
 

 

 

 

 

 

 

 

 

Copyright © 1998, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



RTL GENERATION OF HARDWARE

COMPONENTS OF A MIXED HARDWARE/

SOFTWARE IMPLEMENTATION OF EMBEDDED

SYSTEMS FOR SYSTEM LEVEL CO-SIMULATION

IN VHDL

by

B. Tabbara, E. Filippi, L. Lavagno and
A. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M98/55

5 September 1998



RTL GENERATION OF HARDWARE COMPONENTS

OF A MIXED HARDWARE/SOFTWARE

IMPLEMENTATION OF EMBEDDED SYSTEMS

FOR SYSTEM LEVEL CO-SIMULATION IN VHDL

by

B. Tabbara, E. Filippi, L. Lavagno and
A. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M98/55

5 September 1998

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia, Berkeley

94720



RTL Generation of Hardware Components of a Mixed
Hardware/Software Implementation of Embedded Systems for

System Level Co-simulation in VHDL

B. Tabbara*

EECS Department
U.C. Berkeley

Berkeley, CA 94720
U.S.A

E. Filippi

CSELT t
V. Reiss Romoli 274,

1-10148 Torino

Italy

L. Lavagno

Cadence Berkeley Labs
2001 Addison St., 3rd Floor

Berkeley, CA 94704
U.S.A

A. Sangiovanni-Vincentelli

EECS Department
U.C. Berkeley

Berkeley, CA 94720
U.S.A

Abstract

We present a method for modeling and then simulat
ing a mixed hardware/software embedded system imple
mentation in VHDL starting from a high level design
representation. In our approach, a complete system de
scription including the communication interfaces is gen
erated automatically in VHDL: Software is modeled by
using behavioral VHDL constructs, annotated with tim
ing information derivedfrom basic block-level timing es
timates, while hardware can be either pre-existing Intel
lectual Property (IP) or synthesized from a functional
specification. Our approach has been incorporated into
a comprehensive co-design environment, and while we
describe elsewhere in detail the software synthesis and
modeling in VHDL[9, 8], we focus here on the Finite
State Machine with Datapath (FSMD) Register Trans
fer Level (RTL) modeling of hardware, and the subse
quent system validation in VHDL.

1 Introduction
Embedded systems consist of a mix of hardware and

software components. Hardware is usually needed for
performance while software is used for flexibility. It is
often quite desirable to be able to specify the design
functionality and constraints at a high level, and then
synthesize the hardware, software, and the necessary
interfaces. Verifying the sometimes complex interaction
between this mix of components is then the major task
that follows synthesis.

Typical hardware/software co-simulation methods
have involved either running the software on a hardware
model of the processor [5] which is very slow because of
the RTL models involved, or piecing together hardware
and software simulators and Altering the data being

*SRC Graduate Fellow

^Centro Studi e Laboratori Telecomuiucazioni

sent back and forth between the two partitions [3] [10].
The latter method requires extensive manual interven
tion to "abstract" the interface, by hiding events such
as instruction fetches or some memory accesses from
the hardware simulation. The co-simulation methodol
ogy that we developed is aimed exactly at Ailing this
"validation gap" between fast models without enough
information (e.g., instructions without timing or bus
cycles without instructions) and slow models with full
detail. It assumes that execution time estimates are
available for each basic block of software [4]. In par
ticular, such estimates are easily available if one uses a
software synthesis-based approach to co-design, as de
scribed in [1], or can be obtained fromapproaches such
as [4].

In this paper we present a methodology for syn
thesizing and modeling in mixed-level VHDL hsu-d-
ware and software, derived by partitioning a single
implementation-independent specification. Our ap
proach has been incorporated into a co-design frame
work that consists of a comprehensive tool set includ
ing partitioning, scheduling, estimation, and constraint
handling. The scope of this paper, however, will be
limited to synthesis and simulation in VHDL of the
hardware tasks starting from the high-level design de
scription. We refer the reader to [9] for an in-depth
description of software task and scheduler modeling in
behavioral VHDL.

