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Abstract

In this paper, we demonstrate the existence of fair end-to-end window-based congestion

control protocols for packet-switched networks with FCFS routers. Our definition of fairness

generalizes proportional fairness and includes arbitrarily close approximations of max-min fair

ness. The protocols use only information that is available to end hosts and are designed to

converge reasonably fast.

Our study is based on a multiclass fluid model of the network. The convergence of the

protocols is proved using a Lyapunov function. The technical challenge is in the construction

of the protocols.

1 INTRODUCTION

We study the existence of fair end-to-end congestion control schemes. More precisely, the question

is that of the existence of congestion control protocols that converge to a fair equilibrium without

the help of the internal network nodes, or routers. Using such a protocol, end-nodes, or hosts,

monitor their connections. By so doing, the hosts get implicit feedback from the network such

as round-trip delays and throughput but no explicit signals from the network routers. The hosts

implement a window congestion control mechanism. Such end-to-end control schemes do not need

any network configuration and therefore could be implemented in the Internet without modifying

the existing routers nor the IP protocol.
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The Internet congestion control is implemented in end-to-end protocols. The motivation for

such protocols is that they place the complex functions in the hosts and not inside the network.

Consequently, only the hosts that want to implement different complex functions need to have their

software upgraded. Another justification, which is more difficult to make precise, is that by keeping

the network simple it can scale more easily.

TCP is the most widely used end-to-end protocol in the Internet. When using TCP ([15]), a

source host adjusts its windows size, the maximum amount of outstanding packets it can send to

the network, to avoid overloading routers in the network and the destination host.

Many researchers have observed that, when using TCP, connections with a long round-trip time

that go through many bottlenecks have a smaller transmission rate than the other connections

[10, 12, 23]. A bottleneck is a node where packets are backlogged so that its transmission rate

limits the rate of the connections that go through it. The observed bias can be explained as follows.

While a host does not detect congestion, it increases its window size by one unit per round-trip

time of the connection. Accordingly, the window size of a connection with a short propagation

delay increases faster than that of a connection with a longer propagation delay. Consequently, a

long-delay connection looses out when competing with a short-delay connection.

Based on this observation, Floyd and Jacobson [11] proposed a "constant rate adjustment"

algorithm. Handerson et al [13] simulated a variation of this scheme. They report that if the

rate of increase of the window size is not excessive, then this scheme is not harmful to the other

connections that use the original TCP scheme. Moreover, as expected, this scheme results in better

performance for connections with longer propagation time. However, choosing the parameters of

such algorithms is still an open problem.

Thus, although end-to-end protocols such as

those implemented in TCP are very desirable for extensibility and scalability reasons, they are

unfair. Roughly, a fair scheme is one that does not penalize some users arbitrarily. Accordingly,

the question that arises naturally is the existence of fair end-to-end congestion protocols.

In an early paper, Jaffe [17] shows that power cannot be optimized in a distributed manner.

Chiu and Jain [4] show that in a network with N users that share a unique bottleneck node, a

linear increase and multiplicative decrease algorithm converges to an efficient and fair equilibrium.

Most current implementations of TCP window-based control use a linear increase and multiplicative



decrease of the window size, as suggested in [15]. However, these implementations control the size

of their window and not their transmission rate. Moreover, simple examples show that the result

does not hold for networks with multiple bottleneck nodes.

Shenker [29] considers a limited class of protocols and argues that "no aggregate feedback

control is guaranteed fair." This statement suggests that end-to-end control cannot guarantee

convergence to a fair equilibrium. Unfortunately, the class of protocols that he considers excludes

many implementable end-to-end protocols. Jain and Charny refers to [29] to justify the necessity

of switch-based control for fairness [27, 3].

Recently, Kelly et al [20] exhibited an aggregate feedback algorithm that converges to a propor

tionally fair point. In their scheme, each user is implementing a linear increase and multiplicative

decrease of its rate based on an axiditive feedback from the routers the connection goes through.

This protocol requires that the routers can signal the difference between their load and their ca

pacity. In our protocol, each host controls its window size not its rate, based on the total delay.

Window-based algorithms are used to control errors. A rate-based control must be augmented with

another retransmission protocol for error control. The window-based control algorithm integrates

these two functions of error and congestion control. Although the delay is an additive congestion

signal, this is less informative than Kelly's. Our protocol can be viewed as a refinement of TCP

congestion control algorithms.

In this paper we revisit the fundamental question of the existence of fair end-to-end protocols

and we provide a positive answer by constructing explicitly such protocols.

2 MODEL

Window flow control is usually modeled as a closed queuing network [5, 6, 9]. For instance, in [5],

the authors study the window flow control of a single connection with fixed propagation delay in

a product form network. They derived the optimal window size and an adaptive window control

scheme based on the analytical model.

In this paper we consider a closed multiclass fluid network with M links and N connections.

We define that model next. The sender of connection i {i = 1,..., N) exercises a window-type

flow control and adjusts the window size Wi of the connection. A connection follows a route



that is a set of links. Link j (j = l,"-,Af) has capacity, or transmission rate, Cj. We define

the matrix A = = l,...,7V,j = 1,*--,M) where Aij = 1 if connection i uses link j and

Aij = 0, otherwise. Let also A,-. := {j\Aij = 1} be the set of links that connection i uses and

A.j := {i\Aij = 1} the set of connections that use link j.

