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Abstract

Synthesis of Parallel Hardware Implementations from
Synchronous Dataflow Graph Specifications

by

Michael Cameron Williamson

Doctorof Philosophy in Engineering-Electrical Engineering
and Computer Sciences

University of California, Berkeley

Professor Edward A. Lee, Chair

This dissertation describes an approach to digital hardware design for embedded sig

nal processing systems that addresses synthesis, simulation, and interactive design. The

objective is to improve productivity and interactivity during design without sacrificing

design quality. Our approach consists of automated register-transfer level (RTL) VHDL

code generation from synchronous dataflow (SDF) graph specifications, with automated

and interactive optimization phases, followed by RTL synthesis and simulation. Our

approachis implemented within the Ptolemysimulation andprototyping environment.

We present techniques for mapping applications specified in SDF to parallel digital

hardware implementations. Twostylesof architecture generation are described. They are a

general resource sharing style for flexibility, and the mapping of sequenced groups for

compact communication and interconnect. A design flow for hardware synthesis from

SDF graphs is presented. In order to minimize cost while meeting performance require

ments, we take advantage of opportunities for resource sharing at the coarse-grain task

level. Since there are fewer task nodes than in a fine-grain or arithmetic representation of
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the task gn^h, determining a near-optimal partitioning is faster in our approach than in

behavioral synthesis.

Ourapproach supports verification through co-simulation. We have constmcted simu

lation techniques for VHDL models generated firom SDF semantics. They address parti

tioned simulation of VHDL models derived from SDF, and simulation of VHDL

subsystems derived from SDF within an SDF code-generation subsystems framework. A

design flow for simulation of hardware synthesized from SDF graphs is presented. Our

approach guarantees that the partitioning does not introduce deadlock or corrupt synchro

nization, issues that many algorithm-to-implementation design tools do not explicitly

address.

An important stage in our approach is the interactive scheduling andpartitioning phase

for providing feedback to the designer as well as allowing feedback from the designer for

fine-tuning optimization after the automated phase. We characterize useful features for an

interactive design topi for hardware synthesis from SDF graph specifications. A prototype

of such a tool, integrated into the hardware design flow, is presented. The result is the

leveraging of the strengthsof both the designer andthe tool, ratherthanthe replacement of

one by the other.

Professor Edward A. Lee, Chair Date
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1

Introduction

In each generation of system design methodology, the distinguishing feature is often

the increased level of abstraction at which designs are initiated. As each level is mastered,

the tendency is to codify what has been learned through experienceand to automate some

or all of the design tasks.By moving to specifications at higher levels, greater complexity

canbe implied by a smaller amount of design data, so thatproductivity canbe pushed fur

ther. A necessary result of this trend is that more is left unspecified at the initial stages,

which requires greater care in managing wider design options, while avoiding compromis

ing the design goals.

Therange of hardware synthesis options available today are distinguished by the level

of abstraction they take as their input. Three of these are the logic, register-transfer, and

behavioral levels of specification. These are broadly analogous to levels of abstraction in

microcomputer programming. The logic level is comparable to the raw data in the pro

gram datalisting. Theregister-transfer level reduces the laboriousness of logic design just

asassembly languages help toput the program code into ahuman-readable form. Continu

ing this analogy, behavioral synthesis in its many forms allows specification in higher-

level languages for hardware, just as FORTRAN, Pascal, and C liberated programmers

from assembly programming. Assembly code was readable and usefiil, but required the

1



programmer to be concerned with details that were not central to the design problem. To
characterize the state ofthe art at this point, behavioral synthesis is becoming increasingly

popular, but is not well-suited to general design problems. As aresult, behavioral synthe
sis tools, are best suited for particular domains in hardware design, or they are targeted at

specific application areas. Almost all of them are oriented around fine-grain representa

tions of the abstract design. In. this dissertation, we will examine aparticular design speci

fication form, synchronous dataflow, and we will look at coarse-grain synthesis

approaches and how they might be advantageous as an alternative approach to existing

behavioral synthesis flows.

In the following sections we lay out the background for this work in the areas of hard

ware synthesis and design abstraction. In Section 1.1 we begin with ageneral overview of

hardware synthesis. We continue in Section 1.3 with a discussion of the overall design

flow ofelectronic systems and the forms ofabstraction that are used at each level. Follow

ing this, we discuss the issues and techniques involved at aparticular stage in design, RTL
synthesis, in Section 1.4. In Section 1.5, we describe behavioral synthesis, which takes

place at a higher level of abstraction and feeds into RTL synthesis. While its usage is

increasing and it has its benefits, in Section 1.6 we discuss some of the limitations of

behavioral synthesis in order to motivate the work presented in this dissertation. We con

clude in Section 1.7 and highlight the topics ofthe chapters which follow.

1,1 Hardware Synthesis Overview

The goals of hardware synthesis in the field of integrated circuit design are twofold.

The first is as aproductivity multiplier, to allow more design work to be accomplished by

fewer designers. Put in slightly different terms, it is to allow design complexities to

increase at the rates which product demands and technology limits permit, while not
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requiring the size ofdesign teams or the numbers ofhours they expend to increase at the

same rate. At the remarkable rates of increase in circuit densities and gates per design,

without such productivity amplifiers, organizations that attempt such designs would soon

mn up against the limits on managing ever-growing design teams, or at least the current

limits on the number of trained professionals available in the workforce. This trend is

shown inFigure 1.1, using data from the National Technology Roadmap for Semiconduc

tors, 1997 [SIA97].

The need to improve productivity leads the way instimulating innovation inhardware

synthesis methods, since it occurs at the leading edge of technology where demands and

rewards are great but existing methods fail to serve for long without breaking down. The

second driver ofimprovements in hardware synthesis is not at the high-end ofcomplexity

and performance, but at the broad-based low-end of seeking to make powerful integrated

circuit technology available to awider range ofdesigners. Productivity amplifiers not only

enable the biggest and best teams to go further, but also can allow smaller numbers ofless



experienced individuals to have access to technology that was previously only an option

for well-funded larger groups oftrained specialists. Aprime example ofthis second driver

is in synthesis for FPGAs and other programmable devices, where entry costs are much

lower since integrated circuit fabrication isnot necessary, but the performance ofthe tech

nology is still adequate for a wide range of applications. Designers with minimal knowl

edge ofcircuit design can produce designs implemented on programmable devices with

satisfactory performance for simple and mid-range design complexities. This is the sec

ond-wave or "echo" benefit of all the efforts that have been expended on leading-edge

problems.

The majority of attention inhardware synthesis has focused on the most general case

ofrandom logic synthesis, where little can be assumed about either the variables and data

types being manipulated, or about the flow ofcontrol during operation. With more knowl

edge of the structure ofthe applications ofinterest, a greater degree ofspecialization is

possible. Digital signal processing (DSP) isthe application domain where the greatest suc

cess been achieved in creating specialized algorithms and tools for hardware synthe

sis. The DSP domain includes the areas of communications, speech synthesis and

recognition, audio, image and video processing, sensing and imaging, data compression,

and control systems. DSP applications are generally characterized as being dominated by

numerical computations, as opposed to logic operations, and as being relatively limited in

their control flow branching. Both ofthese properties make specialized methodologies for

designing implementations of such systems practical. Such methodologies take advantage

ofthe regularity instructure and control ofDSP applications inorder toachieve results of

greater quality, and to do so in less time than would be possible by using general tools

designed for random logic synthesis.



1.2 From Silicon Compilation to Electronic Design Automation

The general area of hardware synthesis comes under the broader field of electronic

design automation (EDA). EDA deals with all aspects of non-manual approaches to the

design of electronics. This ranges firom the design of circuit layout geometry all the way

up to tihe level of complete systems, including systems composed ofboth analog and digi

tal integratedcircuits, embedded software, and mechanical elements.

1.2.1 Origins

EDA has a history of more than 25 years, and is continuing to evolve and change.

Many of the early ideas emerged inthe 1970s, stimulated by the increasing availability of

powerful Tnainfrflmft and minicomputer systems to electronics designers [Yoffa97] and the

increasingly complex demands of VLSI technology [Gray79] [Collett84]. Broad commer

cialization took place in the 1980s, with algorithms and tools coming from universities

and private research laboratories into the electronics engineering market Broad accep

tance of EDA tools and methodologies has solidified during the 1990s, to the point that

nearly no innovative electronic component or system can be designed in an economical

way without the use of EDA methodologies. The revenue for the entire EDA industry in

1997 is estimated at over $2.70 billion, and continues to grow [Santarini98b].

One of the first uses of automation in electronics engineering was to assist the designer

by alleviating some ofthe tedium ofbasic tasks such as schematic capture and logic simu

lation CYoffa97]. This was termed computer-aided engineering or CAE. These tasks were

essentially recording the designer's intent, orcomputing the expected outcome ofa deter

ministic model of their design. From this beginning, a new direction emerged where tools

would be developed to make design decisions instead ofjust to capture and report on the

outcome of designers' decisions.



One ofthe early tasks towhich automation methods were applied was artwork genera

tion [VLSIStafE84b]. Artwork generation is the production ofa geometric layout in poly

gons from which acircuit layout in silicon is manufactured. Aresearcher made aproposal

at aDesign Automation Conference (DAG) in the mid-1970s for a system that would gen

erate artwork automatically from a human-readable description. An unknown attendee

who saw this proposal characterized it as a silicon compiler, making an analogy with sys

tems that produce machine instruction code from human-readable software descriptions

[VLSIStaff84a]. Some of the earliest published work to refer to silicon compilation came

at the 16thDAG in 1979, fromauthors associated withthe Silicon Structures Project at the

Galifomia Institute of Technology [Ayres79] [Gray79] [Johannsen79].

1.2.2 Silicon Compilers

The term silicon compiler does not have a strict definition, but rather it evokes a gen

eral concept that is easily grasped and retained by anyone familiar with software compil

ers. Anearly author defined silicon compilers as "programs which, when compiled, yield

code tHat produces manufacturing data for silicon parts" [Gray79]. A similar definition is

"an optimizing transformation program that produces manufacturable IG designs from

intelligible descriptions" [VLSIStaff84a]. Amore specific defimtion interms ofinput and

output is "a software system that accepts some form ofhigh-level specification and pro

duces a pattem-generation tape for the mask-making process" [VLSIStaff84a], While the

back-end output ofa silicon compiler in the form ofa pattem-generation tape ormask lay

out was often well-defined, the front-end to the process was less consistently defined

[Panasuk84]. Different implementations accepted design input at the logic level, the

block-diagram level,andthe functional-description level [Southard84].

One definition that has the perspective of time, coming a decade after the first defini

tions, conveys the movement away from monolithic silicon compiler programs to sets of



individual tools in a flow. The LAGER silicon compiler toolset from UC Berkeley is

described as being"composed of design managers, libraries, design tools, test generators

and simulators, which areinterfaced toacommon database... Another major setof tools in

LAGER involve using higher level descriptions of behavior to synthesize the structural

description, which in turn is used to provide the necessary input data to the layout genera

tors*' [Brodersen92].

Early pr(^)onents ofsilicon compilers saw them as away to address the design require

ments of increasingly complex VLSI chips. The complexity possible in chip designs

approaching one million transistors on a single chip was seen as precipitating acrisis in

electronic design [Gajski84]. This crisis had two major elements, a shortage of trained

chip designers, and an increasingly long design cycle. Designs of over 100,000 transistors

were reported as requiring hundreds of staff-years to produce manually [Panasuk84]. Par

tialautomation of the chip design process, through silicon compilation, was seen as a nec

essary way to address these issues.

While early attempts at automation were acknowledged as producing sub-optimal

designs in comparison to manual techniques, this was weighed against the need to increase

productivity and shorten design cycles [Allerton84]. Similar gains were expected by those

who had observed the advantages ofcompilation over manual coding and assembly in the

software world [Ayres79]. Another significant motivation to move to silicon compilation

was toreduce the increasing number and cost oferrors occurring inthe VLSI design pro

cess [Cheng84]. Perhaps the most inspiring motivation to researchers and others wishing

to take advantage ofpowerful integrated circuit technology was the hope that silicon com

pilers would open up the field of chip design to system designers and end-users of VLSI
circuits (Mead82] [Johnson84].

Early attempts at silicon compilers were pioneered at universities and larger private

research laboratories. Among the umversity efforts were Bristle Blocks [Johannsen79] and



Siclops [Hedges82] from the California Institute ofTechnology, MacPitts from the MTT

Lincoln Laboratory [Southard83] [Fox83], FIRST from the University of Edinburgh

PDenyer83], DIADES from Warsaw Technical University [Wieclawski84], and ICEWA-

TER from University of Waterloo [Powell83].

During the same period, commercial research laboratories were also working on sili

concompilers and related tools. These included the Functional Design System (FDS) and

PLEX from AT&T Bell Labs, the Xi Logic Generator from Bell Communications

Research, the Design and Verification System (DAY) from IBM, as well as a separate

Logic Synthesis SystemandTechnology MappingSystem fromIBM,the ANGEL system

from NTT, and the SILC silicon compiler from GTE Laboratories [VLSIStaff84a]

[Ciesielski84].

Efforts to commercialize silicon compiler technology followed quickly. Some of these

effortscame directly out of researchand personnel fromthe universities and larger labora

tories. Founders of Silicon Compilers, Inc. (SCI) came from Caltech's Silicon Structures

Project, including David Johannsen [Wemer83b]. Work on Bristle Blocks was extended

by SCI to create Genesil. Genesil found early success in use by Digital Equipment Corpo

ration to design the datapath chip for the MicroVAX 1 in seven months [Collett84].

Researchers from MIT Lincoln Laboratory extended and commercialized the MacPitts

system as MetaSyn when they founded Metalogic. Similarly, Silicon Design Labs was

started by researchers from AT&TBell Labs who had workedon the PLEX project. Other

commercial efforts included cell compilers and chip composition tools from VLSI Tech

nology, and Seattle Silicon Technology's Concorde I system, which was incorporated into

a larger design environment by Valid Logic [VLSIStaff84b].



1.2.3 Difficulties in Practice

These early efforts at silicon compilation attempted to automate significant stages in

the design process. In later years, they did not prove to be the all-encompassing solutions

that were originally hoped for [Yoffa97].

According to one observer [Perryman88], by 1988the use of siliconcompilers had not

grown as much as had been predicted, and two-thirds of the original commercial vendors

did not remain in the market. A number of reasons for this were cited, including the con

tinued need for the use of manual design to achieve the highest performance designs. This

was due to a lack of capability in the existing silicon compilers to allow experienced

designers to achieve optimal solutions. Among a less experienced set of users, it was

claimed that existing tools had too much complexity to allow novice designers to obtain

suitable solutions. Therefore, silicon compilers had not realized two of the original goals

intendedfor them: to increasethe productivity of experienced designers without degrading

the quality of results, and to open VLSI design to less experienced designers to create

designs for their own use. Also cited was a lack of application-specific features in the

common denominator silicon compilers that were available.

Other observers noted a cultural resistance in the design community to adopt silicon

compilation methodologies [Andrews88]. Silicon compilers were accepted as an altema-

tive design tool, but not universally. These tools were not used for high-performance

designs because evaluations did not show them to be capable of producing efficient

designs. It was expected that as silicon compiler technology developed, this situation

would improve. Atthe same time, many tools called for the use ofhigh-level languages for

design input instead of the then-familiar gate-level schematics and block diagrams. The

use ofexpressive high-level languages was expected to allow more succinct specification

of greater complexity, but experienced designers and managers were not accustomed to

this new style.

9



One problem was the multitude of languages that were put forward by individual ven
dors with no common standard. As is discussed in the next section, both de facto and offi

cial standards eventually emerged that drew a critical mass of designers, leading to the

widespread adoption of high-level language specification as design input. Another prob
lem was dissatisfaction with monolithic silicon compiler tools that didn't allow customiza

tion of the design process as new requirements emerged, such as test generation, or that

users found the need to become involved with manually adjusting the final layout in order

to achieve satisfactory results [Goering88]. These needs led to the fragmentation of the sil

icon compiler into multiple specialized tools joined by design flows and frameworks, as is
described in a later section below.

1.2.4 Languages

Early silicon compilers allowed for various styles of design specification input, since

there were no broadly accepted standards other than boolean logic. Some compilers were

conceived as transforming a designer-specified architecture or structure at an abstract

level, such as ablock diagram, into a gate-level and layout-level structure with the struc

tural topology preserved, but details elaborated and filled in within each block automati
cally. Other compilers were patterned after software compilers, taking in aspecification in

a text language form and deteimining a structural representation from the text specifica

tion.

Avariety of input styles were used by early silicon compilers in research and in com

mercial offerings, including graphical block diagram editors, textual languages, forms,

tables, and combinations ofthese. Among the graphical methods, drawing schematics at

the logic gate level was supported by many tools, but was alengthy process for designs of

more rhan afew thousand gates [Beedie84]. Menu-based approaches that would allow the

selection ofpredefined components from hierarchically-grouped lists were used by the

10



Concorde I silicon compiler from Seattle Silicon Technology [Lee84]. Some tools also

used finite state diagram editors to allow the specification of control flow.

Among tools that allowed text input, logic equations were a natural and standard

choice, but were also limited in the way that gate-level design entry was. The MetaSyn sil

iconcompiler,whichwas MetaLogic^s commercial version of the MacPitts compiler, used

a textual input languagebased on LISP [Southard84]. Other text-input languages for sili

con compilers included ICL from Xerox [Ayres79], LISA, an instruction-set language

from the University of Illinois [Gajski82], VIP from VLSI Technology [Martinez843,

ZEUS from GTE Laboratories [Nourani84], SCHOLAR from the University of

Southampton [Allerton84], aswell as MODEL from Lattice Logic, ELLA from the Royal

Signals and Radar Establishment of England, and STRICT from the University of New

castle, England [Beedie84].

Another style of design entry, forms, was used by the Genesil silicon compiler from

Silicon Compilers [Johnson84]. Standard blocks such as ALUs, barrel shifters, RAMs,

ROMs, and randomlogiccouldbe selected, and specific parameters andconnections spec

ified for an instance using dataentry intofields in a form. The system would provide feed

back to the user by updating a graphical display of the blocks and connections, but this

display couldnotbe directly modified bytheuser. Still other formats for design entry were

tabular, using truth tables for combinational logic and state transition tables for sequential

logicrepresentations.

It ispossible to represent a structure inboth a text form and inablock diagram foim. It

is also possible to describe an abstract behavior in either text or a block diagram, and to

transform it into one of many equivalent structures from which the final circuit layout

structure is elaborated. There was disagreement overthe choice of text or block diagram

input styles [Wemer83a]. Text specifications were favored by software developers accus

tomed to textlanguages, who were also working oncomputing platforms that were adept
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at manipulating text representations. Block diagram specifications were preferred by many

circuit and system designers who were accustomed todrawing and interpreting block dia

grams, gate-, transistor-, and layout-schematics. While it is possible to represent either

behavior or structure in either text or a block diagram, text was usually associated with

behavioral descriptions and block diagrams were associated with structural descriptions.

Some felt that it was a mistake to start from a behavioral description and allow the sil

icon compiler to determine an architectural structure because it would prevent designers

from using their skills in designing architectures. Others felt that there were opportunities

to be realizedby starting with an abstract behavior thatwas not limited by initial assump

tions about the eventual architecture [Wemer83a]. The initial stage of this latter class of

problem, determining anarchitecture from abehavior, eventually came to be called behav

ioralsynthesis, architectural synthesis, or frequently high-level synthesis. Behavioral syn

thesis is discussed further in later sections below. One factor that inhibited the early

development of behavioral synthesis was the lack of intermediate structural specification

languages. A number of languages were created for specific tools, but no common,

accepted languages were available from which to build a body of design work across

design tools. Also, because the behavioral synthesis problem adds additional complexity

to theoverall design automation problem, most early silicon compilers either used simpli

fied transformations from behavior to an unoptimized architecture, or they avoided the

problem by beginning with architecture or gate-level design as thespecification input.

While a wide range of input specifications were used by the various tools available,

some observed that ultimately, the more expressive specification languages would allow

for greaterproductivity. Some asserted that for more than a few thousand gates of com

plexity, higher-level descriptions were called for [Beedie84]. Notalldesigners reached the

pointof working at or above that level of complexity at thesame time. Some of the first to

do so were likely to be among the more experienced designers. These very designers
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would be less likely to adopt design automation methods for tworeasons. First, theywere

experienced and long accustomed to using manual techniques. Second, they were often

skilled enough toproduce designs ofhigher quality than the early EDA tools could. These

factors delayed the widespread adoption oflanguage-input methodologies, butthat change

did eventually take place, especially when many designers moved to the register level of

design specification.

One tool that emerged in 1988 to focus on a particular stage in silicon compilation,

that ofoptimized logic synthesis, was the Design Compiler from Synopsys [Weiss88]. The

first version of this tool allowed design entry in netlist formats, logic equations, andtruth

tables. Ayear later, the tool was extended with afront-end that would allow the use ofsub

sets ofVerilog and VHDL (described below) as design specification inputs [McLeod89].

In retrospect, Aart de Geus, the CEO ofSynopsys, observed that as the majority ofdesign

ers moved from the scale of 1,000 gates to 10,000 gates, roughly between 1988-1990,

schematic entry as an input became too cumbersome, hastening the adoption oflanguage-

based design input [Glover98].

Some early proponents ofsilicon compilers urged the adoption ofhigh-level languages

known in the software world as input descriptions for electronic design, including FOR

TRAN, C, Pascal, and LISP. Since these languages were already widely known, there

would be a larger base ofdesigners who would not need to learn a new language in order

touse electronic design automation tools. These languages either proved tobetoo expres

sive for hardware design, because they penmtted dynamic memory allocation orhad data-

dependent computation requirements, or not expressive enough, because they did not sup

port the specifications of timing, data precision, or concurrency that designers wished to

have. Some ofthe languages used for early silicon compilers were inspired by these soft

ware languages, but were always* taken from a subset of the original language or aug

mented in somewayto fit the methodology being used.
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Rather than deriving subsets ofor extensions to existing high-level languages, the lan

guages that were designed directly for the description of digital hardware systems proved

to be more successful. These languages directly supported hardware design constructs

such as logic, data registers, signals, hierarchy, and synchronous clocking. These, lan

guages are called hardware description languages (HDLs). Two ofthese that eventually

emerged as dominant were Verilog and VHDL, displacing many of the early languages

fashioned for use in electronic design automation.

Verilog started as a proprietary HDL designed for simulation. It was developed by

Gateway Design Automation for use in a simulator product. While Verilog was propri

etary, it came to be widely used in industry for hardware simulation. Due to its popularity,

it was chosen bySynopsys as an input language for their Design Compiler tool, extending

theuse of thelanguage from simulation to logic synthesis. In 1989, Gateway Design Auto

mation was purchased by Cadence Design Systems, which continued to market the lan

guage for simulation and synthesis. In 1990, Cadence moved Verilog into the public

domain, and in 1995, Verilog was madeIEEEStandard 1364 IPorsch95].

VHDL began in 1983 as a U.S. Department of Defense (DoD) initiative to create a

text-based language for specifying digital hardware designs (See Chapter 3). The language

was later extended to support simulation, and was released as IEEE Standard 1076 in

1987. VHDL was adopted along with Verilog by Synopsys when it created anHDL front-

end toDesign Compiler. VHDL also increased in popularity due toits earlier adoption as

an international standard.

Bothlanguages were suitable forboth simulation andsynthesis, andboth became stan

dardized and widely supported by EDA tool vendors. The languages have broad semantics

which are comparable enough that neither emerged as having a distinct advantage in use

over the other. As a result, both VHDL and Verilog continue to be widely used and sup-
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ported intemationally, a situation which some observers have lamented as being redundant

and costly for both tool users and tool developers [Dorsch95].

In practice, neither VHDL nor Verilog are used in standard form as inputs to synthesis

methodologies. Because of their origins as languages for general digital system simula

tion, their semantics are too broad to be used in their entirety for synthesis. In order to

make the languages appropriate for synthesis, subsets of the languages are defined which

are acceptable to each synthesis tool as input. Often as a result, the accepted subset for

eachsynthesis tool is distinct fromthe others,which results in a loss of the standardization

which was defined for the full languages. This is true of both register-transfer level logic

synthesis and behavioral synthesis, whichare described in later sections. Various efforts to

standardizesynthesizable subsets of VHDL and Verilog have been proposed, and are stan

dards are continuing to be defined.

1.2.5 From Compilers to Frameworks

Evenwith the partial success of silicon compilers, they did not prove to be complete

solutions [Yoffa97]. One reason for this was that silicon compilers focused only on the

design problem between the structural level of specification down to the physical level of

the generation of layout data. Other toolswereneeded to handle suchdesign tasks as sys

tem-level design firom thebehavioral level down to the structural level, simulation, timing

analysis, standard-cell library creation, anddesign rule checking. Another reason was that

silicon compilers kept their partof the design process closed, from design entry down to

the layout, with little opportunity fordesigner intervention at stages along the way.

The first problem was essentially that individual design tools covered a well-defined

but limited scope of the process. Many tools were developed to cover different design

problems, and tools tended to have differing data formats for input and output. Just as

therehad been difficulties with the many languages created for design specification, other
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interchange formats were also incompatible. Katz identified this emerging problem, and

suggested that the way to move from loose collections ofnon-interoperable tools to truly

useful design systems was to develop standardized integrated design databases [Katz83].

Another means of addressing the need for tool interoperability was that either "de

facto" or official standards would arise out of a set of competing specification formats, as

eventually happened with Verilog before it became standardized, and before VHDL was

officially introduced. Standards such as the Caltech Intermediate Format (CIF) for geo

metric circuitlayoutdata [MeadSO] andtheElectronic Design Interchange Format (EDIF)

for generaldesign data exchange [Eurich90] are also in the pattern of de facto standards

being followed by official standards.

The second problem, that silicon compilers were usually closed systems within the

segment of the design flow thatthey covered, w^ an issue for designers who wished to be

able to observe more detail or to have more control of the design process at intermediate

points in the flow. Another hindrance to the acceptance of monolithic silicon compilation

tools was that designers wished to mix-and-matchsmaller, specializedtools to create their

own customized design systems suited to their particular needs. As the number of tools

available from various vendors increased, such as for schematic capture, logic synthesis,

test generation, layout, design rule checking, and verification, more designerswished to be

able to select what they perceived as the best of each from those vendors that excelled at

different types of tools.

No one silicon compilation tool was seen as being preferred in all aspects of design,

which restricted their acceptance. The trend toward CAD frameworks [vanDerWolf94]

instead of monolithic tools was served by companies such as Vahd Logic Systems and

Mentor Graphics that offered integrated sets of tools. Existing silicon compiler tool ven

dors, such as Silicon Compiler Systems, were not as successful with their tools, and
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responded by unbundling their products into sets of tools that could work within a single

framework [Weiss89a].

While individual vendors produced and sold their own frameworks, this was not

enough to allow interoperability among tools from different vendors. A further move by

vendors to freely provide open interfaces to their design frameworks was intended to pro

mote third-party tool development and integration with frameworks [Wirbel89]

[Harding893. The arrival of VHDLduring the same time period as a standard, mandated

for use by the U.S.Department of Defense, led many tooldevelopers to support VHDL as

a common standard for design interchangeamong tools [Harding89] [Weiss89b].

An industry-sponsored collaboration began in 1988, called the CAD Framework Ini

tiative (CFI) [Harding88] to addressproblemsof design data exchangeand tool interoper

ability. While these and other industry and research efforts continued through the mid

1990s,standards for tool integration were not widely adopted by tool vendors, partly due

to the competitive rivalries of EDA vendors, andthe lackof any one vendor being domi

nant enough and willing to set a standard that others would follow [Shneider91]. It is not

necessarily in commercial BDA vendors' self-interest to maketheir tools fully interopera

ble widi those of other vendors, despite the difhculties that designers have due to non-

interoperability. In 1997, the CFI announced that it was changing its name to the Silicon

Integration Initiative (SI2), and that its focus would shift to improving productivity and

reducing the costs of designing and manufacturing integrated silicon systems [CFI97].

Tool interoperability continues to be a problem. One figure quoted is that up to 50% of

semiconductor companies' design tools groups resources are spent on integrating tools

together [Goermg98].
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1.2.6 Mainstream EDA

^th the passing ofmonolithic silicon compilers to sets of tools and frameworks, the

term silicon compiler fell into disuse, but has not disappeared completely. Recently, the

term isused only to refer to systems that take a description ofthe structure ofan applica

tion orfunction and perform all ofthe steps toproduce a layout. This approach istypically

restricted to special domains, such as filter design within DSP [Miyazaki93] [Jeng93]

[Hawley96] and fiizzy logic [Wicks95] [Manaresi96], where domain-specific knowledge

can lead to optimal rules for efficientlayout.

For general digital system design, the term appears to berarely used. The basic steps

that were performed by the first silicon compilers are now performed by many tools joined

together in a design flow. The Design Compiler from Synopsys isnot a silicon compiler at

all, since it only performs logic synthesis, but performs no layout functions. Many other

tools have arisen to handle specific tasks required bydesigners, and each task is referred to

byseparate names. Inaddition, the design process isnot thought ofas a monolithic, turn

key process where even an organized set oftools can handle the many steps ofcircuit lay

out design without interactive control from designers. The general field of design tools,

frameworks, and services falls under the term of electronic design automation (EDA).

During thepast few years, EDA tools have become mainstream intheir use and some

what indispensable for creating innovative designs in a cost-effective manner. Logic syn

thesis has taken holdas a crucial step in many design flows, and it has been improved and

extended to take more into account about the technologies to which it is targetted, be they

full-custom layout ina given silicon technology, standard-cell design, gate-array, orFPGA

implementations. In addition, sub-specializations of logic synthesis are sometimes used

for control logic and datapath design. For control, sequential logic optimization of state

machines is a specialized area within logic synthesis. For arithmetic operations and signal
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procesMg, dats^ath compilersare emerging as additional tools to work with logicsynthe

sis.

Othertools withindigital design flows include tools for physical design. Among these

are tools for fioorplanning priorto the final layout, to improve the eventual layout results

and to improve logic synthesis byproviding early estimates ofdelay and area firom thelay

out. Tools for placement and routing also continue to grow in sophistication as silicon

technologies become more challenging to design for. Parametric extraction of parasitic

resistance andcapacitance are used toachieve more accurate estimates ofdelay and power

consumption firom the layout, and design rule checkers to verify that layout rules have

been followed are alsocrucial to avoid expensive layout redesigns after failed fabrication.

Other tools atthe layout level support the design ofstandard cell libraries and their charac

terization so thatlibraries can betargeted bylogic synthesis. Design for test and design for

low power are also motivations which are changing and extending the capabilities oflogic

synthesis tools. Simulation tools at all levels ofdesign have become important for infor

mal verification of designs and to check for errors created in moving from one level to

another.

Above the level oflogic synthesis, tools for analyzing source HDL code help designers

to target areas ofsource code that lead to specific problems in synthesis by annotating the

code with synthesis results. Other tools aim atdesign levels above logic and register-trans-

fer-levei synthesis, including behavioral s3mthesis (described below) and emerging tools

for hardware-software codesign and system-level design. System integration standards for

the design of systems-on-a-chip (SoC) are being put forward by industry-sponsored

groups such as the Virtual Socket Interface Alliance (YSI Alliance). These efforts are

intended to promote the level of design to the system level for complex integrated circuits,

andto allowthe re-use of components in multiple IC designs.
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Behavioral synthesis (described further in Section 1.5) takes abehavioral specification

as input and produces a register-transfer-level (RTL) design for input to RTL synthesis. A

behavioral description does not specify specific timing or functional unit allocation, but

only the operations to beperformed and their dependencies upon one another, along with

timing constraints on the eventual implementation. Behavioral synthesis represents the

highest level of abstraction atwhich some early design tools worked, and serves as a front-

end to the remainder of the designflow. Behavioral synthesis toolsweresuccessfully com

mercialized after RTL synthesis toolshadbecome accepted. Mentor Graphics adopted the

Cathedral tools from IMEC as the Mistral system for DSP circuit design. These tools car

ried specific assumptions about the architecture with them. A general tool for behavioral

synthesis was introduced by Synopsys in 1994, Behavioral Compiler, which was pre

sented as not being appropriate for all design styles, but rather for algorithmic design. In

1997, the Alta Groupof Cadence Design Systems released Visual Architect, a behavioral

synthesis tool with an interactive interface presenting multiple views of the behavioral

synthesis process. A tool containing similar capabilities called Monet was introduced by

Mentor Gr25)hics later in 1997. Synopsys later introduced BCView, a visual interface

extension to Behavioral Compiler. Behavioral synthesis tools in general are not always

appropriate for general designs, but find theirbest use for designs with high algorithmic

content, such as for DSP and arithmetic datapath design.

1.2.7 Emerging Challenges

The long-term trend in the industry has been to move fi:om single all-encompassing

tools to multiple tools in a design flow. Some of these tools have emerged from research

workat universities and largerprivate research laboratories. Products are commercialized,

sometimes by the existing major EDA vendors, and just as often by smaller startup compa

nies. Multiple entrantsto the market appear initially, followed by a few emerging as domi-
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nant after a few years. Often, consolidation through attrition of weaker product offerings

and large EDA vendors' mergers with and acquisitions of smallersuccessful startups is a

pattern whichrepeats itselfwitheach new wave of EDA technology. While innovation in

thepastusedto be ledby non-EDA industry research efforts, followed by commercializa

tion, recently much innovation comes incrementally from industry itself. Often these

incremental advances are additional features within existing design tools, or new tools

which fit into existing design tool flows.

Some recent areas of innovationare designfor low power, design for test, verification,

system-level integration, and layout-level tools to deal with the challenges ofdeep-submi-

cron (DSM) scale technology. While many design tools are being modified to handle

design technology down to0.25 microns inscale, alarge question inthe industry ishow to

deal with technology at smaller scales, where many of the assumptions and typical design

abstractions break down. One issue involves the fact that as logic elements shrink, the

dominant contribution to circuit delay, area, andpower consumption comes from the inter

connect and not from the transistors. Another issue is that transmission-line effects and

crosstalk amfrng interconnect traces becomes increasingly difficult to avoid. Some are

calling for an entirely new design flow below the RTL abstraction in order to meet these

challenges, while efforts still continue to modify existing flows incrementally to adapt to

shrinking technology scales. A likely feature of new design flows would be the tighter

coupling oflogic synthesis, floorplanning, and place &route, instead of treating each of

these as separate stages.

For datapath-intensive designs, the possibility exists for the return ofearlier silicon

compilation techniques [Goering97a], where automation is applied from the behavioral or

structural description ofdatapath sections down through the final layout. Because ofthe

regularity of datapath designs in their layout, silicon compilation has proven its greatest

value, over general logic synthesis and layout, in this area. The challenges of DSM-scale
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designs makes this option more attractive to designers who are not expert in manual data

path design. With DSM, less emph^is may be placed on reducing the overall number of

gates, and more importance may be assigned to obtaining layouts with predictable perfor

mance, area, power requirements, and signal integrity.

One of the early silicon compilation techniques was applied by VLSI Technology for

standard-cell layout of datapaths. DSP is one of the areas where silicon compilation has

been most successfully applied, in tools such as LAGER [Brodersen92] and others

[Miyazaki93] [Jeng93] [Hawley96]. Recent commercial product offerings that address

datapath design at various levels include the Smartpath layout tool from Cadence Design

Systems, which provides automated layout of data-path elements (1995), the Mustang

datapath placement tool from Arcadia Design Systems (1996), the Aquarius-DP data

path-placement tool from Avant! (1997), and the Datapath Compiler tool from Synopsys

for automatically synthesizing structural descriptions of datapath elements into gates

(1997). Even with these developments, large companies with many resources will likely

continue todesign high-performance datapaths for leading-edge microprocessors by hand,

since obtaining the greatest possible performance from the datapath is central to the suc

cess of these products.

Going forward, thechallenges ofdesigning systems in integrated circuit technology lie

both in the difficulties of working in shrinking DSM scales, as well as the desire to

increase productivity through raising the abstraction level where appropriate and making

greater re-use of existing dfesigns. Just as thecoming ofVLSI design was seen as precipi

tating a design crisis, today after several generations of technology and orders of magni

tude in Moore's Law, a crisis is being warned of in both the fine-scale of silicon

technology and in large-scale system design productivity. Judging from the past, rather

than halting progress, this crucial setof circumstances is more likely tospurgreater efforts
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behavioral synthesis ^

RTL Description: RTL HDL code

^ rtl synthesis j

Logic Gate Netllst

technology mapping )
Technology-mapped netllst

( place and route )
Placed and routed netllst

layout )

Layout: Semiconductor process mask images

fabrication )

Implementation: Fabricated integrated circuit

Figure 1.2 A typical design flow.

atinnovation, and greater willingness toembrace new approaches derived from that inno

vation.

1.3 Levels of Abstraction

The fundamental implementation technology of semiconductor materials is far too

basic for direct translation from an algorithmic specification to be reasonable. Instead,

several successive layers ofrefinement inabstraction are passed through on the way from

algorithm to implementation. These are presented in Figure 1.2 in atjrpical vertical design
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flow, with the most abstractbeing at the top and the concrete physical implementation at

the bottom.

This is meant to be a general representation of a design flow, not an all-inclusive one,

andit is not necessary to traverse it sequentially in top-to-bottom fashion. There are typi

callymany iterations betweenlevels of abstraction, including branching of design alterna

tives, as well as partial refinement of designs at mixed levels of abstraction [Hadley92].

Thereare alsomethodologies in which skipping levels of abstraction in the design flow is

appropriate. The lowest levels are the mostwell-defined and standardized according to the

current technologies available. The upper levels are less well-defined and have more avail

able alternatives for how designs are specified at those levels of abstraction. The focus of

this dissertation is on the top levels of this design flow, from the algorithm description to

the RTL description of the design.

At the top level, the algorithm description is the most open-ended since it can be

defined as including all design descriptions that are more abstract than those that lie below

it. Algorithms may be specified in terms of constraints or mathematical equations in vari

ables of interest that may or may not be in closed-form expressions. An algorithm may

also be specified in terms of a procedure or sequence of steps whichdescribe the manipu

lation of abstract data stractures, with control flow for specifying constructs such as deci

sions, iterations, branching, and recursion. Algorithms may also be specified in terms of

graphs of abstract objects and the relationships among them.

The term behavioral description has a more standardized meaning in hardware synthe

sis. It refers to any description that expresses the operations that are to take place and the

communication of information among them, without specifying the allocation of resources

to accomplish those operations or communications, and without specifying the exact tim

ing ofthose operations or communications, either in their starting times, their durations, or

their total ordering. Behavioral descriptions are a subset of algorithmic descriptions, since
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they specify operations and theirrelationships explicitly. Algorithmic descriptions may or

may notcompletely describe the specific steps to accomplish the desired goal, specifying

instead only implicitly through a set of constraints or as a general procedure without a

complete definition ofthe data structures orprecise operations that bring about the goal.

The register-tranter level (RTL) of abstraction can bedefined in terms ofwhat is not

present in the behavioral description. An RTL description contains information about all

the operations and communications present in the system, including specific mformation

aboutwhich resources are instantiated to perform those operations and communications.

Among the information included are statements of what registers, or data storage ele

ments, are present and how and when they are to be used to store the results ofoperations,

and to transfer those results to subsequent operations that use those results. An RTL

description may not explicitly describe when all operations in the execution ofthe system

take place, but itwill completely describe the preconditions for all operations, possibly in

terms oflogic operations on signals which are within the system or which are inputs to the

system from the environment. The tuiung ofthe loading ofregisters is described in terms

ofone ormore clock signals. These clocks may ormay not be synchronized toone another

and their frequencies need notbe specified in the RTL description.

1.4 RTL Synthesis

Once a valid RTL description ofa design isavailable, it can be directly translated into

anetlist ofdigital logic gates. This neglects, for the moment, whether or not the gate-level

design will be feasible in any available semiconductor technology, as well as other issues

that stem from physical properties of the technology. It is also possible to perform optimi

zations during translation from RTL to a gate-level description, but these will not change

global timing^ orthe data types orthe allocation ofregisters.
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RTL synthesis proceeds by a parsing of the RTL description to determine what regis

ters, arithmetic operators, logic elements, and switching elements are instantiated. The

synthesis process also determines from the RTL description what signals are connected

between the previously mentioned elements, including input and output signals, and their

bitwidths. Consistency checks are made for such conflicts as operator and signal bitwidth

mismatches, or signals that appear to be driven by multiple source elements simulta

neously.

Once a consistent netlist of connected elements is ready, each of theelements canthen

be mapped to sub-netlists of connected logic gates. The choice of logic gates to use can be

influenced by the implementation technology that the netlist will be mapped to. Alogi

cally correct netlist can be constructed by choosing any sub-nets oflogic gates that imple

ment the correct logic functions between registers. Such choices may not be optimal in

terms ofthe goals ofthe design, and they may not even be feasible in terms ofmeeting the

TnimTnnm requirements for size, performance, orpower consumption, which are not spec

ified in theRTL description. Pursuing thenext step after RTL synthesis, technology map

ping, canprovide paths topredicting these design quality metrics.

Li technology mapping, alternative selections of logic gate sub-nets can be made

depending on whether a specific standard library isbeing mapped to, or the selection can

be determined by algorithms which optimize the design locally or globally in terms of

area, switching delay, or power consumption. The inputs to such optimizations are esti

mates ofthe physical properties and behavior of the sub-nets in the final implementation

technology. These estimates can come from characterizations of measurements which

have beenmadeon standard libraries of implementations of sub-nets, or standard cells, or

they may be derived from models of the physical properties and behavior ofsub-nets of

logic gates in a given technology.'
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Any such optimizations will only be as good as the library and model estimates that

are used as inputs. Increasingly, as "deep-submicron (DSM) semiconductor technologies

are chosen for the final implementation, the optimization algorithms must take into

account less about the power, delay, and area of sub-nets of logic gates, and more about

the same properties of the interconnections among them. Formerly, the majority of the

area, delay and power consumption were due to the transistor circuit elements. This

allowed general properties of a design to be determined from a netlist topology without

placement information. For the increasingly shrinking technology scales of DSM, the

majority ofarea, delay, and power consumption are due to the interconnections, and so are

determined by the placement and routing ofthe interconnect. Since the sizes and geome

tries of interconnections are not specified in a netlistof technology-mapped logic gates,

accurate predictions ofpower, delay, and area are increasingly difficult to obtain from such

a netlist alone. Preliminary estimates from the next stage, placement and routing, may be

required in order to estimate the geometries and physical properties of the interconnec

tions.

