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ABstract

Learning Control of Complex Skills
by

Lara Sidonie Crawford

Doctor of Philosophy in
Biophysics
University of California at Berkeley
Professor S. Shankar Sastry, Chair

This dissertation presents a hierarchical controller which can learn to perform com-
plex motor skills. Humans routinely coordinate many degrees of freedom smoothly and
effortlessly to achieve complex goals. Moreover, we are good at learning new patterns of
coordination to produce new skills. Robots and artificial systems, on the other hand, typi-
cally have difficulty with the kinds of behaviors that come most naturally to us. Skills such
as running, skiing, playing basketball, or diving involve complex nonlinear dynamics, many
degrees of freedom, and behavioral goals that can be difficult to specify mathematically;
goals such as “ski down the mountain without falling down” or “shoot a layup” must be
translated from linguistic requirements into dynamic system constraints. The focus in this
dissertation will be on the skill of platform diving, in which the diver’s goal is to execute a
certain dive and enter the water in a fully-extended, vertical position. Controlling a simu-
lated diver is a difficult problem for standard control and planning algorithms; conservation
of angular momentum gives the system dynamics a nonholonomic constraint with nonlinear
drift.

In this dissertation, ideas from the fields of biological motor control and learning are
combined with new learning algorithms in the design of a hierarchical controller which learns
to dive. At the lower level of the control hierarchy, each degree of freedom in the diver’s
joints is assigned a controller based on biological pattern generators for fast, single-joint

movements. These controllers contain neural networks, which are trained on data generated



by simulation. The higher level of the control hierarchy incorporates ideas from human
skill learning: to achieve a desired behavior pattern, a human learning a new skill uses
information from instructors and from watching other performers to build a mental model of
the task requirements, and then practices to refine the parameters of this behavioral model.
In the high-level controller, each dive is represented as a sequence of multi-joint synergies.
The controller learns initial estimates of the timing of these synergies from observational

data and then refines these estimates through Q-learning with repeated simulations.

Professor S. Shankar Sastry
Dissertation Committee Chair
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Chapter 1

Introduction

One of the amazing successes of biological systems is their ability to learn to coordi-
nate many degrees of freedom smoothly and efficiently to produce complex behaviors. In
particular, how humans learn to dance, ride a bicycle, or execute a dive has been a subject
of psychological research for many years. Robots and other artificial systems, however, have
traditionally had great difficulty with acquiring or manifesting these kinds of complex mo-
tor skills, which often involve intrinsically complicated dynamics, the coordination of many
degrees of freedom, and behavioral goals which may be difficult to specify mathematically.
However, by combining recent advances in theories of biomotor control, better learning al-
gorithms, and faster computers, artificial systems may now acquire some of these advanced
skills.

One of the problems in controlling or learning a complex skill is that the goal is a general
behavioral requirement, often expressed linguistically. Statements such as “don’t fall off the
bicycle” or “rotate through one and one-half somersaults while in the pike position” need
to be expressed analytically for learning and control in artificial systems. To represent
these goal statements mathematically, it is necessary to understand what the important
features of the skill being learned are, in a physical as well as linguistic sense. Also, as these
behavioral goals do not deal with specific joint requirements, the controls that will achieve
a behavioral task description are often nonunique. The twin questions of what is controlled
and what is learned in human motion and skill acquisition have been addressed by many
researchers in many different ways over the last century, and some of their insights can be
useful in designing artificial systems.

The psychology literature has distilled three stages of motor learning, which remain



largely unchanged since first proposed by Fitts in 1962 [26]). First is the cognitive stage, in
which the task or skill is turned over in the mind, analyzed, and perhaps put into words. This
is the stage during which the input of a teacher can be effective. In the second associative,
or fixation, stage, the performer practices the skill, improving and growing more consistent
until errors are rare. In the final, or autonomous, stage, the performer continues practicing
the movement until it becomes automatic, and requires very little conscious thought. During
this stage, performance accuracy increases beyond the level at which errors can be detected,
and speed increases in tasks for which it is important. The performance of the skill gradually
becomes more resistant to stress and outside disturbances. Also in the autonomous stage,
there often seems to be a corresponding shift in control to lower hierarchical levels; less high-
level feedback is used, and behavioral subskills are combined together and programmed as
a unit [26], [90].

Relatively little is known about the mechanism of any of the three learning stages,
however; much of the recent work in motor control and learning has focused on control, to
the detriment of learning (see [30] for a review). In the first, “learning by watching,” stage
of skill acquisition, what information does the student extract from watching an expert
or from a teacher’s instructions? What does the student refine in the later, “learning by
doing,” stages? These questions are, at their foundation, questions of representation: how
are complex skills represented in the human motor system? The information extracted from
teaching examples is then the information most relevant to the skill representation. One
possibility is that the learner extracts the kinematics of the movement being performed,
as in motion capture. There are several arguments against this suggestion. For one, the
amount of information to store would be huge. In addition, a purely kinematic movement
representation is unwieldy; it is hard to see how it would be easily broken down into sub-
movements in the second stage of learning. Also, this representation leaves unanswered the
question of how the correct torques to produce the required kinematics are produced. For
example, in walking it is clear that everyone uses slightly different kinematics; you can rec-
ognize a friend from a distance by the way he or she walks. Another possibility is that the
learner extracts some kind of scaled joint torque information from teaching examples. This
is also unlikely; it has been repeatedly shown in walking, for example, that even though
the kinematics are fairl.y similar for two different subjects or for the same subject from one
stride to the next, the joint torques and electromyogram (EMG) patterns are often different,
especially at the knee and hip [25], [77], [109], [108].



A more likely scenario is that the representation is in the form of a behavioral or
synergetic model, in which the controls are restricted to a parametrized family, producing
a stereotypical output behavior. This kind of model meshes well with a hierarchical control
architecture; a controller at a given level of the hierarchy merely needs to output tuning
parameters for the controllers at the next lower level. Such a control structure, while perhaps
making the system less flexible, simplifies the control and learning problem tremendously by
reducing the number of possible controls and allowing them to be represented in a compact
way. Generalizing from known to new tasks also becomes easier, simply by combining
known synergetic structures in new ways with new coupling parameters. For example, in
running or walking, the motion of the center of mass has a similar form across subjects,
speeds, and terrains. In running, a spring-mass model for the stance leg explains most of the
observable behavior. In walking, an inverted pendulum model for the stance leg is a good
description. Good discussions of locomotion biomechanics can be found in [25] and [64].
The variability of the joint moments can be explained by postulating a support moment
synergy. The muscles act together to produce a required support moment; the variation in
the joint moments themselves are required by the slight changes in joint angles. A second
synergy may act to balance the body’s mass, and a third to place the swing foot. (See [25],
(109], [108].) Thus, in running and walking, the controls are organized to produce three
synergetic subgoals, which can be combined to produce the overall spring-mass or inverted
pendulum behavior. Different speeds or stride lengths, for example, can be achieved by
adjusting parameters within the three synergies, but the overall form of the controls does
not change. Raibert [80], [79] used these ideas of behavioral synergies to build extremely
successful running and hopping robots.

Other skills have been less studied than locomotion, but the results there tell a similar
story. Vereijken, et al. [102], showed that in an artificial slalom task, what the subjects
learned seemed to be the relative phasing between the periodic movements of the legs
and that of the slalom platform. This data points to the phase being a parameter in a
behavioral model of the coupling between the periodic leg motions and the periodic motion
of the platform. Similarly, in springboard and platform diving, divers say that much of
learning dives consists of learning the timing required between known submovements such
as the going into and cbming out of a pike. A behavioral model of a dive would therefore
consist of a string of timed subbehaviors which combine to produce a desired topology: two

and one-half somersaults, or one and one-half somersaults plus a twist, for example.



The idea of parametrized, synergetic control strategies applies at every level down the
" motor control hierarchy. For example, in multi-joint placement movements such as reaching
movements, the coupling between the joints is often done in a simple, straightforward man-
ner involving few parameters; the relationship between the shoulder and elbow kinematics
in a reaching movement is fairly fixed, with only a few parameters such as the relative
scaling changing with different movement variants [48], [46], [47]. Another example, spinal
pattern generators, have long been known to be involved in many animals for such rhyth-
mic behaviors as running, chewing, swimming, and breathing [35], {36}, and, more recently,
similar control mechanisms have been postulated for fast, goal-directed, single-joint move-
ments [34], [48], [103], [43], [44], [5]; see Sections 2.4-2.5. The role of pattern generators is
to produce stereotypical movements or control signals which can be varied through tuning
parameters signaled by higher levels in the control hierarchy. A behavioral control strategy
at a given level of the control hierarchy can be used as a module or subprogram at a higher
level of the hierarchy; thus, the balance synergy or the support synergy becomes part of
the walking behavior, multi-joint leg and arm movements combine to become the action
of going into the pike position in a dive, which in turn is part of the overall dive behav-
ior, and pattern generators for single-joint movements are coupled together to produce the
multi-joint control synergy.

With a behavioral model for complex skill acquisition, “learning by watching”™ may
consist of determining the structure of the task in terms of a behavioral model and pro-
viding an initial set of parameter estimates. Then, during the second learning stage, or
associative stage, the performer practices the skill to refine the parameter estimates. New
ways to parcel the skill into lower level behaviors, synergies, or patterns (sometimes also
called “movemes,” in analogy to linguistical phonemes) may become clear during this stage,
simplifying the high-level control by moving the burden to lower levels [90]. This kind of
parceling may also involve the development of an internal model for external task dynamics
[92]. During the third learning stage, or autonomous stage, the movement becomes more
and more automatic. The combination of parceling control to lower levels and making the
movements more automatic corresponds to a shift from closed-loop to open-loop control
(see Section 2.5).

In this dissertation, I focus on the skill of platform diving. As with all behavioral
goals, a student diver is not given a set of explicit desired trajectories to follow; rather,

the dive is described as a set of desired twisting and somersaulting rotations together with



a desired end configuration (enter the water in a fully-extended, vertical position) and
. possible intermediate configurations (for a “pike” dive, the diver must go into the pike
position during the dive). To execute such a dive, the diver must put together a string
of lower-level behaviors, or patterns of coordination, with the right timing to achieve the
desired rotations and enter the water correctly. The lower-level behaviors are such multi-
joint actions as entering the pike position or executing the “throw” with the arms that will
convert somersaulting velocity into twisting velocity [27]. The diver learns what the string
of behaviors is from an instructor (for example, first throw, then pike, then come out of
the pike into the layout position); this information forms the basis of the behavioral model
for the dive. The diver can also get initial estimates of the timing of the various behaviors
by more teacher input or by watching other divers. The timing is then refined through
repeated practice.

The diving problem has intrinsically interesting dynamics as well as many degrees of
freedom to coordinate. After the diver has left the board, he or she is subject to angular
momentum conservation, which creates a nonholonomic constraint in the system dynamics.
The diver leaves the board with some initial (non-zero) angular momentum, so the system
has drift. The drift velocity depends on the configuration of the diver. Since the diver is
falling while executing the maneuvers, there is a predetermined length of time in which
controls can act. These features, combined with the behavioral nature of the goal, make
the diving problem a difficult one for traditional control methods, as will be discussed in
Chapter 3.

Further background on motor control and learning from the biological and psychology
literature is provided in Chapter 2. Chapter 3 presents an analysis of the diving problem
and describes the implementation of the diver in simulation. The learning controller design
and the algorithms it uses are presented in Chapter 4, along with some simulation results.
Finally, Chapter 5 provides a discussion of the simulation results as well as various open

questions regarding the control design and the learning algorithms.



Chapter 2

Biological Background

Biological motor control systems have evolved over the millenia to be amazingly ef-
fective, versatile, and adaptable. They are also, however, extremely complex, and are not
understood fully even at the lowest level of the control hierarchy, the muscles. In spite
of our lack of understanding, some principles have emerged in the study of biological sys-
tems that are useful for designing improved artificial controllers. Much of the material in
Sections 2.1-2.3 is based on Brooks [21] and McMahon [64].

2.1 Motor Control Hierarchy

The motor control system in vertebrates is structured in a hierarchical manner. (See
Figure 2.1.) The limbic system provides the motivational impetus to start a movement.
This system, the seat of emotions and biological drives, is essential for understanding the
requirements of the task at hand and thus for insightful learning. The sensorimotor sys-
tem is typically divided into three hierarchical levels. At the highest level, the association
cortex, which is responsible for recognizing and attending to events and objects, creates
the general plan of the movement, and the motor cortex*provides specific tactics and di-
rectional information for the execution of the movement. The motor cortex is organized
in a somatotopic map. Each area of the map seems to specify very simple movement or
muscle patterns in the corresponding part of the body [51]. In the middle level of control,
the cerebellum performs coordination and fine tuning of different components of the motor
plan based on reports from the somatosensory, vestibular, and visual systems. Some of the

most basic types of motor learning occur in the cerebellum. Also at the middle level are
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the basal ganglia, whose function is not fully understood; it is believed that they may act
to scale motor plans and to group sequences of actions into automatic programs (as in the
associative learning stage discussed in Chapter 1). They may also have a role in stabilizing
the motor control system [51]. At the lowest level of the control hierarchy, the spinal cord
implements the final motor command through the alpha motoneurons. Basic reflex loops
are made through the spinal cord, and central pattern generators reside there as well. At
the bottom of the hierarchy are muscles themselves (see Section 2.2) and the kinesthetic
sensors (see Section 2.3).

At each level of the hierarchy, information is fed back to higher levels. Neurons that
take information, usually control signals, down the hierarchy, are called efferents, while
those that send signals like sensory feedback up the hierarchy are called afferents. In one
particular type of feedback, one level of the hierarchy sends a copy of its commands to
the lower levels back up to higher levels. Feedback of this kind is called efference copy or
corollary discharge. Efference copy can be used as a control input to a model maintained
at the higher level; such a model can then anticipate the outcome of the lower-level actions
and thus alleviate the problem of slow feedback loops to some extent.

There are three main types of feedback loops indicated in Figure 2.1. The shortest of
these are reflex loops, in which sensory information is transformed in the spinal cord into
a reflexive motor command. From the sensory disturbance to the appearance of the motor
response, these loops take on the order of 50 milliseconds. One of the most basic reflexes is
the stretch reflex, in which stretching a muscle evokes reflexive contraction of that muscle.
The stretch reflex is the one tested by doctors when they strike the patellar tendon with
a mallet to stretch the quadriceps muscles. Reflexes will be discussed in more detail in
Section 2.3. An intermediate feedback loop through the middle level of the hierarchy gives
rise to motor output called a long-loop response or a functional stretch reflex. The output
from this loop takes on the order of 100 milliseconds to become apparent. The long loop
feedback path is used for motor set, the pre-setting of responses to postural disturbance.
The response can be set, for example, to compensate for an anticipated disturbance, and
thus can act functionally like the stretch reflex. The outermost feedback loop is the slow loop
of voluntary responses. This loop provides feedback to the highest level of the hierarchy,
the cerebral cortex, and takes about 150 to 200 milliseconds to produce a motor output.

A more detailed discussion of the motor control hierarchy can be found in Brooks [21).



(7
Y
=
T~ 5 —— B —— T
KS
——
KI’

Figure 2.2: The Hill muscle model, which consists of a force generating element Fy, nonlinear
parallel and series elastic elements K, and K, and a nonlinear damper B, which together
produce tension T'.

2.2 Muscle Dynamics

Each muscle fiber in the body is innervated by an a-motoneuron. One motoneuron
can innervate many muscle fibers spread throughout the muscle; a motoneuron and all its
target fibers together are called a motor unit. When a pulse of activation travels down the
motoneuron axon and reaches the synapse, the neurotransmitter acetylcholine is released
into the synapse. The acetylcholine causes excitation of the muscle fiber membrane, which
in turn evokes a burst of force production called a twitch. If the neuron transmits pulses at a
high enough frequency, the twitches will overlap and begin to sum together. If the activation
pulses arrive at a still higher frequency, the twitches will fuse together to produce a constant
force. When this occurs, the muscle is said to be tetanized.

In 1938, A. V. Hill .developed a lumped-element model of muscle based on several
classic experiments in muscle dynamics [40] (see Figure 2.2). The model consists of a force
generating element in parallel with a nonlinear damper and a nonlinear elastic component
along with a second nonlinear elastic component in series with the other elements. The time
history of the tension produced by the force generator (also called the active state) is not
specified by the model; filtered square steps or pulses are frequently used in simulations,
however. The Hill model, though it has several drawbacks, limitations, and inaccuracies,
is still widely used to model muscle, since it captures most of the major characteristics
of shortening muscle behavior and is easier to simulate than are other more mechanistic
models like Huxley’s 1957 model [50].

More detail about muscle physiology and dynamics can be found in {64]. In this work,

however, all control actions will be performed at the level of joint torque or velocity.



10

2.3 Sensors and Reflexes

There are several types of proprioceptors used by biological organisms to sense the
state of their muscles and joints. One of the most important is the spindle organs. The
spindles are “intrafusal” muscle fibers scattered among the regular, extrafusal fibers in the
muscle. The ends of the intrafusal fibers are attached to the muscle, so the spindle is
in parallel with the muscle fibers. The spindle’s output is carried by Ia and II neurons.
The spindles sense the length and velocity of the muscle, and may also function as “event
detectors” because the Ia ending is most sensitive to the initial change in muscle length [3].
Spindles only respond to muscle lengthening beyond a certain spindle rest length, which is
set by y-motoneuron inputs. This “fusimotor” system allows the spindles to maintain their
sensitivity at different muscle lengths.

The stretch reflex, mentioned in Section 2.1, depends on negative feedback from the
spindle organs, sometimes called stretch receptors. The Ia fiber, carrying the spindle signal,
makes an excitatory synapse on the a-motoneuron innervating that muscle fiber. Thus, a
stretch of the muscle excites the spindles, which in turn excite the a-motoneuron, which
causes the muscle to contract. In order to avoid this reflex during voluntary movements,
a- and y-motoneurons are typically coactivated so as to keep the spindle set point at the
current muscle length.

Another important proprioceptor is the Golgi tendon organ. These sensors are located
in series with the muscle, close to the muscle-tendon junction, and sense force. Their
output is carried by Ib fibers to interneurons (required to change the sign of the signal)
which synapse on the a-motoneuron. This feedback loop, as well as the stretch reflex, is
shown in Figure 2.3. The a- and y-motoneurons and the spinal interneurons all receive
control signals from higher centers.

The final proprioceptor type to be discussed here is the joint receptor. These receptors
are located in joint ligaments and sense joint angle. Each receptor has a preferred angle to
which it responds, so the joint angle is coded by the responses of a population of receptors.

An important feature of the lowest-level reflexive connections is reciprocal inhibition,
in which the stretch of one muscle inhibits the contraction of opposing muscles. Since each
type of neuron can make only excitatory or only inhibitory connections, interneurons are
needed to effect this inhibition. As shown in Figure 2.4, spinal interneurons, the mediators

of reciprocal inhibition, also receive descending control inputs. Reciprocal inhibition acts
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Figure 2.3: Block diagram of the stretch reflex and Golgi tendon organ feedback loops,
modified from Houk’s [49] much-reproduced diagram of the motor servo. IN = interneuron
(note the change in signal sign); GTO = Golgi tendon organ.

as a negative feedback loop. When a-motoneuron activity causes the flexor to contract, for
example, the extensor is stretched. This stretch is sensed by the spindles in the extensor,
which excite the both the extensor a-motoneuron and the extensor interneuron through the
Ia fibers. The extensor interneuron has an inhibitory connection to the flexor a-motoneuron
and the flexor interneuron, which inhibits the extensor motoneuron. The effect of the
extensor stretch is thus both to excite the extensor and to inhibit the flexor.

Also shown in Figure 2.4 are Renshaw cells, a type of interneuron which act to pro-
mote co-contraction (which normally occurs mainly in slow movements or small, accurate
movements) through negative feedback to the inhibitory interneurons. When the flexor
o-motoneuron is active, a collateral excitatory connection to the flexor Renshaw cell tends
to activate it as well. The Renshaw cell has inhibitory connections to both the flexor a-
motoneuron and the flexor interneuron; the former serves to decrease flexor activation, while
the latter releases inhibition of the extensor. The combination of these two effects is in-
creased co-contraction of the flexor and extensor. The extent to which reciprocal inhibition
or co-contraction occur is modulated by the descending inputs.

Many other, more specialized reflexes exist to assist specified tasks. For example, the

placing reaction, in which a touch to the top of the foot provokes leg flexion, helps avoid
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Figure 2.4: Reciprocal connections. The dotted lines represent descending inputs. Connec-
tions ending in triangles are excitatory, while those ending in dark circles are inhibitory. IN
= interneuron; R = Renshaw cell. This figure is modified from Brooks [21].

tripping while walking.

