

Copyright © 1998, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

REACTIVE MODULES

by

Rajeev Alur and Thomas A. Henzinger

Memorandum No. UCB/ERL M98/41

22 June 1998

REACTIVE MODULES

by
Rajeev Alur and Thomas A. Henzinger

Memorandum No. UCB/ERL M98/41

22 June 1998

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia, Berkeley

94720

Reactive Modules*

Rajeev Alur"'" Thomas A. Henzinger^

Abstract. We present a formal model for concurrent systems. The model represents
synchronous and asynchronous components in a uniform framework that supports com
positional (assume-guarantee) and hierarchical (stepwise-refinement) design and verifi
cation. While synchronous models are based on a notion of atomic computation step,
and asynchronous models remove that notion by introducing stuttering, our model is
based on a flexible notion of what constitutes a computation step: by applying an ab
straction operator to a system, arbitrarily many consecutive steps can be collapsed into
a single step. The abstraction operator, which may turn an asynchronous system into a
synchronous one, allows us to describe systems at various levels of temporal detail. For
describing systems at various levels of spatial detail, we use a hiding operator that may
turn a synchronous system into an asynchronous one. We illustrate the model with di
verse examples from synchronous circuits, asynchronous shared-memory programs, and
synchronous message-passing protocols.

1 Introduction

We introduce a new formal model for reactive computation. Our target application is hardware-
software codesign and verification. This application requires (1) an ability to describe and compose
modules with different synchrony assumptions, (2) an ability to describe and compose modules at
different levels of abstraction, and (3) an ability to decompose verification tasks into subtasks of
lowercomplexity. Our model formalizes heterogeneous systems that are built from synchronous and
asynchronous hardware and software components, and provides assume-guarantee and abstraction
principles for reasoning about such.systems. The salient features of our model are scalabilityalong
both the space and time axes, and interdefinability of synchronous and asynchronous behavior.

Scalability. Scalability along the space axis means that spatial implementation details of a module,
such as internal variables and wires, can be hidden from outside observers. Scalability along the
time axis means that temporal implementation details, such as internal computation steps and
delays, can be hidden from outside observers.

*A preliminary version of this paper appeared in the Proceedings of the 11th IEEE Symposium on Logic in
Computer Science (LICS), pages 207-218, 1996.

^University of Pennsylvania and Bell Laboratories. Address; Department of Computer and Information Science,
200 South 33rd Street, Philadelphia, PA 19104. Email: alur@cis.upenn.edu. URL: http://www.cis.upenn.edu/''alur.
Supported in part by the DARPA/NASA grant NAG2-1214.

^University of California at Berkeley. Address: Department of Electrical Engineering and Computer Sciences,
Berkeley, CA 94720-17770. Email: t<ih@eecs.berkeley.edu. URL: http://www.eecs.berkeley.edu/'tah. Supported
in part by the ONR YIP award N00014-95-1-0520, by the NSF CAREER award CCR-9501708, by the NSF grant
CCR-9504469, by the DARPA/NASA grant NAG2-1214, and by the SRC contract 97-DC-324.041.

Example. A 64-bit adder can be implemented either by using two 32-bit adders in parallel, or by
using a single 32-bit adder twicefor each 64-bit addition, first for the lower-order bits and then for
the higher-order bits. The first implementation decomposes the 64-bit adder spatially, by splitting
it into two components; the second implementation decomposes the 64-bit adder temporally, by
splitting each computation step into two micro-steps. Both implementations are presented in
Section 5. More generally, spatial scaling provides components at different levels of detail, such as
gates, ALUs, and processors; and temporal scaling provides computation steps at different levels
of detail, such as gate operations, arithmetic operations, and processor instructions. •

While spatial scalability is a standard feature of concurrency models, the concept of temporal
scalability is inspired by the notion of multiform time in synchronous programming languages [14],
and by the notion of action refinement in process algebras [26]. In verification, temporal scalingis
usually performed in an informal, manual manner under the umbrella buzzword of "abstraction."
We introduce temporal scaling as a modeling primitive, called next, that supports the formal
construction and the automatic analysis of temporal abstractions. If P is a module, and a; is an
output variable of P, then the more abstract module Q = (next x for P) combines as many
computation steps of P into a single computation step of Q as are required to change the output x.
For example, if P is a gate-level description of a processor, and the toggling of x signals the
completion of an instruction, then Q is an instruction-level description of the processor.

Interdefinability. In fully synchronous behavior, concurrent modules proceed in lock-step and
respond to mutual inputs by simultaneous outputs. In fully asynchronous behavior, concurrent
modules proceed by interleaving and respond to inputs by eventualoutputs. Interdefinability means
that after hiding spatial information, a collection of synchronous modules can appear asynchronous
to outside observers; and after hiding temporal information, a collection of asynchronous modules
can appear synchronous.

Example. Consider a transducer that accepts integers as input and computes the corresponding
squares as output. At an abstract level, the transducer may proceed synchronously, in discrete
rounds, accepting one integer per round and computing one square per round; or it may proceed
asynchronously, accepting a stream of integers and computing an arbitrarily delayed stream of
squares. The (a)synchrony of the abstract transducer, however, is independent of whether a con
crete implementation of the transducer employs synchronous modules or asynchronous modules or
both. For example, a distributed asynchronous transducer can be implemented using synchronous
communication onhidden channels; and a synchronous transducer can be implemented using delay-
insensitive circuitry whose internal computation steps and delays are hidden. •

Overview. The paper defines the formalism ofreactive modules. Definitions are usually preceded
by motivating thoughts, and succeeded by illustrative examples as well as properties that ensure
the soundness of the definitions. The bulk of the paper discusses safety aspectsof reactivemodules.
Fair reactive modules are defined in Section 7.

2 Definition of Reactive Modules

A discrete reactive system is a collection of variables that, over time, change their values in a
sequence of rounds. We model discrete reactive systems that may interact with each other by
mathematical objects that are called reactive modules (or modules, for short).

Variables vs. events. A module P has a finite set of typed variables, denoted Xp. A state of P
is a valuation for the variables in Xp. Events, such as clock ticks, are modeled by toggling boolean

privXp intfXp extlXp
ctrXp

obsXp
Xp

Table 1: Module variables

variables. For example, the event that is represented by the boolean variable tick occurs whenever
the module proceeds from a state 5 to a state t such that s[tick] ^ t[tick]}

System vs. environment. The module P represents a system that interacts with an environment.
Some of the variables in. Xp are updated by the system, and the other variables in Xp are updated
by the environment. Hence, the set Xp is partitioned into two sets: the set ctrXp of controlled
variables, and the set extlXp of external variables.

States vs. observations. Not all controlled variables of the module P are visible to the environ

ment. Hence, the set ctrXp is partitioned further into two sets: the set privXp oi private variables,
and. the set intfXp of interface variables. The interface variables and the external variables are
visible to the environment, and therefore called observable. The set of observable variables of P is
denoted obsXp. An observation of P is a valuation for the variables in obsXp. The various classes
of module variables and their relationships are summarized in Table 1. The distinction between
private, interface, and external variables is similar to the distinction between internal, output, and
input events in the formalism of I/O automata [21].

Asynchrony vs. synchrony. During the execution of the module P the variables in Xp change
their values in a sequence of rounds. Various models of reactivity propose different ways in which
the variables are updated in a single round.

Pure asynchrony (interleaving [20, 10, 17, 22]): Either the system performs an update, or the
environment performs an update. Interleaving models usually distinguish only between pri
vate variables, which can be updated by the system alone, and shared variables, which can
be updated by both the system and the environment. This is a natural style for modeling
asynchronous communication via a shared memory.

Observable asynchrony (I/O automata [21]): Either the system updates the controlled variables, or
the environment updates the external variables and the system updates the private variables
in response. This is a natural style for modeling asynchronous communication via events or
messages.

Atomic synchrony (Mealy machines [23, 18]; Csp rendezvous [16, 24]): The system and the en
vironment simultaneously update variables in an interdependent fashion. This is a natural
style for modeling synchronous communication via events or messages.

Nonatomic synchrony (synchronous programming languages [8, 7, 9, 14]): Each round (macro-
step) consists of several subrounds (micro-steps), and the system and the environment taJce
turns in executing micro-steps to update variables. This is a natural style for modeling when
a computation of arbitrary duration can be synchronized with a single event.

^If 5 is a state and £ is a variable in the domain of s, we write s[£]for the value assigned by 3 to x.

The first two options lead to nonblocking communication, as the system puts no constraints on
what the environment can do, nor on the speed at which the environment performs its updates.
Nonblocking communication supports compositional reasoning with respect to a trace semantics.
However, the inherently asynchronous nature of the communication in these two options render
them unsatisfactory for modeling intrinsically synchronous systems such as hardware. The third
option leads to the possibility of deadlocks in communication, and the fourth option may lead to the
possibility of nonterminating computation within a single round. Both prospects raise difficulties
for achieving a compositional trace semantics.

We use the power of nonatomic synchrony, but restrict it to ensure nonblocking communication.
First, each variable is updated in exactly one subround of each round. Second, the controlled
variables of a module are partitioned into groups called atoms, and the variables within a group
are updated simultaneously, in the same subround. Third, the atoms are partially ordered. If atom
A precedes atom B in the partial order, then in each round, the A-subround must precede the
B-subround, and the updated values of the variables controlled by B may depend on the updated
values of the variables controlled by A.

Ourapproach is related to recent compilers for synchronous languages, such as Esterel [8], which
perform compile-time safety checks to reject programs that may lead at run-time to nonterminat
ing computations with a round. However, while Esterel is a programming language for reactive
systems, reactive modules is a modeling language. This has led us to many choices different from
synchronous languages. For example, reactive modides support both explicit state and nondeter-
minism, which is convenient for describing high-level or incomplete designs, and can be used for
modeling asynchronous processes that proceed at independent speeds. The envisioned scenario is
the one in which a variety ofdifferent programming languages are translated into reactive modules,
and verification is then performed on the resulting modules.

Latched vs. updated values. In each round, every variable x has two values. The value of
X at the beginning of the round is called the latched value, and the value of x at the end of the
round is called the updated value. We use unprimed symbols, such as a;, to refer to latched values,
and primed symbols, such as x', to refer to the corresponding updated values. Given a set X of
unprimed symbols, we write X' for the set of corresponding primed symbols.

Initial vs. update actions. The module P proceeds in a sequence of rounds. The first round is
an initialization round, during which the variables in Xp are initialized. Each subsequent round is
an update round, during which the variables in Xp are updated. The initialization and updating
of variables are specified by actions. Given two sets X and Y of variables, an action from X to y
is a binary relation between the valuations for X and the valuations for Y. The action a from X
to y is executable if for every valuation s for X, the number ofvaluations t for Y with (s,t) € a
is nonzero and finite. Executable actions are enabled in all states and ensure finitely branching
nondeterminism.

Atoms vs. modules. The controlled variables of a module P are partitioned into atoms; that
is, every controlled variable of P is controlled by one and only one atom of P. The initialization
round and all update rounds consist of several subrounds, one for the environment and one for each
atom. For each atom A, in the A-subround of the initialization round, all variables controlled by
A are initialized simultaneously, as defined by an initial action. In the A-subround of each update
round, all variables controlled by A are updated simultaneously, as defined by an update action.

Definition 1 [Atom] Let X be a finite set of typed variables. An Jf-atom A consists of a decla
ration and a body. The atom declaration consists of a set ctrXA Q X ofcontrolled variables, a
set readXA Q X o/read variables, and a set waitXa Q X\ctrXA o/awaited variables. The atom
body consists ofan executable initial action InitA from waitX'̂ to ctrXj^ and an executable update
action Updatea from readXA UwaitX'j^ to ctrX'j^.

In the initialization round, the initial action of the atom A assigns initial values to the controlled
variables as a nondeterministic function of the initial values of the awaited variables. In each
update round, the update action of A assigns updated values to the controlled variables as a
nondeterministic function of the latched values of the read variables and the updated values of
the awaited variables. Hence, in each round, the A-subround can take place only after all awaited
variables have already been updated. The variable y awaits the variable a;, written y >-a ar? if
y 6 ctrXA and x € waitXA- Now, we can define reactive modules.