Each connection i has a fixed round-trip propagation delay d,, which is the minimum delay

between the sending of a packet by the sender host and the reception of its acknowledgement by

the same host. We assume that the processing times are negligible. A typical acknowledgement

delay comprises d,- and some additional queuing delay in bottleneck routers. Let x,- be the flow

rate of the t-th connection for i = 1,..., A. For j = !,•••, Af, we assume that every link j has an

infinite buffer space and we designate by qj the work to be done by link j. By definition, qj is the

ratio of the queue size in the buflfer of link j divided by the capacity Cj. The service discipline of

the links is first come - first served (FCFS).

We consider a fluid model of the network where the packets are infinitely divisible and small.

This model is represented by following equations:

A^x —c < 0 (1)

Q(A^x - c) = 0 (2)

X(Aq^-d) = w (3)

®> Oj 9 > 0 (4)

where

X= (xi,...,xjv)^, c= (ci,...,cm)^, 9= (9i>--->9m)^, d= (di,...,dN)^

X = diag(x)^ Q = diag{q)

The inequalities (1) express the capacity constraints: the sum of the rates of flows that go through

a link cannot exceed the capacity of the link. The identities (2) can be written as

- Cj] = 0, for j = 1,..., M.

The j-th identity means that if the rate through link j is less than the capacity Cj of the

link, then the queue size qj at that link is equal to 0. Finally, the identities (3), which can be

written as

+ ^i] = z= 1,..., AT,



mean that the total number of packets Wi for each connection i,i = is equal to the

number of packets in transit in the transmission lines plus the total number Xi(Aq)i of packets

of connection i stored in buffers along the route. To clarify the meaning of Xi(Aq)i, note that

^ijQj —
3 3

Now, cjqj is the number of packets in the buffer of link j and a fraction Xi/cj of these packets are

of connection i. Thus, (cjqj)(xifcj) = Xiqj is the backlog of packets of connection i in the buffer

of link j. Summing over all j such that connection i goes through link j shows that Xi{Aq)i is the

total backlog of packets of connection i.

Note that our model assumes that, for each link j, the contribution to the queue size of connec

tion i is proportional to its flow rate x,-. This assumption is consistent with the fluid assumption

under which the packets are infinitely divisible.

We rewrite the identities (3) as follows:

W'Xi = —^ where Di = d,- + {Aq)i for i = 1,..., N. (5)

The identities (5) mean that the flow rate x,- of connection i is equal to the ratio of the window

size Wi of the connection divided by its total round-trip delay D,-. The total delay D,- consists

of fixed propagation delay d, plus a variable queuing delay which depends on congestion in the

network. Accordingly, the flow rate x,- of connection i is a function of not only the window size Wi

of the connection but also of the window sizes of the other connections. When the network is not

congested, q = (91,..., qm) = 0 and the flow rates are proportional to the window sizes. However,

as congestion builds up, 9 ^ 0 and the rates are no longer linear in the window sizes.

We are going to prove that the flow rates x are a well-defined function of the window sizes w.

This result is intuitively clear and its proof is a confirmation that the model captures the essence of

the physical system. Before proving the uniqueness of the rate vector x, we first show the existence

of a rate vector x that solves the relations that characterize the fluid model.

Theorem 1 For given values of (izj, A, d,c), there exists at least one rate vector x which satisfies

the relations (l)-(4).

Proof: Let U= Sili Then qj € [0, C/] for j = 1, •••,M. For q € [0, t/]^, let

di +lAg)i'̂ ~ :=c-A^x{q), and hj{q) =-fJ(q)J=



Fix j € {1,. ",M} and := (gi,..gj+i,..9m) in [0, We claim that hj(q) =

••m9m) Is a quasi-concave function of qj. By definition of quasi-concavity, this means that

{qj\hj{q) > a} is convex for all a 6 7^. To verify the claim, note that

/i(9i. 1') =Ci - E '̂ i'di +(Aq)i = + +

is increasing and concave on [0, U]. Indeed, fj is the sum of increasing concave functions on [0, U].

If /j(0j9'') > 0, then hj is a decreasing function, which is quasi-concave on [0,17]. Also, in that

case, arg max,(9^,9^) = 0. On the other hand, if /j(0,9'') < 0 then hj is a unimodular function

which increases on [0,9^] and decreases on (9j,C^, which also is quasi-concave. Moreover, in that

case, max,j /j(9j,9^) = 0. This proves the quasi-concavity of hj.

By the theorem of Nash [14], the quasi-concavity ofhj{qj^q^) in qj for any fixed q^ implies that

there exists at least one vector q* € [0, t/]^ such that

q] = arg max,^g[o.t7]'ij(9n •••>9j-i>9i+i'• ••>9a/) for j = (6)

Let q* be such that (6) holds and let x* —x(9''). We claim is that x* is a solution of (l)-(4). To

verify the claim, observe that our proof ofthequasi-concavity shows that either 9J = 0or fj (9*) = 0

and that in both cases fj(q*) > 0. Hence q'jfjiq*) = 0and (2) follows. Moreover, fj(q*j,q^) > 0is
equivalent to (1). Additionally, (3) and (4) are trivial by construction. •

Theorem 2 Given (tn, A,d,c), the flow rate x = (a;i,---,a:M) satisfying the equations (1)- (4) is

unique.