VHDL is a standard language and many well sup
ported tools for eflScient synthesis and simulation are
commercially available. This makes integration of au
tomatically synthesized modules with external blocks
(perhaps designed with different methodologies) quite
straightforward [9]. We leverage on this feature in our
method and as a result get a lot of added value in terms
of:



• design re-use,

• incorporation of Intellectual Property (IP) Li
braries, and

• integration of our new co-design techniques into an
established industrial design flow.

The paper is organized as follows. In Section 2 we
provide some brief background and introduction. In
Section 3 we outline the mixed hardware/software co-
simulation technique, and then focus primarily on the
hardware modeling approach for simulation and syn
thesis. In Section 4 we show simulation results for an
industrial-size application modeled using this approach.
Finally, in Section 5 we discuss the status of this work
and outline directions for future research.

2 Overview of the Co-design Environ
ment

We have incorporated our approach into the PO-
Lis co-design environment for reactive embedded sys
tems ([1]), since it is open, available to the public, and
provides synthesis and estimation capabilities for both
hardware and software. In this Section, we briefly de
scribe the hardware and software synthesis strategies in
POLIS as they relate to the modeling for co-simulation.

2.1 Design Representation: CFSMs
POLIS is centered around a design representation

known as a network of Co-design Finite State Machines
(CFSMs). Each element of a network of CFSMs de
scribes a component of the system to be modeled, and
defines the partitioning and schedulinggranularity. The
CFSM model is based on Extended Finite State Ma
chines (EFSMs) that operate according to a Globally
Asynchronous Locally Synchronous (GALS) communi
cation model by using events.

Figure 1 shows a simple CFSM, implementinga seat
belt controller that turns on the alarm if the driver does
not fasten the seat belt 5 seconds after turning on the
ignition key, and turns off the alarm after 10 seconds,
or when the seat belt is fastened.

2.2 Hardware Synthesis
Hardware CFSM components of a design in POLIS are

implementedas Finite State Machines (FSMs)that con
sist of a combinational part for the next state logic of
the transition relation and the data path, and latches
(alldriven bythe sameclock) fortheoutputsandstates.
The result is a logic netlist (generated using classical
logic synthesis techniques) that can be mapped to a
specific technology.

NOT key_on AND
(key_off OR bell_on) /

alann(O)

/ alarm(O)

NOT key_on AND
(endJOOR

belt_on OR

key_ofO /

alarm(O)

key_on /

staritimer

WAIT

key.on /

starttimer

key_on /
starttimer

NOT key_on AND

NOTkey.off AND

NOT belt.on AND

end_5 /

alarm(l)

(ALARM)

Figure 1; The CFSM of the Seat Belt Alarm Controller

ftctevWAIT

I
START-1

nUt-ALARM

I
ALARM:-OH

BEOIN

nut

OFF WATf ALARM QflT

I START-O I

Uitt-OFF

I ALARM .-OFF |

Figure 2: The S-GRAPH of a Seat Belt Alarm Controller

2.3 Software Synthesis and Estimation

Software synthesis and performance estimation in
POLIS is based on a simplified Control-Data Flow Graph
(CDFG) called S-GRAPH. An S-graph is a Directed
Acyclic Graph where each path implements a transi
tion of the CFSM. Figure 2 shows the S-GRAPH for the
seat belt controller CFSM of Figure 1.

The S-GRAPH CDFG has a 1-to-l mapping to se
quential code. C or VHDLcode can be generated at the
same granularity level [8]. Estimation (execution time,
and code/data size) is alsoperformed foreachnodetype
(BEGIN, TEST, ASSIGN, END) depending on the
complexity of the node function (tested or assigned to
an output variable).



