
 

 

 

 

 

 

 

 

 

Copyright © 1998, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



FAST HARDWARE-SOFTWARE

CO-SIMULATION USING VHDL MODELS

by

B. Tabbara, E. Filippi, L. Lavagno and
A. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M98/54

5 September 1998

C V <.



FAST HARDWARE-SOFTWARE
CO-SIMULATION USING VHDL MODELS

by

B. Tabbara, E. Filippi, L. Lavagno and A. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M98/54

5 September 1998

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia, Berkeley

94720



Fast Hardware-Software Co-simulatioii Using VHDL Models

B. Tabbara' E. Filippi L. Lavagno A. Sangiovanni-Vincentelli

EECS Department CSELT +
U.C. Berkeley V. Reiss Romoli 274,

Berkeley, CA 94720 M0148 Torino
U.S.A Italy

Cadence Berkeley Labs
2001 Addison St., 3rd Floor

Berkeley, CA 94704
U.S.A

EECS Department
U.C. Berkeley

Berkeley, CA 94720
U.S.A

Abstract

IVe describe a technique for hardware-software co-
simulation that is almost cycle-accurate, and does not
require the use of interprocess communication nor a C
language interface for the software components. Soft
ware is modeled by using behavioral VHDL constructs,
annotated with timing information derived from basic
block-level timing estimates. Hardware is also mod
eled in VHDL, and can be either pre-existing Intellec
tual Property or synthesized to RTL from a functional
specification. Execution ofthe VHDL processes model
ing software tasks is coordinated by a process emulating
the target RTOS behavior. The effects ofchanging the
hardware/software partition can be quickly estimated by
changing a process parameter defining its target imple
mentation and the processor on which it is running.

1 Introduction
Embedded systems include hardware and software

components cooperating together to achieve a common
goal, like implementing a cellular phone, controlling a
motor or an engine, and so on. Their validation ac
cording to the current design practice requires perfor
mance simulation of both hardware and software, in
order to assess the overall performance of the system
and to check the correctness of the interfaces.

One common method used to perform such co-
simulationinvolves running the software on a hardware
model of the processor [151. This solution has a ma
jor problem: RTL or behavioral processor models are
difficult to develop, expensive and slow (up to tens of
clock cycles per second for RTL and thousands ofclock
cycles per second for behavioral). Hence designers of
ten use bus-functional processor models, that represent
the bit-true behavior of the processor bus, but with a
statistical model of the application. These models can
be used to exercise and debug the hardware side of the

•SRC Graduate Fellow
1Centre Studi e Laboratori Telecomunicazioni

hardware/software interface. The software code, on the
other hand, isexecuted anddebugged on instruction set
(ISA) processor models. Such models represent explicit
processor registers and interpret its binary code. Their
speed can be up to tens ofthousands ofclock cycles per
second [22], but they handle only approximate timing
information, even at the clock cycle level, or no timing
at all.

Recent commercial solutions, such as the Seamless
environment described in [11], filter the data sent be
tween the instruction set simulator (which must have
cycle-exact simulation capabilities) and the hardware
simulator. Even this approach, though, is not com
pletely satisfactory, because it requires extensive man
ual intervention to "abstract" the interface, by hiding
events such as instruction fetches or some memory ac
cesses from the hardware simulation.

The co-simulation methodology described in this pa
per is aumed exactly at filling this "validation gap be
tween fast models without enough information (e.g.,
instructions without timing or bus cycles without in
structions) and slow models with full detail. It assumes
that execution time estimates are available for each ba
sic block of software [12]. In particular, such estimates
are easily available ifone uses asoftware synthesis-based
approach to co-design, as described in [18].

The basic idea is to create a behavioral model of the
software and an RTL model of the synthesized hard
ware, with delay information derived from the timing
estimation. The synthesized hardware and software can
thus be simulated together with existinghardware com
ponents also modeled in VHDL. Moreover, changing
processor or assigning a component to the hardware
partition can be done bysimply modifying a parameter
that selects the timing estimates to be used for each
basic block (orwaits for the next clock edge in the case
of hwdware implementation).

The performance of the behavioral model can be
much higher than that ofan RTL processor model, be-



cause it reduces both the number of simulation events,
and the number of simulated bits. Both reductions are

effective when using an event-driven hardware simula
tor, and only the latter is effective when using a cycle-
based hardware simulator.

