first construct
the clock tableau A-.© (which is defined exactly as in the case of integer time) and
then check the emptiness of the region automaton 7^(.4s x This algorithm
uses polynomial space.

Theorem 1. [AFH96. RS91] The real-lime model-checking problem for the con
strained temporal formulas can be solved in polynomial space.

In the case of real time, the restriction to constrained temporal formulas is es
sential: for the overconstrained formulas, where the integer-time model-checking
problem requires exponential space, the real-time model-checking problem is
undecidable. Given an arbitrary Turing machine M, we can construct an over-
constrained temporal formula 0\j that is satisfied precisely by the timed traces
that do not encode accepting computations of M [AH94]. In real time, any finite
number of observations may occur within a single time unit. In this way, Turing
machine configurations of arbitrary length can be encoded within a time interval
of length 1. Then, the overconstrained formula 0(p A 0=i -ip) encodes the fact
that the contents of a tape cell is not properly maintained from one configurat ion
of M to the next.

Theorem2. [AH93. AH94] The real-time model-checking problemfor the over-
constrained temporal formulas is undecidable. (The integer-time model-checking
problem for the overconstrained temporal formulas is complete for exponential
space.)

The timed trace set that is defined by the overconstrained formula 0(p A 0=i ->p)
can also be defined by an Alur-Dill automaton. It follows that the real-time
universality problemfor Alur-Dill automata is undecidable [AD94].^^
Recall that the addition of hiding to temporal logic allows the definition of all
w-regular trace sets. Analogously, the extension of the constrained temporal for
mulas with hidden propositions allows the definition of all timed trace sets that

" This does not contradict the decidability of the real-time emptiness problem, because
unlike temporal formulas, Alur-Dill automata are not closed under complementation.

10

are definable by Alur-Dill automata. This is because every Alur-Dill automaton
A can be translated into a constrained temporal formula <f>A with hidden propo
sitions —one for each location, one for each clock constraint, and one for each
reset action of A— such that A and <f>A define the same timed trace set. Since the
universality problem for Alur-Dill automata is undecidable, it follows that hiding
renders the real-time model-checking problem for the constrained temporal for
mulas undecidable. This is in contrast to the case of integer time, where hiding
increases the model-checking complexity for the constrained temporal formulas
by an exponential.

Theorems. [WU94, HRS98] A set of iimed traces is definable by an Alur-Dill
automaton iff it is definable by a constrained temporalformula with hidden propo
sitions.

Corollary 4. The real-time model-checking problem for the constrained tempo
ral formulas with hidden propositions is undecidable. (The integer-time model-
checking problem for the constrained temporal formulas with hidden propositions
is complete for exponenttal space.)

We have seen that both overconstraining and hiding render the real-time model-
checking problem undecidable. We conclude with two semantic extensions and
a syntactic extension of real-time logics which are benign: superdense and inter
leavingmodelsof time, and constrained temporal operators that refer to the past,
rat her than the future. Two more extensions of syntax —interval-constrained un
til operators in the case of real time, and clock constraints for integer time—
have exponential cost.

Superdense models. In a timed trace, there are "gaps" between observations,
which occur at discrete points in real time. Alternatively, we can define a timed
trace as a function from the nonnegative reals to the observations [BKP86]. In
this view, observations have duration, and correspond to intervals in real time.
Without loss of generality, we assume that every even-numbered observation
corresponds to a singular interval (i.e., a single point), and every odd-numbered
observation corresponds to an open, bounded interval. An interval trace (c, r)
consists, like a timed trace, of a trace a and a timing r. However, unlike for
timed traces, the positions of the interval trace (c. r) are the nonnegative reals.
For a position p of (a, r), the observation of (o", r) at position p is defined by

'•)b] = ifp=eLi'•)b] = «2Ji+i ifULiu <p< Yli=i '«•
The (over)constrained temporal formulas are interpreted over interval traces
without change in the definitions. Notice that in interval-based real time, the
temporal operator Q i® pronounced "almost": 0)<f> is true at position p iff
for every positive real r there is a positive real 6 < e so that <f> is true at position
p+6.