We use two lemmas in the proof of the theorem 2. The first one is a partial result of Rosen [28]

and the second is Farkas' lemma (see e.g., [24]).

Lemma 1 Let F = (/i, •••, /n) he a vector of real-valued functions defined on TV^. If the Jacobian

matrix AF{x) exists and is eitherpositive definite for all x 6 7^" or negative definite for all x € 7^",

then there is at most one x such that F{x) = 0 holds.

Proof: Assume there are two distinct points x^ and x'̂ such that F{x^) = 0 for i = 1,2. Let

x(0) = a;^ + 9(x^ - x^) for 6 6 [0,1]. Since AF is the Jacobian of F, we have

=Af(1(9))^ =AF(I(9))(I^ - 1').



Hence,

Fixh - F(x^) = /' AF{x(e)){x^ - x')de.
Jo

Multiplying both sides by (x^ — gives

(x2 - a:i)^(F(a:2) _F(a:^)) = (\x'̂ - x^fl^F{x(9))(x'̂ - x^)d9, (7)
Jo

The left side of the equation (7) is 0 and the right hand side is either positive or negative depending

on whether AF(x(^)) is always positive definite or always negative definite. This contradiction

Completes the proof of the lemma. •

Lemma 2 (Farka) Ax = b,x > 0 has no solution if and only if yA > 0, y6 < 0 has a solution.

Proof: For a proof, see [24]. •

We are now ready to prove Theorem 2.

Proof of Theorem 2: The proof is composed of two parts. In the first part, we show that,

given (tn. A, d, c), the set of bottleneck links B is uniquely determined. In the second part, we show

that, given (w, A, d, c) and B, the vector of fiow rates x is unique.

Claim 1 Given (ly. A,d,c), the set of bottleneck links B defined by B = {j\{A^x)j = Cj} is the

same for all x that satisfies the equations (.t)-(4)-

Assume that there exist two different sets of bottleneck links Bi ^ B2 that correspond to two

distinct solutions and of the equations (l)-(4), respectively. By the equation (2),

the queue size at a non-bottleneck link is 0. For A; = 1,2, designate by the subvector of q^ with

nonzero components. Let also A^ be the submatrix of A that consists of the columns of A that

correspond to the nonzero components of q^. With this notation we can write

Aq^ = Akq^ foTk = 1,2. (8)

Plugging (8) into (3) and multiplying

Ajty*= + d = for A: = 1,2 (9)



We partition the users into two sets = {i|a:J > xf} and N~ = {1, •• and rewrite (9)

as

_il+ 1 1 1 1 /-vH-- v2+^-i,.,+
(10)

by subtracting the equation (9) for A; = 2 from the same equation for fe = 1. The superscript + and

- corresponds to the sets AT"'" and N~, Note that the right side of the (10) is less than or equal to

0. From the lemma ??, if there is a row vector y —(y"*", t/~), such that

-A
t 1 I

(X
'+-A-2+)
-'w+

1

1

1

10

•

y+Af - y~Aj" > 0

y+Aj - y"A7 < 0

y+(A'i+ - A'2+)u;+ + y-(X'^- - X^-)w- < 0,

(11)

(12)

(13)

no (y\y^) satisfying the equation (10) exists. We will show that y = (y'^jy') with y^ = (a;^+ -

x^+)^ and y" = (x^~ - x^~)^ is such a vector.

Plugg (y'^iy") defined above into (11)-(12).

x '̂̂ Af + x^~Ai - x '̂̂ Af - x^'Ai = x^Ai - x'̂ Ai = c^, - x'̂ Ai > 0

x '̂̂ A^ + x^~A2 + + x^~A2 = x^A2 - x^A2 = A2 - < 0

We drop the superscript ^ in x"^ for simplicity. The inequalities holds by equation (1), hence (11)

and (12) holds. For (13), note that the right hand sideof (10) is nonnegative and y is nonnegative.

Hence (13) holds with a possibility ofequality. The strict inequality follows from the fact x^ ^

This completes the proof of the claim.

Claim 2 Given (tu, A,d,c) and a the corresponding set of bottleneck links B, the flow rate x that

solves the equations (1)'(4) is unique

For simplicity of notation, wedo not consider non-bottleneck links. That is, werewrite the equations

where every one of the M links is a bottleneck. If rank(A) = N, then the equations A^x = c

determine x uniquely. Now we consider the case when rank(A) = k < N. By renumbering the

connections and the network nodes, we can write A as

A =
E F

a H

8



where E is z. k x k invertible matrix and G \s z. {N —k) x k matrix. We claim that

H = GE-^F. (14)

To see why the above identity must hold, note that the rightmost N —k columns of A are linear

combinations of the leftmost k columns. That is, there is some k x {N —k) matrix M such that

M.

Consequently, F = EM and H = GM. The first identity implies M = E~^F and the second then

yields H = GE~^F, as claimed.