Our approach is different from those described e.g. in
[9, 13, 14], that rely on a single custom simulator for
hardware and software, because we can use any com
mercial VHDL simulator. It is also different from the

classof solutions described e.g. in [11,19, 20, 6, 21] that
execute the software and hardware partitions in sepa
rate processes, keeping track of time independently in
the two domains, because it does not require elaborate
mechanisms to synchronize them. In particular, we do
not need a cycle-accurate nor a bus-cycle model of the
target processor. Only performance estimate numbers
for the software components are needed. The advantage
in terms of simplicity and performance, of course, has
a cost in terms of precision, as will be discussed below.

VHDL is a standard language and many well sup
ported tools for efficient simulation are commercially
available. This makes integration with external blocks
perhaps designed with different methodologies quite
straightforward. This feature of our method has a lot
of added value in terms of:

• design re-use,

• incorporation of Intellectual Property (IP) Li
braries, and

• integration of new co-design techniques into an es
tablished industrial design flow.

The paper is organized as follows. In Section 2 we
provide some background information. In Section 3 we
describe the co-simulation technique in detail. In Sec
tion 4 we show results for an industrial-size application.
Finally, in section 5 we discuss the status of this work
and outline directions for future research.

2 Overview of the Co-design Environ
ment

Our co-simulation methodology is heavily based on
the use of software and hardware synthesis. This sim
plifies the estimation of performance without requiring
any user input, as well as the customization of the gen
erated code in order to adapt it to simulation and ex
ecution in the target system. We use the POLIS co-
design environment for reactive embedded systems ([8])
for synthesizing software and hardware, and for analyz
ing their performance since that co-design environment
is open, available to the public, and provides software
synthesis and estimation capabilities. In this Section,

we briefly describe the hardware and software synthesis
strategies in POLIS as they relate to the modeling for
co-simulation.

POLIS is centered around a single Finite State Ma
chine representation, known as Co-design Finite State
Machine (CFSM). Each element of a network of CFSMs
describes a component of the system to be modeled,
and defines the partitioning and scheduling granularity.
The CFSM model is based on:

• Extended Finite State Machines, operating on a
set of finite-valued enumerated or integer sub
range vairiables by using arithmetic, relational, and
Boolean operators, as well as user-defined func
tions. Each transition of a cfsm is an atomic oper
ation. All the analysis and synthesis steps ensure
that:

1. a snapshot of the system state is taken just
before the transition is executed,

2. the transition is executed, thus updating the
internal state and outputs of the cfsm,

3. the result of the transition is propagated to
the other CFSMs and to the environment.

• The interaction between cfsms is asynchronous in
order to support "neutral" specification of hard
ware and software components by means of a single
CFSM network. This means that:

- The execution delay of a cfsm transition is
unknown a priori. It is only assumed to be
non-zero in order to avoid the composition
problems of Mealy machines, due to unde-
layed feedback loops. The synthesis proce
dure refines this initial specification by adding
more precise timing information as more de
sign choices are made (e.g., partitioning, pro
cessor selection, and compilation). The de
signer or the analysis steps may also add con
straints on this timing information that syn
thesis must satisfy.

- Communication between CFSMs is not by
means of shared variables (as in the classical
composition of Finite State Machines), but by
means of events.

Software synthesis and performance estimation in
POLIS is based on a simplified Control-Data Flow Graph
(CDFG) called S-GRAPH.

An S-GRAPH is a Directed Acyclic Graph (DAG)
consisting of the following types of nodes:



OFF WAIT ALMtM DOT

1 (HttipWAn 1 |fttfi:>ALARM 1 mT ^
J <Jgy-OFFF^

1 START-1 1 lAURM.OH 1^ OFF 1

If the level of accuracy is not sufficient, one could
use the techniques described in [12] in order to refine
the estimation. Note that in this case the S-GRAPH
structural restrictions mean that no user input to the
estimation tool would be required.

InthePOLIS system, code cost (size inbytes and time
in clock cycles) is computed by analyzing the structure
of each S-graph node, for example:

• the number of childrenof a TEST node (a different
timing cost is associated with each child),

• the type of tested expression. For example, a test
for event presence must include the RTOS over
head for event handling, and reading an external
value must include the execution time of the driver
routine.

