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Abstract

In this paper we present, criteria for checking the symmetry of the feedback matrix of the
(!NN vector state equations under different packing schemes, boundary conditions and weights.
Example.s of a 3 x 3 CINN are given for illustrating theoretic results. Since the symmetry of
the feedback matrix of a CNN vector state equation is important for stability, applications of
our results for checking the reliability of CWN chips are presented. Theoretical results on the
complete stability of CNNs whose states are constrained by a state mask are also given as another
application of our results.

1 Introduction

There are different way.s to write the state equation of a cellular neural network(CNN). The most
common way is a 2-D convolution form whose kernels are called templates[2, 3]. Although the
template form can be easily used to describe, the functional property of a CNN, the difficulty of

studying the stability of the corresponding nonlinear matrix ODE makes it very difficult to study
the stability of the CNN.

To study stability, it is much more convenient to write the state equation of a CNN into a vector

equation because there exist many mathematical tools for studying the stability of nonlinear vector

DDEs. Some important stability results on CNN had been presented under the condition that the
vector state equation is endowed with .some symmetry properties[l]. Since the symmetric property
of a CNN vector state equation is critical to its stability, it is desirable to provide some conditions
under which a CNN vector state equation is .symmetric.

There are many conditions which affects the symmetry of a CNN vector state equation; namely,
templates, shapes of CNN arrays, boundary conditions and packing schemes. In this paper, we

pre.sent .some theoretical results which guarantee the symmetry property of CNN vector state equa
tions under all of the above conditions. Applications of our theoretical results to the complete
stability of a CNN array with defective cells and state mask are provided.

The organization of this paper is as follows. In section 2, some basic notions, definitions and
conditions are pre.sented. In .section 3, theoretical results for checking the symmetry property of



CNN vector state equations are given. In section 4, some examples of a 3 x 3 CNN are used to
illustrate the theoretical results. In section 5, applications of the theoretical results to the reliability
of CNN and the complete stability of state mask techniques are given. In section 6, some concluding
remarks are given.

2 Definitions and conditions

To make this paper self-contained, we present some basic notations, definitions and equations of
CNN in this section. Most of them are adopted from [1].

Definition 1. Sphere of influence
Each CNN cell Cij is, by definition, coupled locally only to those neighbor cells which lie inside

a prescribed sphere of influence Sij{r) of radius r, where

= {Cki ' max(|A; —i|, K—il) < r, \ <k < M, 1 < / < N}

A standard CNN is described by the following equations originally proposed in [2, 3]for an M XAT
CNN array with M rows and N columns:

State equations of standard CNN:

xij = -xij -h Zij + ^5 0 Vki + Hh j; 0 «fc/
kl 6 S,j{r) kl e Sij(r)

(1)

Output equation of standard CNN:

Vkl = fi^kl) (2)

i = 1,2, ...,M,j= 1,2, ...,N, where /(•) is usually defined by

/(^fi) =^(la^tj +1| - ktj - 1|) =<
11 1

kyl < 1
. ^ 1

(3)

For a space-invariant (homogeneous) CNN, the control (feed-forward) coefficients and feedback
coefficients can be represented compactly by two templates and [^. In this case, the CNN can
be represented by the following 2-D convolution form^

'To be precise, * is the "correlation" operator. It is the sameas the "convolution" operator when and _B
symmetric with respect to the center, respectively.

are



^•ij — ^ij "I" ^ij "I" IA[•*• J/jj B ★ Uij

Vij ~ /(^tj) = ~ "" ^1)
i=l,2,...,M;i=l,2,...,Ar (4)

where denotes a 2-D correlation operator.

For a CNN which has a sphere of influence 5,j(r), the templates and are (2r +1) x (2r +1)
matrices. We label each entry in as0(p,q) where —r<p^q<r. The center of is located at
{p,q) = (0,0) and the relationship between [aKp, and a{i,j-,k,l) is given by

a{ij;kj) = [^{k - ij-j), z, A: = 1,2,...,M;/ = 1,2,...,iV (5)

Observe that Eq.(l) is not completely defined for cells whose sphere of influence extends

outside of the boundary of the array. Consequently, additional boundary conditions must be specified

in order for Eq. (1) to be well defined. The 3 most commonly chosen boundary conditions are:
1. Fixed (Dinchlct) boundary condition
Here, the state x^i of each cell Cki in Eq. (1) which lies outside of the boundary is assigned a

fixed constant value.