2.4 Pattern Generators

Also at the spinal level resides another type of control mechanism, the pattern genera-
tor. Pattern generators are groups of interconnected neurons that produce a stereotypical,
often periodic, output. This output can be modified or switched on and off by descending
controls from higher levels. As discussed in Chapter 1, pattern generators are an example of
a behavioral control structure; they simplify control for higher levels in the motor hierarchy,
which need only supply tuning parameters for the low-level pattern generators. Restricting
the final control output to the family of controls producible by the pattern generator also
solves the problem of choosing between nonunique controls for performing a task. The cost,
of course, is that restriction to a control family allows less flexibility; the controls chosen
may not be optimal for a specific task. Pattern generators have been identified in many
animals for rhythmic movements like breathing, walking, swimming, and chewing. (Reviews
can be found in [35] and [36].) Some typical pattern generators are shown in Figures 2.5
and 2.6.

More recently, several investigators, including Gottlieb, Corcos, and Agarwal (1989)
[34), Hannaford and Stark (1985) [37), Wadman, et al. (1979) [103], and Hoffman and Strick
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Figure 2.5: A. Simplified representation of the pattern generator in the lobster stomato-
gastric ganglion, a well-understood system which controls the rhythmic movements of the
digestive tract, from [66]. Each circle represents a group of neurons of similar function.
The neurons in group 1 produce rhythmic output on their own, with a frequency that is
determined by descending controls, although such a pacemaker is not necessary for a group
of nemons like this to produce sustainable oscillatory output. All the connections shown
are inhibitory. B. Schematic of the phasing of the activity of these neurons in the lobster
system, adapted from [66)].
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Figure 2.6: Bursting pattern of electromyogram recordings in the hindlimb of a decerebrate
cat walking on a treadmill, adapted from [36]. A decerebrate animal is one whose nervous
system has been transected at the level of the midbrain, and whose remaining motor func-
tions are thus performed without the benefit of cerebral input. The output of the spinal
pattern generator can be observed much more clearly in this type of animal.
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Figure 2.7: Sketch of fast, goal-directed single-joint movements. The top diagram in each
column shows torques, the middle diagram shows velocities, and the bottom diagrams shows
positions. All plots are sketches based on elbow flexion data presented in [34]. A. Movements
at three different speeds. B. Movements of three different distances, 18°, 36°, and 72°.
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(1986; 1990) [43] [44], have proposed similar low-level control mechanisms for fast, goal-
directed, single-joint movements. This type of movement exhibits a stereotypical double- or
triple-burst EMG trace (agonist, antagonist, agonist) as well as a bell-shaped velocity profile
(see Section 2.5). Diagrams of examples of these movements are shown in Figure 2.7. In
general, the first agonist EMG pulse initiates the movement, the antagonist pulse provides
braking, and the second agonist pulsé serves to clamp the movement [37]. The first pulse
is feedforward in nature, while the last two may have some feedback component involving
the proprioceptive systems discussed in Section 2.3, though the origin of these later two
pulses is still being debated [82], [52]. In some fast, goal-directed movements, in fact, the
third or even both the second and third EMG pulses may be absent; the reasons for this
are still not totally clear [52], [81], [65]. One model that has been proposed to encapsulate
the observations of many researchers and explain the control of these fast, single-joint
movements is that of Gottlieb, Corcos, and Agarwal [34]. Their controller generates such
movements by producing a pattern of rectangular activation pulses, which are then filtered
through the motoneuron pool and the muscles to produce the joint torque and the associated
EMG signal. The issue of whether the pulses are feedforward or feedback in origin is ignored.
An appropriate movement would be produced by simply varying the heights and widths of
these activation pulses. Gottlieb, Corcos, and Agarwal and their colleagues ([34], [33], [48])
have described situations in which the biological controller for single-joint movements seems
to change the height of the first control pulse (varying the intended movement duration),
and others in which it seems to change the width (varying the load). Their work has also
extended to factors influencing the latency before the second, antagonist pulse (which seems
to vary with both load and movement duration), but less is known about the antagonist
pulse itself. Gottlieb [33] proposed a model for the agonist and antagonist pulse heights
Hog and Hgy, pulse width W (for both agonist and antagonist), and antagonist latency
Tunt (see Figure 2.8). The antagonist latency is expressed in terms of the movement extent
X, defined as D + k;J (where D is the target distance and J is the inertia of the limb
plus load), and effort F, defined as k;UT, (where U is the perceived movement urgency,

a measurement between zero and one which is roughly related to desired movement speed,
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Figure 2.8: Diagram of the pulse parameters used in Gottlieb’s pulse activation model [33].
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Note that the agonist and antagonist pulses share the same width. Gottlieb designed the
structure of Equations (2.1) based on experimental observations like those described above,
and indeed simulated movements using this model correlate relatively well with observed
data. One interesting feature that Gottlieb points out is the change in control strategy
over the range of X; for small X, the agonist pulse height is approximately proportional
to %’0, while for large X, the pulse height is approximately constant with respect to X.
A similar shift holds for the antagonist pulse height. Gottlieb interprets this strategy
shift as arising from the fact that there is a physiological minimum to the pulse widths
(given by Wy in the model); for movements of very short duration, then, it is necessary to
vary the pulse heights to achieve a wide range of movements. A control structure such as
Gottlieb, Corcos, and Agarwal’s pulse activation model can be seen as a pattern generator
for fast, single-joint movements, as it produces a stereotypical output that can be modified
by parameters indicating the pulse heights and widths, or, at a higher level, descending
commands indicating the desired magnitude and speed of the movement. This is the type of

pattern generator that will be incorporated into the hierarchical control design in Chapter 4.
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2.5 Motor Control and Leafning

Although a great deal of headway has been made in understanding low-level motor
control and regulation, it is still unclear how the control works at higher levels. Bernstein,
a pioneer in cybernetics and motor control (working in the 1930s-1960s), posed several basic
questions that are still relevant to motor control today (see [107]), including the issues of how
the motor control computations are organized in the brain, how these are translated into
muscle activation signals, and how so many degrees of freedom as are present in a human
are coordinated so smoothly. Though theories abound, much of the field, especially where
learning is concerned, is still in the descriptive stage. The psychology literature describes
several well-known “laws” of simple movements; many of these are summarized by Schmidt
[90]. For example, Fitts’ law describes the logarithmic relationship between the difficulty or
accuracy of a movement and the time ¢ required to perform it; for simple target-touching
tasks, the law can be written as t = k; + k2 log, (%f}), where A is the movement amplitude,
W is the width of the target, and k; and ko are constants [90], [34]. There are also known
exceptions to this rule. For example, in tasks requiring anticipation and timing, such as
hitting a baseball, the inconsistency in the movement duration ¢ increases as ¢ increases
and the movement velocity decreases; thus, in these tasks, faster movements are more
accurate [90]. Other rules include force-variability principles (as the force required for a
movement increases, so does the variability in that force) and impulse-variability principles
(which relate the movement endpoint variability to the amplitude of the movement and
the movement time). There are also features of movements that are typically observed; for
example, for fast, single-jointed movements, the velocity profile of the joint is a stereotypical
bell shape. For multi-joint movements, the point of greatest attention, such as the hand in
reaching movements, generally has a similar velocity profile [21], [52].

There are features of motor learning that have been widely documented as well. For
learning complex tasks, for example, there are the three stages discussed in Chapter 1: the
cognitive stage, during which teaching is effective; the associative, or fixation stage, during
which the learner gradually improves and becomes more consistent, and the autonomous
phase, when the task becomes automatic and no longer requires full concentration [90],
[26]. In infant motor learning, it has been observed that motor coordination is achieved at
the proximal joints first, and then progresses to the more distal joints [73]). As mentioned

in Chapter 1, there is also evidence that learning involves a shift from feedback toward



18

feedforward control at multiple hierarchical levels. The outer feedback loop shifts downward
in the control hierarchy, with the performer relying more on proprioceptive information and
less on high-level sensory information such as vision [26]. Also, subskills are combined to
form new, self-contained skills which are controlled as single units at the higher levels [90].
A decrease in the amount of feedback control over the course of learning has also been
observed at lower levels for many different skills, including pistol aiming, non-dominant
handwriting, dart throwing [73], slalom skiing [101], and walking in infants [99). When
beginning to learn these skills, the novice’s joint movements are usually highly correlated
or coupled with one another and quite stiff. As learning occurs, the joint motions become
less correlated and more relaxed (see also [26]).

Given these observations, and knowledge about the underlying physiology, there have
been several theories about motor control and learning that have been popular in the recent
literature. There have been many reviews of the trends in motor control and learning
research; a few can be found in [1], [72], [30], and [52] (Chapter 1). Though the approaches
seem somewhat opposed along several dichotomies, including central vs. peripheral, open-
loop vs. sensor-driven, programmed vs. emergent, and information processing vs. dynamics,
all the approaches are valid under some conditions, and can be partly reconciled if the
level of explanation is made clear and distinctions are made between regulation, control,
coordination, and learning issues. In particular, a cognitive, programmed approach at the
higher levels of the control hierarchy combined with a more dynamic explanation at the
periphery may be able to draw many of the conflicting viewpoints into a coherent whole
(see also [30]).

From the information processing point of view, one idea that has been appealing for a
long time is the concept of a motor program. In this paradigm, an action is stored in mem-
ory as a program, perhaps with some variables to be filled in at the time of implementation.
There have been differing opinions, however, on what variables are controlled in these pro-
grams. A popular idea is that motor programs contain the phasing or relative time intervals
and relative force between different portions of a complex movement, so the movement can
be scaled in size by scaling the force (with the basal ganglia); thus, handwriting on paper
looks much the same as handwriting on a chalkboard, though completely different sets of
muscles are used [90], [21]. The program is defined in terms of the most important object
(for example, the writing implement), and complex movements may be broken into parts,

or segments, and controlled by subprograms [21]. Similarly, new skills can be learned by
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putting together known movements [90]; the mechanism for this is largely unknown.

Schemas are a similar concept. Schmidt [89] originally defined a schema used to produce
movement as a function describing the relationship between the control parameters and the
movement outcome. The term “schema” has evolved in the literature somewhat, so that it
may also mean a more complicated set of parametrized actions invoked by certain sensory
stimuli or called by other schemas much like a subroutine (for example, see [4]).

In complex skills with clear goals, such as maximum height jumping, maximum speed
pedaling, or posture regulation, it has been suggested that the motor control system ac-
tivates its muscles in an optimal manner to achieve the goal (see [59] for a review). In
walking, an optimality criterion based on the muscle forces may be used to determine which
muscles are activated, and to what extent [77].

At lower levels, there is more data available, but there is still no agreement about
specific mechanisms for coordination and control; for example, how are the controls chosen
for a simple reaching movement, and why is the bell-shaped tangential velocity profile almost
always evident in these movements? One explanation is that the motor control system has
evolved to optimize a quantity such as total jerk in the movement, and the velocity profile
of the hand in reaching movements or the joint in single-joint movements is a consequence
of this optimization (see [5], [54]). To some extent, the joint torque profiles could even be
simply scaled by the control system to produce different movements with similarly scaled
velocity profiles at the hand [5]. Or, in order to coordinate the joints of the arm to produce a
nearly straight trajectory at the hand, the control system may simply stagger and scale fixed
velocity profiles for the different joints, though it is unclear under what conditions a bell-
shaped tangential velocity profile would result at the hand [46], [47]. Another possibility
is that planning is done in terms of force, and that the bell-shaped velocity profile is a
byproduct of an underlying multi-joint torque-based coordination mechanism. One such
mechanism would be one based on rectangular activation pulses, similar to the pattern
generator for single-joint movements described in Sectiorr 2.4 [48]. In any case, the bell-
shaped velocity profile may ultimately be due to a combination of feedforward control and
low-level proprioceptive feedback mechanisms [37), [81], as mentioned in Section 2.4.

The prescriptive approach is not necessarily the best method of explanation, especially
at progressively lower levels of the control hierarchy. At the lowest level, descending controls
interact with the regulator composed of the fusimotor and Golgi tendon systems, as well

as the muscular dynamics (see [21]), as discussed in Section 2.3 and mentioned above with
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respect to the triple-burst EMG profile. More recently, some researchers have taken a
dynamical systems, bottom-up view, and have approached the problem in terms of the
interaction of the motor control system with the environment. In this view, motor control
involves setting the parameters of the muscle dynamics so that the desired movement is an
equilibrium configuration of the organism-environment system. Learning in this scenario
involves learning how the specified task dynamics relate to the environmental dynamics,
and adjusting the motor system dynamics accordingly. For example, in a reaching task,
if an external force field is imposed, the subject learns an internal model of the field and
compensates for it [92). The model appears to be in intrinsic coordinates rather in end-point
coordinates; Shadmehr and Mussa-Ivaldi [92] postulate that the model is built up of a kind
of motor control basis functions. These basis functions are simple force fields representing
equilibria or other simple dynamic patterns; the end-point force is thus a function of the
limb position and velocity. Learning to perform reaching movements in an external force
field would entail adding compensatory basis functions to the normal reaching movement
model.

In complex skill acquisition, learning can also be viewed as an adjustment in the internal
movement dynamics to compensate for external dynamics. For example, in a task of learning
to slalom on a specially-designed platform (mentioned in Chapter 1), the most important
variable in achieving the task (maximum amplitude slaloming) is the relative phase between
the subject’s forcing of the springloaded platform and the motion of the platform itself.
Learning this task consists of identifying the phase as the important variable, then adjusting
it to maximize performance [102]. If the task does not involve new external dynamics, such
as that of bimanual rhythmic finger tapping at the same frequency and a specified phase,
the task specification itself may play the role of external dynamics, with the natural internal
coupling relationships being adjusted to reflect the desired outcome [91]. The process of
identifying the important task variables and couching the task goal in terms of the dynamics
is as yet poorly explained by this emergent dynamics approach; such questions may be better
addressed from a more cognitive point of view.

The approach to motor control taken in this dissertation is the idea of a hierarchical
behavioral or synergetic control structure. As discussed in Chapter 1, a behavioral control
structure is one which restricts controls to members of a parametrized family, thus produc-
ing stereotyped outputs but simplifying the control task for higher hierarchical levels. This

approach incorporates and generalizes many of the control and learning ideas presented in
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this section as well as the previous section. A synergetic control structure is in fact a kind
of generalization of the notion of a pattern generator (Section 2.4), which produces a stereo-
typical output which can be tuned by descending controls. The dynamical systems view
that motor control consists of setting parameters in the muscle dynamics so that the desired
movement is a system equilibrium can also be seen as an example of a behavioral structure;
only particular parameters in the dynamics can be varied, so the higher level control is sim-
ply selecting among possible equilibria, thus specifying one of a family of possible control
patterns. In particular, if the muscle dynamics can be specified with a set of motor control
basis functions, as described above, setting the muscle dynamics simply means selecting
the coefficients of the linear combination of bases. The control mechanisms for multi-joint
reaching movements discussed above can also be viewed in a synergetic framework; whether
the planning is done in terms of kinematics or force, the coordinating structure simply ad-
justs a few parameters in a fixed coordination scheme to produce a stereotypical reaching
movement with a bell-shaped tangential velocity profile. The coordination scheme may be
as simple as adjusting coupling parameters between lower-level control mechanisms, such
as single-joint pattern generators, dcting at each joint.

At a higher level, this coupling idea is similar to the dynamical systems approach to
learning complex skills, as described above for the finger tapping and slaloming examples.
In those examples, the learning mechanism simply learned the correct parameter, the cou-
pling phase, for a control structure linking together lower-level controllers, in the case of
finger tapping, or an internal control mechanism with environmental dynamics, in the case
of slaloming. Motor programs and schemas for comnplex skills can also be viewed as be-
havioral or synergetic control structures. Both involve predefined classes of motor actions
constructed for a specific task, but with some parameters allowing the task to be executed
differently depending on variations in goal or external conditions. Also, motor programs and
schemas fit easily into a hierarchical context, with higher level programs passing parameters
to lower level subroutines, which can easily be recombined to make new skills. High level
skills often involve several major subroutines, running either in parallel or in series. In walk-
ing or running, as discussed in Chapter 1, three subroutines run in parallel: the support,
balance, and swing control synergies [109], [108). For the support moment synergy, the
muscles in the legs work together during the stance phase to keep the body from collapsing.
The level of activity in different leg muscles may vary considerably from stride to stride,

depending on small variations in the stride kinematics [25). For the balance synergy, the
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muscles in the hips work to keep the torso upright. The swing control synergy is responsible
" for the swing and placement of the swing foot. These three tasks are somewhat independent,
though they must be phased correctly with respect to each other and to external feedback
such as ground contact. When combined together, these synergies produce the behavior
of walking or running. At the highest descriptive level, walking and running themselves
can be seen as behavioral control systems, with input parameters specifying such things as
speed and stride length, and stereotypical output behaviors that are well described by an
inverted pendulum for walking and a spring-mass model for running. The slaloming task
can also be seen as the combination of two parallel subroutines, the forcing subroutine and
the external platform dynamics subroutine; there, as discussed above, it is the phasing that
is the critical coupling parameter. Platform diving is an example of a complex skill that
involves subroutines running in series. For a one-and-one-half-somersault, full-twist dive,
for example, the diver must first execute a “throwing” maneuver to tilt his or her axis of
rotation, initiating the twisting movement, then enter the pike position, then exit the pike
into the layout position. In diving, the critical coupling parameter between these behav-
ioral subroutines is the timing, which is the most important variable in learning to execute
a dive. The overall dive behavior can be viewed as a behavioral control system as well,
with inputs specifying the number of twists and somersaults, for example, and stereotypical
output movements that fall into a well-defined class of behaviors.

A hierarchical behavioral control structure, as defined here, encompasses much of what
has been observed and proposed in the biological motor control and learning literature.
Synergetic control structures act to restrict the number of ways of achieving a particular
control goal, making the problem of controlling many degrees of freedom (Bernstein’s most
infamous problem) easier, and giving rise to invariant properties of the movement in the
process (see [93]). Synergies, pattern generators, and motor control basis functions all serve
as ways of simplifying the dynamics and restricting the options for the higher levels of
control, and may be put together by the higher levels to achieve many different movements
(see, for example, [29], [59], [23]). The way in which different synergetic control structures
should be combined for a new skill can be learned during the cognitive stage; the synergetic

parameters can then be fine tuned during the later two stages of learning.
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Chapter 3

The Diving Problem

The skill of platform diving is an interesting one with which to test biologically-inspired
control strategies. The dynamics of the diver system are inherently complicated due to a
nonholonomic constraint with nonlinear drift, because it requires the coordination of a po-
tentially large number of degrees of freedom, because the goal of the system is to achieve
a desired pattern of behavior rather than a specified trajectory or goal configuration, and
because the controls have a limited time (determined by gravity and the height of the
board) in which to act. The control goal for the diver problem is: given a fixed set of
initial conditions, execute a certain diving maneuver, such as a jackknife, a forward one-
and-one-half-somersault pike, or a forward one-and-one-half-somersault, full-twist dive, and
then enter the water in a fully-extended, vertical position. In general, the diving maneuvers
are specified by the manner of takeoff from the platform, the number of somersaults and
twists of rotation, and sometimes internal configuration information. With the problem
specification used here, the platform takeoff is predetermined by the initial conditions. In
general, however, the platform takeoff can be facing away from the platform with forward
somersaulting rotation (forward), facing toward the platform with backward somersaulting
rotation (backward), facing away from the platform with backward somersaulting rota-
tion (reverse), or facing toward the platform with forward somersaulting rotation (inward).
More complicated variants involving leaving the platform from a handstand position are
also possible. The diver’s initial angular velocity is entirely about the somersault axis for
somersaulting dives; it can have a small component about the twist axis for twisting dives,
but most of the twisting velocity is achieved by executing a “throwing” maneuver with the

arms. The internal configuration information can specify that the diver must hold the pike
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Figure 3.1: 2-D diver model, showing the shape space variables and overall orientation
variables. The central mass models the body, the upper one the arms and the lower one
the legs of the diver.

(bending at the hips and waist, with arms either out (“open pike”) or holding onto the legs
(“closed pike”)) or tuck (“cannonball”) position during the dive rotations. Thus, a forward
one-and-one-half-somersault pike dive consists of leaving the platform facing forward, exe-
cuting one and one-half somersaults (37) of rotation in the forward direction while in the
pike position, and entering the water in a fully-extended (layout), vertical position. In the
control problem formulated here, the control task begins at the moment the diver leaves the
platform; the takeoff is incorporated into the fixed initial conditions. Not allowing the diver
to alter the initial conditions, the results of the takeoff from the platform, is an unrealistic
simplification, as the takeoff is actually one of the most important things real divers have

to learn.