No matter what the final sub-net of logic gates that is chosen foreach element in the

overall netlist, it must not change the logic function as specified in the RTL description.

Within that constraint, there are limited opportunities for optimization. However, if the

original design intent is more general than what is in any single RTL description, then a

methodology which uses a specification closer to that intent will not needlessly constrain

the design flow. If the intent does not specify what operators are to be instantiated to

accomplish the computation, or how many of each, or when they should execute, then an

RTL description, which locks in choices for all of these, constrains the quality of the result

beyond the original design intent.

If the designer can capture the intent at a more abstract level, many different

RTL descriptions may be possible which can implement that design intent. The result may
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be abroader design search space, which could imply a longer design time. However, if the

time required to input and debug the more general design specification is significantly

shorter thanthatneeded for anRTL description, thebenefits are twofold. First, theoverall

design time may beshorter than if the initial design input were inRTL form. Second, as a

result of starting from a more general description, lower cost or higher performance alter

natives may be possible which would not have been firom a fixed RTL starting point.

Recoding from one RTL description to another for design improvement can be far more

difficulty error-prone, and time consuming than generating both RTL descriptions from a

single, more abstract statement of design intent which does notneed to be modified. Any

changes in an RTL description must be verified against the original intent, but an RTL

description which is generated directly firom that intent does notneed to be asextensively

verified. A behavioral description is one type of more general specification of design

intent, and behavioral sjmthesis is the process of generating an RTL description from a

behavioral description.

1.5 Behavioral Synthesis

In this section we take a more detailed look at behavioral synthesis, [McFarland90]

which takes a behavioral description of a design and produces anRTL description, subject

to some optimization criteria. Other terms which are used commonly in the literature

include high-level synthesis, architectural synthesis, and behavioral compilation. This

type of methodology has proven to be particularly successful for DSP applications, as

opposed to general digital logic design, achieving productivity improvements of a factor

of five over RTL synthesis methods, while maintaining or improving area and timing

[Camposano96]. A behavioral description lacks specific instantiation of computation and

communication elements, and does not specify the exact timing of operations. The pur-
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pose of behavioral synthesis is to decide what the instantiations and interconnecdons

should be, along with the clock timing, so that an RTL description can be produced for use

in the remainder of the design flow.

The behavioral description may be written in a procedural text form, as in sequential

statements in a hardware description language (HDL) such as VHDL or Verilog. Behav

ioral descriptions can also be written in high-level programming languages such as C or

FORTAN. None of these languages is ever used without some signiflcant restrictions,

however. Many constructs that are acceptable in the general standard form of these lan

guages are not allowed by behavioral synthesis tools. Either these constructs do not con

form to the "style" required by the tool, or they are inherently unsynthesizable constructs,

such as absolute timing specifications, djmamic allocation/deallocation of storage ele

ments, or pointeraddressing modes. In thecase of C, a simplified language with a similar

syntax has been developed, with additional constructs included for purposes of hardware

synthesis DDeMicheli90].

As an altemative to modifying existing high-level programming languages, or to

inventing new all-purpose digital design languages, specialized languages such as Silage

[HilfingerSS] for domain-specific application areas can alsobe employed. Silage was cre

ated specifically with digital signal processing in mind, providing constracts for specify

ingsignals in a sample-based syntax. Silage also provides operators for specifying sample

delays. Silage is an applicative language. It is single-assignment, so that variables repre

sentmathematical quantities andnotmemory locations. The syntax of Silage is compara

ble to the way in whichdesigners would specify DSP algorithms as relationships among

signals through discrete-time difference equations. As a result. Silage is well-suited to

specifying such systems. The original language design has been extended to support tim

ing information, pragmatic directives, loops, andconditionals [Genin90].
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With the availability of domain-specific languages for describing DSP designs comes

the possibility ofhaving domain-specific tools for synthesizing implementations. Aset of

tools which focus ontaking Silage descriptions as the input to synthesis and then perform

ing architectural synthesis and optimization based on distinct architectural styles is the

Cathedral family (I through IV). These tools are based on joint work at IMEC, the ESAT

Laboratory at K.U. Leuven, and PhUips Research Labs [DeMan90]. The four architectural

styles supported are hard-wired bit-serial datapaths, microcoded multiprocessors, cooper

ating bit-parallel datapaths, and regular arrays. These tools tend to focus on very high

throughput (> lOOMops/sec) applications. Also, clustering and memory management are

performed manually, and the complexity of the algorithm for synthesizing application-

specific function units is high, particularly when synthesizing many functions into asingle

functional unit [Note91]. The synthesis phase has more utility when combined with a

larger design tool, as in the case ofPIRAMID, which uses Cathedral n for synthesizing

sub-units, a separate Module Generation Environment (MGE) for generating detailed lay

outs of sub-blocks, along with timing and area information, and a FloorPlanning Environ

ment (FPE) forgeneral architecture floorplanning [VanMeerbergen90].

Just as S3mthesis tools optimized for particular architectural styles can hold a specific

advantage, so can tools which are targeted at particular application areas. The PHIDEO

compiler from Philips is aimed specifically at high-speed processing of video streams,

such as what is required for high-definition television (HDTV) systems

[VanMeeibergen92]. Aspecial requirement for video applications is the large amount of

buffer memory which needs to be managed. In order to address this, the PHIDEO com

piler has asa major step the design ofa multiport memory to serve the multiple processor

units which are also designed within the tool.

While textual languages are currently the most common form ofinput for behavioral

synthesis methodologies, they are not the only form possible. Graphical descriptions can
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contain all the relevant information necessary for behavioral synthesis, as can mixed

graphical/textual descriptions. This seems even more natural in considering the fact that

many behavioral synthesis tools proceed by producing an intemal graphical form of the

specification on which the algorithms for synthesis operate. The comfort of programmers

with sequential text-based languages, along with the transitioning of designers accus

tomedto text-based RTL coding over to behavioral synthesis, are primary reasons for the

continuing predominance of text-based behavioral synthesis methodologies.

Behavioral synthesis proceeds byconstmcting an intemal dependency graph from the

input description. This dependency graph has asnodes each of the operations that are tobe

performed during the execution of the algorithm. The edges are directed arcs representing

data values thatare exchanged between operations. Anedge flows firom the operation node

thatis the sourceof the corresponding dataitemto thenode of theoperation thatuses that

data item asaninput. Theedge may branch if multiple downstream operations require the

same input dataitem. An edge can have exactly one source node, orit may be aninput to

the system fix>m the outside. An edge can have multiple destination nodes, including the

case ofbeing directed to an output of the system. If anedge has no destination nodes, then

the data value that it represents is not needed, and it can be eliminated. If an operation

node has no output edges, and the operation produces no meaningful side-effects, then it

can be eliminated as well.

Once the dependency graph has been constmcted, the steps ofscheduling, allocation,

and mapping canbeperformed, either jointly orinany order desired. Scheduling involves

taking untimed operations of the graph, including input and output events, and associating

them with specific time intervals in the execution of the system. Input and output con

straints, as well as allocation and assignment constraints, and performance requirements,

will dictate some of the scheduling decisions for the design. Estimates of performance,

including estiinales of how long each type ofoperation takes in the expected implementa-
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tion technology, will constrain the remaining possible scheduling decisions. If no feasible

schedule is possible within the given timing constraints, then either a faster implementa

tion technology must be selected, or the behavioral description must be redesigned. The

behavioral description may bechanged, perhaps to trade off robustness in the presence of

noise or expected error performance foradditional execution speed.

During the scheduling process, the dependency graph is annotated with information

about which operations are to take place during each time interval. This in turn places

mintTTinm constraints onthespatial dimension in terms of specifying operations which are

executed concurrently, and hence minimum resource requirements in order to enable that

level of concurrency. The allocation phase determines the spatial dimension of howmany

physical elements ofeach type are tobeincluded inthe implementation. For each operator

type, behavioral synthesis must allocate at least as many operators ofthat type as the max

imum number of such operations that are expected tobesimultaneously scheduled during

any timft step. Allocation applies not only to arithmetic and logical operators but also to

registers and other elements that handlethe communication of valuesfromoneoperatorto

the next.

The allocation phase must ensure that there are sufficient numbers ofeach type ofele

ment to accomplish the computation in the expected number of time steps. Behavioral

synthesis noust also determine which scheduled operations should be executed on which

allocated operators, and which scheduled communications should be handled by which

allocated communication elements. This phase is referred to as mapping, or assignment.

An arbitrary mapping will likely result in suboptimal results in terms of the system cost.

This is because the final interconnections between operators are determined by the opera

tionswhich those operators are to perform andwhere the inputs and outputs of thoseoper

ations are coming from and going to. The greater the number of source and destination

elements for each operator, the more complicated the interconnect into and out of those
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operators wili be. Incases where interconnection paths between operators can be re-used

by mappings of multiple dependency graph edges, additional interconnect need not be

built.

The result of the mapping phase is a design netlist which specifies allof the elements

that need to be instantiatedand their interconnections, as well as the timing of operations

and the switching ofdata firom one element to the next. Control signals which actuate the

latching ofregisters and the setting of switching elements are derived from the input clock

signals. From this body ofinformation, a complete RTL description can be produced in

the target language to be used as input to the RTL synthesis tool downstream in the design

flow. Multiple such RTL descriptions can be generated through several iterations ofbehav

ioral synthesis, each performed with varied settings of the synthesis objectives and con

straints. Each of these RTL descriptions will be a valid representation of the behavioral

description intent without the need to manually re-code the RTL each time.

The three phases ofscheduling, allocation, and mapping need not be performed in any

specific order. In resource-constrained scheduling, the allocation phase is performed first,

setting strict limits on how many physical resources will be available so as to seek to put a

cap on the implementation area. The scheduling which follows this will be subject not

only to the dependency graph ofthe algorithm, but to the need to avoid scheduling more

operations ofagiven type in asingle time j&rame than there are operators allocated for that

type ofoperation. This constrained optimization problem has been shown to be NP com

plete [Garey79]. Another variation on the three-phase ordering is partial mapping, where

certain operations are pre-designated to be performed by specific limited resources, such

as aspecial-purpose FFT engine. In this case, all other operations are unconstrained as to

their mappings, but the overall design must remain consistent with the initial conditions

specified for the mapped operations.
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The three phases also need not be performed inisolation, where for example all sched

uling is completed before any allocation ormapping can begin. Scheduling and allocation

can beperformed jointly. This can significantly complicate the algorithms required toper

form these steps, but the hope is that superior results may be obtainable this way. An

example of this isresource-constrained scheduling where the resource lumts are not hard.

If during scheduling it is found that the currently set limits from allocation are causing a

particularly acute resource conflict, there may be linuted flexibility to allow a slight

increase in the allocated numbers of resources to resolve the conflict. Following this, the

remainderof scheduling can continueunder the newresource limits.

Another important area ofwork that applies tobehavioral synthesis even before sched

uling, allocation, or mapping occur is the optimization of the input speciflcation. Just as

improved results have been obtained through the rewriting or transformation of the RTL

code thatis input to RTL synthesis, optimizations of behavioral specifications canenable

better quality designs tobediscovered. Transformations applied tothe flow graph can lead

tosimplftr or more regular flow graphs that will yield better results inbehavioral synthesis.

While work in this area has been in existence at the research level for some time, transfor

mational approaches tooptimization ofbehavioral synthesis have yet tobefully utilized in

the currently availablecommercial behavioral synthesis tools.

1.6 Limitations of Behavioral Synthesis

Contemporary techniques for behavioral s3mthesis continue to face some limitations,

which this research seeks to address in part. Methods which attack various portions of the

scheduling/allocation/mapping problem for applications specified by dataflow graphs

identify themselves as falling under the umbrella term "high-level synthesis." However,

when they are examined closely, they typically involve operations on graphical descrip-
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tions of algorithms at the most primitive arithmetic level of task node granularity. The

nodes are usually additions and multiplications, with variations allowed, perhaps, formul

tiple bitwidths within a single graph. Other work includes examples with arithmetic shifts

and other functions defined by single primitive unary and binary operators.

While this level of granularity may be convenient for the behavioral synthesis algo

rithms to attack, it is far below the level of specification at which designers of algorithms

typically work, in that it does not include truly high-level operations such as filtering, fire-

quency-time transforms, trigonometric functions, and encoder/decoders. One way to deal

with this limitation of typical methods is to resolve high-level operations down into their

constituent arithmetic operations, and so expand a graph of coarse-grain task node com

plexity into a much larger (in terms ofthe numbers ofnodes and edges) graph of fine-grain

complexity. What is gained is that the new graph representation more closely matches the

kind ofinput specification which many behavioral synthesis algorithms are expecting.

This type ofapproach has been applied with success in the area ofsoftware compiler

design, where a similar fine-grain graph is used internally on which the algorithms oper

ate. This works well for compilers that are targeting sequential machines, because the

sequential nature restricts the complexity of this approach to software compilation. The

significant drawback of this approach in hardware synthesis is that due to the parallel

nature of the target implementations, many such synthesis algorithms are highly sensitive

in their computational complexity to the size ofthe input graph specification. As a result,

such algorithms are likely to require very long execution times to arrive at synthesis results

when the entirefine-grain algorithm graphis usedas input.

In order to mitigate this problem, the fine-grain graph is usually broken into many

smaller sub-graphs which represent portions ofthe overall application. The synthesis algo

rithms will find such smaller graphs to be much more reasonable in terms of synthesis

time. Thisis similar towork done by [Lagnese91] for partitioning control-dataflow graphs
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for various design goals prior to input to behavioral synthesis. Sub-clusters formed

between partitioning boundaries aresynthesized separately in their approach. A drawback

to thismethod is thatopportunities foroptimizing resource sharing across the entire appli

cation are lost once the partition boundaries are drawn. The partitioning must strive to

avoid cutting off valuable opportunities for resource sharing, but partitioning algorithms

are limited bycomputational complexity in ways similar tohow behavioral synthesis algo

rithms are. Theresult is that approximation heuristics must be applied in partitioning and

clustering.

Rather than first resolving an application graph down into fine-grain operations and

then re-clustering it into multiple partitions to be sub-synthesized, we are interested in

using the initial high-level graph structure tomake informed resource sharing decisions. If

a graph contains multiple coarse-grain operations which are similar, or identical, then that

information can be of high value in discovering opportunities for resource sharing. Such

information is lost if those coarse-grain operations arebroken down into their constituent

arithmetic-level operations. Inorder to re-infer that high-level structure firom the low-level

graph ofarithmetic operations, sophisticated techniques ingraph pattern-matching orclus

tering would need tobeapplied. There have been efforts inapplying template-matching to

behavioral synthesis [Corazao96] but such matching islimited tocases such aspairings of

multiply-add operators orrecognizing that subtractions can be implemented byadders and

so be covered by adder templates. These bottom-up clustering techniques are aimed at

small clusters, notthelarger ones implied bycoarse^grain operations of a larger scale.

Anotherrelatedeffortby Potkonjak and Wolf[Potkonjak95] applied clustering to sets

of individual tasks in order to minimize overall circuit area. This work, however, treated

the tflsks as separate and not sharing any data dependencies. The only stated goal was to

attempt to minimize the area without any scheduling constraints among the tasks. In this
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work we are concerned with ininimizing area in implementing a full graph of tasks with

data-dependency relationships.

\^th a coarse-grain application graph, it is not necessary to have exact matching in

operations in orderfor resource sharing tobe deemed worthwhile. As an example, filtering

operations where the realization type may be the same, but the number oftaps differ can

be implemented by a single section of synthesized hardware, provided that the filtering

operations can be scheduled to take place at non-overlapping time intervals. Even signifi

cantly differing operations may be candidates for mapping onto the same synthesized

hardware unit if such resource sharing will reduce the cost function while not violating the

timing constraints.

A further benefit of working with a coarse-grain graph comes from the reduced com

plexityin numbers of nodesand edges.Withgraphsof lowercomplexity, graphalgorithms

for synthesis can be accomplished more quickly, and a wider range of design optiohs may

be explored in the amount of time it would take to synthesize once from a large finis-grain

graph of the same application. This is of course subject to the relative time cost of the

algorithmsused to synthesize the realizations of the large-grain clusterings as comjfared to

the time cost of fine-grain clustering and behavioral synthesis. Also, because techniques

that cluster firom fine-grain graphs tend to group connected graph nodes together, they

have a tendency not to favor clusterings of operations from disparate parts of the graph.

Our proposed technique, which looks beyond local arithmetic connectivity, may explore

clusteringswhich would not be typical for conventional methods to admit.

This class of techniques may also prove useful for attacking problems of reconfig-

urable com^ting. This would apply to application specifications where large portions of

the dataflow graph remain unchanged, but certain subsections change depending cin deci

sions that are based on environmental factors, user input, or changing power and perfor

mance requirements. A single hardware realization may berequired toimplement inultiple
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such dataflow graphs. For the subgraphs ofthe dataflow graphs that embody the changes,

hardware units can be synthesized which are capable ofperforming a few different node

functions. Then these different functions can be selected by control inputs as reconfigura

tions ralfft place during operation. Inorder to achieve sunilar results from behavioral syn

thesis at a fine-grain level, a single fine-grain graph representing all the configurations

would needto be constructed. The reconfigurable portions could be isolated, but it would

still be true that as reconfigurability demands increased, the complexity of the fine-grain

graph would increase rapidly, significantly complicating conventional behavioral synthe

sis.

With coarse-grain methods, we can now view hardware more flexibly as collections of

concurrent functional units, each of which are operated sequentially, and which can be

idled when not needed. Such hardware units can be marshalled into service as conditions

change and then allowed to idle orshut down when not needed, saving power. Acentrally-

scheduled controller will always be active in orgamzing the available hardware units and

interconnect resources as needs change. This controller will likely besigmficantly simpler

if it only needs to actuate control signals for a few hardware umts instead offor a large

number of arithmetic operators and interconnect resources.

1.7 Summary

With multiple levels ofabstraction available to hardware design specifiers and multi

ple tools from which to choose, each may bevaluable under the right circumstances. For

designs specified in dataflow, some form of behavioral synthesis approach appears appro

priate, butmost are aimed at a fine-grain representation of the design problem. Byfocus

ing on coarse-grain approaches, there is an opportunity to reduce computational
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complexity and to discover design tradeoffs which might be difficult to infer from existing

behavioral synthesis approaches.

In the chapters that follow, we will describe such an approach, its strengths, and its

limitations. We will also present techniques to make the approach interactive, and to allow

verification through simulation with other non-hardware design elements. In Chapter 2,

we present the details of a method for synthesizing hardware from SDF descriptions. In

Chapter 3, we present issues in cosimulation of dataflow implemented in VHDL with

otherdesignelements. In Chapter 4, we describe how thisdesign methodology canbenefit

from the use of interactive tools, and what the features of those tools should be. In Chapter

5, we presentthe details of how the synthesis, cosimulation, and interactive design proce

dures are implemented^jn the Ptolemy simulation and prototyping environment. Finally, in

Chapter 6, we summarize the results of the earlier chapters and discuss open areas for

future work.
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2

SDF Hardware Synthesis

Synchronous Dataflow (SDF) isamodel ofcomputation well suited to represent appli

cations with high algorithmic content, particularly multirate DSP. The features ofSDF that

make it useful as an initial specification from which to synthesize are the ability to per

form static scheduling and the analysis of resource needs that is possible. From any SDF

graph there are many possible implementations, and the issues involved are discussed in

this chapter. In Section 2.1 we describe the SDF model, followed by an overview ofSDF

scheduling in Section 2.2. In Section 2.3, we discuss the dependency graph that is derived

from an SDF specification. In Section 2.4, elements of the VHDL hardware description

language are presented with aspects of how the dependency graph is representable in

VHDL. Related work onconstructing hardware from dataflow graphs is presented in Sec

tion 2.5. InSection 2.6, issues of implementing computation, commumcation, and control

in a hardware architecture are explored. In Section 2.7, details of the communication-

driven style ofimplementation are presented. In Section 2.8 the stages ofthe code genera

tion process are described. In Section 2.9 the hardware synthesis design flow is presented,

followed by a summary in Section 2.10.
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Figure 2.1 An example of an SDF system. Rates of token production and
consumption are fixed for all actor firings, and are an explicit
part of the specification.

2.1 Elements of Synchronous Dataflow

An algorithm specified in synchronous dataflow (SDF) represents a division of the

total design into computation elements and their relationships with one another. As a

graphical specification, it conveys not only which stages of the algorithm depend upon

which others, but also it implicitly represents which stages are independent of each other.

This shapes the direction in which the design of concurrently executing hardware units

will go, determining which tasks canbe performed by independent hardware units operat

ing simultaneously, and which tasks must be performed sequentially.

An SDF graph specifies the relative rates of production and consumption of data

tokens for each firingof each actor. Given this, it is always possible to determine whether

thegraph is balanced, which means that it can be executed indefinitely with nounbounded

accumulation of tokens on any of its arcs. It is also always possible to determine whether

such a gr^h can be executed without deadlock. Deadlock occurs when no node can be

fired because none has sufficient input tokens to satisfy the firing rules.

AnSDFgraph that is both balanced anddeadlock-free is a consistent SDF graph. Con

sistentSDF graphs have at leastone and often many finite schedules for their execution.
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Such schedules can be executed repeatedly and the computation and communication

resources necessary to do so are bounded by thefiniteness of the schedule.

2.2 Scheduling SDF Graphs

A necessary step in synthesizing an SDF graph specification into a hardware realiza

tion is deriving an execution of the graph that is consistent with the SDF semantics and

that can beimplemented inhardware. Inthe subsections that follow, we describe the SDF

semantics, and impose a condition on execution for practical hardware. This condition

leads to a formulation of balance equations for the SDF graph, and a method for solving

them is then presented. Following this, we show how to construct avalid schedule that sat

isfies the balance equations. Synchronous dataflow and the scheduling techmques

describedin this section were originally shownin [Lee87].

2.2.1 SDF Semantics

Synchronous dataflow (SDF) is a graphical model of computation. An application is

specified in SDF as a directed graph ofnodes, or actors, that represent computation ele

ments. Nodes are connected by point-to-point graph edges, orarcs, thatrepresent commu

nication between actors.

The unit ofcomputation in SDF is oneflring of an actor. Firings of actors are single-

entry, single-exit. This means that all inputs must be available before an actor fires, and all

outputs are only available after the firing has completed. Actors are enabled to be fired

when sufficient input data is available. Actors with no inputs are always enabled to be

fired.

Communication occurs through individual tokens of data on the arcs. When an actor

fires, it consumes a fixed number of tokens from eachof its inputs, andit produces a fixed

number of tokens on each of its outputs. The numbers of tokens produced and consumed
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on each input and output are constants and are part of the SDF specification. Arcs have

first-in, first-out (FIFO) queueing semantics. Multiple tokens produced onto an arc are

queued and remain on that arc until they are consumed by the actor with that arc as an

input. After tokens have beenproduced by the upstream actor, they are available for con

sumption by the downstream actor.

2.2.2 The Balance Equations

Given an SDFgraph, we seekto determine a schedule for executing thegraph that can

be implemented in digital hardware. The schedule consists of performing individual firing

computations and tokencommunications in a way that is consistent with the original SDF

semantics. Such a valid execution can be specified either as a sequential schedule of fir

ings,or as a parallelschedule, where some firings may takeplaceconcurrently.

An additional constraint that we place on any execution schedule is that it must keep

the token data storage requirements bounded. This is necessary for any realization to exe

cute indefinitely in bounded memory. The unbounded FIFOqueueing of arcsin SDF does

not, in general, guarantee that this constraint is met, so we impose the additional require

ment that arcs remain in balance over the long term during execution. We will only be

interestedin schedulesof firings where the numberof tokens producedon each arc equals

the number of tokens consumed on that arc, .over a finite number of actor firings.

In order to keep the memory requirements bounded, we want to determine how many

times to fire each actor so that each arc has the same number of tokens on it at the end of

the set of firings as it did at the beginning. For each arc, this will depend on how many

times the source and sink actors of the arc are fired, and on how many tokens are produced

or consumed each Hme the source or sink actor fires. The condition for balance on an arc

can be expressed as

^source ' ^source ~ ^sink ' ^sink ^
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where qsource ^sink nuHiber offirings, or repetitions counts, of the source and

sink actors, and where ^sink numbers of tokens produced and con

sumed, respectively, by the source and sink actors. This is the balance equation for an arc.

The numbers of firings of all actors in the graph that will keep the arcs in balance can be

determined by simultaneously solving thebalance equations for allarcs in thegraph. This

is described in the next subsection.

2.2.3 Solving the Balance Equations

The balance equations form a system of linear equations that can be solved for the

number of repetitions of each actor. We can rewriteEq. 2-1 as

^source ' ^source ~^sinfc ' '̂ sinA: ^ • (2 2)

We can put theentireset of balance equations intomatrix form as

= 0 (2-3)

where ^ is thevector of therepetitions counts of allactors in the graph and 0 is a vector of

all zeros. The matrix T is called the topologymatrix and consists of entries describing the

connectivity of the actors and arcs and the rates of tokenproduction and consumption on

each arc. The topology matrix has one row for each arc in the graph and one column for

each actor in the graph. An element of the matrix, 7,7» represents the number of tokens

produced on or consumed from arc i by actor j. If tokens areproduced, is positive, and

if tokens are consumed, it is negative. Otherwise, the entry is zero.

It can be shown that for a connected SDF graph, the solution space for the vector ^,

whichis the null spaceof F, is of dimension 1 or 0. If it is of dimension 0, then there is no

nontrivial solution, and the graph is said to be inconsistent. This means that there is no
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finite number of repetitions of the actors that will keep the arcs in balance. If the solution

space is of dimension 1, then the unique minimum integer repetitions vector ^ can be

found, and it specifies the actor firing counts to keep the graph in balance. However, there

still may not be a valid schedule for executing the graph, if it deadlocks. Determining

whether the gr^h deadlocks and constructinga valid schedule if it doesn't are the subjects

of the next subsection.

2.2.4 Constructing a Sequential Schedule

Once the balance equations have been solved, it is known how many times each actor

should be fired in order to keep the graph in balance. However, it is not known in what

order to fire the actors, or whether it is possible to fire the actors at all without deadlock

ing. Deadlock occurs when no actor in the graph has sufficient input datato be fired. This

happens in gn^hs witha directed loop thatdo not have sufficient initial tokens on the arcs

in the loop to ^able the firing of all actors the required number of times.

A simple wayto determine whether a graph deadlocks and to find a sequential sched

ule at the same time is to simulate the execution of the graph. With a solution to the bal

ance equations, we can begin by choosing any enabled actor to be fired that has not yet

been fired the number of times specified in the repetitions vector. We continue firing

enabled actors until all actors have been fired as many times as specified by their repeti

tions count, or until no more actors are enabled. If no more enabled actors are available,

the graph is deadlocked, and noschedule canbe found that satisfies the balance equations

and avoids deadlock. If we finish simulating all firings, then the sequential list of firings

just simulatedforms one possiblesequential schedule.

Any sequential schedule found in this way is admissible, meaning that it can be exe

cuted and the numbers of tokens on all arcs will remain bounded and non-negative. An

infinite-length admissible schedule that is periodic can be formed by repeating the finite
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schedule indefinitely. Such a schedule is a periodic admissible sequential schedule, or

PASS.

2.3 Elements of the Dependency Graph

2.3.1 Firings, Tokens, and Dependencies

The minimnm numbers of firings of each actor in the SDF graph can be determined

from the minimum repetitions vector that is a result of the schedulingprocess. SDF actors

have dependencies upon one another through the communication arcs that connect them,

but specific firings of the actors willnot always have direct dependency relationships with

all of the scheduled firings of adjacent actors.

The firings of a particular actor are indexed sequentially and have a unique identity

within the schedule, and the tokens produced on a particular arc also are sequentially

indexedand uniquelyidentified by the first-in, first-out (FIFO) behavior of the arcs, which

is specified in the SDF model of computation. These unique identities are important later

on when the partial ordering of firings and tokens is mapped onto a total ordering in an

operating implementation. If firings of an actor do notdepend on one another, then they

may be executed outof order in theSDFsemantics, butthey still maintain theirsequential

identities. The ordering of the tokens is also maintained according to the identities of the

firings that produce them, and not according to the absolute time at which they are pro

duced in any implementation.

The order in which tokens are consumed from a particular arc by downstream actors is

also well-defined according to the firing rules. When sufficient tokens are present on the

input arcs to satisfy the firing rules, those exact numbers of tokens will be consumed by

the next firing of that actor. If an actorproducestokens ontoan arc that already has tokens
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waitingon it, the additional tokens arequeued behind thealready-present tokens, andwill

not affect the ordering in which the already-present tokens are consumed.

Because the behavior of firings and token production and consumption for any arc are

all well-ordered, there is no ambiguity as to which firings are directlyrelated to each other

by production and consumption of specific tokens. Because of this, for any valid schedule

that satisfies the same repetitions count determinedduringthe schedulingphase, the same

set ofdependencies will resultbetween specific firings andspecific tokens.

The dependencies that arise from such a scheduled execution of an SDF graph can be

representedas a new graph. This dependency graph has individual firings of actors as the

nodes, and individual tokens transferred as the arcs between nodes. If a specific token is

produced by one firing of one actor and consumed by one firing of another actor, then a

directed arc wiU coimect those two firings in the graph, in the direction of token flow.

Examples of dependency graphs are shown in Figure 2.2.

2.3.2 Constructing the Dependency Graph

Ttere are at least two ways to produce such a dependency graph. One way is to simu

late the execution of the schedule and to create nodes in the graph for each firing as it is

simulated. Such firings will have arcs emerging from them that represent the tokens cre

ated by the firing. Later firings will have some of those arcs as inputs since they consume

those tokens. This graph is a directed acyclic graph (DAG) of all the actor firings and their

dependencies, as derived from the SDF graph. It is directed because all arcs have direction

from the producer firing to the consumer firing. It is acyclicbecause each firing can only

have depend^cies on tokens that are produced before the firing occurs, according to the

firing rules for SDF graphs.Becauseof this, there can be no cycle from any firingback to

itself.
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(a)

(b)

Figure 2.2 (a) Dependency graph resulting from the SDF graph in Figure
2.1. Actors A, B, and Dare fired once, and actor Cis fired twice,
(b) Another multirate SDF graph and the resulting dependency
graph, which reveals potential concurrency.

The second means of producing the graph does not guarantee that the graph will be

acycUc, but only that it will be adirected dependency graph. We can construct the depen

dency graph without simulating the schedule by realizing that since the firings of an actor

are sequenced and the firing rules are fixed, the tokens produced and consumed by any

given firing can be directly determined. Every firing of an actor reads afixed number of
tokens from each of its inputs and writes a fixed number of tokens to its outputs. From

this, combined with the sequential indexing of firings ofan actor and information about

the initial tokens on the arcs ofthe SDF graph, the exact token dependencies ofeach firing

can be determined.
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Figure 2.3 Indexing of an SDF graph by vertices v, and edges with

identifiers for ports p{v,e), tokens transferred n^{p), and initial

delay tokens nj,e).

One way of indexing is shown in Figure 2.3. The SDF graph is composed of vertices

V,- and edges . If a vertex v is connected toan edge e through one ofits ports, that port

is identified as p{v,e). The number of tokens consumed or produced through that port on

each firing of the vertex is nj{p). The number of initial (or delay) tokens on the edge is

Tokens are numbered in increasing order from 1, starting with either the first delay

token on the edge, or the first token produced onto the edge by the source vertex if there

are no initial delay tokens. Firings of a vertex are numbered in increasing order from 1.

For the ith firing of a vertex v producing tokens onto an edge e through port p, those

tokens are numbered in order from nf,p) •(/-1) + 1+nj^e) up to n/^p) •i +n/e), for a

total of n/jf) tokens. Similarly, the tokens consumed by the ithfiring ofa vertex v from

an edge e through port p are niunbered from n,(p) •(f -1) +1 through n^(p) •i, for a total

of rtfip) tokens.

Ifrom the SDF balance equations, we know the number of firings of each vertex that

are necessary tokeep the graph inbalance. From the above indexing expressions, the iden

tities of all tokens consumed and produced by all firings in a balanced schedule can be

determined without finding a particular schedule and without having to simulate any

schedule. A dependency graph can be constructed with each firing ofeach vertex ofthe
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(a)

(b)

Solution to Balance

equations:

= 1

Figure 2.4 (a) An SDF graph that deadlocks, (b) The resulting dependency
graph, constructed by the enumeration method. It is not a DAG
because it has a cycle. The cycle indicates that for the given
repetitions counts, the graph is in deadlock.

SDF graph as a vertex in the dependency graph, and each token produced orconsumed as

an edge in the dependency graph. Agraph constructed in this way, without having checked

the SDF graph for deadlock, may have directed cycles in it from one ormore firings back

to themselves. If there are cycles in the dependency graph, then deadlock is indicated, and

no nontrivial schedule of theSDFgraph can be constructed thatsimultaneously keeps the

graph inbalance and avoids deadlock. An example ofsuch adeadlocking SDF graph, with

its cyclic dependency graph, is shown in Figure 2.4.

2.3.3 The DAG and Concurrency

The dependencies between firings can bedetermined from the solution to the balance

equations alone, and therefore are independent of the order in which the SDF actors are

fired. This means that the dependencies are the same for all valid schedules, whether

sequential or parallel. If an SDF graph is balanced and deadlock-free, the dependency

graph will be aprecedence DAG. The DAG that results from constructing the dependency

graph is also uniquely defined by the SDF graph and the repetitions vector. Inasense, the
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multittide of possible finite schedules with the given repetitions counts are embodied in the

single, data structure of the finite precedence DAG. A valid schedule can be constructed

from the DAG by traversing it in any order that respects the firing precedences.

More importantly for parallel hardware generation, such a DAG also implies all the

possible parallel schedules for the SDF graph, given the repetitions vector found during

the scheduling phase. It lacks information about the execution times of individual firings,

which will be an implementation-dependent property.

Firings with direct or indirect dependencies cannot be executed concurrently without

additional pipelining or modification of the SDF graph. If such dependencies are broken

through pipelining the SDF graph by adding additional tokens to an arc, the meaning of

the SDF graph is changed, and a different dependency graph will result. The change may

be as simple as adding data latency to the output of the graph, in the case of feed-forward

arcs. In the case of feedback arcs, adding additional tokens to them may change the output

data of the graph completely.

2.3.4 DAG Granularity and Computational Complexity

Because the firing precedence DAG is uniquely defined by the SDF graph and the rep

etitions vector, it is a single, canonical data stmcture on which all subsequent algorithms

can operate. This does not necessarily restrict the granularity of the computations to stay

at the level of granularity of the SDF actor firings. In later stages it will be possible to

resolve single firings into their individual arithmetic operations and intemal algorithmic

steps. Likewise it will be possible to combine multiple firings into merged nodes that spec

ify combined operations and data dependencies. This representation can be helpful, but we

run the risk of losing the sense of regularity in the SDF graph. This is because with the

DAG, the multirate repetitions are unrolled. What helps us to retain the regularity is the

identity of firings that is maintained, as far as what their firing function is and what SDF
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0!—JQ!!—^
Figure 2.5 An example SDF graph where the number of DAG nodes reia-

N
tlve to the SDF graph size Is 0(M ).

actor they come from, which we can keep track ofduring successive stages and use to our

advantage.

Because of the nature of SDF semantics and the scheduling process, the firing prece

dence DAG has the potential tobe exponentially larger than the SDF graph interms ofthe

numbers ofnodes andarcs. Anexample of this, adopted from [Pino95], is shown in Figure

2.5. This situation arises in particular when there are sample rate changes from one actor

to thenext. If the source actor of a given arc produces multiple data tokens oneach firing,

butthe sink actor consumes only single tokens orsmall numbers of tokens per firing, the

scheduling process will determine that the downstream actor must fire multiple times in

order tokeep the production and consumption rates on that arc in balance over the course

of the entire schedule. If the production and consumption rates differ significantly, the

downstream actor will need to be fired many more times than the upstream actor. The

same is true if the upstream actor produces small numbers of tokens, but the downstream

actor requires large numbers of tokens to firei the upstream actor must fire many more

times in order to keep the arc balanced. Additionally, if the rates ofproduction and con

sumption on the arc are not divisible by one another, or in the extreme case are mutually

prime, then both actors must fire multiple times in order to keep the arc in balance. If the

same is true over chains ofdependent actors, the repetitions factors can become quite large

as this effect is "amplified" down the chain.

As a result, the bound on the'size of the unrolled SDF graph or DAG is at least an

exponential function ofthe SDF graph size, for general graphs. Since the complexity of
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any algorithm that takes the DAG as input for implementation planning is likely to be sen

sitive to the size of the DAG, this large bound can significantly increase the cost of the

implementation-planning algorithm. Care must be taken with DSP algorithms that have

large chains of sample rate changes. Individual sample rate changes are common, espe

cially in audio and video filtering and processing applications.

Implementation planning methods include activities such as clustering, partitioning,

scheduling, and sjmthesis. These activities can take different forms of specification as

input Some require a task-level dataflow graph, such as an SDF graph. Others use the

expanded DAG as input, with tasks as the nodes. Still others use an arithmetic-level prece

dence graph as their input, with individual arithmetic operations as the nodes. In compari

son to methods that would resolve the entire specification down to the level of individual

arithmetic operations, such as behavioral synthesis, methods that use the task-level prece

dence DAG involve significantly fewer graph nodes and arcs, even though the DAG may

be considerably more complex than the corresponding SDF graph [Gajski94].

The large number of operations in an arithmetic-level precedence graph has typically

been a limiting factor in the performance of behavioral synthesis algorithms. Hierarchical

graph representations are common, such as control-dataflow graphs (CDFGs), to help

reduce the conq>lexity of the representation. A common approach to dealing with this

complexity has been to pre-partition the fine-grain arithmetic DAG into smaller sub

graphs upon which the behavioral synthesis algorithms may take more reasonable periods

of time to operate. This comes at the expense of missing some potential tradeoffs and opti

mizations that could have been made across the partition walls between subgraphs. For

this reason, a careful choice of partitioning is important in getting good results from such

methods [Lagnese91] [Gajski94].
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if signal process
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Figure 2.6 Processes, signals, and entities. Processes perform computa
tion, signals communicate information, and entities provide
structure and hierarchy.

2.4 Elements of VHDL

The use of the VHDL language is a means to the end of hardware specification and

synthesis. It is a convenient choice due to its widespread use and broad support by

researchers andcommercial products. The Verilog language enjoys similar status, andfor

the most part, the concepts for which VHDL is used here are interchangeable with similar

elements in Verilog. The few exceptions, in terms of specific design tool support, are due

to choices in allocating tool implementation efforts, and not due to fundamental feature

differences between the two languages.

In VHDL, aU computation occurs within concurrent processes. Conununication

between processes occurs through signals. One or more processes may be contained in a

single entity, which specifies a structural unit in a design. Concurrent processes maycom

municate among themselves within anentity through local signals, or they maycommuni

cate through signals between entities. A representation of these structural relationships is

shown in Figure 2.6.Processes maybe as simple as a single assignment of an expression
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to an output signal, or they may be large and complicated algorithmic procedures, with

local variables, conditionals, branching, and many of the language features found in high-

level programming languages such as C

VHDL is a language that provides concurrency, hierarchy, and sequential procedures.

In order to synthesize hardware specifications from VHDL, a restricted subset of the lan

guage must be chosen, because some of the concepts such as arbitraryor absolute timing

delays and test conditions are not synthesizable, nor are constructsfor dynamic entity gen

eration. For any specific synthesis tool, there is usually a specific restrictive subset that is

particular to each tool, but generally involving comparable limits on VHDL syntax ele

ments involving timing and dynamicstructures. There are manyVHDL synthesis systems,

producedboth by academia and as commercial products, but none allows the unrestricted

use of the full VHDL language [Camposano91]. A set of guidelines defined by Cam-

posano is listed in Figure 2.7. While there havebeen a number of generations of synthesis

tools since this list was developed, these guidelines continue to hold. Improvements in

sjmthesis techniques in recent years have changed the optimization algorithms for deter

mining the resulting design, but have not moved to expand or redefine the synthesizable

subsets of VHDL that are supported [Camposano96]. The maininnovations havebeen in

the area of behavioral synthesis as a higher-level option, but the style of description and

the S3nithesizable subset remain similar [DeMicheli96].

The two major classes of synthesis tools are those that perform register-transfer level

(RTL) synthesis, and those that perform behavioral synthesis, or so-called high-level syn

thesis. These two classes are named for the type of input specifications that they accept.

The first class to become available was that of RTL synthesis, and these tools are the most

common in usage today. Following on the success of RTL synthesis is behavioral synthe

sis, which attempts to take as input a specification without the scheduling and allocation

found in RTL code. This specification is obtained at an earlier stage in the design process
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1. Make no implicit assumption on the execution time ofaprocess. To ensure proper communication among

processes, either use explicit synchronization (such as handshaking) or specify appropriate delays using the

wait statement

2. Ignore sensitivity lists insequential synthesis. Do not use them in sequential processes.

3. Convert rime expressions tocontrol steps and use them asdesign constraints.

4. Ingeneral, the synthesis system will latch those signals assigned values by aprocess (outputs).

5. The synthesis system often keeps loops as specified. In this case, adelay ofatleast one clock period must

be associated with the loop body.

6. Recursive procedure calls are not allowed.

7. Use the specification ofprocedures within aprocess as an initial given partitioning ofthe synthesized hard

ware, or ignore theprocedural hierarchy and flatten thedesign.

8. High-level synthesis ignores assert statements.

9. High-level synthesis does not support file objects and file types.

10.During high-level synthesis, variable arrays with dynamic indexing will result in memories.

