

Copyright © 1998, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

MULTI-VALUED NETWORK

COMPACTION USING REDUNDANCY

REMOVAL

by

Sunil P. Khatri, Robert K. Brayton
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M98/44

1 June 1998

MULTI-VALUED NETWORK

COMPACTION USING REDUNDANCY

REMOVAL

by

Sunil P. Khatri, Robert K. Brayton
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M98/44

1 June 1998

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia, Berkeley

94720

Multi-Valued Network Compaction using Redundancy Removal

Sunil P. Khatri (linus@ic.eecs.berkeley.edu) *

Robert K. Brayton (brayton@ic.eecs.berkeley.edu) *

Alberto Sangiovanni-Vincentelli (alberto@ic.eecs.berkeley.edu) *

1 June 1998

Abstract

We introduce a scheme to simplify a multi-valued network using redundancy removal techniques. Recent methods

[1], [2] for binary redundancy removal avoid the use of state traversal. Additionally, [2] finds multiple compatible

redundancies simultaneously. We extend these powerful advances in the field ofbinary redundancy removal to perform

redundancy removal for multi-valued networks.

First we perform a one-hot encoding of all the multi-valued variables of the design. Multi-valued variables are

written out as binary variables, using this one-hot encoding. At the end of this step, we have a binary network which

is equivalent to the multi-valued network modulo encoding.

Next, binary redundancy removal is invoked on the resulting network. In case a binary signal Siis determined to

be stuck-at-0 redundant, this means that the multi-valued signal s can never take on a value i. Further, if the binary

signal Si is determined to be stuck-at-1 redundant, this means that the multi-valued signal s takes on a constant value i.

All redundant binary signals are recorded in a file. The original multi-valued network is modified based on the binary

redundancies thus computed.

*CAD Research Group, Department of Electrical Engineering and Computer Sciences, University of Califomia, Berkeley, CA 94720. This
research was funded under the Semiconductor Research Corporation Grant SRC-324-040.

Initial experiments using this technique show a10-20% reduction in the size of the multi-valued description.

1 Introduction

Until recently, most logic synthesis and verification was performed on binary-valued networks. Recent work [3], [4]

allows for input in the form ofamulti-level network ofmulti-valued variables. This has some important consequences.

For one, itallows the user todesign circuits atahigher level ofabstraction, making the design task more intuitive. This

isespecially important for larger designs. Also, the user can experiment with various binary encodings ofthe multi

valued design, and choose the one that yields the most efficient (binary) implementation. Thus abetter exploration of

the designspace becomespossible.

Techniques that simplify the multi-valued network result in a more efficient design process. In this paper, we

report on one such simplification technique, which involves removal of multi-valued redundancies in the network.

Our scheme removes the redundant values ofa multi-valued combinational node (or latch) as well as the redundant

multi-valued nodes (or latches) themselves. The efficiencies that result from our redundancy removal technique

include:

• The modified multi-valued design requires less storage.

• Simulation ofthe modified design is sped up, since the modified design is more compact.

• The designer can perform exploratory encoding and synthesis experiments more efficiently

• The scheme handles sequential designs as well. As aresult, multi-valued register values ormulti-valued regis

tersthemselves canbe removed from a design. This should help speed up thetaskof formal verification.

Recently, highly efficient schemes for binary redundancy removal have been reported [1], [2]. These schemes per

form sequential binary redundancy removal without utilizing state space search. We base our multi-valued redundancy

removal techniques on this recent work.

Our multi-valued redundancy removal scheme works as follows. First, the multi-valued network (N^) is trans

formed into an equivalent binary network (N^), using a one-hot encoding of all multi-valued variables. So each

multi-valued variable s of with n possible values gives rise to n variables in , labeled 5i, 52> ••• Now,binary

redundancy removal is performed on using the algorithm of [2]. If binary signal Si is found to be stuck-at-0

redundant, then the value i of the multi-valued variable s in cannot occur, and is simplified accordingly. If

binary signal Siis stuck-at-1 redundant, then the value the variable s of can be replaced by a constant i value. Once

again, is simplified to reflect this.

The code for this work is written in SIS [5] and VIS [3] [4]. The encoding code is written in VIS. It outputs a file

in the format, readable by SIS. The redundancy removal code is a modified version of the code used in [2], and is

implemented in SIS. Finally the network simplification code is written in VIS.

To the best of our knowledge, there has been no prior work in the area of redundancy removal of multi-valued

circuits. In this sense our scheme is unique in its scope.

The remainder of this paper is organized as follows. Section 2 describes our redundancy removal scheme, after

describing the binary scheme [2] that it is based upon. Section 3 describes preliminary results that we have obtained

using our scheme. Finally, in Section 4, we make concluding conunents and discuss further work that needs to be

done in this area.