When interpreting an Alur-Dill automaton A over interval traces, the transitions
of A are instantaneous, and time advances while the execution of A waits in a
particular location. The exit guards are interpreted as invariants: if (x ~ d) €
Q(f), then the execution of A can remain in location Cas long as the value of

11

the clock X satisfies the constraint x d. Formally, the Alur-Dill automaton
A accepts the interval trace (a, r) if in the definition of timed-trace acceptance,
the exit-guard and clock-progess conditions (2a) and (2b) are replaced as follows:
given i > 0, for the even-numbered observations, with singular duration,

(2a) if (x ~ cf) 6 0(^21) then u^i ^ d, and
(2b) V2i+i = uo,;

for the odd-numbered observations, with open duration,

(2a') if (x ~ d) G 0(^21+1)) then d for all uoi+i < w < V2i+2, and
(2b') r2»+2 = «2»+i —<i+l-

As was the case for timed traces, every Alur-Dill automaton A can be translated
into a Biichi automaton 7v'(-4) such that 'R.'{A) accepts a trace c iff there is a
timing r so that A accepts the interval trace (<7, r). The interval-based region
construction TV has the same flavor and complexity £is the point-based region
construction % [AFH96].

All results we reported for point-based real time (timed traces) apply also to
interval-based real time (interval traces). In particular, the clock-tableau con
struction can be modified, so that the interval-based real-time model-checking
problem (given a product A5 of Alur-Dill automata and a constrained temporal
formula <6, do all interval traces that are accepted by As satisfy <f>?) can be solved
in polynomial space [AFH96. RS97]. In the interval-based clock tableau A'̂ , we
use one additional clock, c. to distinguish singular from open locations: for every
location f. we require that c G "){() and either (c = 0) G Q(f) or (c < 0) G Q(f)-
If (r = 0) Go(f), then location (is called singular, because when the execution
of A'̂ visits f, it remains in Conly for a point in time. If (c < 0) Gct{C), then
location Cis called open, because when the execution of A'̂ visits C, it remains
in Cfor an open interval of time.

Forsingularlocationsof the interval-based clock tableau Ajj, the rules that define
the transition relation and guard functions are the same as for the point-based
clock tableau A^. For open locations f, if (contains the initial copy v''̂ of the
constrained until formula i- = {xl'iU^e '̂2), then £ also contains v'{; in addition,
either (0.1) c and £contains t'o, or (x^j. ~ c) Ga(f) and eachsuccessor location
off contains the stale copy . If the open location £ contains the initial copy

of the earliest formula ^ '̂ = (>; ^po), then {x^p E 1) E Q(f) and each successor
of £ contains the stale copy t/; this is the same rule as for singular £, because
an earliest formula cannot be fulfilled within an open interval. Stale copies are
propagated and clocks are reset as in A^p. Finally, if (x^ = 0) G P{£) for any
location £ and formula i', we require that £ is singular.

Interleaving models. Both in integer and in real time, we adopted a strictly
monotonic view of time: at every point in integer (real) time, every (timed/inter
val) trace offers a unique observation (if any). In the modeling of product sys
tems, it is often convenient to interleave simultaneous transitions of the system
components, rather than define the product of component transitions. Then,
in interleaving models, several transitions of a system may occur one after the

12

other, but all at the same point in "time." Our models are easily adopted to this
weakly monoionic view of time, by admitting delay 0 between consecutive ob
servations ofa (timed) trace. All results we reported carry over, with only minor
modifications in the algorithms. A more detailed discussion of various models
for real time and their uses can be found in [AH92b].

Past temporal operators. While in integer time, past temporal operators add
no expressive power, this is not the case in real time [AH92a, AFH94]. Hence,
real-time logics are often defined with constrained past operators, in addition to
the constrained future operators discussed in this paper. The tableau and clock-
tableau constructions can naturally accommodate past operators. It follows that
the addition of constrained past temporal operators does not increase model-
checking complexity, neither in integer time nor in real time.
Interval-constrained until operators. An interval-constrained until operator
has the form Uj for a nonsingular interval / with integerendpoints.Whilesingu
lar intervals cause overconstraining. nonsingular interval constraintson until op
erators can be model checked in exponential space. The real-time model-checking
algorithm for interval-constrained until formulas, however, is complicated, and
not discussed in this paper; see [AFH96].
Clock-constrained temporal logics. As an alternative to constraining tem
poral operators, we can add clock-reset quantifiers (also called "freeze" quanti
fiers) and clock constraints to temporal logic [AH94]. Since clock constraints can
express overconstrained requirements of the form O-c <t>, the resulting real-time
logics are undecidable. However, in integer time, temporal logics with clock con
straints can be model checked in exponential space, just like the overconstrained
temporal formulas.