Asetofcost parameters isassociated with every such
aspect, and is used to estimate the total cost of each
node. These costs are then used by the co-simulation
environment to accumulate clock cycles, and hence to
synchronize the execution ofsoftware CFSMs with each
other and with the rest of the system (hardware CFSMs
and the environment). In this way, neither estimation
nor co-simulation require the designer to have access to
any sort ofmodel (RTL, instruction set, user's manual)
for a processor whose performance is to be evaluated
for a given application. Only the values of the set of
parameters are necessary. These are part of a library
distributed with POLIS for a growing number of micro
controllers.

Clearly a more accurate analysis technique, for ex
ample based on a cycle-accurate model of the proces
sor [15, 11], is needed to validate the final implemen
tation. But the architecture exploration phase can be
carried out much faster, as long as the precision of es
timation (currently within 20%) is acceptable for the
task at hand.

CFSMs implemented in hardware are currently syn
thesized assuming that each transition requires exactly
one clock cycle, by using classical RTL and logic syn
thesis techniques.

3 High-level Co-simulation Using
VHDL

Our approach to co-simulation is based on the de
composition of the system into three classes of compo
nents:

Figure 1: The S-GRAPH ofaSeat Belt Alarm Controller

• BEGIN, END are the DAG source and sink
nodes, and have oneand zero children respectively,

• TEST nodes are labeled with a finite-valued func
tion, defined over the set of input and output vari
ables of the S-GRAPH. They have as many children
as the possible values of the associated function.

• ASSIGN nodes are labeled with an output vari
able and a function, whose value is assigned to the
variable. They each have one child.

Figure 1shows the S-GRAPH ofa simple CFSM imple
menting a seat belt controller that turns on the alarm
if the driver does not fasten the seat belt 5 seconds af
ter turning on the ignition key, and turns off the alarm
after 10 seconds, or when the seat belt is fastened.

It should be clear that an S-GRAPH has a straight
forward, efficient implementation as sequential code on
a processor. Moreover, the mapping to object code,
whether directly or via an intermediate high-level lan
guage such as C, is almost 1-to-l. This 1-to-l mapping
is used in POLIS to provide accurate estimates of the
code size and execution time of each S-GRAPh node.
This estimation method works satisfactorily if:

1. The cost of each node is accurately analyzed. This
is a relatively well-understood problem, since each
S-GRAPH node corresponds roughly to a basic block
of code, that is a single-input, single-output se
quence of C code statements.

2. The interaction between nodes is limited (also
known as the "additivity hypothesis" in the lit
erature). This is approximately true in the case
of an S-GRAPH, since there is little regularity that
even an optimizing compiler can exploit (no loop
ing, etc.).

1. software CFSMs, synthesized by POLIS 8Uid exe
cuted on a single processor under the control of a
Real-Time Operating System (RTOS). The RTOS,
also synthesized by POLIS, handles communication



within the processor and with the rest of the system
(the limitation to only one processor is not inher
ent in our method, but is only due to the current
status of the RTOS synthesis),

2. hardware CFSMs, also synthesized by POLis and
communicating via a standardized protocol with
the rest of the system,

3. existing pieces of hardware IP, modeled in VHDL
(behavioral or RTL).

We synthesize a VHDL model for each CFSM, for
the RTOS scheduler, and for the interfaces. We assume
that existing IP has been adapted to use the POLIS com
munication protocol, as described below. This adapta
tion task proved to be very simple in the case study
discussed in Section 4, and techniques such as those
described in [17] can be used to automate it. In this
section we describe each element in detail.

3.1 Modeling The Software Tasks
The behavioral VHDL simulation model of a piece of

software implementing a CFSM is generated automati
cally using the same mechanism that is used for software
synthesis. In this way, we keep a 1-to-l correspondence
between C basic blocks (S-GRAPH nodes) in the im
plementation and groups of VHDL statements in the
simulation model. Each such group is annotated with
the performance numbers for the target processor, so as
to keep track of the estimated timing while executing
the VHDL simulation.

Behavioral VHDL lacks the infamous goto state
ment, that is the basis of the 1-to-l S-graph implemen
tation in C. Hence, representing an S-graph in VHDL
using if and case statements could poieniially lead to
an exponential explosion in code size. Thus a mecha
nism is needed to retain linear complexity also for the
VHDL implementation.