3.1 Planar Diver Analysis

For an initial analysis, I have used a planar model of the diver. This two-dimensional
model consists of three linked rigid bodies, for a total of five degrees of freedom (Figure 3.1).
The planar model is sufficient for two-dimensional piking dives, such as the jackknife or the

forward one-and-one-half-somersault pike.
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The x and z directions do not affect the control of the system except to determine when
the diver hits the water, so we can ignore them in the analysis. 6, and 63 are the shape
space variables of the diver system; they describe the internal structure of the rotating body.
0, is a position variable of the system describing the overall orientation of the diver. The
system has symmetry group S'. that is, the Lagrangian is invariant under changes in 6.
By Noether’s theorem, then, we have a conserved quantity, namely the angular momentum
of the diver:

on _,_dor o

and aaci = u, a constant. Using the Lagrangian

L = (% + Bcosfy + ysinfy + d cosf3 + €sinf;
+ cos(B3 — 02) + nsin(f3 — 6;))63
(a2 + Bcos s +ysin By + C cos(83 — b2) + nsin(85 — 62))616; (3.2)
+(ar3 + 6 cos B3 + esinfs + ( cos(fz — 02) + 7 sin(f3 — 02))9193
+(¢ cos(f3 — 82) + nsin(f3 — 02))9293 + 22303 + 9239;%,

we find that p is of the form:

p = [on +2Bcosy+ 2ysin + 2 cos b3 + 2¢sin b3
+2¢ cos(f3 — 62) + 2nsin(f; — 62)}6 (3.3)
+[az + Bcos B2 + ysinby + ¢ cos(f3 — O2) + nsin(f3 — 92)]92
s + 8 cos 83 + esin B + { cos(63 — 82) + nsin(f3 — 65)]03
6,
= [ 01(02,03) ba(02,65) bs(62,05) | | 62 | =t (02,638 (34)
03
where aq, az, a3, B, 7, 6, €, {, and 7 are constants; their values in the model used are given
in Table 3.1. Conservation of p, the angular momentum, is the single constraint for this
system. This constraint is not integrable; that is, Equation (3.4) is not equivalent to any
set of algebraic constraints on (6,62, 063). Nonintegrable constraints of this type are said to
be nonholonomic.

In order to express the diver kinematics as a control problem, we can dualize the con-

straint (3.4) by considering the two-dimensional space of vectors which annihilate b(62, 03).



26

Parameter Value
my 51.779
my 27.694
Mg 9.124
M=m;+m+mg 88.597
I 3.290
I 1.992
I, 0.323
Jiz 0.004
Jiz -0.375
Jaz 0.047
Jaz 0.190
Iz 0.043
l, -0.299
az -0.012
a, -0.244
=L+L+1,+ M“ﬂ*—(l? + 12+ jf, +37.)

+M(am + a + Jaz + Jaz) 2m ma Uiz Jaz + J1zdaz) 11.234
=1+ M(F 12) 3.732
=1+ M—’ﬂ—(a, +a2) 0.812

ﬁ _QATL("Jazl — Jaz x) + ZT,[L(—JIII = Jizlz) + muGiclz + Jizl) 2.299
Y= ﬂ(]azl — Jazlz) + —L(fl:tl = Jizlz) — mu(Giclz — Jizle) -0.343
6= m‘i—,;""‘(_ﬂzaz — Jjiz0z) + 2_4(—.70.:1:0':1: = Jaz@z) + Mq(Jaz@z + Jaz@:) -0.645
€= Lnjﬂw_mL(jlzaz - J1z0z) + %&(jazaz — Jaz0z) — Ma(Jaz0z — Jaz0z) 0.058
(= m5,%"-‘-(—0!_.5!m - azl ) -0.207
n = T (a,ly — agl;) -0.040

Table 3.1: Values of the parameters for the planar diver model, to three decimal places. m;,
my, and m, are the masses of the torso segment, legs, and arms, respectively, in kilograms;
I, I, and I, are the corresponding inertias, in kilogram meters squared. (jix,Ji:) and
(jaz jaz) are the coordinates of the leg and arm joints, respectively, in the zero position
(origin at the center of mass of the torso segment), in meters. (Iz,l.) and (ar,a.) are the
coordinates of the leg and arm centers of mass with respect to their respective joints, again
in the zero orientation, in meters. These values were calculated from the three-dimensional
human model parameters given in Table 3.2.
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This space represents the directions in which the system could move instantaneously if
were zero. Since the diver’s joint angles 6; and 63 can be controlled directly, a convenient

choice of basis vectors for the null space of the constraint is

_b _b
B 7
g1(62,63) = | 1 |, g2(02,63)=:| O (3.5)
0 1

Note that b; is always positive (see Table 3.1 and Equations 3.3-3.4). The system with

arbitrary p can now be written with two joint controls v, and us:

6] k] (8] (s
b | = w+| 0 |w+|o
63 0 1 0

=: g1(62,03)u1 + g2(02,63)u2 + f(62,63) (3.6)

The final term, f(62,63) is called the drift of the system; even when u; = ua = 0, the system
(in particular, 8;) continues to evolve. Note that the drift is a nonlinear function of 6, and

05. Since the Lie bracket [g;, g2] is given by

b ab b ab.
B (st - 0a 32 — bt + b 32)
[91,92) = 0 , (3.7)
0

it is clear that {g1,92,[91,92]} spans the space (except at those isolated values of (6., 63)
where the first entry in (g, g2] is zero). The system is therefore locally controllable [76)
even without making use of terms of the form [f, g1], [f, g2), etc., since the Lie bracket (3.7)
is the same as the drift direction.

Returning to the dual constraint viewpoint, one can look at the diving problem as a

Pfaffian exterior differential system defined by the ideal generated by the codistribution I:

I = {a}, (3.8)
b1d6) + badfy + b3ds — pdt (3.9)

[0

If we can convert this system into a standard chained form, sinusoidal or other steering
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methods that have been used for other systems can be applied (see Section 3.2). We have:

da = dby Adby + dbs A dbs + dbs A dbs (3.10)
db; _ 3by dbs _ Oy
(301 602)(191 /\d02+(691 50, do, A do;
by by
+ (59—2 - 50—3) dfy A do3

h3(2,63) doy A dOy + ha(62,63) dby A dO3 + hy(02,03) dba A dbs

—2(ycos@y — Bsinby — ncos(f3 — 62) + { sin(f3 — 62)) db, A db
—2(ecosf3 — §sinf3 + ncos(f3 — O2) — ¢ sin(f3 — 62)) d6; A db3
+2 (—ncos(f3 — 02) + ¢ sin(f3 — 62)) db2 A df3

daha = (h3b3 — hobg + h1by) dO; A dBs A dB3

(3.11)
—hap dfy AdBy Adt — hop dy A dfs Adt — hyp dBy A dfs A dt

[2b1 (—n cos(f3 — 62) + ( sin(f3 — 62))
+2bs (e cos 3 — d sin B3 + ncos(f3 — 62) — ¢ sin(f3 — 62))
—2b3(y cosBa — Bsinby — 7 cos(f3 — 62)
+(sin(83 — 62))]d6, A db, A db3
+2p(y cos O — Bsinby — 7pcos(f3 — 62)
+( sin(f3 — 62))d0y A db; A dt
+2p(e cos B3 — d sinf3 + 7 cos(f3 — 62)
—(sin(f3 — 65))d61 A dfs A dt

—2u (—ncos(f3 — 02) + (sin(f3 — 62)) df2 A dfs A dt
(da)’Aa = 0

(3.12)
So, o has Pfaffian rank 1 (except at isolated points where da A o = 0). In other words, the
derived flag for this system looks like

10 = {a} (3.13)
M = {0}

as expected.
By Pfaff’s theorem (see [76]), we can find local coordinates (21, 22, 23) so that

{a} = {dz3 — z0dz }. (3.14)
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To do this, we would need to find two functions ¢; and go which satisfy

daNhaAdgy = 0
alAdg, # 0 (3.15)
alAdgiAdgs = 0
daiAdg # 0
Then a can be written as:
{a} = {dgo — sdq} (3.16)
Using this coordinate system, the control system becomes:
% = up (3.17)
% = s% = su;

The solutions to Equations (3.15) are not unique. It is notable that for the diver system
g1 =t is not a solution, so the system is not feedback linearizable (see [76]). Simple time-
scalings such as ¢, = t+ h(6;) or g; = t+ h(6,) also fail, as do q; = 6;, ¢1 = 62, and ¢q; = 6.

The implications of this failure will be discussed in the next section.

3.2 Control Approaches for the Diver Problem

Although much work has been done recently on the control and steering of nonholo-
nomic systems, most of it has been for drift-free systems (those for which u = 0 is an
equilibrium point; for a survey, see [58]). Some specific cases with drift have been ad-
dressed, for example, left-invariant systems on SO(3) and GL(n) ([17], [6], [104], [85]), but
very little work exists concerning general systems with drift. In the real world, systems
with drift are common. For example, bodies in free-fall with some initial angular momen-
tum have drift. The diver is an instance of this kind of system. After the diver has left the
board, his angular momentum is conserved, but is generally not zero, leading to the drift
term derived above. While in the air, the diver can change the drift velocity by changing
his moment of inertia. He can also convert some of his somersaulting motion into twist-

ing about the body’s long axis by performing a “throwing” maneuver with his arms which
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shifts the body’s angular velocity vector so that it is no longer aligned with the angular
momentum. (See Frolich [27] for an analysis of the physics of various diving and trampoline
maneuvers, and [68] for an analysis of the falling cat, a similar, though drift-free, problem

in reorientation.)

3.2.1 Canonical Forms

Conventional techniques for controlling nonholonomic systems proved unsatisfactory
for the planar diver model. For example, the diver model is an asymmetric version of
the planar skater discussed in [105], which (when drift-free) can reorient itself arbitrarily
by moving its two arms sinusoidally and out of phase with each other, using the chained
form and the Pfaffian exterior differential system approach. Using the control system in

Equations (3.17) and assuming initial coordinate values of zero, the controls

u; = Asinwt (3.18)
uy = Bcoswt
yield the behavior:
@ = —Acoswt
s = Bsinwt (3.19)
¢ ¢ )
g2 = / sujdt = AB/ sin2 wt = é_ﬂi (t— Sln2wt)
0 0 2 2%

Thus, at the end of each control period T, the directly controlled coordinates q; and s are
back at zero and the steered variable g has increased by ﬂg—T-. This method of steering
with sinusoids has been used for other nonholonomic systems such as cars with trailers
and firetrucks as well ([71), [22], [100]), but these systems were all drift-free. The nonlinear
drift in the diver system complicates the exterior differential systems approach considerably.
As discussed in Section 3.1, for the diver problem it is not easy to find any solutions to
Equations (3.15), although one is guaranteed to exist by Pfaff’s theorem. None of the simple
transformations that are commonly used are solutions to Equations (3.15), and variants on
these choices also failed to produce solutions. Any controls generated by this method of
course also cannot be guaranteed to produce a natural-looking (or even humanly possible)

movement.
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Another canonical representation for nonholonomic systems is the standard triangular
form discussed by Kawski [56], [57] for nilpotent systems (systems with finite-dimensional
Lie algebras in which all Lie brackets of order higher than a certain integer are zero). The
representation can be extended to systems which can be made nilpotent through appropriate
feedback; this class of nilpotentizable systems contains the class of systems that can be put in
chained form. Nilpotent or nilpotentizable systems can be made finitely discretizable using
a coordinate transformation, and are thus controllable using piecewise constant controls
[28]. A general approach to controlling nonholonomic systems with drift that arise from
Lagrangian systems with cyclic coordinates is explored in [31]. The approach discussed there
also uses piecewise constant controls and takes advantage of the subtriangular structure of

the system.

3.2.2 Optimal Control

An attempt was also made to steer the diver using the optimal control techniques de-
veloped by Sastry and Montgomery in [87], which minimize 3 fOT |u(t)|2dt, but the resulting
equations were extremely complex and would have required numerical solution. The method
is as follows. In [87], Sastry and Montgomery derive coupled differential equations for the

optimal controls of a system of the form

m
&= f(z)+ ) gil)u (3-20)
=1
using the Hamiltonian
m 1 m
H(z,u,p) =p" (Z gi(x)ui) +5 2 luil? (3.21)
i=1 i=1

where z is the vector of generalized coordinates and p is the vector of associated momenta.

For the m = 2 case, their result looks like:

%) : 0 ?7(91,92] A T(f,91]
il p7 (92,91 0 up -p"[f,g2)
u = —p’gi(z) (3.22)
. afT 591T T a£I2T T
P = —g- Ptoo p(p 91($))+% p(p” g2(x))

& = f(z) - g1(z)(p" 91(z)) — g2(z)(p” g2(7))
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For the diving system, from Equations 3.22 we get immediately that p; =0, so p; =k

(since f, g1, and g are not functions of 6;). The Lie brackets with f are:

- by T
b$ 962
[fi;] = 0 (3.23)
L 0 .
_ blg—% -
[fig2] = 0
L 0]

(91, 92] also lies in the 6, direction, as shown in Equation (3.7), so the equation for the

controls becomes:

. k ab ab: ab ab ku 8b
w] [ EeR-nd-niiad)w | | ¥ 20
. - _k b?_b]__bab _bab +bab an_b_l_ .
“ 57 \baa; — biag; — b + O15e ) 57 903
— E %;-(b:!ua - u) - ('g_tg%'b2 + %Z’bl - g%?;bl)ui’
- 2
b | & (bous — ) — ($Bhbs + §52b1 — Ghibi)un
with
6 = F(8)+g1(8)u1 + g2(8)ua
L 0
p = Py 851 (1 — byuy — byu) + GR2brus + bius (3.25)
u; = -p’gi(f)

Analytic approaches such as sinusoidal steering with the chained form or optimal con-
trol have the drawback that, because of their complexity, the controls generated may not
provide any insight into the structure of the system. A further drawback is that these meth-
ods require a full model of the controlled system to be known, a requirement that becomes
more onerous as the system becomes more complex, as is the full, three-dimensional diver
model. Finally, these methods do not address simultaneously the issues of required config-
urations during the dive (such as the pike position) and of a required amount of time for
the dive execution. In systems with nonlinear drift, such as the diver, the controls cannot
simply be scaled to execute the movement in varying amounts of time. For the optimal
control approach, the amount of time is specified, but to include required intermediate

configurations, the time at which they are to be achieved must be known.
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3.2.3 Behavioral Approaches

Another approach to controlling a human performing a dive or other motor task is the
state machine method used in three-dimensional dynamic animation by Hodgins [41] for
running and by Wooten and Hodgins [110] for diving. Their system is based on the scheme
used by Raibert for running and hopping robots mentioned in Chapter 1 [80], [79]. The
dive or motor task is divided into segments (similar to the behaviors used here) which form
the machine states; within a state, the joints are moved to a goal point with PD controllers.
Though they have achieved good results, especially when viewed as an animation task
rather than a control task, there are several drawbacks with their control method. Because
all the movements are produced with PD controllers, the motion is entirely feedback in
origin, which is unrealistic from a biological point of view, and may be partly to blame
for the slightly unnatural appearance of their running animations. Also, there are many
parameters in the controllers that need to be tweaked by hand, though recently they have
begun to apply simulated annealing methods to selecting the best parameter values for new
animated characters given the tuned values for a different character [42].

Another approach using an idea of a behavioral architecture is that of Brooks [20],
[18], who designed a robotic controller based on a subsumption architecture, in which each
lower level of behavior is subsumed into the next higher one. For example, a low-level
“stand up” behavior becomes part of the higher-level “simple walk” behavior [18]; signals
from the walk controller‘can replace internal signals in the standup machine to modify
its behavior to suit the higher-level goal. The controllers do not involve any dynamics;
rather, they are based on augmented finite state machines whose transitions can depend
on an input event or on a combinatorial predicate of the inputs. These controllers have
been successfully applied to a series of robots, most notably insectoid walking robots. The
subsumption controller is, in general, completely designed by hand; there is no learning
involved. There have been a few experiments in learning done by Brooks’ group (see [19]),
in particular one in which an insectoid robot learned which behaviors to activate under
which sensory conditions to achieve forward walking [61], but, in general, the approach has
been to “evolve” the architecture by hand for the specific task.

Brockett’s motion control language [14], [15], in which a controller specifies a feedfor-
ward control u (which can be an index to a family of controls), a feedback matrix K, and a

time T for which the control pair should be active, can also be seen as a behavioral control
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structure. Symbolic, hybrid approaches based on this description have been used by many

" roboticists (see Brockett’s own paper [16] or [62), for example).

3.3 A Simple Learning Algorithm

A learning algorithm based on a behavioral control structure as described in Chapter 1
proved more promising than the analytical approaches for the planar diver ([24]). Even a
very simple learning algorithm can, if given a suitably structured space to search, find a
control law that will satisfy the control goal of driving the diver through a one-and-one-half-
somersault pike. This task can be viewed as the coordination and timing of two multi-joint
movements: entering the pike position and the exiting the pike into the layout position.
Each of these multi-joint movements can, in turn, be viewed as a coupling of single-joint
movements. Thus, the structure of the control family for the kinematic diving task was
chosen based on the velocity profiles typically observed in fast, single-joint movements. In
this type of movements, the limb involved typically has a single-peak velocity profile, as
discussed in Section 2.5; a Gaussian is a good approximation to this curve {47]. The control
structure used in the simple learning algorithm is thus based on parametrized Gaussian

velocity profiles:

s - (3.26)
u = —_—|e 20 —_e 20 .
' 2102
A NCas 2 _(t—r§)2]
U = - [ 20 - e 20 .
2 V2ro? [
The parameters that can be varied are given by
R
o2
p= (3.27)
71
b 7-2 - Tl -

where A is in radians per second and o, 71, and 72 are in seconds. Each entry in p was
restricted to a certain range; Pmax and Pmin are vectors of the maximum and minimum
allowed values, respectively.

To choose the best value for the parameter vector p, an algorithm based on gradient

descent was used. The error on a dive was defined as

E(p) = (61 — 37)% + 63 + (63 — )2 + k(r2 + 0)? (3.28)
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The last term, in which k is a constant, provides a penalty for pulling out of the pike
" too late, since finishing the piked rotations early is considered good diving style. There
are thus four constraints to minimize, and four parameters to learn. The gradient descent
was preceded by N iterations with random parameters, from which the best parameter set
was chosen to initialize the descent. Each of the four parameters was uniformly distributed
within its allowed range. This technique served to start the descent algorithm in a favorable
region of the control space, thus shortening the training time and ameliorating the problem

of local minima to some extent. The algorithm began with:

p1 = random (3.29)
Ey = E(p1) (3.30)
Then, for each i < N:
Pi+1 = random (3.31)
Pi+1 = best(p;, Bit1) (3.32)
Eiy1 = E(pi+1) (3.33)

where best(pj, Pi+1) was determined by which vector had the lower error measurement. For

i > N, the algorithm performed gradient descent with an estimated gradient S:

Sy = 0 (3.34)
(E; — E;_1)(pi — Pi-1)
+ s — PialP (3.59)
_ mSi + Di+1
Siy1 = o (3.36)
EST w
Pit1 = Pi— —=F1— 4+ noise (3.37)
HSivall
Pi+1 = best(pi,Pit1) (3.38)
Eiy1 = E(pi+1) (3.39)

S is a weighted average of past gradient measurements D, with more recent measurements
weighted more heavily so the algorithm can adapt to different regions of the control space.
m is thus a parameter describing how long the memory of the estimate is. Each entry in S
was restricted to [—3000, 3000]. W is a vector of scaling factors; W = (Pmax —Pmin)/40000.

Some uniformly distributed noise was added to the next parameter choice to avoid getting
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stuck at local minima or at a parameter maximum or minimum. The noise amplitude was
proportional to E; and W. If E; and p; stayed the same for too long, the constant of
proportionality was increased for one step, and in (3.38) pj,+1 was always set equal to Pi+1
in order to move to a different region of the control space. When the error measurement
dropped below a cutoff value, the algorithm halted. In the simulations shown in Figures 3.2
and 3.3, N =20, m = 5, k = .0076,

0 ] [ 2.1 ]
0.004 0.4
Pmin = y Pmax = s
0 0.4
0 | 15 |

and the error cutoff was .00947. Since the gradient descent starts from the best of several
random iterations, the number of steps the algorithm takes to terminate varies widely.

A simulation of the dive produced with the learned parameters is shown in Figures 3.2
and 3.3. The simple learning algorithm presented here generates movements that are qual-
itatively similar to those of human divers performing piked somersaults. The controls
were kinematic, for better comparison to the above, more traditional control methods; the
torques required to produce the controls (see Figure 3.2C) are the same order of magnitude
as torques humans can produce. The success of this kinematic behavioral control structure
suggested extending the idea to a more general, dynamic controller which would be able to
learn to control the fully three-dimensional diver with many degrees of freedom; this is the

learning controller presented in Chapter 4.

