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Abstract

Hybrid Control

of

Air Traffic Management Systems

by

Claire Jennifer Tomlin

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor S. Shankar Sastry, Chair

Today's crowded skies and ever-increasing demand for air travel, coupled with

new technologies for navigation and surveillance, are fueling a change in the way that

the Federal Aviation Administration manages air traffic. Current Air Traffic Control

(ATC) practice manually routes aircraft along predefined paths between "fixes", using

radar track and fligl t information from plan view displays and voice communication

over radio channels. The use of Global Positioning Systems and datalink commu

nication will enable automation of some ATC functionality, such as the prediction

and resolution of trajectory conflicts between aircraft. For such a safety critical sys

tem, the integrity and acceptance of new automated control functionality depends

on a provably-safe design, which requires accurate system models, and procedures for

verifying and synthesizing safe control actions.

We present a model and controller synthesis scheme for a nonlinear hybrid au

tomaton^ a system that combines discrete event dynamics with nonlinear continuous

dynamics. The discrete event dynamics model linguistic and qualitative information,

such as the flight mode of an aircraft or the interaction between several aircraft.

Discrete event models also naturally accommodate mode switching logic, which is

triggered by events internal or external to the system. The continuous dynamics

model the physical processes themselves, such as the continuous response of an air

craft to the forces of aileron and throttle. We include input variables to model both

continuous and discrete control and disturbance parameters.

We translate safety specifications into restrictions on the system's reachable sets of



states. Then, using analysis based on two-person zero-sum game theory for automata

and continuous dynamical systems, we derive Hamilton-Jacobi equations whose so

lutions describe the boundaries of reachable sets. These equations are the heart of

our general controller synthesis technique for hybrid systems, in which we calculate
feedback control laws for the continuous and discrete variables which guarantee that

the hybrid system remains in the "safe subset" of the reachable set. We present the
extension of a levelset method to compute numericalsolutionsof the Hamilton-Jacobi

equations. Throughout, we demonstrate our techniques on examples of interesting
nonlinear hybrid automata modeling aircraft conflict resolution and autopilot flight

mode switching.

S. Shankar Szistry

Chair
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Chapter 1

Introduction

The introduction of advanced automation into manually operated systems has

been extremely successful in increasing the performance and flexibility of such sys

tems, as well as significantly reducing the workload ofthe human operator. Examples
include the automation of mechanicalassembly plants, of the telephone system, of the

interconnected power grid, as well as transportation system automation such as con

trollers in high speed trains, automatic braking systems in automobiles, and avionics
on board commercial jets. Accompanying this increase in automation is the necessity

of ensuring that the automated system always performs as expected. This is espe
cially crucial for safety critical systems: ifa telephone switch crashes or a power grid
node goes down, lives are usually not lost, yet if an error occurs in the automated
avionics on board a commercial jet, the results could be disastrous.

Many of today's safety critical systems are growing at such a rate that will make
manual operation ofthem extremely difficult ifnot impossible in the near future. The
Air Traflac Control (ATC) system is an example ofsuch a safety critical system. Air
traffic in the United States alone is expected to grow by 5% annually for the next

15 years [1], and rates across the Pacific Rim are expected to increase by more than
15% a year. Even with today's traffic, ground holds and airborne delays in flights
due to congestion in the skies have become so common that airlines automatically
pad their flight times with built-in delay times. Aging air traffic control equipment
certainly contributes to these delays: the plan view displays used by controllers to



look at radar tracks and flight information are the very same that were installed

in the early 1970's, and they fail regularly. The computer systems which calculate

radar tracks and store flight plans were designed in the 1980's, using software code

that was written in 1972. The introduction of new computers, display units, and

communication technologies for air traffic controllers will help alleviate the problems

caused by failing equipment, yet the Federal Aviation Administration (FAA) admits

that any significant improvement will require that many of the basic practices of ATC

be automated [2]. For example, today's airspace has a rigid route structure based

on altitude and on ground-based navigational "fixes": current practice of air traffic

controllers is to route aircraft along predefined paths connecting fixes, to manage the

complexity of route planning for several aircraft at once. The rigid structure puts

strict constraints on aircraft trajectories, which could otherwise follow wind-optimal

or user preferred routes. Also, while a data link between aircraft and ground is being

investigated as a replacement for the current voicecommunication over radio channels

between pilot and controller, there is a limit to the amount of information processing

that a controller can perform with this data. Studies in [2] indicate that, if there is

no change to the structure of ATC, then by the year 2015 there could be a major

accident every 7 to 10 days.

The result is a perceived need in the air traffic, airline, and avionics communities

for a new architecture^ which integrates new technologies for data storage, processing,

communications, and display, into a safe and efficient air traffic management sys

tem. The airlines are proponents of a decentralized architecture featuring free flighty

meaning that each aircraft plans and tracks its own dynamic trajectory with minimal

interference from ATC [3]. Many people (air traffic controllers in particular) view this

as a radical solution, but a recent study funded by NASA [4] suggests that distribut

ing some of the control authority to each aircraft would help improve the efficiency

of the system as a whole. In [5] we propose an architecture for a new air traffic man

agement system along these lines, in which the aircraft's flight management system

uses local sensory information from Global Positioning Systems, Inertial Navigation

Systems, and broadcast communication with other aircraft to resolve local conflicts

without requesting clearances from ATC. While the degree of decentralization and



level of automation in a new air traffic management system are still under debate

(since it is very difficult to estimate the increase in efficiency from distributing the
control authority), the integrity of any automated functionality in a new air traffic
management system depends on a provably-safe design, and a high confidence that
the control actions won't fail.

In the past, high confidence has been achieved by operating the system well within
its performance limits. Extensive testing has been used to validate operations, and
any errors occurring from untested situations would be compensated for by this degree
of "slack" in the system performance. We would like to maintain high confidence but
operate the system much closer to its performance limits. In order to do this, we
require accurate models of the system, procedures for verifying that the design is
safe to within the accuracy of these models, and procedures for synthesizing control
actions for the system, so that safety is maintained.

For about the past six years, researchers in the traditionally distinct fields of con
trol theory and computer science verification have proposed models, and verification
and controller synthesis techniques for complex, safety critical systems. The area of
hybrid systems is loosely defined as the study of systems which involve the interac
tion of discrete event and continuous time dynamics, with the purpose of proving
properties such as reachability and stability. The discrete event models naturally
accommodate linguistic and qualitative information, and are used to model modes of
operation of the system, such as the mode of flight of an aircraft, or the interaction
and coordination between several aircraft. The continuous dynamics model the phys

ical processes themselves, such as the continuous response of an aircraft to the forces
of aileron and throttle.

One class of approaches to modeling and analysis of hybrid systems has been to
extend techniques for finite state automata to include systems with simple continu
ous dynamics. These approaches generally use one of two analysis techniques; model
checking, which verifies a system specification symbolically on all system trajecto
ries, and deductive theorem proving, which proves a specification by induction on all
system trajectories. Emphasis is placed on computability and decidttbilityy or proving
that the problem: Does the system satisfy the specification? can be solved in a finite



number of steps. Models and decidability results have been obtained for timed au
tomata [6], linear hybrid automata [7], and hybrid input/output automata [8]. Linear
hybrid automata model or abstract thecontinuous dynamics by differential inclusions
of the form Ax < b and verify properties of the resulting abstracted system [9, 10].
While reachability and eventuality properties for timed automata have been shown

to be decidable, the decidability results for linear hybrid automata are fairly narrow.

For all but the simplest continuous linear dynamics (two-dimensional rectangular dif

ferential inclusions), reachability properties are semi-decidable at best, and in most

cases undecidable. Methods for designing discrete controllers for timed and hybrid

systems have been developed using this framework [11, 12], and computational tools

have been developed for both model checking [13, 14], and theorem proving [15].

A second class of models and analysis techniques for hybrid systems has developed

out of research in continuous state space and continuous time dynamical systems and

control. The emphasishere has been on extending the standard modeling, reachability

and stability analyses, and controller design techniques to capture the interaction

between the continuous and discrete dynamics [16, 17, 18, 19, 20, 21]. Analysis

and design techniques extend existing control techniques, such as stability theory

[17], optimal control [17, 20, 21], and control of discrete event systems [22, 23], to

hybrid systems. One area in which results have been hard to come by is the efficient

computation of reachable sets for hybrid systems whose dynamics are nonlinear or

are of order greater than one. Only recently, some atteinpts to directly approach this

problem have been reported in the literature [24, 25].