Definition 2 [Module] A (reactive) module P consists of a declaration and a body. The module
declaration is a finite set Xp of typed variables that is partitioned as shown in Table 1. The module
body is a set Ap of Xp-atoms such that (1) ctrXA) = ctrXp; (2) for all atoms A and B
in Ap, ctrXA H ctrXp = 0; and (3) the transitive closure >-p= Is asymmetric.

The first two conditions ensure that the atoms of P control precisely the variables in ctrXp, and
that each variable in ctrXp is controlled by precisely one atom. The third condition ensures that
the await dependencies among the variables in Xp are acyclic. A linear order Aq, •.., Afc_i of the
atoms in Ap is consistent if for all 0 < i < j < k, the awaited variables of At are disjoint from the
controlled variables of Aj. The asymmetry of >-p ensures that there exists a consistent order of
the atoms in Ap.

Module execution. When executing the module P, in each round, first the external variables
are assigned arbitrary values of the correct types, and then the atoms in Ap are executed in an
arbitrary consistent order Aq, .. .,Ak-i. Specifically, in the initialization round, after the external
variables have been initialized, the initial action of Aq is followed by the initial action of Ai etc.;
and in each update round, after the external variables have been updated, the update action of
Aq is followed by the update action of Ai etc. In this manner, all awaited values are available
when they are needed during the execution, and thus every round can be completed in A: + 1
subrounds —one subround for the environment followed by one subround for each atom. Moreover,
all nondeterminism in the completion of a round is caused by the nondeterminism of the environment
and by the nondeterminism of individual atoms, not by the order of the atoms.

3 Examples of Reactive Modules

The syntax we use for specifying modules wiU be comprehensible once a few conventions are ex
plained. Variable declarations are indicated by keywords such as awaits, for the awaited variables
of an atom, or private, for the private variables of a module. The initial and update actions
of atoms axe specified by the keywords init and update, followed by nondeterministic guarded
commands. The combined keyword init update indicates that the guarded command that follows
specifies both the initial and update actions. If several guards of a guarded command are true,
then one of the corresponding assignments is chosen nondeterministically; if none of the guards
are true, then all controlled variables obtain their default values. In the initialization round, the
default initial value of a variable is chosen nondeterministically (this is legal only if the variable has

module Not

external in: B

interface out: B

atom out awaits in

init update
I in' = 0 ^ out' := 1
J in' = 1 -»• out' := 0

module And

external ini, m2: B
interface out: B

atom out awaits mi, m2
init update

I in'i = 0 —»• out' := 0
I in'2 = 0 out' := 0
J mj = 1 A m2 = 1 out' := 1

module Latch

external set, reset: B
interface out: B

private state : B
atom out reads state

update
O true -* out' := state

atom state awaits set, reset, out
init update

[| set' = 0 A reset = 0 —»• state' := out'
Q set' = 1 state' := 1
5 reset' = 1 -»• state' := 0

Figure 1: Synchronous not gate, and gate, and latch

finite type). In each update round, the default updated value of a variable is equal to the latched
value of the variable (i.e., the value of the variable stays unchanged). The default values are also
invoked if a controlled variable does not appear on the left-hand-side of an assignment, or if the
initial command is omitted altogether.

3.1 Synchronous circuits

Synchronous circuits are built from logic gates and memory cells that are driven by a sequence of
clock ticks. Each logic gate computes a boolean value once per clock cycle, and each memory cell
storesa boolean value from one clock cycle to the next. Wemodel eachlogic gate and eachmemory
cell as a reactive module sothat every update round represents a clock cycle. All sequential circuits
can be constructed from the building blocks shownin Figure 1.

The module Not models a synchronous not gate, which takes a boolean input and produces a

boolean output. The input is modeled as an external variable, zn, because it is modified by the
environment and visible to the gate. The output is modeled as an interface variable, out, because
it is modified by the gate and visible to the environment. In the initialization round, the NOT gate
waits for the input value to be initialized before computing the initial output value, by negating
the initial input value. Ineach update round, the not gate waits for the input value to be updated
before computing the next output value, by negating the updated input value.

The module And models a synchronous and gatethat produces theboolean output out as a function
of the two boolean inputs ini and in2. In each round, the interface variable out is initialized or
updated after both external variables ini and m2 have been initialized or updated.

The synchronous latch Latch takes the two boolean inputs set and reset, produces the boolean
output out, and maintains the private bit state. In each update round, the latch copies its state
to the interface variable out, without waiting for the updated values of the external variables. In
a later subround, after both external variables have been updated, the latch updates its state: if
both updated external variables are low, then state stays unchanged; if only set is high, then state
goes to 1; if only reset is high, then state goes to 0; if both are high, then state goes to an arbitrary
value. In the initialization round, the output of the latch is arbitrary, and the state of the latch is
initialized after both inputs have been initialized. If both inputs are initially low, then the initial
state of the latch is arbitrary, but equal to the initial output.

History-free variables in verification. Given a module P, a variable a; of P is history-free if
X is not read by any atom of P. Then, the update commands of P can refer only to the updated
value x' and not to the latched value x. In synchronous circuits, all variables that represent
wires are history-free. Specifically, all variables of Figure 1 except for the latch state, state, are
history-free. In each round, the possible updated values of a history-free variable x depend only
on the latched values of variables that are not history-free, and on the updated values of variables
other than x. In this way, history-free variables are analogous to the combinational variables of
hardware description languages, the selection variables of Cospan [18], and the pointwise functions
of dataflow languages. Hence, during the verification of a module by explicit search through the
state space, the values of history-free variables can be omitted from the search stack. Similarly,
during the symbolic verification of a module, the history-free variables can be eliminated using
existential quantification in each image-computation step.

3.2 Asynchronous shared-memory programs

As an example of a concurrent program consisting of processes that communicate through read-
shared variables, we consider a mutual-exclusion protocol, which ensures that no two processes
simultaneously access a common resource. The modules Pi and P2 of Figure 2 model the two
processes of Peterson's solution to the mutual-exclusion problem for shared variables. Each process
Pi has a program counter pc,- and a flag r,-, both of which can be observed by the other process. The
program counter indicates whether a process is outside its critical section (pc,- = outCS), requesting
the critical section (pc,- = reqCS), or occupying the critical section (pc,- = inCS). In each update
round, a process looks at the latched values of all variables and, nondeterministically, either updates
its controlled variables or sleeps (i.e., leaves the controlled variables unchanged), without waiting
to see what the other process does. Note that each process may sleep for arbitrarily many rounds:
nondeterminism is used to ensure that there is no relationship between the execution speeds of the
two processes.

module Pi
interface pci: {outCS^ reqCS, inCS}; xi: ®
external pC2: {outCS^ reqCS, inCS}; X2: ®
atom pci, xi reads pci,)?C2, Xi, X2

init

l tnie —pcj := outCS
update

1 pCj = outCS —»• pcj := reqCS; Xi := 2:2
I pci = regC5 A (pc2 = outCS ^ xi^ X2) pc'i := inCS
J pci = inCS pc'i := outCS
I true -»•

module P2
interface pc2: {o«fC5, reqCS^ inCS}; X2: B
external pcj: {o«iC5, rc^CP,mC5}; xi: B
atom pC2,2:2 reads pcj, pc2,®1,

init

II <r«e -»• pc2 := outCS
update

II pC2 = outCS pc2 := reqCS; X2 := -'2;i
] pc2 = re^C5 A{pci = ott<C5 Vxi = X2) pc'2 := mC5
[pc2 = inCS -»• pcj := o«tC5
H true

Figure 2: Asynchronous mutual-exclusion protocol

Interleaving. Unlike in interleaving models, both processes may modify theirvariables in thesame
round. While Peterson's protocol ensures mutual exclusion even under these weaker conditions,
if one were to insist on the interleaving assumption, one would add a third module that, in each
update round, nondeterministicaUy schedules either or none ofthe two processes. The modeling of
interleaving bya scheduler module introduces only history-free variables, and thus, does notincrease
the search space during verification. Alternatively, one could describe the complete protocol as a
single module containing a single atom whose update action is the union of the update actions of
the atomsofFigure2. The guardedcommand that specifies a union ofactions consists simply ofthe
union of all guarded assignments of the individual actions. This style of describing asynchronous
programs as an unstructured collection of guarded assignments is pursued in formalisms such as
Unity [10] and Mur^? [12].

Write-shared variables. The original formulation of Peterson's protocol uses a single write-
shared boolean variable x, whose value always corresponds to the value of the predicate xi = X2
in our formulation. If one were to insist on modeling a: as a write-shared variable, one would add
a third module with the interface variable x and awaited external variables such as Pi-setsjc-toJ)^
which is a boolean interface variable of the i-th process that indicates when the process wants to set
X to 0. Since all of these variables with the exception of x are history-free, the modeling does not
increase the search space during verification. This style of describing write-shared memory makes
explicit what happens when several processes write simultaneously to the same location.

3.3 Synchronous message-passing protocols

The modules Sender and Receiver of Figure 3 communicate via events in order to transmit a stream
of messages. We write x: E to declare x to be a boolean variable that is used for modeling events.
To issue an event represented by x, we write x!, which stands for the assignment x' := -"X. To
check if an event represented by x is present, we write x?, which stands for the predicate x' ^ x.

The private variable pc of the sender indicates if it is producing a message {pc = produce)^ or
attempting to send a message {pc= send). The private variable pc of the receiver indicates if it is
waiting to receive a message {pc = receive), or consuming a message {pc = consume). Messages are
produced by the atom AProd, which requires an unknown number of rounds to produce a message.
Once a message is produced, the event donep is issued, and the message is shown as msgp (the
actual value of message is chosen nondeterministicaUy from the finite type M). Once a messagehas
been produced, the sender is ready to send the message, and pc is updated. When ready to send a
message, the sender sleeps until the receiver becomes ready to receive, and when ready to receive
a message, the receiver sleeps until the sender transmits a message.

The synchronization of both agents is achieved by two-way handshaking in three subrounds within
a single update round. The first subround belongs to the receiver. If the receiver is ready to
receive a message, it issues the interface event ready to signal its readiness to the sender. The
second subround belongs to the sender. If the sender sees the external event ready and is ready to
send a message, it issues the interface event transmit to signal a transmission. The third subround
belongs to the receiver. If the receiver sees the external event transmit, it copies the message
from the external variable msps to the private variable msgji. The sender goes on to wait for the
production of another inessage, and the receiver goes on to consume msgp^. Messages are consumed
by the atom ACons, which requires an unknown number of rounds to consume a message. Once a
message is consumed, the event donee is issued, the consumed message is shown as msgc, and the
receiver waits to receive another message.

module Sender

external ready: E
interface transmit: E; msgg, msgp: M
private pc: {produce^ send}\ donep: E
atom pc, transmit, msgg reads pc, transmit, msgg, donep, msgp, ready awaits donep, ready

init

Q true —»• pc' := produce
update

[pc —produce A donep'i —»• pc' := send
J pc = send A readyl transmitl; msg'g := msgp-, pc' := produce

i4Prod : atom donep, msgp reads pc, donep, msgp
update

J pc = produce —»• donepi; msg'p := M
[true —»•

module Receiver

external transmit: E; msggi M
interface ready: E; msgc: M
private pc: {receive, consume}; donee: E; msgp: M
atom pc, msgp reads pc, transmit, donee awaits transmit, msgg, donee

init

I true pc' := receive
update

Dpc = receive A transmit? —*• msg'p := msg'g; pc' := consume
I pc = consume A donee? pc' := receive

atom ready reads pc, ready
update

] pc = receive readyl
II true —»•

ACons : atom donee, Tnsge reads pc,donee, ^sgp
update

II pc = consume —»• donecl; msg'̂ := msgp
H true -i-

Figure 3: Synchronous message-passing protocol

10

Event variables in verification. Like history-free variables, event variables are also used only
for interaction within a round, and their actual values at the beginning of a round are immaterial.
In a sense, the values ofevent variables behave like labels on the transitions of a state-transition
graph, unlike the values of other variables, which behave like labels on the states. Consequently,
during explicit verification, the values of event variables can be omitted from the search stack, and
during symbolic verification, event variables can be eliminated using existential quantification.

4 Semantics of Reactive Modules

The execution of a module results in a trace of observations. Reactive modules are related via
a trace semantics: roughly speaking, one module implements (or refines) another module if all
possible traces of the former, more detailed module are also possible traces of the latter, more
abstract module.