3 High-level Co-simulation Using
VHDL

Our approach to co-simulation is based on the de
composition of the system into three classes of compo
nents:

1. Software CFSMs, synthesized by POLIS and exe
cuted on a single processor under the control of a
Real-Time Operating System (RTOS).The RTOS,
also synthesized by POLIS, handles communication
within the processor and with the rest of the. sys
tem,

2. hardware CFSMs, also synthesized by POLIS and
communicating via a standardized protocol with
the rest of the system,

3. existing pieces of hardware IP, modeled in VHDL
(behavioral or RTL).

We synthesize a VHDL model for each CFSM, for the
RTOS scheduler, and for the interfaces (see [9]).
3.1 Modeling Hardware Components

The technique used for modeling hardware compo
nents of the embedded system depends on whether
they have been designed by using classical techniques
(e.g. directly in synthesizableVHDL),or have been syn
thesized from CFSMs:

• In the former case, the designer must make sure
that the incorporated modules use the CFSM com
munication protocol (see [8]). Techniques such as
those described in [6] can be used to automate this
adaptation task.

• In the latter case, we can generate a synthesizable
Finite State Machine with Datapath (FSMD) Reg
ister Transfer Level (RTL) VHDL model that can
be simulated by any VHDL simulator.

We now outline two different strategies for generat
ing the synthesizable FSMD, one that requires simpler
interface models (since the buffering of events is directly
implemented by the VHDL simulation engine), and one
that is fully synchronous, and hence can be synthesized
and simulated in a cycle-based fashion.

3.1.1 Asynchronous Mealy Implementation

The basic idea of our hardware modeling approach is as
follows: the S-GRAPH is interpreted as an asynchronous
FSM with datapath, with one "state" for each S-GRAPH
node. The execution of the S-graph from BEGIN

to END then becomes an ordered traversal of a se
quence of labels in the FSM combinational part. In

somesense, this FSM is a sequential implementation of
the transition function of the CFSM, with several "micro
states" (one for each S-graph node), reached during
a BEGIN-END traversal, that implement an abstract
"macro state" transition. The structure of the VHDL
code for an Asynchronous Mealy implementation for the
belt controller hardware task described in Section 2 is
shown in Figure 3.

The operation of the CFSM modeled as a VHDL pro
cess and shown in Figure 3 for the seat belt controller
example is as follows. A "macro"-transition of the
CFSM occurs only when the VHDL process detects a
rising edge on the elk input and executes its sequen
tial part (labeled in the Figure) thus updating its in
ternal state, and its outputs. On the other hand, the
process executes the combinational part that consists of
the "micro"-transition loop representing the proper S-
GRAPH path (labeled in the Figure) and therefore eval
uates its next state logic whenever it senses a change
in any of its input events. These inputs may change
more than once within a clock cycle, in which case the
CFSM re-evaluates its next state logic, that's why this is
an Asynchronous Mealy implementation. There are no
races or hazards in this asynchronous FSM, because of
the single path execution of the S-graph.

The generated code has several features that should
be pointed out:

• Each CFSM ("macro") transition takes one clock
cycle,

• Each path in the S-graph model (executing a sin
gle macro transition) is modeled in VHDL as a
loop, that updates the next state logic, sensing in
puts "immediately" from other components. This
loop terminates since S-GRAPH is a DAG,

• An explicit elk signal (added to the process sen
sitivity list) represents the global hardware clock
which synchronizes the CFSM move from one macro
state to another and also the update of outputs at
the rising edge of this signal.

• Interfaces consist simply of wires from each signal
that connect to all the tasks sensitive to this event,

• Inputs are sampled whenever they change instead
of once per clock cycle, and the outputs are reset
at the beginning of each clock cycle.

It should be noted that the asynchronous modeling
simplifiesthe modeling of the interfaces, at the expense
of more events in the VHDL simulator. The model uses
the VHDL scheduler (and the process sensitivity list)
to effectively model infinite-sized queues so that there
is no need to explicitly model these buffers.