Let xe and xq be the vectors of flow rates corresponding to E and G, respectively. From

= c we find

XE = E'̂ -'̂ ce - E'̂ -'̂ G'̂ xg (15)

where ce is a sub-vector of c corresponds to E from the equations (1) and (2). (In (15), the notation

designates (E~^)'̂ = (jE'̂ )~L) Let b= X~^w - d or 6,- = ^ - di for i= 1,N. Combining

this notation with equation (3), we find

Aq =

F E

H G

E F QE
= 6 =

G H QF 5g
(16)

were 6^ = = i(hr ',bN))'

Multiplying E~^ to the upper part of matrix equation (16), we get an expression for qe in terms

of qp: qE = E'^Be - E'^Fqp. Plugging this expression into GqE + Hqp = we find

GE-^Be+ {H- GE-'F)qF = Bg-1

which reduces to

GE-^Be = Bg

by (14). Let G := GE ^ and

F(xg) := GBe - Bg.

Note that F is a function of xg^ since Be and Bg are also function of xg by equation (15) and the

definition of 6. We use Lemma 1 to show that there is a unique xg so that F(rrG) = 0.



For i= 1,.. .,N- k and j = A: +1,...,iV, we compute the partial derivative of Fi with respect

to Xj as follows. Note that

Fiixa) = Gi.bE - bk+i+i

where G,-. is row i of G. Now, for m = 1,..., A:,

dXj dXj '

Using (15), we see that

dxj ~

Combining the previous two identities, we get

Consequently,

dibB)m _ ^
dx^

// W' " T
^ bE = Diag(-^)G^.'.dxj

Using this result and the expression (17), we find

dFi(XG) ^ T , Wk+i^gl. =Gi.Diag(^)Gj. +-^Sij
where Sij = lif i = j and 0 otherwise. Hence the Jacobian matrix AF{xg) of F is

x] ^fc+i

G^ +

0 iq- 0
"N J

(17)

which is positive definite. From the lemma 1, there is a unique xq so that F{xg) = 0 and by the

equation (15), a: is unique •

Alhough the rate vector is uniquely determined from the window sizes, the workload vector

generally q is not, as the following example shows. Consider a network with two bottleneck links

in series with the same capacity c and a single connection with window size w. If ^ > c, then the

queues build up in the links. For this network, any vector (91,92) such that 91 + 92 = ^ —d is a

solution of the equations (1) - (3).

The following corollary shows a sufficient condition for 9 to be determined uniquely.

10



Corollary 1 If rank^As) is equal to the number |B| of bottleneck links, then {w,A,c,d), uniquely

determines the vector q.

Proof: From the uniqueness of flow rate vector x and equation (3),

g= (A'̂ Ab)~^A'̂ (Xq^wb - dfi)- The inverse exists from the full rank assumption. •

The following lemma provides sufficient conditions for links not to be bottlenecks.

Lemma 3 For any given window size vector ly, 0 —1 matrix A, and diagonal matrix D,

• (a) ifA.j^D~^w < Cj, then qj = 0.

• (b) AJ^D~^w < c if and only if q = 0,

Proof: (a) Assume that qj > 0. This implies x,- < Now, A.j^D'̂ w < cj implies A.j^x < cj,

since D~^w is the upper bound on x. From the equation (2), qj = 0, which is contradiction. Hence

qj = 0.

(b) If g = 0, the window size vector w = Xd from (3) where D = diag{di, i = 1, - -•,N). By

(1), we prove if part. The only if part is obvious from part (a). •

The converse of part (a) is not always true, as can be seen from the next example. Let M =

2,iV = 2,C = (5,5)^,d = (1,1)^, and

A =
1 1

1 0

If ly = (10,20), clearly, q2 = 0, the flow rate out of resource 1 < 5, but A^D'^w = 10 > S.The

end-to-end protocol that we develop controls the window sizes.

Let F : W-^X be the mapping from the window space VF to a flow rate space X defined by

(l)-(4). F is a continuous function but is not always differentiable as the next example shows.

Consider the network and connections in figure 1(a). Two users are sharing one link and each

uses another link. Figure 1(b) is a plot of xi along the horizontal dotted line 1 in figure 1(c).

Figure 1(b) shows that xi is a continuous nondecreasing function of the window size wi, but is

not differentiable at the points where the set of bottlenecks changes. Each region I,II,III, and IV

corresponds to different sets of bottlenecks. For example, in region 1, user 1 does not suffer from

any bottlenecks, but user 2 does.
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USERKdlol)

USER! (d2>l)

(a)

Figure 1: (a)network topology (b) flow rate x vs. window size (c) mapping between x and w

Figure 1(c) shows the mapping x = F{w). If u; 6 (0), there is no queue, and w and x are such

that Wi = Xidi, so that x = F{w) is diflferentiable in that region. If w (0), F is no longer one to

one. For instance, F(w) = (1,2) for all u; € (2) and F{w) = (2,1) for all it; € (4).

Let F"^(a:) = {w\F(w) = a:}. The dimension of F~^(x) is related to the number of bottlenecks.

To be precise, the dimension of F~^{x) is same as the rank of Ab- This property follows from

w = Xd-\- XAg. Since XAq = XAsgBi F~^(w) is a positive cone of XAb with vertex Xd, as we

now illustrate in figure 1(c). When g = 0, the inverse image of F is a point, of which the dimension

is 0. When x = (1.5,1.5), F~^{x) is the dotted line 2 in the figure, whose dimension is 1. When

X= (2,1) or (1,2), the number of bottlenecks is 2, which is the dimension of F~^(x).