4.1 The trace language of a module

Let P be a reactive module. As indicated earlier, a state of P is a valuation for the set Xp of
module variables. We write Sp for the set of states of P.

A state s of the module P is initial if it can be obtained by executing all initial actions of P in
a consistent order: for each atom A € Ap, {s'[waitX'j^,s'[ctrX'j^) € InitA.'̂ We write Initp for
the set of initial states of the modide P. The set Initp is nonempty. In fact, for every valuation
5® for the external variables of P, there is a nonzero but finite number of initial states s with
s[extlXp] = s®. This is because all initial actions are executable.

For two states s and i of P, the state t is a successor of s, written s —*p t, if t can be obtained from
s by executing all update actions of P in a consistent order: for each atom A € Ap, {s[readXA\ U
tf[waitX'j^^t'[ctrX'j^) £ Updatea- The binary relation -»-p over the state space Sp is called the
transition relation of the module P. The transition relation —j-p is serial (i.e., every state has at
least one successor). In fact, for every state s of P, and for every valuation t® for the external
variables of P, there is a nonzero and finite number of states t with s -*p t and t[extlXp] = t®.
This is because all update actions are executable. In other words, a module does not constrain the
behavior of the external variables and interacts with its environment in a nonblocking way.

In this way, the module P defines a state-transition graph with the state space Ep, the initial states
Initp^and the transition relation —»-p. The initialized paths of this graph are called the trajectories
of the module: a trajectory of P is a finite sequence SQ...$n of states of P such that (1) the first
state So is initial and (2) for all 0 < i < n, the state is a successor of 5,-. A state s of P is
reachable if there is a trajectory of P whose last state is 5. If 5" = 5o ... Is a trajectory of P, then
the corresponding sequence 5[o65A'p] = 5o[o65A'p] .. .^nfoftsAp] of observations is called a trace
ofP. Thus, a trace records the sequence ofobservations that mayresult from executing the module
for finitely many steps. The trace language of the module P, denoted ip, is the set of traces of P.
By definition, every prefix of a trajectory is also a trajectory, and hence, every prefix of a trace is

^Given a valuation s for the set X ofvariables, and a subset Y ofX, we write s[y] for the projection ofs to the
variables in F. If s is a valuation for a set X of unprimed variables, then s' denotes the vjduation for the set X'
of corresponding primed variables such that s' assigns to each variable x' the value s[z]. Given two disjoint sets X
and Y of variables, if s is a valuation for X and t is a valuation for Y, then s Ut denotes the combined valuation for
XUY.

11

also a trace. Since the set of initial states is nonempty, and the transition relation is serial, every
trajectory of a module, and hence also every trace, can be extended.

Proposition 1 For every module P, the trace language Lp is prefix-closed and contains traces of
arbitrary length.

It follows that a module cannot deadlock. In modeling, therefore, a deadlock situation must be
represented by a special state with a single outgoing transition back to itself.

4.2 The implementation preorder between modules

The semantics of the module P consists of the trace language Lp, as well as all information
that is necessary for describing the possible interactions of P with the environment: the set
intfXp of interface variables, the set extlXp of external variables, and the await dependencies
>-P n {intfXp XohsXp) between interface variables and observable variables (there cannot be any
await dependencies between external variables and other variables).

Definition 3 [Implementation] The module P implements the module Q, written P •< Q, if
the following conditions are met: (1) every interface variable of Q is an interface variable of P;
(2) every external variable ofQ is an observable variable ofP; (S) for all observable variables x of
Q and all interface variables y ofQ, if y yq x, then yypx; and (4) if s is a trace ofP, then the
projection s[o6sXg] is a trace of Q.

The first three conditions ensure that the compatibility constraints imposed by P on its environ
ment are at least as strong as those imposed by Q. The fourth condition is conventional trace
containment. Intuitively, li P then the module P is as detailed as the module Q: the im
plementation P has possibly more interface and external variables than the specification Q; some
external variables ofQ may be interface variables ofP, and thus are more constrained in P; the
implementation P has possibly more await dependencies among its observable variables than the
specification Q', and P has possibly fewer traces than Q, and thus more constraints on its execu
tion. It is easy to check that every module P implements itself, and that ifa module P implements
another module Q, which, in turn, implements a third module R, then P also implements R.

Proposition 2 The implementation relation ^ is a preorder on modules (i.e., reflexive and tran
sitive).

We write P = ^ if P implements Q and Q implements P. It follows that = is an equivalence
relation on modules. The meaning of a module P is the =-equivaIence class of P.

4.3 Special classes of atoms and modules

Combinational vs. sequential atoms. An atom Ais combinational ifit has (1) no read variables
and (2) identical initial and update actions: readXA = 0, and InitA = UpdatCA- In each update
round, the updated values ofthe controlled variables ofa combinational atom depend only on the
updated values of other variables, and not on any latched values. Furthermore, a combinational
atom cannot distinguish between the initialization round and later rounds. If an atom is not
combinational, thenit is called sequential. For example, in Figure 1, the atoms of the modules Not
and And and the atom that controls the variable state of the module Latch are combinational; the
atom that controls the variable out of Latch is sequential. Note that a combinational atom may

12

control some variables that are not history-free, and an atom may be sequential despite controlling
only history-free variables. The two cases apply to the two atoms of the module Latch.

For further illustration ofthe diiference between combinational and sequential atoms, consider the
following example. Given two variables x and y of the same type, we want x to duplicate the
behavior of y. The combinational atom

ACombCopy: atom x awaits y
init update

II true x' := y'

copies y into x without delay, and ensures that both x and y have the same value at the end of
each round. The sequential atom

ASeqCopy: atom x reads y
update

J true —»• x' := y

copies y into x with a delay of one round. In each update round, x is assigned the value of y at the
beginning of the round (the initial command is irrelevant for the purposes of this example).

Lazy vs. eager atoms. An atom sleeps in an update round if the values of all controlled variables
stay unchanged. An Jf-atom A is lazy if it may sleep in every update round: for all valuations s
and t for X, (s[readX^] Uf[waitX^j^]^ s'[ctrX'y^]) € UpdateA sufficient syntactic condition for
laziness is the presence of the guided assignment "true ->•" in the update command, which leaves
the values of all controlled variables unchanged. For example, the atoms of the modules Pi and
P2 from Figure 2 are lazy. Typically, lazy atoms are nondeterministic and sequential, with all
controlled variables being read in order to keep their values unchanged.

If an atom is not lazy, then it is called eager. Both atoms ACombCopy and ASeqCopy are eager.
In the first case, all updates of x follow immediately, within the same round, the corresponding
updates of y; in the second case, the updates of x are delayed by exactly one round. By contrast,
the lazy atom

ALazyCopy: atom x reads x awaits y
init update

II true —>• x' := 1/'
I true -H-

copies y into x at arbitrary times. In each update round, either the value of x stays unchanged, or
it is set to the updated value of y. Consequently, some values of y may not be copied into x.

Event-driven vs. round-driven atoms. In each update round, an atom can notice changes
in the values of awaited variables. If an awaited variable is also read, then the atom can directly
compare the latched value with the updated value. If an awaited variable is not read, then the atom
can remember the latched yalue from the previous round, by storing it in a controlled variable, and
still compare the latched value with the updated value. Therefore, each change in the value of an
awaited variable is an observable event. An X-atom A is event-driven if it may sleep in every update
round in which no observable event occurs; that is, the atom may sleep whenever the values of all
awaited variables stay unchanged: for all valuations s for X, {s[readXA\[Js'[waitXj^^s'[ctrX'j^) 6
UpdateWhile the progress of a lazy atom cannot be enforced at all, the progress of an event-
driven atom A can be enforced by other atoms that modify awaited variables. However, the progress

13

of an event-driven atom cannot be enforced solely by the expiration of rounds. Hence, if an atom
is not event-driven, then it is called round-driven.

A sufficient syntactic condition for being event-driven is the presence of a conjunct of the form x? in
each guard of the update command. Second,everylazy atom is event-driven. For example, all atoms
of the modules Sender and Receiver from Figure 3 axe event-driven. Third, every combinational
atom is event-driven. This is because if the awaited variables do not change in an update round,
then the combinational atom may compute the same values for the controlled variables as in the
previous round. For example, while the sequential atom ASeqCopy is round-driven, the behavior
of the combinational atom ACombCopy can be alternatively defined by the atom

AEventCopy: atom x reads x,y awaits y
init

[true —> x' := y'
update

i y' x' :=y'

because the value of x needs to be modified only when the value of y changes. This explicitly
event-driven specification of immediate copying, however, reads both x and y, and is no longer
combinational {y is read to check if the value of y changes, and x is read to keep the value of x
unchanged).

Asynchronous vs. synchronous modules. A module stutters in an update round if the values
of all interface variables stay unchanged. Asynchronous modules are defined so that they may
stutter in every update round.

Definition 4 [Asynchrony] A module P is asynchronous if all interface variables of P are con
trolled by lazy atoms. Otherwise, P is a synchronous module.

It follows that the environment cannot enforce the observable progress of an asynchronous module.
While an asynchronous module can privately record all changes in the values of external variables,
all updates ofinterface variables proceed at a speed that is independent of the environment speed.
For example, the modules Pi and P2 from Figure 2 are asynchronous.

Round-insensitive vs. round-sensitive modules. A module sleeps in an update round if the
values of all controlled variables stay unchanged, and the environment stutters in an update round
if the values of all external variables stay unchanged. Round-insensitive modules are defined so
that they may sleep in every update round in which the environment stutters.

Definition 5 [Round-insensitivity] A module P is round-insensitive if all atoms of P are event-
driven. Otherwise, P is a round-sensitive module.

It foUows that the trace language of a round-insensitive module P is closed under the insertion of
stutter steps: if uq..• Un is a trace of P, then so are the observation sequences a^ ...aiUi ...an for
all 0 < i < ?i. For example, the modules Sender and Receiver from Figure 3 are round-insensitive.

Asynchrony and round-insensitivity are independent: a module may be synchronous and round-
sensitive, asynchronous and round-sensitive, synchronous and round-insensitive, or asynchronous
and round-insensitive. The difference between asynchronyand round-insensitivity is illustrated by
the three counters shown in Figure 4. While the environment cannot enforce observable progress

14

module RoundCount

interface count: N

atom count reads count

init

I true -»• count' ;= 0
update

[] true —> count' := count + 1

module EventCount

external tick: E

interface count: N

atom count reads count, tick awaits tick
init

Q true -»• count' := 0
update

Q h'cfc? —»• count' := count + 1

module AsyncCount
interface count: N

atom count reads count

init

II true -+ count' := 0
update

II true ^ count' := count + 1
I true —»•

Figure 4: Three counters

15

of an asynchronous module, it can enforce observable progress of a round-insensitive module by
modifying external variables. A round-insensitive module, on the other hand, cannot count rounds,
but only changes in the values of external variables. In our example, the round-sensitive syn
chronous counter RoundCount is incremented in each round, the round-insensitive synchronous
counter EventCount is incremented with every occurrence of the external event tick, and the round-
insensitive asynchronous counter AsyncCount is incremented nondeterministically.

5 Spatial Operations on Reactive Modules

We create complex modules from simple modules using the three spatial operations of variable
renaming, parallel composition, and variable hiding, and the two temporal operations of round
abstraction and triggering. Spatial operations manipulate the variables of a module, leaving the
underlying notion of round fixed; temporal operations manipulate what happens during a round,
leaving the variables fixed. We discuss the three spatial operations in this section, and the two
temporal operations in the next.

All five operations / on modules are compositional in the sense that the equivalence relation = is
a congruence with respect to /: for all modules P and Q, if P :< Q, then f(P) ^ f{Q). Thus, if
we prove that module P is =-equivalent to module Q, then P can be substituted for Q in every
context without affecting the meaning of the complex module. Furthermore, in order to prove that
f{P) implements f{Q), it suffices to prove that P implements Q. In this way, reasoning about
complex modules can be reduced to reasoning about simpler submodules.