11.High-level synthesis does not support access types.

12. Use anattribute tocharacterize the clocking scheme. High-level synthesis supports only a limited number

ofclocking and assumes the clocks are present. Itmay automatically create the clock-generanon

circuits.

Figure 2.7 Aset ofguidelines defined in [Camposano91] for restricting the
use of VHDL in synthesis.

(hence the term "high-level synthesis"). Behavioral synthesis tools accept specifications

where the operations to be performed and their dependencies are specified, but not their

specific timing or the allocation of architectural resources on which they will be executed.

The result ofbehavioral synthesis isusually an architecture specified inRTL code that

has specific timing and resource allocation. The computational complexity of behavioral

synthesis algorithms is usually considerably greater than that of RTL synthesis algorithms.

However, behavioral specifications are often on the order often times smaller than equiva

lent RTL descriptions. This difference in coding size can lead to areduction in specifica

tion time, and also areduction in the number ofcoding errors. This difference, along with

the potential for discovering an architecture superior to that obtained by beginning with an
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RTL specificatibn, isdriving more and more designers toadopt behavioral synthesis meth

odologies.

Within VHDL, an RTL specification consists of entities connected by signals, with

registers for intermediate storage and clock signals for timing and control explicitly speci

fied in the code. TheRTL synthesis process is a matter of translating each of the computa

tions into allocated functional blocks and creating wires or registers for each of the

variables assigned in the code. This reproduces the RTL code specification ofthe architec

ture in an intemal logic- or gate-level form.

Synthesizing from RTL code means that the architecture has already been selected,

and only optimizations within sub-elements ofthe architecture, such as arithmetic expres

sions, beperformed. From a given section ofRTL code, and for non-deep-submicron

technologies, the area, power, and timing ofthe synthesis result can behighly predictable,

even though they may not be as optimal in comparison to methods that use architectural

tradeoffs, such as behavioral synthesis. It is much more difficult to predict these metrics

from a behavioral description, because there is such a wide range ofarchitectural possibil

ities.

In order to bring a repreisentation of a firing precedence DAG into a VHDL form

acceptable for RTL synthesis, some architectural planning steps are required. Deciding

which firings will be mapped to which entities in VHDL is necessary, and those decisions

must be based on considerations of resource demands and opportunities for concurrency

present inthe DAG. When two ormore firings are merged into a single entity, the number

of source and destination data connections can increase. The number of control inputs to

the entity is also likely to increase.

There area various ways to multiplex a single entity toperform multiple firings in suc

cession. These differ in how the dMa is routed to the inputs and outputs of the entity. Three

of these are to usemultiplexors, to use FIFO/shift registers, or to use addressable memo-
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Figure 2.8 Three ways of switching data connections to merged firings on
an execution unit, (a) Two firings to be merged, (b) Multiplexed
inputs, (c) FIFO/Shift register, (d) Addressable memory.

ries (Figure2.8).When multiple inputs are selectedthroughmultiplexors, the synthesized
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interconnect andcontrol cangrow in size rapidly as the numbers of inputs and outputs of

entities increase. The size of the logic function of an n-input multiplexor, in terms of the

number of two-input gates, is 0{n •logn). High fanin and fanout from functional blocks

can result in high interconnect costs.

Using FIFO registers or shift registers at the inputs and outputs to entities can save

area by shifting the data around instead ofre-routing input and output connections. The

timiTtg and ordering ofinputs and outputs must be carefully synchronized, however, mak

ing this approach less flexible. There is also a potential speed penalty due to the time

required to shift by multiple positions when the required data is not nearby in the queue.

Athird option, to use an addressable memory, has flexibility, but the memory module

can become a bottleneck. Access time to a larger, centralized memory canbe significantly

slower than to smaller registers distributed throughout the design layout. Other penalties

include the need tohave address generation logic, the requirement to route a data bus and

possibly an address bus, as well as the scheduling issue of resource contention when mul

tiple entitiesneed to access the memory.

These are factors weighing against too much merging offirings into fewer entities, in

addition to the lost opportunities for concurrency that can result. Given generous timing

bounds and an objective ofminimizing area, the tendency would be to meige more and

more firings together. The increasing costs of interconnect and control put restraints on

this tendency, although the effects are not always easily quantifiable.

2.5 Related Work

2.5.1 ADEN / ComBox

One body of work that is specifically aimed at generating synchronous clocked hard

ware ftoin dataflow specifications is firom the Aachen University of Technology
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[Zepter94] [Zepter95a] [Zepter95b] [Grotker95] [Lambrette95] [Horstmannshoff97]. This

work is framed within some limitinig assumptions about both the specification semantics

and the mapping toanimplementation architecture. Within these restrictions, they are able

to perform some timing analysis and consistency checks in order to map specific token

transfers ontospecific clockcycles in the hardware realization.

The earliest published example of this work [Zepter94] describes the application area

being targetted, the form of dataflow thatis used, the assumptions placed on the architec

ture, and the restrictions on communication timing. Each of these are discussed in more

detail below.

The stated application areaof interest is thedesign of digital receivers for communica

tion links of mediumto high throughput. The algorithms for thesedesigns tend to be data

flow-dominated, with only a small amount of control. The granularity at which they are

modeledis also relatively coarse, at the level of filters, phase rotators, or decoders. Many

of the blocks can be mapped to parameterized VHDL hardware models for the implemen

tation.

There is little controlflow in the algorithms of interest, but there is enoughthat SDFis

not sufficient. Limited dynamic dataflow is permitted, with certain mles for whatdynamic

constructs are allowed in this approach. The allowable subset of dynamic dataflow is com

parable to thatidentified by Gao, Govindarajan, and Panangaden as"well-constructed reg

ularstreamflow graphs" [Gao92]. This is effectively a restricted form ofboolean dataflow

[Buck93] wherecontrolbranching and merging structures arepairedwith one another and

subgraphsmay or may not fire, depending on singlecontrol tokenvalues.

The architectural approach is not at the level of firings of the dataflow actors. Instead,

the methodology mapseachdataflow actorto a single hardware unit, andeachedge in the

graphto a single connection withregisters along thepath. Thereasoning behind this is that

the granularity of the dataflow models used is coarse enough and the throughput require-
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ments are high enough that there is no need for resourcesharingamongactors.Paralleliza-

tion across firings of actors is possible within hardware units, but is not discussed.

The tuning model is one that takesthe average ratesof firings of actorsand the average

rates of tokens transferred on an edge in one iteration and evenly distributes all such events

in actual system clock time. This mapping from untimed dataflow to timed digital hard

ware is one in which all actor firings and all token transfers are periodic and equally

spaced in time throughout the execution of the system. It is possible touse SDF schedul

ing in order to determine the actor firing and token transfer rates because the amount of

dynamism permitted is restricted to having subgraphs optionally not fire. The scheduling

analysis takes the limiting case where all actors fire, which gives constant token transfer

rates. In the realized system when a control value indicates that an actor should not fire,

the hardware that implements that actor is stalled by having its clock deactivated during

that cycle. An interesting feature ofthis approach allows sub-graphs tobeidled when the

(iata on their input signals that comes firom deactivated upstream hardware elements is

invalid, thus preserving the algorithuiic state consistency of downstream hardware units.

The dependency of downstream actors on input data that may be invalid is factored into

the clock generation pattern. Subgraphs that depend on control tokens are clustered

together in order to determine which clocks to tumoff.

The authors form equations for the input and output times of anedge in terms of sys

temclocks. In addition, since theports of hardware units caninput/output data at various

phases relative toone another (on different clock cycles within the same activation cycle),

there is a potential need for "shimming" delays on every edge connection so that data

coming from multiple sources with varied phases will be received at the proper times by

the ports of the downstream actor. The timing model for edges also allows for initial

tokens on the edges and treats the resulting timing consequences.
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In subsequent work [Zepter95a] this approach is discussed within the context of a

larger design flow. This design flow is composed of algorithmic and implementation

stages. The algorithmic stage involves dataflow simulation using COSSAP [Synopsys97]

for the simulation verification of the algorithm and the selection of particular functional

blocks and their parameters. The implementation stage is library-based and involves

selecting a specific implementation choice for each dataflow actor. These come from the

hierarchical ComBox library, with class, group, and primary hierarchy levels. The class

level corresponds to the port specification of the algorithmic blocks. The group level cor

respondsto altemativealgorithm choicesfor each block. The primary level corresponds to

altemative data width and parameter choices of VHDL codeblocks for each algorithm.

The VHDL code generation program, called ADEN (A Design Environment's Name),

takes the instantiated library codeblocks from ComBox and combines them, along with

code for the glue registers and the control and reset signals. This methodology is applied

to a design for a minimiiTu shift keying (MSK) transceiverfor mobile communications.

One key element of the timing algorithms shown in this work is that the system itera

tion interval is determined by calculating the least common multiple of the numbers of

tokens transferred on all edges in the graph. This gives the minimum number of clock

cycles so that all tokens can be evenly spaced in time on all edges. This number is used to

determine the logic for the timing control for each edge. Similar consideration is given to

differences among internal sample rates and the system clock frequency in the PHIDEO

compiler from Philips jyanMeerbergen92]. PHIDEO is aimed specifically at high-speed

processing of video streams, such as what is required for high-definition television

(HDTV) systems. Operations that are executed at a rate slower than the target system

clock rate may be able to share hardware with one another. As in the case of determining

the precedence graph size from an SDF graph, if there are a number of mutually prime

token rates in the dataflow graph, the minimum required clock count can grow large.

62



In [Grotkei95], the authors outline their methodology. They focus on the ADEN tool

and present the MSK design example, providing details of their design results. There is

some information about the timing analysis, and the stalling of dynamic subgraphs in the

hardware realization is described.

hi [Lambrette95], the focus is on the MSK algorithm design. There is also a discussion

of the design flow, followed by the results of implementing the MSK design in FPGA

technology fromtwovendors, as well as in a standard library of 1.0 |xm technology mod

ules.

In [Zepter95b], the methodology is presented, beginning with the interaction between

the algorithm and implementation levels in COSSAP and ADEN using ComBox. The

organization of the ComBox library is described with a Viterbi decoder module as an

example. The interface of a library module is described, with token rates and token pro

duction/consumption phases. Also shown are the control/datapath architecture and the

statictiming analysisthat is performed, alongwith the MSKdesign.

More recent work from Aachen, which is presented in [Horstmannshoff97], is distinct

from the previous work by Zepter et. al. in that the model of computation is restricted to

SDR Theystatethat the timing model used in theearlier approach, where datasamples are

readand written equidistantly in time, is limiting in many cases. The HDL Code Genera

torfrom Synopsys [Synopsys97] also has this restriction, they add. Aconsequence of this

restriction is that the earlier methodology requires blocks that are purely combinational,

with little or no sequential circuitry. Such blocks tend to have a very fine granularity,

which is counterto their original goalof providing a methodology for integrating coarse-

grain implementation blocks together.

The motivation for moving to pure SDF semantics is not explicitly provided, but it

likely relates tothe requirement to-allow irregular input/output timing patterns. When data

tokens on edges are not equally spaced, it becomes difdcult to determine the timing for
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disabling downstream blocks when data tokens are invalid. This isbecause the periodicity

of data arrivals is notmatched to the periodicity of block executions. As a result, individ

ual blocks cannot be stalled in their execution with predictable timing. To stall blocks

underthis scheme, the amount of stalltimedepends on which datatoken is invalid andthe

time until anothervalid tokencan be expected, which is not a regular interval. For these

reasons, moving toSDF semantics and disallowing the dynamic behavior keeps the timing

analysis tractable.

This approach calls for VHDL code generation from SDF specifications, and preserves

the earlier requirement that each dataflow actor be implemented in an individual hardware

element. This results in an intuitive one-to-one mapping between the dataflow graph and

the hardware architecture as in the previous approach. There is one type of resource shar

ing, where all firings of a given dataflow actor are executed on the same hardware

resource. Not included are altemative styles of resource sharing, such as sharing among

firings ofdifferent actors, to reduce hardware cost or tomeet timing objectives.

2.5.2 The DDF Timing Model and Analysis

The timing model is outlined in [Zepter94], [Zepter95b], and [Grotker95], with more

detail given in [Zepter95a]. The model consists of a mapping of both edge and vertex

input/ouqiut operations onto specific clock cycles in the hardware execution. A global

periodic clock is defined and all system events take place onglobal clock edges. From this

model, time is abstracted to an increasing sequenceof the noimegative integers.

Tn the hardware model, each dataflow actor and each communication arc is mapped to

a corresponding hardware resource in the implementation. The d)niamic dataflow seman

ticsextend to caseswhere actors may optionally not fire andtokens may optionally notbe

transferred. From this, SDF semantics can be inferred where actors always fire and tokens

are always transferred, which forms a superset of the firings and token transfers of the
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DDF semantics. The numbers of firings of each actor and the numbers of tokens trans

ferred on each arc during one iteration of the SDF schedule determine the rates of activa

tions of the corresponding hardware units in the implementation.

The specific timing of firings and token transfers are determined from a set of con

straints on both vertex (dataflow actor) and edge (communication arc) hardware units.

Both actor firings and token transfers are periodic and synchronized to the global clock.

For each actor firing, one or more tokensare produced or consumed. As a result, the high

est rates of activity will be token transfers and not actorfirings, unless the graph is homo

geneous with unity production and consumption rates.

In order for all token transfers to map onto a systemclock edge, and for the tokens to

be evenly spaced on each edge, thetoken transfer rates on alledges must be evenly divisi

ble into the number of system clocks per iteration. This requirement becomes the follow

ing statement of the TninimuTn number of systemclocks per iteration:

Nj = /cmvg.(n(ey)) (2-4)

where ej are the edges in the dataflow graph, and for each edge, niep is the number of

tokens transferred on edge ej during one schedule iteration. From this, we can determine

the iteration interval of each edge in the graph:

N

where liep isthe number ofsystem clock ticks between token transfers on edge ej.

The hardware implementations of each edge may have latency associated with them,

whichcan come either from shimming delays or from initial datatokens on the edge. The

relationship between theinput andoutput time ofeach edge is expressed as
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where f,„(e) and t^^^J{e) are the input and output times, in terms of the system clock

counter, of the first data tokens transferred into and out ofedge e. The shimimng delays,

which are calculated later, are written as d^{e), in units of system clocks. The number of

initial tokens on the edge is sije), and the effect of the initial tokens is to make output

tokens available sooner in time. The size of this advance is the numberof systemclocksin

s(e) edge iteration periods.

The implementations ofdataflow actors also have periodic timing where for each actor

orvertex v theperiod in terms ofsystem clocks is TJiy). Inaddition, tomodel the latency

from inputs to outputs, as well as to model offsets between reading inputs from different

ports orwriting outputs to different ports, each port ofan actor has aphase d{P) for port P

or d{v,e) for the port where vertex v connects to edge e. This value, for each port, is the

number of clock cycles after the beginning ofan iteration ofthe vertex when the first data

is read or written on the port.

The authors apply work from [Jagadisch91] inorder to set up the starting times ofeach

of the actor implementations so that timing is consistent in terms of causality. This

includes adding shimming delays where needed sothat data arrives at the inputs toa hard

ware unit at the times when the hardware unit is ready to read the data. Shimming delays

are inq)Iemented as additional registers on data pathways. In order to reduce the cost ofthe

additional registers, the authors describe a procedure for register minimization based on

work in [Leiserson83].

2.5.3 The SDF Timing Modei and Anaiysis

In [Horstmannshoff97], dynamic dataflow constructs are disallowed in favor of SDF

semantics in the specification. In the hardware implementation, SDF actors are mapped to
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individualhardware units that have periodic behavior, while the data activity on the ports

and arcs may be aperiodic within one period ofeach hardware unit. The discussion ofana

lyzing the system for hardware implementation deals with three areas oftiming. The first

of these is timing periodicity adjustment, which is for ensuring that there is rate consis

tency throughout the implementation, analogous to the rate consistency requirement ofa

repeatable SDF schedule, with specific timing information attached to the actor firings.

The second area ofanalysis is ingenerating initial values for intemal registers where they

are needed, and in adding delays onarcs between actors to adjust for differing timing pat

terns on the source actor output port and the sink actor input port. This latter check is

needed because the tokens are not, in general, evenly-spaced in time in the implementa

tion. The third area of analysis deals with initialization, which is to calculate the reset or

start-up Hmejg ofeach actor, and to generate additional shimming delays to keep the arrival

times consistent among ports on the same actor. For each ofthese three areas, algorithms

are presented for calculating the timing and number of clock delays to be added through

out the hardware implementation. Open issues for future work include cost estimation of

thisapproach andstrategies foroptimization.

2.6 Hardware Architecture Considerations

2.6.1 Computations

The unit ofcomputation derived firom the firing precedence DAG is that ofthe individ

ual SDF actor firing. The granularity of individual firings can have a very broad range

within an SDF graph. The semantics ofSDF do not place any restrictions on the size or

complexity ofcomputations of SDF actors. The only restrictions are on the firing rules that

determine the input and output behavior of SDF actors. With no specified bounds, afiring
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could be as simple as a two-input addition or a gain operation, or it could be at least as

complex as a 1,024-point fast Fourier Transform or a decision feedback equalizer.

Thegranularity mustbe selected by the designer, whose intentis captured in the initial

SDF graph specification. Caution is needed, however that the granularity is notchosen to

be so small that the graph description becomes large in the number of nodes and edges.

This would in tum raise the computation time of the algorithms that operateon the graph.

The granularity chosen will also be affected by the constraints of the particular designtool

being used. The design tool may only have a limited choice of SDF graph actors, with

fixed granularity. The tool may also allow the designer to create new actors of arbitrary

granularity,or to combine existing actors into new actors within the environment.

Actor granularity will vary within the specification at various stages of the algorithm.

Multiple streams of data that are processed by sophisticated algorithms may be blended

and merged by simple arithmetic operations. In tum, the sophisticated blocks may be

specifiable by subgraphs of individual arithmetic operations joined together, or they may

be monolithic blocks. The benefit of maintaining large monolithic blocks is in the fact that

such blocks group functionality and reduce the complexityof the overall graph so that the

node count is not forced to be large solely due to the algorithmic complexity. Other bene

fits of using hierarchical blocks are the encapsulation of expertise of other designers, the

use of module generators for parameterizable stmctures, the promotion of design re-use,

and the improvement of design visualization and conceptualization. Another advantage

during partitioning and s5mthesis is that multiple instances of complex blocks that have

similarity can be identified and grouped together easily. However, if every block is

reduced to its smallest arithmetic elements, it is much more difficult to infer a larger stmc-

tural similarity in computations across the application graph.

The choice of SDF actor granularity will have a significant impact on the algorithms

that are used to process the graph. Usually the granularity is chosen so as to make the
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designer's specification process as smooth and understandable as possible, which is not

always inharmony with the goals ofthe hardware synthesis process. As will be discussed

further in later sections, however, themethodology proposed is mostbeneficial when there

are multiple firings ofsignificant complexity and also sufficient similarity tomake merg

ing them cost-effective.

2.6.2 Communications

Given that two firings communicate through the production and consumption ofdata

tokens, it is necessary to provide a medium through which that data can be passed. That

medium canbe a direct connection, or it canbeoneor more intervening storage locations.

Adirect connection results ina tight coupling between the tuning ofthe source and desti

nation firings. Without intervening storage, the source of the data must continue to drive

the direct connection with thedata value until the destination ofthe data has finished using

the data.

Figure 2.9 shows altemative realizations of a two-actor SDF graph, both with and

without intervening storage. This choice has an effect on the clock period and resource uti

lization. Having execution units A and B directly connected is referred to as chaining

because both operations are chained together in sequence during each clock cycle. By

placing aregister in between Aand B, orpipelining the connection, execution units Aand
Bcan both operate concurrently during each clock cycle. There is a one-cycle penalty in

latency in the pipelined version, but each clock cycle can be shorter than in the chained

version.

For realizations with directed loops, pipelining cannot be done within a loop because

there are no feed-forward cutsets that both intersect a loop and also bisect the graph. Put

ting even one additional register within aloop can alter the functional behavior. Registers
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Figure2.9 Chaining vs. pipelining, (a) A two-actor SDF subgraph, (b) An
Implementation that uses chaining, (c) An implementation that
uses pipelining, (d) Chained schedule, (e) Pipelinedschedule.

canbe added within a loop without changing the behavior only if they are clocked at dif

ferent times in coordinated fashion.
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If the two filings are to be allowed to be scheduled other than immediately in succes

sion, then temporary storage must be reservedfor the data. If the two firings are addition

ally not mapped to the same entity, then local storage within one entity is not sufficient,

and a communication channel between entities must be reserved, as well as extra input and

output portsbeing added to theconsumer andproducer entities, respectively. This tempo

rary storage could be an individual register, a FIFO/shift register, or it could be a regular

blockof memorysuch as a single- or dual-port RAM. In anycase, thecorrectmanagement

of temporary storage is an important requirement for successfully orchestrating parallel

hardware entities thatpassdataamong themselves throughout the iteration cycle.

The first requirement is to preserve the correctness of the computation result. With

respect tocommunication, this is done by ensuring that data is stored and saved for down

stream computations after it is produced, without being overwritten or lost. This can be

guaranteed byaUocating individual storage elements for each data token that istobetrans

ferred during theiteration cycle, but this is more costly than is necessary. Further optimi

zation calls forapplying data lifetime analysis, which is common inbehavioral synthesis

[KurdahiST] [DeMicheli96]. Data lifetime analysis serves in minimizing the number of

storage elements required by having data items that do not need to be preserved during

overlapping periods of time share the same allocated storage element. This isusually per

formed after the computations have been scheduled, when data lifetimes are statically

known. A further clustering ofregisters into multiport memories is possible byusing inte

ger linear programming techniques [Balakrishnan88]. Other storage structures can also be

used, such asspecialized register files for storing state inloop bodies ofsynthesized code

[Ercanli96].

Another issue in synthesizing the communication is storing data that is consumed by

multiple downstream actors. In the abstract SDF model, data tokens that are inputs to an

actor are consumed whenthe actorfires, andif multiple actors needto have access to data,
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they are replicated, typically through a fork actor whose outputs are multiple copies ofthe

input tokens, reproducedon multiple arcs.

If a jfiring needs toremember pastinputs in order toperform present and future compu

tations, theninternal storage is implied for thatSDF actor. This could come in the form of

state, and couldbe internal to the implementation intended for the actor. This can alsobe

viewed as additional inputs and outputs that feed state tokens back to the SDF actor. This

extemalization of state makes all data storagerequirements moreexplicit in the specifica

tion. In the case of multiple firings of such an actor with state, there may be state depen

dencies firom one firing to the next of the same actor, in addition to the usual data

dependencies between firings of adjacent SDF actors. The introduction of these state

dependencies can result infeedback loops inthe otherwise acyclic graph, which lead from

the last invocation of an actor within one iteration to the first invocation of the same actor

within the next iteration.

2.6.3 Controller

order to coordinate the complex concurrent activities of the multiple entities in the

synthesized hardware architecture, some form of control is necessary. This control could

be distributed throughout the individual execution units, or it could be centralized in a sep

arate controller entity, firom which the individual control signals would be routed to the

datapath execution units.

The majorfunction of the control is to synchronize thehardware to the regular streams

ofinput andoutput data coming from andgoing to the system environment. Internally, the

control circuitry is necessary to regulate the storage of data values that are produced by

execution units, when suchstorage is needed, as well as the switching of the datapath to

route data values between execution units.
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2.6.3.1 Control Synchronization

The fonn of control used in concurrent hardware may be broadly categorized accord

ing to the synchronization used at the global and the local levels. The global level involves

synchronizationbetween executionunits when they exchange data in a send/receive trans

action. The local level of synchronization is the synchronizationwithin a single execution

unit The notion ofan execution unit has yet to be defined, but here we state that an execu

tion unit is below the level of dataflow concurrency, able to compute only a single dataflow

firing at a time. Thus, local synchronization is within a single execution unit computing a

dataflow actor fiirmg, and global synchronizationis betweenexecution units.

Communication at either the global or local levels may be synchronous or asynchro

nous. For synchronous communication, both the sending and receiving hardware are

driven by the same clock signal, and so the steps in a communication transaction can be

mapped onto specific clock cycles of both the sending andreceiving hardware. For asyn

chronous designs [Meng90], the lack of a shared clock means that there is no guarantee on

the timing relationship between the sending and receiving hardware. This requires the

receiving hardware to wait until the data signals are known to contain valid data before

acting on thatdata. Similarly, thesending hardware must wait until thereceiving hardware

is known to have read the transmitted data before de-asserting that data from the data sig

nals or over-writing that data with new data.

Asynchronous circuit design can be effectively applied to digital signal processor

design where datapath elements communicate with one another in predictable ways

[Meng88] IMeng89a] [Meng91a]. Thiscan result in performance improvements oversyn

chronous designs where data- and instruction-dependent delay require the slowest opera

tions to determine the clock rate. The main motivation for moving to asynchronous design

is to remove the need for a global clock [Meng91a]. Additional benefits of asynchronous

design are that it decouples the block interface design from the block functionality design,
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and thaf it scales up to multi-chip module and board-level interconnect distances. While

asynchronous logic circuit design adds additional area and performance overhead, as well

as hanHshakft ckcuit design complexity, asynchronous logic circuits can be synthesized

automatically fromstatetransition graphs [Meng87] [Meng89b] [Hung90]. Also, suchcir

cuitscan be analyzed for testability [Beerel91] andtimed asynchronous circuits, whichare

bounded by timingconstraints, canbe synthesized more efficiently [Myers93].

Asynchronous communication requires additional signals shared by the sending and

receiving hardware, often in the form of two additional handshaking signals, send and

acknowledge, driven by the sending and receiving hardware elements respectively. The

sender first asserts valid data on the data lines, and after a sufficient amount of time to

ensure that the data signals are stable, the sender asserts a send signal that is visible to the

receiving hardware. The receiving hardware waits for the sendsignal to be asserted before

reading any data from the data signals. Once the receiver has read the data or taken appro

priate actionto respond to the data, the receiver asserts the acknowledge signal, which is

visible to the sender. The sender, after having asserted the send signal, waits for the

acknowledge signal to be assertedbefore de-asserting the data signals. Once the acknowl-

edgmsut has been observed, the sender de-asserts the send signal, which informs the

receiverthat the acknowledgment has been received and processed. Finally, the receiver

de-asserts the acknowledge signal, completing the communication transaction.

Because of the overhead involved with using asynchronous handshaking for communi

cation, it is of little value at the local level within a single execution unit. Because the

computation steps neededto complete a singlefiring areusuallystatically defined and take

a constant amount of time, there is usually no need for multiple clock signals within a sin

gle execution unit. Therefore, we determine that our form of control will be locally syn

chronous.The form of synchronization at the global level still needs to be selected, and is

discussed in the following subsections.
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2.6.3.2 Globally Asynchronous Hardware

Globally asynchronous hardware allows separate execution units to run on different

clock signals, butstill allows them tocommunicate with one another. This can beuseful in

situations where the tasks being performed by the execution units take an unpredictable

amount of time to complete. It may also be useful where execution units operate at very

different rates and it is more cost-effective to drive them with different clocks than to

divide down one master clock for the slower execution unit. Operating some execution

unitswith a slowerlocal clockcan reduce powerconsumption. Another benefit of globally

asynchronous hardware isthat the problem ofclock distribution over a large circuit is sim

plified, so that clock signals do not need to be coherent throughout the circuit in order for

it to function properly.

These benefits may be most appropriate when the semantics of the specification are

those of dynamic dataflow. Dynamic dataflow requires asynchronous data rates between

actors, so that globally asynchronous hardware would seem to be appropriate. Dynaimc

dataflow can beimplemented with globally synchronous hardware, where execution units

idle inwait states during periods of waiting for data to be available for reading, as in the

use ofblocking reads. If execution units idle when waiting for storage to be available for

writing results, as inblocking writes, then deadlock may be introduced. The questions of

bounded execution time and bounded storage requirements for djuaimc dataflow graphs

are undecidable already, and introducing blocking writes can further complicate the analy

sis.

The additional overhead of handshaking signals andcircuitry mustbe weighed against

the potential benefits ofasynchronous communication. The main motivation for exploring

globally asjmchronous designs in the past was the concern that clock distribution in large

designs would become more difficult and that clock skew would increase with clock speed

and technology scaling, which would in tum limit system throughput [Meng91a]. Clock
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skew occurs when the phase ofa global clock signal varies significantly throughout a large

design due tothe long distances over which the signal is routed and the variations in loads

and capacitances throughout the system. This can cause otherwise synchronous systems to

become desynchronized, resulting inincorrect behavior. Because this isan important issue

in all areas of large-scale digital design, much effort has been applied to minimize this

problem, with some success. Designers now have techniques for effective clock distribu

tion design [TsayQS] [Chou95] [Tellez97]. Two ofthe main techniques are the generation

of balanced-tree clock routing, and the insertion of buffers in the clock distribution net

work. Designers are also able torefine these methods further inorder toreduce both power

consumption andpeakcurrents [Xi97] [Benim97].

2.6.3.3 Globally Synchronous Hardware

For globally synchronous hardware, all events in the system are mapped onto cycles of

a single global clock, which can simplify the control stmctures necessary. An asynchro

nous communication protocol may bemapped onto synchronous clocked hardware. Hand

shaking signals and logic may be synchronized to the clock, or even eliminated, but the

events in the system must be able to map onto transitions of the same clock. The master

clock must be distributed across the hardware implementation so that the signal is not

skewed fix>m onepartof the system to another, which would cause otherwise synchronous

events to be misaligned in time, producing logic errors. Forsmaller hardware designs or

sufficiently slower clocks, this issue is avoided.

When implementing designs specified in synchronous dataflow, the fact that the data

rates on all arcs in the graph are rational multiples of one another allows them to be

mapped onto transitions ofa single clock signal. If the further restriction is added that all

token transfers be evenly spaced in time on each edge, then the global clock rate is the

least common multiple of all the token transfer rates, which can be large. This is the
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approach taken in ADEN/Combox, described in Section 2.5.1. This simplifies some analy

sis, but is not necessary, as communications of tokens canbe accomplished with less rigid

timing while Still mapping them onto transitions of the same clock signal, as is done in

work by Horstmannshoff, described in Section 2.5.3. This is possible, without any mis

alignment or the need for any periodictiming adjustment, due to the relationships among

data rates.

If the time for a dataflow firing to be computedis non-constant, then other portions of

the system may need to be stalledto waitfor the slowercomputation to complete. This can

be accomplished by temporarily turning off the clock to the other parts of the system or

sending those otherexecution units into wait states until the slow computation is finished.

In many cases, the time to compute all firings can be fixed or bounded in advance, and so

there is no need for any additional stalling control logic or signalling. The lower cost of

globally synchronous designs, as well as the deterministic timing from SDFdesigns with

fixed computation times, makes globally synchronous hardware preferable to globally

asynchronous hardware, and so we have chosen to restrict ourselves to globally synchro

nous design.

2.6.3.4 Globally and Locally Synchronous Control

The type of hardware obtained from this methodology is that of a clocked, globally-

synchronous circuit. With the addition of handshaking signals for communication events,

a locally-synchronous, globally-asynchronous circuit realization is also a possibility. In

the globally sjmchronous case, a single clock must be distributed to all the computation

entities, or control signals that arederived from thatclock. Some entities will beexecuting

at widely-varying rates relative to one another, so the clock may in turn be divided down

into sub-clocks of appropriate rates depending onthefinal timing selected for thesynthe

sized system.
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Because the semantics of SDF are synchronous and static, a single, fixed control

schedule can be determined prior to synthesis. No branching can take place within SDF

semantics, although branching within actorfirings is allowed. Theworst-case durations of

computations are assumed to be data-independent so that the absolute timing of control

does not need to vary jfrom iteration to iteration.

Because the logic of the controller is non-branching, it is not necessary to construct a

generalfinite-state-machine (FSM) model for the controller. Instead, it is sufficient to gen

erate a much simpler sequencer for regulating the timing of all control events relative to

the predefined, fixed computation schedule.

2.7 Synchronous Dataflow Architecture Design

2.7.1 Existing Approaches to Buffer Synthesis

When generating software implementations from SDF graphs, often the communica

tion is mediated through buffers allocated for each arc. In the generated program code,

these buffers are usually specified as indexed array data structures. The size of the buffers

is determined by the particular schedule as well as the chosen indexing scheme that is

beingapplied. For hardware implementations, storage mustbe exphcitly specified as vari

ables or memory locations, unless the synthesis tool being targeted is capable of mapping

array references onto intemal hardware registers. Another altemative is to co-synthesize

the hardware to work with a separate RAM memory module. This requires special inter

face synthesis in order to access storage that is outside of the synthesized datapath and

controller. Some tools are capable of these techniques for memory management. "Visual

Architect from Cadence allows tradeoffs between using registers and memories, with user

control over partitioning between the two. This tool also allows the inclusion of user-

defined memories with complex interfaces in the behavioral synthesis methodology.
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Figure 2.10 Model of data exchange between dataflow actors. The general
dataflow model has unbounded first-in, first-out (FIFO) queues
between communicating actors.

Behavioral Compiler from Synopsys allows memory reads and writes to be specified in

the behavioral HDL code as array accesses. This behavioral synthesis tool can schedule

memory JJO operations onto control steps, resolving contention. This tool also allows

tradeoffs between specifying single- and multi-ported memories by interpreting additional

non-standard pragma attributes added by the user within the input HDL code.

2.7.2 SDF Communication Channels

Fundamental to the SDF model of computation is the communication model. In the

denotational semantics of SDF, eachedge in the graph represents a signal that is a totally

ordered set of events with each event containing a token value. One way to model the

edges isascommunication chaimels with first-in, first-out (FIFO) queueing behavior. This

is shown fora single communication channel inFigure 2.10. Aconsequence ofthis queue-

ing is that that are produced in a certain order at the source node will be received

and consumed at the sink node in the same fixed order. This is consistent with the total

ordering of events on each signal in the denotational semantics. However, ordering of

events on signals does not imply that events are ordered in time. If two firings ofthe same

actor have nodata dependencies between them either directly or indirectly, such as two fir

ings ofthe same stateless SDF actor, then these firings may be executed at the same time

or even out oforderwithrespect to the signal event ordering.
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Size = Nf

Figure 2.11 For a given PASS, the FIFO can be impiemented as a finite
buffer. The buffer size is bounded by the total number of tokens
transferred in one Iteration,

Because the production and consumption rates on ports ofSDF actors are fixed and

known in advance, the firing rates of all actors can be determined so as to keep the com

munication buffer sizes in balance. For each communication channel, the value of

Nt = qA'fn = qs-n (2-7)

gives the number oftokens transferred on an edge during one complete schedule iteration.

The values of and q^ are the numbers offirings ofactors Aand B, respectively, inone

schedule iteration. The values of m and n are the numbers of tokens produced and con

sumed byeach firing ofactors A and B,respectively. An iteration isdefined asa nonempty

set offirings of actors such that the buffers are returned to their initial state, meaning their

original token occupancies. This makes it possible to determine a maximum, fixed buffer

size, which is shown in Figure 2.11. If buffer locations are re-used during an iteration, the

size of the buffer can be smaller than iV,. Depending on the particular graph and the

scheduling technique applied, thebuffer size may be much smaller than .

For thecase of static scheduling of SDF graphs, theFIFO channels become buffers of

fixed sizes. If the buffer size is then each buffer location corresponds to a particular

token transferred. In addition, the relationships between specific buffer locations andtheir

source andghilc firings areknown. A direct way ofviewing these dependencies is shown in

Figure 2.12. Byrotating the buffer by90 degrees and expanding each actor into itsassoci-
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Figure 2.12 In a sequential execution style, tokens are written into the
bufferby actor Ain a precise sequence, in blocks of size m and
read in sequence by actor B, in blocks of size n (a). However,
other execution styles are consistent with the denotational
semantics (b). It is apparent from the data dependencies that
firings of the same actor need not be executed sequentially, or
even in numerical order (c).

ated firings, it can be clearly seen which source firings produce specific data, and which

sink firings consume that data. This view uses a regular array data structure to portray a

portion of the precedence DAG in detail.

Because tokens are written into the channel in a specific order by the firings that pro

duce them, they can be identified uniquely by that ordering. More than one firing may read

a given token value from the buffer, as will be seen later, but the firing that produces a

given toksQ. is unique. In addition, the ordering in which a source firing writes multiple

tokens into the channel ispreserved once they are written, so that they are read inthe same
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Figure 2.13 The tags of tokens In a given channel are totally ordered and
can be uniquely identified by the order in which they are written
into the communication channel queue in the sequential execu
tion case. An actual implementation may produce and consume
the tokens in parallel or out of order, but the token identities
remain the same.

order by downstream consumer firings. If we choose to number the produced tokens with

integersincreasingfrom zero, we can refer to specific tokensby their index, as is shown in

Figure 2.13. We can also easily determine which firing produced a given token by the

token number and the count of tokens produced on each firing. Identifying which firings

read the token is similar, but becomes more complicated in certain cases, as will be seen

later.

2.7.3 Communication-Driven Architectural Styles

2.7.3.1 Planar Structure

The inherent structure of SDF can be a guide as to what architectural styles of imple

mentation to consider. When airanged spatially, the firings and communicated tokens form

the beginnings of a structure that can guide the eventual choice of an architectural style.

An example of this structure is shown in Figure 2.14. There are two major spatial axes.

Along one axis, a producer firing generates tokens, which pass through interconnect or

intermediate storage, which in turn passes the tokens on to consumer firings. Along a per

pendicular axis, sequences of producer firingsare aligned side-by-side, in increasing index
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Figure 2.14 The local structure of the precedence graph between two sets
of actor firings suggests a planar architectural structure.

order. Thefirings need notbe executed in actual index order in time, andthey may even be

executed by shared hardware resources in the final implementation. Similarly, consumer

firings are also aligned in sequence order. In between, communicated tokens can be

arranged in index order, again regardless ofthe temporal order in which they are produced

and consumed in theeventual implementation. What emerges from this conceptual view is

a two-dimensional planar structure that can guide the mapping to an unplementation

architecture. This structure corresponds to the geometry of the eventual layout, which is

planar in current integrated circuit technologies. This stmcture as described is local to

each pair of actors that communicate. The larger structure will be similar to that of the

SDF graph, with these local planar structures as elements. The final structure will likely

not be a one-to-one mapping of this local planar structure, but it can be a tiling of this

structure mapped onto a smaller structure.

2.7.3.2 General Resource Sharing

One way to approach the design of an architecture from a set ofactor firings and data

tokens is to allow general and arbitrary resource sharing. Additional interconnect and con-
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trol provides the support for sharing resources in this way, mapping the individual firings

and tokens onto a smaller number of EXUs and registers. In this architectural style, firings

can be implemented in their own execution units (EXUs) in hardware, or they can share

EXUs with other firings. An EXU is defined as performing the firings mapped to it

sequentially, so firings that share an EXU are executed in nonoverlapping time intervals.

Firings need notcome from the same actor or even be similar in order to share an EXU.

The execution model of an EXU is that signals are presented and held steady at the inputs,

and a certain amount of time later the outputs become available.

For communication, tokens are mapped to buffer locations in the implementation

whereintermediatestorageis needed. If it is not needed, then data maypass from the out

puts of one EXU directly to the inputs of another without being latched. This latter situa

tionwill require the source EXUto hold its outputs steady until the downstream EXU has

completed its execution, unless the downstream EXU latches its inputs intemally. By

default, we assume that EXUs do not latch their inputs intemally.

In general, allocating one buffer location for each token transferred on a given arc is

inefficient. If tokens are mapped to registers, then those registers can be resource-shared

with other tokens for which the registers have sufficient bitwidth and at times when the

registers are otherwise not in use. During the execution of one iteration of the dataflow

graph schedule, the tokens transferred each have lifetimes spanning from thetime they are

written to the tinie they are last read. If the lifetimes of two tokens are non-overlapping,

then they can be communicated through the same buffer location with the addition of a

multiplexor andcontrol forthatlocation, as inFigure 2.15. However, because thelifetimes

of tokens are not yet known but will be determined by the parallel schedule, rnininiizing

buffersizes beforehandwillplace additional constraints on the architecture andon the per

formance that is possible.
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Figure2.15 Two tokens with non-overlapping lifetimes may share the same
buffer location.

2.7.3.3 Buffer Minimization

Previous workthat treats buffer miriiiiiization [Bhattacharyya96] is aimed at minimiz

ing code size and buffer storage for single-processor software synthesis. Since dataflow

graphs execute sequentially when running on a single processor, this work deals mostly

with constructing sequential schedules for code size and buffer size minimization. Still,

some of the results can be extended to parallel execution. We will first examine these

results for sequential schedules- This previous work assumes that all tokens are transferred

through some buffer location between the source firing and the destination firing. Follow

ing our examination, we show that parallel schedules can do no better than sequential

schedules, underthe same assumption andwithadditional restrictions.
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The upper bound on the number of buffer locations that might be needed is easily

detemoined from the total numbers of tokens transferred during a complete execution of

the sequential schedule. In this case, one location is allocated for every token that is trans

ferred, plus additional locations for the delay tokens on each edge of the graph. For a

sequential schedule S,the expression for the total buffer requirements with no buffer shar

ing is

bufUnshared(S) = +delie^) (2-8)
«i

where are the edges in the graph, Njie^) is the total number of tokens transferred on

edge , as determined by Eq. 2-7, and delie^) is the initial number ofdelay tokens on the

edge.

A more efficient buffering model can be obtained by applying buffer sharing. Buffer

sharing can be used on each individual edge, or on all edges in the graph collectively. If an

individual buffer is allocated for each edge, then the number of buffer locations can be

determined by finding the maximum number oftokens that are on the edge atany one time

during the execution of the sequential schedule. The total buffer requirements are then

given by

bufEdgeShared{S) = s(2-9)

where we are maximizing over all ofthe firings Sj in the sequential schedule S.The func

tion tokensie^y sp gives the number of tokens on edge e,- after executing firing sj of sched

ule S ~ 5" • ,
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Figure 2.16 A simple SDF graph, taken from Figure 3.1 of
[Bhattacharyya96].