Let B(w) be the set of bottlenecks for the window sizes w. We call w an interior point if there

is € > 0 such that B{w) are same for all w € neighborhood, Ne{w), of w. Otherwise, w is said to

be a boundary point.

Claim 3 F is a continuous function of w.

Proof: If w is an interior point, then by claim 4, F is continuous. Let w be an boundary points,

i.e. B{w) = {B{w)\w GNciw)} is not unique for small e.

Let Wn be a sequence such that Wn-^w. Define x„ = F(ty„). Take a subsequence nk such that

^(tUnfc) are same, say, B for all k. Then for some x. It is enough to provethat x = x^ all the

subsequences can be constructed as a combination of . If B = B(iy), that is the subsequence has

12



same bottlenecks as ty, x = x. If has a full rank, (qnk)j is a unique solution of maixhj{wn^, qn^)

where hj{w^q) same as in the proof of theorem 1.

iQnie)ji (9nfc)j-) ^ (9njt)i-) f®^ ^,11 t/

Upon taking limits and invoking continuity of h,

hj(w\ (q^j. (9*)i-) > hj(w\y, (q^)j.) for all y

Hence, x = = x. If Ajg does not have a full rank, select a submatrix Ag such that it has

a full rank and same range space. Define (qnk)j = argmaxhj if j € B^ otherwise{qn^)j = 0 Note

that qnk is unique. Applying same arguement gives desired results. •

Claim 4 F is differentiable except at the boundary points.

Proof; Define gsiw^q) = ABx(qB) - c^, where x{qB) = di+^i.qB' ^ rank, i.e.

rank{AB) = 15|, by the implicit function theorem, qB{w) is differentiable, hence x(iy) is differen

tiable. Now assume rank{AB) = r < \B\. Let B C B such that |B| = r. Then applying same

implicit function theorem to g^ gives the differentiability of x^g^). To make the proof complete,

observe that x^g^) is the uniuqe solution ofg^. Since we delete dependent rows from B, if x is a

solution of Aqx —cq, it is also solution of A^x = cb- Since the solution x is unique, x{qQ) is the

solution of gs. This completes the proof. •

CoroUary 2 Let D+F = jj+p ^

Proof; If w is an interior point, it's obvious. If ly is a boundary point for any direction u there

exists € > 0 such that w 6 (ty, w+ cu] has the same bottleneck B. Then restricting domain of F to

(ty,w -j- en] and applying the same argument as the claim gives results. •

3 FAIRNESS

3.1 Fairness

Fairness has been defined in a number of different ways so far. One of the most common fariness

definitions is max-min or bottleneck optimality criterion [16, 1, 8, 18, 3]. A feasible flow rate x is

13



defined to be max-min fair if any rate x,- cannot be increased without decreasing some Xj which

is smaller than or equal to Xi [1]. Many researcher have developed algorithms achieving max-min

fair rates [1, 18, 3]. But max-min fair vector needs global information [25], and most of those

algorithms require exchange of information between networks and hosts. In [8], Hahne suggested a

simple round-robin way of control, but it requires all the links perform round-robin scheduling and

it needs to be guaranteed that packets of users are ready for all links.

Kelly [19] proposed proportionally fairness. A vector of rates x is proportionally fair if it is

feasible, that is x* > 0 and A^x* < c, and if for any other feasible vector x, the aggregate of

proportional change is negative:

(18)

In [20], Kelly et al. suggested simple linear increase and multiplicative decrease algorithm converges

to proportionally fair point.

Recently, game theory has been applied to flow control. [26, 7, 30]. These authors model users

as players competing for common shared resources. The concept of Nash Equilibria provides a

framework for definining fairness and proper operating points for the network. In [7], the game is

viewed as non-cooperative. In [26], it is modeled as a cooperative game in which the users act to

achieve better common utilities.

Next, we generalize the concept of proportional fairness. Consider the following optimization

problem:

{P)

maximize 9 = T>iPif{^i) (19)

subject to A^x < c (20)

over X> 0 (21)

where / is an increasing strictly concave function and the pi are positive numbers. Since the

objective function (19) is strictly concave and the feasible region (20)-(21) is compact, the opti

mal solution of (F) exists and is unique. Let L{x,fi) = g{x) -f /i^(c— A^x). The Kuhn-Tucker

conditions [24] for a solution x* of (F) are

- pFA^ = 0 (22)
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fij (Cj - ATjX*) = 0 for j = 1, ••♦, M (23)

A^x* < c (24)

a;* > 0, /z > 0 (25)

where Vg^ = {pif(xi)^ •••,Pn/'(®n))- When thereisonly one link and N connections, the optimal

solution of (P) is Xi = ^ for all i: All the connections have an equal share of the bottleneck

capacity, irrespective of the increasing concave /. Indeed, (22) implies /'(x,) = /z for all i, so that

Xi = for all i. If x is a proportionally fair vector then it solves (P) when /(x) = logx

with Pi = 1 for all i. Thus, a proportionally fair vector is one that majdmizes the sum of all

the logarithmic utility functions. The situation is not same when there are multiple bottlenecks.