2 Our Approach

In the rest of this section, we describe our work in detail, and prove the correctness of the scheme. In Section 2.1

we give a short suimnary of the binary redundancy removal technique of [1] and [2]. This is followed by a detailed

description of our procedure in Section 2.2. The proof of correctness of our scheme is given in Section 2.3

In the sequel, we refer to the combinational elements of a multi-leveldesign as nodes, and the sequential elements

of a multi-level design as latches. Both are collectively referred to as variables.

2.1 Efficient Binary Redundancy Removal

Binary Redundancy Removal (BRR) ismotivated by ideas from Automatic Test Pattern Generation (ATPG).

Let Z(X) bethe logic function ofthe binary network with primary inputs X, and let/ beastuck-at fault inN^.

Definition 1 Atest vector t detects afault f iffZf(t) ^ Zf(t), where Zf(t) isthe logicfunction ofthe network in

thepresence ofthefault f.

Definition 2 Afaultf isdetectable if there exists a test t thatdetects f. Otherwise, f is undetectable.

Definition 3 Ifthe network contains an undetectable stuck-at-0 (stuck-at-1)fault f at node p, then the node p is

saidtobestuck-at-0 (stuck-at-1) redundant. Under this condition, node p can bereplaced by a constant 0 (constant

1) value.

TVaditionally, circuit redundancies were detected bytesting for stuck-at faults one at a time using ATPG. This is

an expensive proposition, since each ATPGinstance is NP-Complete.

Recently, efficient techniques forBRR were developed in [1] and [2]. These methods useimplications instead of

ATPG todetect redundancies. [1] initially reported the concept, which was improved and extended in [2]. Essentially,

for each node p inN^, we first set a0 (1) value on that node. The implications that are derived from this assignment

form a set So (Si). Now, all the nodes in So n Si are redundant nodes, since node p cannot attain both 0 and 1

values simultaneously. In [2], the implication process is modified so as to guarantee that all nodes in So n Si can be

simultaneously removed.

In [1] and[2], thisideawas applied to sequential circuits as well, byusing a (combinational) iterative array model

[6]of the sequential circuit. Implications arepropagated acrosstime-frames (i.e. across latchboundaries)to determine

sequential redundancies. Hence state space search is avoided. A state space search would be required if ATPGwas

used to do BRR for sequential circuits. It was found that an iterative array model with 15 forward and 15 backward

time-steps was a good tradeoff, since implications usually died out before this limit was reached.

Original MV
Design

Convert to on&-hot

binary (in VIS)

binary
design

Redundant

(binary) node list

Remove redundant values of
ori^nal MV design (in VIS)

Compact MV
design

Figure 1: Multi-Valued Redundancy Removal

2.2.1 Creating the Binary Description

The first step of the SMVRR procedure involvesencoding the multi-valued design into a one-hot binary design. The

multi-valued design under considerationis hierarchical. We first need to flatten the hierarchy since the ERR program

cannot handle hierarchical designs. Now each multi-valued node is translated into a series of binary nodes using a

one-hot encoding scheme. Latches are also encoded in the same fashion. So if a multi-valued node sha&n values,

the binary netlist will have n corresponding nodes si,S2, Similarly, if a multi-valued latch I has m values, the

binary netlist will have mcorresponding latches h, /2» ••*. Im- Since aone-hot encoding isused, s = jiffsj = 1and all

otherSi = 0. As a result, the multi-valued design and the binary design are equivalent modulo encoding. An example

is shown in figure 2.

Sincethe multi-valued designis hierarchical, butthe binarydesign is constrained not to be hierarchical, the binary

variable names are prepended with the full hierarchical path name of the corresponding multi-valued variable. This

gives us the ability, given a binary variable name, to find the corresponding multi-valued variable in the hierarchy.

This special naming convention is used for all signals, including latch inputs and outputs.

In [1] and [2], the modified circuit is a c-cycle replacement for the original one. This means that the behaviors

ofthe two circuits are identical assuming that circuit outputs are observed only after c cycles have elapsed following

power-up. The value of c was found to be upto a few thousand. This is a reasonable restriction, since modem

sequential designsare often clockedfor millionsof cyclesbeforeany useful workis done.

Thereare several advantages of this newapproach:

• One advantage of the method [2]of computing redundancies is that multiple redundancies are foimd at once.

• Further, the implication procedure has a more controllable cost than ATPG.

• Finally, these methods are also applicable to sequential circuits, providing us with a scheme to do BRR for

sequential circuits without state space search.

2.2 Sequential Multi-valued Redundancy Removal

Our approach for Sequential Multi-Valued Redundancy Removal (SMVRR) is derived from [2], due to its proven

efiiciencies. Weuse these breakthroughs in BRRandcast the SMVRR problem as an equivalent BRRproblem.