2. Zero flux(Neimiann) boundary condition
Here, the states Xf-i of corresponding neighbor cells perpendicular to the boundaries are con

strained to be equal to each other.

3. FeHodicf Toroidal) boundary condition
Here, the first and last rows(resp., columns) of the array are identified, thereby forming a torus.

In this paper, we call cells which implement boundary conditions as boundary cells(a\so known
as "virtual cells").

In order to apply the theory of dynamical systems, which has been developed for vector differential

equations[5, 4], let us repack the state equation of an M x N CNN into a i/ x 1 vector differential
equation:

X = -X -t- Z -j- AY -b BU (6)

where X, Y, U, Z 6 A, B G 5?" x 91?", u = MN, We henceforth refer to A as the feedback matrix.

We call the procedure in which we repack a CNN as a packing scheme and denote it by V in this
paper. To define V formally, we need the following definition.

Definition 2: Flacking scheme V
A packing scheme V repacks the states x,j, 1 < z < M, 1 < j < iV, of all cells in an A/ x N CNN

into a 1-E) vector x. By defining a packing map p : Z^ i-> Z, P maps cell Cij to cell Cp(ij). V also
maps Xij and a{ij;kj) to and ap(,-,j)^p(jt,/), respectively.

We then give some examples to illu.strate the concept of packing scheme. Let us consider the
following 4x4 CNN:



(1.1) (1.2) (1.3) (1.4)
(2,1) (2.2) (2,3) (2.4)

(3.1) (3.2) (3.3) (3.4)

(4.1) (4,2) (4.3) (4.4)

Example I. Row-wise packing scheme Vr
There are many possible row-wise packing schemes. The mostly common ones are shown in Fig.l.

The packing map of the packing scheme shown in Fig.l (a) for the 4x4 CNN is given by

(1.1) (1.2) (1.3) (1.4)
(2.1) (2.2) (2.3) (2.4)

(3.1) (3.2) (3.3) (3.4)

(4.1) (4.2) (4.3) (4.4)

(iJ) Pfl(«.i)

(1.1) 1

(1.2) 2

(1.3) 3

(1.4) 4

(2.1) 5

(2.2) 6

(2.3) 7

(2.4) 8

(3.1) 9

(3.2) 10

(3.3) 11

(3.4) 12

(4.1) 13

(4.2) 14

(4.3) 15

(4.4) 16

In this paper we choose the above row-wise packing scheme as the standard one. For an M x iV
(^NN. the above row-wise packing scheme has a very simple packing map given by

PR = [i - \) X M + \ < I < M\ \ < j < N

The packing map of the packing .scheme shown in Fig.l(b) is given by

f (i - 1) XM + j, if i mod 2=1
PR {i - I) X M + N - j + \, if i mod 2=0

1 < i < M; 1 < i < AT

(7)

(8)

Ob.serve that this is a piecewi.se linear function.

Example 2. Column-wise packing .scheme Vc
.Similar to the row-wise packing schemes, the standard column-wise paoking scheme for the 4x4

CNN is given by
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(a) (b)

Figure 1: Two different row-wise packing schemes, (a) The standard row-wise packing scheme used
in this paper, (b) .Another common row-wise packing .scheme.

(1.1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

(4,1) (4,2) (4,3) (4,4)

(iJ) Pc{i,j)

(1,1) 1

(2,1) 2

(3,1) 3

(4,1) 4

(1,2) 5

(2,2) 6

(3,2) 7

(4,2) 8

(1,3) 9

(2,3) 10

(3,3) 11

(4,3) 12

(1,4) 13

(2,4) 14

(3,4) 15

(4,4) 16

The corresponding packing map can be written explicitly as

PC = (j —I) y. N + 1 < i < A/; 1 < i < (9)

Example S. Diagonal packing scheme Vp

Among many choices, the diagonal packing scheme shown in Fig.2 is chosen as the standard one.
In this case, the packing map for the 4x4 CNN is given by



(1.1) (1.2) (1,3) (1.4)

(2,1) (2.2) (2.3) (2.4)

(3.1) (3.2) (3.3) (3.4)

(4.1) (4.2) (4,3) (4.4)

This is a nonlinear packing scheme.

(id) PD(«.i)

(1.1) 1

(1.2) 2

(2.1) 3

(3.1) 4

(2.2) 5

(1.3) 6

(1.4) 7

(2.3) 8

(3.2) 9

(4.1) 10

(4.2) 11

(3.3) 12

(2.4) 13

(3.4) 14

(4,3) 15

(4.4) 16

Figure 2: The standard diagonal packing scheme used in this paper.