Consider the following network with 2 different bottlenecks and 3 connections. The max-min fair

C1 C2

USERl

USER2 USER3

Figure 2: Network with multiple bottlenecks

rate vector of this network is (^i C2 - ^) if Ci < C2, while the proportionally fair rate vector is

not same as max-min fair rate in this case, since by decreasing the rate of user 1, the sum of the

utility functions / increases. Hence the optimal vector x depends on the utility function / when

there are at least two bottlenecks.

It is the concavity of the function / that forces fairness between users. If / is a convex increasing

function instead of concave, then to maximize the objective function g of (P), the larger flow rate x,-

should be increased, since the rate of increase of /(x,) is increasing in x,-. When / is linear, the rate

of increase of / is the same for all x. When / is concave, a smaller x,- favored, since /'(x) > /'(y)

if X < y.

It is a matter of controversy what is a fair rate allocation for the network in figure 2. It

can be argued that the max-min fair rate is desirable. On the other hand, connection 1 is using

more resources than the others under the max-min fair rate. Generally, the problem is how to
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compromise between the fairness to users and the utilization of resources. The max-min definition

gives the absolute priority to the fairness.

We generalize the concept of proportional/airness as follows.

Definition 1 ((p,a)-proportionally fair) Let p = {pi,...,P7v} be positive numbers. A

vector of rates x* is (a, p)-proportionally fair if it is feasible and for any other feasible vector x,

< 0- (26)

Note that (26) reduces to (18) when p = (1, ••-,1)^ and a = 1.

The following lemma clarifies the relationship between the above definition and the problem

(P)'

Lemma 4 Define the function fa as follows:

fai^) •= loga; t/a = 1

-(1 - if a > I

Then the rate vector x* solves the problem (P) with f = fa if and only if x* is (p,©)-

proportionally fair.

Proof:

Let x' be a solution of (P). We show that x* is (p,Q)-proportionally fair. Multiplying (22)

by (x —X*), we find Vp^(x - x*) = p^A^(x - x*). Summing the equations (23) over j, we

obtain p^c = p^A^x*. Multiplying (20) by p, we get p^A^x < p^c. Combining these relations,

we see that p'̂ A^x < p^c = p^X^x*. Therefore, Vg^(x - x") = p^A^(x —x*) < 0. But

Vp^(x-x*) = Hence, ^ 0. Thestrict inequality holds for all x ^ x*, because

of the uniqueness of x*. We have shown that (26) holds and that x* is (p, a)-proportionally fair.

To provethe converse, assume that x" is (p,o)-proportionally fair. We show that it solves (P).

First note that g(x) = p(x*) + Vp(x*)^(x-x")-f-o(a:-x*). Since Vp(x*)^(x-x'') = I3tP»l^^ < ^

for all feasible x, it follows that x* is a local minimum. Since P has a unique global solution, x*

solves (P). •

The next lemma explains the relationship between max-min fair rate and the parameter a.
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Lemma 5 If h is increasing concave negative function, the solution of (P) with fa = —(—h)"

approaches the max-min fair rate vector as a—>-oo.

Proof: Let 1° be the optimal solution of (P) with /« and A' = {A^x < c,x > 0}. Since {x°}

is a sequence in a compact set X, there exists a subsequence, say {akyk > 1}, of or such that

converges to some x°° € A' as k-^oo.

By the optimality of x°''', for all feasible y(^

EP'AW)(!«-<')<"• (27)
i

i.e.,

Pifa,{^r)(yi - (28)

Dividing both sides of the equation (28) with pt(y,- - xf''),

E (29)
j¥« j^hrj>0

where rj = < oo-

Since f n,nd lima^^—>.oo (/^(iofc+e)) >

= ( ——^1 , 7 —^——^oo as Qk-^oo for an arbitrary €
\h(x<"'+e)J '

fajx"-) ^ ( Hx"-) X"*-' fe'Cx"*)

Taking limits on both sides of the equation (29), for this inequality to hold, there exists k such that

Xi° > x"^. Note that > 0 implies if y, > xf^ then yk < By the definition of the max-min

rate vector (a: is max-min if for every feasible y, if x,- > y,- there exists j such that yj < xj < x,-)

x°° is the max-min rate vector. From the uniqueness of the max-min rate vector and that above

arguments holds for an arbitrary subsequence, the proof is complete. •

Corollary 3 The (p, a)- proportionally fair rate vector approaches the max-min fair rate vector

as a—^oo.

Proof: This result follows from Lemma 5 because satisfies the conditions of the lemma. •
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3.2 Window Size and Fairness

In this subsection, we study the relationship between window sizes and fairness.

TCP vegas [2] uses the estimated total backlog of a connection as a decision function. In our

notation, the total backlog of connection i is Wi - Xidi. In TCP vegas, a host increases its window

size if the estimated total backlog is smaller than a target value and decreases it otherwise.

We now establish the relationship between the total backlogs and fairness. Let pj > 0 for

i = 1,• • •,iV. Define

Si = Wi —Xidi —Pi, for i = 1, •••, N. (30)

The next theorem shows that any window vector w such that Si = 0 for all i corresponds to a

(p, l)-proportionally fair rate vector x.

Theorem 3 There is a unique window vector w such that Si = 0 for i = 1, • • •, iV. Moreover, the

corresponding rate vector x{w) defined by the equations (l)-(4) is a (p, 1)-proportionally fair rate

vector.