Our approach to hybrid systems modeling incorporates accurate, nonlinear models

of the continuous dynamics with models for discrete event dynamics. We include con

tinuous and discrete input variables to model both parameters that the designer may

control as well as disturbance parameters that the designer must control against. Us

ing analysis based on traditional discrete and continuous optimal control techniques,

and on two-person zero-sum game theory for automata and continuous dynamical

systems, we derive the Hamilton-Jacobi partial differential equations whose solutions

describe exactly the boundaries of reachable sets. Only then do we approximate:

we use a clever numerical technique to solve this equation. These equations are the



heart of our general controller synthesis technique for hybrid systems, in which we

calculate feedback control laws for the continuous and discrete variables which guar

antee that the hybrid system remains in the "safe subset" of the reachable set. While

about 10 years ago such a method would have been prohibitively computationally

expensive, advances in computational power and new fcist methods for integrating

PDEs have made such solutions feasible, even for real-time applications. The result

is an analytic and numerical method for computing reachable sets and control laws

for hybrid systems, which doesn't require a preprocessing step to approximate the

dynamics. We have been successful in computing solutions to finite-time examples,

but in our method thus far, we have not addressed considerations of decidability and

computational complexity.

1.1 Overview

Chapter 2 presents an overview of the current air traffic system, and a discus

sion of some of the new technologies which are becoming available for more efficient

navigation and communication. We propose an architecture for an air traffic manage

ment system which incorporates these technologies, and we introduce three problem

examples which are developed throughout the dissertation: two examples in deriving

safe collision avoidance maneuvers for aircraft, and one example in autopilot mode

switching. A more detailed description of the proposed architecture can be found in

[5]. The first example has been presented (in less detail) in [26], the second example

is unpublished, and the third example is developed in part from the example in [27]

and [28]. Our motivation for this work arose out of attempting to verify the safety

of a class of conflict resolution mcineuvers for aircraft, in [29]. Related previous work

is that of [30], in which game theoretic methods were used to prove safety of a set of

maneuvers for Automated Highway Systems.

The nonlinear hybrid system modelpresented in Chapter 3 is based on that of [20],

further developed in [26], [31]. We present a model for a controller and we illustrate

how the three example problems are modeled as nonlinear hybrid systems.

In Chapter 4 we present algorithms for evolving boundaries of reachable sets
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for discrete and continuous systems. The discrete algorithm was first presented by

Biichi and Landweber in the late 1960's [32], our presentation follows that of [11].
The representation of the discrete algorithm in terms of a "discrete Hamilton-Jacobi
equation" is new. The continuous algorithm is classical, its derivation can be found
in most books on optimal control and dynamic games (see [33, 34, 35, 36]). The
notion of control invariance for continuous systems is described in [37], however its

development in our setting is novel.

Chapter 5 presents our algorithm for synthesizing reachable sets and control laws

for safety specifications of hybrid systems. The material presented in this chapter is

developed from the presentations in [26], [28], and [31].

In Chapter 6 we apply the synthesis algorithm of Chapter 5 to the three example

problems. In Chapter 7 we discuss the use of level set methods [38] as a numerical
implementation of our algorithm, and Chapter 8 collects a set of future research

directions.

1.2 Notation

Let PC" denote the space of piecewise continuous functions over R, sind PC' the

space of piecewise differentiable functions over R. Let Q be a finite set of discrete

state variables, then |(5| represents the cardinality of Q, and represents infinite

sequences of elements in Q. Let X be a continuous state space of dimension ?? , and

let G C X. Then G® is the interior of G, dG is the boundary of G, and G^ is the

complement of G: = X\G. We summarize the notation used for discrete and

continuous systems in the following table.

Entity Discrete Continuous

States Q X

Input Sets Si X S2 UxD

Input Spaces S^ X S^ UxVC PG" X PG"

Transitions S I Q XSi XS2 2^ f :X xUxV^TX

Trajectories € (3'^xE!;'xE5':
9[f+ 1] e d(glj],<ri[j],<r2[i])

(x{-),u('),d(')) 6 PC'xUxV
VT,a;(r) = /(a;(r),u(T),d(T))

Specification aP(Vi,x(i)€F},FCQ Vr, a:(r) £ F, F C Q



Chapter 2

Algorithms for Distributed Air

Traffic Management

We first describe the Air Traffic Control (ATC) system used in the United States

today, emphasizing the structure of the airspace, and the methods used by air traffic
controllers to direct traffic, and by pilots to follow these directions. We then de

scribe some of the technologies, both proposed and under development, to enable a
change towards a more efficient system. [2], [39], [40], [41], and [42] provide excellent
overviews of the current ATC and some of the new technologies available. We de

scribe a proposed architecture for new Air Traffic Management (ATM) which would
move much of the current ATC functionality on board each aircraft. We conclude

with three examples representing two crucial problems to be solved in any proposed
ATM: the problem of conflict resolution between aircraft, and that of consistent and
safe flight mode switching in an aircraft's autopilot.

2*1 Overview of the Current System

ATC has its earliest roots in the 1920's, when local airline dispatchers would direct

pilots to fly flight plans marked by rudimentary markers on the ground. In 1935,
the first inter-airline ATC was organized in the Chicago-Cleveland-Newark corridor,

which was taken over in 1937 when the responsibility for ATC was transferred from



8

the airlines to the federal government. The advances in radar and radio technology

in the ensuing decades allowed closer surveillance of aircraft, and the growth of the
aircraft jet engine industry made it possible for the average aircraft to fly at much
faster speeds. The system of aircraft, pilots, and controllers evolved into what today
is known as the National Airspace System, or NAS, and its management is referred

to as Air Traffic Management, or ATM.

ATM in the United States is currently organized hierarchically with a single Air

Traffic Control System Command Center (ATCSCC) supervising the overall traffic
flow. This is supported by 22 Air Route Traffic Control Centers (ARTCCs) organized

by geographical region, which control the airspace up to 60,000 feet. Each Center is
sub-divided into about 20 sectors, with at least one air traffic controller responsible for

each sector. Coastal ARTCCs have jurisdiction over oceanic airspace: the Oakland

Center in California, for example, controls a large part of the airspace above the

Pacific Ocean. Within the Center airspace, the low traffic density region away from

airports is known as the en route airspace and is under jurisdiction of the ARTCC.

The high traffic density regions around urban airports are delegated to Terminal

Radar Approach Control (TRACON) facilities. The TRACONs generally control this

airspace up to 15,000 feet. There are more than 150 TRACONS in the United States:

one may serve several airports. For example, the Bay Area TRACON includes the

San Francisco, Oakland, and San Jose airports along with smaller airfields at Moffett

Field, San Carlos, and Fremont. The regions of airspace directly around an airport

as well as the runway and ground operations at the airport are controlled by the

familiar Air Traffic Control Towers. There are roughly 17,000 landing facilities in

the United States serving nearly 220,000 aircraft. Of these there are about 6,000

commercial aircraft: the number of commercially used, airstrips is roughly 400 (these

are all equipped with control towers).

ATC currently directs air traffic along predefined jet ways, or "freeways in the

sky", which are straight linesegments connecting a systemof beacons (non-directional

beacons (NDBs), very high frequency omni-range receivers (VORs), and distance

measuring equipment (DME)). These beacons are used by pilots (and autopilots) as

navigational aids, to update and correct the current position information provided



by the inertial navigation systems (INS) on board each aircraft. Surveillance is per

formed by ATC through the use of radar: a primary radar system which processes

reflected signals from the aircraft skin, and a secondary radar system, which triggers

a transmitter in the aircraft to automatically emit an identification signal. The range

of the radars depends on the type of airspace being served: in the en route airspace

the long-range Air Route Surveillance Radar (ARSR) is used, while in the TRACON
the shorter range Automated Radar Terminal System (ARTS) is used. The accuracy
of the radars, and their slow (12 second) update rates, contribute to the FAA stan
dards for aircraft separation, which are 5 nautical miles horizontal separation, 1000

feet (2000 feet above 29,000 feet) vertical separation in the Center airspace, and 3
nautical miles horizontal separation, 1000 feet vertical separation in the TRACON.
Each ATC facility is equipped with a computer system which takes the radar signals
as input and provides a very limited amount of flight data processing, including a
rudimentary conflict alert function. This information is displayed to controllers in
two-dimensions on the black and green plan view displays (PVDs). Controllers issue

directives to pilots using two-way voice (radio) channels. Figure 2.1 shows a flight
map (horizontal profile) of a portion of the San Francisco Bay Area: the circular
"dials" indicate VOR beacons (including airports), the boundary ofthe TRACON is
shown as well as a part of the Oakland Center airspace.