The greatest degree ofbuffer sharing can be applied when all tokens on all edges share

one global buffer. Different edges may reach their maxima at different points in the

sequential schedule, leaving opportunities for sharing among the edges in the graph

throughout the schedule. The buffer requirement for this global sharing is

bufGlobalShared{S) = Sj)^ (2-10)
^ «/

where we are maximizing over the whole sum at each firing instead ofjust over each edge

as in Eq. 2-9. To produce an implementation that used global buffer sharing would require

a design that mapped each token to an available register or memory address so as to

achieve the Tnininmm. Some techniques for register and memory sharing are discussed in

Section 2.6.2.

To illustrate the effects of buffer sharing, an example is taken from Figure 3.1 of

[Bhattacharyya96], which is the simple SDF graph shown in Figure 2.16. The smallest

possible balanced schedule of this graph has two firings of actor A, three firings of B, and

three firings of C. There are many correct sequential schedules that satisfy these repeti

tions. Two ofthem are SI:AABBBCCC and S2: BCABCABC. The buffer requirements for

this graph will depend not only on what type of buffer sharing is used, but also on what
schedule is executed.

For ofthese two schedules, the buffer requirements for each edge throughout the

execution ofthe schedules isshown inTable 2.1 and Table 2.2. From these tables it isclear
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Table 2.1. Buffer requirements during the execution of a schedule.

init A A B B B C C C

el 2 5 CD 6 4 2 2 2 2

e2 0 0 0 1 2 CD 2 1 0

sum 2 5 CD 7 6 5 4 3 2

Table 2.2. Buffer requirements during a different schedule.

init B c A B C A B C

el 2 0 0 3 1 1 CD 2 2

e2 0 CD 0 0 1 0 0 1 0

sum 2 1 0 3 2 1 CD 3 2

that bufferrequirements will depend on the particular schedule used as well as the buffer

sharing scheme. For no buffer sharing, both schedules produce thesame values for on

each arc. Eq. 2-8 gives bufUnshared{S) = 11 for both schedules. For buffer sharing

within edges, Eq. 2-9 gives bufEdgeShared{S\) = 11, which is equal to the maximum,

and bufEdgeShared{S2) = 5. If global buffer sharing is applied, Eq. 2-10 results in

bufGlobalShared(Sl) = 8 and bufGlobalShared(S2) = 4.

Some additional results from [Bhattacharyya96] are also of interest. The authors

define a problem, HSDF-MIN-BUFFER, which is as follows. Given an arbitrary homoge

neous SDFgraph(onewith the sametokenrateson all ports) anda positive integer K, the

problem is to determine if there exists a valid sequential schedule for the graph that has a

total buffering requirement of K or less, assuming separate buffers on each edge. It is

proven thateven thisproblem is NP-complete, andso is intractable forgeneral graphs.

A heuristic is given where a graph is scheduled by determining the set of fireable

actors at each step and selecting one to fire that is not deferrable. An actor is deferrable if

88



any of its output edges has sufficient tokens for a downstream actor to be fired. The actor

that is selected is to be the one that increases the total token count on all the edges the

least- While this algorithm does not always produce the minimum buffer usage, it pro

duces sequential schedules that areclose to optimal in general.

Another result given is for the simplifiedcase of a 2-actor SDF graph with one edge

where the first actor produces a tokens and the second actor consumes b tokens fi:om the

edge. The edge has d initial tokens, and the value c = gcd{a, b) is the greatest common

divisor of the production and consumption rates. It is proven that theminimum buffering

required ofall valid sequential schedules isa+ b- mod{d, c) if 0<d<a +b-c and d oth

erwise.

While the above results pertain to sequential schedules, it can be shown that parallel

schedules cannot do any better as far as saving buffer space. Again, we assume that all

tokens are transferred through some buffer location between the source firing andthedes

tination firing. Thatbuffer location could beimplemented as aregister, amemory location,

or as a wire. As noted in Section 2.7.3.2, if the buffer location is implemented as a wire,

then the source execution unit will have to hold its outputsteady until the token valuehas

been read. The mam requirement is that the buffer location is implemented as a structure

that is capable ofholding adata value until that value isno longer needed. We also assume

that in a parallel schedule, tokens are not consumed until a firing has completed, atwhich

time any produced tokens are simultaneously created. This is because in physical imple

mentations, inputs often need to be held until a computation is completed, at which

timft the bufferspacefor those inputs may be safely freed.

Ina parallel schedule, some firings may occur atthe same time, but those that do not

happen simultaneously will have an ordering relationship in time with one another. Any

two firings that do not occur simultaneously have the same effect as if they were executed

in a sequential schedule.
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For simultaneous firings, we only need to consider three cases. For two simultaneous

firing completions, tokens are written at the same time, which will always consume more

buffer space than either ofthetwo firings alone. The result is equivalent to that ofperform

ingthe write operations sequentially, back-to-back in either order.

Fortwo simultaneous readoperations, the fact thattwo firings are eligible tobe fired at

the same tirnft means that one of them may have been eligible to be fired beforethe tokens

were produced that enabled the other. The result oftwo simultaneous reads isequivalent to

that ofperforming the read operations sequentially, inorder offiring eligibility.

The third andfinalcase is for the simultaneous production andconsumption of tokens.

For a read operation to be eligible to proceed at the same time as a write operation, the

buffer locations that the read operation depends on must be separate from the buffer loca

tions filled bythe write operation. Since there are no mutual dependencies, this isequiva

lent to a sequential schedule that performs the two firings ineither order.

To summarize, sequential firings in a parallel schedule have the same effect on buffer

space as sequential firings in a sequential schedule. Parallel firings in a parallel schedule

can occur in three cases, each of which is equivalent inbuffer usage toa sequential pair of

firings ina sequential schedule. Because ofthese equivalences, parallel schedules can do

nobetter asfarasreducing maximum buffer consumption than sequential schedules can.

In this section we have discussed buffer minimization independent of other design

goals. Inthe next section, we consider the effect ofbuffer sharing on the schedule and per

formance.

2.7.3-4 Effects of Buffer Sharing on Performance

Figure 2.17 shows a simple SDF graph with corresponding precedence graphs. The

total number of tokens transferred in one iteration is 6. The smallestbuffer size that can be

obtained bya sequential schedule is4. If 4 buffer locations are allocated for this arc, then
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(a) , <F=2

(b) (c)

Rgure 2.17 An SDF graph (a) with Its precedence graph (b), and its simpli
fied precedence graph (c).

two of them must be reused. One way to model limited buffer resources for the arc from A

to B is to add an additional arc from B back to A with a finite number of initial tokens on

it. The SDF parameters on this second arc match those for the original arc for each actor.
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(a)

Figure 2.18 A new precedence graph (a) for execution of the SDF graph
shown In Figure 2.17 under buffer constraints, with 4 locations
allocated. The corresponding precedence graph (b) and simpli
fied precedence graph (c) are also shown. The new precedence
graph has a critical path of 4 firings.

Figure 2.18 shows a new SDF graph with this additional feedback arc. The initial

tokens on the feedback arc limit the number of firings of A that are enabled before actor B

must be fired. In order to fire, actor A must have at least two tokens available on its input.

This represents the requirement for there to be at least two buffer locations available for

actor A to write to, and that two locations are consumed by each firing of A. Only four

tokensin all are available, and oncethey are consumedby actorA, actorB mustbe firedin

order to produce three new tokens for actor A. Thismodels the behavior of each firing of

actor B fiseing three buffer locations that actor A can then use.

The result of buffer sharing is that new precedence constraints are added to the prece

dence gn^h. Firing A3 mustwaituntil firing B1 has completed in orderto have sufficient

input tokens (outputbufferspace) available to proceed. This adds another precedence arc

from firing B1 to firing A3. The precedence graphin Figure 2.17, with no buffer sharing,

had a critical path of only 2 firings. The new precedence graph at the bottom of Figure
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2.18, as a result of buffersharing, has a criticalpath of 4 firings. The additional precedence

constraints that arise from buffer sharing result in a critical path length that is at least as

long as that of the original precedence graph. Buffer sizes can be traded off against the

other goals of the system synthesis process, such as improving EXU area, timing, and

power.

2.7.3.5 Resource Sharing of Sequenced Groups

An alternative to a general resource-sharing architectural style is one that doesn't

allowthe same generality but uses the regularity of the SDF precedence graph to devise a

more regular architecture. By exploiting this regularity, it may be possible to derive some

savingsin the interconnectbetween EXUs and registers, as well as a simplification of the

control structure. By making use of the fact that there is concurrency not only among

actors in the SDF graph, but potentially among firings of the same actor, as well as among

communications of tokens on the same arc, groupings of parallel structures in the architec

ture can be plaimed out.

In the general resource-sharing scheme mentioned above, individual firings and tokens

are mapped to shared EXUs and registers, respectively. There are no restrictions on which

firings share EXUs or on which tokens share registers. As an altemative, we can choose to

map only sequenced groups of firings to sets of parallel EXUs. In the sequenced group

style of architecture design, a set of sequential firings of one SDF actor will be mapped to

a similar group of comparable EXUs. The EXUs need not be arranged adjacently in the

layout, but it may lead to area efficiencies if they are. If there are morefirings of the actor

than there are EXUs in the grouping, then the remaining firings can be mapped to the

group of EXUs again in sequence, starting over from the beginning of the group and

counting to the end of the group. In this way,groups of sequential firings of an SDF actor

can be executed in parallel, provided there are no feedback loops from the actor to itself.
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This style allows some of the firing-level parallelism to be exploited, but not as much

asin the general resource-sharing approach. Theadvantage is in the regularity of the map

ping, as well as in the regularity and compactness of the interconnect, as will be seen.

Sequenced groups oftokens are also mapped toa bank ofadjacent registers. Consumer fir

ings can similarly bemapped in sequenced groups to parallel EXUs that read those regis

ters.

Thisstyle could be arrived atby imposing group structure to the general resource-shar

ing style mentioned above, but by beginning with the mapping of sequenced groups in

mind, someof thecomplexity of thegeneral mapping approach is reduced in exchange for

some constraints on the schedule and the architecture. In sections that follow we will

explain and compare these two styles ofdesign and see how they influence the implemen

tation results.

2.7.3.6 Choice of Resource Sharing Approach

The general resource-sharing style has the fullest freedom interms ofmapping firings

to sharedEXUs and tokens to shared registers. Since firings are treated individually, there

is no additional constraint on scheduling, as long as an EXU is available at the desired

time. To support »hi<; architectural style, additional intercoimect, control, multiplexors, and

registers may be required ascompared to the sequenced group style.

Tn using die sequenced group architectural style, regular patterns in the computation

representation ofthe precedence graph are mapped into parallel groups ofEXUs and reg

isters in the architecture. By doing the mapping in this way, grouped operations are syn

chronized together in a way that they are usually not in the general resource-sharing

approach. This group mapping has a direct impact in limiting scheduling freedom. The

potential benefit is that the regularity ofthe architecture can result ina simpler, less expen

sive implementation by reducing the cost in intercoimect, multiplexors, and registers.
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Since hardware cost is an important driving factor in design once performance require

ments have been met, it may prove worthwhile to trade some of the broad flexibility in

scheduling that comes with the general resource-sharing approach in exchange for the

reduced cost of the sequenced group approach.

In a certain sense, in designing an implementation of an SDF graph in a hardware

architecture, we are seeking to find an appropriate structure to connect actor firings and

data tokens with a reasonable interconnect overhead. Without having a fully-coimected

architecture, the control stmcture must rearrange the available cormections, or move the

data around the architecture, or do some of both. If a token, once latched into a register, is

not shifted around, then for it to be accessible to destination firings, the control stmcture

must shift the input connections of the EXUs that perform those firings to read from the

correct register. To reconnect the inputs and outputs of EXUs with various registers, multi

plexors with additional control signals can be employed.

In contrast, it may be more appropriate instead to shift the token data through registers

in order to get the required tokens to line up with the inputs to the correct EXUs. For larger

numbers of registers, an addressable memory can be more compact but has a slower access

time. Data can be shifted ^ound through chains of connectedregisters, or it can be moved

through more complicated register intercormections. There are two advantages in using

shift registers to implement these cormected storage groups. One is that efficient imple

mentations of shift registers exist, which can yield savings over general connections

between individual registers. Another advantage for SDF is that the movement of data is

analogous to the movement of data in the model, and that having data shift through

sequential register stractures allows the consumer firing EXUs to "scan" through the

stream of data emanating from the source firing EXU.

For these reasons, and because of specific instances of reduced hardware cost that will

be seen in Section 2.7.5, resource sharing of sequenced groups shows promise as an
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Figure 2.19 An interface model of a hardware FIFO.

approach to hardware design from SDK At the same time, we will want to reserve the

option of using general resource sharing when scheduling requirements demand it.

To implement sequenced groups of tokens on dataflow arcs, FIFO register structures

would seem to be a natural first choice. The adjacency of sequenced token data in writing

to a FIFO and in readingfrom it is favored by the tokenindexordering of SDKIn the fol

lowing section, we will lookat ways of using FIFOs andsimilar regular register structures

to implement SDF semantics.

2.7.4 Using FIFOs to Implement Dataflow Arcs

Since one intuitive model of communication in SDF that preserves token ordering is

the FIFO queue, using hardware implementations of FIFOs seems like a natural choice.

However, while FIFOscanprovide a straightforward implementation of SDFgraph edges,

they also impose some significant restrictions onthe overall implementation. An interface

model of a hardware FIFO is shown in Figure 2.19. The FIFO has single input and output

ports for data, and its use may considerably simplify the interconnect in comparison to

having an equal number of individual buffer registers. Individually, each register would

need separate input, output, and clock connections, aswell asaninput MUX inthecase of

resource sharing. Like a single buffer register, the FIFO requires an input signal

QUEUE_E)ATA for controlling the loading of new values into the queue. At the output

end, there is also a DEQUEUE_DATA signal for when data is read so that it can be
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removed from the queue. These two signals may be generated by the controller, or they

may come from the source and sink hardware actors connected to the FIFO in the asyn

chronous design case. For an implementation of the FIFO that uses a shift register, the

QUEUEJDATA and DEQUEUE_DATA signals are tied together and connected as the

clock inputs toall the internal registers, causing ashift by one on each clock edge.

Forasynchronous design, the source actor and the sink actor of the FIFO may operate

asynchronously. Because the FIFO isofa finite size, it can become fiill if the source actor

fires a sufficient number of times without the sink actor firing and pulling data from the

FIFO tofree up space. To handle this circumstance, a mechanism isneeded tothrottle the

production ofdata by the source actor. One way ofachieving this is to have an additional

status signal from the FIFO back to the source actor that indicates when the FIFO isfull so

that the source actor will wait and not attemptto overflow the FIFO buffer.

The use of hardware FIFOs to implement SDF graph edges imposes certain restric

tions on the restof the implementation. The most natural completion of the implementa

tion style is to have also individual hardware elements implement each of the SDF actors

inthe graph. This choice ofone hardware element for each SDF actor and each SDF edge

is a restrictive, literal translation of the SDF graph structure into an analogous hardware

structure. This mapping is but one choice of resource allocation, and it may not be the

mostefficient one. In the following sections, we explore a range of options for synchro

nously-clocked FIFOs. Some ofthese variations allow awider range offreedom inthe rest

ofthe design, and the most flexible options may bear only a slight resemblance to the ini

tialconception of a hardware FIFO shown in Figure 2.19.

2.7.4.1 Single-Input, Single-Output

We begin by considering a siinple FIFO register queue, with one input data port and

one output data port. Figure 2.20 shows a two-actor SDF graph with a single edge, trans-
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Figure2^0 A simple SDF graph, with its dataflow parameters and repeti
tions counts.

length = 10

EXU A

CLKJ

Figure 2.21 An implementation using a single-input/single-output FIFO.

ferring 10 tokens in one schedule iteration period. Figure 2.21 shows an implementation of

this SDF graph using a single-input, single-output FIFO. Aclock input provides the mech

anism forcontrolling the shifting of dataforward in the queue. On each rising edge to the

clock input, the first register location is loaded from the data input and all the data already

in the FIFO is shifted by one location in the direction of the output port. The value that

was at the last location before the shift is overwritten and lost when the shift occurs.

The use of this structure imposes certain restrictions on the execution units that are

connected at the input and output ports of the FIFO. Because this structure has only one

input and one output port, only one data item can be shifted into or out ofthe FIFO during

any single clock cycle. For SDF actor firings that produce orconsume multiple tokens ata

time, this TTiftans that groups of tokens must be shifted into or out of the FIFO over the

course ofmultiple clock cycles, which may in turn restrict the scheduling offirings on the

EXUs. If the FIFO is clocked periodically, then the source EXU must maintain periodic

output ofdata inorder to keep the queue full ofvalid data. Similarly, the sink EXU must

keep up with the periodic reading ofinput data inorder to prevent data from being lost by

spilling from theendof theFIFO without being read.

EXUB
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Figure 2.22 An implementation with multiple inputs and outputs to the
RFC.

Both the limitations on dataportsandthe pattern ofclocking, while natural choices for

a firstconceptof FIFO hardware for SDF, restrict designs thatusesuchFIFOs. In the sec

tionsthat follow, we adopt modifications to this restricted case that improve the utility of

FIFOs while only moderately increasing their hardware and control cost.

2.7.4.2 Multi-Input, Multi-Output

If we allow multiple, parallel inputs to the FIFO as well as multiple outputs, then the

input/output pattern of the EXUs can be more freely defined. Firings that produce and

consume multiple inputs and outputs simultaneously can be implemented and connected

to such a FIFO without the requirement that each token be shifted in or out on an individ

ual clock cycle. This allows more flexibility in scheduling filings for execution by EXUs.

The use of this type of FIFO to implement the SDF graph from Figure 2.20 is shown in

Figure2.22. In this example, five token values can be loaded into the first five locations at

the same time.

This flexibility comes at the cost of greater hardware area, since the routing of more

input and output lines is required, as well as a wider spacing between the registers within

the FIFO that have the additional input and output connections to the outside. If we are

willing to take on this added costfor the sake of the benefits in timing, we may want to

allow the design of FIFOs with inputs andoutputs at arbitrary locations (Figure 2.23), and
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Figure 2.23 Multiple EXUs have access to various locations withinthe FIFO.

notjust in single blocks at theextreme ends. This can allow notonly thereading and writ

ing of the tokens for an entire firing simultaneously, but also the reading and writing of the

tokens for multiple firings on varying cycles.

2.7.4.3 FIFO Size Reduction

An important consideration in minimizing the cost ofthe FIFOs is that they need not

be of a length sufficient to store the full number of tokens for an entire iteration of the

schedule. With continuously available input and output in the FIFO structure, the size of

the FIFO can be made much smaller than the total number of tokens transferred on the

SDF arc in one iteration. The size of the FIFO must be at least as large as the largest num

ber of tokenssimultaneously written to or read fromtheFIFOon anyone cycle. The same

EXUallocation andmapping of firings toEXUsthat is usedin Figure 2.23 is usedagain in

Figure 2.24, only with a FIFO of size 6 instead of 10. The minimum size of 5 is setby the

number of tokens transferred in either firing of actor A, but we use a FIFO of size 6. In

practice, we wUl seethatit canbehelpful to have a certain amount of additional capacity

above this TniniTnnm. This allows us to carry over remaining tokens from previous write
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Rgure 2.24 With appropriate arrangement of the output lines from the FIFO,
the FIFO size can be reduced.

operadoiis and include them in succeeding read operations, along with other tokens pro

duced at later times.

2.7.4.4 RFO Clocking

Another modification to our initial concept of a FIFO for use in SDF implementations

is in the clocking scheme.Because all of the data rates withinan SDF graph are synchro

nized with one another, in terms of the relative rates of data flow, it may seem natural to

continuously clock each FIFO with a fixed periodic clockof a rate proportional to the rate

of data flow on the arc. In pr^tice, this results in restrictions on the scheduling of the

EXUs that write to and read from the FIFO. The effect is like that of a continuously-mov

ing conveyor belt that relentlessly rolls forward and requires the entities at either end to

timft their actions to the pace of the belt, hi order to read multiple tokens from the FIFO,

additional registers mustbe added to the input of the consumer EXU. Thismustbe done

so that the data can be "grabbed" as it shiftsby, andthenheldfor longerthanone cycle as

maybe necessary in order to satisfythe hold time of the EXU inputs.
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Figure 2^5 By rearranging the view for a top-to-bottom flow, the full set of
dependencies is seen, which covers multiple firings on the
EXUs. The FIFO behavior is de-emphasized.

Ifwe design the control ofthe clock input in amore sophisticated way, we can time the

inputs and outputs more carefully. An additional benefit ofnot clocking the FIFO continu

ously is in the savings ofpower that results from not needlessly shifting data more than is

necessary. In doing so, the FIFO becomes less of a periodically-clocked queue, and

instead is used as an intermittently-clocked shift register, as emphasized by the view in

Figure 2.25.

2.7.4.5 Comparison to Other Approaches

An example ofwork that deals with similar issues in generating hardware from data

flow graphs isby Zepter and others, which resulted in the ADEN progrsm for VHDL gen

eration and the ComBox library of components [Zepter94]. This is discussed in more

detail in Section 2.5. In the technique put forward by these authors, the implementation

style uses sin^e-input, single-output FIFO register chains between EXUs that implement

actor firings. An additional constraint is that each actor in the dataflow graph is always

mapped toan individual EXU dedicated to that one actor. The timing ofthe input and out

put ofeach FIFO, and also the inputs and outputs of each EXU, must be fixed and peri-
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odic.The authors worked within theseconstraints to carefully describe specific timing and

buffer requirements, but also state inmore recent work that these restrictions may limit the

implementation more than is necessary [Horstmannshoff97]. While this method preserves

the concurrency of dataflow at the functional level across actors, it does not take advantage

of thedataconcurrency across repeated firings of the same actor, and it does not allow for

resource sharing among firings of different actors.

2.7.4.6 Resource Sharing of Sequential Firings and Tokens

Resource sharing of sequential groups of firings and tokens to EXUs and registers,

respectively, is promising as an intermediate approach. This approach lies between the

general resource sharing approach and the constrained mapping used in ADEN/ComBox.

The general resource sharing approach maps all firings and tokens individually and

attempts to minimizehardwareand interconnectby discovering a favorable mapping. The

ADEN/ComBox approach constrains each actor to be mapped to its own EXU and each

arc to be mapped to its own single-input/single-output FIFO.

In the next section, we will look at a series of design examples and see how general

resource sharing and resource sharing of sequential groups compare. Comparisons will be

made in terms of interconnect and resource usage as well as comparisons of timing.

2.7.5 Comparison Examples / Case Study

In this section, we look at a specific, smaU example of implementing an SDF graph

with both a FIFO style and with general register sharing. Observations that are made along

the way will guide improvements to these designs. These changes ultimately lead to a

design style that sharesaspects of both original styles, which is themapping of sequential

groups.
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Figure 2JZ6 A small multlrate SDF system.
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Figure 2S17 An Initial design that uses a full-length FIFO, along with the
schedule and resource requirements.

In Figure 2.26, the same SDF system as in Figure 2.20 is shown again. The SDF

parameters ofthe actors are 5 and 2. Since these numbers are mutually prime, the repeti

tions rates are determined to be 2 and 5, with a total of 10 tokens transferredper schedule

iteration. InFigure 2.27, a first cut ata hardware design is shown that uses a FIFO offiill
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length, having 10 register locations. In this design, the FIFO is multi-input, multi-output,

so the EXUs have access to locations throughout the length of the FIFO.

In thisexample, weassume that one firing ofA takes 5 cycles tocompute, and that all

five of the results are produced at theend ofthe 5 cycles. We also assume that one fir

ing of B takes two cycles to compute, and that both input values must be present at the

beginning of the two cycles. The EXUs are allocated with one for actor A and three for

actor B. One particular mapping is shown, and other mappings will be used in later

designs.

The EXUs for firings of B must hold their inputs for at least two clocks, but the FIFO

is clocked on every cycle, so additional registers at the inputs to these EXUs must be

added to capture the input token data and hold it steady for the duration of each firing ofB.

This also results in an additional clock cycle of latency.

The schedule of this implementation is also shown in Figure 2.27, with some of the

available concurrency of the precedence graph used. The firings A1 and A2 must be per

formed sequentially since both are mapped onto the same EXU. After the first firing of A,

5 output tokens go into the FIFO and are shifted to the right on successive clock cycles.

Once the first 5 tokens have cleared the left half of the FIFO, the second 5 tokens resulting

firom firing A2 can be latched in. At that time, firings Bl, B3, and B5 can all latch in

tokens 1, 2, 5, 6, 9, and 10. Two clock cycles later, these firings are completed, and the

input tokens to firings B2 and B4 have shifted over by two, lining them up with the correct

input registers. Once these remaining tokens are latched, firings B2 and B4 can proceed.

Already it can be seen that while an intuitive design using a FIFO is possible, this par

ticular one has some inefficiencies. Since EXUs can read tokens from any point in the

FIFO, there is no need to use a full 10 locations. Sampling tokens firom earlier in the queue

will also allow finings of B to begin sooner and shorten the schedule latency.
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Figure 2.28 A modified design that uses a shorter FIFO, along with the
schedule and resource requirements.

For comparison purposes, we will modify this design to use a shorter FIFO. The map

ping of firings to EXUs will remain the same. This is in order to keep the comparison as

close as possible, even though more efficient mappings can be applied, as will be seen in

other designs discussed below. In Figure 2.28, arevised design that uses aFIFO oflength

6 is shown. The input data lines tothe EXU offirings B1 and B2 are moved over, and the

timing of reading the input tokens to these firings is moved up to an earlier point in the

schedule. Thecontrol forthis design is slightly increased since thelatching of inputs to the
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Figure 2.29 A design that uses a register bank with no register sharing.
This is the shortest possible schedule with this mapping of fir
ings to EXUs.

EXUs for actor B are no longer all simultaneous. Firings of A produce 5 tokens at a time,

but a 6th register is used to hold token 5 over until token 6 is also present.

This design uses a more efficient FIFO and avoids using multiplexors. It is an

improvement over the first design, but the use of a FIFO imposes timing constraints. It

might be worthwhile to look at a more general register-sharing approach.

As a starting point for register sharing, we look at a design with no register sharing in

Figure 2.29JFor comparison purposes, the mapping of firings of actors A and B are the

same as in the preidous designs. In this design, 10 registers are arranged, one for each of

the tokens transferred in one iteration of the schedule. The registers are loaded in banks of

5, one for each firing of actor A. To route multiple tokens to the inputs of EXUs that per

form more than one firing, multiplexors are used. The resulting schedule has a shorter
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Rgure2.30 Lifetime analysis showing each of the ten tokens that are
exchanged. Anyfour of the last five tokens can re-use the regis
ters of the first four tokens, since their lifetimes are non-over-
lapping.

latency, by one cycle, since input registers to the EXUs are not needed. The resource

requirements, however, are considerably more than before in terms of data lines and multi

plexors. From this starting point, the design size can be reduced by looking at register

sharing.

To seewhere the opportunities for register sharing are, we can apply register lifetime

analysis. Hgure 2.30 shows the same schedule of the design inFigure 2.29 side-by-side

with range bars showing the lifetime ofeach ofthe 10 tokens transferred through registers.

Each token has a time range starting when it is latched from the source firing and ending

when the consumer firing completes. It is clear that the lifetimes of tokens 1-4 expire

before 6-10are created.This means that up to four of tokens6-10are eligibleto re

use the registers oftokens 1-4. By re-using these registers, we can reduce the total number

of regist^ to 6.

Figure 2.31 shows a new design that uses register sharing. The choice ofregister re

use that isTTiaHft is tomap tokens 7-9 to the same registers astokens 2-4 since both ofthese

sets align with the same outputs of actor A. This will simplify the interconnect between

EXU AI,2 andtheregisters. Thisleaves token 10to be mapped to theregister for token 1.
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Figure 2^1 A design that uses register sharing, resulting in fewer registers
but more multiplexors and control lines.

This is just one of many re-use choices, some of which may have smaller interconnect

than this choice. The use of register sharing complicates the interconnect, but it does not

affect the schedule. The first register needs an input multiplexor to draw inputs from both

tokens 1 and 10 at different times, which come from different outputs ofEXU A1,2. Over

all, there are slightly more control lines, fewer data lines and registers, and more multi

plexors than in the previous design.

Even though we might be able to find a register mapping that would improve on this

design, it can be observed that the EXU mapping we havebeen using is limiting the con

currency that is available by requiring firings B1 and B2 to be sequentialized. To compare

the FIFO style and the register-sharing style further, we will change the mapping and see

how the two design styles are affected.
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Figure 2.32 Adesign using a different mapping of firings to EXUs. The shift
propertyof the FIFO is onlyused inone cycle, and an additional
control line is needed for the two tokens used by firing B3.

Figure 2.32 shows a new design using a FIFO where the allocation ofone EXU for

actor A and threeEXUs for actorB is the same, but the mapping has been changed. Now

the firings ofB are mapped across the EXUs in sequence, with firings Bl, B2, and B3 on

each of the EXUs, and firings B4 and B5 mapped in a similar manner. The size of the

FIFO has been reduced from 6 to5.Firing B3isspecial inthat it uses one token from each

ofthe first and second firings ofactor A. To support this with aFIFO that has only 5regis

ters, we have de-coupled the input registers to EXU B3 so that they can be loaded atdiffer-
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ent times. Since firings B1 and B4 use input token pairs that are offset by one location

when they are first latched into theFIFO, the second firing, B4, must wait an additional

clock cycle while tokens 7 and 8 are shifted over to line up with the inputs. The same is

true with firings B2 and B5. This type of situation is inherent to designs where an odd

number of tokens are written to the FIFO, but the tokens are read in groups of even size.

The overallresult of the new mapping and shortening the FIFO in comparison to the previ

ous FBFO design is that there are more control lines, the latency is reduced by one cycle,

and there is one fewer register. *
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Figure 2.33 A design that uses the new mapping with register sharing.
Onceagain, there are fewer registers than in the FIFO case, but
there are extra multiplexors and data lines.

In Figure 2.33 a design is shown that uses the same mapping as for the FIFO design,

but with register sharing. The mapping of firings A1 and A2 is the same, so thd intercon

nect between EXU Al,2 and the registers is the same. The schedule is now changed to

properly use the concurrency ofthe DAG, and this implementation gives the shortest pos

sible schedule latency given this mapping of firings to execution umts. The hardware cost

is about thesame asfor the previous register-sharing design. It is still more expensive than

the FIFO design interms ofdata lines and multiplexors, but there are fewer registers. The

input multiplexors to the EXUs for actor Bare now alternating between two adjacent pairs

ofinput registers, and the structure ofthe input multiplexors ofEXU B1,2 is similar to that
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Rgure 2.34 A design that uses multiplexors to select from adjacent regis
ters. This design has a more reguiar interconnect topology.

of EXU B2,5. This leads us to ask, can we do a better job in saving on interconnect and

registers if we use register sharing with more of the regularity ofthe FIFO designs?

InFigure 2.34 we try a slightly different approach to register sharing. The orientation

oftheflow of data is now from top-to-bottom instead offrom left-to-right. The indexes of

each ofthe tokens produced and consumed is now noted on the output and input ports of

the EXUs that produce and consume those tokens. The numbering shows the adjacency of

sequenced groups oftokens and helps in tracing where each token flows in the design. In

this design it is aq)parent that the structure ofthe registers and multiplexors that are inputs

toEXUs B1,4 andB2,5 are identical. The number ofregisters isthe same and the schedule

latency is unchanged, but the number ofmultiplexors and data lines are slightly reduced.
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Figure2.35 A design that uses a FIFO to cyclically rotate among registers.
This design style eliminates the multiplexors, while adding a
clock cycle to the total latency for a lateral shift operation.

The multiplexors sample their inputs from adjacent pairs ofregisters ineach case, leading

to a more regular interconnect thatcoincides with the sequencing of dataflow firings and

tokens. Firing B3 is still distinguished from the other firings ofactor B since it reads input

tokens from two separate firings of actor A. One register is set apart on the right end to

hold token 5 until token 6 also becomes available. Overall, it appears that what is accom

plished inthis design with multiplexors and adjacent registers could also be achieved with

a lateral shift operation, such as with a FIFO.

A new design in Figure 2.35 uses a cyclic shift register instead of the registers and

multiplexors of the previous design. The result is that there are fewer data lines and the
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Figure 2.36 This design shifts the inputs of the B EXUs one position to the
left, and Includes the 6th register in the cyclic shift register. The
interconnect is reduced slightly, but the latency increases.

multiplexois have been eliminated. The number of registers is the same, and the schedule

latency is increased by one clock cycle to allow for the shift operation.The sixth register is

distinct from the shift register group, and is allocated to hold token 5 over until token 6 is

available, as before.

To bring the sixth register into the shift register, in the hope of saving space. Figure

2.36 shows a design that moves the shift register and the EXUs of actor B to the left by

one position with respect to EXU Al,2. The interconnect is now more regular for EXU

B3, which can result in an increased layout density. The cost of this design change is that

now four extra shift operations are required to move token 5 out of the way before firing

A2, followedby two additional shift operations to put tokens 5 and 6 at the inputs to EXU
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Figure 2.37 This design improves on the previous one by changing the
mapping. No cyclicshift data line is needed, and two shift oper
ations are eiiminated.

B3. Fortunately, a number ofthese shifts can be done concurrently with the computations,

sothatthelatency increases by only 2 cycles overall to a total of 15 cycles.

The significant number of shift operations seems to be a roundabout way ofmoving

tokens 5 and 6 into position, but it is a consequence of the EXU mapping that is being

used. Figure 2.37 shows a design that uses a different mapping that allows the cyclic shift

line to be eliminated. Bymoving firing B3 to the leftmost EXU, there is noneed to cycli

cally shift token 5 back around again. There is no loss ofparallelism firom the previous

design, since firing B3, which was mapped onto its own EXU, still needed towait for exe

cution at the same time as firings B4 and B5.

Now we observe that the firing mapping and token production seem to line up more

naturally, giving a more regular and intuitive design pattem. Given that we had three
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EXUs allocated for the five firings of actor B, we could have arrived at this mapping by

assigning firings to EXUs from left to right based on token availability. Since firing B3

requires tokens 5 and 6 to fire, rather than assigning it to the thirdEXU for actor B, it is

assigned to the leftmost EXU, so that token 6 will be made available at the correct loca

tion.To support this, token 5 mustbe shiftedover,but only to the left.There is no need for

any cyclic shift operations. Firings B4 and B5 are assigned consecutively to the remaining

EXUs after that. Also as a result of this remapping, two shift operations are eliminated and

the latency is reduced to 13 cycles. As compared to the earlier design in Figure 2.35, there

is no cyclic shift, there are fewer data lines, the interconnect is more regular, and there is

no increase in latency.

This last design represents a middle ground between general register sharing and a rig

idly clocked FIFO design. The use of shift registers where shifts occur at controlled times

and the mapping of firings and tokens in consecutive groups simplifies the structure while

keeping the scheduling reasonable. The restrictions on the mapping of firings and tokens is

closely tied to the number of allocated EXUs and registers, which restricts the scheduling

flexibility. Overall, the design style is an intuitive fit with the inherent structure of syn

chronous dataflow.

2.7.6 Initial Tokens on Arcs

Initial tokens on communication arcs are represented by the notation shown at the top

of Figure 2.38, where a diamond on the arc denotes initial tokens, and the number indi

cates how many there are. The absence of a number denotes a single initial token. The

effect of initial tokens is that tokens written to the channel will be moved further back in

the token ordering than if there were no initial tokens. Initial tokens are commonly

referred to as delay tokens, but will only result in a time delay if token reads are mapped

sequentially to an ordered series of time tags. If initial tokens are present on the chaimel.
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Figure2.38 Delay on an arc Is Implemented as tokens already in the queue
at the start of execution, indicated by the shaded buffer loca
tions. The consumer node reads these tokens first, and the pro
ducer node writes Into the positions after the delay tokens.

any tokens written tothe channel bythe sohrce actor will not be the first tokens inthe total

ordering of thesignal. Instead, the delay tokens will be first in the ordering, followed by

thetokens produced by the actor. In the buffer numbering view ofthis situation, we adopt

the convention that tokens are still numbered in the order in which they would be written

during the execution of a sequential schedule, starting from zero. However, the read win

dow begins earlier, at the start of the initial tokens. These buffer locations are numbered

negatively, for reasons that will become obviouslater.

Because of the requirements of balance in scheduling an iteration of the SDF graph,

the must be returned to a state of having the same numbers of initial tokens at the

end of an iteration. If there are initial tokens on the arc, then the end of an iteration of the
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Rgure 2.39 At the end of the execution of a PASS, the number of unread
tokens equals the number of Initial delay tokens, both by defini
tion, and by observation of the read-window shifting.

schedule must find the arc with the same number of tokens remaining on the arc, uncon-

smned by downstream actors, in order to remain in balance. Figure 2.39 represents this

case, showing that the effect of initial tokens is to shift the write-window and read-window

into the buffer relative to one another. The amount of shift equals the number of initial

tokens, and the shift results in the same number of tokens being unconsumed at the end of

the iteration.

The tokens remaining on an arc after an iteration are symmetric to the tokens present

on the arc at the beginningof an iteration.Tokensin the second iterationcan be numbered

in the same way as tokens in the first iteration, starting from zeroforproduced tokens, and

back into negative integers for initial tokens. In Figure 2.40 we see that the initial tokens

on the arc are the same as the remaining tokens on the arc from the previous iteration. The

numbering of the firings of each actorcontinues from where the numbering endedin the
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Figure 2.40 The first firing of actor B In the second iteration depends on
data from the current Iteration and from the previous Iteration.

previous iteration, and the write-windows and read-windows ofthe next iteration pick up

wherethe windows of the previous iteration leaveoff.

Ifwe are planning to generate adata structure that can execute asingle iteration ofthe

schedule at a time, but is repeatable, we must handle the transition from one iteration to

the next.This meansthat the data in bufferlocations corresponding to remaining tokenson

the SDF arc mustbe moved into thebuffer locations for the nextiteration that correspond

to the initial data tokens. In addition,we need to be able to manage the special case at star

tup that has the initial tokens taking on specific initial values. These values may be zero or

some nullvalue inthe data type ofthe arc, orthey may bespecific initial values in the case

ofinitializable delay tokens, where the desi^er wishes toset specific initial conditions for

the execution of the graph. The general control structure for these requirements is shown

in Figure 2.41, where a multiplexor selects either the initial values orthe values from the
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Figure 2.41 Buffering delay tokens. During the first iteration, they are
tokens with initial values. At the transition between iterations,

they are the remaining tokens from the previous iteration,
which must be carried over to the next iteration. Multiplexor and
circular shift register implementations are shown.

previous iteration for the initial token buffer positions, depending on the number of the

iteration to be executed.

2.7.7 Actors With State

In analyzing the inputs and outputs to each firing, so far we have discussed the treat

ment of explicit SDF inputs and outputs, and how their realization may vary. Implicit to

SDF semantics is the possibility that actors may also have state, which may be updated

from firing to firing. What distinguishes states of SDF actors is that they represent values

that are not communicated from one SDF actor to another, but instead they are values that

are communicated from each actor firing to the next firing of the same actor. As a result,

SDF actor states do not result in data arcs between SDF actors, but they do result in depen

dency arcs between successive firings of the same actor in the precedence DAG. This
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Figure 2.42 An actor with state. In the top view, the state is internal to the
actor. The middle view is equivalent, with the state stored exter
nally.The bottom view shows the state as an initial delay token
on the feedback arc.

requires us to track state inputs and outputs in order to understand the full set of data

dependencies present in the DAG.

Generally, state may be modeled as internal storage in an SDF actor that is generated

locally and used locally within the actor. This is represented in a series ofviews in Figure

2.42. We are considering state that is set in onefiring and used in the nextfiring, and not

state thatis temporary and used only during single firing. Such firing-to-firing state propa

gation can be similarly modeled asbeing stored externally, where the actor reads the state

as another input and writes outthenew state at the conclusion ofeach firing. This view is

equivalent to having a feedback arc connecting the state input and output of the actor,

where an initial token on the arc represents the storage of the state value between firings.

The initial state token holds the initialization value of the state for the first firing of the

actor.

We canrepresent theseries of state updates during aniteration as a setofdependency

arcs between successive firings of an actor. This view is represented in Figure 2.43. The
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Rgure 2.43 Memory model for actor state (top). State is Initialized, updated
by each firing, propagated to successive firings, and fed back
between successive iterations. For such tight feedback loops, a
more compact realization is possible (bottom).

need to propagate statebetweengraphiterations is alsoconsidered. Sincestate is modeled

as a delay token on a feedback arc, a similar action is taken in propagatingstate between

iterations as is done for delay tokens on data arcs between actors. An initial value is pro

vided, as well as a path for updating the first state value with the last statevalue from the

previous iteration. The selection of the source for the first state value will be chosen

accordingto which iterationis being executed,either the firstiteration, or a laterone.

Because state is analogous to a single delay token on a feedback arc to an actor, it can

be seen that such state results in tight interdependeilcies in the precedence DAG. For a

123



schedule iteration that includes three firings of such an actor with state, the precedence

relations are shown in Figure 2.44. The solid arrows represent the immediate data depen

dencies within one schedule iteration. From these alone, it would appear to be advanta

geous to unroll the firings in sequence so that some speedup could be achieved through

pipelining. However, the dashed arrow represents the additional datadependency from the

last firing in one iteration to the fijrst firing in the next, which mustbe honored. Because of

thistightinterdependency between successive firings, including firings adjacent to theiter

ation border, there is a severe limitation on the ability to gain speedup through pipelining.

The loop bound foreven a simple graph with one source actor, one sink actor, and a single

actor A intervening is

T = = rd = c. (2-11)
^ Nn I ^

where is theloopbound of the graph, is thecomputation time of one firing of actor

A, and is the total number of delays in the loop. If actor A has a lengthy computation

time,then the graphwiQ be limitedin howfast it canbe executed.