Proof: For any given w 6 [0, oo)^, let x be the rate vector that corresponds to w, as defined

by the equations (l)-(4). Fix w e W. From equation (3), we get XAq = w - Xd = p where

p = (pi, •••,pjv)^- The last equality follows from the definition of W. Hence equation (22) is

satisfied. From (1), (2), and (4), if we replace pj with qj, the optimality conditions (23)-(25) of

problem (F) hold for f(x) = pi logx for i = 1, •••, AT. By Lemma 4, x is a (p, l)-proportionally fair

rate vector. The uniqueness of w follows from the uniqueness of the (p, l)-proportionally fair rate

vector X, equation (3), and XAq = p. u

Observe that the workload vector q is same as the optimal dual variables p of the problem (F) when

the network is in the state of (p, l)-proportional fairness. This theorem implies that by controlling

the total backlogs of the network, wecan operate the networkat the (p, l)-proportionally fair point.

This theorem can be extended to the (p, a)- proportionally fair case. Let p,- > 0 for i = 1, • ••, AT

and a > 1. Define

sf = Wi - Xidi - for t = 1, •••, AT. (31)
X'

Theorem 4 There is a unique window vector w such that sf = 0 for all i. Moreover, the cor

responding rate vector x{w) defined by the equations (1)'(4) is a (p, o)- proportionally fair rate

vector.
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Proof: Note that if sf = 0, then Wi —Xidi = —XiAi.q. Consequently, x^Aq = p, which

is the optimality condition (22). The other conditions (24), (23), and (25) are satisfied as can be

shown as in the previous proof. •

4 ALGORITHM

4.1 (p,l)-Proportionally Fair Algorithm

In this section, we construct an end-to-end control that converges to the proportionally fair point.

Define

di = di + Ai.q, for i = 1, • • •, N.

That is, di is the measured round-trip delay of connection i. Fix «: > 0.

Consider the following system of differential equations:

d /1\ di Si

Si — Wi - Xidi - Pi for i = 1, •••, N. (33)

Theorem 5 LetV(w) = (^) • Then Vis aLyapunov function for the system of differential
equations (32)-(33). The unique value minimizing V is a stable point of this system, to which all

trajectories converge.

Proof:

Define

Jr =l^,i,j=lr-;N], (34)
= (35)

Let B be the set of bottleneck links that correspond to w. Designate hy Ab the submatrix of

A obtained by keeping only the columns that correspond to a bottleneck link.

Lemma 6 The Jacobian Jx = of x{w) with respect to w is given by the

following expression on the interior point:

Jr = D-\I - XAb(aIxD-Ub)-^aId-^) (36)
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where

D = Diag(di + Ai.q, i= 1, •••, iV) (37)

X — Diag{xi,i = 1,'",N). (38)

Proof; Our starting point is equation (3) which reads

Xi[{ABqB)i + = tUt, i e B (39)

where qs is the subvector of q that corresponds to the bottleneck links. This equation contains

the dependencies of x,- on Wj. Accordingly, we see that to compute Jx we need only consider the

bottleneck links. We drop the subscript B from Ajg and qs in the rest of the proof. Let also cb be

the subvector of c that corresponds to the bottleneck links and we drop the subscript B. Without

loss of generality we can assume rank(AB) = |B|, since otherwise, we can reduce B, to have a

full rank and from the proof of theorem 2, the reduced system have same solution as the original

system.

With this notation, we have

Xi[Ai.qdi] = Wi (40)

A^x = c (41)

Taking the partial derivative of (40) with respect to Wj we find

{JxhiAi.q + di) + Xi(Ai.(J,).j) = 6ij.

We can write this identity as follows:

dt(«/x)ij "I" ^i{Ai.{Jq).j) = Sij.

In matrix notation, these identities read

DJx + XAJq = 7. (42)

Multiplying this identity to the left by A^D"^, we find

A^Jx + {A'̂ D-^XA)Jq = A^D-K (43)
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Now, (41) implies that A^Jx = 0. Hence,

Jg = (A^D-^XA)-^A'̂ D-^ (44)

Plugging (44) into (42) gives the equation (36) •

We now resume the proof of the theorem.

Proof of Theorem:

Let r,- = Note that
Wi

3 ^

dr,- .

3 » ^
rp

= -K r JrW

where Jr := (j^j i= 1, •• A^, j = 1, •••, AT) is the Jacobian of r. From Jr ={X-{• PW~^ —
DW-^Jx), w = DD-h, and (36),

4-V{w[t)) = -kt^[(XDW-'' +PW-'̂ -DW-^J,:)Db-^]r. (45)
at

Note that the matrix (45) in the bracket is positive definite. Hence y(u;(t)) is strictly decreasing

in t on the interior points unless Sj(t) = 0 for all j. We will argure here that ^^(^^^(t)) is decreasing

even on a boundary point. Assume that at time t, w{t) reaches a boundary point, i.e., at time t —e

w has a bottleneck B and at t + e, w{t + e) has another bottleneck set B. Then,

V(w{t + €)) - y{w{t - €))
2€

V{w{t + €))-V(w{t)) V(w{t)) - V{w{t - €))
2€ 2€

Since V(w(t)) isright differentiable for all direction and continuous, theexpression goes to |(VB(t)+

Vg) where Vg right differential of V with bottleneck set B. Hence (46) is sum of two negative

number which is negative.