The basic idea of our modeling approach hence is as
follows: the S-GRAPH is interpreted as an FSM, with
one state for each S-GRAPH node. The execution of the
S-GRAPH from BEGIN to END then becomes an or
dered traversal of a sequence of states of this FSM. In
some sense, this FSM is a sequential implementation of
the transition function of the CFSM, just like the syn
thesized C code. The structure of the VHDL code for
the belt controller software task described in Section 2
is shown in Figure 2.

Parameter SW.CLOCK determines the time unit for a
CPU clock cycle, and is used to keep the simulation syn
chronized with the hardware partition and with the ex
ternal world. In this case the delays were estimated as
suming the use ofa Motorola 68HC11 micro-controller.

This solution is slower than using a "tree-like"
explosion of the S-GRAPH structure with VHDL
il-then-else and case statements, because an event
must be posted to the global VHDL timing queue once
for each traversed S-graph node, rather than once for
each CFSM transition. However, we chose this solution
for two main reasons: First, it keeps the synthesized
code small (linear in the size of the S-GRAPH, and hence
of the code that willbe loaded on the target processor),
and second, it makes modeling the software scheduler
(Real Time Operating System) much easier.

3.2 Modeling The Scheduler
A scheduler VHDL process is necessary to coordi

nate those implementing software CFSMs. The sched
uler must ensure that such cfsms are active one at a

time, by receiving a request from every one of them,
and deciding which one is going to use the processor
next. All other software CFSM processes will be delayed
by the appropriate time to allow the current CFSM to
complete one transition. If the scheduler is preemptive,
such request/acknowledge should take place once for
each instruction execution on the simulated CPU, since
the currently executing CFSM may be interrupted in the
middle of a transition to allow a higher-priority cfsm
to respond to an urgent request. This can be quite inef
ficient, since it requires performing signal-based hand
shaking once for each simulated CPU instruction. The
mechanism for implementing an S-graph in VHDL al
lows us to choose an intermediate solution: to allow

pre-emption at the*S-graph node level. This solution
has a relatively low overhead (one handshake for several
target CPU instructions, implementing one S-graph
node) and a generally satisfactory level of granularity
in responding to preemption requests (e.g. from inter
rupt sources). Figure 3 shows an illustrative example
of a Round Robin scheduler and an I/O polling task for
the belt controller (priority-based scheduling has also
been implemented).

3.3 Modeling Hardware and Interfaces
The technique used for modeling hardware compo

nents of the embedded system depends on whether they
have been synthesized from CFSMs or have been de
signed by using different techniques (e.g. directly in syn-
thesizable VHDL). In the former case, we can just use
the same S-GRAPH-like VHDL model, by just setting
the task execution delay to the number of clock cycles
that will be used for the final hardware implementa
tion. In the latter case, the designer must make sure
that those modules use the CFSM communication pro
tocol (1 bit .active for 1 cycle for an event, and n bits
sampled only when the corresponding event is at 1 for
the value). The simple buffers, automatically inserted



Architecture CFSM ofbelt is
—internalsignal(senderside)
signal e_tiiiier_e_end_5_o_tmp: bit := ' 0';
—internalsignal(receiverside)
signale_tinierje_end_5_to_belt_control: bit:= '0';
—inputfrom environment
signale_key_oii_to_belt_control: bit:= ' 0';
—task activation and scheduling signals
signal inoveJbeIt_coiitrol: BIT ' 0';
signal readyJbelt_coiitrol: BIT:= ' 1*;
signal cleanup_belt_control: BIT:= ' 0';

Begin
belt_control: process
typeS.Typeis (STB,STl,...,STend); —s-graph nodes Next.Lbl ;=ST17;

case Lbl is
whenSTB=>

mid.belt.control <= ' 1'; —startingtransition
— sample input events
e keyjonjimp :=e_key_on_to_belt_control',
e timer e end_5_tmpt=e_timer_e_end_5_to_belt_control,

cleauiup_belt_control <= ' 1';
—base delay
ready_belt_control <= ' 1' after 56 *SW.CLOCK;

whenST2=>

if(e_key_on_tmp = '1') then — check event key_on

variable Lbl, Nextjjbl: S_TypeSTB;

variable e_key_on_tmp: bit;—buffered event
variable e_timer_e_end_5_tmp: bit; — buffered event

begin
wait on moveJbelt_control;
if(move_belt_control = ' 1') then

ready_belt_control <= ' 0'; —trigger to move
Lbl;=Next_Lbl;

else

ready_belt_control<= '1' after40*SW_CLOCK;
else

Next_Lbl:=ST3;
ready_belt_control <= ' 1' after 26 *SW.CLOCK;

end if;

when ST9 =>

— check event end_5
if (e_timer_e_end_5_tmp = ' 1') then

Figure 2: The Behavioral VHDL Code for the Software Seat Belt Controller

by the VHDL code generator to implement the hard
ware side of the interfaces (including those with the
test-bench) are shown in Figure 4.