2.7.8 Actors That Use Past Input Values

An important class of SDF actor state is that of past values read from inputs. These

past input values can be remembered as state values and used insubsequent invocations of

an SDFactor. Thesehidden inputs to SDFfirings arenotevident in theoriginal SDFgraph

specification, although they may bediscovered by examining the internal function ofeach

actor, provided thatthe hidden input and output behavior of the firing function is not data

dependent
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Figure 2.44 Acyclic precedence graph model. The tight interdependency
between successive firings limits the pipelining that can be per
formed. The dashed arrow represents the inter-iteration state
update.

revious

Figure 2.45 An SDF actor with references to past values of inputs. This is
equivalent to taking input from a state that is updated by stor
ing the external input value. As such, the state can be external
ized.

Figure 2.45 shows the case of a single SDF actor that takes a single input value and

remembers die previous input value. Both values are used in computing the firing function

of the actor. This means that the memorized previous input can be equivalently drawn as a

delay token on a feedback arc, just as was shown for any other kind of state variables.
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Figure 2.46 Since the reference to a past input comes from input data, there
is no need to pass it through the actor, instead, it is a delayed
branch of the input as another input. This can be extended to
multiple delayed input values.

Sincetheprevious inputvalue comes directly from thesame inputarc, thereis no need

to pass it through the actor before delaying it andfeeding it backin. Instead, it makes more

senseto drawa branch off of the original input arc, and put the delay on that branch. Both

theinput and the delayed input are then fed in to the redefined SDF actor, as is shown in

Figure 2.46. The lower partof Figure 2.46 shows the logical extension of this representa

tion when more than one delayed input value is needed. The delayed branch can be

delayed again repeatedly to produce any number of delayed inputs, which are equivalent

to previous values of theundelayed input. In this way, the SDF actor itself is memoryless,

not needing to store pastvalues intemally, and all of its data dependencies are explicitly

shown.

A common example from DSP that uses this form of delayed inputs is an FIR filter,

which has a tapped delay line as a significant feature of its structure, in the Direct Form

realization. Figure2.47 shows two viewsof suchan FIR filter structure, for the 4-tap case.

The top structure is the usual signal flow graph representing the intemal structure of the
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Figure 2.47 Anexample of externalizing past input values. Above, the Direct
Form 1 signal flow graph realization of an FIR filter. Below, the
filter where inputs and delayed inputs are separated from the
arithmetic core.

FIR filter, with delays represented as Z"^ transfer functions. The lower part ofthe figure

shows the primary and delayed inputs together and outside of the arithmetic core of the

FIR function.

Bringing delayed inputsamples that are remembered as state to the outside of the fir

ing function is not significantly different for just a single firing. When there are multiple

firings involved, it becomes clearer how it can givean advantage in the sharing of commu

nicateddata. Figure 2.48 shows the case of two successive firings of a 3-tapFIRfilterSDF

actor. The firings occur in succession, with both firings having the samefunction but oper

atingon slightly different data. If both firings have their owninternal statefor storing past

values of the input, as in the upper part of the figure, then more storage is implied in the

implementation than is necessary. Instead, in the lower partof the figure, the datacanbe

held in common in the communication buffer, or in whatever storage is allocated to hold

theinputstream values. Then eachfiring can tap intothe subset ofvalues thatareof inter

est to the givenfiring, sharing references to some tokens witheachother. Thefiring fiinc-
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Figure 2.48 Multiple firings reading past values. Rather than such firings
duplicating local storage for use from iteration to iteration, they
can share storage of inputs in common.

tions are identical, but with different input data. This view allows the decision to bemade

for the implementation level whether or not the two filings should be executed by the same

hardware resource for efficiency, orby two different hardware resources for performance

reasons. This would not be as immediately obvious if each firing were required to main

tain itsown local state, which would beinconflict with the local state ofother firings. The

cost ofchanging the view from local storage to shared storage is that the complexity of the

interconnect outside of the hardware resources is increased, but the interconnect within

each functional hardware resource is simplified.

Asin thecase of data on arcs with delays, orexplicit state data, provisions need tobe

maHft for the inter-iteration propagation and consistency of data that is associated with



SDF actors that use psist data from inputs. Past data values share in commonwith delayed

data and state data the fact that they can be represented in SDF graphs with delayed arcs.

They also have some properties that are distinct from the other two cases. The example in

Figure 2.49 serves to illustrate this. The SDF graph at the top of the figure consists of a

single source actor with an output sample count of 1, feeding an FIR filter with an input

sample also of 1.Their repetitions rates are both 1, as is shown above eachactor. Because

the FIR filter uses past inputvalues as part of the computation of its firing function, provi

sion needs to be made to derive those values for the implementation. The schedule of the

graph is simply {A, FIR}, andthefirst two iterations ofthis schedule areshown in theFig

ure 2.49. The first firing of actorA, calledA1, produces a tokenwithindex0. This is fed to

the first firingof the FIR actor, FlRl. This firing alsorequires threepast inputsamples that

would be available if the system had been executing for some time already. Since this is

the first time the FIR is being invoked, suitable initial values, such as zero-valued tokens,

should be siq>plied. In the second iteration of the schedule, firing A2 produces a token

with index 1, and F1R2 requires tokens -2, -1, 0, and 1. Token 0 is carriedover from the

previous iteration, and tokens -2 and -1 are also carried over firom the initialized values.

The inter-iteration update pattern is easily understoodas a single-position shift in the data

buffer, and is shown at the bottom of Figure 2.49.

In many cases the inter-iteration pattem is more complex than a simple one-shift. We

consider the case in Figure 2.50 where actor A now produces two tokens on its output

instead ofone. This results in a schedule where the FIR filter is fired twice in order to keep

the arc in balance in the long term. The first iteration has firing A1 producing tokens

with indices 0 and 1. The first firing of the FIR filter only uses token 0, but it also needs

tokens -1, -2, and -3. Hypothetically, if the system had been running for an indefinite

periodof time in the past already,' these additional tokens would have been produced by

firings AO and A(-l), which are not executed when we start our system from an initial
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Figure2.49 Past samples shared between iterations. When a firing refers to
more past samples than are created in one iteration, they must
be carried over between iterations.

state. Instead, these tokens are supplied from initial values, preferably zero. The second

firing of the FIR actor, FIR2, requires tokens 0 and 1, both produced during the first and

current iteration, as well as tokens -2 and -1.

The lower part of Figure 2.50 shows the second iteration, and the associated data

dependencies. Rather than being able tosimply repeat the execution ofthe data pattern of

the first iteration, the data must be shiftedappropriately to keep it consistent with the syn

chronous dataflow model of execution. The single firing of actor A in this iteration, A2,

produces tokens with indices 2 and 3. The first firing of the FIR actor in this iteration,

FIRS, requires tokens -1,0,1, and 2.The second firing, FIR4, requires tokens 0,1, 2, and

3. The keyconsideration in designing the hardware structure for a single iteration is how
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to update the between iterations so that consistency is maintained. The lower struc

ture inFigure 2.50 shows that since two tokens are produced and consumed oneach itera

tion of the schedule, the degree of shift in the data is two instead of one. An

implementation of this structure that does a direct update of these locations will be more

expensive because the connections must route around the intervening locations. A more

area-efhcient version would shift the data to adjacent locations in two stages, but this

would take anextracycle to complete. It does preserve consistency in thedatafrom itera

tion to iteration, however, and allows the same hardware resources to be used for corre

spondingfirings firom iterationto iteration.

In the most general case, not only will SDF actors in the specification graph refer to

past data values on inputs, but there will alsopotentially be initial delay tokens on those

inputarcs. We can examine what happens in this general case by adding a delay token to

the arc in the graph of Figure2.50 Thiscase is shownin Figure2.51. The repetitions count

of the two SDF actors remains the same, but note that since the FIR actor only needs one

tokento fibre, it is already enabled at the start of executionbecause of the extra delay token.

Theupperpartof the figure shows thedata dependencies in the first iteration of the sched

ule, independentof the order of firing of the actors. Actor A produces tokens 0 and 1, and

the delay token has index -1, suggestingthat it was alreadythere before the first token was

produced in execution. The fihst firing of the FIR actor uses the first available token, -1,

and the three tokens that would have preceded it, -4, -3, and -2. The second firing of the

FIR actor uses tokens -3, -2, -1, and 0.

Just as in the case of data arcs where no past tokens are read by the downstream actors,

the effect of a delay token on the arc is similarly to shift the read window of the communi

cation buffer by the number of initial delay tokens. The lower part of Figure .2.51 shows

the Hata dependencies for the second iteration. Withtwotokens produced andconsumed in

one iteration to keep the arc in balance, both the read and write windows shift up by two
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Figure 2.50 If multiple tokens are written to the communication buffer in
one firing, it increases the degree of shifting between iterations.
In order to use the same memory locations and interconnect in
each iteration, a 2-position shift is performed between itera
tions.

for the next iteration. The token with index 1 from the first iteration is produced by actor

A, butis notconsumed by the FIR actor in thatiteration. It is instead the "replacement" for

the initial delay token that had been present at the start of the iteration, which serves to

return the arc to its initial state at the end of the iteration. This new delay token serves as

the initial delay token inthe next iteration, and is shifted by two toreflect the buffer index

ing of the second iteration relative to the first.
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Even though thedelay token is considered an actual data item present onthe arc in the

SDF semantic interpretation, theadditional past values that the FIR actor requires are also

maintainedand shifted in the buffer. Wecould also represent the past values as additional

tokens ttiaf are queued in front of the delay token, which would agree with our earlier

interpretation of past values as delayed versions of the input arc. We could also think of

the delay token as another past value. However, preserving the separate identity ofbuffer

locations implied by delay tokens and buffer locations implied by SDF actors that read

pastvalues helps to keep these two distinct effects separate inthe dependency graph repre

sentation.

The read window of the first FIR firing is anchoredby the location of the first available

token on the arc, which is the delay token. If there were no delay token, it would be the

first token producedby the upstream actorA. The read window extends upward in index

range by the number of additional tokens required for the actor to fire, but in this case it

only needs I. The read window extends downward in rangeby the number of past values

of the input that are required by the firing function of theFIR actor. The read window of

subsequent firings of the FIR actor is shifted upward by the number of tokens that are

"consumed** by one firing of the actor, in this case 1. The second firing still has access,

however, to the previous, consumed delay token, which the second firing treats as a past

input value. This is shown in the diagram in Figure 2.51.

In order for all the data that is read in a given iteration but not produced in the same

iteration to be ready, it must be updated from the data in the previous iteration. If we know

the range of token indices that need to be read in a given iteration, we can state the inter-

iteration update action as is shown in Figure 2.52. In this algorithm, a buffer holds the

token data, and loRead and hiRead are the lower and upper index bounds of the tokens that

are read during one iteration. nwnWriteTohens is the number of tokens that are produced
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Figure 2.51 Adding a delay shifts the read window by one. Note that the
maximum amount of buffer space that would be needed to
simultaneously store all of the data that is read, written, and
updated during a single iteration also increases by one.

for (index = loRead upto hlRead) {
buffer(index) = buffer(index + numWriteTokens);

}

Figure 2.52 A simple algorithm for the inter-iteration update of the buffered
token data.

and consumedduring one iteration on the arc. Note that it is not necessarily equal to the

number of tokens read, since past input values may also be read, as in our example.
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Figure 2.53 If there are enough initial tokens between actors, the read and
write windows may not overlap at all. The downstream actor fir
ings are independent of the upstream actor firings within a
given iteration.

In all of the previous examples shown, the read and write windows had at least some

overlap. In Figure 2.53 the same graph is shown,but the number of initial delay tokenson

the arc has been increased to 3. Since the downstream FIR actor only needs two tokens in

orderto fixe twice, the tokensproducedby actor A in an iterationare not consumedby the

FIR actor in the same iteration. In addition, not all of the initial delay tokens are consumed

in oneiteration. Since twotokens areproducedand consumedon the arcin one iteration, it
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for (index = loRead upto (loWrite -1)) {
buffer(index) = buffer(index + numWriteTokens);

}

Figure 2.54 The modified algorithm for the inter-iteration update of the buff
ered token data.

can beseen inthe lower part ofFigure 2.53 that the third delay token present at the start of

one iteration becomes the first delay tokenat the start of the following iteration. Because

of this, it is clearthat theinter-iteration update window needs to be extended notjust up to

the top ofthe read window, but up to just below the bottom ofthe write window. This must

be done in order to account for tokens that are neither read nor written in a given iteration.

The second token written by actor A becomes the third delay token in the next iteration,

but it is not actually read by the downstream actor until the second iteration after it was

created.

The modified algorithm for updating the buffer data between iterations is shown in

Figure 2.54. The difference between this algorithm and the one shown in Figure 2.52 is

that the upper end ofthe index update range is now (loWrite - 1), or one buffer location

below the location where the first token written by the source actor is written. In our token

indexing scheme, the first token written isalways given index 0, so (loWrite - 1) evaluates

to-1.

The bounds of the buffer index are given by

loRead < index < hiWrite. (2-12)

All of the bounds of the read and write windows into the bufferare listed in Eq. 2-13

through Eq. 2-16.

loWrite = 0 (2-13)
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hiWrite = m-\ (2-14)

loRead = 0-Np-Np = -(Np+Nj^) (2-15)

hiRead = (^B*n-l)-^z) = {Qa' (2-16)

In these definitions, A and B are respectively the source andsinkactors on a given arc.

Their production and consumption rates on the arc are mand n. The repetitions counts of

actors A and B in one iteration are and q^. The number of past samples that actorB

refers to in its firing function is Np.The number of initial delay tokens onthe arc is .

From these bounds, we can state the maximum number of storagelocations that would

be neededto simultaneously store all of the datathat is read, written, andupdatedduring a

single iteration. This is shown in Eq. 2-17 through Eq. 2-19.

bufSize = hiWrite—loRead+ \ (2-17)

= ((^^•m-l) + (iVp +iV^)+l) (2-18)

= iqA-m + Np + Nj^) (2-19)

For the case shownin Figure 2.53, this evaluates to 2-1 + 3 + 3 = 8, which is the number

of buffer locations shown in the figure. The actual number of storage locations in the

implementation maybe less than this if communication buffer resource sharing is used.

2.8 The RTL Code Generation Process

Ourprocedure for synthesizing anRTL hardware description fi:om an SDF behavioral

description hasfour major phases. Thefirst phase, which isbased intheSDF semantics, is
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to compute a valid schedule for the SDF graph specification of the application. The next

phase is to step through a run of the schedule and to construct the precedence graph as

each actor is fired, noting the fiinction that is executed and the inputs, outputs, and states

that are referenced. The third phase is to synthesize a parallel hardware architecture by

performing scheduling, allocation, and mapping on the precedence graph. In the fourth

phase, the RTL code representation is generated, which can then be passed on to tools that

input RTL code and synthesize a gate-level representation of the design. Our procedure

lies on top of RTL synthesis, but extensions to the methodologyemploy feedback of infor

mation from RTL synthesis to guide the RTL code generation process.

2.8.1 Determining a Valid SDF Schedule

The first phase of hardware synthesis from an SDF graphis to compute a valid sched

ule for executingthe graph.The schedule is simulated andinformation fromindividual fir

ings of the SDF actors is used to determine the full precedence graph of firings and their

dependencies. The schedule is valid, so we are guaranteed that the systemdoes not dead

lock, and that the dependency graph is a DAG. We could construct a methodology that

merely examined the SDF graph anddetermined the number of firing repetitions for each

actor, along with the interfaceproperties of each actor. If such a methodology only exam

ined the input andoutput ports andstates of each SDF actor, it would miss the additional

opportunities for data concurrency that arise when past values are referenced. By also

examining the firing function of eachactorfor references to pastvalues of inputs, the full

precedence graph, withall of its concurrency exposed, can be used in oursynthesis meth

odology.

This concurrency may come at a price, however. Depending on the degree of sample-

rate changes in the SDF graph, and the interrelationships among them, the numberof fir

ings in the precedence graph can grow exponentially in the number of nodes in the SDF
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Figure 2.55 Example ofa large difference In SDF token transfer rates (top).
Even though the schedule calls for256 repetitions of actor A, It
Is unlikely that a practical realization will use 256Instances of A
In the hardware (bottom). Instead, some resource sharing will
be applied to the firings of A In order to map them onto a
smaller number of execution units.

graph, as was shown inSection 2.3. The severity ofthis depends on the application type.

Operations that involve large differences in SDF token transfer rates include video encod-

ing^decoding, time/frequency transforms, or sample rate changes between large, mutually

prime rates. An example of this is shown in Figure 2.55

An actor that produces one token and feeds an FFT requiring 256 tokens would need

to be fired 256 times for each firing of the FFT. The precedence graph has 256 firings of

actor A all feeding theFFT actor in parallel, but this is very unlikely to be literally trans

lated into a similar hardware realization. Instead, the 256 firings of A will be mapped onto

some smaller number of execution units that will be iterated in order to produce the full

256 tokens (Figure 2.56).

Ifmultiple firings can be grouped together in advance, it can simplify the scheduling

and mapping stages. Itmay well be advantageous to define anew actor in place ofAthat

produces 8tokens on each firing, and is fired fewer times. This hides some of the parallel-
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Rgure2.56 Realization of the graph shown in Figure 2.55. To reduce hard
ware size, a smaller grouping of instances of A is executed
repeatedly to produce the necessary number of tokens (a). This
can be scaled according to considerations of how many firings
of the composite A actor will be needed, and how many tokens
will be transferred at a time to the buffer (b).

ism ofthe original version, but it reduces the complexity ofthe precedence graph specifi

cation, andit does so in a way thatstays within SDF semantics (Figure 2.56).

2.8.2 Running the Schedule

Inthe second phase ofhardware synthesis, the schedule determined in the first phase is

simulated. This schedule is simulated firing by firing, and multiple firings may be exe

cuted concurrently, so long as no token availability requirements are violated. For each fir

ing, the input and output token references are noted, as well as references to input tokens

firom previous firings, and state references and updates. AH of these are used to construct

precedence relations for each firing as it is added to the dependency graph.
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In. order to obeySDF semantics, each firing of an SDFactormustconsume fixed num

bers of tokens on its inputs and produce a fixed number of tokens on its outputs. Beyond

that restriction, any intemal functionality may be considered valid in the semantics of

SDF. This includes the possibilities that the operations that are applied to the inputs

depend on the values of those inputs, or thatone or more of the inputs is ignored. Outputs

may or may not be computedfrom operationson inputs.

An important restriction on the body of the individual firings is that they use only sin

gle assignment between clock events. The reason for this is that the code generated for

each firing must be valid as input to the RTL synthesis tool downstreamin the design flow.

In sequential RTL code, multiple assignment of variables is usually not acceptable as

input. This is because such code implies that a single storage location is repeatedly

updated during the execution of the firing. This in turn implies a register, which in RTL

design requires the designer to specify additional clocking information explicitly. Single

assignment of a variable can be synthesized as signal traces that are the output of combi

national logic operations, which need no additional clocking. For all of the RTL synthesis

methodologies we've seen, multiple assignment of variables without clocking is disal

lowed and is treated as invalid input.

2.8.3 Mapping the Precedence Graph Onto an Architecture

Once all of the actors in the schedule have been fired, based on the previous step we

have a completed connected graph of all firings and their data dependencies. These data

dependencies include both data inputs and outputs as derived from the SDF graph for each

firing, as well as state inputs, and also outputs where firings result in the updating of state

values.

This resulting graph is an acyclic graph of firings and dependencies. It may also be

viewed as a homogeneous dataflow graph, since all firings have single values that are input
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and output on each connection with other firings. Such a homogeneous SDF graph has a

straightforward schedule where every actor is fired exactly once, and the order of firings is

determined by the precedences in the graph. This graph is more complex than the original,

generally inhomogeneous, SDF graph. It will have at least as many nodes and edges as the

SDF graph, and if there are large numbers of repetitions for any SDF actors, it will have

many more nodes and edges than the original SDF graph.

Ifeach firing is resolved into its fine-grain level arithmetic and logical operations, then

the graph becomes considerably more complex. This increase in complexity will depend

on the size of the computations represented by the SDF actor firings. Such a fine-grain

graphis the usual input to behavioral synthesis methodologies, which are sensitive in their

execution time to the size of the input graph. Exhaustive search methods are computation

allyprohibitive for mostdesigns. Even withheuristic methods, computational complexity

can grow as 0(NlogN) for list scheduling and 0{N ) for partitioning in the number of

nodes in the input graph [McFarland90] [Lagnese91], and is exacerbated when operating

at the arithmetic level of granularity. In our method, we do not take the graph to arith

metic-level behavioral synthesis, but rather we translate each firing into a block of RTL

codesuitablefor RTLsynthesis, andmergefirings at the RTL level. Thisallows easierpre

diction of performance andcostpriorto synthesis, but it only allows hardware sharing at a

large-grain level. As a method of design exploration, our approach allows the study of

high-level tradeoffs, measuring the costs and benefits in terms of the impact on RTL syn

thesis.

Once we have a connected dependency graph where each firing is mapped to a seg

mentof synthesizable RTL code, the architectural selection process canbegin. During the

designof the architecture, decisions are made about how firings should be mapped onto

actualsynthesized hardware resources. Multiple firings can share hardware units. Thiscan

open opportunities for resource sharing in a variety of ways. If two firings are identical
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computations of the sameSDF actor, andif there arenoconstraints thatprevent thefirings

frombeing executed sequentially, then the samepiece of hardware can be executed twice,

with each firing's source data fed in throughmultiplexors, and each firing's results stored

in the appropriatememory units. If the firings are not identical, but are similar, then a sin

gle hardware unit that is capable of performing both firing functions can be synthesized,

and extra control signals can be input to cause the hardware unit to switch between multi

ple firing functions. If the differences are only in fixed parameters, or slightdifferences in

stmcture, then the effect of resource sharing is that a little more than half as much compu

tation hardware will be necessary after sharing. If the inputs of the merged firings are

arriving from different sources, then the interconnect will increase significantly more than

if the inputs are coming from the same hardware unit in succession. The controller will

only increase slightly in complexity, in order to switch the hardware unit between one of a

limited set of firing functions in a fixed sequence, selecting each one at the appropriate

time.

If the firing functions are completely different, then there may be no advantage to hav

ing them share the same hardware resources. There is a penalty in scheduling due to exe

cuting the two firings in sequence, and if there is no advantage in sharing hardware in

terms of resource area, then the penalty is not worth the cost. Where there can be savings,

however, there is a tradeoff that arises from having firings share hardware units or execute

on independent resources.

At one extreme end, all firings could be mapped onto separate hardware resources, and

the interconnect between them could be generated from the dependencies in the prece

dence graph. This represents a greedy scheme for synthesis. Unless the graph is a feedfor

ward graph that is fully pipelined, this scheme is likely to be inefficient in terms of

resource utilization, since each hardware unit will be completely idle before its firing is to

take place and also once its firing is completed. For long chains of dependencies that must
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be executed during each iteration, the separate hardware units in those chains would be

highly underutilized. This scheme does represent, however, a way of finding an architec

ture that is close to the minimum in terms of execution latency. In general, though, designs

thatexceed the basic performance requirements for periodic deadlines of producing com

putation results will bedoing so atthe expense ofincreasing the area needlessly.

Atthe other extreme ofmapping the firings onto hardware units, allfirings are mapped

to the same hardware unit. One hardware unit would be responsible for being able to per

form all thevarious firings of thesystem in a purely sequential order. Such a umprocessor-

style implementation would be capable ofmany possible firing computations, and would

perform each one as instructions were received from the controller. The controller would

function as an instruction sequencer that runs through a single-process routine, as in the

case of a softwareprogram for a custom-designed processor.

Depending on the functionality needed, the single hardware unit could be synthesized

from the requirements ofall the firings, orit could be implemented as apre-designed pro

cessor core that is capable of computing all firings. Synthesizing a single hardware umt

would beconsiderably more difficult than synthesizing separate hardware units due to the

increased functionality that would be required of it.A single hardware unit would poten

tially be smaller than any equivalent set oftwo or more synthesized hardware units, since

it would have the rqost opportunity for hardware sharing among allfirings.

Ifseparate registers were used for all data values exchanged, this would result in ahigh

fanin and fanout to the hardware unit, witha very complex interconnect. As noted in Sec

tion 2.4, the muxes that feed the hardware units will grow as 0{n •logn) in the number of

input sources they are required to switch. Because of this, all storage would likely need to

be mapped to a small number ofmemory blocks instead. While the access time might be

longer for a memory block than for an internal register, the serial execution pattern offir

ings would mean that memory accesses would also be serialized, makmg a combined
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memory more appropriate than separate registers. Using memory blocks requires the

inclusion of an address generator in the control logic.

With a single hardware unit, controller, and memory, this would effectively be a con

trol/datapath/memory processor architecture. The execution time of an architecture that

performs all firings in a purely sequential order would generally be longer than that of any

parallel architecture. Because of this, the execution time would potentially be longer than

that allowed by the timing requirements of the application. If the timing is still acceptable

for a single synthesized hardware unit, then a lower-cost solution that meets the timing

would be an existing available special-purpose processor core running a single sequential

program, with an address generator and a bank of RAM synthesized on the same die.

Between these two extremes of fully-parallel and fully-sequential designs lie many

possibilities for grouping firings together and synthesizing hardware units for each group.

Each hardware unit will be able to perform a single firing at a time, and so the set of hard

ware units behaves like a multi-threaded execution on multiple processors. In this case,

however, the processors are the synthesized hardware units.

For firings that are merged together onto a single hardware unit, it is critical to main

tain the correct ordering between the execution of firings on the unit. In order to avoid

introducing deadlock into the system, firings with well-defined orderings firom the prece

dence graph must maintain those orderings with respect to the other firings on the same

synthesized hardware unit. If two firings have no direct or indirect partial ordering, but

instead share a common source node or a common sink node, then they are unconstrained

as far as their relative execution order. This opens flexibility in scheduling firings within a

single hardware unit, which may allow optimizations by exchanging the order of firings

where allowed.

Another issue in resource sharing is the appropriateness of sharing hardware units for

functions that operate on different precisions of inputs and outputs. For heterogeneous
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precision widths, synthesizing a single structure to perform multiple precision computa

tions will be increasingly difficult, and potentially inefficient. Fortunately, a finite number

of different precisions can usually be selected for a given design, so thatopportunities for

merging firings thatshare datapath precision can more easily be found.

2.8.4 Generating the RTL-Code Specification

In order to make effective use of available tools for RTL synthesis, the output RTL

code from theprevious steps must be tailored to the synthesis tool in use. To synthesize

multiple firings into a single hardware unit, use ismade ofthe VKDDL case statement. The

case statement is conditioned upon the control inputs that determine which firing function

isto beperformed atany given time. For each firing function, a different path ofcombina

tional logic can be synthesized. In order to achieve true resource sharing, however, sec

tions of combinational logic from multiple firings must be shared. The Design Compiler

from Synopsys, which we have used inour design flow, makes use ofsuch opportunities to

share combinational logic groups. This is done internally to the synthesis tool, byrecog

nizing similar operations from the RTL code and grouping them together in logic synthe

sis and mapping. Since the firing functions are exclusive, never executing at the same time,

logic shared incommon by two or more firing functions can be implemented by the same

logic circuitry. This is how the savings in hardware area is realized at the implementation

level of RTL synthesis.

The overall architecture specified in the generated RTL code has a single controller

unit, fed by a system clock, and multiple hardware umts fed by multiplexed inputs. The

outputs ofhardware units are sent to registers that are latched and whose outputs are fed

back to the various hardware units. The controller is responsible for generating the correct

signals toactuate the datapath in the right sequence. These control signals include the con-
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trol for the multiplexors, the signals that select the firing functions for the hardware units,

and the signals that trigger the data latches.

The timing of the control signals is based on a parallel schedule of the firingsexecuted

on the hardware units. The exact timing of the firings depends on the time required for

each hardware unit to allow valid results to propagate through to the latches. This informa

tion is not precisely known until the actual implementation is built, but reasonable esti

mates can be made in advance. The control timing can be specified based on these

estimates, and then verified after a low-level layout has been prepared through more pre

cise analysis within the synthesis tool. This is comparable to how circuit timing is vali

dated in single-clock processor designs to ensure that no sub-net of logic gates and

interconnect exceeds specified latency limits.

2.9 The Hardware Synthesis Design Fiow

For our in^lementation of the hardware synthesis design flow, we were informed by

the many issues discussed throughout this chapter. The software architecture of the syn

thesis fiow in the VHDL domain within Ptolemy is described in Chapter 5. Here we

describe the general structure of the synthesis flow.

A number of practical decisions were made for our implementation, given the finite

resources available in terms of development. We achieved a core synthesis flow, but there

are a number of features that remain for the future to be added into the implementation.

One of the most significant of these is the full implementation of the sequenced groups

architecture style. The current implementation focuses on the general resource-sharing

architectural style. The sequenced groups architectural style, intended to simplify the

mapping process and reduce the intercoimect complexity and cost, is not currently auto

mated. It is possible for the user to achieve the sequenced groups architectural style
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through manual mapping of firings to resources in the general resource sharing approach,

but this is currently time-consuming, and some elements, such as shift registers, are not

automatically inferred. To enable the sequenced groups approach in a practical way, we

needto allow the user to specify the sequenced groups of firings and tokens that are to be

mapped together, and tospecify the banks ofEXUs and registers that they will be mapped

to. This specification issue applies both tothe non-interactive mode and to the interactive

tool that is discussed in Chapter 4. Another key issue is to determine if there is a natural

choice fora default mapping by the tool touse as a starting point for the sequenced group

mapping approach. This may arise due to the issue ofbalancing the flow from one block of

grouped EXUs to the next, and it may depend on the limits on concurrency inthe prece

dence graph and on specified limits on how many EXUs are to be allocated.

Anotherissue in the current flow is that the sequential processor synthesis mode is not

specifically treated. For asequential schedule offirings, with longer latency but lower area

than most other mapping options, a natural choice is to synthesize a core processor along

with a memory and controller, as was discussed in Section 2.8.3. This calls for a different

mode within the synthesis flow, since this will not be a suitable architectural style for the

general case, but only for highly sequential implementations. We currently implement the

case ofgeneral resource sharing, and do not automatically synthesize memory units and

address generation. The general case is given priority since it applies to the majority of

implementations we wish to explore, which contain more parallelisni than the core/mem

ory/controller style.

Another relevant feature that is not fully implemented is the optimization of fixed

point precision representations within the synthesized architecture. Afull treatment of this

issue would call for variations ofprecision throughout the architecture, depending on local

arithmetic functions and the expected dynamic ranges ofvalues to be computed. Optimi

zation can be applied insuch designs to seek to select fixed point precisions ofthe various
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hardware elements that trade off the noise power of the roundoff errors against the other

goals of the design, such as area, which increases with increasing precision widths. The

approach currently implemented allows the user to select asingle precision that is used for

all elements throughout the architecture. This simplifies the design process, but requires

the selectionof a worst-case precision that is likely to be widerthan what is necessary at

somepoints within the synthesized hardware.

The overall synthesis flow proceeds along the lines discussed in the previous section.

Theflow that is usedis shown in Figure 2.57.The first stepis thecreation of theSDFgraph

specification with functionality defined in SDF actors and the setting of the SDF parame

ters that determine the numbers of tokens produced and consumed on each port of each

actor. For algorithmic-level simulation, this specification canbe simulated repeatedly and

refined until the structureand parameters of the algorithm are sufficiently defined to war

rant proceeding with the rest of the synthesis flow. The next step in the synthesis flow is

the same as that in SDF simulation, which is to determine a valid schedule for the SDF

graph. The same scheduler that is used in simulation is also used in the synthesis flow.

From this schedule, the precedence graph representation is constructed. It is not necessary

to have a schedule in order to construct the precedence graph, but following a valid sched

ule is a convenient way to serialize the operations that are performed as the precedence

graph is constructed. It also guarantees that as each firing in the precedence graph is

added, the predecessor firings andinputtokens to the firing will already be logged andwill

have been added to the precedence graph.

As die precedence graph is constructed, information is gathered about each firing,

including the firing function, inputs and their sources, outputs and their destinations, and

state information. This information is used in the next stage, which is the precedence

graph mapping of firings toexecudon units. The default mapping is to allocate anEXU for

eachfiring in the automatic mode. The use of the interactive toolTkSched allows the user
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Figure 2.57 The hardware synthesis design flow.

to specify other mappings. These altemative mappings allow any firing to share anEXU

with any other setof firings in the precedence graph. The effects on the estimated execu

tion time and area are displayedwithin the interactive toolTkSched.
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Once the architectural mapping has been selected, the resulting set of architectural

information is used to construct the final RTL VHDL code specification of the chosen

architecture. This involves instantiation within the code of all executionunits and their fir

ings, andall interconnect and registers for communication. The RTL code generation pro

cess also inserts correct code for state value initialization, as well as inter-iteration updates

of register locations where tokens or states are held from one schedule iteration to the

next.

The next stagein the synthesis process invokes theSynopsys Design Analyzer synthe

sis toolfrom withinPtolemy. The generated RTLcodeis passed to the synthesis tool along

with a command file that guides the synthesis process. The design is analyzedfor synthe-

sizability, and if it passes, the RTL synthesis process begins. This process can take any

where from one minute to several minutes to the better part of an hour depending on the

complexity of the design and the platform the synthesis tool is being executed on. In our

environment, we were running on a Sun SPARCStation-20 with the Solaris 2.5 operating

system and 155MB of RAM and 324MB of swap space.

Once the synthesis process is completed, the results are presented within the tool for

the user to examine.From this point, the user may continue to adjustthe design within the

RTL synthesis tool and continue with the layout stages of design. In our flow, we issue

commands through the synthesis script to gather information from the synthesistool about

the area and performance of the synthesized implementation. By using the interactive

design tool TkSched, described in Chapter 4, these values can be imported back into

Ptolemy and presented to the user. This allows improvements to be made to the mapping

and iterations through RTL synthesis to be applied. An alternative design path is to apply

the simulation approach described in Chapter 3 to test the generated code for functional

correctness. The user can also constract simulations of mixed systems consisting of the

generated VHDL code within an SDF simulation testbed with input signals and output
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traces observed, or simulate a mixed system of VHDL code with other subsystems gener

ated into other realizations, such as C code and Motorola DSP 56000 assembly code.

2.10 Summary.

In this chapter we have presented an approach to synthesizing hardware from SDF

specifications. This approach allows greater flexibility in the scheduling of communica

tion and in the sharing of resources than previous approaches.Efficientcommunication, in

terms of register allocation, is possible, but results in limitations on scheduling freedom.

The notions of token queueing, token feedback, and dependencies on past token values are

taken into account. The generation of a register-transferlevel architecture in VHDL is the

result, with RTL synthesis as the target of this process. While we have described the

implementation of SDF graphs entirely in hardware, many useful systems are imple

mented in both hardware and software, and from specifications with mixed semantics.

Simulating such mixed systems that are synthesized partly in VHDL is necessary for

design validation. Cosimulationof generated VHDL specifications with other subsystems

is the subject of the next chapter.
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3

Cosimulation

VHDL is a languagethat has found much use in synthesis, but it has also proven to be

effective in simulation for validation of designs. The semantics of VHDL support specifi

cation, simulation, and synthesis at the RTL and behavioral levels, and each of these are

discussed in Section 3.1. While simulation exclusively in VHDL is not unreasonable, it is

oftenadvantageous to performcosimulation of VHDLwithothernon-VHDL designspec

ifications. In order to do so, we need a thorough understanding of the simulation semantics

of VHDL and how the simulation cycle defines those semantics. These are described in

detail in Section 3.2. Understanding the semantics is important in synchronizing VHDL

simulation with other simulation or emulation engines. The synchronization problem, and

various cases of cosimulation with VHDL are the subjects of Section 3.3. In Section 3.4

we describe the details of the VHDL Foreign Language Interface. In Section 3.5 the simu

lation design flow is presented, and finally we summarize in Section 3.6.

3.1 VHDL For Specification, Simuiation, and Synthesis

TheVHDL language came about as theresult of a long effort to standardize theway in

whichdigitalhardware systems are described. Visual representations, such as circuit dia-
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grams and system architecture drawings, had been in long use and still are today, but

lacked any broadly-accepted standardization that would make them reliable as complete

and objective documentation of designs. Another reason for formulating text-based hard

ware description languages such as VHDL was so that modem programming language

techniques could be applied to hardware descriptions, in an attempt to realize the benefits

achieved with text-based software specification languages. The uses of VHDL as a lan

guage forspecification, simulation, and synthesis are described in this section.

3.1.1 VHDL For Specification

The VHSIC (Very High Speed Integrated Circuit) Hardware Description Language,

VHDL [Arnistrong93] had its beginnings in 1983 as a U.S. Department ofDefense (DoD)

initiative to create a text-based language for specifying digital hardware designs. One goal

was to create a standard interchange format, with a purpose similar to EDIF [EIA87], so

that design descriptions could be easily exchanged between and within organizations. It

was also created with high-level specification capability in mind so that components and

systems that would be used over many years, particularly by the DoD, would have stable,

well-defined specifications from which multiple, successively refined implementations

could be manufactured, as technology changes were expected to outpace the rate of

change of defense systems needs.

3.1.2 VHDL For Simulation

It was later decided that the language would be of much more utility if it became pos

sible to actually simulate descriptions written in VHDL, rather than merely having them

serve as static design documents. Provisions were made for sunulation semantics, which

take on a form of discrete-event (DE) semantics [Banks96] [Cassandras93] Pelaney89]

[Fishman73] [Fishman78] with a well-defined simulation cycle and an event-driven basis
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for the advancement of a global time clock. General DE semantics consist of blockscon

nected by signals that communicate with one another at exact instances in time. These

communications,or events, may or maynot havevaluesassociatedwith them.Eventshave

timestcanps that denote the time of their occurrence. Time is a single, global value in DE

simulation,and is updatedthroughout the simulation, increasing monotonically. All events

in the system can be totallyorderedaccording to their timestamps, exceptthose with iden

tical timestamps. When events have the same timestamp, they can be further ordered

according to some criterion, such as their location in the graph topology, or they can sim

ply be processed in an unspecified order. Events that are awaiting processing are stored in

a queue according to their order. This queue can be a single priority queue, but the access

time can be long for large numbers of events. The access time to enqueue and dequeue an

event for a linear list implementation of a priority queue is 0{n) where n is the number of

events. For tree structures, the access time is 0(log/i). The discrete-event domain in the

Ptolemy system uses a multiple-list calendar queue data structure pBrown88] which has

fast t?(l) access time. In any discrete-event simulation, events are processed in chronolog

ical order, and blocks may react to events on their inputs by producing events immediately

or at later times on their outputs. The specific simulation semantics of VHDL are

described in detail in Section 3.2.

These semantics are non-inclusive of analog signal circuit simulation techniques such

as what is used in various forms of SPICE. As such, the language avoids physical circuit

simulation issues for the most part. Some openings for admitting physical circuit effects

were included, in the form of resolution functions that can modify the timing and values of

signal assignments based on multiple signal sources or parameterized behaviors. Simi

larly, parameterization of design block behaviors can allow the modeling of physical

effects. This is accomplished through parameters to blocks that may include temperature
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or technology data. These parameters may be used by the models internal to blocks to

modify theirbehavior to reflect timing or thermal effects, for exariiple.

With the success of VHDL for modeling and simulation of discrete-time electronic

systems, similar efforts have been mounted toapproach the design ofcontinuous-time sys

tems through the use of Analog Hardware Description Languages (AHDLs). MAST

(which is not an acronym), the third-generation AHDL from Analogy [Analogy97] has

found usefulness in modeling both continuous-time electronic systems as well as electro

mechanical and other physical systems. This language also has the capability of event-

driven modeling, which is why it is also referred to as a Mixed-Signal Hardware Descrip

tion Language (MSHDL) [Mantooth95]. Recently, IEEE Working Group 1076.1 has final

ized analog extensions to VHDL (IEEE Standard 1076). These extensions are intended to

allow VHDL to support the description and simulation ofcircuits that exhibit continuous

behavior over time and over amplitude. This superset of VHDL is informally called

VHDL-AMS (for Analog and Mixed-Signal) or VHDL 1076.1. Aballot before the IEEE

was initiated in 1997 [IEEE-DASC97].

At the same time as more features were being incorporated into VHDL, proprietary

languages for gate-level simulation were also being put forward. The most prominent one

ofthese was Verilog. Verilog began as a proprietary specification and simulation language

aimed at gate-level design. It became an open standard in the early 1990s, and more

recently, standardization efforts have turned Verilog into IEEE Standard 1364. Today, Ver

ilog is generally acknowledged as being the dominant hardware description language

(HDL) inuse in North America, while VHDL dominates inEurope. Worldwide, their use

isroughly equal, and most simulation and synthesis vendors support both languages rather

than oneexclusively. This interchangeability is often aided byfront-end compilers that can

translate either VHDL or Verilog into anequivalent internal format for use throughout the

remainder of simulation and synthesis.
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3.1.3 VHDL For RTL Synthesis

Most HDLs find broad use as simulation languages, but a crucial task for designers

aftervalidating designs through simulation is to find a pathway to synthesize theirdesigns.

Formerly, this task required translation of designs specified in simulation languages into a

logic-level specification for which tools existed that could create intemal gate models for

synthesis. In order to avoid the costly and error-prone process of manually re-encoding

designs, synthesizable subsets of HDLs were defined so that designs written within those

subsets could be simulated for verification and then automatically synthesized so as to

proceed down the design flow toward implementation. Further extensions allowed the

specification of designs at the register-transfer level (RTL), where each variable could be

mapped to an individual register in thefinal implementation, and assignments to varisibles

couldbe implementedthroughthe latchingof the outputs of combinational logic into reg

isters at specified clock times.