5.1 Variable renaming

The renaming operation is useful for creating different instances of a module, and for avoiding name
conflicts. Let P be a module, and let x and y be two variables ofthe same type such that y is not
in Xp. Then the module P\x := 3/] results from P by renaming x to y. Henceforth, whenever we
write P\x := y], we assume that x and y have the same type, and that y is not a module variable
of P. We make liberal use of notation such as P[x,y := y,x] for P[x := z][y := x][z := y]. We
furthermore assume that for any two modules, a private variable of one module is not a module
variable ofthe other module. This can always be achieved by renaming private variables, which does
not change the meaning of a module. It is obvious that the renaming operation is compositional:
for all modules P and ifP ^ Q, then P[x := y] < Q[x := y].

5.2 Parallel composition

The composition operation combines two modules into a single module whose behavior captures the
interaction between the two component modules. The two modules P and Qare compatible if(1) the
interface variables ofP and Q are disjoint, and (2) the await dependencies among the observable
variables of P and Q are acyclic —that is, the transitive closure (yp U is asymmetric. It
follows that ifP and R are compatible modules, and P Q, then Q and R are also compatible.

Definition 6 [Composition] IfP and Q are two compatible modules, then the composition P\\Q
is the module with the set privXp^y^ = privXp UprivXQ of private variables, the set intfXp\\Q =
intfXpUintfXQ of interface variables, the set extlXp^^Q = {extlXpUextlXQ)\intfXp\\Q ofexternal
variables, and the set Ap^\q = Ap UAq ofatoms.

16

It is easy to check that for two compatible modules P and Q, the composition P\\Q is again a
module. The composition P\\Q is asynchronous iif both P and Q are asynchronous, and P\[Q is
round-insensitive iff both P and Q are round-insensitive. Henceforth, whenever we write P||Q,
we assume that the modules P and Q are compatible. The composition operation on modules is
commutative and associative. We therefore omit parentheses when writing P^Q\\R.

Parallel composition behaves like language intersection. This is captured by the following propo
sition, which asserts that the traces of a compound module are completely determined by the
traces of the component modides. In particular, if P and Q have identical observations, then
^p\\Q = Lp^Lq.

Proposition 3 Let P and Q be two compatible modules, and let a be a finite sequence of obser
vations of the compound module P||Q. Then, a belongs to the language Lpy^q iff the projection
a[obsXp] belongs to Lp and the projection a[obsXQ] belongs to Lq.

It follows that, up to projection, the trace language of a compound module is a subset of the trace
language of each component. Hence, the composition of two modules creates a module that is
equally or more detailed than its components. This is captured by the first part of the following
proposition. The second part asserts that the composition operation is compositional.

Proposition 4 Let P, Q, and R bethree modules such that P and R are compatible. Then (1) P\\R
•< P, and (2) P ^ Q implies P\\R :< Q\\R.

Proof. Part (1) follows from Proposition 3. For part (2), consider two modules P and Q such
that P :<Q, and a module R that is compatible with P. Then R is also compatible with Q. The
definition of implementation has four conditions. The first three conditions are immediate. The
fourth condition is trace containment. Let c be a trace of P\\R. By Proposition 3, the projection
a[obsXp] is a trace of P, and the projection a[o6sXij] is a trace of R. Since P :< Q, the projection
UlobsXq] is a trace of Q. Again by Proposition 3, the projection is a trace of ^||P. •

It follows that, in order to prove that a complex compound module P1IIP2 (with a large state
space) implements a simpler compound module Qi\\Q2 (with a small state space), it suffices to
prove (1) Pi implements Qi and (2) P2 implements Q2. We call this the compositionalproof rule
for reactive modules. It is valid, because parallel composition and implementation behave like
language intersection and language containment, respectively.

Assume-guarantee reasoning. While the compositional proof rule decomposes the verification
task of proving implementation between compound modules into subtasks, it may not always be
applicable. In particular. Pi may not implement Qi for all environments, but only if the environ
ment behaves like P2, and vice versa. For such cases, an assume-guarantee proof rule is needed
[25, 13, 2, 4]. The assume-guarantee proof rule for reactive modules asserts that in order to prove
that P1IIP2 implements Qi\\Q2i it suffices to prove (1) P1IIQ2 implements Qi, and (2) Q1IIP2 imple
ments Q2. Both proof obligations (1) and (2) typically involvesmaller state spaces than the original
proof obligation, because the complex compound module P1IIP2 usually has the largest state space
involved. The assume-guarantee proof rule is circular; unlike the compositional proof rule, it does
not simply follow from the fact that parallel composition and implementation behave like language
intersection and language containment. Rather the proof of the validity of the assume-guarantee
proof rule proceeds by induction on the length of traces. For this, it is crucial that every trace of
a module can be extended.

17

Proposition 5 Let Pi and P2 be two compatible modules, and let Qi and Q2 be two compatible
modules such that every external variable ofQi\\Q2 is an observable variable of P\\\P2' If P\\\Q2di
Qi and Qi\\P2 •< Q2, tben Pi\\P2 ^ Qi\\Q2'

Proof. Consider four modules Pi, P2,Qi, and Q2 such that (1) Pi and P2 are compatible, (2) Qi
and Q2 are compatible, (3) every external variable of Qi\\Q2 is an observable variable of P1IIP25
(4) P1IIQ2 Qi, and (5) Qi\\P2 ^ ^2- We wish to establish that P1IIP2 ^ Q1IIQ2' The definition
of implementation has four conditions. Let us consider these four proof obligations one by one.

Condition f;. every interface variable of Qi\\Q2 is an interface variable of Pi||P2. Let a; be an
interface variable of Qi\\Q2' Without loss of generality, assume that x is an interface variable
of Qi. Assumption (4) implies that x is an interface variable of Pi||Q2- Assumption (2) implies
that X is not an interface variable of ^2- It follows, from the definition of parallel composition,
that X is an interface variable of Pi, and hence, of P1IIP2.

Condition 2: every external variable of Q1IIQ2 is an observable variable of P1IIP2. This is assump
tion (3).

Condition 3: for all observable variables x of Qi\\Q2 and all interface variables y of Q1IIQ2? il
y >"(5i||Q2 then y >-Py\\p2 We show the stronger claim that for interface variables 21,.. .,xi of
P1IIP2, interface variables yi,.,.,yj o{ P1IIP2 or Qi\\Q2, and observable variables x of Qi\\Q2, if

y = zi)^Pi||P2 ••• ^PiWPi yi • •• Vj >-Rj

where P/ 6 {Pi,P2yQiyQ2} for all 1 < / < j, then y ^p^wp^ Condition (3) then foUows from the
special case that i = 0, and hence, y = yi.

In the claim, since the relation >-Pi||P2 is acyclic by assumption (1), the variables 21,.. .,2,- are all
pairwise distinct. Therefore 0 < i < n, where n is the number of interface variables of P1IIP2.
We prove the claim by decreasing induction on i: consider i € {0,...,7i}, assume as induction
hypothesis that i < n implies the claim holds for i -f 1, and show the claim for i. If j = 0, then
y ^Pi||P2 ®by the transitivity of >"Pj||P2- If J > 1? then there are four possibilities for Pi. If
Pi ^ {PiiP2}i then yi is an interface variable of P1IIP2. The acyclicity of >-pi||P2 implies that
i < n, and the claim follows by induction hypothesis (choose 2^4.1 = yi). If Pi = Qi, then yi is
an interface variable of Qi, and therefore by assumption (2), it is not an interface variable of Q2'
Since yi >-Qj y2, from assumption (4) it follows that yi >-p,||Q2 3^2- Since yi is not an interface
variable of Q2, it is an interface variable of Pi, and therefore yi >-p, ui •" Uk >-p' ^2? for
interface variables ui,...,ujfe of Pi||Q2» and Pj € {Pi,Q2} for all 1 < / < A;. Again, the acyclicity
of >-Pi||P2 implies that i < n, and the claim follows by induction hypothesis (choose 2,+i = yi).
The final case. Pi = ^2? is symmetric to the previous case.

Condition 4' if a is a trace of Pi||P2, then the projection of o to the observable variables of Qi\\Q2
is a trace of Qi||Q2- In the following, for simplicity we omit the explicit use of projections. For
examplb, if X is a superset of obsXp, if a is a sequence of valuations for X, when we refer to a as
a trace of P, what we mean is that the projection a[obsXp] is a trace of P.

We need to define some additional concepts. Given a module P, a set X of variables is await-closed
for P if for all observable variables x and y of P, if y >-p x and y € A", then x € A. For an await-
closed set A, the pair (a, 6) consisting of a trace a of P and a valuation 6 for A is an X-partial
trace of P if there exists an observation c of P such that (1) c[A n obsXp] = b[obsXp], and (2) ac

18

is a trace of P. Thus, partial traces are obtained by executing several complete rounds followed by
a partial round, in which only some of the atoms are executed. The following facts about partial
traces follow from the definitions.

(A) P :< Q and X is an await-closed set of variables for P, then X is an await-dosed set of
variables for Q. li P •< Q and (a, 6) is an A'-partial trace of P, then (a, 6) is an X-pajtial
trace of Q. Thus, trace containment is equivalent to containment of partial traces.

(B) The partial traces of a compound module are determined by the partial traces of the com
ponent modules: for every await-closed set X for P||Q, every sequence a of observations of
P\\Q, and every valuation b for X, the pair (a, 6) is an A"-partial trace of P\\Q iff it is an
X-partial trace of both P and Q.

(C) If (a, &) is an Jf-partial trace of P, and c is a valuation for a set Y of variables of P, which
is disjoint from both X and intfXp^ then (o,6 Uc) is an (X Uy)-partial trace of P. This
property is due the nonblocking nature of modules.

Let X\^...,Xm be a partition of ohsXp^\\p^ into disjoint subsets such that (1) each Xi either
contains only external variables of P1IIP2, or contains only interface variables of Pi, or contains
only interface variables of P2, and (2) if y >-p^\\P2 ^ a-nd y £ Xi, then x € Xj for some j < i. Define
Fo = 0, and for all 0 < i < m, define y;+i = Yi UXi. Each set Y, is await-closed for Pi||P2- For
all 0 < 2 < m, let L, be the set of ^-partial traces of P1IIP2, and let L = Uo<t<mJ^i« We define
the following order < on the partial traces in L: for i < m, if (a, b) £ L, and {a,c) £ Li+i and
c[y] = 6, then (a, 6) < (a, c); for i = m, if (a, 6) € Li, then (a, 6) < (a6,0). Clearly, the order < is
well-founded. We prove by well-founded induction with respect to < that for all 0 < i < m, every
partial trace in X,- is a Tf-partial trace of Qi\\Q2- Then, the case i = 0 implies that every trace of
P1IIP2 is also a trace of Qi\\Q2'

Consider (a, 0) in Lq. If a is the empty trace, then (a, 0) is a trace of all nmdules. Otherwise,
a = be for some observation sequence b and observation c of Pi||P2- Then (6,c) is a y,„-partial
trace of P1IIP2, and (b,c) < (a,0). By induction hypothesis, (6,c) is a yin-partial trace of Qi\\Q2i
and hence, (a,0) is a lo-partial trace of Qi\\Q2'

Consider (a,6) in Li+i for some 0 < f < m. Let c = 6[y]. Then (a,c) is a Ti-partial trace ofPi||P25
and (a, c) < (a, 6). Byinduction hypothesis, (a, c) is a y-partial trace of^i||^2- Byfact (B) about
partial traces, (a,c) is a y-partial trace of both Qi and ^2- Consider y+i = y UXi. Without
loss of generality, assume that Xi contains no interface variables of P2, and hence, by assumptions
(2) and (5), no interface variables of ^2- By fact (C) about partial traces, the y-partial trace
(o,c) of Q2 can be extended with any valuation for Xi. In particular, (a, 6) is a y+i-partial trace
of Q2' Since (a, 6) £ ij+i, by fact (B) about partial traces, (a,b) is a y+i-partial trace of Pi, and
therefore also of Pi||Q2- From assumption (4) and fact (A) about partial traces, it follows that
(a, 6) is a y+i-partial trace of Qi. Hence by fact (B) about partial traces, (a,6) is a y+i-partial
trace of Qi 11^2-•

5.3 Variable hiding

The hiding of interface variables allows us to construct module abstractions of var)dng degrees of
detail. For instance, after composing two modules, it may be appropriate to convert some interface
variables to private variables, so that they are used only for the interaction of the component
modules, and are no longer visible to the environment of the compound module.