5 Conclusion

Temporal logic with clock-reset quantifiers and clock constraints has been called
Tptl (integer time: exponential space; real time: undecidable) [AH94]^", with
overconstrained until operators, Mtl [Koy90] (integer time: exponential space;
real time: undecidable) [AH93]. with interval-constrained until operators, MlTL
(integer or real time: exponential space) [AFH96], with constrained until op
erators, MitLo.co (integer or real time: polynomial space) [AFH96], with the
earliest operator >/ and its past dual </ , pronounced "latest," ECL [HRS98]
(integer or real time: polynomial space) [RS97]. All complexities refer equally to
satisfiability and model checking, and are robust with respect to point-based vs.
interval-based modeling of real time, and with respect to strictly monotonic vs.
weakly monotonic modeling of time.

There, it is also shown that if a richer set of clock constraints is permitted —for
example, constraints that compare the sum of two clock values with a constant—
then even the integer-time model-checking problem is undecidable. This and related
issues are discussed in the earlier survey [AH92b].

13

In integer time, all these logics are equally expressive: they define the counier-
free u}-regular trace sets, which can also be characterized by a certain first-order
monadic logic on the natural numbers [Tho90]. In real time, Tptl is strictly
more expressive than Mtl, which isstrictly more expressive than the other three
logics —Mitl, Mitlo.coi and the future fragment of EcL. In point-based real
time, Mitl is strictly more expressive than both MiTLo.oo and ECL, which are
equally expressive [Ras98]. In interval-based real time, all three logics are equally
expressive [HRS98]. The interval trace sets that are definable in Mitlo.co/Ecl
—that is, definable by constrained temporal formulas— have been called counter-
free real-time u-regular] they have also been characterized by a certain first-order
monadic logic on the reals [HRS98].
The observation that constrained until formulas (MitLq.oo) and earliest formulas
(Ecl) are interdefinable means that we could have omitted one or the other from
our discussion. We included both, because each offers the direct specification of
an important class of timing requirements, and because each offers independent
insights into the clock-tableau construction. The key ideas behind the trans
lations are given by the following equivalences: the earliest formula >[1,2) is
equivalent to the conjunction of the two constrained until formulas 0<2 4> and
•<i ->d: the constrained until formula Pi U<i 02 is equivalent to the conjunction
of the unconstrained until formula O] Udn and the earliest formula ><i <f>2] the
constrained until formula 0\Uy \ <f>2 is equivalent to the conjunction of •<! <i>\
and •<! (<?2 V (pi A (piWoo)))-

Acknowledgments. The author thanks Jean-Francois Raskin for several valu
able suggestions on a draft of this paper, Prasad Sistla for repeatedly pointing
out the importance of polynomial-space fragments of real-time logics, and Rajeev
Alur for uncountable hours of research and discussion on the topic of real-time
verification.

References

[ACD93] R. j\lur. C. Courcoubetis. and D.L. Dill. Model checking in dense real time.
Information and Computation. 104(l):2-34, 1993.

[AD94] R. .-Mur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183-235, 1994.

[AFH94] R. Alur, L. Fix, and T.A. Henzinger. A determinizable class of timed au
tomata. In D.L. Dill, editor, CAV 94: Computer-aided Verification, Lecture
Notes in Computer Science 818, pages 1-13. Springer-Verlag, 1994.

[AFH96] R. Alur, T. Feder. and T.A. Henzinger. The benefits of relaxing punctuality.
Journal of the ACM, 43(1):116-146, 1996.

[AH92a] R. Alur and T.A. Henzinger. Back to the future: towards a theory of timed
regular languages. In Proceedings of the 33rd Annual Symposium on Foun
dations of Computer Science, pages 177-186. IEEE Computer Society Press,
1992.

[AH92b] R. Alur and T.A. Henzinger. Logics and models of real time: a survey. In
J.W. de Bakker, K. Huizing. W.-P. de Roever, and G. Rozenberg, editors,

14

Real Time: Theory in Practice, Lecture Notes in Computer Science 600,
pages 74-106. Springer-Verlag, 1992.

[AH93] R. Alur and T.A. Henzinger. Real-time logics: complexity and expressive
ness. Information and Computation, 104(l):35-77, 1993.

[AH94] R. Alur and T.A. Henzinger. A really temporal logic. Journal of the ACM,
41(l):181-204, 1994.