4 A Practical Case Study; An ATM
Server

The co-simulation technique described in this paper
has been used to validate the design of an industrial
case study from the communication networks domain:
an ATM server suitable for implementing Virtual Pri
vate Networks (VPN) in ATM nodes, which is a re-
engineering of the system described in [5].

Our target system is essentially a statistical multi
plexing unit capable of performing traffic management
functions like controlling the bandwidth of the outgo
ing flows, and preserving the flow integrity at the mes
sage level. Message discarding techniques and a per-
flow queuing service discipline are implemented.

The input of the system is a stream of ATM cells
belonging to the set of active Virtual Channel Connec
tions (VCC). Cells are buffered inside the server. The
buffer is divided into FIFO queues, one for each output
Virtual Path Connection (VPC). The incoming cells are
forwarded to the proper FIFO according to the entries
in the internal routing table as shown in Figure 5. The

timing constraints of the system are tight. The pro
cessing ofevery incoming cell has to be done before the
next cell arrives, i.e. within 2.72fis, for a link rate of
155 Mbit/s.

The system is composed of two parts: a fast hard
ware data path, and a control unit.

The fast data path includes two standard interfaces
(UTOPIA see [1]), an ATM cell address lookup unit, a
buffer logic queue manager, and a large buffer memory.
It is implemented with a set of VHDL synthesizable IP
models [7] and some commercial memories.

The control unit has been designed using POLIS, and
implements the server core custom functionalities:

• Buffer management: the Message Selective Dis
carding (MSD) technique avoids node congestion
by preserving the integrity of messages.

• Egress policing: the bandwidth of the outgoing
flows is controlled by a Virtual Clock scheduling
technique, that provides fair bandwidth allocation
among the queues.

In Figure 6 a high-level description of the control
unit functional blocks is given.



—Round Robin Scheduler

scheduler_round_robin:
process

begin
—first task
if(activate_belt_control = ' 1*) then

move_belt_control <= ' 1';
wait until ready_belt_control' event and

(ready_belt_control = ' 0');
move_belt_control <= ' 0';
wait until ready_belt_control' event and

(ready_belt_control = ' 1*);
end if;
—second task

if(activate,... = ' 1') then move,.

end process scheduler,round_robin;

—Event polling processes
activate,belt_control <= (mid,belt,control or

e,END,l,to_belt_control...);
activate ... <=...

Figure 3: The Behavioral VHDL Code for a Round
Robin Scheduler

— communication interfaces
—between 2SWprocesses
process

begin
wait until e_timer_e,end,5_o_tmp = ' 1';
e_timer_e,end_5,to_belt,control <= ' 1';
wait until cleanup,belt_control = ' 1';
e_timer,e,end,5,to_belt,control <= ' 0';

end process;

—between external world andSWprocess
process

begin
wait until e,keyjon = ' 1';
e,key,on_to_belt_control <='!';
wait until cleanup,belt_control = ' 1';
e_key,on,to_belt_control <= ' 0*;

end process;

Figure 4: The Behavioral VHDL Code for the Communi
cation Interfaces

Figure 5: Operational View of the Buffers Inside the
ATM Server

CbcdiQacti

Cdl Hoder

(ash)

Vinuaiaock

Sdieduter

Supervisor Updtte Internal Tables

Eitna.CcIl

(Pop)

Cell

Extractor

Soner

Figure 6: A High Level Description of the ATM Server
Control Unit

VHDL co-simulation has been used to validate the

whole system (including both the data path and the
control unit). The ATM server design is composed of
about 14000 VHDL code lines, of which about 7000
lines are from RT-level IP modules, about 6700 lines
have been synthesized from CFSMs, and the rest come
from hand-written code. In other words, one half of the
design comes from reusable IP RT-level code.

The control unit has been modeled as a network of 25

CFSMs in POLIS, resulting in the 6700 lines of behavioral
VHDL mentioned above or about 2450 lines of C code

(used for the final implementationon a microprocessor).
In the following we report results relative only to the
part of the design that has been fully synthesized using
POLIS.