19

module SendRecSpec
interfiEice msgp, msgQ : M
private pc: {insync^ consjahead,prod-ahead}', msg^: M
atom pc, msgp, msgyf^, msgc reads pc, msgp, msg^y

init

I true pc' := cons-ahead
update

II pc = cons-ahead —»• msg'p := M; pc' := insync
I pc = insync msg'̂ := msgp', msg'p := M; pc' := insync
I pc —insync —»• msg'y^ := msgp; msg'p := M; pc' := prod-ahead
I pc = insync —»• msg'̂ := msgp; pc' := cons-ahead
II pc = prod-ahead msg'̂ := msgjy; pc' := insync
[true —»•

Figure 5: Asynchronous message-passing specification

Definition 7 [Hiding] Given a module P and a variablex, by hiding x in P we obtain the module
hide ar in P. If x is an interface variable of P, then hide a; in P has the set privXp U{a?} of
private variables, the set intfXp\{x} of interface variables, the set extlXp of external variables,
and the set Ap of atoms. If x is not an interface variable of P, then hide a; in P is identical to P.

We write hide xi,X2 in P short for the module hide xi in (hide X2 in P), which is identical to
the module hide X2 in (hide xi in P). The hiding of a variable creates in a module that is equally
or less detailed, and the hiding operation is compositional. Both facts are stated in the following
proposition.

Proposition 6 For all modules P andQ, and every variable x, (1) P •< (hide x in P), and (2) if
P -^Q, then (hide a; in P) (hide a; in ^).

From synchrony to asynchrony. Hiding preserves asynchrony, round-sensitivity, and round-
insensitivity, but not synchrony. Hence, hiding is useful for constructing asynchronous modules
from synchronous modules. Consider, for example, an asynchronous module Clock that nondeter-
ministically issues the interface event tick:

module Clock

interface tick:]£

atom tick reads tick

update
I true —*• tickl
D true —»•

Then, given the synchronous counter EventCount from Figure 4, we can implement the asyn
chronous counter AsyncCount using hiding:

AsyncCount = hide tick in {EventCount || Clock)

For a more elaborate example, recall the synchronous message-passing protocol from Figure 3:

module SendRec = Sender || Receiver

20

module BehavOr

external ini, in2: B
interface out :B

atom out awaits irii, m2
init update

D in'i = 0 —s- out'0
i in'2 = 0 out' :=0
5 in'i =1V^2 =1 out' := 1

module StructOr =

hide 2^1,2^2? ^3 in
II And[ini, 2722, := zi, 22? 2:3]
II Not[in,out := mi,zi]
II Not[in,out := 2222,^2]
II iVoi[272, out := 2:3, ouf]

Figure 6: Two definitions of a synchronous OR gate

After hiding the communication events, so that only the streams of produced messages (msgp) and
consumed messages (rnsgc) remain visible, we obtain an asynchronous module:

module SendRecImpl = hide ready^ transmit^ msgg in SendRec

The module SendRecImpl implements the asynchronous module SendRecSpec of Figure 5, which
contains a single lazy atom:

SendRecImpl •< SendRecSpec

The module SendRecSpec specifies the class of sliding-window protocols with window size 2: the
stream of consumed messages results from delaying the stream of produced messages such that
at any point, at most two produced messages have not yet been consumed. If, as initially, pc —
consjahead, then the latest produced message has already been consumed, so the consumer waits
and the producer workson producing the next message; if pc = in^ync, then the consumerworks on
consuming the latest produced message, and the producer works on producing the next message; if
pc = prod-ahead, then the previously produced message, whichis stored in msg^, has not yet been
consumed, so the consumer works on that message and the producer, constrained by the window
size 2, waits. While SendRecImpl implements the sliding-window specification using synchronous
handshaking, alternatively, SendRecSpec could be implemented by sender and receiver processes
that communicate via asynchronous handshaking.

5.4 Spatial scaling

The three operations of renaming, composition, and hiding allow us to construct a space hierarchy
of modules. We illustrate this on the example of synchronous circuits.

Figure 6 shows two module definitions for a synchronous OR gate. The module BehavOr specifies
the input-output behavior of an or gate similar to the definition of the synchronous and gate from
Figure 1. The module StructOr builds an OR gate from an AND gate and three inverters. First,

21

we rename the variables of the modules from Figure 1 that define synchronous and and NOT gates
in order to create three instances of a not gate and connect, for example, the output of the and
gate with the input of the third NOT gate. Second, we compose the four modules representing the
AND gate and the three not gates. Third, we hide the variables that represent internal wires, for
example, the wire 23 that connects the output of the AND gate with the input of the third NOT gate.
It is easy to check that the two modules BehavOr and StructOr are =-equivalent; in particular,
they have the same traces.

Using the definitions of synchronous gates and latches from Figure 1, and the three operations of
renaming, composition, and hiding, we can build sequential circuits whose clock cycles correspond to
rounds. As an example, we design a three-bit binary counter. The counter takes two boolean inputs,
represented by the external variables start and inc, for starting and incrementing the counter. The
counter value ranges from 0 to 7, and is represented by three bits. We do not make any assumption
about the initial counter value. A start command resets the counter value to 0 and overrides any
increment command that is issued in the same round. An increment command increases the counter

value by 1. If the counter value is 7, the increment command changes the counter value to 0. In
each round, the counter issues its value as output —the low bit on the interface variable outoy the
middle bit on the interface variable outi, and the high bit on the interface variable out2.

Figure 7 shows a possible design of the three-bit counter from three one-bit counters. This design
is defined by the module SyncSBitCounter of Figure 8 (for clarity, we sometimes annotate both
component and compound modules with the names of the observable variables). Note that carryQ
waits for both start and fnc, that carry^ waits for carryq, and that carry2 waits for carryi. It
follows that all three bits of the counter axe updated within a single round.

By identifying each clock cycle with a round, we cannot model combinational loops, which would
result in cyclic await dependencies. Consider the module UselessTransLatch from Figure 9, which
models a transparent latch: in each round in which the control input elk is true, the data input in
is without delay propagated to the output out; and in each round in which the input elk is false,
the output out stays unchanged. The module IllegalLoop composes two transparent latches. Since
in each round, the control inputs of the two latches are complementary, all data dependencies can
be resolved dynamically, during execution. Ourdefinition ofawait dependencies, however, is static,
and therefore value-independent. Hence, IllegalLoop is not a legal module: latchi >• latch2 and
latch2 y latch\. In the next section, we will present a legal model for this circuit. We will use
several rounds to model a single clock cycle, and then collapse these rounds into a single round.

6 Temporal Operations on Reactive Modules

Each module defines what happens during" a round. The notion of round is global: when two
modules are composed, the rounds of both component modules are taken to overlap perfectly
in time, none being shorter or longer than the other. Throughout the operations of renaming,
composition, and hiding, the notion of round stays unchajaged: a complex module has the same
round as each ofits submodules. Sometimes it is convenient, however, to change the notion of what
constitutes a round. For example, what happens during a round of a complex module may best be
defined by what happens during several consecutive rounds of a submodule. For this purpose, we
introduce the operations of round abstraction and triggering.

22

tnc

start

SynclBit Counter

mc

start

carry

SyncSBit Counter

\nc

tnc

carry

SynclBit Counter

carry >- start, inc

carryQ

SynclBit Counter

carry

carry I

SynclBit Counter

carry

set

Latch

reset

out outo

out

out

Figure 7: Block diagram for a three-bit binary counter

23

out

module Sync1Bit Counter =
—external start, inc
—interface out, carry
hide set, reset, z in

II Latch[set, reset, out]
II And[ini, in2, out := out, inc, carry]
II Or[ini,in2,out := carry, start, reset]
II Not[in,out := reset, z]
II And[ini, in2,out := inc, z, 5e<]

module Sync3Bit Counter =
—external start, inc
—interface outo, outi, out2
hide carryQ, carryI, carry2 in

II Sync1BitCounter[start, inc,out, carry := start, inc, out^, cottj/o]
II Sync1BitCounter[start, inc, out, carry := start, carryq,outi, carry
II Sync1BitCounter[start, inc,out, carry := start, carryi, out2, carry2]

Figure 8: Three-bit binary counter

module UselessTransLatch

external in,elk: B
interface out: B

atom out reads out awaits in, elk
init update

Q elk' out' := in'

module IllegalLoop =
—external elk

—interface latchi,latch2
II Useles$TransLatch[in, out, elk := latchi, latch2, elk]
II Usele$sTransLatch[in, out,elk := latch2, latchi, not^clk]
II Not[in, out := elk, not-clk]

Figure 9: Naive model of a transparent latch

24

6.1 Round abstraction

In order to reduce the complexity of a system, it is often useful to combine several consecutive rounds
into a single, more abstract round. This can be done by applying the abstraction operator next.
Intuitively, given a subset Y of the interface variables of a module P, the module next V for P
collapses consecutive rounds of P until one of the variables in Y changes its value. This is similar
to the notion of sampling simulation for a complex system: we want to observe the behavior of
the module P only at those instances when the value of some of the variables in Y changes. As
we compress several rounds into one, it is assumed that an external variable that is read stays
unchanged in all, except possibly the last, rounds, and an external variable that is awaited stays
unchanged in all, except possibly the first, rounds.

Let P be a module, and let Y C intfXp be a subset of its interface variables. For two states s and
i of P, the state t is a y -successor of s if there exists a finite sequence sq •••-Sn of states of P such
that the following three conditions are met:

1. So = s; for all 0 < « < n, the state s,+i is a successor of s,-; and Sn = t.

2. For all 0 < i < n, we have St[y] = so[y]; and Sn[y] ^ so[y].

3. For every external variable x of P, if some atom of P reads x, then for all 0 < i < n, we have
s,[a;] = so[x]; and if some atom of P awaits x, then for all 0 < i < n, we have 5,*[x] = Sn[a;].

A round marker for the module P is a (nonempty) set Y of interface variables of P such that
for every reachable state s of P, and every valuation for the external variables of P, there is a
nonzero and finite number of F-successors t of s with t[extlXp] = t®. If F is a round marker for P,
then from any reachable state, no matter how the environment updates the external variables, the
update actions of P can be iterated in a way that leads to the modification of an interface variable
in F. For b. finite-state module P, all of whose variables range over finite types, it can be checked
automatically if F is a round marker for P, by model checking a CTL formula of the form Vn3W.

Definition 8 [Abstraction] Given a module P, ifY is a round marker for P, then theabstraction
next F for P is the module with the same declaration as P and a single atom, Ap. The atom Ap
has the set ctrXp of controlled variablesj the set readXp = {KJa^Ap readX^) of read variables, and
the set waitXp = waitXA)(^€xtlXp ofawaited variables. The initial action of Ap contains
all pairs of the form {^s'[waitXp\,s'\ctrX'^), where s is an initial state of P. The update action
ofA}p contains all pairs of the form {s[readXp] Ut'[waitXp],t'[ctrXp]), where t is a Y-successor
of s.

As an example, consider the two modules shown in Figure 10. The private variable count of the
module P is initially 0. As long as the latched value of the external variable x is true, the variable
count is incremented modulo 10. The interface event y is issued whenever count is incremented from
9 to 0. The interface event z is issued whenever x is false. The set {y, z} is a round marker for P:
every state with x = true (and count = i) has a {j^}-successor with x = true (and count = 0) and
a {y}-successor with x = false (and count = 0); and every state with x = false (and count = i) has
a {2:}-successor with x = true (and count = i) and a {2}-successor with x = false (and count = i).
By contrast, neither {y} nor {z} are round markers for P, because the initial state with x = true
(and count = 0) does not have a {z}-successor, and the initial state with x = false (and count = 0)
does not have a {3/}-successor. The abstraction next {y,z} for P is =-equivalent to the module Q:

25

module P

external x: B

interface y, 2: E
private count'. [0..9]
atom count reads count, x

init

] true —> count' := 0
update

[X A count = 0 —>• count' := count -f 1
1 a; A 0 < count < 9 count' := count + 1
I X A count = 9 —count' := 0

atom y, z reads x,y,z awedts count
update

] count' = 0 y\
I -la: —»• 2!

module Q
external x: B

interface 2/, 2: E
atom y, z reads x, y, z

update
I X ^ 2/!
[1 -ix —*• 2!