3.4 Three-Dimensional Diver Model

The three-dimensional diver model used in subsequent chapters has a large number
of potential degrees of freedom, but for simplicity the simulations only make use of ten
degrees of freedom in the joints: flexion at each hip and elbow and three degrees of freedom
at each shoulder (modeled with ZYZ Euler angles). The body orientation is modeled with
quaternions, which are converted into YXZ Euler angles to observe the tumbling rotations.
A graphical representation of the model in the zero configuration is shown in Figure 3.4, and
the physical parameters of the model are shown in Table 3.2. The model and simulations are

implemented with the Symbolic Dynamics, Inc.’s SD/FAST software [45] (which uses Kane’s
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Figure 3.2: Simulation with control parameters chosen by the learning algorithm. A =
2.084866, o2 = 0.004000, 7 = 0.152110, and 72 — 7, = 0.863879. A. 67 (solid) and 63
(dashed). B. 6, (solid) and 63 (dashed). C. Leg (solid) and arm (dashed) torques required
to produce the movement. D. ; with these controls (solid) and with the controls set to
zero (dashed).
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Figure 3.3: Frames from the simulation shown in Figure 3.2. The graphical human model
is from Viewpoint DataLabs.
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Figure 3.4: Three-dimensional diver model in the zero configuration. The graphical model
is from Viewpoint DataLabs.

algorithm for implementing the dynamics). The integration tolerance for the variable-step
integrator is set to 107°.

In biological systems, joint receptors can signal the nervous system when the joint is
nearing the limits of its range. In the diver simulation, these joint limits are modeled by
stiff springs and darnpers: The joint ranges used are shown in Table 3.3. These limits keep
the shoulders within the range where the Euler angles are continuous. Note that the limits
for joints 4 and 5 (the Y Euler angle) are a bit inside the full 7 range; this restriction is
necessary to avoid the singularity in the Euler angles (because the boundary is modeled with
springs and dampers, and is therefore somewhat soft). The spring and damper constants
used for the joint limit are both 750; the torques produced by the joint limit servos are scaled
according to the inertia of the limb in its current configuration by being passed through the

inertial compensator described in Section 4.1.
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Link Name  Mass (kg) T (kg:m?) Center (m) Joint (m) DOF
0.7286 0.0000 0.0000

torso 29.2720 0.6319 0.0000 0.0000 6
0.3172 0.0000 0.0000
0.0301 0.0216 0.0124

head 5.8988 0.0334 0.0000 0.0000 0
0.0228 0.3853 0.3213
0.2272 -0.0095 0.0124

pelvis 16.6085 0.1809 0.0000 0.0000 0
0.1575 -0.3248 -0.2217
0.1545 -0.0289 -0.0048

thigh, right 8.3460 0.1591 -0.1056 -0.0990 1
0.0256 -0.5559 -0.4357
0.1545 -0.0289 -0.0048

thigh, left 8.3460 0.1591 0.1056 0.0990 1
0.0256 -0.5559 -0.4357
0.0553 -0.0860 -0.0805

calf, right 4.1617 0.0565 -0.1051 -0.0862 0
0.0073 -0.9341 -0.7689
0.0553 -0.0860 -0.0805

calf, left 4.1617 0.0565 0.1051 0.0862 0
0.0073 -0.9341 -0.7689
0.0016 -0.0591 -0.0875

heel, right 1.1703 0.0045 -0.1027 -0.0955 0
0.0040 -1.2287 -1.1848
0.0016 -0.0591 -0.0875

heel, left 1.1703 0.0045 0.1027 0.0955 0
0.0040 -1.2287 -1.1848
0.0001 0.0693 0.0409

toes, right 0.1689 0.0001 -0.1172 -0.0955 0
0.0002 -1.2584 -1.2646
0.0001 0.0693 0.0409

toes, left 0.1689 0.0001 0.1172 0.0955 0
0.0002 -1.2584 -1.2646
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Link Name Mass (kg) T (kg-m?) Center (m) Joint (m) DOF

0.0255 -0.0474 -0.0476

upper arm, right 2.7943 0.0252 -0.2205 -0.1640 3
0.0050 0.0098 0.1293
0.0255 -0.0474 -0.0476

upper arm, left 2.7943 0.0252 0.2205 0.1640 3
0.0050 0.0098 0.1293
0.0050 -0.0277 -0.0529

lower arm, right 1.2164 0.0054 -0.2504 -0.2571 1
0.0012 -0.2503 -0.1605
0.0050 -0.0277 -0.0529

lower arm, left 1.2164 0.0054 0.2504 0.2571 1
0.0012 -0.2503 -0.1605
0.0016 0.0102 -0.0156

hand, right 0.5511 0.0020 -0.2641 -0.2644 0
0.0005 -0.4485 -0.3636
0.0016 0.0102 -0.0156

hand, left 0.5511 0.0020 0.2641 0.2644 0
0.0005 -0.4485 -0.3636

Table 3.2: Physical parameters for the full diver model, to four decimal places, showing the
link name, mass in kilograms, inertia matrix (principal axes of all links are aligned with the
global axes in the zero configuration) in kilogram meters squared, coordinates of the center
of mass in meters, coordinates of the connecting joint in meters, and number of degrees of
freedom in the diver simulation. This model was generously shared with us by Professor
Hodgins at the Georgia Institute of Technology; her group determined these parameters
from anatomical density data and the Viewpoint DataLabs graphical model as described in
[110].

Joint Name DOF # Min Value Max Value
Right hip 0 -3.1416 0.0000
Left hip 1 -3.1416 0.0000
Right shoulder 2 -3.1416 0.0000
4 -3.0916 -0.0500
6 -3.1416 3.1416
Left shoulder 3 0.0000 3.1416
5 -3.0916 -0.0500
7 -3.1416 3.1416
Right elbow 8 -3.1416 0.0000
Left elbow 9 -3.1416 0.0000

Table 3.3: Joint limits for the 10 degrees of freedom in the diver model, in radians.
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Chapter 4

Learning Controller

There have been many learning controller designs proposed in the literature. These
range from engineering adaptive control approaches {86] and iterative learning approaches
for repetitive systems [69], [75) to detailed biological approaches such as the Adjustable
Pattern Generators modeled on the cerebellum [9]. Many fall somewhere in between these,
often with neural networks as part of the dynamic control structure, such as Nguyen and
Widrow’s truck backer-upper [74] or Kawato’s feedback error learning scheme, in which
the control changes from feedback to feedforward as the system learns [55] (see [2] for a
review). Recursive learning based on continuous, parametrized controls has been used with
radial basis functions to train a space robot with a nonholonomic arm [32], as well as with
a Jacobian estimate to optimize the design of a mechatronic system [78]). Approaches based
on learning through demonstration (“learning by watching”) have been used with various
control structures for diverse problems; recent examples include pole-balancing [88] and
helicopter control {67].

The controller design presented here, shown in Figure 4.1, was inspired by the hi-
erarchical, behavioral control structure used by biological systems to control their move-
ment, as discussed in Chapter 2. The dives executable by the system are represented as
a parametrized class; the parameters specifying a particular desired dive then form the
input to the controller. The high-level coordinating controller coordinates between several
multi-joint behavioral synergies, learning the timing between them (see Section 4.2). The
multi-joint synergies themselves provide the tuning inputs for the low-level single-degree-
of-freedom (single-DOF) controllers, each of which plays the role of a pattern generator for

fast, single-joint movements (see Section 4.1). The coordinating controller and the single-
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DOF controllers all operate in the discrete time domain. The plant, a mechanical system,
operates in continuous time; the pattern generator structure in the single-DOF controllers
allows this simplification of the control representation and provides the link between the

two regimes.

4.1 Single-DOF Controllers

4.1.1 Design

A closeup of a low-level controller is shown in Figure 4.2. This controller is inspired
by Gottlieb, Corcos, and Agarwal’s [34] model for a control method for fast, goal-directed,
single-joint movements, which can be seen as a pattern generator for these kinds of move-
ments, as discussed in Section 2.4. Because of the many degrees of freedom and because
the desired dive is only specified by general, behavioral metrics, there may be many pos-
sible control torque profiles that would achieve the goal. A pattern generator is one way
of restricting these control choices to torque profiles within a certain parametrized family,
making the control problem easier. As shown in Figure 4.2, the single-DOF controller is
made up of a control network, a decoder, an inertial compensator, and a filter.

The control network takes as input a vector [yqd, 90] = [Aby, Ay, Ty, éo] € R?* describing
the desired change in the DOF angle (a particular Euler angle, if the DOF is part of a multi-
DOF joint), the desired ¢hange in joint velocity, the desired movement duration, and the
current DOF velocity (sensory information available from the spindle organs in biological
systems). The output of the network is a vector in R® giving a parametrization of the control
torque profile. The torque profile family used is a filtered version of a two-rectangular-pulse
function, as shown in Figure 4.2. The control network thus provides the translation from
kinematics to dynamics, all in a discrete time regime, abstracting the dynamics out of
the control and learning problem; the controller network need not provide continuous-time
torque information directly. By restricting the torque to a parametrized family of functions,
the single-DOF controller defines a behavioral model for the allowed class of single-DOF

motions.
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Control Network and Decoder

Although the model for a control mechanism for biological fast, goal-directed, single-
joint movements proposed by Gottlieb, Corcos, and Agarwal and their colleagues ([34], [33],
[48]; see Section 2.4) describes the biological data fairly well, from the point of view of
the single-DOF controller, it has a few drawbacks. First, it does not allow for a change
in velocity from the beginning to the end of the movement; the limb velocity starts and
ends at zero. Second, the model contains four control parameters: the pulse width W,
the pulse heights H,g and Hant, and the antagonist latency Tyn:, plus the inertia J which
parametrizes the movement. These control parameters are functions of only three task
variables, the extent X, the effort F, and the target distance D; thus, as control parameters
produced by this model do not span the space of all possible controls, a randomly generated
control vector cannot necessarily be produced by the model. Since the physical system used
for the diver simulation is not identical to the human one to which Gottlieb fit his model [33],
using his model and parameters directly will not necessarily result in reasonable movements
that span the desired range of behavior. In order to fit the controls to the dynamics
appropriately, though, some sort of data is required. Since simulating a random control
vector will not guarantee a control/outcome pair that is a valid sample for the Gottlieb
model, parameter fitting cannot be done with the diver system using this model.

The model adopted for the single-DOF controller is similar to the Gottlieb model but
has some major differences. First, as mentioned above, there are three controls for three task
variables, y = [6, é, T). There is no latency in the onset of the antagonist activation pulse;
it begins as soon as the agonist pulse ends. The controller uses two modes of operation,
pulse-width modulation (PWM) and pulse-height modulation (PHM). PWM mode restricts
the heights of the agonist and antagonist pulses to be the same, while PHM mode restricts
the widths of the two pulses to be the same. The single-DOF controller chooses between
the two modes based on the desired duration of the movement; if the movement time
is above a cutoff, then PWM is used, and if it is below, PHM is used. Thus, for shorter
movements when less time is available for pulse width variation to be effective, the controller
has access to varying pulse height to achieve a wide range of movements, while for longer
movements, pulse width variation makes using large, variable pulse heights unnecessary.
This division is similar to Gottlieb’s observation, discussed in Section 2.4, that different

control strategies are used for small and large X; for X < Xp, the pulse heights are roughly
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proportional to X, and for X > Xp, the pulse heights are roughly constant with respect
. to X (see Equations (2.1)). As mentioned in Section 2.4, Gottlieb attributes this effect to
the existence of a physiological minimum achievable pulse width; for movements over short
distances it is necessary to vary the pulse heights to make a range of movements possible. In
Gottlieb’s model, of course, the two pulses are always constrained to have the same width.
Samples of movements produced by the trained controller, demonstrating the two-pulse
controls as well as the bell-shaped velocity profiles, are shown in Figures C.7-C.5.

In PWM mode, the control vector output of the network gives the pulse width of each
of the two pulses, and the common pulse height of both; u = [pw1, pw2, ph] € R3. In PHM
mode, it gives the two pulse heights and the common pulse width; u = [phj, pho, pw) € R3.
The decoder translates this control vector into a two-pulse acceleration trajectory, a contin-
uous time signal. Although in nature these stereotypical torque profiles may be produced by
a combination of descending control and reciprocal inhibition, as discussed in Section 2.4,
here all these interactions are encapsulated in one feedforward control plus feedback around
the desired trajectory to compensate for external torques and joint interactions not taken
into account by the single-DOF controller (see below). In both PWM and PHM modes,
the control representation u which will produce a particular y4 is unique given a particular
fo. This uniqueness can be verified algebraically for unfiltered pulses, or by examining data

sets produced using filtered pulses.

Filter and Inertial Compensator

The filter is analogous to the smoothing effect of the motoneuron pool and the muscles,
as discussed in [34]. The linear filter used in the single-DOF controller is given by the
transfer function

aff
(s +a)(s+p)

a = 65.0, B = 60.0 were chosen to provide the desired control flexibility and to give a

H(s) = (4.1)

shape and rise time roughly similar to torque data from human arm movements. These
filtered pulses form a feed-forward acceleration signal, which will be scaled to become the
feed-forward torque.

The inertial compensator computes the moment of inertia for each DOF based on the
current positions of the joints and scales all the torque profiles accordingly. The calculations

are simplified considerably by an approximation restricting the equations to joints on the
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same limb; the body to which the limb attaches is considered to be a fixed base, and the
other three limbs are ignored. In theory, the function of the compensator could be included
in the control network, but in practice, this would require adding too many inputs (the
current angles of all relevant degrees of freedom), as well as more hidden units, and the
network would be quite difficult to train. The equations used for calculating the mass

matrices as functions of the joint angles on a given limb (see [70]) are given by

M(6) = Zn:Ji(G)TMiJi(@) (4.2)

i=1
where the J;s are the body Jacobians for each of the n controlled degrees of freedom on the
limb and 8 is a vector of the angles of the degrees of freedom. The M;s are the generalized
inertia matrices for each link, which depend on both the link masses m; and their inertia

matrices Z;:

I 0
Mi=|™ (4.3)
0 ZI;

The torques output from the compensator for the limb, 7¢, are then obtained from the
vector of desired accelerations, g, coming from the summing junctions of all the single-

DOF controllers of the limb (see Figure 4.2):
Te = M(0)ag (4.4)

A more detailed discussion of the inertial compensator equations is given in Appendix A.
All perturbations, multi-joint interactions not taken care of by the inertial compensator
(such as centripetal and Coriolis terms), gravity, and external torques are compensated for
by a feedback term. The filtered decoder signal specifies the desired acceleration of the
joint; using this signal, the current desired position and velocity are calculated and used for
PD feedback. In a biological system, the actual position and velocity would be available
from the spindle fiber sensory organs for use in feedback (see Chapter 2). The PD constants
used were kp = kg = 75.0 for all degrees of freedom. The feedback signal is added to the

feedforward signal before they are passed through the inertial compensator.

4.1.2 Learning

As the control network is simply required to represent a static function f : R! - R3,

any of a number of modeling choices are possible, including neural networks (multi-layer
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perceptrons) as well as approximators that are linear in their parameters, such as radial ba-
sis function networks, wavelets, infinite support basis function representations like Fourier
series, and polynomial approximation. Neural networks have several advantages over the
other choices. The number of parameters (weights) needed does not grow exponentially with
the number of inputs, unlike with the other methods, providing a compact representation
as well as fewer data points needed for parameter identification. The smooth, global ap-
proximation provided by neural networks is a better representation for the functions being
approximated here than that given by the methods with local-support basis functions, such
as radial basis functions or wavelets [95]. The nonlinearities in the function that is being
approximated are much more easily approximated by neural networks than by polynomial
approximation. One major drawback of neural networks as compared to approximators
that are linear in their parameters is that training methods can only be guaranteed to find
local minima; in training the single-DOF controllers, however, this has not proved to be a
problem.

One of the most basic kinds of neural network, and the kind used in this work, is a
multilayer perceptron. This type of network consists of several layers of nodes, or units, each
layer communicating with the nodes of the previous layer (or, sometimes, layers) through
weighted connections. The first layer of the network is called the input layer and the final
layer is the output layer; all the other layers are referred to as hidden layers. Each node (in
each layer other than the input layer) i receives a net input n; that is a linear combination
of the outputs, or activations a;, of all the nodes j it is connected to in the previous layer,
plus an internal bias. The coefficients of the linear combination are the network wefghts,
wjj. To simplify the equations, the bias can be represented as a connection from a node
whose activation is always 1, and therefore can be treated in the same manner as the other
weights. In the most standard architecture, a node is connected to all nodes in the previous

layer. Thus, for a node %, and nodes j in the previous layer:
n; = Zw,'jaj (4.5)
J

The net input of a node is passed through an activation function to determine the activation
of that node. Typical activation functions include a simple thresholding function (a; = 1
if n; > 0, otherwise a; = 0), a linear function, or a sigmoidal function. The networks

described here use a linear function (a; = n;) for the output nodes of the forward networks
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(see below) and a sigmoidal function

= Tyepn (46)

with 8 = .8, for all other units.

Network Training

There are several ways to go about training a network for control. Agarwal [2] presents
a classification of the way neural networks are used in control. A brief, less general discussion
can be found in the work of Werbos [106]. In the network design presented here, the input
and output spaces are relatively low-dimensional, and the network is simply learning a
static function, so some form of supervised learning is the simplest choice. From there,
there are two possibilities for the training procedure: direct learning or indirect learning.
From an adaptive control viewpoint, these two choices correspond to the choice between
model reference adaptive control (direct) and a self-tuning regulator (indirect) [86]. In direct
learning, the simpler of the two, the network is trained on pairs ([ya, éo], u) of plant outputs
and the control inputs that produce them. The main drawback of this method is that the
error that is minimized is the error on the controls u, when what is desired is to minimize
the error on the final plant output y = [A#, Aé,T] € R? in response to those controls.
Indirect learning, on the other hand, minimizes the error on y, but requires a second
network to approximate the action of the plant; this forward network must approximate
a function f' : R! — R® mapping [u,fo] to y. The forward network is trained first on
([a, éo], y) pairs and is then used in the training of the inverse network. During training of
the inverse network, the error at the output of the forward, plant-approximating network is
propagated back through that network without modifying those weights, and the resulting
back-propagated error is used to train the inverse network. Using indirect learning has
another advantage: once the networks have been trained, the forward network can be used
to test whether a particular command yq4 (with the current DOF velocity éo) is possible given
the range of controls available (see Figure 4.3). If the control u generated by the inverse
network is passed through the forward network to produce a predicted §, but ||§¥ — yal|
is large, the requested yq is likely to be outside the range of the available controls. This
consideration is important in the design presented here, where the boundaries of the output

space reachable by the available controls are not known, but the reachable space is known
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Figure 4.3: Diagram showing the relationships between the four trained networks that make
up the network controller.

to exclude a significant proportion of the possible [y4, ég]. All of these considerations led
toward the choice of an indirect learning method.

Feedforward neural networks of this type have been shown, by various methods, to be
capable of approximating a large class of continuous functions from one finite-dimensional
space to another, as well as decision boundary functions, to arbitrary accuracy, given one
hidden layer of unlimited size (see [12], [39] for discussion and lists of references). In addition,
one-sided inverses of continuous functions can be approximated to arbitrary accuracy with
networks with two hidden layers and step activation functions [94]. There are some rules
of thumb available for the required size of the hidden layers with respect to the number of

data points and the approximation error (see [38], Chapter 6, for example), but this choice
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is still often a matter of art more than science. In practice, hidden layers with more units
" make for slower and more difficult training. By experimentation, it was determined that the
forward networks could be adequately trained if they had two hidden layers of eight nodes
each; the inverse networks required two hidden layers of twelve nodes each. A single hidden
layer did not train as well. Adding more hidden nodes failed to increase the accuracy of the
approximation considerably, trained more slowly, and required a larger training data set to
generalize as well.

The total network error is given by the sum of the squared errors over all patterns and

all outputs:
E=Y Y m—tan)? = 5 en = X B (@7)
p m p m P

where the subscript p indicates the training pattern, the subscript m indicates the network
output unit, tp,, is the target for output m in pattern p, opm is the actual output for
output unit m on pattern p, and ey, is the output error for output unit m on pattern
p. To find the optimal network weights, this squared error equation must be minimized.
There is a family of methods available for least-squares minimization. Linear least-squares
methods, for systems in which the error e is linear in the approximator parameters, include
the traditional linear least squares using singular value decomposition as a batch method,
and recursive least squares, or the Kalman filter, an iterative method often used in adaptive
control. For nonlinear systems, such as neural networks, various gradient methods are
available, including basic gradient descent (either as a batch or iterative method), conjugate
gradients (a batch method), Newton’s method, quasi-Newton methods, and the Gauss-
Newton method (batch methods), and the extended Kalman filter (an iterative method
similar to the Gauss-Newton method). Many of these methods (the Kalman filter and
extended Kalman filter, gradient descent, the Newton family) are similar in that at each
iteration, the approximator weights or parameters are updated along a direction -GgT,
where g is the gradient of E (or E,, for iterative methods) with respect to the weights and
G is a matrix that modifies the direction of the gradient. In gradient descent, G is the
identity. In Newton’s method, G is the inverse Hessian of E with respect to the weights.
In quasi-Newton methods, the Gauss-Newton method, and the extended Kalman filter, G
is an approximation of the Hessian inverse, as follows. In the linear problem,

1. . 1
E=)" 319 - Yeall? =) §|I¢§W — ypall® (4.8)
3 P
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where ¢p is a matrix whose columns are called regressor vectors. In this problem, the

Hessian is given by
H= Z ¢p¢;f (4.9)
p

In the Gauss-Newton method, the nonlinear errors e, = ¥p — ¥p,a are linearized around the
current parameter vector, yielding approximate regressor matrices <f>p equal to the transpose
of the gradient of this error. Then, the inverse Hessian is approximated as (Ep J)pq‘Sg) _1.
The extended Kalman filter is an iterative version of this linearization method which main-
tains an approximation of the inverse Hessian called the covariance matrix. The quasi-
Newton family of methods, though batch methods, incrementally build up a more complex
approximation of the inverse Hessian over successive iterations, as will be described below.
More detailed discussions of these methods can be found in [11], [12], [60], and [39]. For

continuous time Kalman filtering in an adaptive control context, see [86].