CtectQgen

Cdl Header

(^ijufferjlanag^b.

t&xfljCtO

(Pusli)

Vimial Clock

Scheduler

Supervisor updae Internal Tables

EisaajCca

(Pop)

Cell

Extractor

Soiter

Figure 5: A High Level Description of the ATM Server
Control Unit

3.1.2 Synchronous Mealy Implementation

As an alternative to the previous model, that conceiv
ably should be used in later phases of the design when
inter-CFSM queues have been sized and a synthesizable
model is required, our tool can also generate a Syn
chronous Mealy model ofeach hardware CFSM as shown
in Figure 4 for the seat belt controller example.

The most significant differences are that now only
the elk signal triggers the processes, and that explicit
interface modules (also shown in Figure 4) are required.
In the synchronous model the CFSM samples its input
and evaluates its next state logic once per clock cycle
as opposed to the once per trigger event in the previous
model. Internal state and outputs are updated at the
beginning of the transition.

4 A Practical Case Study: An ATM
Server

The co-simulation technique described in this paper
has been used to validate the design of an industrial case
study from the communication networks domain: an
ATM server suitable for implementing Virtual Private
Networks (VPN) in ATM nodes as described in [7].

The system is composed of two parts: a fast hard
ware data path, and a control unit. The fast data path
includes two standard UTOPIA interfaces, an ATM cell
address lookup unit, a buffer logic queue manager, and
a large buffer memory. It is implemented with a set of
VHDL synthesizable models [2] and some commercial
memories. The control unit has been designed using
POLIS, and implements the server core custom func
tionalities. Figure 5 shows a high-level description of
the control unit functional blocks.

VHDL co-simulation has been used to validate the

whole system (including both the data path and the
control unit). The ATM server design is composed of
about 14000 VHDL code lines, of which about 7000 lines
are from RT-level IP modules, about 6700 lines have

, RTL (% of Design) Clock Cycles per CPU Sec.
100% 7,000
50% 15,000

Table 1: VHDL RTL Co-simulation Results for the Syn
thesized ATM Server Control Unit

been synthesized from CFSMs, and the rest are hand
written code. In other words, one half of the design
comes from reusable RT-level Intellectual Property.

The co-simulation results for the RTL modeling are
shown below (data collected from a commercial VHDL
simulator on a Sun Ultra 2 workstation with 256MB of

memory and 2 CPUs). These results are relative only
to the part of the design that has been fully synthesized
using POLIS. The first column of Table 1 displays what
percentage of the design is implemented in hardware in
RTL (the remainder is implemented in software).

5 Conclusions and Future Work

In this paper we have presented a mechanism for co-
simulating synthesized hardware and software together
with existing hardware Intellectual Property in a single
VHDL-based environment. This technique uses soft
ware timing estimation to efficiently synchronize the
VHDL processes modeling software tasks with those
modeling hardware components and the test-bench. We
have focused in this paper on presenting the hardware
modeling technique for co-simulation with the software.

In the future, we plan to explore VHDL synthesis
starting from the CFSM abstraction directly instead of
the S-GRAPH level. We will evaluate both simulation

(VHDL code size and simulation speed) and implemen
tation (silicon area and clock speed) for all the differ
ent alternatives mentioned above (the synchronous and
asynchronous approach, as well as the current hardware
synthesis strategy in POLls).

References

[1] Felice Balarin, Massimiliano Chiodo, Paolo Giusto,
Hairry Hsieh, Attila
Jurecska, Luciano Lavagno, Claudio Passerone, Al
berto Sangiovanni-Vincentelli, Ellen Sentovich, Kei
Suzuki, and Bassam Tabbara. "Hardware-Software
Co-Design of Embedded Systems: The POLIS Ap
proach", Kluwer Academic Publishers, May 1997.
http://TOW-cad.eecs.berkeley.edu/'polis

[2] E. Filippi, L. Licciardi, A. Montanaro, M. Paolini,
M. Turolla, M. Taliercio "The Virtual Chip Set: A
Parametric IP Library for System on a Chip Design"
CICC, Santa Clara, May 1998.