Prior to a commercial aircraft's departure, the airline files a flight plan with ATC,

which indicates information about the aircraft and its desired trajectory from origin
to destination airports in the form of a very coarse sequence of way points. ATC
modifies the flight plan according to constraints of the NAS and other aircraft, and
issues a clearance to the pilot. After take-olT, the control of the aircraft is passed
through the Tower, TRACON, and possibly several Center facilities until the des
tination TRACON is reached. Information about the part of the filed flight plan

relevant to his sector is passed via the computer system to each TRACON and Cen
ter controller, and the information is printed out on "flight strips" (Figure 2.2) which
indicate the planned position of the aircraft at several points along the route.

The main goal of ATC is tomaintain safe separation between aircraft while guiding
them to their destinations. However, the tight control that it has over the motion of
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every aircraft in the system frequently causes bottlenecks to develop. Uncertainties in

the positions, velocities, and wind speeds, as well as the inability of a single controller

to handle large numbers of aircraft at once lead to overly conservative controller

actions and procedures to maintain safety. An example of this is the methods used

by air traffic controllers to predict and avoid conflicts between aircraft. If a controller

predicts that the separation between two aircraft will becomeless than the regulatory

separation, the controller will issue a directive to one or both of the pilots to alter

their paths, speed, or both. Often the resolution is not needed, and usually it is too

severe. Also, the so-called "user preferred routes" (shorter or lowerfuel consumption

routes that take advantage of tailwinds) are disallowed because of the requirement to

use prescribed jet ways.

Airspace capacity is the maximum number of operations that can be processed

per unit time in a certain volume of the airspace given a continuous demand [41].
In this definition a distinction is made between different modes of operation, such as

level flight at fixed heading, climbing, descending, and changes in heading. Airspace

capacity is a function of aircraft count, activity mix, protocols for conflict detection

and resolution, and FAA regulations. It is our contention that this capacity can be

increased by better protocols which do not compromise safety.

An area of current activity is the development of decision support tools for air

traffic controllers. One such tool is the Center-TRACON Automation System (CTAS)

[43] which is currently under development at NASA Ames, and under field test at
Denver and Dallas-Fort Worth airports. CTAS is software code which runs on com

puter workstations nextto the air traffic controller; it uses radar data, current weather

information, aircraft flight plans and simplified dynamic aircraft models to predict

the aircraft trajectories, alert the controllers about potential conflicts, and provide

advisories to the controller about landing sequences.

We conclude this section with a short introduction to the automated flight man

agement system (FMS) on board commercial jets, such as those of the Boeing B777

and the Airbus A320. In contrast to the "low technology" ATC operation, modern

FMSs are highly automated systems which assist the pilot in constructing and flying

four-dimensional trajectories, as well eis altering these trajectories on line in response
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to ATC directives. An FMS typically controls the throttle input and the vertical

and lateral trajectories of the aircraft to automatically perform such functions as: ac

quiring a specified altitude and then leveling (ALT ACQ), holding a specified altitude
(ALT HLD), acquiring a specified vertical climb ordescend rate (V/S), automatic ver
tical or lateral navigation between specified way points (VNAV, LNAV), or holding

a specified throttle value (THR HLD). The combination of these throttle-vertical-

lateral modes is referred to as the flight mode of the aircraft. A typical autopilot

has several hundred flight modes (see [44] for a discussion of the Boeing B737 flight

modes). It is interesting to note that these flight modes were designed to automate

the way pilots fly aircraft manually: by controlling the lateral and vertical states of

the aircraft to set points for fixed periods of time, pilots simplify the complex task of

flying an aircraft. Figure 2.3 illustrates two screens in the cockpit of such an FMS-

equipped jet: a horizontal profile showing the current position of the aircraft as it

follows an approach route, marked by way points, into the Los Angeles airport, and

an "artificial horizon" which shows the current pitch and roll angles of the aircraft,

the airspeed and altitude, and the current flight mode. Prior to take-off, the pilot

can enter the approved flight plan into the FMS computer on board the aircraft, and

during flight can choose the desired level of automation. For example, if the pilot

selects the LNAV or VNAV mode, the FMS determines the altitudes, speeds, pitch,

roll, and throttle values to navigate between way points; if the HDG SEL or ALT

ACQ modes are chosen, the pilot chooses the desired heading and altitude values.

While the introduction of automation to on-board avionics has resulted in in

creased performance of commercial autopilots, the need for automation designs which

guarantee safe operation of the aircraft has become paramount. Currently, designers

and manufacturers of FMSs "verify" the safety of the systems by simulating them

for long periods of time with various initial conditions and inputs. This procedure

is not adequate, since trajectories to unsafe states may be overlooked. "Automation

surprises" have been extensively studied [44, 45, 46] after the unsafe situation oc

curs, and "band-aids" are added to the FMS design to ensure the same problem does

not occur again. One of the goals of this dissertation is to present a system design

method, in which safety properties are a priori verified in the design phase, so that
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Figure 2.3: Two screens in a typical glass cockpit: (a) a horizontal profile of way
points (into Los Angeles airport); (b) an "artificial horizon" showing the current
pitch and roll angles of the aircraft, the airspeed and altitude, and the current flight
mode. The first three columns in the flight mode are the throttle-vertical-lateral
modes, the fourth is the autopilot mode. ARM means "waiting for the throttle to
reach required value", MCP SPD means "speed is controlled to the entry in the mode
control panel", HDG SEL means "heading is controlled to the entry in the mode
control panel", CMD means "pilot has command over pitch and roll values".
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no automation surprises occur.

2.2 Technologies to Enable Change

Several new technologies are under development and certification, and are fueling

a change in the structure of ATM. In this section we discuss the Global Positioning
System (GPS) and a datalink communication protocol called Automatic Dependent
Surveillance (ADS) and their impact on the future of ATM.

GPS provides 3D position information worldwide using signal information from a

constellation of 24 satellites. A single GPS receiver can determine its position to an

accuracy of a few meters, using signals from at least 4 out of these 24 satellites; if

this information is augmented with differential corrections from another receiver (dif

ferential GPS or DGPS), this accuracy can be increased to a few centimeters. Many

factors make the use of GPS in the cockpit a desirable alternative to the current ATM

navigation methods [42]: the accuracy is uniform from aircraft to aircraft whereas

with the currently used INS, the accuracy decreases in time due to sensor drift rates;

each GPS receiver acts like an atomic-accurate clock, thus making it possible for many

aircraft to coordinate among each other over a communication link; a GPS receiver

is much cheaper than an INS system, and orders of magnitude cheaper than a VOR

beacon. One disadvantage of relying on GPS position information is that the satellite

signal may be lost temporarily if the GPS receiver is obscured from the direct path

of the signal. Current studies [47] suggest an integrated use of both INS and GPS, in

which the accurate position information from GPS is used to continually correct the

INS position.

ADS is a communication protocol by which aircraft would transmit over digital

satellite communication their GPS position information, velocity, as well as informa

tion about their intended trajectory, to the ground ATC. ADS-B (for broadccist) is

a protocol for broadcasting this information to neighboring aircraft [3]. Its major

advantage over the current ATM surveillance methods is its ability to provide very

accurate information for trajectory prediction, without relying on the radar system.

Two immediate benefits of such a communication link are a huge improvement in
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surveillance over oceanic airspace, which is not covered by radar, and the possibility

of reducing the separation standards between aircraft in all airspace.

Despite the short-term benefits that these new technologies provide, the real long-

term benefits will depend on how the airspace system and its management evolve

around such new technologies. Aviation in the next century will, more than ever

before, be based on systems related issues: the need to integrate highly automated

aircraft, advanced navigation and surveillance technology, sophisticated computation,

and user preferences, into a system which meets the demands resulting from skyrock
eting growth in air travel, without compromising the standards of such a safety critical
system. The aviation community has accepted that today's controller-based system
will not meet these requirements, and a new system structure is needed. A concept

called free flight [48] has been proposed in recent years. Free flight is loosely defined
to mean that pilots are allowed to choose their own routes, altitude and speed, and
would share the tasks of navigation, surveillance, aircraft separation, and weather

prediction, with ground-based controllers. User preference would be restricted only
in congested or special use (military) airspace.

In the following section, we present an architecture for a "next generation" air
traffic management system [5], which incorporates user preference and moves some of
the current ATC functionality on board the aircraft. Our purpose in presenting this

architecture is to provide a framework for theexamples presented in this dissertation:

the modeling, verification, and controller synthesis techniques which are at the heart
of this dissertation are general, and may be applied to any ATM architecture.