Figure 10: Round abstraction

26

whenever x is true, Q issues the interface event y, and whenever x is false, Q issues the interface
event z.

It is easy to check that if Y is a round marker for a module P, then the abstraction next Y for P
is again a module. Henceforth, whenever we write next Y for P, we cissume that Y is a round
marker for P. If the set intfXp of all interface variables is a round marker for P, then the module
next intfXp for P is called the stutter reduction of P, and denoted next P. In each update
round, the stutter reduction next P iterates the update actions of P until some interface variable
changes.

We now show that the abstraction operation is compositional. For this purpose, we need to
strengthen the definition of the implementation relation slightly. The module P environment-
faithfully implements the module Q, written P Q^ii P •< Q and for every external variable x
of Q, (A) if Xis read by some atom of Q, then r is an external variable of P that is read by some
atom of P, and (B) if x is awaited by some atom of Q, then a: is an external variable of P that
is awaited by some atom of P. Environment-faithful implementations cannot constrain external
variables by turning them into interface variables.

Proposition 7 LetP and Q he two modules, and let Y be a round markerfor both P and Q. Then
P Q implies (next Y for P) •< (next Y for Q).

Proof. Consider two modules P' = (next Y for P) and Q' = (next Y for Q). Assume
that P < Q, and assume conditions (A) and (B) of the definition for the environment-faithful
implementation of Q by P. We prove that P' d Q'- The definition of implementation has four
conditions. The first two conditions are immediate. For the third condition, consider an observable
variable x of Q' and an interface variable y of Q', suppose that y yq' x, and show that y yp' x.
Since y yq' x, and Q' has a single atom, x is an external variable of (Q' and) Q that is awaited by
some atom ofQ. From assumption (B), it follows that ar is an external variable ofP (and P') that
is awaited by some atom ofP. Since P dQi and y is an interface variable of{Q' and) Q, it is also
an interface variable of P (and P'), Therefore y ypt x.

The fourth condition is trace containment. Let a be a trace of P', and consider the trajectory
s = so...Sn with sfoftsXp'] = a. Then, for all 0 < i < n, the state Sf+i is a Y-successor
of Si according to P. Hence, by the definition of the next operator, we can intrdduce a fi
nite sequence of states between each pair of states of s to obtain a trajectory of P of the form
50^00. •.-soAo^i^io •• ••--Sn- For each state the value ofthe round marker Yequals Si[Y],
the value of each read external variable x of P equals and the value of each awaited ex
ternal variable a: of P equals 5,+i[a;]. Since P d Qt there exists a trajectory of Q of the form
to^oo •• •--hkih' •-^n such that for all 0 < i < n, we have Si[obsXq] = and for
all 0 < j < ki, we have Sij[obsXq] = tij[obsXq]. From assumptions (A) and (B), it follows that
for all 0 < i < n, the state is a Y-successor of t,- according to Q. Hence, to... tn is &trajectory
of Q^. Therefore, ^obsXqt] = s[o6sA"q'] = c^obsXqt] is a traceof Q'. •

From asynchrony to round-sensitive synchrony. Every module of the form next Y for P
is synchronous and round-sensitive. Hence, abstraction is useful for constructing round-sensitive
synchronous modules from asynchronous modules. For example, given the asynchronoiis counter
AsyncCount from Figure 4,we can implement the round-sensitive synchronous counter RoundCount
using abstraction:

RoundCount = next AsyncCount

27

module Add64
externed x,y: B[0..63]; carry: B
interface z: B[0..63]; ofl: B
atom z, ofl awaits y, carry

init update
II true ->• z' := (x' + y' + carry') mod 2®"^;

ofl' := {x' -\-y'+ carry') div 2®"^

module ParAdd =

—external x, j/, carry
—interface x, ofl
hide u in

II Add32[x, y, x, carry, ofl := xq,yo, zqj carry, w]
II Add32[x,y,z, carry, ofl := Xi,yi,zi,u, ofl\

Figure 11: Specification and parallel implementation of a 64-bit adder

Similarly, while the message-passingimplementation SendRecImpl from Section 5.3 is asynchronous,
its stutter reduction

module RedSendRec = next SendRecImpl

is synchronous. In each round of RedSendRec, either a message is produced by the atom AProd,
or a message is consumed by the atom ACons, or both.

6.2 Temporal scaling

The next operator changes the notion of what happens during a round, and allows us to construct
a time hierarchy of modules. This can again be illustrated with circuit examples. In a first example,
we aggregate several clock cycles into an arithmetic operation; in a second example, we aggregate
several gate operations into a clock cycle.

Consider the specification Add64 of a 64-bit adder shown in Figure 11. The 32-bit adder Add32
is specified similarly. We give two implementations of Add64 using Add32. If x is a 64-bit word,
we write xq for the less significant 32 bits and xi for the more significant 32 bits. The first
implementation, ParAdd (Figure 11), uses two copies of Add32 and connects them appropriately.
In each round, ParAdd adds two 64-bit wordsby first adding the less significant half-words and then,
in a later subround of the same round, adding the more significant half-words. Hence ParAdd ^
Add64.

The second implementation, SeqAdd (Figure 12), uses a single copy of Add32 and embeds it in
additional circuitry, represented by the module AuxCircuitry. The submodule

module SeqAddSub = Add32[x,y,z, carry, ofl a,b,c,u,ofl\ || AuxCircuitry

requires two consecutive update rounds to compute a 64-bit sum: it adds the less significant half-
words in one round before adding the more significant half-words in the subsequent round. The
module SeqAddSub has four atoms. In each round, first the variable round is set to indicate if

28

module SeqAdd =
—external x,y, carry
—interface z, ofl
hide done in next {done} for hide round in

II Add32[x, y, z, carry, ofl := a, b,c,u, ofl\
II AuxCircuitry

module AuxCircuitry
external x,y'. ©[0..63]; c:]B[0..31]; carry, ofl: B
interface round: {0,1}; z:]B[0..63]; a,6: B[0..31]; u:B; done:E
private v: B
atom round reads round

init update
[round = 0 —»• round' := 1
I round = 1 —»• round' := 0

atom a, b, u reads v awaits round, x, y, carry
init update

H round' = 0 -»• a' := x'q; b' := y'o; u' := carry'
II round' =1 a' := x'̂ , b' := y'̂ , u'v

atom z, V, done reads done awaits round, c, ofl
init

II true Zq := c'-, v' := ofl'
update

[round' = 0 —»• Zq:= c'; v' := ofl'
[round' =1 —»• := c'; donel

Figure 12: Sequential implementation of a 64-bit adder

29

module UsefulTransLatch
external m, elk: 1
interface out: B

atom out reads in, out awaits elk
init update

[c/fc' —»• out' := in

module LegalLoop =
—external elk

—interface latehi,lateh2
stabilize hide not.elk in

II UsefulTransLateh[in, out, elk := latehi, lateh2, elk]
II UsefulTransLateh[in, out, elk := lateh2, latehi, not.elk]
II Not[in,out := elk,not.elk]

Figure 13: Correct model of a transparent latch

the less significant [round = 0) or the more significant [round = 1) half-words need to be added.
Second, the variables a, b, and u are assigned the proper input values for the 32-bit addition. Third,
the 32-bit addition is performed. Fourth, the output values of the 32-bit addition are assigned to the
variables z and possibly v (intermediate carry), and if round = 1, the event done signals completion
of the 64-bit addition. In SeqAdd, the two rounds of each 64-bit addition are collapsed, so that
SeqAdd :< Add64 • Indeed, all three models of the 64-bit adder are equivalent:

Add64 = ParAdd = SeqAdd

Round abstraction is also useful for modeling systenis that otherwise cannot be modeled naturally
as reactive modules because of the acyclicity requirement on await dependencies. For example,
using round abstraction, we can legally model the circuit PlegalLoop from Figure 9 using the
scheme shown in Figure 13. Unlike the module UselessTransLateh, which awaits the data input in,
the module UsefulTransLateh reads in, and thus delays its propagation to the output by a round.
Then, for each constant control input elk, the variables of the module

module LegalLoopSub =
II UsefulTransLateh[in, out, elk := latehi, lateh2, elk]
II UsefulTransLateh[in, out, elk := lateh2,latehi, notMk]
II Not[in, out := elk, not.elk]

stabilize within at finite number of rounds —that is, after some finite number of rounds, the
variables of LegalLoopSub remain unchanged if any additional rounds are executed. When the
variables stabilize, a fixpoint is reached for the values latehi and lateh2 of the transparent latches.
This signals the end of a clock cycle. Then, the control input elk can change, and a new fixpoint
iteration starts, whose result represents the state of the circuit after another clock cycle, etc.

Hence, we want to iterate the update actions of the module LegalLoopSub until the interface vari
ables remain unchanged. This can be achieved by first composing LegalLoopSub with a module
WatehLegalLoopSub that watches the execution of LegalLoopSub and issues the event stable once

30

the interface variables of LegalLoopSub remain unchanged during an update round. In general, for
an arbitrary module P, the monitor module WatchP is defined as follows:

module WatchP

external intfXp
inter&ce stable: E

atom stable reads stable, intfXp awaits intfXp
update

I intfXp = intfXp stablel

Then we coUapse rounds of LegalLoopSub || WatchLegalLoopSub until the event stable occurs. Let us
write stabilize P as an abbreviation for the module hide stable in next {stable} for (P || WatchP).
The result is the module LegalLoop of Figure 13. Within every context, the module LegalLoop
properly updates the values of the transparent latches every single round.

Round abstraction in verification. Temporal properties and implementation relations for finite-
state modules can be checked algorithmically, by constructing the state-transition graph Gp that
underlies a module P. Consider the abstraction Q —(next Y for P). The search of Gq may
be more efficient than the search of Gp, because abstraction may cause some variables to become
history-free. Moreimportantly, Gq typically has many fewer edges than Gp, and thereforea smaller
reachable state space. For example, in Figure 10, in the abstract module next {y, z} for P, the
value of count is 0 in every reachable state. When Gq is searched explicitly, the reachable states
of P never have to be added to the search stack. Rather, the edges of Gq are constructed by a
secondary search in Gp, which is implemented using an auxiliary stack that is released once all
edges from a given vertex of Gq have been found. This reduction of the reachable state space is
similar to synchronous programming languages, where only macro-steps, rather than micro-steps,
correspond to edges in the state-transition graph [14].

Also the sjunbohc verification of a system that consists of modules with next operators can be
performed efficiently. Consider the module P = (next Yi for Pi) || (next Y2 for P2). Each
single image-computation step for P corresponds to iterating the transition relation of Pi until
some variable in li changes, and iterating, independently, the transition relation of P2 until some
variable in Y2 changes. The experiments reported in [5] indicate that this scheme can enable the
analysis of P in cases where no analysis of P1IIP2 is feasible.

6.3 Triggering

Hiding allows us to build asynchronous modules from synchronous parts, and round abstraction
allows us to build synchronous and round-sensitive modules from asynchronous and/or round-
insensitive parts. We now introduce the operator trigger for building round-insensitive modules
from round-sensitive parts. Intuitively, given a subset Z of the external variables of a modide P,
the module trigger Z for P sleeps until some external variable in Z changes its value. Then, P
is executed. Thus, in a sense, triggering is dual to round abstraction: while the operator next
collapses several rounds of a module into a single"round, the operator trigger splits a round into
several rounds, in all but one of which the module sleeps.

Let P be a module, and let Z C extlXp be a subset of its external variables. The set Z is a read
trigger for P if 2 € Z for every external variable 2 of P that is read by some atom of P. The set Z
is an await trigger for P if 2 6 Z for every external variable 2 of P that is awaited by some atom
of P. A trigger for P is either a read trigger or an await trigger.

31

Definition 9 [Trigger] Given a module P, ifZ isa triggerforP, then the module trigger Z for P
has the same declaration as P and a single atom, Bp. The atom Bp has the set ctrXp of con
trolled variables, the set readXp = (\JA^Ap^c^dXA) li Z of read variables, and the set waitXp =

n extlXp) UZ ofawaited variables. The initial action ofB^ contains all pairs
of the form {s'[waitXp],s [ctrXp]), where s is an initial state of P. The update action ofBp
contains allpairs of the form {^s[readXp\ Ut'[waitXp\, t'\ctrXp\), where either (1) s[Z] = t[Z] and
s[ctrXp] = t[ctrXp], or (2) s[Z] ^ t[Z] and t is a successor of s according to P.