Due to the overwhelming popularity of general-purpose programming languages such

as C and C++, some synthesizable subsets of these general-purpose languages were also

defined, often with extensions to the language that providedspecial constructs for specify

ingconcurrent and clocked behaviors [Ku90]. In these cases, the advantage is meant to be

that designers who aren't familiar with HDLs such as VHDL and Verilog but who have

significant experience programming in C would find a shorter learning curve in moving to

C-based synthesizable languages in comparison to learning new languages like VHDL and

Verilog. One otherprominent caseis Silage [Hilfinger85], which is specific to the domain

of DSP, and has constructs for specifying signals, signal assignments, and temporal rela

tionships between signals in terms of sample indexes. Silage was supported by tools such

as Hyper [Rabaey90] for behavioral synthesis, and later in the Cathedral tools developed

at IMEC [PeMan90] that were commercialized in the DSP Station offering firom Mentor
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Graphics |Mentor97], butSilage has notattained widespread use inconunercial synthesis,

and remains at a low level of use relative to VHDL and Verilog.

Language subsets appropriate for RTL synthesis are often narrowly specified relative

to the general language semantics from which they are derived. Many general-purpose

constructs are disallowed in subsets for RTL synthesis. Among these are constructs for

allocating and deallocating storage dynamically. Other constracts that are disallowed are

those relating to timing that fall outside of allowed clocking specifications. Specifying

operations tooccur attimes determined by clock inputs are generally allowed, but specifi

cations that refer to absolute times or absolute time intervals are not, because they are not

easily implemented in clocked synchronous circuits where clock inputs are provided but

the clock periods are not specified.

3.1.4 VHDL For Behavioral Synthesis

Bothto increase the ease of specification and to open up more implementation possi

bilities, broader subsets ofHDLs have been defined for behavioral- orhigh-level-synthesis

[Camposano91]. In behavioral subsets, itis not necessary to specify exact instantiations of

resources orclock timing in the specification. The scheduling, allocation, and mapping are

determined during the behavioral synthesis process, which strives to make optimized

choices based onmore general specifications. Inbehavioral specifications, expressions are

assigned to variables, with sequential and concurrent behaviors allowed. As aresult ofthe

behavioral synthesis process, assigned variables may be mapped onto shared registers in

the final implementation, or they may become intemal values represented at intermediate

points ina sub-netlist oflogic. The timing ofsuch assignments is also unspecified in the

input description, and is determined bythe behavioral synthesis task.

Language subsets that are synthesizable under behavioral synthesis are much closer to

the style in which high-level general-purpose language programmers are accustomed to
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specifying algorithms and applications. Creatingspecifications in sucha styleleaves open

a broader range of possibilities for the allocation of resources and timing of operations in

the final implementation. However, a much greater burden is on the behavioral synthesis

task to determine optimal implementations, without the benefit of experienced designers

directly determining what efficient computation structures should be used. More balanced

flows can use either mixed-level specifications for partial behavioral/RTL synthesis, or

they can allow greater input from designers in specifying more detailed synthesis con

straints for portions of the system that are more critical to the overall qualityof implemen

tation.

3.2 Elements of VHDL and the Simulation Cycie

The full syntax of VHDL allows for three classes of statements. These are structural,

concurrent, and sequential statements. All three classes serve specialized purposes for aid

ing in expressing different types of design intent. Hardware designers who wish to express

the architecture of their designs in terms of separate units connected to one another wiU

focus on the structural statement language features. Parallel hardware is inherently con

current, and concurrency can be naturally described by operations taking place within dif

ferent structural elements. However, to support a direct way of expressing concurrency,

even within a single hardware structure, a syntax for concurrent statements is provided.

Finally, even though stmcture and concurrency are good matches for the way hardware

designers think of their designs, there is still a large need for expressing behavior as a

sequence, particularly in algorithm design for programmers accustomed to sequential

high-level programming languages. For this purpose, a syntax for sequential statements is

also a part of the VHDL language.
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Figure3.1 Processes, signals, and entitles. Processes perform computa
tion, signals communicate Information, and entities provide
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3.2.1 Processes, Signals, and Entities

In VHDL, ail computation occurs within concurrent processes. Communication

between processes occurs through signals. One ormore processes may be contained in a

single entity^ which specifies a structural unitin a design. Concurrent processes may com

municate among themselves within an entity through local signals, orthey may communi

cate through signals between entities. Arepresentation ofthese structural relationships is

shown inFigure 3.1. Processes may beas simple as a single assignment ofan expression

to an output signal, or they may be large and complicated algorithrmc procedures, with

local variables, conditionals, branching, and many of the language features found in high-

levelprogramminglanguages such as C.
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3.2.2 Process Execution

Processes may execute continuously unless and until they suspend themselves. There

are no forced interrupts in VHDL. Processes cannot cause simulation time to advance on

their own, however. Statements within processes are treated as though they execute instan

taneously with respect to the global simulation time. If a statement within a process speci

fies that the process should wait for a given amount of time or until a specific absolute

time, then the process suspends and other processes are allowed to execute. A process

resumes execution either when an event occurs on an input signal to which the process is

sensitive, or when the simulation time advances to the time when the process had sched

uled itself to resume prior to its suspension.

Processes can output events on their output signals through assignment statements.

These assignments can also be made to occur at some time in the future of the simulation.

This feature can be used to simulate latency through an entity or process, as input signals

result in outputs at some finite time in the future. This is efficient for simulation, as input

signals will trigger a process to execute, and the process can execute "instantaneously"

without advancing the simulation time. When the process is finished, it can schedule out

put events to occur at some time in the future and then suspend itself, allowing other ele

ments in the simulation to continue.

3.2.3 Signals, Transactions, and Events

Signals communicate the events in the system simulation among the entities and pro

cesses that are connected to those signals. All signals have a current value that is associ

ated with them at all times during a simulation. This is the value that is obtained if the

signal is read. A transaction is an update of the current value of a signal, whether that

value changes or not. If a signal experiences a transaction during a given simulation cycle,

then that signal is said to be active. While a transaction is any update of the current value
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communicated between entities and processes. A transaction
is any update of a signal value. An event is a transaction that
results in a change of a signal value. Whena signal experiences
a transaction, that signal is active, even if the transaction does
not result in an event.

ofa signal, an event isdefined as a transaction that results in a change ofthe current value.

Many transactions may result in updates that do not change the value, and so to the

observer of such a signal, no events have taken place, and the signal appears to be con

stant. Events define some change in thesignal state of the system, which may indicate that

some action should take place as a result of the change. The distinction between a transac

tion and an event is shown in Figure 3.2.

Processes can only schedule transactions to take place on their output signals causally.

That is, transactions may be scheduled to take place at non-negative times in the future,

which may include zero-valued time differences. Such zero-delay or unmediate assign

ments are used to model the instantaneous response of a process to input events.
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3.2.4 Simulation Time

The simulation time within VHDL is a single, global value for an entire simulatedsys

tem. The simulation time is indexed by an integer value,but the simulation time does not

needto take on all sequential integer values as it proceeds. The units of time that arespec

ifiable in VHDL are those that are comparable to timescales typical in hardware system

design, suchasnanoseconds, picoseconds, femtoseconds, and so on. If multiple timescales

are specified, then they are all calculated as multiples ofa single, smallest base time scale.

Simulation titnebegins atzero and takes onequal or increasing values ateach new simula

tion cycle.

VHDL simulations are one-sided, discrete-event simulations, but they are not discrete-

event in the strictest sense. As will be explained in Section 3.2.6, VHDL can be used to

specify systems that do notadvance in time. In comparing various models ofcomputation.

Lee and Sangiovanni-Vincentelli [Lee97] define a discrete-event model of computation to

be a timed model of computation where all time tags of each signal are order-isomorphic

to a subset of the integers. A timed modelofcomputation is defined as one where the time

tags T are totally ordered. That is,for any distinct t and f in 7, either r< ox f<t. Two

sets are order-isomorphic if there exists an order-preserving bijection from one to the

other. Two consequences of this definition of discrete-event systems are that the timetags

of anybehavior canbe enumerated in chronological order, andthatbetween any two finite

time tagQ therewillbe a finite number of time tags. VHDL canbe usedto specify systems

where there are an unbounded number of time tags between two finite time tags of the

behavior. Because of this, VHDL is a timed model of computation, but not truly discrete-

event according to these definitions.
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1. The current time is assigned thenextscheduled simulation time.

2. Active signals are updated with their new values.

3. Processes that were previously scheduled toresume atthe current time,

or that are sensitive to signals thathave just experienced events, are

marked to resume during the current cycle.

4. Each of themarked processes is executed until it suspends.

5. The nextscheduled simulation timeis calculated tobe theearliest time

a signal is tobecome active oraprocess is to resume.

Figure 3.3 Steps inthe VHDL simulation cycle.

3.2.5 The VHDL Simulation Cycle

Simulation timp. is advanced by the repeated execution of the simulation cycle. The

simulation cycle governs the overall execution of aVHDL simulation, and is executed in a

loop until the simulation terminates. Termination can occur either when acertain pre-spec-

ified simulation time is reached, or when there are no more scheduled events or process

resumptions left to execute.

There are five major steps in the VHDL simulation cycle, which are summarized in

Figure 3.3. The first is that at the beginning of anew simulation cycle, the current time is
assigned the next scheduled simulation time. Second, each signal that is active during the
current cycle is updated with its new value. Asignal is active during a given simulation

cycle ifit has atransaction taking place on it. Some of these signals, through changes in
their value, will experience events. In the third step, all processes that are sensitive to sig

nals that have just experienced events are marked to resume during the current simulation
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cycle. In addition, any processes that were previously scheduled to resume during the cur

rent cycle, regardless of any input events, are also marked to resume.

Inthe fourth step, each ofthe processes that has been marked to resume is executed,

butin no deiSned order. Each such process is executed until it suspends itself, which may

or may not ha^jpen. If aprocess does not suspend itself, then the simulation stalls and time

does not advance. Processes themselves are not capable of advancing simulation time.

Processes cause temporal effects by scheduling signal transactions and process resump

tions at future times, andthen suspending themselves. In the fifth and final step in thesim

ulation cycle, the next simulation time iscalculated according to the earliest time a si^al

is scheduled to become active or a process is scheduled to resume. This next scheduled

simulation may or may not be different from the current time, but it cannot beearlier

than the current time.

3.2.6 Delta Cycles

If the next scheduled simulation time is equal to the current simulation time, then the

next simulaticHi cycle is called a delta cycle. In a delta cycle, there is an infinitesimally

small advance in time, which is sometimes referred to as a delta step. In actuality, delta

cycles donotresult in any measurable advance insimulation time, and an arbitrarily large

accumulation of deltacycles stillamounts to a simulation time advance ofzero. Delta time

provides a second tier oftime tags for events in the simulation. These delta time tags form

aseries ofsub-tags within a single simulation time instant, asshown inFigure 3.4. An infi

nite number ofdelta cycles may occur between advances in the current simulation time. If

this does occur, then the simulation time does not advance, and the overall simulation

stalls, even if delta cycle simulation activity continues. The notion of"which delta cycle"

isbeing executed is notaccessible in any language construct. Any statement within a pro

cess that commands the simulation to "do something immediately" will mean "do it dur-
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Figure 3.4 Delta time steps in between simulation time steps.

ing the very next cycle, which will be a delta cycle." Even though delta cycles are not

counted or visible outside the simulator internals, they provide a means of putting an

ordering between events inthe simulation and the subsequent events that immediately fol

low thenL

As mentioned above, the order in which processes that resume at the same time are

executed is not specified in the language. As a result, there could be a potential nondeter-

minacy in the execution of a VHDL simulation, where different simulators or different

invocations of the same simulator might yield different results. However, because of the

construct of delta time, this potential nondeterminacy is avoided. To illustrate this point,

we examine a simple case that is shown in Figure 3.5. In this example, two processes are

connected to each other through signals. Each process is sensitive to events on signals

originating from the other process.

If, on a given simulation cycle, both processes are scheduled to resume at the same

simulation time, the overall behavior ofthesystem could depend onwhich process is actu

ally executed first inthe simulator. Ifprocess Aexecutes first, itmay generate an instanta

neous event on its output signal, which feeds directly to process B. When process B

executes, if it sees the event justgenerated byprocess A, it could alter the behavior ofpro

cess B from what might have occurred if process B had been executed first. However, pro

cess B will not see the output event ofprocess Aduring this simulation cycle, because of

delta time. Even if process A generates events to occur right away, they will not acmally
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Figure 3.5 Two tightly Interdependent processes. There is a closed cycle
of dependencies passing through both A and B.

occur until the current simulation cycle is concluded. As a result, the behavior of process

B is independent of any events generated during the current cycle, and is independent of

the order ofexecution of processes. Whether the order is {A,B} or {B,A}, processB will

finishexecuting during the current cycle and will only experienceany new input events on

the next simulation cycle.

Because of delta time, there are no truly instantaneous events. Delta time means that

the execution ofprocesses that generateevents and the executionof processes that are sen

sitive to those events are always separated by at least one simulation cycle. As a result,

there are no true zero-delay feedback loops in a VHDL simulation, even though they may

appearto be zero-delay in termsof the overall simulation time. In addition, thereis no loss

of determinacy in executing a VHDL simulation even though the order of simultaneous

process execution is not specifiable. While VHDL simulations are usually executed on a

single-processorplatform, the constractof delta time makes it possible to execute VHDL

as a parallel, distributed simulation. Processes that execute during the same simulation

cycle may be simulated on separate processors or platforms in parallel, so long as such

parallel simulations are synchronized by a single simulation cycle. The value of such a
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parallel simulation will be determined by the amount of computation needed to execute

concurrent processes relative to the cost of communication among those process simula

tions. This will vary based on the VHDL specification being simulated and the parallel

simulation platform being used.

3-3 The Simulation Synchronization Problem

VHDL is a language with broad-based semantics thatallows many kinds of systems to

be modeled and simulated atmultiple levels ofabstraction. However, often theneed arises

to model heterogeneous systems that are only partially specified in VHDL. Rather than

translate allparts of a specification into VHDL, a process that could result incoding errors

or differences in functional behavior, it is desirable to have a means of co-simulating

VHDL specifications withnon-VHDL specifications.

One of the problems inperforming cosimulation with VHDL as a part of the system is

theissue of synchronization. This is necessary inorder to preserve the correct behavior of

the overall simulation when synchronous communication is required. This is not an issue

when working within a single VHDL simulator, but can become one when coordinating

VHDL with other simulations. Data that is dropped or communicated out of order can

change the results of the system simulation, introducing nondeterminacy and possibly

incorrect functionality. Also, uncoordinated communication can leadto deadlock between

processes that hang while waiting for communication from one another. Proper synchroni

zation is important not only during the run but also during initialization, where communi

cationlinks are set up between the VHDL simulation process andother processes.

In this section we discuss the problem by beginning with distributed simulation of

VHDL specifications and the issues involved. Following that is a discussion of the more

restricted case of cosimulating dataflow implemented in VHDL with dataflow imple-
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Rgure 3.6 VHDL simulation under a single simulation process.

mented in another specification language. This combination is useful in moving from

specifications in SDF to implementations in hardware and software. Following this, we

describe a means of synchronizing SDF simulations with "imported" VHDL models that

are not derivedfirom SDF specifications. These importedmodelsmayhavesynchronous or

asynchronous interfaces, and so appropriate synchronization must be added for each case.

We conclude with comments about general system-level simulation.

3.3.1 Synchronization of Distributed VHDL Simuiation

Given a singleVHDL simulation process consisting of several entities that communi

cate, the synchronization occurs within the execution of the simulation cycle. All transac

tions in the sjrstem are given time tags based on a single, global clock. Some time tags

may be identical, andthesimulator resolves theissue of which transactions should bepro

cessedfirstby requiring all of the previously existing transactions withidentical time tags

to be processed before any new transactions are processed. A single simulation process

has a single simulation time, as shownin Figure 3.6.
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Figure 3.7 Two communicating VHDL simulators. Transactions may origi
nate within one simulator and propagate to the other, with no
restrictions on timing. Without further synchronization, each
simulator has no way of knowing the simulation time of the
other.

If asingle VHDL system ispartitioned onto two ormore communicating VHDL simu

lators, the synchronization problem becomes more difficult. Each VHDL simulation pro

cess has its own list of transactions to process. The only commumcation between

simulators is through signals. If signals flow in both directions between two simulators,

then the simulations are tightly dependent upon one another. If one simulator finishes pro

cessing all ofits pending transactions, it may still need to wait for transactions that will be

received from the other simulation process that have the same time tag. Each simulation

appears as a black box to the others, so there is no means, in general, of determining

whether another simulatorhas advanced to a new simulation time.This prevents any sim

ulator from proceeding forward in simulation time without further synchronization. The

caseof twocommunicating VHDL simulations is shown in Figure 3.7.
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3.3.1.1 Scatter/Gather

Because of this multiple-simulation-clock problem, coordinating multiple VHDL sim

ulations is not easily donewithout modifications to the simulator thataddthe needed syn

chronization. The same is generally true of any parallel simulation that uses multiple

clocks for different parts of the system. One way to exploit the parallelism in a VHDL

simulation on a concurrent platform is to do so within the simulation cycle, in a scatter/

gather approach. During each VHDL simulation cycle, all processes that are scheduled to

resume are executed, but in no particular order. These processes may just as wellbe exe

cuted concurrently, with noloss of correctness in the simulation. The process in charge of

the simulatitm cycle, when it is time to execute resuming processes, can scatter them to

available concurrentprocessors for execution, as shown in Figure 3.8. Each process exe

cutes until it suspends, and then any transactions generated by each process are gathered

back into the centralized list of pending transactions.

This mediod of paralleUzation is limited to the number of processes that are simulta

neously activated during a given simulation cycle. The requirement for a central transac

tion list update means that any concurrent threads of simulation must be synchronized on

every simulation cycle. This limitation, inaddition tothe overhead associated with scatter

ing and gathering processes and transactions means that the advantage to such a scheme

will depend heavily on how much computation isdone by each activated process before it

suspends.

3.3.1.2 Speculative Simulation

If concunent VHDL processes do not communicate during every simulation cycle,

then it is notnecessary for them to synchronize onevery cycle, as is required by the scat

ter/gather approach. Amethod for performing parallel VHDL simulation that permits sep-
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Figure 3.8 Ascatter/gather approach to concurrent VHDL simulation. The
simulation cycle process is a bottleneck, synchronizing all
threads once per cycle.

arate partitions to advance in time as long as there is no communication among them is

desirable. The problem is that itcannot be decided, in general, whether one partition needs

to block execution and wait for incoming transactions until the otherpartitions have com

pleted their simulation cycles, which effectively requires them to synchronize on every

simulation cycle whether they actually commumcate or not.

One approach that is used in commercial simulation backplanes such as SimMatiix,

developed by Precedence [Precedence97], isspeculative simulation, shown in Figure 3.9.

This technique is analogous to speculative execution in pipelined processors, including

pipelined DSPs, where branches are partially executed based on a likely choice and the

pipeline isflushed if the branch condition tums out otherwise [Lapsley96]. It is also simi

lartopartial transaction processing, with backup and recovery, indistributed database sys

tems [Shuey97]. Inspeculative simulation, each simulation partition advances forward in

simulation tiirift without a guarantee that all transactions with the local current time tag

have already been received from the other partitions. If the simulation clock ofa partition

advances forward in time and the partition subsequently receives an input transaction with
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Figure 3.9 Speculative simulation, for the case of two partitions. When the
transition arrives "late", after Partition 1 has already advanced
beyond the time tag of the transition, Partition 1 must revert to a
prior, saved state and resume simulation from that point.

anearliertime tag, thepartition's simulation state ispossibly already inconsistent with the

effects of the newly received inputtransaction. In this case, the onlywayto ensure thecor

rectness of the simulation is for the partition to back up in time, reverting to a correct,

saved state from a simulation time at or before the time tag of the received transaction.

After backing up,thepartition canagain proceed forward, processing theadditional trans

action at the correct time.

In order for speculative simulation to be possible, each partition must be able to revert

to a valid, saved state when input transactions arrive late. To avoid having to backup too

far, the simulation stateof the partition mustbe saved sufficiently often. Thedisadvantage

is thatit is costly to save and restore simulation state, especially for large simulations with

many signals and variables. It is also costly tobe forced toback up very far insimulation

time, wasting the already-performed, but possibly incorrect, simulation cycles. A tradeoff
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must be made betweenthe cost of saving state and the cost and frequency of losingsimu

lation cycles in determining how often to "back up" the state data. This tradeoff will

depend on the individual system being simulated, and may best be set dynamically

throughout the simulation as inter-partition communication patterns change.

3.3.1.3 Topologicaliy Sorted Simulation Partitions

Another technique for improving concurrency in simulation is dependent onthe topol

ogy of thepartitioning that is chosen. Forthe case of partitionings where partitions do not

have mutual dependencies, but instead form a directed chain of dependencies, the parti

tions can be topologicaliy sorted. Tightly interdependent sets of entities, which are mutu

ally reachable dirough their directed signal connections, are clustered together inside

partitions. Figure 3.10 shows a VHDL design and its topologicaliy sorted partitioning.

In this situation, once the partition that is first in the topological ordering has passeda

certain pointin simulation time, it cansend an additional signal ona separately provided

connection. This signal willindicate to the nextpartition in the topological ordering that it

is free to proceed with simulation up until the indicated time, without the concern that

additional transactions will be received that would force it to revert to an earlier simulation

time. The second partition, after reaching the given time, could in tum pass that timing

signal to the next partition in the topology, and each successive partition could do the

same.

Such a schemecouldrequire additional timing signals to be connected between simu

lation partitions. Alternatively, the original data signal connections themselves could be

used to indicate to successive partitions up to what time to proceed forward with simula

tion. The timestamp of the next signal transaction transmitted from one partition to

another indicates how far forward the downstream partition can safely proceed with simu

lation. The potential difficulty with this method is that a downstream partition must wait
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Figure3.10 A VHDL design to be sorted topologically (top). The resulting
topologically sorted partitioning (bottom).

for an actual datasignaltransaction in order to proceed, andsuchtransactions may notbe

generated at regular intervals. An explicit additional timing signal allows downstream par

titions to continue intemfli simulation even when the next data signal transaction will not

be amving until some time in the future.

The more significant constraint would be the requirement that a simulation partition

ing be topologically sorted insuch a chain ofdependencies, which would not be possible

for VHDL designs with only tightly interdependent entities. Because of this, such a

method would not be a reliable means of obtaining improved concurrent simulationper

formance, butit would allow improvements in simulation time fora subset ofdesigns.
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Figure 3.11 A hierarchically composed VHDL simulation.

3.3.2 Hierarchically Composed VHDL Systems

An alternative to having separatepartitionsof VHDLsubsystems commumcating with

one another is to embed one simulation within another, hierarchically. In this form, parti

tionsare no longerof equivalent status.The top levelsimulation is in control of the overall

simulation process. Hierarchically contained simulations are subordinated, and their

scheduling is underthe supervision of the top-level simulation. This arrangement is repre

sented in Figure 3.11. One problem that arises with timed-in-timed simulations such as

this is the coordination of the scheduling of the inner and outer systems. The brute force

approach is simply to flatten the simulation andplace allblocks under the control of a sin

gle scheduler. This will immediately sacrifice any potential benefit from the concurrent

semantics or simulation performance firom joining multiple simulators. An existing

approach whichmaintains the hierarchy in simulation is usedin thediscrete-event domain

in Ptolemy.
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The discrete-event domain in Ptolemy supports DE-in-DE system simulation, with

some controls on synchronization. When the outer DE system sends an event to the inner

system, the inner system is scheduled to be executed at the timestamp of the transmitted

event. When the inner system is executed, it is given a stop time by the outer system,

which is the current time in the outer system. The inner system must not simulate past this

stop time internally, because it would potentially simulate past the time of future events

that would be sent from the outer system to the inner system. The inner DE system can

produceevents with a timestamp of the current stop time, and theseevents are processed

by the outer system when it resumes execution. The inner systemcan also schedule events

in the future, which are held in the inner scheduler event queue. The inner system will then

schedule itself with the outer system to be re-awakened at the timestamp of the future

event. When the current time of the outer scheduler reaches that future time, the event is

processedby the inner schedulerand is sent to the outer systemfor processing.

This approach allows for proper synchronization between top-level and subordinate

timed simulators, while maintaining their distinct identities. Due to this tight synchroniza

tion, there is some computationaloverhead in re-awakening the innersystemat every time

increment The inner system must run not only when it receives each input event, but also

at the times when its outputeventsare scheduled. This is in contrastto top-level DE blocks

that onty need run when they receive input events, and can schedule outputevents to take

place in the future without re-awakening. Thesimulation result, however, willbe correct,

and multiple DE simulators can be coordinatedin this way.

3.3.3 Cosimulation of Dataflow in VHDL with Other Dataflow

While simulation of a general VHDL specification in distributed form or in cosimula

tionwitha non-VHDL description is complicated by thesynchronization, advance knowl

edge of the communication pattern can simplify the problem. The difficulty with
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cosimulating two timed partitions is that either one may generate transactions at any time

that theother partition must respond to consistently. This requires special mechanisms to

Tnaintain synchronization between the simulation cycles inboth partitions. For specifica

tions in SDF, the data dependencies canbe determined in advance, and the computation

canbeorganized oneach partition so asto allow loose synchronization.

As discussed in Chapter 2, theSDFscheduling process results in information thatcan

be used to construct the dependency graph of all firings of all actors in a complete itera

tion. Fornon-deadlocking graphs, the dependency graph isa directed acyclic graph (DAG)

ofprecedence relations. The precedence relations determine a partial ordering of the fir

ings in the computation.

This partial ordering of firings must be mapped to a total ordering for any statically-

scheduled implementation. For SDF implemented in an RTL VHDL description, the

VHDL mustobey theordering of data dependencies in the original precedence graph, but

there is freedom in determining the exact timing in the implementation within the prece

dence constraints. Because the precedence DAG can be executed in a topological order

that precludes deadlock, any implementation that conforms to this ordering will also be

non-deadlocking.

This also includes concurrent implementations where multiple firings arebeing com

puted simultaneously. The main restriction is that nofiring can proceed if its input data is

notyet available. This applies whether the inputs to a firing come from the same concur

rent computation resource or jfrom another one. This restriction means that for coimnuni-

cation among the concurrent resources, either read operations on the commumcation

channels must be blocking, or control timing must be such that downstream firings only

proceed when valid data is known to be available. If the data required to compute a given

firing is not yet available, then the* computation resource must haltuntil the data becomes

available.
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In order to avoid introducing deadlock in the partitioning and sequencing of the paral

lel computation resources, indirect precedence relationships must also be obeyed. As

shown in the example in Figure 3.12, firings that are not directly related by a precedence

relation, but that do have an indirect precedence relation by virtue of intervening firings,

must have that precedence preserved even when they are partitoned across multiple com

putation resources. Otherwise, deadlock can be introduced into a non-deadlocking prece

dence graph. The process of partitioning the graph in two can be thought of as dividing it

into three subsets. One subset consists of the subgraph of all nodes and edges in the origi

nal graph that lie entirely on one side of the partitioning line. A second set is the subgraph

that lies entirely on the other side of the partitioning line. The third set consists of the

edges that are intersected by the partitioning line. In scheduling the computations for an

individual execution unit, using only the subgraph within the corresponding partition is

not suflSlcient to guarantee that indirect precedence relations are honored, and that dead

lock is avoided, as the example shows.

One method to guarantee that indirect precedence relations are honored is to perform a

topologicalsortingof the fiill precedence DAG. This will ensurethat any firing that has an

indirect dependency on another firing will occur later in the sorted order. After partition

ing, the firings within one partition can be executed in the order of the sorting and no pre

cedences will be violated. This is restrictive, however, since two firings with no direct or

indirectdependencies may end up having an artificial ordering in the topological sort. This

would imply a precedence relationship when there is none. Other, more computationally

expensive means of testing for indirect precedence relationships can be used, such as an

explicit enumeration of predecessors and successors of firings, so that firings can be cor

rectly scheduled when the graph is partitioned.

By using the known partial ordering of firings, each partition of the simulation can

simulate forward in between reading data from its inputs. A partition only needs to halt
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Figure 3.12 Obeying precedence relationships across partitionlngs. The
partitioned precedence DAG (a) and the resulting three subsets
of the original graph (b) along with a correct sequencing (c) and
an incorrect one causing deadlock (d).

simulation and waitif the input datais not yet available. Since thegraph is non-deadlock

ing, therewill always be at leastonelive, executing partition in simulation until the entire

simulation is completed. This is trueeven if thesimulation within onepartition is a timed

VHDL simulation, because the synchronization is guaranteed by the dataflow analysis. It

also holds for a partitioned VHDL simulation where all VHDL partitions have been

derived from a common SDF graph specification, and indirect precedence relationships

are once again maintainedwithin partitions to avoiddeadlock.

The strategy just described for a partitioned simulation of an SDF specification is

essentially what is described in l^e89b] as a method of arriving at a self-timed (ST)
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F oerfect reconstruction wavelet filterbank partitioned 1Figure3.13 AnSDFperfect reconstructionwavelet filterbank partitioned for
VHDL simulation. The six hierarchical blocks (three for analysis
and three for synthesis) are mapped to five separate concurrent
VHDL simulation processes. The partitioning and coordination
are performed automatically by the target classes in Rolemy.

schedule fora multiprocessor DSP implementation. Anadaptation ofthis scheduling strat

egy for minimizing synchronization and communication arbitration costs was proposed in

[Lee90] and [Bier90]. A hardware architecture that implements this strategy, the Ordered

Memory Access (OMA) architecture, is described in [Sriram95]. This strategy was

adapted for use in simulating SDF graphs across arbitrary partitionings ofheterogeneous

simulation and execution engines in IPino96].

Following on the work presented in[Pino96], we have extended this approach to work

with partitioned simulation ofVHDL code derived from an SDF graph specification. This

ispresented inFigure 3.13 for the case ofa 5-way partitioning ofaperfect reconstruction

wavelet filterbank. Even though all five partitions are separate VHDL simulations, tight

synchronization among them isnot required due to the guarantees provided by the looser

synchronization requirements of the SDF precedence relations. This approach has been

implemented in theVHDL domain in the Ptolemy environment.

181
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Rgure3.14 Cosimulation of an imported VHDL model within an SDF simu
lation environment. The data source, data visualization, trans
mitter and channel environment are all modeled as SDF actors.

The receiver model, which is written in VHDL, is imported from
a third-party source or from the output of a design flow.

If we use not just a simple topological ordering, but instead realistic estimates of the

simulation time of various firings, then we can adjust the partitioning to attempt to mini

mize the iteration cycle time. This is less cmcial in simulation environments than it is in

embedded systems implementations, but minimizing simulation time for large designs is

important in reducing simulation verification time. More complete test coverage can be

obtained in a fixed amount of time if each test simulation takes less time to perform.

3.3.4 Cosimulating Imported VHDL Models with Dataflow

In Section 3.3.3, we discussed cosimulation of VHDL and non-VHDL code that has

been generated fix>m a partitioned SDF graph specification. Frequently, designers wish to

cosimuiate VHDL code that was generated by some means other than from an SDF graph,

such as a hand-written model or VHDL code output from another design tool. By cosimu

lating such models with a dataflow simulation, simulation verification can be performed

where often the dataflow portion is used to model an environment or a high-level specifi

cation of an undesigned component (Figure 3.14).

There are two broad classes ofinterfaces to such imported VHDL models. These two

classes are asynchronous and sjmchronous interfaces. In the case of asynchronous inter-
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Figure 3.15 Adapting an imported VHDL model withan asynchronous inter
face to an SDF simulation, through a communication entity.

faces, cosimulation canoperate similarly to whatis done when cosimulating dataflow with

VHDL rhaf is generated from a dataflow specification. The communication entity within

the VHDL simulator interfaces to the VHDL design througha set of handshaking signals.

On the dataflow simulation side, the communication entity interacts with processes out

sidethe VHDLsimulation through socket connections or some otherappropriate buffering

structure (Figure 3.15).

In the case of cosimulation with VHDL models that have a synchronous interface, it is

necessary to know what the timing and protocol of that interface is. If the interface is

timed by some clock signal, then an additional I/O control entity is needed within the

VHDL simulation to handle the handshaking functions that would be performed by the

VHDL model itselfin the asynchronous interface case. The I/O control module observes

the clock signal and actuates the handshaking signals with the communication entity atthe

correct times according to thepredefined timing protocol. The communication entity still

sees the handshaking and data signals from inside the VHDL simulation, but now

the handshaking signals are exchanged with the I/O controller instead of with the main
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Figure 3.16 Adapting an imported VHDL model with a synchronous inter
face to an SDF simulation, through a communication entity. The
same communication entity can be used as for the asynchro
nous case if the send and ack signais are provided by an addi-
tionai I/O control entity synchronized to the clock.

VHDL model. The dataflow communication side is the same, through buffered I/O such as

a socket interface (Figure 3.16).

In this way, the imported VHDL model is always provided with a suitable interface,

either asjmchronous or synchronous, while the dataflow simulation always sees the inter

face as an untimed, queued stream of data, which matches the SDF conunumcation

semantics. One limitation is that since the interface of each imported VHDL model can be

slightly different, the communication interface must also be customized to fit the VHDL

model interface. Fortunately, since the VHDL models will be of the tjqre that produce or

consume regular streams of data, to fitwiththe style appropriate for SDFmodeling, such

184



interfaces will be tend to be of the simpler variety.These interfacescan be categorizedinto

a smaller number of classes where much of the details can be parameterized, and so it will

not be necessary to hand-code the interface every time. For more advanced interfaces,

interfacelogic can be specified using signal transition graphs or event graphs for the asyn

chronous case, and modified control-dataflow graphs for behavioral synthesis. From these

and other graph forms, interfaces can be synthesized automatically [Sun92]

[vanBerkel921.

3.3.5 General System-Level Cosimulation

Since different system components can be derived from a variety of sources, simula

tion of the integrated system often involves linking together models whose semantics do

not match. If the semantics do all match, as in the case of heterogeneous implementations

of SDF specifications, then this fact can help to simplify the cosimulation effort. If not,

then there is a need for a connective simulation fabric that has semantics that are compati

ble with all of the heterogeneous modelsof interest. We alsowould like to use a semantics

that has a notion of time, since we plan to model real systems and we want to be able to

include components with time-dependent behavior, in general. Untimed models can be

mapped to thned behaviors, and this mapping is often necessary for real implementations

ofuntimed specifications where theimplementation has deterministic timing. Continuous-

time models are computationally expensive and are not appropriate for digital hardware

and software systems and semantic models that make instantaneous transitions. The

broadest, most inclusive timedsemantics for general transition system simulation shortof

continuous-time models is discrete-event simulation.

The VHDL language provides expressiveness for full discrete-event semantics. As a

result, it canbe convenient to use VHDL as a general simulation platform forboth VHDL

models generated from SDF and other, more restricted semantics, as well as general
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VHDL models imported from other tools and designers. With existing capabilities of

cosimulation of VHDL from SDF with other SDF-derived implementations, as described

in Section 3.3.3, and the methods described in Section 3.3.4 for interfacing non-SDF

VHDL models with dataflow simulation, general cosimulation capabilities are possible.

These have not been fully implemented in Ptolemy, but the likely starting point would be

with the VHDLB domain, which supports the specification of designs with general VHDL

semantics.

Related efforts to construct simulation backplanes have been made in both research

and in commercial products. Backplanes, borrowing a term from computing systems

where printed circuit boards plug into bus backplanes, provide a software framework for

integrating multiple simulation engines. One motivation for the creation of backplanes is

so that VHDL simulators from multiple vendors can be operated together in a single envi

ronment. A similar motivation is to enable both VHDL and Verilog simulators to simulate

different parts of a system, since both languages remain popular and many legacy models

exist, but translations between the two languages are nontrivial. An increasingly common

motivation for creating simulation backplanes is to allow mixed simulation with both ana

log and digital simulation engines. This aids the validation of mixed-signal systems in a

unified framework.

Research-based backplane designs have been in support of both mixed-signal systems

and efficient simulation of systems at mixed levels of abstraction, including the circuit,

switch, gate, register-transfer, and behavioral levels [Zwolinski95] [Saleh96] [Todesco96].

Other efforts have focused on efficient concurrent cosimulation of both open-loop and

closed-loop control [Schmerler95a] [Schmerler95b]. Commercial products include Sim-

Bus from Viewlogic (now Synopsys) [Goering93], OpenSim and Analog Workbench from

Cadence Design Systems [Donliil93], and SimMatrix and SimPrism from Precedence.

Vertue, from Synopsys, is based on the SimMatrix backplane and allows cosimulation of
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Verilog with circuit-level simulators for timing and power analysis. Mentor Graphics,

which owns Precedence, has recently decided to disband the imit and to discontinue the

SimMatrix backplane [Santarini98a].

Simulation backplanes, whileallowing the mixing of disparate, often separately-devel

oped, simulation engines with disparate semantics, have disadvantages as an approach to

mixed system simulation. One is the need to define a common denominator model thatall

participating simulators are compatible with. Another is creating a software infrastructure

that has all the relevant features of the individual simulation interfaces. Extending the

backplane interface or modifying a simulator interface when adding a new simulator to the

backplane canbe difficult software engineering tasks. Other difficulties arise with theneed

for very tightsynchronization among multiple timed models, especially when both analog

and digital systems arebeing cosimulated. This tight synchronization is a limits the con

currency and makes it difiBcult to obtainefficient simulation performance [Zwolinski95].

A different approach to the system-level specification and simulation problem is the

creation of new languages and new semantics for interaction among existing languages

and systems for specification, simulation, and synthesis. The EDA Industry Council's

ProjectTechnical Advisory Board began aneffort in 1996 todefine asystem-level descrip

tion language (SLDL) which would overcome the current limitations of standard lan

guages such as VHDL and Verilog. SLDL was at first envisioned as a common

replacement for VHDL and Verilog, or as a setof extensions to those languages for large

system specifications [Goering97b]. More recent notions of SLDL would define it as a

meta-language above VHDL, Verilog, and other languages and models, coordinating their

interactions at a high level [Goering97c]. Other features of SLDL that are being discussed

include the ability to describe hardware, software, andmechanical systems, to convey for

mal constraints andproperties, andto define time in mixed, abstracted tenns [SLDL97].
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3.4 Interfacing VHDL Simulators to Other Processes

In Section 3.3 we discussed the issues involved in synchronizing distributed simula

tions. That discussion covered both partitioned VHDL simulations and cosimulations of

SDF mapped to both VHDL and other execution engines. In this section we describe the

mechanisms available within the VHDL language for interfacing to other languages and

implementations, and how the necessary synchronization can be implemented by using

these available mechanisms.

3.4.1 Orlgms of the VHDL Foreign Interface

The first VHDL language standard of 1987 [IEEE88] did not provide a specification

for interfaces to foreign languages and programs. This was partly because VHDL was

originally seen as a "complete" language for modeling hardware, and the need was not

obvious to the original framers of the language to include such an interface. Users of

VHDL found that they wished to perform mixed simulations where the VHDL simulator

was a part of an overall system simulation or where hardware and environment models

written in other languages such as C could be used, with nunimal modification, within a

VHDL simulation. Several vendors of VHDL simulators provided their own foreign lan

guage interfaces on an ad-hoc basis, but when the second revision of the language stan

dardwas written in 1993[IEEE94], a standard foreign language interface wasincluded.

3.4.2 Foreign Architectures and Foreign Subprograms

According to the ANSI/IEEE Standard 1076-1993 ofVHDL, two means of interfaces

toVHDL arepermitted. Thefirst is foreign architectures coded in other languages, andthe

second is foreign subprograms coded in other languages. While entities in VHDL specify

theinterface to blocks, architectures specify the implementation of blocks. Multiple archi

tectures may be usedfor a single entity defined in VHDL. This is so thatmultiple, altema-
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Figure 3.17 Multiple VHDL architectures may be used for the same entity in
different VHDL simulation runs. In this system design example,
there is a choice of a cycle-accurate or a gate-level VHDLarchi
tecture.

tive implementations thatshare a common interface can beused inplace ofa given block,

which allows for many models and levels of abstraction to be used. Forexample, a simple

high-level behavioral model can beused inone architecture for efficient simulation. Alter

natively, a complicated hierarchical architecture with itsown sub-entities andstracture can

be used in order to allow detailed simulation at a level closer to actual hardware, as shown

in Figure 3.17.

With foreign language architectures, a language such as C may be used to execute the

intemal behavior of an entity, while maintaining thesame interface to therestof the simu

lation through VHDLports and signals.

189



With the second type of foreign language interface to VHDL, foreign subprograms, a

subprogram call within a block of sequential VHDL statements can be a call to a routine

written in another language, instead of a call to a VHDL subprogram. Arguments can be

passed to, and values returned from, routines that are included in the simulation. This is

convenient where special library functions or procedures are available in languages such

as C but are not a part of the standard VHDL language, or where more efficient implemen

tations are possible for algorithmswritten in C and compiled to efficientobject code.

The two types of foreign language interfacesare fundamentally different in their syn

chronization properties. With foreign subprograms, the sequencing of calls to the foreign

language interface can be made explicit in the code by the ordering of the statements in a

block of sequential VHDL statements. Where the ordering of communication transactions

between simulators is necessary for proper synchronization, calls to foreign subprograms

embedded within a series of sequential statements provide a means of guaranteeing the

synchronization order on the VHDL side.

In the case of foreign architectures, the foreign language interface is the set of signals

and ports leading into and out of a foreign entity. These signals can be active at any time

during the simulation and in any order with respect to the other entities in the simulation.

Because the semantics of signals in VHDL are unconstrained in their timing, synchroniz

ing conmiunication between a VHDL simulation partition and other simulation partitions

is more difficult when using foreign architectures than when using the manifest control

sequencing of foreign subprogram calls within sequential statements. Fortunately, the

needed s3aichronlzation can still be obtained, but with some additional effort and a slightly

more complicated VHDL design specification.
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3.4.3 Using Foreign Architectures as a Cosimulatlon Interface

When foreign architectures are used in VHDL simulation, at the outer level of simula

tion, the design appears to be a group of VHDL entities that are connected through their

ports to signals over which events are communicated. Underlying each of these entities is

an architecture specified for the simulation. One or more of these architectures may be a

foreign architecture coded in a language other than VHDL, usually C. In the case of the

SynopsysVHDL SystemSimulator(VSS) [Synopsys95], a C-Language Interface (CLI) is

provided. This allows the use of foreign architectures coded in C. The designeris required

to provide a set of four fimctions written in C to support a single foreign architecture.