Therefore we have shown that V is a decreasing function of t unless Sj{t) = 0 which is unique

w minimizing V and the theorem follows from ([22]), •

In [20], Kelly et al proposed rate control algorithm converges to proportionally fair point. They

changes rate as follows:

^a:,(t) =K{pi - Xi{t)Ai.pj(t))
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where

w(<) = -Cj- e)/£^

The source i gets explicit feedback , residual capacity, from the links and changes its rate

accordingly. The increase is linear and the decrease is multiplicative. Eax:h fjLj (t) play the role of a

Lagrange multipliers of the problem P as €—»-0.

Our algorithm, however, controls the window size instead of rate explicitly . The rate is a

function of all windows.

^ u\ (P* I ^\

where

di = di-\- qj.
j£A.i

Here, measured delay J,- plays the role of implicit feedback. It is the summation of qj plus d,-. qj in

our algorithm is comparable to fij in Kelly's. They are both lagrange multipliers of (F). However,

we do not linearly increase and multiplicatively decrease the window. When the network is not

congested, q = 0, w = Increasing rate is a decreasing function of w.

4.2 (p,a)-ProportionaIIy Fair Algorithm

In this subsection, we consider an algorithm that converges to an (pjo)- proportionally fair rate

vector for a > 1. We know that if sf = Wi - X{di - = 0 for all i, then the rate vector is

(p, a)- proportionally fair . We call the "targetqueue length," since Wi-Xidi is the estimated

queue length in the network. Note that target queue length goes to infinity when the rate is very

small. When o: = 1, the target queue length is constant regardless of the rate. On the other hand,

when a > 1, the target queue length is a function of x, which is varying and is a decreasing function

of the rate. Hence, when the flow rate is large, the algorithm tries to maintain smaller queue and

vice versa.

One unfavorable property of the target queue length function is that when x,- < 1, this

function becomes very large and the target queue length fluctuates and makes the control unstable.

Consequently, we consider instead of since the variation of the former is smaller

than that of the latter.
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The objective function ha such that the solution of (P) corresponds to s" = Wi—Xidi — =

0 is

logic if Q = 1;

ha(x) - < log(^) ifa = 2;

^log(4T) +Ef=-i'7(jiTjr ifa =3,4,....

Note that h'̂ = 3.(3.^.1)0-1 and limx-)>oo = 0. These observations show that haP is increasing
concave and nonnegative, and by the claim 5, the solution of (P) with objective function ha

converges to max-min rate vector.

Consider the system of differential equations

^Wi =—KXiSiUi (46)
at

where

Si = Wi - Xidi -

Theorem 6 If pi < for all i, the function V'(iy) = ®Lyapunovf unction for the

system ofequations (46)-(48). The unique value w minimizing V(w) is a stable point of the system,

to which all trajectories converge.

Proof: Note that

^vwt)) =
3 ^

\ •< V—\ dsi ,
=

3 * •'
rp

= S JsW

whereJs = = 1j*•*»j = 1, •**»'̂ ) is the Jacobianofs with respect to w. The equation (46)

can be rewritten in a matrix form as u; = —kXUs where U = Diag{ui^i = 1, •• •, N). If we show

that JsXU is positive definite, then V(w(t)) is strictly decreasing with unless s = 0, the unique

(p, a)- proportionally fair point.
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^ = + + (49)
or

Js = /-DJa: + (a-l)P(X + /)-Vx (50)

= / - UJa: (51)

= (/ - UD-^) + UD-^XAJg (52)

where U = Diag(ui^i= 1, •••, AT) and Jx = ^ —!> ***i•^) Hence

JsXU = XU-(D-(a-l)PX)JxXU

= (/ - DD-^)XU + (a - 1)P(X + ly^'D-^XU + UD-^XAJgXU.

Since D'^XAJqX is positive semidefinite, (I -DD~^) isdiagonal matrix with nonnegative entries

and P(X +1)~^ is positive definite, JsXU is positive definite.

By applying same arguments of the prevous proof for boundary points, we complete the proof.

5 CONCLUSIONS

In this paper we have addressed the fundamental question on the existence of fair end-to-end

window-based congestion control. We have shown the existence of window-based fair end-to-end

congestion control using multiclass closed fluid model. We showed that the flow rates are a well de

fined function of the window sizes and characterized this function. We generalized the proportional

fairness and related the fairness to the optimization problem. Our definition of fairness addresses

the compromise between user fairness and resource utilization. With the help of an optimization

problem, we have related window sizes and the fair point. We have developed an algorithm which

converges to the fair point and proved its convergence using a Lyapunov function.

Our algorithm uses the propagation delay d,-, measured delay d,, and window size tn,-. Unfortu

nately, the end user cannot know the exact value of propagation delay. Furthermore, the value of

propagation delay could change in the case of rerouting in packet-switched networks. TCP Vegas
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uses the minimum of delays observed so far as an estimated propagation delay. TCP-Vegas fails to

adapt to the route change when the changed route is longer than original route. Refer to Richard

et aJ [21] for this problem. The challenging question that remains is the implementability of this

protocol.
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