Ob.serve that the u xu matrices A and B in Eq.(6) are sparse matrices whose non-zero elements
corresponds to the nonzero entries from the and templates, respectively.

3 Theoretical results

In this .section, we present theoretical results which depend on the symmetry of the feedback template
[a\. In these results we con.sider different packing schemes, shapes of CNN arrays and boundary
conditions.



Theorem 1. //[ A| is symrnetric with respect to its centerand the packing scheme V is a bijective
map, then A is symmetric.

f'roof. Since is symmetric with respect to its center, we have QCPi?) = from
which we have a{i,j;k, I) = Q(fc—i, I- j) = 0(i —k,j —l) = a{k, /; i,y), 1 <i',k< M,1 < j,l < N.
Since V is a bijective map, we know that p{i,j) and p{kj) exist and are distinct. Hence, we have

«P(«.J).P(U) = a{i,j;kj) = a{k,l;ij) = ap(fc,/),p(i.j) which leads to = A. •
Remarks:

1. Theorem 1 is very general because it is satisfied by many distinct packing schemes. Observe
from Theorem 1 that even a random but bijective packing scheme will result in a symmetric A
matrix.

2. Theorem 1 does not depend on the boundary condition. Theorem 1 is also independent of
the shapes of the CNN array. This is a very important result because it guarantees that the
stability of a CNN can not be destroyed even if part of its cells had failed during operation.

3. If a packing scheme is not bijective then at least the .state of one cell is packed more than once
in the vector x, or at least the state of one cell is not packed in the vector x.

4. The examples in Section 4 show that |"a]^ = does not imply the symmetry ofA. On the
contrary, even though ["a1^ ^ [^, we get a symmetric A if is symmetric with respect to
its center.

The most commonly used packing schemes are linear ones, e.g., row-wise or column-wise. The
following theorem gives the criterion for linear packing .schemes.

Theorem 2: If a packing scheme V is linear with a packing map

p{i,j) = o? -f fSj 4- 7 (10)

and 0 is symmetric with inspect to its center, then A is symmetric.
Proof. Since is symmetric with respect to its center and p(i,i) in Eq.(lO) is a bijective map,

it follows from Theorem 1 that A is symmetric. •

Corollary 1: //[^ is symmetric with respect to its center and the packing scheme is either
row-wise or column-wise, then A is synmietric.

Proof.

1. For a row-wise packing scheme Vn and M x N CNN, the packing map is a linear transfor
mation defined by pR{i,j) = (i - 1) x M + i. It follows from Theorem 2 that A is symmetric.

2. For a column-wise packing scheme Vc and an M x iV CNN, the packing map is a linear
tran.sformation defined by pcihj) = U - 1) xN-\-i. It follows from Theorem 2 that A is symmetric.
•

Corollary 2; //[^ is symmetiic with respect to its center and a diagonal packing scheme Vd
is used, then A is syrninetric.

Proof Since Vp is a bijective packing scheme, the above corollary follows immediately from

Theorem 1, •



4 Examples

In this section we present some examples based on a 3 x 3 CNN with a sphere of influence 5,j(l) to
demonstrate the theoretical results presented in the previous section.

Consider an template in

0 =
a d f
d b e

f € c

(11)

If o r or d / f then is symmetric with respect to the diagonal a-b-c, but is asymmetric with
respect to its center. Consider first a 3 x 3 CNN with a toroidal boundary condition, and a row-wise
packing scheme Vn. The CNN and its boundary condition is depicted as

Czz f '̂31 ^'32 ^'33 ^'31

C'\z Cii C12 Ci3 Cii

^'23 C21 C22 C23 C21

C33 C31 C32 C33 C3,

^'13 Ci, ^'13 Cu

where bold type characters denote normal cells and normal type characters denote boundary cells.
In this case, A is a 9 x 9 matrix given by

A =

( h e d e. c f d f a \

d b € I e c a d f
c d b c f e f a d

d f a b € d e c f
a d f d b € f € c

I a d e d b c f e

e c I d f a b e d

f c c a d f d b e

Kc f c f a d € d b )

Observe that A is a symmetric matrix if d = e and a = c. Observe also that the symmetry of
with respect to the diagonal a-b-c does not imply the symmetry of A.