These four include a fimction for initialization, a function for executing the body of the

architecture during each process activation, an error-handling function, and a function for

wrapping up at the end of simulation. The <XI interface provides a set of routinesthat can

be called from within these four functions. These support routines provide functionality

for reading values fi:om input ports, writing values to output ports, and for establishing

timing of inputs, outputs, and rescheduling the foreign architecture for later execution.

In order to use foreign architectures coded in C, VSS provides a means of linking in

the object code compiledfrom the C source that defines the four routines for each foreign

architecture. Once these have been linked into the simulator, the foreign architecture can

be instantiated in any design that runs on that simulator. The simulator, along with the

linked-in code, runs as a single process on the operating system of the computing plat

form. Within the linked-in routines written in C, arbitrary C code can be included, which

opens the possibility of communication outside theVHDL simulation process. In ourcase,

calls to UNIX socket routines permit inter-process communication between the VHDL

simulatorand other processesrunning on the operatingsystem.

When generating distributed simulations firom SDF specifications, conununication

eventscan be determinedat compile time. As a result, it can be shown thatpreservingthe
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order of communications (send or receive) within any execution engine relative to the

original precedence graph is sufficient to guarantee that correct synchronization is pre

served. Thatordering can be guaranteed in a number ofways onthe VHDL side. One isby

generating all function code within a single sequential process, and then transferring con

trol to send and receive entities within the VHDL simulation whenever communication

needs totake place. These entities can process communication actions asynchronously rel

ative to the other simulation engines, and return control to the main VHDL function code

when a communication action completes. Another way toenforce the correct ordering of

communication is to generate a controller thatactuates the send and receive entities within

the VHDL simulation in the correct order. The functional blocks within the VHDL simu

lationthen willnot need to be in sequential code, butcanbe in distributed entities simulat

ingconcurrently, as longas thecontroller preserves thecommunication sequence.

3.5 The Simulation Design Flow

Forourimplementation ofthe simulation design flow, we were interested intwo main

modes of use for simulation. The first is in standalone simulation of generated designs,

and the second is in cosimulation. The software architecture of the simulation flow in the

VHDL domain within Ptolemy supports both modes, andis described in Chapter 5. Here

we describe the general structure of the simulation flow.

The overall simulation flow is shown in Figure 3.18.The first step is always the cre

ation of the SDF graph specification with functionality defined in SDF actors and the set

ting of theSDF parameters that determine the numbers oftokens produced and consumed

oneach portofeachactor. This specification can besimulated and refined byitself inpure

SDFsimulation until the structure andparameters of the algorithm are sufficiently defined

to allow continuing with the restof the simulation flow. When theSDF graph is finalized,
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Figure 3.18 The simulation design flow.

thenext stepis todetermine a valid schedule for the SDF graph for purposes ofgenerating

the simulation code. The same scheduler that is used in SDF simulation is also used in the

simulation flow.

The next decision in the simulation flow is the selection of the style of code that is to

be generated. The options supported are sequential code generation and structural code

generation. Sequential code generation creates a single VHDL process where SDF firing

functions communicate through VHDL variables. Structural codegeneration refers to the

code thatis generated firom thehardware synthesis flow, where firings are mapped to sepa

rateentities or in groups, and entities communicate through VHDL signals. The main dif-
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feience between these two classes of code styles is that the sequential code simulates

faster due to the avoidance of VHDL signals and the accompanying scheduling overhead

they require. The value of such a simulation is that the functionality of the VHDL code-

blockscan still be checked even thougha simplified formof communication is being used

in the form of VHDL variables.

For sequential code generation, an option is supported to choose from three commer

cial VHDL simulation tools. These are VSS from Synopsys,LeapFrogfrom Cadence, and

the VHDL simulator fi:om Model Technology. Each of these tools has its own set of fea

tures and simulation tracing capabilities that may be of interest to various users, who may

also have their own preferredsimulation engine. Othersimulation engines can be incorpo

rated into our flow for standalone simulation with a modest effort, since the invocation of

standalone simulation is relatively simple on a UNIX platform.Within standalone simula

tion we can also specify signal sources to be used as inputs, which will be generated as a

part of the VHDLcode,as well as paths for logging outputvalues andplotting them using

the Ptplot signal plotter within Ptolemy.

Cosimulation of VHDL is supported in two modes. The first is in cosimulation of

VHDL subsystemswith other subsystems generated from common SDF graph specifica

tions. The second is in partitioned simulation where multiple VHDL subsystems are

cosimulated together on multiple VHDL simulationprocesses. Both of these applications

of VHDL cosimulation are described in Section 3.3.3. In order to accomplish this form of

cosimulation, a more open interface to the VHDL simulation engine is necessary, and it

must be programmedto add the necessarysequencing and synchronization. For these rea

sons, we have only supportedthe Synopsys VSS simulatorfor cosimulation, since a C-lan-

guage interface is provided with this tool. Other VHDL simulation tools also support

similar interfacing, and with a sizable effort, could be incorporatedinto our design flow in
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the future. The approach we took to interfacing the VSS simulator is described in Section

3.4.3.

3.6 Summary

We have explored the simulation semantics of VHDL and how they can be applied to

cosimulation with other models of computation. VHDL is applicable to specification, sim

ulation, and synthesis at multiple levels of design, but often mixtures of VHDL specifica

tion with other forms of specification are required. We have presented the simulation

synchronization problem, and various approaches to maintaining synchronization in both

distributed VHDL simulation and mixed VHDL / non-VHDL simulation. This latter form

is particularly useful for the cosimulation of mixed implementations of SDF specifica

tions. The use of the VHDL System Simulator from Synopsys and the accompanying C-

Language Interface for mixed simulation have been described. Cosimulation is one means

of validating designs after they have been partitioned and partially synthesized, and can

yield useful information about design metrics of interest. Even before synthesis takes

place, useful design quality information can be generated and represented to the designer

through the use of interactive design tools. These tools and their application to the design

of parallel hardware implementations are the subject of the next chapter.
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4

Interactive Design Tools

As methodologies for the design of embedded electronic systems continue to evolve

toward higher levels of abstraction, design tools must continue to adapt to increased

expectations of their capabilities and new possibilities for their use. The continuing

progress in speed and features in graphical user interfaces is raising the level of expecta

tion for the responsiveness and flexibility of graphical design tools. Design activities at

higher levels of abstraction open many possibilities for design exploration, making non-

interactive batch operation of tools less appropriate. In addition, the designer or design

teammanagerwho is skeptical of a new designmethodology hasan ever-increasing desire

for an understanding of the internals of the methodology as well as for the ability to have

fine control over the methodology.

In the sections that follow, we describe elements of interactive design visualization and

how they can be applied to the improvement of the design process. In Section 4.1 we

describe the Object-Action Interface Model as a way of describing an interactive design

tool at both the task and interface levels. In Section 4.2 we describe a set of properties that

we desire in an interactive visual design tool for hardware synthesis from dataflow graphs.

Following that, in Section 4.3 we elaborate on some of the benefits that such a design tool

can potentially bring. In Section 4.4 we present the design of TkSched, the interactive tool
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that is used within Ptolemy during the hardware synthesis design process. Following that,

in Section 4.5 we describe some areas of future extensions to interactive tool design, fol

lowed by a summary in Section 4.6.

4.1 The DAI Model

In a con^lex undertaking such as creating interactive tools for electronic design auto

mation, it is helpful to manage and understand the complexity by categorizing the ele

ments of the problem and the proposed solution in a taxonomy. By bringing in a logical

stracture and defining some additional terms, we have a framework and a way of naming

the parts of the problem that makes the discussion clearer.For generalproblems of human-

computer interaction (HCI), Shneiderman defines an Object-ActionInterfaceModel (OAI

Model) that provides a fonnal way of describing the problem and solution and how they

relate to one another [Schneiderman97]. In this section we describe the motivations

behind the OAI model, and then describe the model itself and some of its consequences.

4.1.1 The interface versus the Task

hi some discussions of user interfaces, the tendency may be to talk about the elements

of the user interface, such as the icons and symbols presented on the display, and how they

are ^plied as though they are entirely the same as the elements of the problem being

solved. This can be misleading and confusing, and fails to recognize that the user interface

and the problem domain are separate things. It may also constrain designers' thinking by

guiding them to begin designing a user interface before the problem domain is properly

understood.This is not unexpected, as a user interface designerwill seekto relate familiar

user interface elements to an unfamiliar task in order to understand the task, but it does not

necessarily lead to goodunderstanding of the taskor to a gooduser interface design. Fred

Brooks notes that it is critically important for computer scientists who wish to develop
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tools to serve in other disciplines such as chemistry, physics, medicine, architecture, and

engineeringto first take time to study the "using disciplines" beforerushing to constructa

solutionto a problemthat is yet to be properly appreciated [Brooks96].

4.1.2 Objects versus Actions

In any useful system for doing work or describing how work is done, we can roughly

divide the discussion into two complementary sets, which are the objects of interest and

the actions that are performed. For construction, cooking, office systems, or electronic

design, we can speak of tools and materials, utensils and ingredients, documents and data,

or schematics and libraries as the objects of interest. Broad categories of actions are then

identifiable as homebuilding, baking, publishing, or synthesis. Programmers have long

realized the distinction between programs and data, even when data structures and proce

duresappear within the sameblockof code, or whencodebecomes data, as in the area of

compilers. Object-oriented programming (OOP) has shiftedthe emphasis to objects more

than was formerly the case with strictly procedural programming styles, which emphasize

actions. In procedural programming, the system is described as procedures and data struc

tures. In OOP, the system is described as objects and methods. In designing a user inter

face to a system, we want to help the user to refer to objects and to invoke actions. Objects

may be individual or collective, and actions may be single steps or entire activities. The

user interface should present both objects and actions in an understandable and controlla

ble way.

4.1.3 Elements of the OAI Model

The OAI model [Schneiderman97] is a hierarchy that includes both the task and the

inter&ce (Figure 4.1). The top level includes two sub-hierarchies, one for the task and one

for the interface. Each of these two branches contains paired hierarchies of objects and
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Rgure 4.1 The OAI Model, from [Shneiderman97].

actions. The goal of the interface designer is to understand the task objects and actions,

and to define and limit the scope of task objects and actions that will be observable and

controllable from the interface. The interface design involves constructing interface

objects and actions that canbe used to access the taskobjects and to accomplish the task

actions.

To manage complexity, the task objects, task actions, interface objects, and interface

actions are all represented as hierarchies. In Figure 4.1, the hierarchy for the taskencom

passes theentire universe at the top level down to individual atoms atthe bottom level. For

a cityplanning task, thehierarchy might divide a city into wards or districts, then zones,

then city blocks anddown to individual buildings. A different setofgoals might have the

hierarchy be decomposed into separate subsystems of roadways, gas and electric lines.
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sanitary and storm sewers, phone and cable networks, and so on. For electronic design

automation (EDA), the taskobjects can include multiple sub-hierarchies, including a set of

alternative specifications, an implementation architecture, and a database of library com

ponents. An individual specification may be program code with sub-entities, procedures,

or objects, or it might be a graph structure such as a dataflow graph with hierarchical

nodes and internal code within the leaf nodes. The architecture has a connected structure

of blocks, with each block containing other blocks, and each lowest-level block consisting

of logic gates, transistor netlists, and layout polygons. A library of components can be

organized by technology type, vendor source, functional classification, and so on.

The task action hierarchy strives to put a structure on a set of activities. An overall

intention is at the top level, and individual steps that can be applied to achieve that inten

tion are at the bottom level. In EDA, for the intention of behavioral synthesis, some high

level sub-steps are behavioral programming, simulation and debugging, control-dataflow

schematic graph capture, high-level estimation, scheduling, allocation, binding, RTL code

generation, and then RTL synthesis. Each of these high-level sub-steps has its own sets of

procedures andalgorithms, which canberesolved down toindividual program oralgorith

micsteps.Not all of thesesmaller sub-steps should be exposed in theinterface.

The interface objectandaction hierarchies willbe planned according to which objects

and actions will be controllable and observable from the interface, through appropriate

analogies, either textual or graphical (Figure 4.2). The interface design will be driven by

the task structure and goals, but it will also be constrained by the tools and knowledge

available to the interfacedesigner. The interface will likely be a good match to the task if

the task- is first understood, and the relationships between the task and interface are firmly

established before coding begins. Even with this understanding, the interface design can

be significantly shapedby the tools and techniques applied to designing the interface. The

interface will have a different structure and may have a different feature set if it must be
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Figure 4.2 Another view of the OAl model. The Interface designer must
understand the principal task-level objects and actions, and
then create analogous interface-level objects and actions.

constructed using a command-line interpreter style, as compared to an interface built up

from a standard library of graphicalwidgets for buttons, menus, textboxes, and so on.

4.1.4 Direct Manipulation and The Disappearance of Syntax

Shneiderman refers to a trend through the history of computers that has tended toward

the diseqfpearance ofsyntax. The first interactive interfaces involved keyboard commands

with specialized syntax that varied from application to application and machine to

machine. Right up to the present day, many tools still support, if not require, the use of

controlcharacters, escapesequences, and function keysfor somefeatures, with an accom

panying learning curve barrier and extra memorization load. Fortunately, with graphical

interfaces these platform-specific key sequences are more likely to be one alternative

mechanism among others, instead of the only way to achieve the desired results, but they
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are still a source of confusion and sometimes inconsistencies among tools and platforms.

They are not easily learned except through rote memorization or repeated trials, and they

are not easily retained over time by most users with anything less than frequent use.

Interface styles that are supported within graphical environments provide the ability to

create interface objects and actions that match more closely the user's understanding of

the task-level objects and actions. This is possible through the use of icons to pictorially

represent items or tools to be applied to items. It is also helped through the use of spatial

relationships to present sets of objects or sequence flows of actions.These kinds of repre

sentations are not possible through command-line interfaces, and may be possible through

ASCn screen displays, but only at low resolution. When objects and actions are presented

visually to the user, the need for memorizing arcane or infrequently-used syntax is obvi

ated. This is not to say that syntax goes away, because even in visual representations there

is still a strong need for a syntax that is unambiguous, understandable, and easily retained.

Menus, buttons, and entry boxes also aid in providing obvious relationships between inter-

face-level and task-level objects and actions. These components are finding conunon use

and are being applied with common syntax in interface-building toolkits, and in both com

mercial and freely distributable software.

When there is a closer match between interface-level objects and actions and the

underlying task-level objects and actions that they represent, the user is presented with the

cap^ility of direct manipulation of the items of interest through on-screen proxies pre

sented in the interface. Direct manipulation is discussed in greater detail in the following

section, which also describes several other desired aspects of interactive design tools.
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4.2 Desired Properties of interactive Design Tools

The movement toward higher levels of abstraction in design is directed at bringing

electronic system design up to the levels at which algorithm and system designers think

about problems. With the increase in abstraction, there are also opportunitiesfor bringing

forth new ways of looking at design problems, as well as making enhancements to more

traditional design visualization methods. In each of the subsections that follow, we exam

ine some of the most essential properties that we seek for design tools to embody.

4.2.1 Visual Representations

Ben Schneiderman, in discussing information visualization, summarizes the powerful

human abilities that visual display and interaction makes use of [Shneiderman97, Ch.l5]:

The attraction of visual displays, when compared to textual displays, is

that they make use of the remarkable human perceptual ability for visual

infonnation. Within visual displays, there are opportunities for showing

relationships by proximity,by containment,by coimected lines, or by color

coding. Highlighting techniques (for example, boldface text or brightening,

inverse video, blinking, underscoring, or boxing) can be used to draw atten

tion to certain items in a field of thousands of items. Pointing to a visual

display can allow rapid selection, and feedback is apparent. The eye, the

hand, and the mind seem to work smoothly and rapidly as users perform

actions on visual displays.

The foremost property of interactive design tools that makes them relevant is their

visual nature. Problems that are suited to being solved through interactive design are by

their nature not best approached by completely automated means. Problems with auto-
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mated solutions can be worked on behind the scenes, although visualization can be

employed to display the progress of an automated algorithm to the user, as well as to dis

play the algorithmic results. In many cases the designer works within a space that is

defined by a problem domain, some inputs or constraints from which to begin, anda range

of techniques or procedures that are applied to the design data at each stage to add to the

data, refine it, or transform it through a series of steps. These steps can be conceptually

simple, butmayrequire many detailed steps to be executed. Thedesigner might be able to

workthem out with pencil and paper on her own, but the strengths of a digital computing

platform canfacilitate this process bymanaging the large volume ofdesign information.

The design data may be input andoutput in various forms, suchas binary data or text

files. The commands used to effect steps in the design process may have a specific syntax

in text or throughmouse movements and button presses. The bottleneck, however, comes

withthe desireto receivefrequentand detailedfeedback on the progress of the designpro

cessthroughout thesequence of design steps, andchannels suchas text, speech, and audio

are inherently serial in nature.Tactile interfaces with haptic or force feedback are a prom

isingarea of research, but are not yet at a practical stage of development for widespread

use. For manydesign tasks they may be natural and intuitive as pointing devices, but too

limited in their precision and information bandwidth. Some forms of visualization are

grouped by dimensionality in Table 4.1.

Visual displays of information have advantages in bothinputandin output. For input,

designers have the ability to randomly access, or jump to, any pointin the display. In out

put,visualdisplays havea muchhigher bandwidth of useful information thanwhatis pos

sible with serial s^isory channels. This allows a greater volume of information to be

displayed concurrently, as well as the ability to relate more detailed information rapidly.

Multivariate relationships can be illustrated in two- andthree-dimensional displays, giving

insightinto interdependencies of design parameters. However, eventhough a great deal of
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Table 4.1. Some visualizations of design data in one or more dimensions.

Dimensionality Examples

ID, serial program code, mathematical equations,
descriptive text, audio signal

2D, planar circuit schematic, block diagram,
two-axis data graph, Gantt chart, planar projection of

a physical model

3D, spatial time evolution of a 2D system, three-axis data graph,
physical model

4+D, hyperspatial time evolution of a 3D system, rotating physical
model, function of three or more variables

information can be conveyed rapidly in a visual display, that does not mean that the user

should be inundated with the fiill bandwidth that is available through the display. An

improvedunderstanding and productivity is possible if an appropriate density and rate of

change in information is shown to the user, and if the user can adjust the tool to adapt to

higher density and speed of information as the skill level improves with use.

Often, the first design tools deployed in support of a given design activity will mimic

the conventional diagrams and views that designers were accustomed to before the tool

came into use. This eases acceptance of new design tools, but it does not necessarily

change the way engineers look at the activity of design. Standard forms of information

that are captured in design tools include system schematics, circuit diagrams, flow dia

grams, code listings, andGanttcharts/reservation tables for scheduling. Often these views

are staticand arefor displaypurposes only, but they mayhavesomeadditional set of capa

bilities for selecting portions of the design information for further inquiry, for zooming in

on a particular section, for looking at parameters and attributes, and for inspecting hierar

chy. Schneiderman [Schneiderman97] lists seven major tasks in data visualization, which

include those just mentioned. These are summarized in Table4.2.
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Table 4.2. Seven majordata visualization tasks, from [Schneiderman97].

Task Description

Overview Gain an overview of the entire collection.

Zoom Zoom in on items of interest.

Filter Filter out uninteresting items.

Details-on-demand Select an item or group and get details when needed.

Relate View relationships among items.

History Keepa historyof actions to support undo, replay,
and progressive refinement.

Extract Allow extraction of subcollections and of the query
parameters.

Once these conventional views are mastered, there are opportunities for expanding the

types of views available beyond familiar diagrams. The possibility exists of exploring

forms of visualization that have not been common previously. One exampleof this is mov

ing from two-dimensional to three-dimensional representations of designs and data. The

rendering of such views is more challenging, as is the immediate understanding of them

by new users. However, software to assist in displaying three-dimensional images on a

two-dimensional screen is more widely available now, and users of computers are more

accustomed to seeing sophisticated visuals with unconventional views. The VRML lan

guage has become an accepted standard for the interchange of descriptions of three-

dimensional objects and data [Broll96], and a range of viewers and other software tools

for creating, managing, and viewing VRML data have become available [SDSC97]. With

3D rendering comesthe possibility for views not previously explored, suchas 3D rotation

of designs, andtranslation through space in both thephysical design space andthe abstract

design space of area, timing, and power. Complex visuals can be burdensome to the

designer as well, however, so the tendency to use moresophisticated visuals mustbe bal-
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anced against the need to keep representations clean and well-defined for ease of under

standing.

Dynamism is also a part of conveying more information in a visual representation.

Adding a temporal dimension to displays can show the designer how properties of interest

evolve over time, and can simplify a display in comparison to the altemative of simply

adding another spatial dimension to represent time. What may be lost is the ability to see

the data at all times of its evolution simultaneously, as is possible in a static display with a

time axis, but not in a sequentially evolving dynamic display.

4.2.2 Graphical Data Structures

Interactive design tools should be graphical, not simply in the sense of computer

graphics, but in the graph data stmcture sense of the term. A graph can represent objects

that are associated with an arbitrary number of other objects, but there are several special

izations that are of interest, such as hierarchical trees and directed acyclic graphs, among

others. Graphs of objects and their direct associations withone another are common in the

underlying data structures and algorithms of hardware andsoftware design, at manylevels

of abstraction. These include transistor netlists, gate-level netlists, register-level schemat

ics, architecture and system block diagrams, control-dataflow graphs, precedence graphs,

and UML diagrams showingobject-orientedsoftwareinheritance and associations (Figure

4.3).

Graphs show the objects of interest and their relationships with one another. Such

many-to-many relationships cannot be shown effectively with purely sequential code or

diagrams. Interactive design tools should be adept at graph visualization and manipula

tion. Ideally,the user of such a toolwould be able to construct and manipulate graphs and

the objects they containas easilyas arranging physical objects on a workbench.

207



-^vFiftersdesigr?usmg.frequency: sampling^

Figure 4.3 Visualizations of graphical data structures used in hardware
and software design, (a) Synchronous dataflow graph (b) Regis
ter-transfer level schematic (c) Logic gate-level schematic.



4.2.3 Interactivity

Of course, interactive design tools should be interactive by definition. More specifi

cally, they should strive for a high level of interactivity where appropriate. Being highly

interactive means bringing closer together the actions by the designer and their conse

quences, both intiie reaction time ofthe design tool and inthe form ofthe reaction so that

consequences are as obvious as possible. The design process is hindered when the

designer is required togo through alengthy process toeffect change, or when the designer

must interpret consequences through a text-based interaction.

Design is also hindered when designers are not provided with access or "handles" to

theabstract objects that they wish to manipulate. In theearly 1980s, examples of computer

systems emerged in several application areas that had user interfaces that fostered rapid

learning andmastery of those systems as well as retention over time [ShneidermanSS].

Systems like diese are characterized by three principles:

1. Continuous representation ofthe objects and actions ofinterest with meaningful visual

metaphors.

2. Physical acdons or presses of labeled buttons, instead of complex syntax.

3. Rapid incremental reversible operations whose effect on the object ofinterest isvisible

immediately.

These principles can be summarized by the term direct manipulation because the

objects andactions of interest are visible, and the interaction is with the visual metaphors

themselves, andnot through some other command line or menu interface, although these

other interfaces maycertainly be supported. Among the beneficial attributes of these sys

tems as observed by Shneiderman are:

• Novices can learn basic functionality quickly, usually through a demonstration by a

more experienced user.
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• Experts can woiic rapidly to cany out a wide range of tasks, even defining new func

tions and features.

• Knowledgeable intermittentusers can retainoperational concepts.

• Error messages are rarely needed.

• Users can immediately see whether their actions are furthering their goals, and, if the

actionsare counterproductive, they can simplychangethe direction of their activity.

• Users experience less anxiety because the system is comprehensible and because

actions can be reversed easily.

• Users gainconfidence andmastery because they are the initiators of action, they feel in

control, and they can predict the system responses.

When the interface supports direct manipulation of task objects and actions through

analogous interface objectsand actions, layersof excess syntax are removed, allowing the

designer to focus on the problem instead of on the menu commands and key sequences

thatare requiredto achieve a desired outcome. The design toolbecomes more transparent,

as themetaphor presented to theusermatches closely theirconcept of theproblem domain

at the task level. In the OAI model, as discussed in Section 4.1, this occurs when the inter-

face-level objects and actions are closely matched with the relevant task-level objects and

actions, and when the syntaxknowledge required just to use the interface is minimized.

The design process is a mixture of thought and action from the point of view of the

designer. The goal of the interface design shouldbe to minimize that part of the cognitive

loadon the designer that does not directlyrelate to designissues. Slowor confusing inter

faces requiremore of the designer in terms of focusing on action to interact withthe tool

in the right way or waiting for the tool to react. This makes the tool the bottleneck in the

designprocess, rather than enablingthe designerto think and act as fireely as possible, and

to effect their changes and observe the consequences rapidly.
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Along with this goal of interactive tools must be the realization that designers' habits

and abilities change over time as they become accustomed to the use of a design tool and

leam more about it. One of the first principles observed by Hansen in performing user

engineering for interactive systems is to know the user [Hansen? 1]. This means knowl

edge of the range of users in terms of their abilities, experience, education, and expecta

tions of the interactive system being designed for use. An important part of knowing the

users' characteristics is that they are not singular, but cover a range in most cases, particu

larly as users move from their first-time use of an interactive system through to being users

with some knowledge and experience and on to becoming expert frequent users.

Because of this, multiple modes of interaction should be provided. In the early stages

of tool use, a designer may want to leam at a fine level of interaction. Altematively, new

users may wish to leam at a comprehensive level of interaction, having many parameters

use defaults, without worrying about controlling fine details until their level of sophistica

tion increases. Advanced users may want to encode frequently used procedures or com

mand sequences in scripts, or they may wish to use command accelerators, which increase

productivity once designers are more sure of the actions they wish to take.

Some experienced users will find that command-line interfaces with powerful macros

and abbreviations for frequently used commands will be more productive than an all-

graphical approach. There is also a training and self-documenting advantage to having

some redundancy and repetition among commands issued through command-line, menu,

and pointing-device interfaces. Users who master one style of interface will find it easier

to migrate to other styles if many of the same commands are supported, and experienced

users can select their preference of interface for each of their task actions depending on the

needs ofeach situation.

Another motivation for continuing to provide a diversity of interaction styles is that not

every task is suitable for direct manipulation. For a design containing a number of compo-
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nents, some design task actions will be suitable for a direct-manipulation interface when

the number ofcomponents is small, but unsuitable when that number becomes sufficiently

large. If the tool is intended to be used for both large and small designs, then it may be

necessary tosupport both styles. Even for large designs, advanced users may find that they

canachieve thebulk of their design intentions through an indirect interface, but that for the

final adjustments or fine-tuning and experimentation, a direct mampulation style is more

comfortable and bettersuited to exploration andlearning.

BDA tasks such as scheduling or coarse layout, for example, can be performed using

commands to invoke heuristic algorithms that operate on a set of task-level objects.

Adjustments to the resulting schedule or fine-scale placement can subsequently occur

through the use ofdirect manipulation on a select number oftask-level objects. Requiring

the user toperform the entire task action with the heuristic may prevent them from achiev

ing satisfactory results, while the alternative ofonly allowing direct manipulation islikely

to make the taskaction exceedingly tedious. Providing both styles of interface is a closer

match to the two variations of the task that are both essential for satisfactory design.

4.2.4 Multiple Views

Designers are often confronted with multiple, sometimes conflicting, design goals.

Progress on each ofthese goals may be of interest to the designer throughout the design

process. However, combining information about multiple design goals into a single view

can lead to views that are cluttered with dense information. In the domain of software

architecture design, Rumbaugh [Rumbaugh96] notes that there isa tension between show

ing all relevant details and keeping displays ofinformation understandable, so that leaving

some information hidden and showing different aspects of designs in separate views is an

inherent part of the Object Modeling Techmque (GMT) [Rumbaugh97]. In the area of

behavioral synthesis, the Interactive Synthesis Environment (ISE) from U.C. Irvine
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[Gajski96] presents the designer with views at thebehavioral, structural, and physical lev

els. At each of these levels there is a set of quality metrics and tasks that can be performed

manually or automatically.

Informally, the ideaof succinct specification is captured by a quotation attributable to

Mark Ardis of Bell Labs, who has worked in formal methods for software specification:

"A specification that will not fit on one page of 8.5-by-ll inch paper cannot be under

stood'' [Bentley85]. Clearly there are numerous specifications, indeed most, that exceed

the One Page Principle, but they do so at the expense of succinct clarity. There is a ten

dency toward diminishing returns from increasing the amount of information that is

required forany specification tobeunderstood, but the only way toprovide sophisticated,

detailed specifications is to exceed this limit. One way to manage this is to provide an

overview in one page or in a principle view, and to offer details on demand in other sup

porting views or documents. This draws directly from two ofthe major visualization tasks

as shown in Table 4.2.

Much of the detailedinformation is not required to be available continuously. Someof

the information may pertain to the same design elements as other groups of information,

but it may not be helpful for these groups to be displayed simultaneously next to one

another. Other information pertains to entirely different ways of looking at the design,

either from a different level of abstraction, or from a different domain, such as temporal,

frequency, orspatial. Displays that attempt tocombine multiple such domains inone view

may not make much sense, butmay be ofhigh value in separate, individual views.

For these reasons, multiple views within aninteractive design tool canbe ofgreat use,

not onlyin viewing different portions ofthe same system, but in viewing the same designs

from different perspectives. A simple example of this inmechanical CAD would bea dis

play that shows three projection views ofthe same part orbuilding design: front, top, and

side. In signal analysis, views ofboth thetime trace of asignal and thefrequency spectrum
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of a signal can give mutual insight (Figure 4.4). Similarly, in embedded system design,

views of the algorithm, at multiple levels of refinement, and the architecture,also at multi

ple levels of refinement, can show properties of interest with different emphases.

With three or more variables, unless one or more of the variables are a function of the

others, it is difficult to clearly show relationships among them in two-dimensional dis

plays. The major macroscopic properties of interest in embedded system design are often

enumerated as area, timing, and power. Views that simultaneously capture aspects of both

area and timing are common, such as Gantt charts and control-dataflow graphs where

resources are shown on one axis and time spent in execution is shown on another. To show

relationships between power and each of the other two variables,new views suggest them

selves. The correlation between timing and power may be represented as a simulation

trace of power consumption as a function of time during the execution of an algorithm,

leading to a pinpointing of the most energy-costly operations, or the peak levels of power

consumption. Similarly, the relationship between area and power may be shown as a two-

dimensional display of a layout or architecture, where color is an overlay that shows

powerusage distributed over the design. Hot colors such as red can show sections of high

powerusage, and cool colorssuch asblue maybe used to indicatelow-power sections. For

the cases mentioned here, it would be difficult to conceive of a single representation of the

design that could simultaneously capture all three of these aspects of a design and still

clearly convey the interactionsbetween variousdesign attributes.

4.2.5 Cross-Connected Views

Having multiple views of design information is one way of increasing the designer's

understanding of the problem at hand. Separate views alone, however, do not realize the

full potential of working with distinct but related subsets of information. Connections

among views can show relationships that would be difficult to conveysuccincdy in a sin-
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Rgure 4.5 A view of power consumption distributed over a system archi
tecture layout.

gie view that attempted to combine all information in one presentation. In addition when

the two views represent design data upstream and downstream from one another in a

design flow,cross-connections between views can pinpointareas where changes upstream

can result in changes downstream. This type of cross-connection can be used in reverse,

by focusing on problem areas downstream, and by showing what design data upstream

specifically impacts the problem area, and in doing so limit the scope of exploration

needed to effect change. An example of the use of cross-highlighting for this purpose is in

the RTL Analyzer from Synopsys [Synopsys97] for improving the quality of synthesis

results ffom HDL source code.

4.2.5.1 Cross-Highlighting

There are at least two broad types of cross-connections that can be used to relate mul

tiple views. These are cross-highlighting and hyperlinks. Cross-highlighting is a display

technique where selecting or highlighting objects in one display view causes related



objectsin other views to alsobe highlighted. The focus remains withthe viewwhere high

lighting was initiated, and other eleihents in the sameview can be highlighted to see how

highlighting changes in the related views. Highlighting persists so that the focus can be

switched to another view and exploration can begin at the newly highlighted sections.

Highlighting can be bi-directional, so that if the underlying relationships are defined in

both directions, highlighting in any of multiple views will result in cross-highlighting of

the related information in the remaining views. A conunon form of highlighting in soft

ware debugging tools such as GNU gdb/emacs is that when a breakpoint is reached or an

error occurs, a window showing the source code centers on the point in the code at which

the program execution stopped.

4.2.5.2 Hyperiinking

The second type of cross-connectionconsidered here is the hyperlink. Hyperiinking is

a way ofviewing informationnon-sequentially, and traversing associations from one piece

of information to another. This was first proposed in a basic form by Vannevar Bush in a

visionary article for the Atlantic Monthly [Bush45][Simpson96]. Bush proposed a new

device, called the memex, which would use microfilm and eye-tracking technology. The

memex would be used for browsing "new forms of encyclopedias" with "a mesh of asso

ciative trails running through them" where the organizers of information would perform

work in "establishing useful trails through the enormous mass of the common record."

Thiswas inspired as a wayof dealing with the rapidproliferation of printedmatterand the

information overload that was already being experienced by some in research activities.

The modem term hypertext refers to networks of documents that are connected by

Imlrs that can be traversed by activation, or hyperlinks. The termhypertext was coined by

TedNelson in the 1960sas he wrote philosophicallyabout the potentialof the digital com

puteras a "literary machine** [Johnson97]. Hypermedia or hyperlinked multimedia refers
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to documents containing other media besides text, including images, audio, and video.

Hyperlinks are an important partof Engelbart's "human augmentation" systems, whichhe

first developed at SRI during the 1960s for assisting work in planning, analyzing, and

designing in complex problem domains [Engelbart84]. These concepts were later devel

oped into production systems, including NoteCards from Xerox PARC, and eventually

wereused in commercial products such as Bill Atkinson's HyperCard for the AppleMac

intosh [Sbneidennan97].

When the WorldWideWebwas first proposedin 1989, TimBemers-Lee described the

hyperlinks as "hotspots" embedded directly in the text [Bemers-Lee94]. This eliminated

the overhead of menus, typing codes, or having marker symbols throughout documents.

Hyperlinks and hypermedia are now familiar to any user of an HTML browser such as

Mosaic, Netscape Navigator, or Microsoft Intemet Explorer. Hyperlinking is also used in

documentation systems such as Literleaf World\fiew [Interleaf97]. When information,

usually textor an icon, is clicked onusing a pointing device, another view ordocument is

opened. The focus may switch to the new view, or it may remain with the previous view if

thenewviewhasspeared in a separate window. Hyperlinks arealso used insoftware pro

filing tools suchas Quantify from Rational (formerly Pure Atria) [Rational97] inorder to

allow the user to rapidly traverse a call-chain of nested routines. A simple butcommon use

ofhyperlinks is in file browsers, where clicking on the name of a directory causes thecon

tents of the directory to be displayed.

The distinction made here between cross-highlighting and hyperlinks is that cross-

highlighting is used mainly to highlight information in other views while keeping the

focus in the current view, while hyperlinks are used in support of traversing relationships

and changing the focus. Because the focus is usually singular in most user interfaces,

hyperlinks are used when relationships are one-to-one. An object or phrase in one view

leads to a particular new display or document through a hyperlink. When many new docu-
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Figure 4.6 Cross-highlighting from a datafiow graph to a precedence
graph, and from a precedence graph to a dataflow graph.

ments or displays can be related to a single source link, then usually they are grouped

together in a single view or meta-page that contains each of their individual hyperlinks,

forming one level of indirection through which the user makes a single sub-selection. An

alternative to this is to have the hyperlink lead to a chain of views, which is appropriate

when the related information is sequential in nature but not conveniently displayed in a

single view.

Cross-highlighting can serve in showing one-to-one relationships, but it is most pow

erful in showing one-to-many relationships. Clicking on one dataflow actor in a dataflow

graph view cancause multiple firings tobe highlighted in a precedence graph view (Figure

4.6). Sometimes these cross-highlighting relationships are not symmetrical, as in the rela

tionships among tasks and processors for multiprocessor programming. The case of two

views, showing a taskgraph anda multiprocessor architecture, is considered (Figure 4.7).

If tasksmay be distributed among multiple processors, thenhighlighting a taskmaycause

multiple processors to be cross-highlighted. Similarly, since multiple tasks may be exe

cuted by one processor, highlighting a processor may cause multiple tasks to be high

lighted (Figure 4.8). Highlighting multiple elements in one view would naturally result in
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MAPPINGS

T1 -> P3 T2 -> PI

T3 -> P4 T4 -> P1

T5 -> P1 T6 •> P4

Figure 4.7 A task graph, a multiprocessor architecture, and a mapping of
tasks onto processors.

Figure 4.8 Cross-highlighting of multiple tasks mapped to one selected
processor.

the union ofthe related sets in the other view to be cross-highlighted. A further refinement

of this action would be to highlight the intersection of the cross-highlighted sets in a dis

tinctcolor, with the remaining elements beinghighlighted in the default color (Figure 4.9).

These kinds of many-to-many relationships would not be as easily understood through a

single view showing both graphs simultaneously with edges connecting the related ele

ments, even though the underlying relationships may be encoded in a single graph data

structure (Figure 4.10).



Figure4^ Cross-highlighting of Intersecting sets of processors from map
pings of multiple tasks. Processor P4 Is mapped to by two
selected tasks, T3 and T6.

Figure 4.10 Asingle viewofboth the task graph and the processor architec
ture, with all associations shown.

4.2.6 Presentation of Tradeoffs

Tradeoffs area partof almost any complex design problem. Common tradeoffs in elec

tronic system design include area vs. timing, area vs. power, and timing vs. power. Each of

these relationships can be displayed as multiple design options are developed by plotting

estimates of area, timing, and power for many design points. Views showing any two of

these estimates in relation to one another are common, but views showing three or more,

while entirely possible, are less common due to the difficulty of interpreting such figures.
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Figure 4.11 Design space exploration where multiple trajectories are tested,
and periodically one new starting point is selected from among
them.

Rather than only plotting such views after many candidate designs have been devel

oped, it can be helpful to maintain such views during automatic or manual design space

exploration. For automated exploration, the designer can observe progress as the design

space is explored, and even steer the automated effort based on information that is

revealed about the design spacealong the way, guiding the algorithms away fromportions

of thespacethat appear to be unlikely to produce useful results (Figure 4.11), or highlight

ing areas of particular interest for more detailed exploration (Figure 4.12). The same is

true for manual design space exploration, so that a designer can observe how particular

choices or transformations to their design can result in movements in a particulardirection

in the design space (Figure 4.13). It can be of even greater use if the design space is

labeled with known bounds, so that the designer doesn't expend effort unknowinglytrying

to exceed them, but instead is able to work by approaching them as closely as possible.
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Rgure4.12 Design space exploration through successive zooming in on a
progressively smaller region of interest.

Views of design tradeoffs can also be useful in forming a navigable abstraction of

many designs and their data. Data for each design candidate can be maintained, so that

aftermany design points have been logged on a tradeoff view, the designer can use those

design points as hyperlinks and jump directly to those that appear tobeclosest to theopti

mal for the needed requirements. At that time, the design datafor a promising candidate

design could be restored to the current editing views so that the selected design could be

used as a starting point for further improvement through transformations or small varia

tions.The tradeoff view makes it easy to refer to a particular candidate design and its data

through direct manipulation, without having towork through the indirect manipulation of

Hata stored as files or named sets. These latter methods should still be maintained as
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Rgure 4.13 A view of manual design space exploration, showing how each
of several alternative actions results in varying movements
within the design space.

options because they will continue to be useful for design data management apart from

design space views.

4.3 Perceived Benefits

The desired attributes of interactive design tools discussed in the previous sectionare

aimed at improving the ways in which designers use tools in the design process. This is

expected to happen inat least two major ways. The first isinopening upthe range ofpos

sibilities ofhow the tools are used. The second is in building confidence in and acceptance

of the tools so that portions of design can be automated without the designer being con

cerned about losing too much control.

The first way inwhich a more open interactive design process can improve design is in

leading usersto discover new ways of using design tools. By inviting exploration andpro

viding multiple paths of feedback of information on design progress, intuition is built up
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about the design process. From this increased intuition, ideas for new algorithms or heu

ristics can arise, and then it becomes useful to have a scripting capability for common pat

ternsof interaction. Once experience is gainedin a hands-on designactivity, learnedskills

or decision making can be encoded in automation or a new heuristic to speed the design

process in comparison to what the designer could do manually. This can take place in

another form by taking design strategy ideas to the next logical step after applying them

once and seeing if results improve with repeated application on the same design, or with

general application to other designs.

The second way in which the use of design tools can be improved is in changing the

designer's view of the tools. By fostering open and detailed feedback, highly interactive

design tools can lead to confidence in letting someactivities be automated. Instead of sim

plifying the scope of information available to designers and not letting them see where

theyare sitting in the design space, a moreinformative approach leads to a deeper under

standing and a clearer perspective. By visualizing the relationship of onedesign with other

design altematives, and what is gainedor lost by trading off, the designer can know that

the tool has put them in the right zone in the design space. If the tool has missed some

opportunity that appears obvious to the designer, then that understanding can be used in

orderto go back and modify the automated phase.Without openfeedback of information,

thedesigner must blindly trust that the toolhas donetheright thing, even when the limited

information coming out of the tool appears questionable. With a sufficient amount of

information presented and exploration permitted, the inquisitive designer will soon be

convinced that it is the design problem, and not the design tool, that is the cause of diffi

culty. This is helpful in furthering the goal of having the design tool becoming perceptu

allya transparent layer betweenthe designerand the design problem.
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4.4 TkSched and TkSched-Target

To aid in the process of designing hardware from SDF specifications, we havecreated

an interactive design tool that is used within Ptolemy. This interactive tool, TkSched, uses

the Tk graphical toolkit to present the schedule and other views of the design process to

the user.TkSched runs under the supervision of TkSched-Target, one of several targets in

the VHDL domain in Ptolemy. More specifics on the VHDL domain and Ptolemy are

described in Chapter 5. This section describes the design of TkSched. Not all of the fea

tures listed have been fully implemented, but the Schedule view is the central view of the

tool and has been fully implemented.