A screen capture of a simulation run is shown in Fig
ure 7.

The VHDL description took less than a minute to
compile. The co-simulation results for different sys
tem implementation alternatives are displayed in Ta
ble l(data collected from a commercial VHDL simulator
on a Sun Ultra 2 workstation with 256MB of memory
and 2 CPUs). The first row in the results table is for
a concurrent software implementation (no scheduler).
The second row is for an entirely software implemen-



E.Cl-i

0

: n

^Q»Arue„.S»'»^t*'t 0

v^Pta

UJ^•l t̂ e^T^M M •

-V^l»yfh^0*4id '.-

E_Pcji_Ouidi

W,Po^>.auid •>

^yO : ! ! i I M, ..LJ A.±.±.L.LJ.J^±.U

I>X<D2>Z)G)G>X<I>Z)(I'CL<DZ<E>3XlXDZ<ri
I ! ,j , I ,,J ..J ! ! i • 1 J 1 iJ

±Ji

ZG>11C _XL >U-xI

Dcniyn
"Y -i ~X~ •"jCZ

Figure 7: Screen Capture of a Simulation Run

Implementation

All SW (no scheduler)
All SW

All HW

Mixed HWySW

Clock Cycles per CPU Sec.
50,000

214,000
7,000
15,000

The VHDL code generated by our package within
POLIS can be integrated with other VHDL blocks into
a global system test-bench. Usually however, exter
nal pre-existing modules (in our test case, IP blocks
and memories) do not follow the POLIS event-based
communication model, and some hand-written proto
col adapters are required. In most cases the needed
interfaces are very simple and efficient.

Integrating modules which are intrinsically based on
rendez-vous protocols (like memories) results in an ex
pected performance loss at the implementation level;
some extensions to the POLIS hardware to hardware,
and hardwaire to software interface models would help
to improve overall performance in this case. However,
the current POLIS implementation of software CFSMs
is tuned to reactive systems in which events have lit
tle temporal correlation. Hence the implementation of
tight handshaking sequences, such as for example the
address and data generation for a memory, would re
quire a different software and RTOSsynthesis strategy.
When IP blocks with complexfunctionalities are used,
some events are usually more important than others,
and behave as "trigger" events for the whole system;
our strategy is to use some interrupts in this case and
that usually alleviates the loss in performance.

The need to achieve fast simulation speed within a
single co-simulation environment hasforced us to ignore
some aspects of the final embedded system implemen
tation. These include:

• the overhead due to the scheduling mechanism,
which may depend on the number of tasks (e.g.,
for priority-based schemes the choice of a task is
generally logarithmic in the number of tasks in the
worst case),

• the cost of inter-processor or hardware/software
communication

Weplan to look at lifting both limitations as part of
our future development work. Lifting the first limita
tion is straightforward, as it is easy to also include the
RTOS performance figures with the chosen approach.
Lifting the second limitation requires modeling bus re
source contention (see [16, 10] for a good discussion of
this issue).

In the future we also plan to explore the trade-off
between simulation speed and VHDL code size due
to using the "FSM-like" mechanism for unstructured,
goto-based programming. This trade-off also involves
the precision at which the preemptivescheduling mech
anism must be modeled. Most likely, the final choice
will be a mix of "state-based" and "if-based" imple
mentation, to get the best performancewith a bounded

Table 1: VHDL Co-simulation Results for ATM Switch

tation with a Round Robin scheduler. The third row
is for an entirely hardware implementation. The last
row is for an implementation where the MSD, Virtual
Clock Scheduler, Cell Extractor, and Supervisor tasks of
Figure 6 were implemented in software and the Sorter,
Buff'er.Manager, and Internal Tables tasks in hardware.

5 Conclusions and Future Work
In this paper we have presented a mechanism for co-

simulating synthesized hardware and software together
with existing hardware Intellectual Property in a single
VHDL-based environment. This technique uses soft
ware timing estimation to efficiently synchronize the
VHDL processes modeling software tasks with those
modeling hardware components and the test-bench. It
permits easy exploration of the design space in terms of
choice of the:

• partition,

• processor, and

• target clock(s) speed.

Since the VHDL entity (that is, the interface to the
external world) does not depend on the chosen parti
tion, no changes are needed in the VHDL test-bench
code when a different partition is tried. Also, as a side
effect of the fact that our approach does not require
costly microprocessor models, and that hardware and
software clock cycles are generic parameters, a quick
and cheap evaluation of many different processors is
possible.



increase in code size.