2.3 Proposed Architecture

We assume, as in the current ATC practice, that user (airline) preferences are

incorporated in the initial flight planning stage, in which the airline ^d ATC can
"negotiate" the sequence of way points that comprises the nominal flight plan for the
aircraft. This nominal plan is designed to be time-optimal and conflict-free, within

the constraints of the schedules of the other aircraft in the system. Once a commercial

aircraft is airborne and outside of the TRACON, it starts to play an active role in its
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own navigation and surveillance. As shown in Figure 2.4, the flight management sys

tem on board each aircraft may be interpreted as a hierarchical system, which takes

as input the nominal flight plan from ATC, information about neighboring aircraft,
about its own aircraft state, and about wind and weather, and produces a conflict-free

full state and input trajectory [49]. The strategic planner interpolates the nominal
trajectory's way points with a set of control points which delineate the constant con

trol segments between way points. The tactical planner refines the strategic plan by
joining the control points with a smooth output trajectory. The trajectory planner
uses a detailed dynamic model of the aircraft, sensory input about the wind's magni
tude and direction, and the tactical plan, to design a full state and input trajectory

for the aircraft, and the sequence of flight modes necessary to execute the dynamic
plan. The regulation layer is a simple, fast control scheme, which closes the loop
on tiie dynamics of the aircraft. Tracking errors are passed back to the trajectory
planner, to facilitate replanning if necessary.

Often, as with the current ATM, bad weather, high winds, or schedule delays which
cause conflicts with other aircraft may force the aircraft to deviate from the nominal

route. The strategic planner on board the aircraft has the ability to coordinate
with neighboring aircraft to determine a sequence of maneuvers which will result in
conflict-free trajectories. We propose a conflict resolution methodology based on a
set of protocols^ easily understood by pilots and easily programmed into an FMS,
to allow aircraft to coordinate among each other to avoid conflict. Each strategic
planner then commands its own tactical planner to follow these maneuvers.

2.4 Motivating Examples

We now concentrate on two systems in an ATM architecture: a provably-safe algo

rithm for resolving trajectory conflicts between aircraft, and a provably-safe algorithm
for a single aircraft to switch between different flight modes. The notion of "safety"
in each case is crucial:
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Definition 1 (Safety) Asystem issafe if its state trajectories always remain within
a safe subset of the state space.

In the conflict resolution problem, the system is safe if the aircraft always maintain

minimum separation with each other. In the flight mode switching problem, system

safety means that the state of the aircraft remains within minimum and maximum

bounds imposed on its velocities, angles etc. so that the aircraft doesn't stall, causing

it to plunge out ofthe sky. Thelatter isreferred to as aerodynamic envelope protection.

We present these systems through examples, which are introduced in this section and

developed throughout the dissertation.

2.4.1 Conflict Resolution for Aircraft

Consider a system of aircraft, each navigating using a combination of GPS and

INS, and each providingsurveillance information through an ADS link with ATC, and

an ADS-B link with neighboring aircraft. Each aircraft is surrounded by two virtual

cylinders, the protected zone and alert zone shown in Figure 2.5 as a top view. The

radius and height of the protected zonedepends on the FAA separation standards (2.5

nautical miles by 1000 feet in Center, 1.5 nautical miles by 1000 feet in TRACON).

The size and shape of the alert zone depends on various factors including airspeed,

altitude, accuracy of sensing equipment, traffic situation, aircraft performance and

average human and system response times: it is shown as an ellipsoid in Figure 2.5.

A conflict or loss of separation between aircraft occurs when their protected zones

overlap. The system of aircraft is defined to be safe if the aircraft trajectories are

such that their protected zones never overlap.

We propose a conflict resolution algorithm which may be executed either on board

each aircraft, as suggested by the architecture of the previous section, or in an ATC

TRACON or ARTCC facility on the ground. The algorithm has access to the state

and intent information of the other aircraft involved in the conflict, through the

GPS/INS system linked to the ADS/ADS-B communication link, to information

about the aerodynamics and performance characteristics of the other aircraft, and

to information about the constraints imposed by the global traffic flow (see Figure
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Figure 2.5: Aircraft Zones,

2.6). When aircraft enter the alert zone of another aircraft, an alert is issued to
ATC as well as to the EMS of each involved aircraft, and depending on the relative

configurations (positions, velocities) of the aircraft, a maneuver is generated which
resolves the conflict. From a database of flight modes, such as segments of constant

heading, of constant bank angle, of constant airspeed, the conflict resolution algo
rithm synthesizes the parameters of the maneuver^ such as the proper sequencing of
these modes, the numerical values associated to each segment (heading angle, bank
angle, airspeed), and the conditions for switching between flight modes. The result is
a maneuver, proven to be safe within thelimits of the models used, which is a familiar
sequence of commands easily executable by the FMSs. The resulting maneuvers may
be viewed as protocols, or "rules of the road".

Conflict prediction and resolution have been sources of interest for the air traf
fic, control, and computational geometry communities in recent years. Spatial and
temporal approaches, such as [50, 51], calculate the four dimensional coordinates of
a possible conflict. Probabilistic approaches, such as [52, 53] assume stochastic un
certainty in the measured information and determine the probability of collision. A
feature ofour algorithm is that it is provably safe to within the limits ofour models.
We account for uncertainty or incompleteness in any ofthe information: as the bounds

on the uncertainties increase, so does the conservatism of the resulting maneuver.
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Figure 2.7: (a) Two aircraft in a conflict scenario; (b) The relative configuration,
showing the relative protected zone.

Conflict Resolution for Two Aircraft in SE{2)

We present as motivating example a model for the kinematic motions of two

aircraft at a fixed altitude, as shown in Figure 2.7(a). The position and heading

of each aircraft is described by an element of the Lie group G of rigid motions in

E^, called SE(2) for the Special Euclidean group in E^. Let p,- € G denote the

configuration of aircraft i:

9i

cos V't —sin ipi Xi

sin tpi cos ij)i yi

0 0 1

(2.1)

where (x,-,?/,) denotes the position of aircraft i and is its heading. The motion of

the aircraft may be modeled as a left-invariant vector field on G:

Qi = QiXi (2.2)
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where Xi GQ, the Lie algebra associated with the Lie group G. The Lie algebra in

this case is ^ = 5e(2), with Xi € 5e(2) represented as

0 —Ui Vi

Wj 0 0

0 0 0

(2.3)

where a;, is the aircraft's angular velocity, and Vi is its airspeed.

A coordinate change is performed to place the identity element ofthe Lie group G

on aircraft 1, as shown in Figure 2.7(b). Let Qr £ G denote the relative configuration

of aircraft 2 with respect to aircraft 1. Then

92 = 9l9r => gr=gi ^92

In local coordinates, the coordinate transformation is expressed as

cos(—^i) —sin(—V^i)

sin(—V'l) cos(—V'l)

Vv = V'2 -

Xr
= R{-M

X2 - Xi

. Vr . ^ 92-91 .

and Qr is given by

cos Ipr —sin Ipr Xr

gr = smipr COS Ipr 9r

0 0 1J
in which (a:r,yr?V'r) G x [—tt, tt) represent the relative position and orientation of

aircraft 2 with respect to aircraft 1. Differentiating gr, we obtain

gr = grX2 - Xigr

which may be written in {xr,9r->'̂ r) coordinates as

Xr — -Ul + U2COsV'r

— V2Smij)r —^\Xr

ipr = ljJ2 —

X2 -

92-91

(2.4)

(2.5)

(2.6)

(2.8)

(2.9)
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Mode 1 Mode 2 Mode 3

/ V

Figure 2.8: Two aircraft in three modes of operation: in modes 1 and 3 the aircraft
follow a straight course and in mode 2 the aircraft follow a half circle. The initial
relative heading (120®) is preserved throughout.

The protected zone of aircraft 2 may be translated to the origin as shown in Figure
2.7(b).

In order to maintain safe separation, the relative position {xr.yr) must remain

outside of the protected zone, defined as

{(a:r,yr,^r) : xl-]r vl < 5^} (2.10)

for the lateral 5 nautical mile separation in Center airspace.

The flight modes for this system of two aircraft are based on the linear and angular
velocities of the aircraft. We consider two possibilities: w,- = 0, meaning that aircraft

?• follows a straight line, and w,- ^ 0, but is a constant, meaning that aircraft i follows
an arc of a circle. Thus the database of maneuvers for the example in this section are

straight line segments of varying length and associated varying airspeed, and arcs of
circles ofvarying length and radii. These maneuvers approximate closely thebehavior
of pilots flying aircraft: straight line segments (constant heading) and arcs of circles
(constant bank angle) are easy to fly both manually and on autopilot.