[BKP86] H. Barringer, R. Kuiper, and A. Pnueli. A really abstract concurrent model
and its temporal logic. In Proceedings of the 13th Annual Symposium on
Principles of Programming Languages, pages 173-183. ACM Press, 1986.

[Buc62] J.R. Buchi. On a decision method in restricted second-order arithmetic. In
E. Nagel, P. Suppes, and A. Tarski, editors, Proceedings of the First Inter
national Congress on Logic, Methodology, and Philosophy of Science 1960,
pages 1-11. Stanford University Press, 1962.

[CK96] E.M. Clarke and R.P. Kurshan. Computer-aided verification. IEEE Spec
trum, 33(6):61-67, 1996.

[Eme90] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor. Hand
book of Theoretical Computer Science, volume B, pages 995-1072. Elsevier
Science Publishers, 1990.

[Eme92] E.A. Emerson. Real lime and the p-calculus. In J.W. de Bakker.
K. Huizing. W.-P. de Roever, and G. Rozenberg, editors. Real Time: The
ory in Practice, Lecture Notes in Computer Science 600, pages 176-194.
Springer-Verlag, 1992.

[EMSS90] E.A. Emerson. A.K. Mok, A.P. Sistla, and J. Srinivasan. Quantitative
temporal reasoning. In R.P. Kurshan and E.M. Clarke, editors, C-4V 90:
Computer-aided Verification, Lecture Notes in Computer Science 531, pages
136-145. Springer-Verlag. 1990.

[GPSS80] D. Gabbay, A. Pnueli. S. Shelah, and J. Stavi. On the temporal analysis of
fairness. In Proceedings of the Seventh Annual Symposium on Principles of
Programming Languages, pages 163-173. ACM Press, 1980.

[HNSY94] T.A. Henzinger. X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model
checking for real-time systems. Information and Computation. 111(2):193-
244, 1994.

[HRS98] T..A. Henzinger. J.-F. Raskin, and P.-Y. Schobbens. The regular real-time
languages. In ICALP 97: Automata, Languages, and Programming, Lecture
Notes in Computer Science. Springer-Verlag. 1998.

[Koy90] R. Koymans. Specifying real-time properties with metric temporal logic.
Real-time Systems. 2(4):255-299. 1990.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite-state concurrent pro
grams satisfy their linear specification. In Proceedings of the 12th Annual
Symposium on Principles of Programming Languages, pages 97-107. ACM
Press, 1985.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, 1992.

[Ras98] J.-F. Raskin. Personal communication, 1998.
[RS97] J.-F. Raskin and P.-Y. Schobbens. State-clock logic: a decidable real-time

logic. In O. Maler. editor, HART97: Hybridand Real-time Systems, Lecture
Notes in Computer Science 1201, pages 33-47. Springer-Verlag, 1997.

[Saf88] S. Safra. On the complexity of w-automata. In Proceedings of the 29th
Annual Symposium on Foundations of Computer Science, pages 319-327.
IEEE Computer Society Press, 1988.

15

[Sav70] WJ. Savitch. Relationship between nondeterministic and deterministic tape
classes. Journal of Computer and System Sciences, 4:177-194, 1970.

[SC85] A.P. Sistla and E.M. Clarke. The complexity of propositional linear tempo
ral logics. Journal of the ACM, 32(3):733-749, 1985.

[Sis83] A.P. Sistla. Theoretical Issues in the Design and Verification of Distributed
Systems. PhD thesis, Harvard University, 1983.

[Tho90] W. Thomas. Automata on infinite objects. In J. van Leeuwen,editor, Hand
book of Theoretical Computer Science, volume B, pages 133-191. Elsevier
Science Publishers, 1990.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Infor
mation and Computation, 115(l):l-37, 1994.

[Wil94] T. Wilke. Specifying timed state sequences in powerful decidable logics and
timed automata. In H. Langmaack, W.-P. de Roever, and J. Vytopil, edi
tors. FTRTFT 94'. Formal Techniques in Real-time and Fault-tolerant Sys
tems, Lecture Notes in Computer Science 863, pages 694-715. Springer-
Verlag. 1994.

[VVol82] P. Wolper. Synthesis of Communicating Processes from Temporal-Logic
Specifications. PhD thesis. Stanford University, 1982.

16

	Copyright notice 1998
	ERL-98-40