It is easy to check that if Z is a round marker for a module P, then the module trigger Z for P
is again a module. Henceforth, whenever we write trigger Z for P, we assume that Z is a
set of variables that contains no controlled variables of P. If Z contains some variables that
are not (external) variables of P, then we agree that trigger Z for P stands for the module
trigger Z for (P||^), where Q is the trivial module with the set Z\extlXp of external variables
and the empty set of atoms. The module trigger extlXp for P is called the event reduction of P,
and denoted trigger P. In each update round, the event reduction trigger P executes P in the
update rounds in which the environment changes the value of some external variable, and sleeps in
the update rounds in which the environment stutters.

Like the other operations on modules, triggering is compositional.

Proposition 8 Let P and Q be two modules, and let Z be a trigger for both P and Q. Then
P Q implies (trigger Z for P) •< (trigger Z for Q).

Proof. Consider two modules P' = (trigger Z for P) and Q' = (trigger Z for Q). Assume
that P < Q, and assume conditions (A) and (B) of the definition for the environment-faithful
implementation of Q by P. We prove that P' •< Q'. The definition of implementation has four
conditions. The first two conditions are immediate, and the third condition can be shown by an
argument similar to the one used in the proof of Proposition 7.

The fourth condition is trace containment. Let a be a trace of P', and consider the trajectory "s
with s[o6sA'p/] = a. The trajectory s has form soo ••-^ojfeo^io •••-sifciS20 ••-^nfcn such that for all
0 < i < n, we have 6,/bJZ] / s,+i,o[Z], and 5t+i,o is a successor of sn^ according to P, and for
all 0 < 2 < n and 0 < j < fc,-, we have Sij[ctrXp U Z] = SiQ[ctrXp UZj. If Z is a read trigger
for Q, then by assumption (A), the set Z is also a read trigger for P, and therefore ^oosio ••-Sno
is a trajectory of P. If Z is an await trigger for Q, then by assumption (B), the set Z is also an
await trigger for P, and therefore sofcoSifci ••-Snfcn is a trajectory of P. We pursue only the former
case; the latter can be be handled similarly. Since P there exists a trajectory of Q of the form

<00^10 ••-^no such that for all 0 < i < n, we have Let 7 be a state sequence
of the form such that for all 0 < i < u and 0 < j < A;,-, we have
tij[ctrXQ\JZ\ = tidlctrXqU Z] and tij[extlXQ\Z] = Sij[extlXQ\Z]. Then, since Z is a read trigger
for Q, the state sequence ? is a trajectory of Q'. Therefore, tlobsXq'] = :s[o6sA'q/] = a[obsXQt] is
a trace of Q^. •

From round-sensitivity to round-insensitivity. While triggering preserves (in spirit) asyn-
chrony as well as synchrony, every module of the form trigger Z for P is round-insensitive. Hence,
triggering is useful for constructing round-insensitive modules from round-sensitive modules. For
example, given the round-sensitive synchronous counter RoundCount from Figure 4, we can imple
ment the round-insensitive synchronous counter EventCount using triggering:

EventCount = trigger RoundCount

32

This completes our demonstration that all three counters from Figure 4 are interdefinable:

RoundCount = next AsyncCount

AsyncCount = hide tick in {EventCount || Clock)

Reactive modules vs. multiform time. The temporal operators next and trigger of reactive
modules are similar in spirit to the polychronous operators of synchronous programming languages
such as Signal [7] and Lustre [14]. Both approaches allow temporal abstraction by manipulating
what happens during a round. However, there is a key difference. Reactive modules have a global
notion of round, and applications of next and trigger only change what a module does within a
round. In Signal, the notion of round (or clock) is local to a module (or signal), is part of its
semantics, and can be changed by applying operators such as when and default. Consequently,
the parallel composition of reactive modules behaves quite differently from the parallel composition
in synchronous programming languages.

7 Fair Reactive Modules

Based on the trace semantics of modides from Section 4, we can reason about the safety requirements
of modules. Reasoning about liveness requirements demands that we consider infinite behaviors
of modules. Then, in order to rule out certain degenerate infinite behaviors of a module, we add
fairness constraints to the module.

7.1 The infinite traces of a module

Let P be a module. Ancj-trajectory of P is an infinite sequence soSiS2 ... ofstates suchthat (1) the
first state sq is initial and (2) for all i > 0, the state s^+i is a successor of s,-. If s = sqSi ... is an
w-trajectory of P, then the corresponding infinite sequence sfofrsXp] = so[o6sA'p]si[o6sA'p]... of
observations is an u-trace of P. Since all initial and update actions of the module P are executable,
the set of a?-traces of P is completely determined by the set ip of finite traces, and vice versa.
This property of a reactive system is called limit closure, or safety [3].

Proposition 9 Let P be a module. An infinite sequence a ofobservations of P is an u-trace of P
iff every finite prefix of a is a trace of P. A finite sequence a of observations of P is a trace of P
iff a is a finite prefix of some u-trace of P.

Proof. The first part of the proposition follows from the finite controlled branching of the
transition relation. Consider an infinite sequence a = aoui... of observations. If a is an w-trace
of P, then, by definition, every finite prefix of a is a trace of P. So suppose that for all i > 0,
the finite sequence a* = cq••- is a trace of P; that is, for all i > 0, there is a finite trajectory
5* of P with s^[obsXp] = a*. We define a forest whose vertices are labeled with states of P. For
every initial s of P with s[obsXp\ = ao, there is a root —i.e.-, a level-0 vertex— labeled with 5.
For every level i > 0, every level-i vertex v labeled with state s, and every successor t of 5 with
t[obsXp] = ai+i, thereis a child ofv —^i.e., a level-(i + 1) vertex— labeled with t. Since all initial
and update actions of P are executable, the forest has a finite number roots, and every vertex has
a finite number of children. Furthermore, for each i > 0, the finite trajectory ^ is a path of the
forest. Hence the forest has infinitely many vertices, and by Konig's lemma, the forest contains an
infinite path. The sequence of labels alongthis path is an a;-trajectory of P, and the corresponding
w-trace is a.

The second part of the proposition follows from the seriality of the transition relation. •

33

module Fair

external x: E

interface y, 2:: E
atom y, z reads a;, y, 2 awaits x

update weakly-fair a strongly-fair /?
I a;? "4+ y!
\ x1 ^ z\

Figure 14: Weak and strong fairness

7.2 Modules with fairness constraints

Remember that an action a from X to Y" is a binary relation between the valuations for X and
the valuations for Y. Thus, all subsets /3 C a are also actions from X to Y; they are called the
subactions of a. An update choice for an atom A is a subaction of the update action UpdateAn
update choice need not be executable; that is, an update choice may be enabled in some states
but not in others. We add fairness constraints to modules by declaring a set of weakly-fair update
choices and a set of strongly-fair update choices for each atom.

Definition 10 [Fair modules] A fair module V consists of a module safe(V) together with two
fairness constraints. The weak-fairness constraint wfj, is a function that maps every atom A of
safe{V) to a finite set of update choicesfor A, which are called the weakly-fair update choicesfor A.
The strong-fairness constraint s/p is a function that maps every atom A of safe{V) to a finite set
of update choices for A, which are called the strongly-fair update choices for A.

For a fair module V, we refer to parts of the underlying module safe{V) —such as variables, atoms,
etc.— as parts of V. The fair module V is weakly fair if for every atom A of the set sf'p{A) of
strongly-fair update choices is empty. The fair module V is trivially fair if for every atom A of
both sets wf'p{A) and s/p(A) of update choices are empty.

The fairness constraints of the fair module V classify the w-trajectories of the underlying module
safe(V) into fair and unfair. Intuitively, a weakly-fair update choice cannot be enabled forever
without being chosen, and a strongly-fair update choice cannot be enabled infinitely often without
being chosen.

Consider an update choice a for the atom A, and an infinite sequence s of states. The up
date choice a is enabled at position i > 0 of 5 if there is a state t such that {si[readXA\ U
s'i^-^[waitX'j^,lf[ctrX'jf\) € a. The update choice a is chosen at position i > 0 of5 if (5,[readX^] U
sJ.,.i[ti;a2<X^],s[.,.i[ctrX^]) € a. Thestate sequence 5is weakly fair to the update choice a ifeither
a is not enabled at infinitely many positions of s, or a is chosen at infinitely many positions of s.
The state sequence s is strongly fair to the update choice a if either a is enabled at only finitely
many positions of 5, or a is chosen at infinitely many positions of s. A fair trajectory of the fair
module P is an w-trajectory s of the module safe{P) such that for every atom A of V, the state
sequence s is weakly fair to all update choices in to/^(A) and strongly fair to all update choices
in sf'p{A). If 5 is a fair trajectory of V, then the corresponding infinite sequence slobsXp] of
observations is a fair trace of V.

Example. Consider tke fair module Fair shown in Figure 14. In every update round, if the external
event x is present, then the module issues, nondeterministically, either the interface event y or the

34

interface event z. The update choice a consists of all pairs (5, t) of states such that 5[a;] ^ t[a;] and
s[y] 7^ and the update choice ^ consists of all pairs (5,t) such that s[a;] ^ t[x] and s[z] ^ t[z].
The weak-fairness assumption for a ensures that in every fair trace, if, after some round, x is present
in every round, then y is issued infinitely often. The strong-fairness assumption for /? ensures that
in every fair trace, if x is present in infinitely many rounds, then z is issued infinitely often. •

The fairness constraints of a fair module can be translated into w-acceptance conditions on the
underlying state-transition graph —weak-fairness constraints into Biichi conditions, and strong-
fairness constraints into Streett conditions. However, while w-acceptance conditions are usually
defined using sets of states, a direct translation of the fairness constraints on modules leads to u-
acceptance conditions that are defined using sets of transitions. This is because whether an update
choice is enabled or chosen may depend on both the latched and the updated values of variables.

Definition 11 [Fair implementation] The fair module V fairly implements thefair module Q,
written V Q, if the first three conditions of Definition 3 are met, and (4) if s is a fair trace
ofV, then the projection 5(065X2] ® trace of Q.

It is easy to check that the fair-implementation relation is a preorder on fair modules.

Machine closure. Every finite trajectory of a fair module V can be extended to a fair trajectory
of V. This property of a reactive system is called machine closure [1].

Proposition 10 IfV is a fair module, and a is a finite trace ofV, then a is a finite prefix of some
fair trace ofV.

It follows that the set offair trajectories of a fair module is always nonempty. Moreover, in verifica
tion, machine closure is important for tworeasons. First, as we will seein the next section, machine
closure facilitates an assume-guarantee principle for fair implementation. Second, the fairness con
straints ofa machine-closed system can be ignored when reasoning about safetyrequirements of the
system. Both are because for machine-closed systems, fair implementation implies implementation.

Proposition 11 Let V and Q be two fair modules. Then V Q implies safe{V) safe{Q). If
Q is trivially fair, then safe{V) •< safe{Q,) implies V Q.

Proof. The first part of the proposition follows from the machine closure of fair modules (Propo
sition 10); the second part follows from the limit closure of trivially-fair modules (first part of
Proposition 9). •

Thus, in order to show that a fair module P fairly implements a trivially-fair module Q, which
represents a safety requirement of P, it is sufficient and necessary to show that safe{P) imple
ments safe{Q).

Receptiveness. Proposition 10canbe strengthened: inorder to extenda finite trajectoryto a fair
trajectory, the module does not need the cooperation of the environment. Given a fair module P,
consider a finite trajectory SQ...Sn of the underlying module safe{P), and an infinite sequence
^n+i^n+2^n+3 ••' valuatious for the external variables ofP. Then, there is a fair trajectory u of
P such that for all 0 < i < n, we have Ui = 5,-, and for all i > w, we have Ui[extlXp] = t,-. In fact,
even in a stepwise game between module and environment, no matter how the environment plays,
the module always has a strategy to produce a fair trajectory. This property of a reactive system
is called receptiveness [11]. In a formalism that builds compound systems from atomic systems, in
order to prove that all compound systems are machine-closed, it suffices to prove that all atomic
systems are receptive. Since fair modules will be closed under composition —that is, the parallel
composition of two fair modules is again a fair module— there is no need to formally define and
establish the receptiveness of fair modules.