Three-Mode Example

Consider a scenario in which there are three modes of operation: a cruise mode

in which both aircraft follow a straight path; an avoid mode in which both aircraft

follow a circular arc path; and a second cruise mode in which the aircraft return

to the straight path. The protocol of the maneuver is that as soon as the aircraft
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Figure 2.9: Two aircraft in seven modes of operation: in modes 1, 3, 5, and 7 the
aircraft follow a straight course and in modes 2, 4, and 6 the aircraft follow arcs of
circles. Again, the initial relative heading (120®) is preserved throughout.

are within a certain distance of each other, each aircraft turns 90° to its right and

follows a half circle. Once the half circle is complete, each aircraft returns to its

original heading and continues on its straight path (Figure 2.8). In each mode, the

continuous dynamics may be expressed in terms of the relative motion of the two

aircraft (2.9). In the cruise mode, a;,- = 0 for z = 1,2 and in the avoid mode, u;,- = 1

for i = 1,2. We assume that both aircraft switch modes simultaneously, so that the

relative orientation ipr is constant. This assumption simply allows us to display the

state space in two dimensions, making the results easier to present.

Problem statement: Generate the relative distance between aircraft at which the

aircraft may switch safely from mode 1 to mode 2, and the minimum turning radius

R in mode 2, to ensure that the 5 nautical mile separation is maintained.

Seven-Mode Example
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The previous example is somewhat academic (aircraft cannot change heading in

stantaneously), yet (as so often happens with academic examples) its simplicity makes

it a good vehicle to illustrate the controller synthesis methods of this dissertation.

To show that our methods are not confined to academia and may indeed be applied

to real-world situations, we present a "seven-mode example" which much better ap

proximates current ATC practice. The example is illustrated in Figure 2.9. When
two aircraft come within a certain distance of each other, each aircraft starts to turn

to its right, following a trajectory which is a sequence of arcs of circles of fixed radii,
and straight lines. As in the previous example, we assume that both aircraft switch
modes simultaneously. We also assume that the angles of the avoid maneuver are

fixed, so that the straight path of mode 3 is at a —45® angle to the straight path of
mode 1, and that of mode 5 is at a 45® to that of mode 1. Also, the length of each
arc is fixed at a prespecified value, and the lengths ofthe segments in modes 3 and 5
are equal to each other, but unspecified.

Problem statement: Given some uncertainty in the actions of the aircraft, gen

erate the relative distance between aircraft at which the aircraft may switch safely

from mode 1 to mode 2, and the minimum lengths of the segments in modes 3 and
5, to ensure that the 5 nautical mile separation is maintained.

2.4.2 Flight Mode Switching and Envelope Protection

We would like to design a safe automatic flight mode switching algorithm for an

FMS which interacts with both the dynamical system consisting of the aircraft and
autopilot as well as with Air Traffic Control (ATC), and guides the aircraft safely
through a sequence of waypoints in the presence of disturbances. As overviewed in
the previous section, the FMS accepts a high level trajectory plan from ATC and
constructs a sequence of elementary flight modes to effect a conflict-free version of
this plan. The trajectory planner in the FMS is responsible for the safe sequencing
of these modes. In this case, the aircraft is safe if its state trajectory remains within

the aerodynamic flight envelope, which is a subset of the state space delineated by
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Figure 2.10: A planar aircraft in flight with attached axes about its center of mass.

allowable limits on the airspeed, vertical velocity, flight path angle, and altitude. Our

algorithm must ensure that the EMS will attempt to select and activate only those

flight modes for which the state trajectory is guaranteed to stay within the envelope.

This is known as envelope protection.

Mode Switching for the Longitudinal Axis Dynamics of a CTOL Aircraft

The example is inspired by the work of [54], in which the flight modes for the

airspeed and flight path angle dynamics of an aircraft are derived.

We consider a nonlinear model of the longitudinal axis dynamics of a conventional

take-off and landing (CTOL) aircraft in normal aerodynamic flight in still air [55,

56], shown in Figure 2.10. The horizontal and vertical axes are respectively the

(xinertiah hinertial) (denoted h) axes and the pitch angle 6 is the cingle made by the

aircraft body axis, Xbody with the x axis. The flight path angle 7 and the angle of

attack a are defined as: 7 = tan~^(|), 0 = ^ —7. Eixpressions for the lift (L) and
drag (D) forces are given by

L = aiix"^ + ^^)(1 + cq)
D = 0£)(a:^-I-/i^)(l-}-6(1-}-ca)^)

(2.11)

where ajr,, ao are dimensionless lift and drag coefficients, and 6 and c are positive con

stants. We assume that the autopilot has direct control over both the forward thrust
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Figure 4.5: Switching law governing the two aircraft system with angular velocity
control inputs. The law is least restrictive in that the control u is not restricted when
the state is in {a: GX 1J*{x,i) > 0}. The diagonal transitions in the automaton for
the boundary of {x G A' | J"'(x,t) = 0} are not labeled for legibility. In practice, t
should be chosen large enough to take into account aircraft in the alert zone.

64



63

Figure 4.4: The set G = {(a:r,yr),^r € (0,7r) \ < 5^} (cylinder) and the set
{a: e JV I J*{x^t) = 0} for t < 0 being the time of the first switch in either si(t) or
S2(0- The second picture is a top view of the first.
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For points (a:r,yr,V'r) € dG such that tj^r € (0,7r) it is straightforward to show that

51 > 0 and 52 > 0, meaning that for values of t slightly less than 0, si < 0 and

52 < 0. Thus for this range of points along dO^ ^*(0) = —1 and d*(0) = 1. These

values for u* and d* remain valid for << 0 as long as si(t) < 0 and S2(t) < 0. When

si(t) = 0 and 52(<) = 0, the optimal solution (u*,d*) switches and the computation

of the boundary continues with the new values of u* and d*, thus introducing "kinks"

into the boundary. These points correspond to loss of smoothness in the Hamilton-

Jacobi equation. Figure 4.4 displays the resulting boundary {x GA' | J*{x^t) = 0},
computed bj' solving the Hamilton-Jacobi equation (4.37) locally using Hamilton s

equations, for ^ < 0 being the first time that either 5i(i) or 52(/) switches.

The least restrictive control scheme for safety is shown in Figure 4.5.
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The optimal Hamiltonian is

H*(x,p) = m<Lxmm[-piVi-\-piV2COsxl^r-\-P2V2smil^r-\-{piyr-P2Xr-P3)u-^P3^ (4.53)
^ ueU d€D

Defining the switching functions Si(t) and 52(^), as

Si{t) = Pl{t)yr{t) - P2{t)Xr{t) - PaCO

52(0 =P3(0

the optimal control and disturbcince u* and d* exist when Si ^ 0 and S2 ^ 0 and are

calculated as

"" = (4.55)
d* = —sgn(s2)

The equations for p are obtained through Hamilton's equation (4.20) and are

Pi = u*p2

P2 = -u'pi (4.56)

P3 = Pi 1*2 sin —P2V2 COS Ipr

with p(0) = (.Tr,yr,0)^ = 1^, the outward pointing normal to dG at any point

{Xr.Vr.i'r) ©n OG.

The UP of dG is calculated using (4.8) with 1/ = (xr, yr,0)^:

UP = {(Xr,yr,^r)€^G| —UiXr -f U2(Xr COS^r + Pr sinV'r) < 0} (4-57)

with boundary

{(Xr, Pr,^r) € I - UlX^ + U2(a^r COS tf^r + J/r sin Ipr) = 0} (4.58)

To solve for p*(t) and x*{t) for / < 0, we must first determine u''(0) and ^""(0).

Equations (4.55) are not defined at ^ = 0, since si = S2 = 0 on dG, giving rise to

"abnormal extremals" [68] (meaning that the optimal Hamiltonian loses dependence

on u and d at these points). Analogously to [36] (pages 442-443), we use an indirect

method to calculate u"(0) and d*(0): at any point (xr,yr,V'r) on dG, the derivatives

of the switching functions Si and S2 are

51 = yrVi (4.59)

52 = XrU2 sin V'r —yrl^2 COS V'r (4.60)
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Remark: In practice, wedo not usually need to compute the fixed point W*^ rather

just the set {x € | J*[x^t) > 0} for t a large enough "look-ahead" time.

A feedback controller for u that renders W* invariant can now be constructed.

The controller should be such that on dW* only the u for which:

. dJ^ix) ^ ^mm /(x, u, d) > 0
d^D Ox

are applied. In the interior of W*, u is free to take on any value in U. Existence of

such u for X€ W* is guaranteed by construction.

4.2.1 Example: The SE{2) Aircraft

Consider the relative model of two aircraft in SE(2), given in equations (2.9), for

the case in which the linear velocities of both aircraft are fixed, ui,U2 G R, and the

control inputs of the aircraft are the angular velocities, u = uji and d = UJ2:

Xr = —Vi -f V2 COS tl^r + '̂ Vr

ijr = U2 sin V'r —WXr (4.49)
= d — u

with state variables (xr,yr,V'r) G x [-7r,7r) and control and disturbance inputs
u € U = [oJi.lJi] C R, d e D = [0^21 <^2] C R. Without loss of generality (we scale
the coefficients of u and d if this is not met), assume that = —1 and u;,- = 1, for

i = 1,2.