[3] R. Klein and S. Leaf "New Technology Links Hard
ware and Software Simulators" In Electronic Engi
neering Times, June 1996.

[4] Y. Li and S. Malik "Performance Analysis of Em
bedded Software Using Implicit Path Enumeration"
In Proceedings of the Design Automation Confer
ence, June 1995.

[5] J. Rowson "Hardware/Software Co-simulation" In
Proceedings of the Design Automation Conference,
pp. 439-440, June 1994.

[6] A. Seawright, U. Holtmann, W. Meyer, B. Pan-
grle, et. al. "A System for Compiling and Debugging
Structured Data Processing Controllers" EURO-
DACp. 86-91, Sept. 1996.

[7] E. Filippi, L. Lavagno, L. Licciardi, A. Montanaro,
M. Paolini, R. Passerone, M. Sgroi, A. Sangiovanni-
Vincentelli "Intellectual Property Re-use in Embed
ded System Co-design: an Industrial Case Study"
ISSS, Dec. '98.

[8] —, "Validation of Reactive Real-Time Systems Us
ing VHDL" Masters Thesis, University ofCalifornia
at Berkeley, May 1998.

[9] —, "Fast Hardware-Software Co-simulation Using
VHDL Models" Design, Automation and Test in
Europe, March 1999.

[10] V. Zivojnovic and H. Meyr "Compiled HW/SW
Co-simulation" In Proceedings of the Design Au
tomation Conference, June 1996.



Architecture CFSMjrtl ofbelt is
signal e_timer_e_end_5_to_belt_control_0: bit; —internal (receiver)
signal e_key_on_to_z_belt_control: bit; —input
signal e_alarm: bit; —output

beIt_control:
process(clk, e_key_on_to_belt_control,...)

typeL_Typeis (LB,L1,L2,...,LE);
—state and local variable declarations

variable v_alarm_tmp: integer := 0;
begin

sequentialpart
if(elk' event and (elk = ' 1')) then

— update state variables
v_alarm_tmp := v_alarm;
— reset output events

if(e_alarm /= ' 0') then
e_alarm <= ' 0';

end if;
end if;

— combinationalpart
loop — one CPSMtransition

Lbl := Next_Lbl;

case Lbl is

when LB=>

— sample input events
e_key_on_tmp := e_key_on_to_belt_control;

when L2=>

if(e_key_on_tmp = ' 1') then
Next_Lbf:=L17;

else

Next_Lbl := L3;
end if;

whenLE=>

Next_Lbl:=LB;
exit; — end of CFSMtransition

end case;

end loop;

end process belt.control;

Figure 3: The FSMD VHDL Code (Asynchronous Mealy Implementation) for the Hardware Seat Belt Controller



belt_control:
process(clk)

—state and local variable declarations

begin
sequentialpart

if(elk' eventand (elk='!')) then
— update state variables
— reset output events

—next state logic computation
loop— one CFSMtransition

Lbl := Next_LbI;

case Lbl is

when LB=>

— sample input events

when LE=>

Next_Lbl:=LB;
exit; —end of CFSM transition

end case;

end loop;

end if; — ofif elk'event and elk—'1'

end process belt_control;

—interfaces
process

begin
wait until e_key_on = ' 1';
wait until elk *event and elk = ' 1';
e_key_on_to_belt_eontrol <= ' 1*;
wait until elk' event and elk = ' 1';
e_key_on_to_belt_eontrol <= ' 0';

end process;

process

begin
wait until e_timer_e_end_5 = ' 1';
wait until elk' event and elk = ' 1';
e_timer_e_end_5_to_belt_eontrol <= ' 1'
wait until elk *event and elk = ' 1';
e_timer_e_end_5_to_belt_eontrol <= ' 0

end process;

Figure 4: The FSMD VHDL Code (Synehronous Mealy Implementation) for the Hardware Seat Belt Controller
along with Depth-1 Interfaees


	Copyright notice 1998
	ERL-98-55