References

[1] The ATM Forum "Utopia, An ATM-PHY Interface
Specification, Level 1, v2.01" March 1994.

[2] G. Berry, 1996. See http://cma.cma.fr/Esterel

[3] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L.
Lavagno, and A. Sangiovanni-Vincentelli. "Hard
ware/software Codesign of Embedded Systems"
IEEE Micro, Vol. 14, Number 4, pp. 26-36, 1994.

[4] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L.
Lavagno, and A. Sangiovanni-Vincentelli. "Synthe
sis of Software Programs from CFSM Specifications"
Proceedings of the Design Automation Conference,
June 1995.

[5] P. Coppo, M. D'Ambrosio, V. Vercellone "The A-
VPN Server, a Solution for ATM Virtual Private
Networks" IOCS, November 1994.

[6] J. Ernst, C. Prasad, G.S. Thurston "Cosimulation
with Heterogeneous Simulation Algorithms Using
Distributed Objects" Summer Computer Simula
tion Conference, July 1997.

[7] E. Filippi, L. Licciardi, A. Montanaro, M. Paolini,
M. Turolla, M. Taliercio "The Virtual Chip Set: A
Parametric IP Library for System on a Chip Design"
CICC, Santa Clara, May 1998.

[8] The POLIS group, POLIS Home Page, http://www-
cad.eecs.berkeley.edu/'polis

[9] R. K. Gupta, C. N. C. Jr., and G. D. Micheli "Syn
thesis and Simulation of Digital Systems Containing
Interacting Hardware and Software Components" In
Proceedings of the Design Automation Conference,
June 1992.

[10] K. Hines, G. Borriello "Selective Focus as a Means
ofImproving Geographically Distributed Embedded
System Co-simulation. IEEE International Work
shop on Rapid System Prototyping p. 58-62, 1997.

[11] R. Klein andS. Leef "New Technology Links Hard
ware and Software Simulators" In Electronic Engi
neering Times, June 1996.

[12] Y. Li and S. Malik "Performance Analysis of Em
bedded Software UsingImplicit Path Enumeration"
In Proceedings of the Design Automation Confer
ence, June 1995.

[13] K.A. Olukotun, R. Helaihel, J. Levitt, R. Ramirez
"A Software-Hardware Cosynthesis Approach to
Digital System Simulation" IEEE Micro, vol.
14(4):48-58, Aug. 1994.

[14] C. Passerone, L. Lavagno, C. Sansoe, M. Chiodo,
A. Sangiovanni-Vincentelli "Trade-off Evaluation in
Embedded System Design Via Co-simulation ASP-
DAC, Jan. 1997.

[15] J. Rowson""Hardware/Software Co-simulation" In
Proceedings of the Design Automation Conference,
pp. 439-440, June 1994.

[16] J. Rowson "Interface-Based Design" In Proceed
ings of the Design Automation Conference, June
1997.

[17] A. Seawright, U. Holtmann, W. Meyer, B. Pan-
grle, et. al. "A System for Compiling and Debugging
Structured Data Processing Controllers" EURO-
DACp. 86-91, Sept. 1996.

[18] K. Suzuki and A. Sangiovanni-Vincentelli "Effi
cient Software Performance Estimation Methods for
Hardware/Software Codesign" In Proceedings of the
Design Automation Conference, pp. 605-610, June
1996.

[19] K. Ten Hagen and H. Meyr "Timed and Untimed
Hardware/Software Co-simulation: Application and
Efficient Implementation" In Proceedings of the In
ternational Workshop on Hardware-Software Code-
sign, October 1993.

[20] D.E. Thomas, J.K. Adams, H. Schmit "A Model
and Methodology for Hardware-Software Codesign"
IEEE Design and Test of Computers, vol. 10(3):6-
15, Sept. 1993.

[21] C.A. Valderrama, A. Changuel, A.A. Jerraya
"Virtual Prototyping for Modular and Flexible
Hardware-Software Systems" Design Automation
for Embedded Systems, vol. 2(3-4):267-82, May
1997.

[22] V. Zivojnovic and H. Meyr "Compiled HW/SW
Co-simulation" In Proceedings of the Design Au
tomation Conference, June 1996.

8


	Copyright notice 1998
	ERL-98-54