To show that the symmetry of A is independent of the boundary conditions, let us rewrite the



matrix A under a fixed (Dirichlet) boundary condition

0 =
a d f
d b e

f e c

A =

( ^ e 0 € c 0 0 0 0 \

d b e f e c 0 0 0

0 d 6 0 f e 0 0 0

d f 0 6 e 0 c c 0

a d / d b € / e c

0 a d 0 d 6 0 f e

0 0 0 d f 0 b e 0

0 0 0 a d / d b e

V 0 0 0 0 a d 0 d b )

and a = c.

To show that an asymmetric can also generate a symmetric A matrix, consider the following
[X] template

0 =
a c €

d b d

e c a

(12)

with a sphere of influence 5tj(l). This template is symmetric with respect to the center but not
symmetric, with respect to the diagonal line. The A matrix of the same 3x3 CNN with a toroidal
boundary condition and a row-wise packing scheme Vr is given by the following matrix

A =

f b d d c a e c e a \

d b d e c a a c e

d d b a e c e a c

c e a b d d c a €

a c e d b d e c a

e a c d d b a € c

c a e c e a b d d

e c a a c e d b d

[ a € c e a c d d b I

Observe that A is a symmetric matrix.

5 Applications

In this .section, we apply the results from Section 3 to demonstrate the reliability of CNN chips with
static input images. We also present a stability criterion for state mask techniques. To make this
paper self-contained, the following theorem is reproduced from [1].

Theorem 3.[Theorem 2.3.2 of [1]] Complete Stability Criterion
All trajectories of the standard CNN defined by Eqs.(l)-(2) with constant thresholds, constant

inputs, and a sphei'e of influence of arbitrary size, converge to an equilibrium state, which in general
depends on the initial states, if the following 3 hypotheses are satisfied:

9



(i) The matrix A in Eq.(6) is symmetric.
(it) The scalar function /(•) in the output equation (2) is differentiable with positive slopes, and

is bounded.

(Hi) All equilibrium points are isolated.
In this paper we say a cell is damaged, or has failed, when this cell is disconnected from the other

cells, i.e., all weights connected between this cell and the neighbor cells are zero. Damage in a small
part of the retina does not make a person blind shows that the partial damage does not destroy
the stability of the human retina. When a CNN is used with constant input images, we want it to

remain stable even if some of its cells had failed. This problem is closely related to the reliability of a

C^NN chip. Since the damaged cells may change the symmetry of the CNN array and the boundary
condition, it is important to invejstigate 1) the relation between stability and the number of damaged
cells, and 2) the relation between stability and the locations of the damaged cells. Our next theorem
provides .some theoretical results on the.se relationships.

Theorem 4. Complete stability of CNN after damage
All trajectories of the standard CNN defined by Eqs.(J)-(2) with constant thresholds, constant

inputs, and an arbitrary number of damaged cells at random positions, converge to an equilibrium
stat(, if the saim hypotheses as Theorem 3 are satisfied; namely,

J. IAI is syriimctric with respect to its center
2. Th( scalar function /(•) in the output equation (2) is differentiable with positive slopes, and

is bounded.

3. All equilibrium points arc isolated.

Proof. .Suppo.se that all the cells in the CNN is lumped into two groups. Group 1, consists

of all cells which are still functioning. Group 2, ^}, consists of all cells which had failed. Suppose
that a cell belongs to Group 2, by the definition of a damaged cell we know that

j} h, l^ —n(A.', /, i, j) —0, i, j ^ h, I (1-^)

Since cell had failed, the weight a{i,j;i, j) and b{i,j;i,j) may be two arbitrary (space-varying)

values denoted by a^QQ{i,j) and b^Q{i,j), re.spectively. Since is not coupled to the other cells,
its state ecpiation is given by

iij = -^ij +Zij +4o + &00 ^{^i?} (14)

We choose such a bijective packing scheme V that the state of the entire CNN is given by the vector

^ ( X(2) j
where and X^^^ pack all .states of cells in Group 1 and Group 2, respectively. Then the vector
state equation in Eq.(6) as.sumes the form

•U(2) 1(1®)

10



Let A be the number of the damaged cells, then u = MN —A is the number of the normal cells.
are state vector, output vector, input vector and threshold vector of the

cells in Group 1, respectively. 6 3^?" x 3?", are feedback and feedforward matrices for all
the cells in Group 1, respectively. € 3?"^ are state vector, output vector, input
vector and threshold vector of the cells in Group 2, re.spectively. € 3?*^ X3i^ are feedback
and feedforward matrices for all cells in Group 2, respectively. Observe that the cells in Group 1 are
not coupled to the cells in Group 2.