The set G is defined in the relative frame:

G= {(ir,!/r) € € [-JT, »r) 1+ J/? < 5^} (4-50)

and the capture set is defined as the interior of 0

0° = {(ir.yr) e R^v^ € [-tt.tt) {xI + vIk 5^} (4.51)

which is a 5-mile-radius cylindrical block in the (xrtVrti'r) space denoting the pro

tected zone in the relative frame. The function l{x) is defined as

l(x) = xl + yl-b'' (4.52)
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J*(x, 0) = 0
J*(x, ti) =0

J*(x, t2) = 0

(a) (b)
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J lx) > 0

Figure 4.3: (a) The sets {a: G | J*(a;,0) = 0}, {a: € X | J*(a:,ti) = 0}, {a: £
X I J'(x,t2) = 0} for 0 > ti > t2. (b) The fixed point {a: € A" | J^ix) < 0},
{x £ X 1rix) = 0}, and {a: € X \ r(x) > 0}.

Proof: Let a:o € {a: 6 A' | J'Ca:) < 0}. Therefore, by construction, for all u(-) £ U

there exists d{-) £ V such that the state trajectory a:(-), starting at (xo,0), will

eventually enter G°. Thus xq ^ W".

Now let xo € {x € A' | J*(x) > 0}. Assume for the sake of contradiction that

for all u(-) £ there exists a d(-) £ V such that the trajectory x(-), starting at

(xo,0), enters G®. Since for all x € G®, J*{x) < 0, there exists a time fi > 0 at

which this trajectory crosses {x G A' | J*{x) = 0}. However, for all x such that

J*(x) —0, there must exist di u £ U such that for all d £ /(x,w,d) points outside

of {x G A" I J'ix) < 0}. The set {x G A' | J*(x) = 0} therefore acts like a "barrier"

to disturbance functions d(-), and the fact that the trajectory must cross this set

contradicts the assumption of existence of a d(*) which drives the system into G°.

Thus xo G W*. Therefore, W = {x G A | J*(x) > 0}. •

Proposition 4 (Characterization of W*) W* is the largest controlled invariant

set contained in F =
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Proof: From equation (4.37), > 0, when J*(xyt) < 0. Thus is

a monotone non-increasing function of (—<), so that as t decreases, the set {x €

A' I J*(x^i) < 0} does not decrease in size. •

We claim that {a: € A' | J*(x,t) < 0}, where J'*[x,t) is the solution to (4.37), is

the set of states from which the environment can force the system into G° in at most

|/| seconds. Before proving this, we give an intuitiveexplanation.

Clearly, dG = {x e X \ J'*(a:,0) = 0}. Consider xq e dG such that a;o does not

belong to the UP (shown as "1" in Figure 4.3(a)). Thus, there exists a. u e U such
that for all d ^ D, f(xo,u,d) points outside of G®. Therefore,

3u eU We D u,d)>0 (4.42)

Therefore,

H'(xo, > 0 (4-43)

Thus, from (4.37),
d£^ =0 (4.44)

dt

Thus the part of dG which is not in the UP remains stationary under (4.37). Now
consider Xq ^ UP (shown as "2" in Figure 4.3(a)). For all u € U there exists a d GD
such that /(xo,u,d) points into G°. Therefore

we USdeD u,d)<0 (4.4.5)

(4-46)

> 0 (4.47)
dt

meaning that J''{x^i) is decreasing with decrecising t. Thus the UP "grows outwards"
under (4.37).

Proposition 3 (Winning States W*) Assume that J*(x,t) satisfies the Hamilton-
Jacobi equation (4.37) for all t, and that it converges uniformly in x as t -oo to

a function J'{x). Then the set of winning statesfor the controller is

W* = {x^X\ r(x) > 0} (4.48)

Therefore,

and thus
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as t evolves. The discontinuity on the right hand side of equation (4.37) further

complicates the solution, as does the discontinuous switching of the optimal control
and disturbance u* and d*. In addition, we are often interested in cases in which G

has non-smooth boundary, so that the boundary conditions of the Hamilton-Jacobi

equation are not differentiable. In order to admit discontinuous solutions, a "weak"

derivative and "weak" solution to the Hamilton-Jacobi equations was developed by

Crandall, Lions, and Evans in the early 1980's [66, 67]. We define a viscosity solution

to (4.37) as the limit as e goes to zero of solutions J*{x^t) to the partial differential

equation:

_dJ:{x,t) ^ ( H'(x, 2^) +tAJt(x,t) for {x 6A' IJ.-(x,<) >0}
dt \ miniO, H'{x,^^^)} +eAJ:(x,t) for {x SA| <0}

(4.39)

with initial data J*(.t,0) = leM', a smooth outer approximation to the boundary of

G. Here, AJ* refers to the Laplacian of J", namely

n o2 7*

= (4.40)
1=1

For € > 0 and for smooth Hamiltonian^ it may be shown [66, 67] that there exists

a unique continuous solution to the Hamilton-Jacobi equation: the second derivative

term AJe(a:,/) acts like a smoothing term and is called a "viscosity" term for that

reason. As e —»• 0, the solution J^(Xyt) approaches the viscosity solution to the

Hamilton-Jacobi equation. Thus, even when classical smooth solutions do not exist,

solutions in this "weak sense" exist. In Chapter 7, we present a numerical scheme,

developed by Osher and Sethian [38], which computes this viscosity solution.

Lemma 1 For all t2 <ti < 0,

{xeX\ r(x,ti) < 0} C {a: € X 1r{x,t2) < 0} (4.41)

®The Crandall-Evans-Lions definition of a viscosity solution is for

for smooth Hamiltonians H{x, Our current work involves extending these results to our
cases, with piecewise smooth Hamiltonians.



Case 1
(xi,0)

(x,Sj)

Case 2

(x, So)

(Xo.O)

Case 3
(X, S3)

Case 4

QJ*(x,t)
dt

= 0
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J*(x,t)

l(xj) > 0

Kxo) = 0

l(x^ < 0

Kxj) > 0

J*(x,t)

Figure 4.2: The left column displays four cases of optimal trajectories, starting at
Xat time s,, and ending at state Xi at time 0, where 0 > Si > 82 > S3 > 84- The
right column displays. J"(a:, <) for fixed x. Note that the standard variational problem
produces states that can change from "unsafe" to "safe". The figure at the bottom
of the right column displays the result ofmodifying the Hamilton-Jacobi equation so
that, once J*(x,t) is negative, its evolution is non-increasing in negative time.
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Since H = f(x,u^d), we have the Hamilton-Jacobi partial differential equation:

- = H-(x, (4.36)
ot ox

with boundary condition J*(x,0) = l(x).

As indicated in the discussion following (4.15), the solution J*{x^t) to equation

(4.36) counts as safe those states for which optimal trajectories pass through G® and
end up outside G® at time 0. Figure 4.2 illustrates such a situation as a sequence

of "snapshots" for times Si, S2, 53, and S4, where 0 > Si > S2 >.53 > S4. In this
example, J'*(x,Si) > 0, J*{x,S2) = 0, J*(x,S3) < 0, and J*(x,S4) > 0, indicating

that the optimal trajectory which starts at state x will end up in G® after S3 seconds,

but will leave G® before S4 seconds is up. To force such trajectories to stay inside

G®, we modify equation (4.36) to guarantee that, if for any x £ X there exists an

s G[^,0] such that J*[x^s) < 0, then J"'(x,i) is non-increasing for time less than s:

dJ'(x,t) [ for{xeA'l J-(x,<)>0}
dt \ min{0, H'(x, 2^^)} for {x eA' | J'{x, i) <0}

with boundary condition t/'(x,0) = l{x). Equation (4.37) is the continuous analog to

equation (4.6) of the preceding discrete game, and describes the relationship between

the time and state evolution of J*(x^t).

If the control and disturbance act optimally, the set {x G A' | J*[x^i) > 0}

describes those states from which the controller can keep the system state outside of

G® for at least \t\ seconds, and the set {x G A | J*(x,t) < 0} is the set of states

from which the environment can force the system into G® in at most \t\ seconds.