Quasi-Newton Algorithm

For training the single-DOF networks, I have chosen a quasi-Newton algorithm [12],
[60). Quasi-Newton algorithms are useful because, like Newton’s method, they tend to
be faster than gradient descent, but unlike Newton’s method, they do not require the
calculation and inversion of the Hessian matrix. Instead, as discussed above, quasi-Newton
methods maintain and update an estimate G of the inverse of the Hessian.

With a locally quadratic approximation to the error surface as a function of the network

weights, the Hessian H is constant, and one obtains
g(w) = (w - w")™H, (4.10)

where g(w) is the gradient at a particular weight vector w, w* is the weight vector at
the error minimum, and H is the Hessian evaluated at w*. To jump immediately to the

minimum at w*, as in Newton’s method, one would simply use
w'=w-—HgT(w) (4.11)

From these equation one obtains what is known as the quasi-Newton condition on successive

weights:

whtl —wh = —H}(g")T - (9)7), (412)
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where gF = g(w*). A quasi-Newton algorithm is one in which the approximation G of
the inverse Hessian fulfills this condition on the weight increments. The Broyden-Fletcher-

Goldfarb-Shanno (BFGS) procedure is a quasi-Newton algorithm with update rules:

witl = wkF—o*fGk(gh)T (4.13)
T Gk Tgk
Gk = GF+ ggv - \:”I)‘gkv ) + vIG*vuuT (4.14)
p = whtl_wh
v = (g*)T- (5T

p Gkv
pTv  vTGky
G is initialized to the identity.

u =

The gradient g is calculated by the standard backpropagation algorithm (see, for ex-
ample, [12]), as follows. From Equation 4.7, the elements of the gradient vector are given
by

— (4.15)
To simplify notation, we can calculate g—fﬁ and drop the subscript p from all of the network

quantities. n; is the net input to unit ¢, a; is the activation of unit ¢, and w;; is the weight

from unit j to unit i.

= Jiaj (4.16)

o
5 o= empm (4.17)
m
J; is computed for each layer recursively. For units in the output layer:

o
60 = ZemF(Z‘?'

= Y em7 () (4.18)
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where 7/(n;) is the first derivative of the activation function y(n;) with respect to its argu-

ment. If y(n;) = , the standard sigmoidal function, then

1
14+e=FPni

5 = 3 emBrin)(l - v(n)

Bai(l —a;) Y _em (4.19)

For units 7 in the hidden layers, §; is computed from the ds of all units k in the next layer

toward the output:

don,

= > Sewiy' (i) (4.20)
Again, with the sigmoidal activation function:
8 = Bai(1 — a;) Y Spwpi (4.21)
k

The coefficient « in Equation (4.13) is determined by performing a line search for a
minimum along the direction —G*(g*)T. One method for performing such a search is the
quadratic fit method [60]. This method has the advantage of not requiring calculation of
the gradient of the function E(a) to be minimized, but only calculation of the function
itself. Three initial points, a;, oz, and a3, corresponding to different values of o along the
search line, are chosen such that oy and a3 bracket a minimum (E(cq), E(as3) > E(az2)).
The corresponding values of the function, E; = E(a;), are calculated. Then, approximating
the error surface along the search line as a quadratic function through the three points, one

obtains:

H]#z(a aJ)
ZE T, o =) (4.22)
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A guess at the location of the minimum of E along this line is obtained by minimizing this
quadratic function:

o = (o2 — 2)Ey + (o — 0}) Bz + (a? — o) E3
47 (az — a3) B + (a3 — 1) B + (o1 — 02) B3]

(4.23)

This new point a4 can then be used together with two of a;, a2, and a3 to generate an
improved quadratic. If By < E», as becomes the new middle point, and the new triplet
is (a1, a4, 02) or (ag,as,as3), depending on whether ay < a2 or oy > 2. Otherwise, if
E; > E», a4 becomes a new end point, and the new triplet is (a4, @2, a3), or (a1, a2, a4),
depending again on whether oy < ag or a4 > as.

Any of a variety of stopping criteria can be used to end the search algorithm; a simple
one, used in the network training here, is the percentage test. With this method, the
algorithm is halted when the coefficient o has been determined within a fixed percentage
of its true value. At each step in the algorithm, the value of a which yields the minimum
of E, a*, lies between the two outer points, o; and a3, and the estimate of a* is & = a».

A simple bound on the percentage error is therefore given by

|& — o]

e max(a3 —:rlz, a — o) (4.29)
The percentage cutoff used for stopping the line search in the neural network training was
.01. Details about the convergence properties of this line search algorithm can be found
in [60]. Note that, as dis;:ussed above, the quasi-Newton algorithm can be used for batch
learning only; to perform on-line learning on a pattern basis, a different method, such as
gradient descent, must be used.

To generate the initial triplet a1, o2, a3 for the quadratic fit method, a coarse search
along the line is performed as follows. ) is initialized to zero. Then, a3 is incremented
from ay = a; until E; < E;. If such a point cannot be found within a fixed number of
steps (chosen as 10 here), ap is reset to zero and the increment size (here initialized as
.1) is reduced by a factor of ten. Once a3 is fixed, a3 is incremented from a3 = a2 until
E3; > E,. Again, if such a point cannot be found within a certain number of steps (for
this second stage, 100 was chosen), a3 is reset to ap and the increment size is reduced by
a factor of ten. If, while attempting to initialize either oy or a3, the size of the increment
drops below a cutoff (here, .00001), the triplet generation algorithm returns an error. In this
case, the quasi-Newton algorithm assumes that either a local minimum has been reached or,

more likely, the estimate of the inverse Hessian, G, is poor, yielding a bad choice of search
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direction. The latter is likely to happen near the beginning of the quasi-Newton descent.
When an error is returned, the descent algorithm takes a small step (o = .000001) along
a new direction (no longer equal to —Gg™T) whose components are randomly distributed

between -.5 and .5.

Data Set Generation

To train the control networks, a large data set was generated by simulating the effects
of randomly chosen control vectors lying within the ranges shown in Table 4.1. The initial
position of the controlled DOF was selected randomly from within its allowed range; all
other degrees of freedom were fixed at the zero angle (except for degrees of freedom 4 and
5 in the shoulders, which were set at -.1 to avoid the Euler singularities). The data sets
for DOF 2 are shown in Appendix B. The data, both input and output, were then scaled,
using a piecewise affine transformation described below, to lie in [0, 1}, again using the ranges
shown in Table 4.1. The output y data ranges were chosen to delineate the values allowed
for yq selection. For the change in position A6, this scaling range is exactly twice the joint
range shown in Table 3.3, though the maximum values were not always achievable by the
allowed controls. Data samples in which the simulation ran up against the joint limits or in
which the change in velocity A@ was outside the preselected range of AGy were discarded.
The minimum and maximum 7T values as well as the control value ranges were selected to
produce torque profiles compatible with the biological data presented in [34). The pulse
height ranges, of course, are scaled when they pass through the inertial compensator.

In order to indicate direction, the scaled range of the first control parameter (either pw;
or ph,) is divided into two parts. Values in [0,.5) correspond to negative torque (or desired
acceleration) pulses, while values in (.5,1] indicate positive ones (a value of exactly .5 is
indeterminate). The second pulse is always interpreted to be in the opposite direction from
the first pulse. Thus, if ppin is the minimum unscaled value of the first control parameter

p, and pmax is the maximum value, then the scaled value p; of p is given by:

(Ip| = Pmin)
=.5+ .5sgn(p) ———————, 4.25
Ps en(p) (Pmax — Pmin) ( )
where sgn(p) = 1 for p > 0 and sgn(p) = —1 otherwise. The second control parameter is
scaled as:
p, = Pl = Pmin)_ (4.26)

- (Pmax — Pmin)
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The final control parameter, as well as 6o and the three the resultant movement parameters,

" are scaled as:

O 62
Because the pulse width values are larger for PWM than for PHM, the PWM regime
produces movements with larger T, as desired. The cutoff value of Ty which determines
whether a movement will be executed by PWM or PHM was derived from the generated
data sets and fixed at .29735 seconds (a scaled value of .421). In simulation, T is measured
as the time when the feedforward torque has decayed to 5% of its second peak value. (For
the single-DOF controller data generation and training, this criterion was checked every
.001 seconds; for the full dive simulations described in Section 4.2, large apparent forces
during the dive required that this criterion be checked at every integration step.) The pulse
height ranges in both control schemes were chosen to make data generation easy without
much compromise in the range of ys produced. The largest pulse heights in the PWM
control mode were eliminated because they caused the simulation to run into the joint
limits extremely frequently. Similarly, the smallest pulse heights in the PHM control mode
were eliminated because a combination of a large first pulse with a small second pulse, or a
small first pulse with a large second pulse, often resulted in the simulation running into the
joint limits or exceeding the preselected A6 range. The largest pulse heights were needed
in this mode to achieve the desired range of output behavior.

1000 data points were generated for each DOF and mode (PWM or PHM) on the right
side of the body (the even numbered degrees of freedom). With fewer data points, the
trained nets did not generalize well, but more points did not improve generalization and
slowed down training. A second, disjoint set of 100 data points was also generated for each
DOF and mode for use in testing the network generalization. In generating the 1000-point
data sets, no points whose scaled first control value was within .001 of the discontinuity
(that is, in (.499,.501)) were permitted; this helped the networks train more efficiently,
eliminating constraints on their output near the discontinuity. For the 100-point test data

set, points whose first control value was within .01 of the discontinuity were eliminated.

Training Results

After the data sets were generated, the networks for each mode of each even DOF were

trained using the quasi-Newton method discussed above. First, the forward network was



59

Parameter Range
Ao_ [omin - oma.xa emax - omin]
Al [—6.9744,6.9744]
T [.15,.5]
6o [-3.4872,3.4872)
pw, [-.18,-.11], [.11,.18]
PWM pWy [-.18,-.11], [.11,.18]
ph (12, 320]
phy [—400, —60], [60,400]
PHM ph, [—400, —60], [60,400]
pw [.05,.11]

Table 4.1: Scaling ranges for network inputs and outputs. Each parameter value p was
scaled such that p; = "2, except for the first and second control parameters, as
discussed in the text. Angles are in radians, angular velocities are in radians per second,
times and pulse widths are in seconds, and pulse heights are in radians per second squared,
the units of the desired acceleration signal. The values Omin and fpmax are those in Table 3.3.

trained until the total squared error, measured as ), 3., (0p,m — tom)? =23, Ep, on the
1000 scaled training data points was less than .08. Then the corresponding inverse network
was loosely trained using the direct method, using the error on the controls, until its total
squared error was less than .8. After this preliminary training, the inverse network was
trained using the indirect method, as described above, until its total squared error 2 Zp E,
was less than .08. The initial direct training was found to help the indirect training avoid
local minima.

The networks were considered adequately trained if three criteria were met:

1. The total squared error 2}, Ep, on the disjoint test set of 100 data points was less
than .025 both for the forward net and for the inverse and forward nets combined

(error measured as 3, ||§p — ¥p,al|? at the output of the forward net),

2. The total squared output error produced by simulating the controls generated by the

inverse net for the 100 test data points was less than .025, and

3. The total squared output error produced by simulating the controls generated by the

inverse net for a newly-generated set of 100 test points (see below) was less than .05.

If the networks failed any of these tests, or if the indirect training of the inverse network

converged slowly or converged with an asymptotic error greater than .08, the training was
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refined by either further training the forward net to a smaller error cutoff (in decrements of
.02), further training the inverse net in the indirect method to a smaller error cutoff (also in
decrements of .02), or, in cases of slow convergence or local minima in the indirect training,
further training the inverse net in the direct method to a smaller error cutoff (in decrements
of .2). If these refinements failed to produce adequately trained networks, the weights of
one or both of the networks were randomized and the process restarted.

These tests of the learned weights were done with all DOF angles randomized to lie
between 10% and 90% of their range. The starting position 6y of the controlled DOF was
adjusted with a heuristic algorithm to ensure that the simulation would not come up against
the joint limits. The heuristic made use of the desired angle change, Ay, and the proposed
control pulse heights and widths to determine the likely final position of the DOF and likely
peaks in the angle trajectory that would violate the joint limits.

Table 4.2 shows the training and testing results for the single-DOF networks, and
Appendix C provides training error convergence plots for the DOF 0, PHM networks, more
detailed plots of final training errors for the DOF 2, PWM mode network, and sample
movements produced by a few of the trained single-DOF controllers (see Table 3.3 for the
numbering of the degrees of freedom; DOF 0 is the right hip, and DOF 2 is one of the Euler
angles in the right shoulder). Training the forward network generally took on the order of
one or two thousand iterations; training the inverse network generally took a few hundred
iterations of direct training followed by a few thousand iterations of indirect training. The
number of iterations required for indirect training to the cutoff error varied widely among
the different networks.

The third test of the trained networks involves newly generated data points, as men-
tioned above. As not all possible inputs y4 are achievable with the allowed controls, it is
useful to use the forward net as a test to determine whether a particular y, is feasible.
Since the inverse net uses sigmoidal outputs, any output from this net lies in (0,1) and is
thus a valid control, though outputs for which the first cdntrol value lies within .01 of the
discontinuity, that is, within (.49,.51), may be unreliable. If the control generated by the
inverse net is passed through the forward net, the resulting output § can be compared with
ya. If the squared error |[§ — yal? is greater than a certain cutoff, chosen here as .0015,
the proposed yq is rejected as being outside the range of the controls. Further, the yq is
also rejected if the heuristic described above for placing the initial DOF angle, 6o, fails to

find a @ that is not likely to result in a joint limit violation during the movement. For the



Training Test Data New Data

Joint Mode Cutofls Test Data (Simulated) (Simulated)
0 PWM  .06,.08  .0065, .0103 .0137 .0332, 343 rejected
2 PWM  .08,.08 .0077, .0079 .0180 .0250, 292 rejected
4 PWM .08, .08  .0099, .0089 .0180 .0294, 292 rejected
6 PWM .08, .08 .0137, .0096 .0178 .0304, 258 rejected
8 PWM .06, .08 .0068, .0058 0113 .0260, 282 rejected
0 PHM .06, .08 .0188, .0063 .0087 .0225, 198 rejected
2 PHM .06, .08  .0079, .0095 .0140 .0282, 179 rejected
4 PHM .04, .08  .0051, .0080 .0093 .0199, 131 rejected
6 PHM .04, .08  .0165, .0106 .0106 .0252, 308 rejected
8§ PHM .06, .06 .0045, .0180 .0191 .0294, 134 rejected

Table 4.2: Training and testing data for the single-DOF controllers. The training cutoffs
are the total squared errors 3, 3, (0pm — tpm)? = 23, E; for the forward network and
for the combined inverse and forward networks (after indirect training, with error measured
as Ep |I¥p — ¥p.all?) on the 1000 training data points. The next column, Test Data, gives
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the total squared error for the forward network and for the two combined networks tested

on the 100-point test data set. The following column gives the error 3 ||¥p - Yp,dl? in
the output when the controls generated by the inverse network for the test data points are
simulated. The final column reports the error on 100 freshly generated data points which
were tested for feasibility by being passed through the forward network (see text). The

number of rejected ygs is also indicated. All errors are measured on scaled data.
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third test of each trained network, randomly generated yq4s were tested for feasibility in this
manner; the controls generated by the network for 100 feasible points were then simulated.
The resulting errors are shown in the final column of Table 4.2, along with the number of
rejected yq4s, and in the bottom plot of Figure C.4 .

Training was facilitated by noting that the corresponding networks for the left and
right sides of the body approximate the same functions, except for slight variations in the
arm adduction/abduction DOF due to the reversed influence of gravity, so only one set
of weights needs to be trained. The influence of gravity on the function modeled by the
trained networks is only slight because the feedback around the desired acceleration profile
largely compensates for gravity. Furthermore, any networks for which the y scalings are
the same approximate the same functions, except, again, for differing influences of gravity.
Training time was reduced for several of the degrees of freedom by initializing their training
with weights from other degrees of freedom that had already been trained: in both PWM
and PHM modes, the weights for degrees of freedom 2 and 8 were initialized with the
trained weights from DOF 0. These networks needed some further training to achieve the
error cutoffs because the behavior of the networks near the discontinuity in the first control
parameter varies widely and is highly dependent on the particular data set used to train
the weights. Thus, when transferring weights from one network to another, first control
parameters in (.49,.51) were sometimes generated inaccurately, resulting in larger training
errors. This variability and inaccuracy near the control discontinuity is the motivation for
disallowing controls in (.49,.51), both in the network test described above and in the use
of the trained networks in the complete control system (see Section 4.2.1). The weights for
the odd degrees of freedom (the left side of the body) were copied from the corresponding

even degrees of freedom with no retraining.

4.2 Coordinating Controller

4.2.1 Design

A closeup of the coordinating controller architecture is shown in Figure 4.4. The hier-
archical, behavioral design of this controller is motivated by the biological idea of multi-joint
synergies as subprograms in complex skills discussed in Section 2.5. Each dive is built out

of a series of parametrized multi-joint behavioral synergies. These synergies serve to coordi-
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Figure 4.4: Design of the coordinating controller.
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nate the single-DOF controllers to produce stereotypical multi-joint behavior patterns such
as “go into the pike position” or “execute the throw maneuver.” The coordinating controller
itself takes as input a vector s = [sq,S;] containing the desired somersault and twist angles
for the dive, sq = [¢sd, P1d], Plus sensory information ss = [¢s, ¢, t, p] describing the current
somersault and twist angles, the current time, and the current body posture. The body
position p is a binary vector with each value corresponding to the overall position achieved
by one of the multi-joint synergies. This simplification of the diver’s state representation is
crucial to reducing the number of network inputs, at the cost of having only approximate
state information. The controller outputs tuning parameters v for the multi-joint syner-
gies. In general, these tuning parameters could include such things as the desired tightness
of a pike or the speed with which the multi-joint synergy should be executed, but in this
implementation, the tuning parameter vector v contains only ¢, the time to wait before
initiating the behavior; all other parameters in the multi-joint synergies are fixed. Only
one synergy can be active at a time; the controller switches among them, behaving like a a
timed state machine, with a different state machine (ordering of the multi-joint synergies)
for each type of dive.

Each multi-joint synergy takes as input the vector v = [t5] and outputs the control
specifications yq for all of the single-DOF controllers. The three behavioral synergies used
for the diver are “throw,” “pike,” and “layout;” each specifies a desired position for each
degree of freedom, as shown in Table 4.3. The desired final velocity is always zero. For a
given synergy, the desired movement times for all degrees of freedom are the same, as shown
in Table 4.3. Thus, all degrees of freedom should finish their movements simultaneously
in a multi-joint action. The 63 and T, values were chosen to be similar to values used by
human divers as well as feasible for the single-DOF controllers to execute. With the T cutoff
of slightly less than .3 seconds (see Section 4.1.2), the throw synergy is produced by the
PHM mode networks, while the others use PWM mode. These values are used, together
with the DOF angles and velocities at the start of the behavior, to compute the inputs
Ya = [Afq, Aby, T,) to the single-DOF controllers. The high apparent torques present
during the dive make it necessary to stiffen the single-DOF PD controllers acting to achieve
the desired joint kinematics (see Section 4.1.1) to k, = 3750, kq = 3750. If the current
position and velocity of a DOF is close enough to the desired values (within .175 radians
and .75 radians/second, respectively), then the single-DOF controller is not invoked, but a

new PD controller (k, = 3750, kg = 750) centered at the desired position and zero velocity
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64 T

0 1 2 3 4 5 6 7 8 9
Pike -5 -5 -3 5 -3 -5 0 0 0 0 .30 / .38
Layout | 0 0 0 0 d—-7m 1-—7 0 0 0 0 .32

Table 4.3: Specification of the three behaviors used in the coordinating controller. Each row
indicates the desired angle for each degree of freedom (in radians) and the desired movement
time (in seconds) for one of the behaviors. The desired final velocity is always zero. The
pike behavior had two different desired durations depending on the dive being performed;
for the jackknife and the one-and-one-half-somersault pike, its T; was .38 seconds, and for
the one-and-one-half-somersault, full-twist dive, T, for the pike was .3 seconds. Degrees of
freedom 0 and 1 correspond to the right and left hip, 2, 4, and 6 are the three Euler angles
in the right shoulder, 3, 5, and 7 are the angles of the left shoulder, and 8 and 9 are the
right and left elbow. In the iayout synergy, the angles for degrees of freedom 4 and 5 were
chosen to be slightly greater than —= to avoid the Euler singularities.

is activated. This same PD controller is active between multi-joint synergies, with set
points determined by the DOF angles at the end of the previous synergy. The yq values
are passed through each DOF’s inverse network to select a control vector u, which is then
passed through the DOF’s forward network to obtain an estimated outcome y. As for the
network test discussed in Section 4.1.2, if the error ||§ — ya||? > .0015 the yq is considered
unreachable. A dive being executed is aborted if such a bad request is made. A multi-joint
behavior is considered complete when each of the single-DOF controllers it has activated
have finished their movements.