TkSchedpresents schedule, architecture, and quality estimate information to the user

about the firings and dependencies resulting from the analysis of an SDF graph in the

VHDL domain. An initial architecture is selected by TkSched-Target, and control is

passedto TkSchedfor further modifications. Theuser can leave the design as is, or inter

activelymodify the designby manipulating individual firings or by applying operations to

the entiregraph. Thereare threemain views thatare presented in TkSched. Thefirst view

is the Schedule view, which displays an execution schedule of tasks on hardware units

over time, based on the precedence graph and estimates of timing. This view has been

fully irqplemented within TkSched. The second view is the Topology view, which displays

information about the hardware units and their interconnections, based on the assignment

of firings to hardware units. This view has not yet been implemented in TkSched. The

third view is the Design Space view, which displays information about multiple design

instances, placing them in a designspace of performance (latency) in one dimension and

cost (area) in another. Like the Topology view, this view hasnot yet been implemented in

TkSched.
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Figure 4.14 TkSched presents multiple views of a common set of data.

Each of these views presents a different subset of the total design information that is

available in the tool, filtered for a particular purpose. The views are visual representations

of underlying design data maintained internally by TkSched-Target. The data consist of

graphical data structures with annotations, and the data are updated as a result of actions

that the user initiates. The views are interactive, allowing objects presented to be directly

manipulatedby the user in a numberof ways. The viewsare cross-connected, as actions in

one view can affect what is presented in the other views. The Design Space view is

arranged to present tradeoffs in the ongoing design process. The other views present

tradeoffs indirectly, through what is learned during interaction with the visual design rep

resentations.

TkSched is arranged as multiple views of a common set of data. The viewscan be used

to observe representations of the data, or to modify and extend the data. This is repre

sented in Figure 4.14. In the followingsubsections, we describe the specificsof each view,

including the objectives it is intended to serve, the design based on the OAI model, and

details of its use.
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4.4.1 The Schedule View

The Schedule view is the main view of the design process within TkSched. In the

Schedule view, allof thefirings and their precedences are shown, along with thehardware

resources of the design. The firings and precedences are arranged as an aimotated prece

dence graph where the vertical axis represents system clock time and columns along the

horizontal axis represent hardware resources. The presence ofa firing in a given column

signifies that the execution of that firing is mapped to that hardware resource, during the

time interval extending from the top horizontal edge ofthe firing to the bottom horizontal

edge. Inaddition to the schedule itself, the Schedule view shows estimates of performance

and utilization. Within the Schedule view, the usercan observe properties about the cur

rent state of the design, and make modifications. The user can move individual firings

from one hardware resource toanother, orapply operations which affect allthe firings col

lectively. This view has been implemented in TkSched and is shown in Figure 4.15.

The principles ofthe OAI model have been applied to the design of the Schedule view.

Among these are the definition of task-level objects and actions, and their association with

corresponding interface-level objects and actions. The task-level objects include the entire

schedule and thetime and hardware unit grid against which the schedule is laid out. The

schedule is inturn composed offirings and directional dependencies that connect the fir

ings. The schedule represents one iteration of the SDF graph, and there is the possibility

thattokens arecarried over from one iteration to thenext. These are represented by tokens

that are read atthe beginning ofthe schedule iteration orwritten at the end ofthe iteration.

The schedule begins at a time marker ofzero, and each iteration is to end by a given dead

line, measured in system clocks. Based on the duration of tasks on each hardware umt,

estimates ofutilization as a percentage can be made for each hardware umt. The overall
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Figure 4.15 The Schedule view of the TkSched interactive design tool.

speed of the system, as a maximum throughput based on the time from the earliest firing

start to the last firing finish, can alsobe estimatedfrom the schedule.

The user is able to make modifications to the schedule, both on an individual firing

basisandon theentireschedule graph. The usermayselect a firing, then move and drop it,

at a new location in time, or on a different hardware unit, or both. The new scheduling of

the firing must comply with the precedence relations that are associated with the firing, so

that the firing does not get scheduled before the end of a preceding firing or after the

beginning of a succeeding firing. Each time a change is made in the schedule, the esti-



mates of speed and utilization are recalculated, so that the effects of each change are

immediately known. The user may also operate on the entire schedule through a number

of operations. Among these are to take the currentmapping of firings onto hardware units.

and to apply as-soon-as-possible (ASAP) or as-late-as-possible (ALA?) scheduling

according to the precedences while maintaining the existing occupancies of firings on

hardware units. The user may also change the mappings for the entire graph by moving all

firings to the lowestor highestpossibleindexresource, while avoiding resource contention

in the occupiedtimeslots. This reduces the number of resources that need to be allocated

while Tnaintaining the Current schedule timing. An additional operation allows the user to

spread out all firings among resources sequentially, to create space among the firings so

that other group and individual operations may be applied more easily than when firings

are scheduled closely together.

4.4.2 The Topology View

The Topology view is a supporting view which shows time-invariant properties of the

design, such as the number of resources and their interconnections, along with connec

tionsto input and output.This viewis a spatialarrangement, but is onlymeantto represent

an abstract topology andnot a final architecture or layout. The resources andconnections

are arranged spatially, with no temporal information such as what is seen in the Schedule

view. Utilization estimates and other general design estimates are shown. The user can

selectindividual resources and highlight them, resulting in highlighting of thecorrespond

ing firings in the Schedule view. This view has not yet been implemented in TkSched. A

representation ofwhat the view would look like is shownin Figure4.16.

The task-levelobjects of the Topology viewincludethe entire topology, whichis com

posed of individual hardware units and their interconnections. Inputandoutput ports and

their connections to the hardware units are also represented. The hardwareunits have utili-
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TkSched: Topology

P4 Selected Utilization: 52% Procs Used: 8
Links: PI, P5, o3
Firings: FIR2(35:50), Mult1(50:70), Quant1(88:104)

Figure 4.16 A conceptual representation of the design for the Topology
View.

zations associated with them, the same as in the Schedule view, and utilizations are indi

cated on each hardware unit. The interconnection between any two hardware units is

either present or absent, depending on whether or not any communication is needed

between those two hardware units. If an interconnection is present, it also has associated

with it an indication of how heavily used the interconnection is, according to the number

of communication transactions that use the intercormection. There are also task objects for
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the inter-iteiation tokens, which have their own interconnections with the hardware units

that read and write them.

Among the operations that may be performed, the user can select a hardware unit

which will indicate its selection, and a coimection with the Schedule view will also indi

cateeach of the firings that are mapped to the given hardware unit. Eachhardware unit in

the Topology view can be queried for the identities of each of the firings that are associ

ated with it, and their start and finish times. For each interconnection, the user can query

what die bandwidth is in terms of communication transactions. As the schedule is changed

in the Schedule view, the intercoimections and other design estimates are automatically

updated in the Topology view as a direct result.

4.4.3 The Design Space View

The DesignSpaceview is a supporting viewfor overseeing abstracted datafrom a set

of designs as well as the current design. The design space is represented as a two-dimen

sional planewithlatency along one axis andareaalong another. Multiple design points are

shown with markers located at their estimated latency and area. The current design point is

represented as a similar marker which relocates as the properties of the current design

change. The user can savethe currentdesign as a markerwhichwillpersist, or restore pre

viously saved designs from any one of the existing marker points. This view has not yet

been implemented in TkSched. A representation of what the view would look like is

shown in Figure 4.17.

The task-level objects in the Design Space view include the spatial axes oflatency and

area, which are fixed, marked on the design space. The bounds of the design space are

based on estimates from the initial design representation, but may need to be recalculated

during the designprocess. Marked'in the designspace at anytimearea set of saved design

points and die current design point, which is distinct and is not saved unless requested.

232



TkSched: Design Space

AREA

1370- -H

JS

N
la
la

332-__;l i^jRI

83-

128 510

Design Rev: 3.4

la
m

_ _ — — — _ El —Et —

Latency: 510 ns
Area: 332 mm2

Save Restore

2244 LATENCY

Procs Used: 8

Rgixre 4.17 A conceptual representation of the design for the Design Space
View.

Each design point has estimates of latency and area associatedwith it, as well as a fiill set

of design data The current design's latency and area are presented directly to the user. To

assist in firaming the design space for the user, the extremes of the current set of design

points, tnrliiding miniTniim and maximum values, are marked by additional vertical and

horizontal boundaries.

The user may be informed of the current design point within the designspace by the

location of the current design point marker. Saved design points are noted by distinct
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markers in the space, and do not moveas they represent fixed datasets.The usermaysave

the currentdesigndata point at any time,whichwill keep all of the datanecessary to com

pletely specify the design at that point. At any time, the user may select a saved design

point, andit canbe restored. This will result in thedesign data from that saved point being

restored as the current design, and the previous current design is lost unless the user first

saves it as well. Once the design data is restored, the Schedule and Topology views are

updated to reflect thenewly restored design. As thelatency and area of thecurrent design

move throughout the design space, thedesign extreme markers areupdated whenever they

are exceeded.

4.4.4 Summary

Thethreeviews of thedesign dataareSchedule, Topology, and Design Space. Ofthese

three, theSchedule view is the primary view and has been fully implemented. An example

ofamultirate design that was created using TkSched with TkTarget, generated into VHDL

code, andsynthesized through Synopsys Design Compiler, is shown in Figure 4.18. There

are many possible useful features of these views, as well as additional design views. The

current version of TkSched is a prototype, useful for exploring both the design of hard

ware from SDF graphs, and for exploring the use of this type of interactive design tool.

Some possible extensions are described in thenext section.

4.5 Future Extensions

The usefulness of an interactive design tool depends on the responsiveness of the

marhiTift on whlch it is implemented. Since responsiveness is inherently tied to execution

speed, and since execution speed is continually improving, it is reasonable to expect that

the scope of interactive capabilities in design tools will track the growth of performance
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Figure 4.18 An example of a multirate SDF design that was created using
TkSched, and here is synthesized using Synopsys Design
Compiler.

over time. This will allow more features and more design information to be included as

time progresses. There will come a time, which may well already be here, when perfor

mance allows the delivery of more information than most designers can reasonably han

dle. This must be dealt with by performing more data distillation prior to visualization

with the increased available computation capacity.This will allow useful overviews to be

presented, with detailsavailable on demand.

There are a number of features that are not currently a part of TkSched, but would

extend its usefulness. One extension is to allow the size of firings to change dynamically

as theyare dragged across different hardware units. Thevariations insizewould reflect the

variations in timing thatoccur when a firing is implemented oneach of thehardware units.

Currently, the time is based on an estimate that is updated after an iteration of synthesis.

Another extension would be more general, applying this type of interactive tool to the

design of embedded software, or to mixed hardware/software systems. Both types of



implementations canbe derived from SDF specifications, and both types have analogous

scheduling issues. Other extensions include the extended use ofcolor to denote functional

ity. Similar firings may be grouped by coloration into classes, such as arithmetic opera

tions, filter types, and larger-scale firings. The VHDL code that isproduced could also be

visualized, as is already done in a number of tools that take code as their input. In this

case, thecodethatis to beproduced as output could beupdated dynamically as the design

changes, with cross-connections between the other views and the changing code listing.

4.6 Summary

As design methodologies for electronic systems change with time, human interfaces to

those methodologies will be expected to improve as well. Expectations ofgreater levels of

interaction and decision-making, along with options for either hands-on exploration or

automatic operation will grow as designers become accustomed to improved interfaces, as

well as bring their raised expectations from other software interface experiences to the

domain of electronic system design. At low levels of abstraction, the rapidly increasing

quantity ofdesign data calls for better ways to visualize and navigate through design data.

At high levels of abstraction, interactivity and feedback of estimates based on design

trade-offs will permit more informed decisions and greater exploration ofoptions to be

conducted. We have presented ways ofapproaching these challenges, in part through the

use oftheOAI model for relating design task objects and actions tothe objects and actions

presented tothe designer through the interface. Aset ofpreferred attributes ofinterfaces to

design tools was also presented, some ofwhich are partly embodied by available tools and

some of which have yet to be fully employed. The benefits intended include opening up

tools tonew modes ofuse, while iinproving designers' understanding ofthe overall design

process. We have presented an interactive tool, TkSched, for use in the VHDL domain of
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Ptolemy for the design of hardware structures from dataflow graphs. The interface has

been designed with the improvement ofthe design process ata high level inmind.
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5

Implementation in Ptolemy

The preceding chapters discussed various aspects of working with high-level abstrac

tions in developing embedded system designs. Each of these activities spans a number of

levels in a design flow. In order to perform these activities in a coherent and organized

manner, design environments that provide support for the activities of modeling, simula

tion, and synthesis are a great help. In this chapter, we discuss the details of supporting

such activities, and focus on the Ptolemy environment, which has been used to achieve

these goals.

We begin in Section 5.1 by discussing a number of simulation and prototyping envi

ronments that have been developed, including some that were predecessors to Ptolemy, as

well as others that have derived much benefit firom work done in Ptolemy. In Section 5.2

we describe the basic elements of Ptolemy that support simulation and synthesis of mixed

system descriptions. Each of the three activities described in Chapters 2-4 have been

implemented in Ptolemy and are described in Section 5.3. Finally, in Section 5.4 we sum

marize some opportunities for future work based on the tools described in this chapter.
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5.1 Background Tools

Iq many areas of study within engineering, the general tendency is to study fundamen

tal principles of physical behavior and mathematical models, standardize operations or

processes that transform and relate quantities of interest, and then encapsulate such opera

tions and abstract them into monolithic elements that can be re-used and built upon. Any

activity that involves flows of information, energy, or matter is open to such block abstrac

tion. Such areas include communications, networking, signal processing, optics, chemical

engineering, particle physics, and so on. From abstract blocks that represent individual

operations, complex systems can be constructed by interconnecting instances of such

blocks. The use of block elements that are well-defined and whose properties are known

eases the difiSculty of designing and building larger systems. If certain rules are obeyed by

the particular abstraction being applied, then unlimited compositions of such blocks may

also guarantee certain properties of interest, avoiding the need to individually analyze

every system constructed from fundamental blocks.

While engineers have long designed systems manually on paper using block diagrams

to specify their design intent, a productivity improvement is realized through the auto

mated simulation and analysis of such systems. This has been possible using digital com

puters for some decades, but has become particularly attractive in recent years with the

rapid improvement in graphicaluser interfaces to such computers. Some of the firstblock

diagram simulation systems were designed or implemented during the 1960*s and 1970*s

[Dertouzous691 [Gold69] [Karafin65] [Kelley61] [Crystal74] [Kom77] [Henke75].

Many systems with richer user interfaces were enabled by the computing technology

that became more widely available in the 1980*s [Shanmugan87] [Zissman86]

[Covington87]. One effort during this period to apply block diagram simulation to com

munications and signal processing came about with BLOSIM {Messerschmitt84] from
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U.C. Berkeley. This system allows general block diagram simulation without many

restrictions onblock functionality. Blocks are written inC, and they may also bespecified

hierarchically. Blocks communicate through first-in, first-out buffers, and scheduling is

done dynamically at run time. However, simulation performance and resource require

ments are noteasily determined from systems specified with the broad semantics that are

allowed in BLOSIM.

In order to design applications with timing constraints to be executed on embedded

signal processors with finite resources, some restrictions on block semantics are necessary.

In exchange for accepting the limits of synchronous dataflow (SDF) semantics, static

scheduling of software execution is possible, allowing the determination ofcode size and

memory requirements in advance. At the same time, the semantics of SDF are general

enough thatmany practical systems of interest inDSP can beconcisely expressed. Follow

ing onBLOSIM, theGabriel system [Lee89a] for DSP code generation from SDF seman

tics demonstrates the value of this approach in the design of embedded DSP software.

Each SDFblockcorresponds to a segment of hand-optimized program code. These code

segments are arranged together at compile time according to the SDF semantics. Schedul

ing decisions are flexible, allowing the possibility for code generation tobe optinuzed for

various goals, including minimum code size, minimum memory requirements, or a joint

miniinization ofboth [Murthy97].

Withan increased understanding of models of computation (MoCs) other than SDF,

including discrete-event (DE), boolean dataflow (BDF), dynamic dataflow (DDE), process

netwOTfcs (PN), andso on, the value of a more general software system for studying many

MoCs was clear. The Ptolemy Project was initiated in 1990 [Buck91] to support such

research. Additional insight not available in other single-MoC simulation tools is possible

in Ptolemy through the application of multiple MoCs to specify a single, heterogeneous

application. More general facilities for code generation than what was possible inGabriel
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are also supported in Ptolemy. Theseinclude code generation in languages other than DSP

assemblycode from SDF semantics, as wellas someworkin code generation fromseman

tics other than SDF.

Around the same time, similar commercial tools came into being, which have special

ized in a few areas of semantics or code generation, optimized for the needs of specific

commercial users. Tools such as SPW from Comdisco Systems (now Cadence)

[Cadence97] and COSSAP from Cadis (now Synopsys) [Synopsys97] have implemented

slightly different semantics from SDF in order to include modeling ofsynchronous digital

hardware in their algorithmic-level simulation capabilities. Code generation inthese tools

has focused onlanguages such as Cfor efficient simulation, as well as DSP assembly lan

guages for embedded software and VHDL and Verilog for hardware synthesis. The

BONeS simulator from Cadence isa separate tool which uses a form ofDEsemantics, and

is specialized for network simulation. Only recently has this DE simulator been more

closely integrated with the synchronous simulation available in SPW. The design of

Ptolemy was such that from the beginning ithas been built around supporting amixture of

semantics like SDF and DE in a single environment, provided that the interaction seman

tics are well-defined.

Another block-oriented toolworthy of mention is theKhoros system from theUniver

sity of New Mexico [Wllliams90]. This tool was originally designed for block diagram

specification of information flows, particularly in the area of image processing. As a

result, the semantics were originally limited to homogenous SDF, with single-input, sin

gle-output ports on blocks corresponding to transformations on image data. The modem

version of Khoros, commercialized by Khoral Research [Khoral97], employs an event-

driven scheduler, where icons correspond to whole processes on the host machine, and

processes can be run atomically, or with parameter updates during process execution if

required.
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In the nextsection, we focus on the Ptolemy environment. We describe its applicabil

ity, and examine the components that support the VHDL design activities described in the

remainder of this chapter.

5.2 The Ptolemy Environment

The Ptolemy Project [Buck94] has centered around the Ptolemy software system for

simulation and prototyping of DSP, commumcations, and embedded systems, and for the

formal study of semantics and models of computation and their interactions. Ptolemy was

designed from its inception with the support of diverse models of computation in mind.

Out of this intent, the basic software architecture is organized as a set of object-oriented

kernel classes written in C-H- and modular domains derived from the kernel classes. The

kernel classes support general notions ofblock diagram specification semantics, with hier

archy, simulation support, and support for interactions between derived domains. Bach

domain corresponds to a specific model of computation (MoC), with its own classes

derived from kernel base classes defining its blocks and connections, as well asclassesfor

scheduling and managing simulation and other operations on the specification. An entire

subset of domains is derived for code generation, adding support for maintaining streams

oftext to organize generated code, and such common needs asumque sjmibol listmanage

ment and control construct generation, as well as support for generating variable declara

tions and initialization, and program wrapup.

ThefoDowing subsections, 5.2.1 through 5.2.8, describe the key classes within the ker

nel and how they serve within the overallenvironment.

5.2.1 Domain

fri Ptolemy, a domain refers to a set of classes thatdefine thefunctionality necessary to

support a distinct model of computation. Each new domain defines one or more classes
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derived from, the kernel classes which add functionality particular to the domain. Among

these may be classes derived from Star, PortHole, Geodesic, and Target. In addition, there

maybe subdomainrelationships between domains. The SDFdomain defines synchronous

token transfer relationships between blocks in the system, while the DDF domain allows

dynamic relationships. Because the SDF semantics are a subset of the DDF semantics,

SDF can be declared as a subdomain of DDF, so that SDF systems may be run within the

DDF domain without modification. The semantics modeled in a domain refer to the block-

diagram semantics. The infernal functionality ofblocks in a domain is usually written in

C++ asa setof sequential methods. The model ofcomputation is implemented at theinter

faces to the blocks, and governs their communication behavior. In certain cases, such as

the synchronous/reactive domain, requirements are also placed.on the functions internal to

blocks, such as that they be monotonic, etc.

Domains have a slightly different meaning in the case of code generation from what

they mean in simulation. In the case of code generation, a domain supports code genera

tion ina particular programming orspecification language. For example, the CGC domain

supports generation of code in the C language. A code generation domain may support

implementations of one or more models of computation, but the main one supported in

Ptolemy is synchronous dataflow (SDF). Extensions are possible so that multiple models

of comput^on may be supported in a single code generation domain. The CGC domain

supports SDF implemented in C by default, but can be extended so that DDF is imple

mentedin standalone C code.This wouldrequire a run-time schedulerto alsobe included

in the generated C code, along with facilities for allocating and deallocating memory as

tokens are producedand consumed throughout execution.
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5.2.2 Stars

The block-oriented nature of system description in Ptolemy is contained in the Star

class. Instances of classes derived from Star contain the actual computation functionality

that is enc^sulated and re-used. Stars may be implemented as operations described in

C-H- for simulation, or theymaycontain codein otherlanguages which is to be assembled

together in the case of code generation domains. The interfaces to stars occur through

PortHoles. PortHoles, described below, mediate communication of data and events into

and out of stars. The code within stars is written to refer to its input and output PortHoles,

without assuming anything further about its connections. This is so that Stars can be

designed independently of any assumptions about the context within which they will be

used. Stars also may have members called States, which serve two kinds of roles. States

mayprovideinitial parameters that affect the configuration of an instance of a Star, allow

ing them to be defined genetically in terms of parameters for variable functionality. States

may also be used as actual run-time states, holding important values that are updated

throughout the executionof the systemfrom firing to firing of each Star.

5.2.3 Galaxies

In order to supporthierarchical descriptions of systems, groups of stars with local con

nections and overall inputs and outputs may be defined. These are called Galaxies in

Ptolemy, as they are groupings of Stars. They are useful as a way of encapsulating com

plex or commonly used sub-graphs of Stars. They are also a convenient way of assigning

State parameters to groups of Stars, as theStates of a Starmay refer to the States of a par

ent (containing) Galaxy. In terms of the semantics of a block diagram description. Galax

ies may not be interchangeable semantically with Stars, as the modelof computation may

not be compositional. This is trae in the case of SDF, where arbitrary sub-graphs of SDF

stars do not generally satisfy SDF semantics at their border. This is not an issue in
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Ptolemy, sinceno suchassumptions are made about Galaxies. Instead of imposing seman

tic assumptions. Galaxies are merely a convenient means of simplifying system descrip

tions through the use of hierarchy.

5.2.4 PortHoles

The members of Stars, and also Galaxies, thatmediate communication into and outof

suchblocks are PortHoles. PortHoles in Ptolemy are assigned to a parent Star or Galaxy

and define the behavior of a block at its boundary, along with any semantic restrictions.

PortHoles in actual systems are usually designated to be ofa specific directionality, either

input or output (although bidirectional PortHoles are potentially useful in certain situa

tions). PortHoles are unique within the context ofa Star, and the code that describes the

functionality ofthe Star will refer to individual PortHoles by their unique names, which

determines their identity and role within the Star. By requiring all inputs and outputs to

Stars to be through PortHoles, a limitation is made which is intended to prevent side

effects inthe operation ofaStar, as there are no other shared or global variables to use for

coromunication between stars, by default.

5.2.5 Geodesies

Communication of data and events into and outofStars occurs through PortHoles. The

communication between PortHoles of connected stars occurs through specialized classes

derived from Geodesic. A Geodesic corresponds to a particular connection between two

PortHoles. The Geodesic mediates the communication between PortHoles, and handles

any riat-a management issues, such as queueing, buflfer sizing, and delivering and receiving

Hata to and firom the connected PortHoles.
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5.2.6 States

As mentioned above in describing Stars, States aremembers which canhold state and

update values throughout execution, orthey can beused toparameterize the configuration

of a particular block. Not only may they be used to hold state information for Stars and

Galaxies, but also for Universesand Targets. A Universe is an entire runnable system, and

a Target, described below, manages the execution of a system. States of universes serve a

similar function to States of galaxies. These statesparameterize one or moreblockswithin

the larger entity the same way that the states of a single Star instance parameterize that

individual star. States of a Target are somewhat different, in that they affect the execution

behavior of the Target that manages the system simulation or code generation in the case

of code generation domains. Target States may control what scheduler the target uses,

where it looks for certain system resources, or what other child targets it shouldinstanti

ate.

5.2.7 Targets

Once a system is specified with Stars, Galaxies, and connections over Geodesies, it

can be simulated or code may be generated from the description. The class where these

actions are organized and controlled firom is the Target class. Simulation targets provide

for simulation Initialization and usually either static or run-time scheduling,depending on

the model of computation. The target manages execution by controlling the invocation of

individual Stars as they are scheduled, or according to a statically determined scheduling

order. Code generation targets also may perform scheduling, but instead of the stars hav

inganexecution phase, when a code generation Staris executed, code foran invocation of

that star is generated. Code generation targets also provide support for assembling the

complete codefile or fiJes, as well as compiling the code, downloading it to a target plat

form if necessary, and causingthe compilation result to be executed on the targetplatform.

246



Table 5.1. The Targets of the VHDLdomain and their purposes.

Target Description

default-VHDL Sequential code generation only

SimVSS-VHDL Simulate with Synopsys VSS

SimLF-VHDL Simulate with Cadence LeapFrog

SimMT-VHDL Simulate with Model Technology VHDL Simulator

Struct-VHDL Synthesizable code generation only

Synth-VHDL Synthesize with Synopsys Design Analyzer

Arch-VHDL Architectural tradeoffs, code generation only

SynthArch-VHDL Architectural tradeoffs, synthesize with Synopsys

TkSched-VHDL Architectural tradeoffs, interactive design, synthesis

5.2.8 The VHDL Domain

The VHDL domain in Ptolemy has been implemented for code generation in VHDL

from specifications with SDF semantics. The SDF semantics are a fundamental part ofthe

VHDL domain, andtheyhelpdetermine how the VHDL code should be generated from a

given SDF specification. This occurs both through the specific meaning of correct behav

ior that results, as well as through the decision making thatis possible in advance of code

generation because there is static scheduling and static storage allocation.

There are several targets available for the VHDL domain. These are summarized in

Table 5.1. Thetwo major groupings ofthese are a setoftargets for simulation and a setof

targets for synthesis. The default target is for generation of code only, and that code is

sequential, communicating results ofcomputations through variables. There are three tar

gets for simnlatinn of generated VHDL code. Each of them corresponds to an external

vendor-supplied tool forsimulating VHDL. Since Ptolemy does not contain an execution
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engine for simulating VHDL code, another simulation program isrequired inorder tosim

ulatethe VHDLcode that is generated fromtheVHDL domain.

Each of the specialized targets provides support for communicating with a particular

extemal simulation tool. The SimLF-VHDL target supports the Cadence Leapfrog VHDL

simulator. The SimVSS-VHDL target supports the Synopsys VHDL System Simulator.

TheSimMT-VHDL targetsupports the ModelTechnology VHDL simulator. Eachof these

targets operates in a similar fashion. Once the code hasbeen generated, it is written to a

file and then compiled or prepared for the given simulator. The target then invokes the

extemalsimulatoras anotherprocess on the hostmachine mnningPtolemy, andpasses the

compiled VHDL program to it. Certain VHDL stars, such as for data display, may write

results to data files, which can be read back into Ptolemy and graphed for visual analysis.

Forsynthesis of digital hardware from VHDL code, there are a number of specialized

targets in the VHDLdomain. All of themcurrently use theHDLCompiler andthe Design

Compiler firom Synopsys. These tools provide RTL synthesis of thegenerated RTL VHDL

code, and theycan provide reporting of metrics suchas delay andareafordesign feedback

into Ptolemy to guide successive code generation. The basic target for synthesis is the

Struct-VHDL target. This targetgenerates code only, without passing it to synthesis. The

code that is generated represents a flat structure, where eachfiring of thedataflow graph is

mapped into an entity in VHDL, containing the functionality for that firing. The intercon

nect, clocking, and control for the stracture are all generated automatically. The Synth-

VHDL target, derived firom the Stract-VHDL target, adds functionality for passing the

generated code to theSynopsys synthesis tools. When this target is used, thesynthesis tool

is invoked as anotherprocess on the host machine where Ptolemy is running. Following

synthesis, controlof the synthesis tool is transferred to the user, allowing further explora

tion, analysis, and resynthesis within the extemal tool, along with providing displays of

the resultant netlist.
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Because the Stract-VHDL target only provides one method of generating the RTL

VHDL code, it has limited flexibility. In order to study the change in synthesis results as

the RTL VHDL code is changed, a different target is included in the VHDL domain. The

Arch-VHDL target is for exploring architectural tradeoffs at the RTL synthesis level.

Insteadof only allowing a flat structure like the Struct-VHDL target, the Arch-VHDL tar

get allows tradeoffs of the form of grouping firings into hardware units that are synthe

sized together, trading offparallelism inexchange forreductions in design area. TheArch-

VHDL target generates code only, doing nothing further. The SynthArch-VHDL target is

derived from it and adds the necessary functionality for using the external synthesis tool.

This permits the target to synthesize the RTL code and obtain information about timing

and area and return it back to the code generation stage for further refinement. The

TkSched-VHDL target is anextension of the SynthArch-VHDL target that allows theuser

to interactively group firings together before thecode is generated, using a display compa

rable to a Gantt chart to show resource and timing tradeoffs. Once the code is generated

and passed tosynthesis, the timing and area results are retumed tothe target so that further

iterations may be performed in order to improve the results.

5.3 Design Using the VHDL Domain

Thefacilities provided by Ptolemy and the VHDL domain support each of the design

activities describedin earlierchapters. Synthesizing parallel hardware from synchronous

dataflow graphs is supported through the targets that generate an RTL architecture and

work on top of RTL synthesis. Verification through simulation can be performed in an

environment mixed with other implementation choices, such as software executing on a

digital signal processor. Interactive visualization and control ofthe architecture design are

supported through a target that mixes the structural code generation features with an inter-
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active display. Each ofthese design activities will be described in Section 5.3.1 - Section

5.3.3 below.

5.3-1 Generation of VHDL from SDF for RTL Synthesis

For the puipose ofsynthesizing hardware descriptions from SDF application specifica

tions, the VHDL domain in Ptolemy provides a specialized code generation capability.

Synthesis within theVHDL domain is implemented soastowork "ontop" ofRTL synthe

sis.The synthesis capability in the VHDL domain is designed to work with Design Com

piler from Synopsys, one of the most commonly used commercial RTL synthesis tools in

industry. The VHDL synthesis capability works withfirings as the basic unitof computa

tion. It allows the adjustment of the generated VHDL code to create many codefiles that

implement the same SDF graph semantics. Additional information about the sjmthesis

capability in thePtolemy VHDL domain is described in [Williamson96].

There are four targets within the VHDL domain in Ptolemy that support the main

hardware s3mthesis capability. The Struct-VHDL target generates RTL code from the SDF

graph specification. The code specifies an entity allocated in hardware for each firing of

each actor in the dataflow graph. Communication paths and control signals are automati

cally generated. A more flexible target that allows tradeoffs in how firings are mapped to

shared hardware is the Arch-VHDL target. This target supports architectural tradeoffs

between parallelism and implementation area by grouping multiple SDF actor firings to

sharedhardware units. Eachof thesetargets contains thefunctionality for generating code,

but not for carrying out synthesis. The Synth-VHDL target is derived from the Struct-

VHDL target and adds the necessary functionality to deliver the generated code to the

Synopsys RTL synthesis tools andto bring up the Synopsys Design Analyzer to visualize

the results. Similarly, the SynthArch-VHDL targetis derived from the Arch-VHDL target
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and adds functionality that is mostly the same, with some additional modifications aimed

at interactive design, discussed in Section 5.3.3.

5.3.2 Cosimulation of VHDL with Other CG Subsystems

The automated synthesis of hardware from high-level dataflow models has a strong

applicability in thearea of embedded systems design. However, it is not a complete capa

bility. Embedded systems design usually involves designs that are specified in multiple

models of conq)utation, where each is used for specialized functionality. Embedded sys

tems design also typically results in heterogeneous implementations in notjusthardware,

butalsosoftware elements, and firequently multiple components within bothcategories. In

prototyping such systems, an important capability is informal verification through simula

tion. For the restriction of systems specified in SDF, a capability exists in Ptolemy which

allows cosimulation of heterogeneous implementations of SDF graphs. The VHDL

domain, which generates code from SDF graphs, supports this capability initsdesign and

works with commercial VHDL simulators from Cadence (LeapFrog), Model Technology

(MT VSim), and Synopsys (VSS). Additional information about VHDL inhardware/soft

ware cosimulation is found in [Pino96].

There are three targets in theVHDL domain that support the simulation of generated

VHDL code. These are the SimVSS-VHDL, SimMT-VHDL, and SimLF-VHDL targets.

These targets interface with VHDL simulation tools from Synopsys, Model Technology,

and Cadence, respectively. In addition to simulation of generated code, a special target

exists in the CGC domain for C-code generation which supports co-simulation of sub

systems generated from graphs with SDF semantics in different implementation lan

guages. This target is the CompileCGSubsystems target, which uses the scheduling that is

possible with SDF graphs to generate heterogeneous systems that preserve correct execu

tion order and do not deadlock. The SimVSS-VHDL and SimLF-VHDL targets may be
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used aschild targets within CompileCGSubsystems to generate VHDL code for portions

ofSDF systems. Additional send and receive actors within the CGC and VHDL domains

provide the necessary communication functionality atthe boundaries between implemen

tation language partition boundaries.

5.3.3 Interactive Design in the VHDL Domain

Interactive design is increasingly important inpractical systems design, as some activ

ities donot have straightforward optimal algorithms ornear-optimal heuristics that canbe

applied hidden from the designer's view. In order to bring out the intemal details ofhard

ware synthesis in the VHDL domain for the designer to observe and manipulate, an inter

active design capability is included. This capability is in the form of an interactive tool

which runs in thedesign loop within RTL VHDL code generation and RTL synthesis from

SDF graphs. This tool provides views of the timing and resource constraints and depen

dencies of the generated hardware. It also provides thedesigner with theability to interac

tively control the code generation process in order to guide the results in a desired

direction. The inspiration for this capability and the motivation behind some of the main

features are described in Chapter 4.

The interactive hardware synthesis capability is provided in the VHDL domain

through a special target. The TkSched-VHDL target is derived from the SynthArch-

VHDL target. It allows similar architectural tradeoffs for controlling the code generation

process, butit does sobyproviding an interactive interface tothe intemals ofcode genera

tion planning. This is accomplished bythe execution ofTkSched, an application written in

the Tel scripting language and using the Tk graphical user interface toolkit extensions.

TheTkSched-VHDL taigetproceeds with computing the schedule of the SDF semantics,

and invokes TkSched to present thefirings and dependencies to the designer. This allows

the designer tosee thestructure of the precedence graph and the candidate grouping of fir-
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ings into hardware mappings. Commands allow the user to manipulate individual firings

or groups of firings to modify the schedule and planned hardware allocation, while pre

serving the correct ordering offirings and communication. The code generation stage that

follows the invocation of TkSched will create code that matches the designer's specifica

tions for functional grouping, while still creating the communication and control automat

ically.

5.4 Summary

There are numerous steps and tasks on the path from a design conceptualization to an

implementation. Asingle design environment that is able to support many of those tasks is

a valuable resource. We have described such an environment, Ptolemy, and some of the

workthat it inheritedfrom. The VHDLdomainhas been implemented in Ptolemy to sup

port the specification, simulation, and synthesis of hardware realizations from SDF graph

specifications. Targets have been implemented in the VHDL domain for supporting the

tasks of code generation, interactive design, interfacing to synthesis, and cosimulation.

The VHDL domain design is derived directly from the object-oriented structure of the

Ptolemy kernel and code generation classes, and benefits from this design by being able to

interfacewell with simulationand othercode generation domains withinPtolemy.
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6

Conclusions and Future Directions

Synthesis, in its many forms, has proven to be an invaluable tool to numerous design

ers of digital systems. Methodologies work best when they assist designers selectively, by

unburdening them from certain details and problems of design for which reasonable solu

tions exist, and allowing them to focus on design problems that are best tackled through

the training and experience of each designer. Human capacity is inherently limited, and so

transferring as much of the burden as is reasonable to automation, while maintaining con

trol over key decision-making steps, is likely to ultimately produce better results than

either fully automated or fully manual approaches.

Certain models of computation, such as SDF and related dataflow models, have inher

ent strengths in specification of applications in DSP and other algorithmic-intensive

designs. The static analysis that is possible with SDF models makes SDF a good candidate

for synthesis and simulation methods. While existing behavioral synthesis methods are

proving valuable with use that continues to grow, the tendency toward fine-grain resource

sharing makes it worthwhile to investigate other possible approaches. These altematives

mayuse coarser granularityto cope with complexity in the synthesis process, and to main

tain valuable structural information in transforming an algorithmic specification into an

implementation.
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6.1 Conclusions

We have presented an approach to synthesizing hardware implementations from syn

chronous dataflow specifications. Resource sharing of computation and communication

elements is a central focus of design, due to the high concurrency that is typical of SDF

specifications. Extremes of resource sharing will result in inefficient schedules, and so

must be balanced against the goal of reducing hardwarecost. The communicationof data

through tokens in SDF results in opportunities for resource sharing of registers in the

implementation. Token queueing on arcs, the referencing of past token values by actors,

and the feedback of tokens as state all have effects on the structure that is synthesized. The

structure is synthesizable as a register-transfer level description, and VHDL is the lan

guage we have chosen for this implementation, which is suitable forRTL synthesis.

The representation of the design that is created in VHDL can be checked for validity

through simulation,particularlyin a testbench withexpected input data and known output

data. Often, a design synthesized is only a part of a larger design, and cosimulation is a

valuable tool for validating the mixed system, whether with other hardware designs or

with software implementations. The semantics of VHDL in simulation need to be man

aged for cosimulation so that correct results can be obtained. Knowing that the VHDL

modelbeing simulated implements SDF semantics can help to simplify the cosimulation

problem greatly. Synchronizing multiple simulations is a key problem with many solu

tions. We have presented a solution for the SDF-in-VHDL case, and we have proposed

other approaches for general VHDL cosimulation as well. The cosimulation technique

describedhas been implemented using the C-Language Interface of the Synopsys VHDL

System Simulator.

Many early design tools emphasized noninteractive automation in the hopes that the

strengths of software compilers could be replicated in hardware design. More recently.
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designers have become aware of the value of interactivity in design tools, particularly at

higher levels ofabstraction where changes can have a large impact in the ultimate quality

of thedesign result. We have sought to describe the properties of interactive design tools

that have the most likelihood of improving their usefulness. We have been informed by

previous work inhuman-computer interaction, and the use ofthe OAI model as avaluable

abstraction in designing the user interface itself. One suchdesign tool, TkSched, hasbeen

created using these principles to aid the design of hardware from SDF graphs. The use of

multiple views, cross-connected, and allowing exploration of tradeoffs at a high level is

intendedto bring improvements to the design process overmethodologies thatkeepmuch

of their intemal representations hidden.

6.2 Future Directions

We have touched on a number of distinct areas in the design flow from specification to

implementation. These include interactive design, synthesis, and cosimulation of the

resulting designs. Each of these areas holds the potential for extensions to this work. We

have sought to provide a synthesis path from SDF graphs to an RTL representation for

synthesis. While we have sought an alternative to existing behavioral synthesis

approaches, integrating ourapproach with behavioral synthesis as the target could prove to

be of greater value. Performing coarse-grain resource sharing through SDFanalysis, fol

lowed by fine-grain resource sharing in behavioral synthesis is likely toyield better results

th^Ti aftftmpring to makeall resource sharing decisions at thehighest levelof abstraction.

The techniques for hardware synthesis are directly informed by the structure of the

precedence graphthat comes from analyzing the SDFgraph. Thisprecedence graphstruc

ture is the same whether the eventual implementation is in hardware or in software.

Because of this, it would be worthwhile to see how the goals of hardware synthesis and
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those of software synthesis could be coupled in a unified design flow. Hardware/software

codesign from SDF for a general hardware and software architecture would increase the

value of either hardware or software synthesis techniques alone.

A limitation of the techniques described here is the emphasis on SDF alone. Most

practical systems require the specification of branching control or modal changes. The

SDF approach canbe encapsulated in larger systems that handle the control outside of the

synthesized hardware, butthis keeps a barrier between control and dataflow inboth speci

fication and in synthesis. Applying broader dataflow models such as BDFcan lead to the

loss ofanalyzability forgeneral graphs. Approaches that mix models ofcomputation, such

as SDF with finite state machines (FSM), may be a direction worth pursuing. Both the

SDFandFSM models are synthesizable in eitherhardware or software, but methods to do

co-synthesis from such mixed models ofcomputation are likely tofind value over methods

that sjmthesize separately from each.

The cosimulation capabilities thathave been described here arebasedon SDFseman

tics, but real design flows call for the use of broader VHDL semantics, especially when

cosimulating synthesized VHDL models with imported VHDL models with different

semantics. The use of VHDL as a cosimulation platform for multiple, known semantic

subsetscan be a flexible route to systemsimulation that may hold efficiencies over simu

lating withgeneral VHDL semantics. The interface provided in VHDL to other programs

and simulations makes VHDL a reasonable choice for general system simulation.

The interactive design toolTkSched allows design work at a high level of abstraction

with a number of views. The Tycho syntax manager of Ptolemy is an appropriate candi

date for a reimplementation ofTkSched, through the use ofprovided classes for handling

interactions as well as showing multiple views based onshared data. The close integration

of Tycho with Ptolemy also makes it a good choice for gaining further interactivity at

other stages in the design process.
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