The continuous-time analog to (4.1), the iterative method of calculating the winning

states for the controller, is therefore:

WO = fQoy
^ ^ (4.38)

w ={xex\r(x,t)>o}

A restrictive assumption in this derivation is that the function J*(x,i) is a smooth

function of x and t. In general, even if the boundary condition J*(x,0) = l(x) is

differentiable, the solution J"'(x,/) may develop discontinuities in x, known as shocks^
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The Hamilton-Jacobi Equation

With the solutions to the optimal input and disturbance, we now derive the partial

differential equation which the optimal value function J*{x^i) satisfies. Recall that

J*{x^t) is defined as

J*(x.t) = max min /(a:(0)) (4.30)
' u(.)€Wd()ei>

and is interpreted as the cost of the system starting from state x at time t and

proceeding to state a:(0) at time 0, using u*(s) and d*{s) for s G[f^O]. We make the

assumptions that J'*{x,t) exists and is a smooth function^ of x and t. Now suppose

the system starts at (x,/) but uses input and disturbance trajectories, u(s) and d(s),

not necessarily equal to the optimal ones, for the first At seconds. At (a: + Aa:, t + At),

the system switches back to using u*(s) and d*{s) until (a:(0),0). Bellman's principle

of optimality states that the value function for such a trajectory is

J\x,t) = r{x + + At) (4.31)

J^(x,t) is equal to the optimal value function J''(x,t) if {u*{s),d''(s)) is used in the
initial interval s G [t,t Ai]:

J''(x,t)= max min J*(x Ax,t At) (4.32)
^ ^ u(-)€Wd(.)eT>

for u(-),d(-) valid over [t,t-\- Af]. Since J"(x,i) is assumed continuous and differen-
tiable, the right hand side may be approximated by

maxmjn (4.33)

Taking the limit as Af —)• 0 yields

dJ'ix^t) . dJ*(x,t) . /AOA\—^ = maxmin—^ 'f(x,u,d) (4.34)
dt ^ddx

From equation (4.18), it is evident that along the optimal trajectory, small perturba
tions in Xproduce small perturbations in J* according to 5J* = p^Sx, so that

dJ* T
dx

= (4.35)

^While this very restrictive assumption is necessary for the derivation of the Hamilton-Jacobi
equation, we will show how it may be relaxed for the algorithms in this dissertation.
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To be an extremum, SJ must be zero for arbitrary 5u and 8d and which happens

only if:

^ (^21)

dH{x,p,u,d) ^ ,^22)
du

^ 23)

dd

Equations (4.20) and (4.21) are known as Hamilton's equations. Equations (4.19)

through (4.23) are the necessary conditions for local optimality of (x(-),u(-),d(')):

we denote a system trajectory which satisfies equations (4.19) through (4.23) as

(.T-(.),t^-(-),rf-(-)).
Sufficient conditions for (local) optimality of (a:"'(-), u*(-), d*(-)) are that the Hes

sians of the Hamiltonian,

d^H(x*,p'',u*,d*)
du^

d^H{x*,p*^u*,d*)
Id^

(4.24)

(4.25)

be respectively negative and positive definite along the optimal trajectory.

While the preceding results are local, they have been generalized (see [33. 34,

35]) to be global, and the local optimality conditions (4.22), (4.23), (4.24). (4.25)

globalized to:

u* = argmaxmin/7(a:,p,u,Gf) (4.26)
uEV d^D

d* = argmin/f(a;,p, u*,d) (4.27)

The optimal Hamiltonian is therefore given by

H*(x^p) = n^^min/f(a:,p, w, d) (4.28)
= maxminp^/(x,u, d) (4.29)

u&U dicD

and satisfies Hamilton's equations, with final boundary condition p(0) = |^(.t(0)) = v
given by equation (4.19).
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a functional minimization problem to a static optimization problem). From these

conditions we calculate (u*(-), d'(-)). We then derive the cissociated Hamilton-Jacobi

partial differential equation, whose solution is J*{x,t) as defined in equation (4.12).

However, the set {x 6 | J*(Xyt) > 0} may include states from which there

exist trajectories a:(-) which enter G° and then leave G° within the interval [t,0). In

order to ensure that trajectories axe captured once they enter G°, we will show how

the Hamilton-Jacobi equation may be modified so that its solution counts as unsafe

those states for which the optimal trajectories pass through G° but end up outside G®

at time 0.

Define the modified cost function as

J{x,p,u{-),d{-),i) = l(x{0)) + p^(s)(f{x{s),u{s),d(s)) - x{s))ds (4.16)

where p(s) 6 R" is the vector of Lagrange multipliers. Clearly, a system trajectory is

an optimal solution to (4.9) with dynamic constraints (3.3) if it is an optimal solution

to the modified cost function (4.16). The first term in the integrand is defined to be

the Hamiltonian of the system:

H{x,p,u,d) = p^f{x,u,d) (4.17)

for all s € [<,0]. The calculus ofvariations involves perturbing u and d in J by small
amounts 5u and 5d, and analyzing the resulting variations in 8J, Sx, <5a:(0), and Sp:

SJ = ^(x(0))Sx(0) +f dH{x,p,u,d)^^_^^ -iUp
dx

dH{x,p,n,d) dH{x,p,u,d)^^_
du dd

= (^{x{0))-p^(0)^Sx{0) +p^(t)Sx{t) +
}/A ^dH{x,p,u,d) dH(x,p,u,d)^^
\\ dp ) ) du dd

fifjfnr* n i/ H\

Of/ dH(x,p^u^d)
dx +

ds(4.18)

The Lagrange multipliers p arechosen to make thecoefficients ofSx and <Ja:(0) vanish:

^(i(0))-pAO) = 0 (4.19)
dH(x,p,u,d) ^ r ^ g ^^ 20)

dx
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controller's play. This corresponds to

u(-)€W d{-)^V

The drawback of this formalism is that the disturbance player at time t has knowledge

of u(-) at future times. We will need to modify U to a, space which does not allow

for this "non-causal" behavior of the disturbance player. Assume that the game is

played from [t,0] and let s € (^,0]. Define the space of controls which is truncated at

time s as ZYs, and the admissible space of controls as

= (4.11)

At each 5 € (^,0], the maximization in (4.10) is performed over the set . As far

as the disturbance is concerned, if the full state x is known at time s, the knowledge

of the input u(-) in the interval [<, 5) is not relevant. Thus in the full state observation

case only u(s) is needed. For games with more complex information patterns, such

as imperfect or partial state information, the problem becomes very interesting and

quite difficult to solve [64]. For aesthetic purposes, we will represent as U in

the remainder of this dissertation.

We define J'(x,f), the optimal cost, as

= max min J(a:,«(•),</(•),/) (4.12)

and the corresponding optimal input and disturbance as

«*(•) = arg max mm J(x,u('),d(-),t) (4.13)
^ «(.)€Wd(.)€D V 5 V V/w V /

</-(•) = arg mm 7(i,«*(•),c((-),l) (4.14)

In the following, we use standard results in optimal control theory [33], [34], [35], [65]

to derive the necessary conditions for optimality of the system trajectory

(x{-),u{-),d{-))- (4.15)

by applying the calculus of variations to a modified value function which incorpo

rates the dynamic constraints (3.3) (known as a Legendre transformation^ converting
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3u Vd f(x,u,d):^ 0 Vu v^f(x,u,d)< 0

Figure 4.1: The capture set G°, its outward pointing normal u, and the cones of
vector field directions at points on dG.

The Value Function and Hamilton's Equations

Consider the system (3.3) over the time interval [t,0], where t < 0. The value
function of the game is defined by:

J(x,u('),d('),t): X xU xV xR.

such that

J.(x,u(-),d(-),0 = ^(a^(0))

(4.9)

This value function is interpreted as the cost of a trajectory a:(-) which starts at x

at initial time t < 0 (free), evolves according :o (3.3), with input (u(-),d(-)), and
ends at the final state a:(0), with cost /(a:(0)). Note that the value function depends
only on the final state: there is no running cost, or Lagrangian. This encodes the
fact that when we are considering system safety, we are only interested in whether

or not the system trajectory ends in 0° and are not concerned with intermediate
states. The game is won by the environment if the terminal state x{0) is in G° (i.e.
J(a:,u(-),d(-),t) < 0), and is won by the controller otherwise.

The optimal action of the controller is one which tries to maximize the mini
mum cost, to try to counteract the optimal disturbance action ofpushing the system

towards G. As in the discrete game, the disturbance is given the advantage: the

control u(-) plays first and disturbance d(-) plays second with the knowledge of the
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A feedback controller for <ti that renders" W* invariant can now be constructed.

For all q GW* the controller allows only the GSi for which:

min min J*(q') = 1
<T2€S2 g'GS{q,<rita2)

Existence of such cti for all q eW* is guaranteed by construction.

Proposition 2 (Characterization of W*) W* is the largest controlled invariant

subset of F.

4.2 Continuous-Time Hamilton-Jacobi Equation

Consider now the dynamic counterpart of the above class of discrete games; two-

player zero-sum dynamic games on nonlinear continuous-time systems (3.3), called

pursuit-evasion games. The controller wins if it can keep the systemfrom entering the

interior of the set G, denoted G® = {a: G A" | l(x) < 0} for a differentiable function

I : X —E, with boundary dG. Conversely, the environment wins if it can drive the

system into G®. As in the previous section, we describe the calculation of the set of

states from which the controller can always win.