The implementation of the control system described in this chapter learns to per-
form three dives: a jackknife, a one-and-one-half-somersault pike, and a one-and-one-half-
somersault, full-twist dive. For the jackknife, the diver must execute a pike and enter the
water after a somersaulting rotation of m radians (so ¢sq = 7, ¢¢g = 0). The pike position
involves bringing the legs up and the arms out to decrease the moment of inertia about the
somersaulting axis. For the one-and-one-half-somersault pike, the diver must execute a pike
and enter the water with an overall somersault angle of 37 radians (¢s¢ = 37, ¢a = 0).
Finally, for the twisting dive, the diver must first execute a throwing maneuver with the
arms to tilt the body’s rotation axis (see [27]), perform a full 27 twist, then go into the

pike position, coming out at the end of the dive with 37 radians of somersault rotation
(¢psa = 37, dra = 2).
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The dive simulation is started from a set of initial conditions that is fixed for each
dive. The body somersault angle ¢; is initialized to .175 radians, based on an inspection of
Olympic diving footage (described in more detail in Section 4.2.3), and the twist angle ¢ is
initialized to 0, for all dives. The initial joint angles for all dive types are shown in Table 4.4.
The hip angles (degrees of freedom 0 and 1) are set to -.175 so that the legs start out
vertical. The initial angles for the one-and-one-half-somersault, full-twist dive correspond
to a position with the arms straight out away from the sides of the body. The initial velocities
of all degrees of freedom are zero, except for the twisting dive, in which several degrees of
freedom start with +3.4872 radians/second, the maximal velocities allowable; degrees of
freedom 0 and 1 start with a velocity of -3.4872 radians/second and degrees of freedom 4
and 5 start with a velocities of 3.4872 and -3.4872 radians/second, respectively. The initial
velocities for degrees of freedom 4 and 5 help the diver achieve a higher twist velocity with
the throw maneuver. The initial velocities for degrees of freedom 0 and 1 are required for
the single-DOF controllers to be able to produce the throw movement; they also help make
the platform takeoff look slightly more natural. The initial vertical velocity of the center of
mass of the body is 3 m/s; this value was chosen to be consistent with the initial velocities
used by human divers. The vertical velocity, along with the initial height of the center of
mass, determines the time available for the execution of the dive before the diver hits the
water. The initial forward velocity of the center of mass of the body is .75 m/s, enough
so that the diver will not hit the board. The initial vertical position of the center of mass
varied among the dives since the initial joint positions varied (see Table 4.4). The vertical
position was chosen so that the diver’s feet would start at a fixed position (on the diving
platform). The simulation time for each dive was determined based on the vertical distance
the center of mass must travel. This distance was equal to the initial vertical position of the
center of mass plus 10 meters (the height of the diving platform) minus the approximate
distance from the center of mass to the tips of the fingers in the layout position (a length
equal to 1.059 meters). This distance through which the center of mass must fall, together
with the initial vertical velocity, yielded dive times of 1.766 seconds for 9.989 meters for the
jackknife and one-and-one-half-somersault pike dives, and 1.764 seconds for 9.971 meters
for the twisting dive. The somersaulting angular momentum components for the dives were
set to 16 kg-m? for the jackknife, 47 kg-m? for the one-and-one-half-somersault pike, and
65 kg-m? for the twisting dive. The twisting momentum component was zero for both the

jackknife and the one-and-one-half-somersault pike, but was set to 5 kg-m? for the twisting



67

6o
0 1 2 3 4 5 6 7 8 9
jackknife -175 -175 0 0 1-w -7 0 0 0 0
11 som. pike 2175 -175 0 0 d1-7 d1-7 0 0 0 0
1; som. full twist |-.175 -.176 -5 % -7 -5 Z -z 0 0

Table 4.4: Initial angles for each DOF for each dive type. The hip angles (degrees of freedom
0 and 1) are set to -.175 so the legs start out vertical (see text). Degrees of fréedom 0 and
1 correspond to the right and left hip, 2, 4, and 6 are the three Euler angles in the right
shoulder, 3, 5, and 7 are the angles of the left shoulder, and 8 and 9 are the right and left
elbow. For the jackknife and the one-and-one-half-somersault pike, degrees of freedom 4
and 5 are set to slightly larger than — to avoid the Euler angle singularities. All angles
are in radians.

dive. The desired end joint configuration is the same for all dives, with the angles of all
degrees of freedom being zero except for degrees of freedom 4 and 5, which are at —m +.1.
The desired final velocity of all joints is zero.

The coordinating controller is trained in two stages inspired by the stages of motor
learning discussed in Chapters 1 and 2. In the cognitive, “learning by watching” stage, a
diving student learns about the task goal and the behavioral structure of the task from
watching other divers and from instructor input. During this stage, the student also learns
an initial estimate of the coordination parameters v. For the coordinating controller, the
learning by watching stage consists of defining the dive’s cost function (or functions; see
Sections 4.2.2-4.2.3), breaking up the dive into multi-joint synergies, defining the order in
which these synergies are to be activated, and learning a rough estimate of the coordina-
tion timing t; required to produce the dive. In the second, “learning by doing,” training
stage, which corresponds to the associative and autonomous learning stages in human skill
acquisition, the controller practices the dive to refine the coordination parameters.

The internal structure of the coordinating controller is intimately tied to the algo-
rithm chosen for implementing the “learning by doing” parameter refinement phase. This
algorithm, called Q-learning, is described in the next section; its implementation in the

controller network is discussed in Section 4.2.3.
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4.2.2 Reinforcement Learning Theory

The diving problem, whose solution requires a correctly-timed sequence of behaviors, is
well addressed in the framework of reinforcement learning. Reinforcement learning theory
is an adaptation of dynamic programming algorithms to the type of task faced by the
coordinating controller: the controlling agent must select an action based on the current
state of the system, and must, with little or no prior knowledge about the structure of the
problem or the probabilities of various outcomes of the control action, learn which actions
will lead to the largest rewards or smallest costs. The costs simply assign some value
to a state or transition rather than providing information about the correct choice, as in
supervised learning, and might be given only at the end of a complete movement iteration,
as in the diving example. The reinforcement learning algorithms presented in this section
are techniques for addressing the temporal credit assignment problem, the question of how
to assign credit among a series of control choices all contributing to the value of a delayed
outcome evaluation. Most of the following discussion is based on the presentation in [11].

The framework in which dynamic programming algorithms are applied is that of a
Markov decision process (MDP). An MDP is a generalization of a Markov process (a set of
states S with transition probabilities p(s;, s;), si,s; € S) in which the state transition prob-
abilities are dependent on the choice of a control action v € V(s;); that is, p = p(s;, v, s;),
or, to simplify notation, p; j(v). In the dynamic programming framework, the state space
is discrete; for the diver problem, though, we have s = [sq4,ss] = [Psd, Pid, Ps, 1, t, D] (2
combination of continuous and discrete components) and v = [t;] (a continuous variable),
as described in Section 4.2.1. Each transition s; — s; with action v is also assigned a
cost c(s;j,V,s;), or, again to simplify notation, ¢;;(v). The basic dynamic programming
algorithms solve for J*: § = R, the “value” or optimal cost-to-go function, which is the
minimal expected cost that can be accrued over a trajectory of states s; starting in each
state s;:

oo

J(s1) =minE | > ¥ e;541(vy) (4.28)

i=i
where p: s = v,s € §,v € V, the function defining the choice of action in each state, is
called the policy, and v, 0 < v < 1, is a discounting factor. Equation (4.28) is written
for an infinite-horizon problem, but finite-horizon problems (possibly with state-dependent

termination costs) can be considered in the same framework. In the dynamic programming
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framework, J* can be written as a vector, because the state space is discrete, and can

therefore be stored in a lookup table. J* must satisfy Bellman’s equation

J*(si) = vg}g Elci j(v) +vJ* ()] (4.29)
= vg‘l;(r;l)sz,J( v) +J%(s;))

This system of equations can be solved either directly or using the dynamic programming

update called value iteration:

T () = gp)Zpi,j(v)(%(v)+~rJ’°(s,-)), (4.30)

Using this algorithm, J — J* as k — oo; J* is the unique fixed point of the Bellman
equation (4.29). The algorithm converges if the J(s;) are updated synchronously (updates
are done for all s; simultaneously) or asynchronously (updates are done for one s; at a time),
as long as J(s;) is updated infinitely often for each s;. Once J* is known, the optimal choice

of action in each state (the optimal policy), u(s;), is obtained by:
uisi) = arg min > pii(v)(cig(v) + 7% (s5) (4.31)
1 5_;

Policy iteration is a method for determining the best policy more directly. In this

technique, a policy ux: s = v,s € S,v € V is evaluated by solving for J#*,
T (si) = Y pi(a(si))(cig(u(ss)) + 7T (s5)), (4.32)
”

either by solving this set of equations directly or by using value iteration. Then a policy
improvement stage is carried out, which selects the optimal action in each state based on
JHE:
k+1

i) = arg min ) +yJHk(s 4.33

BT (si) gveV(s )szg )(ci,i (V) + v JH*(s5)) ( )

The value JH#*+ of the new policy u**! can then be evaluated, and the process repeated.
This algorithm will converge to an optimal policy u*.

These dynamic programming algorithms all require complete knowledge of the system’s

transition probabilities and costs. If an explicit system model is not available, as is typical

in reinforcement learning problems, but simulation is possible, one approach is to simulate
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many trajectories and use them to estimate the transition probabilities and costs. An
alternative, iterative approach to policy evaluation in the absence of an explicit model is
provided by the temporal difference family of methods. These methods, called TD()), use
the trajectory-based update rule

Jk(s;) + a i(w\)j-id,- (4.34)

j=i

dj = cjjn(pls;)) + 775 (s541) — T*(s5)

Jk+l (Si)

where 0 < A <1 and « is a step size parameter. Note that this algorithm applies for a fixed
policy p; sj4+1 is the state reached in a simulated trajectory after u(s;) is applied. d; is called
the temporal difference. d; is an estimate of the error of the cost-to-go J(s;) based on the
simulated transition from s; to s;j.41; the transition accumulated a cost of c; j+1(x(s;)), and
after the transition, the current estimate of the discounted cost-to-go from the new state is
vJ(sj+1). If the system is stochastic, d; is a random variable. The TD(\) algorithm replaces
knowledge of the transition probabilities with stochastic simulation of the trajectories, so
that the probability of a particular sj4+1 and the d; it produces will reflect the system
transition probabilities. The updates in Equation (4.34) can be done in an offline manner
after the completion of an entire (finite) trajectory or in an online manner, one term at a
time, with updates after each state transition. In either case, TD()) will converge to J#
with probability one, as long as each state is visited infinitely often (which requires infinite
restarts for finite-horizon problems) and the step size a is decreased at an appropriate rate.

Note that the extreme case of TD(A) in which A = 1, TD(1), is equivalent to using an
incremental update based on the actual cost of a simulated trajectory. Rewriting Equation
(4.34) we obtain:

[ o]
T () = (1- )5 () + @3 e s (uls)) (4.35)
j=i
Versions for which A < 1 place less emphasis on information from later transitions. The

special case in which A =0, TD(0), uses the update
T ) = JH(s:) + o (Giia (u(s1) + 775 (s141) = T¥(s1)) (4.36)

which is equivalent to a stochastic approximation of Bellman’s equation (4.29) applied to a

fixed policy.
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Once a policy has been evaluated in a model-free manner using TD(}), a policy im-
provement step needs to be applied. Unfortunately, to improve the policy in the manner
suggested by Equation (4.33) a system model with known probabilities and costs is required.
If a model is available, of course, one may be able to use value iteration instead of TD());
problems exist, though, in which a simulation-based, incremental policy evaluation method
may still be desirable. In particular, trajectory-based incremental policy eva.hiation opens
up the opportunity for a variation on the policy iteration algorithm described above; the
policy update step can be performed before the policy evaluation algorithm (TD(})) has
converged. The extreme case, in which g is updated every time the estimate of J* is up-
dated, is sometimes called optimistic policy iteration. The optimistic TD(0) algorithm is
guaranteed to converge, but only specific variants of optimistic TD(1) are guaranteed to
converge. Standard policy iteration, in which the policy is only updated after the TD())
evaluation has converged, converges for all ).

An alternative model-free, simulation-based option for policy iteration is provided by Q-
learning. In analogy with the optimal cost-to-go function J*(s;), we can define the optimal
Q-factor, Q*(s;,v), as the minimum expected cost-to-go from state s; if action v € V(s;) is

chosen. Then we have:

Q*(si,v) = Elcs;s4, (V) +7J*(5i41)] (4.37)
J* (s1)

vgg&)Q (si, V)

If the system model were known, basic value iteration could be performed on the Q-factors:

Q¥ (i, v) = D pig(v)(eig(v) + v, min Q*(sj,v')) (4.38)

The model-free Q-learning method is a simulation-based method analogous to TD(0):

Q*t(si,v) = QF(si,v) + ads (4.39)
dy = Ci,i+l(v)+')'( min Qk(si+1,V'))—Qk(Si,V)

v/ E€V(8i41)

If every (s;, v) pair is visited infinitely often and « is decreased appropriately, the Q-learning
algorithm will converge to Q*. Note that to guarantee that every (s;,v) pair is visited
infinitely often, some exploration mechanism often has to be built into the action selection,
especially if the system is deterministic or nearly so; typically, instead of always picking the

v that minimizes Q*(s;,v) (the greedy policy), a small proportion of the time a random v
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is selected. If the randomization is chosen such that the product of the state and action
spaces is fully explored, and the percentage of random control choices is decreased over
time, the @Q-factors converge to Q* and the greedy policy converges to the optimal policy.
All of the preceding algorithms apply to J or @ specified by a lookup table. A lookup
table representation is not always possible, however, in particular for large or continuous
state spaces. In this case, the J or @) functions can be approximated by various means.
For example, a function approximator depending on a vector of parameters or weights w
can iteratively learn the optimal value or @ function. Variants of reinforcement learning
which use function approximators are sometimes called neuro-dynamic programming [11],
[10]. In the function approximator context, the TD(1) algorithm can be seen as a gradient
method for minimizing the squared error between J* and an approximator J(s;, w) over a

simulated trajectory. We have:

E = %}ij(f(si,w)—ﬂ(si))’-’ (4.40)
o = D (o - Ie)
oJ . =~ i
= T )(J(si,w)—zvf cj,j+1<u<sj))) (4.41)
J=i

The TD()\) weight update for general A (the offline version, performed after the entire

trajectory has been simulated) is given by:

whtl = w —azaw Si, W k)( (si, w Z(')’)\)] “ejj+1(n(s )))

1=0 Jj=t
= w +az (s,, ")Z YAY ~id; (4.42)
1.—0
d; = Cj,j+l(ﬂ(5j))+'YJ(sj+1a %) = J(s5,w)

Only for A = 1 does this update actually correspond to an iterative minimization of the

squared error in Equation (4.40), however. For TD(0), the update looks like:

k
= i 443
wktl = wk 4+ o ;—0 6w(s" wk)d (4.43)
or, for the online version:
whtl = wk 4 oza—J(sk,wk)d,c (4.44)

ow
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If the approximation architecture for J is linear in the weights w, the TD(J) iteration (both
the offline and online versions) will converge, under some assumptions on the simulation
method in addition to the usual requirements for o and state visitation. The limit of J may
depend on the value of ), though. With a nonlinear approximation architecture, TD(})
cannot be proved to converge, and in fact may diverge. There have been some successes
with neural network approximators, though; the most notable is Tesauro’s TD-Gammon
backgammon player [97], [98].

Optimistic policy iteration can be performed with function approximators, as well, but
its convergence properties are not well understood. In particular, convergence of the weights
w is not always accompanied by convergence of the policy u. Again, these methods require
knowledge of the transition probabilities and costs.

Finally, Q-learning can also be performed with a function approximator Q(si, v, w).
The updates are similar to the TD(0) updates in Equations (4.43)—(4.44).

=wk+ az (s,,v,, *Vd; (4.45)
1-0
or, for online updating:
whtl = wk 4+ a%? (Sk, Vie, WF)dg (4.46)

In general, this algorithm cannot be guaranteed to converge, though there are results for
very restricted special cases.

More detailed discussions about dynamic programming, reinforcement learning, tem-
poral difference algorithms, and neuro-dynamic programming can be found in [11], [96],
[84], [53], and [7].

4.2.3 Learning Implementation

In the diver problem, although the dynamics are deterministic, we do not have a model
of the system available, so we are forced to use the Q-learning form of reinforcement learn-
ing. The state vector s = [sq,Ss] is partially continuous, and the action vector v = [t,] is
continuous as well, so a function approximator is required. In the controller design shown
in Figure 4.4, the coordinator network, a multilayer perceptron (a nonlinear architecture),
serves as an approximator or internal model of Q(s,v), the smallest dive cost that can

be accrued from state s with action v. A neural network is a reasonable choice for the
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coordinating controller, given the large number of inputs required; for feature-based meth-
ods, like radial basis functions, the number of parameters is exponential in the number
of inputs. Neural networks have a more compact representation and also give a smoother
approximation, as mentioned earlier (Section 4.1.2).

Unfortunately, training one network on all three dives (jackknife, one-and-one-half-
somersault pike, and one-and-one-half-somersault, full-twist) proved very difficult. With
the input representation used here, the twisting dive and the two non-twisting dives tended
to interfere with each other. Various other representations were tested, but none seemed
to improve the situation. Thus, the controller was trained with two separate coordinator
networks, one for the jackknife and one-and-one-half-somersault pike dives and one for the
twisting dive. Each of these coordinator networks takes as input the state s = [sq,ss)
and action v = [t;] vectors and outputs the @ approximation Q(s,v,w). With separate
networks, some of the inputs in each network no longer carry any information (¢ is a
constant for each net, for example) but were retained so the two networks would have the
same inputs and so that possible future expansion of the dive set would be more straight-
forward. Condensing the number of inputs for the two networks did not seem to improve
performance, in any case. It is possible that using a separate network for each behavior
within each dive might improve performance further; the @ function representations for the
pike and layout behaviors in the twisting dive coordinator network also sometimes interfered
with each other, although to a lesser extent.

Each coordinator network input is scaled to lie in [0, 1] using an affine transformation
on the range shown in Table 4.5. Since there are only two body positions, corresponding to
completed multi-joint synergies, which can figure as inputs to the network, p has only one
element. p = [0] corresponds to the pike position, and p = [1] corresponds to the throw
position. Each of the two coordinator networks has two hidden layers containing 24 units
each. Significantly smaller networks did not train well. The output neuron in each net uses
a linear activation function, and the others use the sigmoid function in Equation (4.6).

At the end of a dive, the performance is assigned a cost:

C = .01 |ks($s — Bsa)® + ke(dr — 1a)” + ked2 + hedf + ) (002> +6%|,  (447)
DOF

where ¢; is the somersault angle of the body, ¢; is the twist angle of the body, and ¢, is
the cartwheel (roll) angle of the body (which ideally should always be zero). The scaling
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Parameter Range
Psd [0,15.7]
dta [0, 6.2832]
b5 [0,15.7]
ot [0,6.2832]
t [0,2]

P [0,1]

v = [t,) [0,2]

Table 4.5: Scaling ranges for coordinator network inputs. Each parameter value was scaled
with an affine transformation so that the range shown in the table corresponds to [0,1].
Angles are in radians and times are in seconds.

constants were given the values ks = 100, k; = 25, k. = 25, and k, = 25. No costs
are assigned at any other step of the dive state machine. In general, this dive evaluation
could have other termns from penalties incurred by bad requests to single-DOF controllers
or failure to finish the dive, for example. Other forms of dependence on somersault and
twist error, for example, could be used, as well. Also, additional costs could be assigned at
intermediate stages of the dive. The cost function shown in Equation (4.47) is simply one
possibility that works as a reinforcement signal.