From Eq.(14) we know that A^^^ is a diagonal matrix. Since is symmetric with respect to its
center, it follows from Theorem 1 that A^^^ is symmetric. It is easy to see that the A matrix given

by

A= (17)

is symmetric. It follows from Theorem 3 that the damaged CNN is still completely stable. •
Remark: Although Theorem 4 concludes that the damaged CNN is still completely stable, it

does not guarantee that the damaged CNN will function as originally designed. Theorem 4 only
guarantees that the damaged CNN can function partially if a partial damage occurs.

In some applications such as CNN interpolation[6] a special technique called state mask\s widely
used. A state mask con.sists of a subset of cells, called mask cells. The states of the mask

cells are fixed during the time evolution of the CNN. Although some applications of CNNs with state
masks have worked correctly, so far there exist no theoretical results for explaining why this happens,
in spite of the fact that the existence of mask cells changes the symmetry of the original CNN array,
thus potentially changing the stability of the CNN. It is important therefore to investigate 1) the
relation l>etween stability and the number of mask cells, and 2) the relation between stability and the
locations of the mask cells. Our next theorem provides .some theoretical results on these relationships.

Theorem 5 (Complete stability of CNN with state mask

All t.rajcrtoric.<i of the standard CNN defined by Eqs.(J)-(2) with constant thresholds, constant
inputs, and an arbitrai'y number of ma.<ik cells at mndom positions, converge to an equilibrium state,
if the same hypotheses in Theorem 3 art satisfied: namely,

is symmetric with respect to its center

2. The scalar function /(•) in the output equation (2) is differentiable with positive slopes, and
is bounded.

3. All equilibrium points are isolated.
F*roof. Suppo.se that all cells in the CNN is lumped into two groups. Group 1, consists of

all cells which are not mask cells. Group 2, consists of all cells which are mask cells. Since

the state of a mask cell keeps its initial value x,j(0) all the time, its dynamics is given by

iij = 0, a;,j(0). (18)

We choose such a bijective packing scheme V that the .state of the entire CNN is given by the state

11



vector

^

where and pack the states of all cells in Group 1 and Group 2, respectively. Then the

vector state equation in Eq.(6) assumes the form

Ad) 0 \ / Yd)

0 0) \ 0 ^
Ud) \ / 0 AdM) \( 0 \U(M) j+ 0 0 j \ ¥(^ '̂(0) j ^ ^

Let A be the number of the mask cells, then u = MN —X\s the number of the normal cells. Xd),
yd), IJd), Zd) € 3^" are state vector, output vector, input vector and threshold vector of the cells
in Group 1, respectively. Ad),Bd^) g 31?" x 9^", are feedback and feedforward matrices for all cells
in Group 1, respectively. X^^) and U^^) € Sf?"^ are state vector and input vector of the cells in
Group 2, respectively. Bd^) ^ 3^" x is the feedforward matrix which denotes the feedforward
effect ofthe cells in Group 2 on the cells in Group 1. Y^^)(0) G3^"^ is the fixed output vector of the
cells in Group 2. Ad^) g 31?" x 31?^ is the feedback matrix which denotes the feedback effect of the
cells in Group 2 on the cells in Group 1. Since Y^^)(0) is unchanged it can be viewed as a virtual
input In this case the input of the CNN is given by

/ 0(11) b(1M)
U = . (21)

0 0

The threshold vector of the CNN is given by

I » MU)

Z = „ • (22)

Observe that U and Z are still constant vectors. Since X^^) = 0 is always satisfied, the vector state
equation in Eq.(20) reduces to

Xd) = -Xd) + zd) + Ad)Yd) + [Bdi)ud) + BdM)u(M) + AdM)Y^^)(0)] (23)

Since is symmetric with respect to its center, it follows from Theorem 1 that Ad) is symmetric.
It follows from Theorem 3 that the cells in Group 1 are completely stable. •

6 Concluding Remarks

In this paper we give criteria for the symmetry of CNN vector state equations. We also show that
the symmetry of the feedback matrix in the vector state equation is independent of any bijective

pax king schemes. Applications of our results give conditions under which a CNN which is subject to
uncontrollable and unpredictable damages (such as in the vision system of an autonomous robot),

12



can stil) function. By applying our theorems we also give theoretical results on the complete stability
of CNNs found in many practical applications with state masks.
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