35

module FairPi
interface pc^: {outCS, reqCS, inCS}] Xi: ®
external pc2' {outCS^ reqCS, inCS}', X2: ®
atom pCj, xi reads pcj, pC2 ,xijX2

init

I true —»• pc'i := outCS
update weakly-fair a, /?

1 pcj = outCS pCi := reqCS\ x'l := X2
I pcj = reqCS A (pc2 = outCS y xi^ X2) pcj := inC?
[pci = inCS pcj := outCS
I true

Figure 15: Fair mutual-exclusion protocol

7.3 Operations on fair modules

The operations of renaming, composition, and hiding extend to fair modules in the obvious way. For
a fair module V, and two variables x and y of the same type with y 0 Xt>, the fair module V[x := y]
results from V by renaming x to y. The requirement of compatibility for fair modules is the same as
for unfair modules. For two compatible fair modules V and Q, safe{V\\Q) = safe{V) || safe{Q), for
every atom Aof V, we have wf'p^Q{A) = wfp{A) and sf'p\^Q{A) = sf'p{A), and for every atom A
of Q, we have u;/ |̂|q(A) = u;/q(A) and 5/ |̂|q(A) = s/q(A). For afair module Vand avariable a;,
the fair module hide x in V results by moving x from intfX'p to privX'p.

Example. In asynchronous shared-memory programs, progress can be ensured by weak-fairness
constraints. Recall Peterson's solution to the mutual-exclusion problem from Figure 2. Figure 15
adds weak-fairness assumptions to the first process of the protocol; the second fair process is defined
similarly, by the weakly-fair module FairP2. The weak-fairness assumption for, say, the update
choice (5 ensures that in every fair trace, it cannot happen that the first process remains in its
critical section forever. For the unfair module P1IIP2? we can prove mutual exclusion: in every
trace, it cannot happen that both processes axe simultaneously in their respective critical sections.
For the weakly-fair module FairPi || FairP2i we can, in addition, prove starvation freedom: in
every fair trace, if a process requests to enter its critical section, then eventually it will be in its
critical section (some unfair a;-traces do not satisfy this requirement). •

The three operations of renaming, composition, and hiding for fair modules are compositional
with respect to fair implementation. For parallel composition, this follows from the analogue of
Proposition 3: for two compatible fair modules V and Q, an infinite sequence a of observations of
the compound module V\\Q is a fair trace of V\\Q iff the projection g^ohsXT>] is a fair trace of V
and the projection g^obsXQ] is a fair trace of Q.

Proposition 12 Let V, Q, and be three fair modules such that V and TZ are compatible. Then
(1) V\\n V, and (2) V rff Q implies V\\n :<^ Ql\n.

Proposition 13 For all fair modules V and Q, and every variable x, (1) V (hide x in V),
and (2) ifV Q, then (hide x in V) (hide x in Q).

36

module Vi module V2
external y: B external x: B
interface x: B interface y: B
atom X reads y atom y reads x

update update
(] true -H- x' := y [| true —*• y' := x

module Qi module Q2
interface x: B interface y: B
atom X atom y

update weakly-fair a update weakly-fair /?
Q true x' := 0 [] true —*• y' := 0
y true x' := 1 Q true y' := 1

Figure 16: Counterexample to naive assume-guarantee principle for fair modules

Assume-guarantee reasoning. Recall the assume-guarantee principle for unfair modules from
Proposition 5. Suppose that both 7^i||Q2 ^-nd Q1IIP2 Q2* From this, we can conclude
that every a?-trace of safe{V\)\\safe{J^2) is an w-trace of safe{Q\)\\safe{Q2\ However, we cannot
conclude that every fair trace of V\^V2 is a fair trace of Qi||Q2- Figure 16shows a counterexample,
for the special case that both Vi and V2 axe trivially fair: while V\\\Q2 guarantees that infinitely
often X = 1, and Q\\\P2 guarantees that infinitely often y = 1, the module Vi\\V2 guarantees
neither. The circularity in the fairness constraints needs to be broken, which leads to a somewhat
weaker form of assume-guarantee principle in the presence of fairness [4]. Fora fair module V, let
unfair{V) be the trivially-fair module Q with safe{Q) = safe{V); that is, unfair{V) is obtained
from V by discarding the fairness constraints.

Proposition 14 Let Vi and V2 be two compatible fair modules, and let Qi and Q2 be two com
patible fair modules such that every external variable ofQi\\Q2 is an observable variable ofVi\\V2-
V^i\\Q2 Qi unfair{Qi)\\V2 Q2, then Vi\\V2 Qi||Q2-

Proof. Consider four fair modules Pi, p2) Qi? Q2 such that (1) Pi and P2 are com
patible, (2) Qi and Q2 are compatible, (3) every external variable of Q1IIQ2 is an observable
variable of Pi||P2» (4) P1IIQ2 (5) un/air(Qi)||P2 Q2« We wish to establish that
P1IIP2 Qi||Q2- From assumptions (4) and (5), by the first part of Proposition 11 it follows
that sa/c(Pi)||sa/e(Q2) :< safe(Qi) and 5a/e(Qi)||sa/€(P2) :< safe(Q2). From this and assump
tions (l)-(3), by the assume-guarantee principle for unfair modules (Proposition 5) it follows that
sa/c(Pi)||sajc(p2) < sa/e(Qi)||sa/e(Q2). This implies the first three conditions of the definition of
fair implementation. Hence it remains to be shown that every fair trace ofP1IIP2 is also a fair trace
of Q1IIQ2 (for simplicity, we omit the explicit use of projections).

Let a bea fair traceofPi||p2, andtherefore ofbothPi and P2. Since every traceofsa/c(Pi)||5a/€(P2)
is a trace ofsafe(Qi)\\safe(Q2), by the first part of Proposition 9 it follows that a is an w-trace of
safe{Qi)\\safe(Q2), and therefore ofsafe{Qi), For a trivially-fair module P, thefair traces coincide
with the w-traces of the underlying module safe{1Z). Hence, a is a fair trace of unfair{Qi). Since a
is also a fair trace of P2, it follows that a is a fair trace of «n/azV(Qi)||P2, and by assumption (5),

37

a fair trace of Q2. Since a is also a fair trace of Vu it follows that a is a fair trace of Vi\\Q2-, and
by assumption (4), a fair trace of Q\. Since a is a fair trace of both Q\ and Qi, we conclude that
a is a fair trace of Qi||Q2- •

Itound abstraction vs. fairness. The abstraction operator next is closely related to weak
fairness. For instance, while not all w-traces of the module P1IIP2 from Figure 2 satisfy starvation
freedom, all w-traces of the stutter reduction next (Pi||jI^2) do. Indeed, the module next (P1IIP2)
satisfies the stronger requirement of hounded starvation freedom: if a process requests to enter its
critical section, then it will be in its critical section within four rounds.

8 Concluding Remarks

We have presented a unified, modular, and hierarchical framework for describing synchronous and
asynchronous reactive computation. The uniformity, modularity, and hierarchy of reactive modules
can be exploited in computer-aided verification.

The efficiency of current verification tools often depends on the specific synchrony assumption
supported by the underlying model. For instance, hardware description languages (like Vhdl)
assume synchronous progress, and BDD-based model checking is successful in this domain. On
the other hand, many protocol description languages (like Fromela [17]) assume asynchronous
interleaving, and the most effective verification strategy is explicit on-the-fiy search with reduction
techniques based on partial orders and symmetries. Finally, the verification tools for synchronous
programming languages (like Esterel [8]) can afford to construct global state-transition graphs,
because much of the complexity is hidden by the fact that a single transition involves several
subtransitions between transient states.

While both synchrony and asynchrony can be forced, in one way or another, into most concur
rency models, this often comes at the cost of inefficiencies in verification. For example, the use of
stutter transitions in synchronous models to represent asynchronous progress increases the number
of transitions exponentially over an asynchronous model [19]. Or, the introduction of synchro
nization points into asynchronous models restricts the applicability of efficient search methods in
verification [17]. By contrast, our uniform framework allows us to separate intrinsic truths and
complexities about verification methods from accidental and model-dependent idiosyncrasies.

In addition, our framework supports modular proof principles, such as assume-guarantee reasoning,
and hierarchical verification, based on built-in abstraction operators such as next. This allows
us to decompose a verification task into subtasks with smaller state spaces. Module-based case
studies that exploit assume-guarantee reasoning can be found in [15]; case studies that expoit
round abstraction, in [5]. A verification tool, called Mocha, whose system description language is
based on reactive modules, is currently being implemented [6].

Acknowledgments. We thank. Albert Benveniste, Bob Kurshan, Ken McMillan, Amir Pnueli,
and the VIS group at UC Berkeley for fruitful discussions. We also thank the anonymous referees
for suggesting improvements.

References

[1] M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical Computer
Science^ 82:253-284,1991.

38

2] M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Programming
Languages and Systems, 17:507-534,1995.

3] B. Alpern, A.J. Demers, and F.B. Schneider. Safety without stuttering. Information Processing
Letters, 23:177-180,1986.

4] R. Alur and T.A. Henzinger. Local liveness for compositional modeling of fair reactive systems.
In CAV95: Computer-aided Verification, Lecture Notes in Computer Science 939, pages 166-179.
Springer-Verlag, 1995.

5] R. Alur, T.A. Henzinger, and S.K. Rajamani. Symbolic exploration of transition hierarchies. In
TAGAS 98: Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes
in Computer Science 1384, pages 330-344, Springer-Verlag, 1998.

6] R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K. Rajamani, and S. Tasiran. Mocha:
modulajity in model checking. In CAV 98: Computer-aided Verification, Lecture Notes in Com
puter Science, to appear. Springer-Verlag, 1998.

7] A. Benveniste, P. le Guernic, and C. Jacquemot. Synchronous programming with events and
relations: the Signal language and its semantics. Science of Computer Programming, 16:103-
149,1991.

8] G. Berry and G. Gonthier. The synchronous programming language Esterel: design, seman
tics, implementation. Technical Report 842, INRIA, 1988.

9] G. Berry, S. Ramesh, and R.K. Shyamasundar. Communicating reactive processes. In Pro
ceedings of the 20th Annual Symposium on Principles of Programming Languages, pages 85-98.
ACM Press, 1993.

10] K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley Pub
lishing Company, 1988.

11] D.L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-independent Circuits.
The MIT Press, 1989.

12] D.L. Dill. The Mur<^ verification system. In CAV 96: Computer-aided Verification, Lecture
Notes in Computer Science 1102, pages 390-393. Springer-Verlag, 1996.

13] 0. Grumberg and D.E. Long. Model checking and modular verification. ACM Transactions
on Programming Languages and Systems, 16:843-871,1994.

14] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic Publishers,
1993.

15] T.A. Henzinger, S. Qadeer, and S.K. Rajamani. You assume, weguarantee: methodology and
case studies. In CAV 98: Computer-aided Verification, Lecture Notes in Computer Science, to
appear. Springer-Verlag, 1998.

16] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

17] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 1991.

39

[18] R.P. Kurshan. Computer-aided Verification of Coordinating Processes. Princeton University
Press, 1994.

[19] R.P. Kurshan, M. Merritt, A. Orda, and S.R. Sachs. Modeling asynchrony with a synchronous
model. In CAY 95: Computer-aided Verification, Lecture Notes in Computer Science 939, pages
339-352. Springer-Verlag, 1995.

[20] L. Lamport. Specifying concurrent program modules. ACM Transactions on Programming
Languages and Systems, 5:190-222,1983.

[21] N.A. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.

[22] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and ConcurrentSystems: Specifica
tion. Springer-Verlag, 1992.

[23] K.L. McMillan. Symbolic Model Checking: An Approach to the State-explosion Problem.
Kluwer Academic Publishers, 1993.

[24] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[25] E.W. Stark. A proof technique for rely-guarantee properties. In FST & TCS 85: Foundations
of Software Technology and Theoretical Computer Science, Lecture Notes in Computer Science
206, pages 369-391. Springer-Verlag, 1985.

[26] R.J. van Glabbeek. Comparative Concurrency Semantics and Refinement of Actions. PhD
thesis, Vrije Universiteit te Amsterdam, 1990.

40

	Copyright notice 1998
	ERL-98-41