Figure 1 describes the outline of our procedure.

• First, the multi-valued description is encodedinto a one-hot binary description.

• Next, BRR is ran on the resulting binary description. The redundant one-hot nodes are recorded.

• Hnally, the original multi-valued description is modified to reflect the redundancies found in the previousstep.

The original network is represented in blijmv, the input format to VIS [3], [4]. blifinvallows the use of hierarchy

in the design. The BRR code is implemented in SIS [5], whose input format blifdoes not handle hierarchical designs.

Details of the input formats to VIS and SIS can be found in the corresponding references. Both blifmv and blif

represent the nodes of the design as a table.

multi-valued
output

mulu

valued

DomaiR(s) = 2

Domaiii(t) = 3

Domain(u) = 3

binaiy inputs

Figure 2: One-hot Encoding of Multi-Valued Node

binaiy outputs

lllllllllillli||llllll|p

Top level circuit

Figure 3: Handling Hierarchy during Encoding

Figure 3 shows an example of the naming of the binary nodes. Assume that the multi-valued node m has ^ values.

The k variables in binary design will thus have names, bai0.m\, bar0.m2, •••, bar0.mk. To find the multi-valued node

coiresponding to barO^nii, we simply descend into the instance barO, and search for the variable m.

2.2.2 Binary Redundancy Removal

The BRR algorithm we use is reported in [2]. We modify the implementation of [2] to record the discovered redun

dancies in a separate file. These redundancies are recorded in the order in which they are discovered.

2.23 Modifying the Multi-Valued Design

This step involves reading the binary redundancies produced bythe preceding step, in the order oftheir dikovery, and

modifying the original multi-valued design to reflect the discovered redundancies.

First, the sub-circuit andmulti-valued variable corresponding to theredundancy aredetermined. Sincethe binary

variable names areprepended bythefullhierarchical pathnameof thecorresponding multi-valued variable, thecorrect

sub-circuit canbeeasily found. Theaffected multi-valued variable is also easily found, since thelastfield ofthebinary

variable is the sameas the corresponding multi-valued variable, appended with the valueof the multi-valued variable.

For example, the binary variable fool.bar3.k5 corresponds to the multi-valuedvariablek. This variableis in the bar3

sub-circuit, which is in the fool sub-circuit of thetoplevel design. Thisbinary variable corresponds to the value

of the multi-valued variable k.

Next the affected multi-valued nodeis modified. Consider a multi-valued nodes having m values. There are two

possible cases.

• Sj is stuck-at-1 redundant: This means that all other values of s cannot occur (and are therefore stuck-at-0

redundant). In this case wereplace thenode s with a constant j value. Also, wepropagate theconstant j value

through the circuit, simplifying the network further. This involves:

- Updating all nodes in the fanout of s to remove their multi-valued minterms which do not contain the j

value of s.

- Removing latches in the fanout of s and replacing them with a constant value j. Further, all nodes in the

fanout of such latches are modified so as to remove their multi-valued minterms which do not contain the

j value of the corresponding latch variable.

• Oneor more Sk is stuck-at-0 redundant: Thismeans that thecorresponding values k areredundant in the multi

valued network. So we:

- Update the corresponding multi-valued nodes in the fanout of s. We alter them to reflect the fact that s

cannot take on the value k, by removing those multi-valued minterms from the fanout nodes which contain

the k value of s.

- Find all latches I in the fanout of s. For all multi-valued nodes in the fanout of /, we remove those

multi-valued minterms which contain the k value of /.

If a latch value Ij is found to be redundant, then the procedure is verysimilar.

• If Ij is stuck-at-1 redundant, then it is removed, and the its immediate fanin node is replaced by a constant j

value. Next, all nodes in its fanout are modified to remove their multi-valued minterms which do not contain

the j value of /. Similarly, latches I* in the fanout of I are removed and replaced with constant j values, and aU

nodes in the fanout of such latches I* are modified so as to remove their multi-valued minterms which do not

contain the j value of the latch variable I*.

• In case Ij is stuck-at-0 redundant, then all multi-valued nodes in the fanout of I are modified by removing those

multi-valued minterms from the fanout nodes which contain the j value of I. We also find all latches I* in

the fanout of L For all multi-valued nodes in the fanout of /*, we remove those multi-valued minterms which

contain the j value of I*.

2.3 Correctness of the Scheme

Lemma 2.1 The binary network obtained after BRR is functionally equivalent to the corresponding multi-valued

network after multi-valued redundancy removal.

Proof: We prove this by induction.

• Base case: The original multi-valued and binary networks are equivalent modulo encoding.

• Induction hypothesis: Assume that the networks are equivalent at step k. Each multi-valued network update is

consistent with the corresponding binary network update. Hence the networks are equivalent at step 1.