The action selector shown in Figure 4.4 uses the current Q function output by the
coordinator network to determine what action vector v to send to the next multi-joint
synergy. During learning, the selector chooses a random action some of the time, in order
to better explore the control space. When not choosing the action randomly, the action
selector picks the greedy action, the action which minimizes the coordinator network’s
Q output. This minimization is performed using the quasi-Newton method described in
Section 4.1.2. For this application, of course, it is not the weights in the network that
are being varied, but the vector v, to minimize the network output Q. The gradient % is
calculated using backpropagation; considering the output neuron, the activation of an input

neuron specifying a component of the action vector vj, and the neurons in the first hidden
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layer (labeled with the subscript i), we have

0 _ o
8v]- - a’vj
3~ Do Ons
7 an,- av,»
= Zdiwij (4.48)
i
do
& = 5;1 (4.49)

The definition (4.49) here is only different from the standard one in Equation (4.17) by a
factor of e, the error at the output unit. Thus, by simply defining the “error” at the output
unit to be 1, the same backpropagation algorithm as was used in Section 4.1.2 can be used
here to calculate g = %3. This gradient can then be used in the BFGS update formula,
Equations (4.13)-(4.14), applied to the action vector v instead of the network weights w.
The coefficient « is calculated by the line search algorithm described in Section 4.1.2. As
the @ function is likely to have multiple local minima as well as some fairly flat areas,
the function minimization is performed with 25 initial conditions for v = [t;] randomly
generated in R, and the best result is chosen. The flatness of the @ function also makes it
necessary to modify the line search algorithm slightly, so that if the absolute value of either
the numerator or the denominator in the expression for a4, Equation (4.23), is less than
10712 the new point ey is chosen as 21322, Values smaller than this cutoff are too close
to the precision limit of the machine for a4 and the bound on the percentage error (see

Section 4.1.2) to be computed accurately enough.

Learning by Watching

As discussed in Section 4.2.1, the “learning by watching” stage of learning consists of
defining the dive’s cost structure (in the MDP sense), defining the multi-joint synergies and
the order in which they are performed, and roughly initializing the choice of parameters v
sent to each multi-joint synergy. For the diver, this latter part of the “learning by watching”
stage consisted of initializing the network weights and thus Q. This initial training for each
coordinator network used a set of synergy timing data, shown in Table 4.6, obtained from
video of the 1996 men’s and women’s Olympic platform diving competitions. Although this

data was obtained by human estimation using a frame-by-frame examination of the video,
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in the future such “learning by watching” kinematic and timing data could be extracted
from video automatically [13]. As can be seen from Table 4.6, the Olympic divers showed
quite a bit of variation in the timing of their dives. Some of the variation is probably
due to differences in their initial angular momenta at takeoff; some is due to differences in
technique (the United States and Chinese divers used very different styles, for example).
Both men’s and women’s timing data was included to make a larger samplé set. There
was only one jackknife example available, so the “learning by watching” training for that
dive was much less meaningful than for the others. The data in Table 4.6 is also fairly
noisy because the low frame rate of standard video (30 frames/sec) relative to the speed
of the divers’ movements made it difficult to estimate the beginning and end times of the
multi-joint synergies.

The data were converted into two sets of positive (s, v) instances (one for the twisting
dive and one for the other two dives) and assigned Q values of 0. Then, for each dive spec-
ification [@sq, $1a) and position vector p, 100 sets of random values of ¢, ¢, ¢, and v = [ts])
were generated. These negative instances were all assigned large positive Q) values equal to
the square of the distance to the nearest positive point (restricted to the same [¢sq, $14) and
p) multiplied by 5 for the twisting dive or by .1 for the jackknife and somersault dives. The
coordinator networks were then trained using the quasi-Newton method (see Section 4.1.2)
on the entire data set of positive and negative instances, to a cutoff total squared error of
.2 for the twisting dive or .1 for the jackknife and somersault dives. Figures 4.5-4.7 show
simulation frames of the resulting dives. The Olympic video data proved surprisingly good
for training the diver; with lower training cutoffs than these, the “learning by watching”
training was so effective that “learning by doing” was hardly needed. The more loosely
trained networks described here allowed the capabilities of the “learning by doing” stage to
be demonstrated.

The “learning by watching” training stage is essential for the diver problem. The
extreme nonlinearity of the @ function creates multiple local minima, even with only one
action parameter g, in which the @Q-learning algorithm can get stuck. The “learning by
watching” Q initialization ameliorates this problem by restricting the search space to a
region that should be near the global minimum. Furthermore, the “learning by watching”
weight initialization gives the Q-learning algorithm something of a head start, so that it
requires many fewer iterations to converge than it would starting with randomized network

weights. Since the Q-learning algorithm requires time-intensive simulation for each iteration,



forward pike (jackknife)

pike layout

Diver tend &s tstart

Xiao 400  1.745 1.100

1-;- somersault pike

pike layout

Diver tend ¢s tstart

Clark 333 2.967 1.067

Guo 433 3.142 1.100

Fu 400 2.793 1.167

Vyguzova 400  3.316 967

Walter 333 3.142 .967

Platas 400 3.142 1.267

Tian 333 2.356 1.367

Akhmetbekov 400 3.142 1.233

Pichler 333 3.142 1.200

Timoshinin 467 3.490 1.200

Sautin 367  2.793 1.267

Jeffrey 333 2.618 1.133

13 somersault 1 twist

throw pike layout
Diver tend &5 N Lstart tend ?s tstart
Guo .367 1.571 1.571 .600 .900 6.109 1.067
Fu 233 1.047 1.571 .567 .867 5.760 1.033
Clark 467 1.920 1.920 767 1.033 6.283 1.200
Jeffrey 467 1.745 3.142 .667 933 5.236 1.267
Tian 467 1.920 1.920 733 1.067 5.585 1.267
Xiao 333 1.222 1.396 .700 967 5.061 1.433
Akhmetbekov | .433 2.094 1.396 .700 1.000 5.934 1.200
Pichler .533 3.142 1.571 .767 1.000 5.934 1.200
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Table 4.6: Coordinator network initialization data obtained from Olympic men’s and
women’s platform diving video. #gart and te,q refer to start and end times of the specified
synergy, in seconds. ¢, and ¢, specify the somersault and twist angle at the end of the
synergy, in radians. Some divers performed their twists in a positive direction and some
in a negative direction; the values in the table have been normalized for positive twist. ¢,
values not specified in the table are zero for the jackknife and one-and-one-half-somersault
pike; ¢; at the end of the pike in the twisting dive is 27. The start time tgar; for the first
behavior in a dive always was zero, and the initial angles were always used as ¢; = .175
and ¢; = 0, as discussed in Section 4.2.1, though the start times and angles varied some
among the divers. The divers listed above the horizontal bar in the second and third tables
are women, and those listed below are men.

this advantage can be quite significant.

Learning by Doing

After the “learning by watching” initialization, the coordinator network refined its
model of the Q function through “learning by doing.” In this learning phase, the controller
tested choices of v through simulation and used the resulting costs to update the network
weights with the Q-learning algorithm.

In the “learning by watching” stage, the synergy activation sequence was fixed for each
dive. As discussed in Section 4.2.1, the controller behaves like a timed state machine as
it switches between the multi-joint behavioral synergies. The jackknife and the one-and-
one-half-somersault pike both use the sequence (pike, layout). The twisting dive uses the
sequence (throw, pike, layout). This state machine becomes the Markov decision process
underlying the Q-learning algorithm.

At each transition of the behavioral state machine, the controller’s action selector uses
the coordinator network’s model of Q to choose the parameter vector for the next synergy.
The coordinator network’s approximation is updated at each transition as well. A flow
chart showing the linked processes of action selection, simulation, and learning is shown in
Figure 4.8. At the beginning of a dive, at t = 0, the first synergy in the state machine is
initiated. This synergy uses the initial values of 6 and 6 for each DOF to determine the
inputs yq for the single-DOF controllers. After the synergy has executed, the resulting
state sg = [¢s, #¢,t, P] is input to the coordinator network, and the action selector chooses
an action vector (possibly random) for the next synergy (see Figure 4.8). After waiting for

the amount of time specified by v = [t,], the new synergy uses the current & and 8 for each
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Figure 4.5: Frames from a simulation of the jackknife dive after the “learning by watching”
stage but before the “learning by doing” stage. The diving platform is virtual and does not

affect the trajectory.
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Figure 4.6: Frames from a simulation of the one-and-one-half-somersault pike dive after the
“learning by watching” stage but before the “learning by doing” stage.
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Figure 4.7: Frames from a simulation of the twisting dive after the “learning by watching”
stage but before the “learning by doing” stage.
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dive begins
|
send commands
to single-DOF begin
controllers new
. ) dive
wait until
synergy
has finished
‘ assign
divx es cost;
done? . do final
learning
1o update
select action
for next
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was this the
first synergy?
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do learning
wait t; update
no dive yes

done?

Figure 4.8: Flow chart showing the relationships between the processes of action selection,
simulation, and learning during the “learning by doing” stage.
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DOF to determine the new inputs yq for the single-DOF controllers. At any stage, if there
are no more synergies left for the dive being executed, the simulation simply continues
until the diver reaches the water. While waiting for a synergy’s start time or after the
entire sequence of behaviors has been executed, the joints are held in position by the PD
controllers mentioned in Section 4.2.1. Each PD controller’s set point is defined by the
DOF’s position at the end of its previous movement.

The Q-learning algorithm is applied to the coordinator net at each transition between
synergies. The trajectories in the diver system are finite, ending when the diver hits the
water, so the sum in Equation (4.45) is finite. With these short trajectories, no discounting
is needed, so ¥ = 1. When one synergy finishes, the best action vector v is computed for
the next synergy, as described above. The Q value corresponding to this action vector is

then used to compute the temporal difference:

dk = Q(sk+17 V’, wk) - Q(Ska v, wk)) (450)

min
v'€V(SKk+1)
where sy is the state at the beginning of the previous synergy and si.; is the state at the
start of the new synergy. If the synergy is the last in the dive, no new behavior is computed,

and the temporal difference is computed as:
di = C — Q(sk, v, w¥) (4.51)

where C is the cost assigned at the end of the dive (Equation (4.47)). If the temporal
difference dj is considered to be the negative of the pattern error e on the coordinator
network output neuron, with E, = 1e?, this error can be propagated back through the
network as described in Section 4.1.2 (Equations (4.16)-(4.21)) in order to calculate the
term g% = %g (sk,V, wk)dk. In addition to the gradient term, it was useful as an exploration
aid to add a small random component 7 to the weights at each step. The weight update is

then:

-~

k41 = wk — a%(sk,v, wk)d,c +7 (4.52)

The next action v is chosen by minimizing the @ function over all possible actions, as

w

described in Section 4.2.1, except for some percentage of actions which are chosen randomly.
The coordinator network for the jackknife and one-and-one-half-somersault pike dives
was trained over a total of 2905 dives (at each iteration, one of the two dives was randomly

selected for simulation and learning). The network for the twisting dive was trained over
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# iterations o Tlmax random v
90 .005 2.5x 10~° .25
965 .005 2.5 x 1074 .25
650 .005 2.5 x 10~5 25
700 .05 2.5 x 10~5 .25
300 1 5.0 x 105 .25
200 .05 2.5 x 1076 .10

Table 4.7: Training schedule for the one-and-one-half-somersault pike and jackknife dives.
The first column gives the number of iterations, the second the learning rate o, the third
the maximum absolute value of the noise 7, and the fourth the fraction of the time random
actions v were selected.

# iterations a Tmax random v
210 .0001 2.5 x 10~ .25
165 .00001 2.5 x 107 .25
700 .00001 2.5 x 1076 .25
600 .00001 2.5 x 1077 .10

Table 4.8: Training schedule for the twisting dive. The first column gives the number of
iterations, the second the learning rate «, the third the maximum absolute value of the
noise 7, and the fourth the fraction of the time random actions v were selected.

1675 dives. The schedule of learning rates a, ranges of the noise term 7, and percentages
of random action choices are given in Tables 4.7 and 4.8, and the training results for the
three dives are shown in Figures 4.9-4.25. For a random action choice, the v = [t;] value
was chosen uniformly in [tl — .0005,t! + .0005), where ¢! is the greedy action, the one that
minimizes Q. At each weight update, 7 was chosen uniformly in [—%max, max)-

The trained controller produces good dives; the “learning by doing” phase improved
significantly on the “learning by watching” phase. The twisting dive network training
seemed to rely more heavily on having a good “learning by watching” initializaton than did
the training of the network for the jackknife and one-and-one-half-somersault pike dives.
The twisting dive is more difficult to learn both because it involves a sequence of two
action choices rather than just one and because it involves transfers of rotational velocity
between the somersault and twisting axes; the behavior of the system is very nonlinear and
is sensitive to the time at which the diver comes out of the twist into the pike position.

At the end of the training, the action choices for all three dive types were still signif-

icantly different from the optimal values, however. The controller learns the Q value very
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accurately at the current greedy action, but, even with large amounts of randomization
injected (both in the choice of v and in the weight update), does not seem to match this
level of accuracy for values of t; away from t!, and so is unable to finely locate the global
minimum. The top panel in Figure 4.20, for example, reveals that at the end of train-
ing, after the temporal differences have converged to quite small values, randomized action
choices still sometimes yield smaller errors than the action that minimizes the trained Q.
This residual error is a reflection of the small final twist angle and velocity errors visible in
Figures 4.21 and 4.22. Similar final errors can be observed in the other dives, as well. This
phenomenon will be discussed further in Section 5.2.

The “learning by watching” initialization ensures that the Q-learning algorithm need
not learn values very far away from the global minimum, but higher accuracy in a region
around the greedy action is still necessary to achieve the smallest dive costs. Lower final
dive errors can sometimes be achieved by training the network to a smaller cutoff during
the “learning by watching” stage, as mentioned above; the dive error then starts out much
lower in the “learning by doing” stage and therefore tends to converge to a lower final error
more easily. In the twisting dive, the difficulty in achieving small dive costs is also partly
due to the nonlinearity of the diver dynamics mentioned above: small errors in the time for
pulling out of the twist into the pike tend to result in unstable rotation about the twist and
cartwheel axes, which is exacerbated later by going into the layout position (see Figure 4.7,
for example). In all three dives, the minimum achievable dive cost may also be limited by
the accuracy of the single-DOF controllers (including the effectiveness of the low-level PD
servos). These limitations could possibly be overcome through the use of global feedback,
but such feedback would be difficult to design for a system with behavioral goals like the

diver, as will be discussed in Chapter 5.
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Figure 4.9: Training data for the jackknife dive. First plot: Dive costs, calculated as in
Equation 4.47. Second plot: Temporal differences at the state transition where learning
occurs (pike to layout). Third plot: Scaled action choices (¢;, the time to wait before
executing the layout synergy). The unscaled t; values (times, in seconds) are two times
the plotted scaled values. The iteration number on the horizontal axis indicates the total
number of jackknife and one-and-one-half-somersault pike trials; this figure and Figure 4.10
show interleaved learning trials.
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Figure 4.10: Training data for the one-and-one-half-somersault pike dive. First plot: Dive
costs, calculated as in Equation 4.47. Second plot: Temporal differences at the state transi-
tion where learning occurs (pike to layout). Third plot: Scaled action choices (,, the time
to wait before executing the layout synergy). The unscaled t5 values (times, in seconds) are
two times the plotted scaled values. The iteration number on the horizontal axis indicates
the total number of jackknife and one-and-one-half-somersault pike trials; this figure and
Figure 4.9 show interleaved learning trials.
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jackknife and 1 1/2-somersault pike dives
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Figure 4.11: Comparison of the jackknife somersault dives after the “learning by watching”
stage and after the full “learning by doing.” The solid line indicates the somersault angle
for the jackknife after the full learning, and the dashed line is the somersault angle for
the somersault dive after the full learning; the dash-dot line is the jackknife after only
the “learning by watching” phase, and the dotted line is the somersault after “learning by
watching.” All angles are in radians.



Figure 4.12: Frames from a simulation of the learned jackknife dive.
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Figure 4.13: Body and joint angles (in radians) for the learned jackknife dive. The first
plot shows the somersault angle. For the other five plots, the solid line is the even DOF,
and the dashed line is the odd DOF. Degrees of freedom 0 and 1 are the right and left hip,
2, 4, and 6 are the three Euler angles of the right shoulder, 3, 5, and 7 are the angles of
the left shoulder, and 8 and 9 are the right and left elbow. The horizontal axes are time, in
seconds.
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Figure 4.14: Torques (in Newton-meters) for the learned jackknife dive. In the first five
plots, the solid line is the even DOF, and the dashed line is the odd DOF. The last plot
shows the total torque (solid), the feedforward torque (dashed), and the feedback torque
(both during and between movements; dotted) for DOF 2. Degrees of freedom 0 and 1 are
the right and left hip, 2, 4, and 6 are the three Euler angles of the right shoulder, 3, 5, and 7
are the angles of the left shoulder, and 8 and 9 are the right and left elbow. The horizontal
axes are time, in seconds.
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Figure 4.15: Velocities (in radians/second) for the learned jackknife dive. In the first
five plots, the solid line is the even DOF, and the dashed line is the odd DOF. The last
plot indicates which synergy is active at any given time: 0 represents the layout synergy, 1
represents the pike synergy, and 4 indicates the state machine has completed all the required
synergies. Degrees of freedom 0 and 1 are the right and left hip, 2, 4, and 6 are the three
Euler angles of the right shoulder, 3, 5, and 7 are the angles of the left shoulder, and 8 and
9 are the right and left elbow. The horizontal axes are time, in seconds.
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Figure 4.16: Frames from a simulation of the learned one-and-one-half-somersault pike dive.
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Figure 4.17: Body and joint angles (in radians) for the learned somersault dive. The first
plot shows the somersault angle, the dashed line is the twist angle, and the dotted line is
the cartwheel angle. For the other five plots, the solid line is the even DOF, and the dashed
line is the odd DOF. Degrees of freedom 0 and 1 are the right and left hip, 2, 4, and 6 are
the three Euler angles of the right shoulder, 3, 5, and 7 are the angles of the left shoulder,
and 8 and 9 are the right and left elbow. The horizontal axes are time, in seconds.
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Figure 4.18: Torques (in Newton-meters) for the learned somersault dive. In the first five
plots, the solid line is the even DOF, and the dashed line is the odd DOF. The last plot
shows the total torque (solid), the feedforward torque (dashed), and the feedback torque
(both during and between movements; dotted) for DOF 2. Degrees of freedom 0 and 1 are
the right and left hip, 2, 4, and 6 are the three Euler angles of the right shoulder, 3, 5, and 7
are the angles of the left shoulder, and 8 and 9 are the right and left elbow. The horizontal

axes are time, in seconds.
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Figure 4.19: Velocities (in radians/second) for the learned somersault dive. In the first
five plots, the solid line is the even DOF, and the dashed line is the odd DOF. The last
plot indicates which synergy is active at any given time: 0 represents the layout synergy, 1
represents the pike synergy, and 4 indicates the state machine has completed all the required
synergies. Degrees of freedom 0 and 1 are the right and left hip, 2, 4, and 6 are the three
Euler angles of the right shoulder, 3, 5, and 7 are the angles of the left shoulder, and 8 and
9 are the right and left elbow. The horizontal axes are time, in seconds.
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Figure 4.20: Training data for the twisting dive. The first set of plots shows the first 500
iterations, and the second set shows iterations 501 through 1675. Top plots: Dive cost,
calculated as in Equation 4.47. Second and third: Temporal differences at the two different
state transitions where learning occurs. Fourth and fifth: Scaled action choices (s, the time
to wait before executing the indicated synergy) at the two different state transitions. The
unscaled ¢, values (times, in seconds) are two times the plotted scaled values.
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Figure 4.21: Comparison of the twisting dive after the “learning by watching” stage and
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Figure 4.22: Frames from a simulation of the learned twisting dive.
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Figure 4.23: Body and joint angles (in radians) for the learned twisting dive. In the first
plot, the solid line is the somersault angle, the dashed line is the twist angle, and the dotted
line is the cartwheel angle. For the other five plots, the solid line is the even DOF, and the
dashed line is the odd DOF. Degrees of freedom 0 and 1 are the right and left hip, 2, 4,
and 6 are the three Euler angles of the right shoulder, 3. 5, and 7 are the angles of the left
shoulder, and 8 and 9 are the right and left elbow. The horizontal axes are time, in seconds.
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Figure 4.24: Torques (in Newton-meters) for the learned twisting dive. In the first five
plots, the solid line is the even DOF, and the dashed line is the odd DOF. The large sharp
spikes in the first plot are due to the joint limits (compare with Figure 4.23). The last plot
shows the total torque (solid), the feedforward torque (dashed), and the feedback torque
(both during and between movements; dotted) for DOF 2. Degrees of freedom 0 and 1 are
the right and left hip, 2, 4, and 6 are the three Euler angles of the right shoulder, 3, 5, and 7
are the angles of the left shoulder, and 8 and 9 are the right and left elbow. The horizontal
axes are time, in seconds.
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Figure 4.25: Velocities (in radians/second) for the learned twisting dive. In the first five
plots, the solid line is the even DOF, and the dashed line is the odd DOF. The last plot
indicates which synergy is active at any given time: 0 represents the layout synergy, 1 rep-
resents the pike synergy, 2 represents the throw synergy, and 4 indicates the state machine
has completed all the required synergies. Degrees of freedom 0 and 1 are the right and left
hip, 2, 4, and 6 are the three Euler angles of the right shoulder, 3, 5, and 7 are the angles
of the left shoulder, and 8 and 9 are the right and left elbow. The horizontal axes are time,
in seconds.
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Chapter 5

Discussion

The results presented in Chapter 4 demonstrate that the learning controller presented in
this dissertation is capable of learning to execute complex skills such as platform diving. In
general, the approach presented here is good for learning complex skills which have a known
goal, complicated or unknown dynamics, and known behavioral strategies for approaching
the task (cognitive or linguistic information is available). There are difficulties with this
approach, however, both in the representation and in the learning algorithms, and there is

still a long way to go in addressing skill acquisition problems in general.