Circuit # Binary
Redundancies

% reduction

exl 9 13.1

a 6 9.1

t3 8 9.5

t4 9 5.3

foo 29 13.3

next 3 8.0

random 23 16.7

bar 35 17.0

Table 1: PreliminaryExperimental Results - Combinational Designs

3 Experimental Results

In order to prove theefficacy of theSMVRR scheme, weimplemented it in VIS [3], [4]. Theexisting BRR scheme

of [2] was modified to dovetail into theSMVRR code. The overall scheme was implemented in theC programming

language, and consists of about 3500 lines code. The experiments were performed on a 200 MHz Pentium MMX

machine running the Linux operating system.

Preliminary results forcombinational circuits are reported inTable 1. Thefirst column represents thecircuit name.

The second colunrn reports the number of binary redundancies found, while the final colunm reports thepercentage

reduction in the sizeof the multi-valued design afterSMVRR. On an average, a reduction of about 12% is obtained.

All resulting designs were combinationally verified against the original design, and verified correctly.

Theresults forsequential circuits arereported inTable 2. Thefirst colunm represents thecircuitname. Thesecond

column reports thenumber ofbinary redundancies found, while thefinal table reports thepercentage reduction in the

size of the multi-valued design after SMVRR. On an average, a reduction of about 18%is obtained. Note that this

is much larger than the reduction obtained in the combinational case. In the sequential case, the opportunity for

reduction of additional nodes (and latches) is allowed, resulting in this improvement. Theresulting designs were not

sequentially verified againstthe original design,sincethe designs are c-cycle equivalent, andhenceare not guaranteed

to verify in the traditional sequential sense. None of the circuits reported in Table 2 resulted in the removal of a latch

Circuit # Binary
Redundancies

% reduction

srand 21 14.1

readone 25 11.3

start 32 15.2

St 5 16.1

stlO 4 28.6

sx 3 20.7

sxl 5 19.5

Table 2: Preliminary Experimental Results - Sequential Designs

altogether. The values of c in all these examples was less than 100.

4 Conclusions and Future Work

Redundancy removal for multi-valued designs has many uses, and can prove to be very helpful in reducing the size

of designs, speeding up simulation, and allowing the user to efficiently explore different synthesis options before

choosing a final binary implementation for the circuit Sequential multi-valued redundancy removal can increase the

efficiency of formal verification as well.

Wehave presented a novel method to perform redundancy removal for multi-valued designs. First we showed the

analogy between binary and multi-valued redundancy removal. Then, we cast the multi-valued redundancy removal

problem as an instance of the binary problem, and solved it using a very efficient binary redundancy removal scheme

as the engine.

Weimplemented the prototype system in VIS and SIS, and preliminary results show an average 12% reduction in

the size of combinational multi-valued designs, and an 18% reduction in the size of sequential multi-valued designs.

In the future, we plan to refine the code. The current implementation was meant to prove the concept, and has

many areas for possible improvement

References

[1] M. Iyer, D. Long, M. Abramovici, "Identifying Sequential Redundancies without Search," in Proceedings ofthe

33rd Design Automation Conference (DAG), 1996.

[2] A. Mehrotra, S. Qadeer, V. Singhal, R. Brayton, A. Aziz, A. Sangiovanni-Vincentelli, "Sequential Optimization

without State Space Search," in Digest ofTechnical Papers, International Conferenceon ComputerAidedDesign

(ICCAD), 1997.

[3] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi,A. Aziz, S. T. Cheng, S. Edwards, S. Khatri,

Y.Kukimoto, A. Pardo, S. Qadeer, R. Ranjan, S. Sarwary,T. Shiple, G. Swamy,T. Villa, "VIS : A System for

Verification and Synthesis," in International Conference, ComputerAided Verification, 1996.

[4] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S. T. Cheng, S. Edwards, S. Khatri,

Y. Kukimoto, A. Pardo, S. Qadeer, R. Ranjan,S. Sarwary, T. Shiple, G. Swamy, T. Villa,"VIS,"in International

Conference, Formal Methods in Computer-Aided Design, 1996.

[5] E.M.Sentovich, K.J. Singh, L.Lavagno, C.Moon, R. Murgai, A.Saldanha, H.Savoj, P. R.Stephan, R.K.Bray

ton, and A. L. Sangiovanni-Vincentelli, "SIS:A SystemforSequential CircuitSynthesis," Tech. Rep.UCB/ERL

M92/41, Electronics Research Laboratory, Univ. of California, Berkeley, CA 94720, May 1992.

[6] M. Abramovici, M. Breuer, A. Friedman, ''Digital Systems Testing and Testable Design. Computer Science

Press, 1990.

	Copyright notice 1998
	ERL-98-44