5.1 Behavioral Representation

The behavioral representation that was used for the diver, at the level of the multi-joint
synergies (“throw,” “pike,” and “layout”), captured diving motions fairly well with only one
variable parameter, t;. There are, however, several drawbacks to this representation. First,
there are several other parameters in the representation that need to be defined by hand in
advance (see Table 4.3), such as the desired time Ty for each of the synergies and the desired
joint excursions A, for each degree of freedom in each synergy. These could, of course, be
added as variables in the action vector v, but doing so would make the dive harder to learn.
In addition, technique varied somewhat among the Olympic divers; some of them made
some use of bending around the x-axis at the waist or pelvis, for example, which could be
included in the behavioral representation with the addition of an extra degree of freedom.

A more serious drawback is that, in order for the system to be a Markov decision

process, each behavior must end before the next one can be invoked; no blending of actions
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is possible. Also, the body position representation used in the controller design here, in
which the configuration of the diver is simply represented by the binary string p, renders the
system no longer strictly Markov. since all positions classified as a particular p do not have
exactly the same ¢ Furthermore, human divers can do small, corrective motions that do not
fit within any of the behavioral synergetic structures. Some of these motions involve more
flexibility (of the back, primarily) than is possible with a rigid body model. In particular.
the sensitivity to the time for leaving the throw position to enter the pike position seen
in the simulation implies that human divers must use some kind of postural stabilization
feedback, possibly with an anticipatory component, to ensure that the twist angle stays at
27 (that the angular velocity vector is realigned with the angular momentum vector). In
addition to this stabilization, a human diver may have enhanced sensory feedback available
that better allows the diver to anticipate the right time to come out of the throw. It may
be possible to incorporate some of the repertoire of corrective movements and modifications
of the multi-joint synergies that human divers use to correct errors in the twist angle or
twist velocity (which should be zero after coming out of the throw) into the behavioral
synergetic framework by adding new synergies or by adding parameters to existing ones.
Any continuous, global feedback that may be used by divers would be difficult to incorporate
into the Markov decision process structure, however, as well as possibly being difficult to
formulate for a nonholonomic system without explicit path planning. Without such global
feedback, high-level disturbance rejection during the dive is limited to that provided by
the action selector, which takes into account the current state information vector sg =
[¢s, @1, t, p] through the coordinator network’s approximation of @, but which operates
only at discrete times. There is, of course, some low-level disturbance rejection provided
by the PD feedback. Global feedback would also be useful in refining the dive produced by
the open-loop controller after “learning by doing™ training, which may not quite reach the
optimal control parameters. as mentioned in Section 4.2.3.

Another issue is how the student extracts the behavioral representation from linguistic
information and from watching other performers during the “learning by watching” stage.
The student must somehow decide which of the visual information describes the most es-
sential features of the movement. Linguistic instructions from a coach must be translated
into kinematic or dynamic constraints. For example, in the diver problem, the student
knows that he or she must begin coming out of the twist at such a time as to end up with

exactly 27 twist rotation. It is not obvious how to incorporate this foreknowledge into the
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behavioral or cost structure. In the control design presented here, the simulation does not
learn the outcome of its timing choice until the end of the dive, and then this information
must propagate back through the intervening states. A cost proportional to (¢: — 27)? can
be assigned at the end of the pike synergy, but doing so does not seem to improve learning,
and the controller still has no implicit knowledge about the dynamics of the dive. A human
knows in advance that, say, waiting for 1.5 seconds before coming out of the throw into the
pike is always going to be too long, and will never try it; the controller, on the other hand,
has no such cognitive understanding and must try everything allowed within the behavioral
framework to know what choices will work. The cognitive understanding must therefore
be built into the behavioral framework. The “learning by watching” behavioral stage alle-
viates this problem to some extent by initializing the @ function and thus restricting the

parameter search space.

5.2 Learning Techniques

Some of these drawbacks of the behavioral representation are intimately tied to the
limitations of reinforcement learning techniques. By requiring the Markov decision process
formulation, reinforcement learning restricts the behavioral representation to the sequential
state machine model, with all the problems inherent in that model, as discussed above. Even
with its drawbacks, the sequential state machine is a reasonable one for skills such as diving
that involve a series of subroutines. For other skills that involve simultaneous, parallel
subroutines, such as walking and running (see Section 2.5), bicycling, and windsurfing,
however, a Markov decision process representation may not be as good a fit. In windsurfing,
for example, the dynamics of the wind and water and the control actions employed by
the surfer are much more naturally considered in continuous time than divided up into
discrete time chunks, especially as a large component of the problem involves dealing with
continuous, random disturbances. In bicycling, the parallel, coupled subroutines for balance,
steering, and pedaling are also essentially continuous actions. In walking and running as
well, although the three underlying subroutines can be implemented as a state machine (see
[80], [79]) or viewed in the context of a return map, from a learning point of view, some of the
subroutine parameters (possibly spring constants, for example, which are very important
in locomotion) might be better learned with a continuous-time technique. As mentioned

above, even in sequential skills like diving there can be overlap or blending between the serial
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control actions, as well as ongoing postural stabilization, so a more general, continuous-time
learning model which still addresses the temporal credit assignment problem that arises
when there are delayed rewards would be useful. Model predictive control, a method which
has been widely used in process control for both continuous and discrete time system models
(see [63], [83], [8]), bears a strong resemblance to reinforcement learning; an exploration
of the connection between these two approaches could be an extremely fertile area for
future research. A continuous-time reinforcement learning algorithm could also be useful
in exploring other issues in learning, such as why progressing from feedback control to
feedforward control during learning may be useful (see Section 2.5); in biological systems,
using feedback at the start of learning when the open-loop control is still poor serves to
protect the organism, but it may also perform other functions such as restricting the learning
to a useful region of the state space.

Within the reinforcement learning paradigm, convergence results have been hard-won
(see Section 4.2.2; [11]). For the diver problem, as mentioned in Section 4.2.3, because we
do not have a model of the state transitions and costs, we are required to use Q-learning
rather than, for example, TD()\). Because the state space is partially continuous, we must
use a function approximator rather than table lookup. These two factors, together with
the fact that the diver system is only approximately Markov, complicate the picture in
terms of convergence; there has as yet been no proof of convergence of a Q-like algorithm
when combined with a function approximator, except for very special cases. With function
approximators like neural networks that are nonlinear in their parameters, even TD()) may
diverge; with Q-learning the situation is worse. In addition, nonlinear approximators are
susceptible to local minimum problems.

With @Q-learning, particularly in a deterministic system like the diver, exploration be-
comes a big issue as well. Exploration is required to ensure that the Q values of all po-
tentially useful (s, v) pairs are heing accurately modeled by the approximator: in a deter-
ministic system, it is necessary to inject randomness into the choice of action to meet this
requirement. The scope of the required randomness is limited by the “learning by watch-
ing” initialization, which eliminates extremely poor action choices from consideration, to
some extent. Even with randomness, however, the Q-learning algorithm with a network
approximator is prone to converge to a suboptimal choice of actions, as mentioned in Sec-
tion 4.2.3. At each iteration, the algorithm improves the estimate Q at the (s,v) point

just visited. A neural network is a global approximator, so this adjustment affects the Q
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estimate at all other points as well, and thus moves the minimum of the @ function. A small
weight adjustment can have quite a large effect on the location of the Q minimum and thus
on the greedy action. Even if small learning rates are used, updating the @ value at one
point distorts the shape of the approximation at neighboring points to some extent, and
the network tends to “forget” what it has learned about those points previously. Once the
temporal differences become small, the algorithm tends to get stuck at its current estimate
of the minimum, even though randora action choices force the controller to sample nearby
points occasionally. Adding the small random component 7 to the weight update improves
matters somewhat, but the algorithm still tends not to reach the lowest possible dive error.
This problem is similar to the requirement of persistent excitation in adaptive control, but
is exacerbated by the global nature of the network approximation. It is possible that using
much larger networks, perhaps with steeper activation functions, would help this problem
by allowing more neurons to contribute effectively to the Q estimate in each region. Also,
with a mechanism for global feedback, this limitation of the open-loop learning would be
less of a problem, as mentioned in Section 5.1.

The @ minimux., and thus the greedy action, do not necessarily travel toward the
true minimum at each step in the algorithm. The shape of the “learning by watching” Q
initialization is thus quite important. Depending on its shape, the action choices may, at
the start of the “learning by doing” phase, head toward or away from the true optimal
values. If they head away from the optimum very much, the coordinator network may end
up in a suboptimal local minimum. In addition, since the @ minimum tends to stop moving
when the temporal differences get small, better final dive costs are usually obtained if the
estimated minimum starts out moving in the right direction. “Learning by doing” for the
controller is therefore different from human learning in that in order to start the Q-learning
algorithm near the best local minimum and moving in the right direction, fairly accurate
“learning by watching” initialization is required. The human learning algorithm is obviously
much more sophisticated and is able to make use of a higher level of understanding; it can

therefore succeed with much rougher initial timing estimates.

5.3 Conclusion

Though there are several hurdles that need to be overcome in applying reinforcement

learning techniques to continuous, nonlinear problems like the diver, the approach is promis-
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ing. By using a behavioral control structure to simplify the control representation, the
learning problem is reduced to the relatively ‘simple task of learning a set of parameters
at each hierarchical level. Thus, complex skills which are difficult or impossible to control
using conventional methods become feasible: the controller described in this dissertation
successfully learned to execute three different platform dives.

The ability of a controller to learn complex, natural skills has applications in dynamic
computer animation as well as robo*ics. In addition, the idea of a behavioral structure
together with learning algorithms can be used in an identification context, such as for
visual learning or gesture recognition. Eventually, a deeper understanding of machine and
robotic skill acquisition could lead to insights into human motor learning that would be

useful in sports training or rehabilitation contexts as well as theoretically.
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Appendix A

Inertial Compensator

The calculations for the inertial compensator are based on the product of exponentials
formulation for kinematics; see [70] for a full exposition. Each degree of freedom can be

described by a twist £ € Ré. The twist can be written

e=["}, (A.1)
w

where w is the axis of rotation of the degree of freedom and v = —w x q, with q a point on

the rotation axis. £ can be converted into an element of se(3) through the " (cross product)

- Qv
— .
é"[o 0] (A.2)

0 —-w3 wo
w3 0 -w (A.3)

—Ww2 W 0

operator:

where @ € so(3):

| 58
Il

As mentioned in Section 4.1.1, the inertial compensator is greatly simplified by consid-
ering each limb independently. For one arm, then, there are four degrees of freedom: three
at the shoulder and one at the elbow (degrees of freedom 2, 4, 6, and 8 for the right arm
and 3, 5, 7, and 9 for the left). For the following discussion, these degrees of freedom will
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be numbered one through four. The corresponding twists are:

0 0] 0 2
0 0 0 0
0 0 0 %
= y 8§27 y 3= y §4= ’ (A4
& 0 3 o 3 0 4 0 )
0 1 0
I 1 0 ] I 1 0

where | y; | are the coordinates of the elbow joint relative to the shoulder joint in the
Zj
zero position. For the ith degree of freedom, the body frame Jacobian is given by
Ji=g-efo-0] (A5)

{;, the instantaneous twist of the jth degree of freedom relative to the ith link, is

1 — Ad™) )

{7 - Adeéjoj ---eé"ofg;(O)EJ, (A-ﬁ)
where 6; is the angle of the jth degree of freedom and g;(0) is an element of SE(3) describing
the position and orientation of the link corresponding to joint ¢ in the zero configuration.

The inverse adjoint operator corresponding to an arbitrary element g of SE(3), in homoge-

neous coordinates,

R p
o ®
with R € SO(3) and p € R3, is given by
RT —RTf)
Adg' = A8
& l 0 RT ] (A.8)

The exponential of a twist can be obtained as

(A.9)

é0 [ e’ (I - e (w x V) +ww’ve ]
e’ = ,
0 1
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where I is the identity in R® and e“? is the rotation matrix R € SO(3), which can be

obtained with Rodrigues’ formula:
€9 =1+ &sinf + &%(1 — cosh) (A.10)

Finally, the mass matrix for the limb is given by

M(6) = anJF(e)MiJi(m, (A.11)

i=1
where n is the number of degrees of freedom in the limb, M; is the generalized inertia
matrix for the link corresponding to the ith degree of freedom, and @ is a vector of the
angles of all the degrees of freedom. M; takes the form
M= | ™ O, (A.12)
0 7
where m; is the mass of the link corresponding to the ith degree of freedom and Z; is the
inertia matrix for that link. If the principal axes of the link are aligned with the global axes
in the zero position, this matrix is diagonal.
For the arms, there are four degrees of freedom: three Euler angles in the shoulder and
elbow flexion. Mj; = My = 0, since the first three degrees-of freedom are all part of the

same joint; the first two “links” are virtual. Using the equations above, tedious calculation

obtains:
—CoYu + 52532y C32y -y, O
CoTy + 89C32y —832y z, O
—8983Ly — S2C3 S3Yy — C3T 0 O
Js = u Yu S3Yu 3Ty (A.13)
—382C3 83 0 0
8983 c3 0 0
C2 0 1 0
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(s2c384 — c2ca)yi :
—8384Y1 + 32

+382832;
+C3847; —C4Yt 2 — zj
+828384T;
—c3(1 - ca)z;
—3283(1 — c4)z;
(0264 — 82€384 )(El
8384%; — 83C421 c4xy + 8421
+(c284 + 82€3C4)2
' —8384%; +z;(1 — c4) 0
+(Cz(1 - C4) + 326384)$j
—83(1 - c,,)z,- —842j
+(8263(1 - C4) - 0234)zj
Jg= (A.14)

—8283I;
—C3Z1 + S3C4Y1
—(826304 + €284 )y,

+63(1 - c.,)a:,- —S84Y1 -]+ Z;
+5283(1 — cq)T;
+C3S4Zj
+8283842;
—82C3C4 — C254 83C4 —84 0
S283 C3 0 1
L —89C384 + C2C4 8384 C4 0
Ty z;

where | y, | and | y | are the coordinates of the center of mass of the upper and

K z
T
lower arm (plus hand), respectively, in the zero configuration, | y; | are, as above, the
Zj
coordinates of the elbow joint in the zero configuration, and ¢; and s; are the cosine and
sine, respectively, of the angle of the ith degree of freedom. All coordinates are with respect
to the shoulder joint.

Making use of the fact that
IT(0)M434(6) = IL(6)MaT41(8) + I, (8) Mandan(6), (A.15)

where the subscript [ indicates the lower arm and the subscript 4 indicates the hand, we can

simplify calculation by making use of the diagonality of the inertia matrices in the human
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model. Equation (A.11) then becomes:
M = J7(6)M3J3(6) + IZ(O)MaTai(6) + I£1(0) ManIan () (A.16)

My and My, are written with respect to the lower arm and hand separately, and J4)(0)
and J4n(0) can similarly be obtained from Equation (A.14) using the coordinates of the
lower arm and hand individually. '

For the leg limbs, no calculatica is needed, as there is only one degree of freedom

involved, hip flexion. The mass matrices are therefore constant.
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Appendix B

Data Plots
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Figure B.1: Plots of the 1000-point data set for DOF 2, PWM mode. A. Control parameters
and sensor input vy plotted against each other. These values were generated randomly;
portions of the space that do not appear in the data set cause the simulation to run into
the joint limits or to exceed the prespecified limits on A (see Section 4.1.2). B. Control
parameters pwl and pw2 plotted against the y values A8, A, and T. C. Control parameter
ph and sensor input vo plotted against the y values. D. y values plotted against each other.
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Figure B.2: Plots of the 1000-point data set for DOF 2, PHM mode. A. Control parameters
and sensor input vy plotted against each other. These values were generated randomly;
portions of the space that do not appear in the data set cause the simulation to run into
the joint limits or to exceed the prespecified limits on Af (see Section 4.1.2). B. Control
parameters phl and ph2 plotted against the y values A6, Aé, and T. C. Control parameter
pw and sensor input vp plotted against the y values. D. y values plotted against each other.
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Appendix C

Single-DOF Controllers: Sample
Training Results
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Figure C.1: Log (base 10) plots of the errors 3,3, (0p,m — tpm)? =23, Ep of the DOF

0,
to

PHM mode networks during training. Top: Forward network. The algorithm was run
a cutoff error of .08 after 733 iterations, then reinitialized and run to a cutoff of .06.

Center: Inverse network, direct training phase. The algorithm was run to a cutoff error

of

.08 after 176 iterations, then reinitialized and run to a cutoff of .06. Bottom: Inverse

network, indirect training phase. Error 23, Ep =3, |[¥p — ¥p,all- The algorithm was run

to

a cutoff error of .08.
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Figure C.2: Errors for the DOF 2, PWM mode networks after training. The top plot shows
the error of the forward net on all 1000 training data samples, and the bottom plot shows
the errors ||§p — ¥p,d||? for the inverse net and the forward net combined (indirect training
method). The errors are calculated as 3", (0p,m — tp,m)? = 2E,, measured on scaled data.
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Figure C.3: Errors for the DOF 2, PWM mode networks when tested on a 100-point test
data set. The top plot shows the forward net error, and the bottom plot shows the error
||¥p — ¥p.all? of the inverse net and the forward net combined. The errors are calculated as
3,2 (0pm — tpm)? = 2Ep, measured on scaled data.
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Figure C.4: Errors ||§p — yp,al|? for the DOF 2, PWM mode networks when controls
generated by the inverse networks are simulated. The top plot shows the errors for the 100-
point test data set, and the bottom plot shows the errors for 100 newly generated points
which were tested for feasibility by being passed through the forward network (see text).
The errors are calculated as 3=, (0p,m — tp,m)? = 2E,, measured on scaled data.
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Figure C.5: A sample movement produced by the trained single-DOF controller for DOF
0 (right hip), PHM mode. The desired movement outcomes were Afy = —1.885 (scaled
value of .2), Afy = 2.790 (scaled value of .7), and T = .220 (scaled value of .2) seconds. vp
was -2.790 (scaled value of .1). The scaled control values selected by the control network
were phl=.174, ph2=.781, pw=.354. The actual movement outcomes were Af = —1.784,
Af = 2.923, and T = .221. The initial angle for DOF 0 was -1.179. The angles for the other
degrees of freedom were chosen randomly, as discussed in the text. A. Torque, velocity, and
position of DOF 0. B. Torques (in Newton-meters) for various degrees of freedom during the
movement. All degrees of freedom other than 0 were held at a fixed angle. C. Components
of the DOF 0 torque that were contributed by the feed-forward filtered pulses and the PD
feedback.
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Figure C.6: A sample movement produced by the trained single-DOF controller for DOF 2
(the first Euler angle in the right shoulder), PWM mode. The desired movement outcomes
were Af; = 2.513 (scaled value of .9), Afy = 1.395 (scaled value of .6), and Ty = .360
(scaled value of .6) seconds. vy was -1.395 (scaled value of .3). The scaled control values
selected by the control network were pwl=.745, pw2=.377, ph=.431. The actual movement
outcomes were A8 = 2.560, A§ = 1.275, and T = .357. The initial angle for DOF 2 was
-2.752. The angles for the other degrees of freedom were chosen randomly, as discussed in
the text. A. Torque, velocity, and position of DOF 2. B. Torques (in Newton-meters) for
various degrees of freedom during the movement. All degrees of freedom other than 2 were
held at a fixed angle. C. Components of the DOF 2 torque that were contributed by the
feed-forward filtered pulses and the PD feedback.
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Figure C.7: A sample movement produced by the trained single-DOF controller for DOF 2
(the first Euler angle in the right shoulder), PHM mode. The desired movement outcomes
were Afy = 1.571 (scaled value of .75), Afy = 0 (scaled value of .5), and Ty = .255 (scaled
value of .3) seconds. vp was zero (scaled value of .5). The scaled control values selected by
the control network were phl1=.703, ph2=.413, pw=.649. The actual movement outcomes
were A = 1.552, A@ = —.00990, and T = .255. The initial angle for DOF 2 was -2.098. The
angles for the other degrees of freedom were chosen randomly, as discussed in the text. A.
Torque, velocity, and position of DOF 2. B. Torques (in Newton-meters) for various degrees
of freedom during the movement. All degrees of freedom other than 2 were held at a fixed
angle. C. Components of the DOF 2 torque that were contributed by the feed-forward
filtered pulses and the PD feedback.
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