State Space Partition

The winning states for the controller are those states W* C A' from which there

exists a control law u(-) G U which can keep the system outside G® despite the

disturbance d{-) ^V. Define the outward pointing normal to G as:

(A -N

The states on dO which can be forced into G® infinitesimally constitute the usable

part (UP) of do [36]. These are the states for which the disturbance can force the

vector field to point inside G®:

V? = {x€dG\Vu€U3deD u'^f(x,u,d)<0} (4.8)

Figure 4.1 displays an example, with the UP of dG shown in bold.
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with equality occurring when the action (<Ti,<72) is a saddle solution^ or a no regret

solution for each player. Here, we do not need to assume the existence of a saddle

solution, rather we always give advantage to the environment, the player doing its

worst to drive the system out of F, in order to ensure a conservative solution.

The iteration process (4.1) may be summarized by the difference equation:

J(q,2-1) - J(g,0 = min{0, max min[ min J{q',i) - J(q,i)]} (4.6)/ v^w aieEi<T2€S2V65(9.ai,a2)

which describes the relationship between the change in J(-) due to one step of the

iteration and the change in J(-) due to one state transition. We call equation (4.6) the
"discrete Hamilton-Jacobi equation" for this reason. The first "min" in the equation

ensures that states outside that can be forced by the controller to transition

into W are prevented from appearing in W^~^. This means that once a state has
associated to it a value of zero, the value stays at zero for all subsequent iterations:

enforcing the requirement that "once a state becomes unsafe, it remains unsafe".

Proposition 1 (Winning States W*) Afixed point J*(q) of (4-6) is reached in a
finite number of steps. The set of winning states for the controller is W = {q ^

Q\r{q) = ^}-

Proof: First note that, by induction on equation (4.6), once J{q,i) = 0 for some

then J{qJ) = 0for j < i. That the fixed point J*{q) is reached in a finite number of
steps follows from this and the fact that |Q| is finite.

Suppose that the fixed point is reached at i —k. Let q be a winning state. Thus
the controller has a sequence of actions which ensures that the system, starting at

q, remains in F for at least k steps. Thus q € Thus q G{q € Q | «/ {q) = l}-
Therefore, W* C {q € Q 1r(q) = 1}.

Now suppose that g € {<? € 0 | ^"(9) = 1}, and the environment has a sequence

of actions which drives the system out of F. Thus, for some i € {0, —1,..., A:},

max min min Jiq'^i + 1) = 0
<72622 9'65(9»<7i,<72)

which implies, from equation (4.6) that J(q,i) = 0. This in turn implies that J(qJ) =
0 for j < i. Thus J^[q) = 0, which is a contradiction. Therefore, {q ^ Q \ J'iq) =
1} C W\ •
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to remain in F despite the actions of the environment a2[-]. The set W" can be
calculated as the fixed point of the following iteration (where a negative index i € Z_

is used to indicate that each step is a predecessor operation):

' (4.1)
=W'n{qeQ\ 3(ri e Ei Vo-2 € E2 S(q, <Ti, (72) C W'}

The iteration terminates when = W*. At each step of the iteration,

c W\ thus due to the assumption of the finiteness of |(5|, the iteration ter

minates in a finite number of steps. The set contains those states for which the

controller has a sequence of actions -f- 1].. .<Ji[0] which will ensure that the

system remains in F for at least i steps, for all possible actions 0-2[•] € E2.

The Value Function

Define the value function for this system as

J(g,0:(3xZ_->{0,l} (4.2)

such that

f 1 q£W'J(q,i)=l ^ ^ (4.3)
1 0 q€ (W^Y

Therefore, IV = {g € (? | «/(?,?) = !}• Since the controller tries to keep the system

inside F while the environment tries to force the system out of F,

f 1 if ScTi € SiVcr2 € E2,%,0-1,^2) CW
max mm mm J(q^^)=\ .
(TieSi <t2€S2 9'65(g,<Ti,<T2) I 0 otherwise

The "ming'e5(,,<7j,a2)" in fh® above compensates for the nondeterminism in S; the order

ofoperations max^i minty2 means that the controller plays first, trying to maximize the

minimumvalue of J(-). The environment has the advantage in this case, since it has

"prior" knowledge of the controller's action when making its own choice. Therefore,

in general,

max min min J(-) < min max min J(-) (4.5)
(TjgSi <T2€S2 fiGSi g'€5(9,<^1.0^2)
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In both the discrete and continuous cases, it was assumed that the goal of the

environment could be directly orthogonal to that of the controller's. This is a key

assumption in our derivation ofcontrollers for safety critical systems: the control law

must protect against worst case uncertainty in the actions of the environment. With

most realistic systems, the designer has a model of the environment and its actions:

the better the model, the more flexibility the designer has in choosing a control law.

We first summarize a class of two-player games on the finite state automaton, in

which the goal of the controller is to force the system to remain inside a certain safe
subset of the discrete state space, and the goal of the environment is to force the

system to leave this same subset. We then present the continuous counterpart: a

dynamic game on the continuous nonlinear system in which the control input tiies

to keep the system inside a safe subset of the continuous state space in the face of
an environmental disturbance. Emphasis is placed in each case on the derivation of

a Hamilton-Jacobi equation, whose solution delineates those states from which the

system can remain inside the safe set from those states from which the system may
be driven out of this set. These derivations serve as background for the next chapter,

in which we treat the corresponding problem for nonlinear hybrid automata.

4.1 Discrete Hamilton-Jacobi Equation

Consider the finite automaton (3.1) with trajectory acceptance condition SI =
• F, for F C (3 representing a safe set of states. We first describe the iteration

process for calculating the set of states from which the controller can always keep
the system inside F. We then show how this iteration process can be written as the
difference equation of a value function, which we denote as the discrete Hamilton-
Jacobi equation".

State Space Partition

We define the winning states W* for the controller as the subset of F from which

the system (3.1) has a sequence of control actions which can force the system
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Chapter 4

Evolution of Boundaries for

Discrete and Continuous Games

Consider the discrete finite state automaton of Section 3.1, given by (3.1):

The problem of synthesizing control laws ai[-] 6 in the presence of uncertain

actions <72[-\ € EJ was first posed by Church in 1962 [57], who was studying solutions

to digital circuits, and was solved by Biichi and Landweber [32] and Rabin [58] in

the late 1960's and early 1970's using a version of the von Neumann-Morgenstern

discrete game [59]. More recently, Ramadge and Wonham [60] added new insight

into the structure of the control law. A temporal logic for modeling such games is

introduced in [61].

For the continuous nonlinear dynamics, described by equation (3.3):

i(<) = u{i), d[t)), a;(0) € A'o

the solution of an optimal control law u(-) in the presence of environmental uncer

tainties d(-) was solved as a zero-sum dynamic game by Isaacs in the early 195Ts

[62]^. Solutions for linear differential games were presented by Pontrjagin in [63]. An

excellent modern reference is [36].

Bsaacs was then a researcher at the Rand Corporation and was motivated by military problems
in the U.S. Air Force (aircraft dog fights, target missiles).
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3.4.3 Flight Mode Switching and Envelope Protection Ex-

ample

For the envelope protection example ofSection 2.4.2, the discrete state may takeon

one of five possible values, Q = {<71,... ,95}? corresponding to the five flight modes:
(Speed, Flight Path), (Speed), (Flight Path), (Speed, Altitude), (Altitude). The
continuous state of the system is x = (x, i, h,A)^, with continuous dynamics specified
by equation (2.13). The control inputs are the throttle T and pitch 0 with input
constraint set U = [Tmin, Tmax] x [^mm, Omax], and we assume for simplicity that there

are no continuous disturbance inputs [D = 0) (a possible extension to this problem

would be to consider wind as a continuous disturbance). The controllable actions

label transitions from each mode to every other mode: let cr}^, for f € {1,.. •, 5} and
j ^ {1,.,. ,5} be the action labeling the transition from qi to qj. We assume that

there are no disturbance actions (S2 = 0) (although it is a very nice extension to

introduce disturbance actions representing pilot error in manually switching modes).

The safe set F is illustrated in Figure 2.11.
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Figure 3.4: Hybrid automaton modeling seven-mode conflict resolution maneuver.
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^(g,a:,ai,(72) = 0 otherwise

Inv = (^1, A"") U(^^21 € A'I 0 < 2 < tt}) U(q^s, X)

/ = (gi,{a:6 A'|xJ + ^/^>5^2 = 0})

1' = A'

h{q,x) = (9, a:)

n = OG""

It may be easily verified that:

Fact 1 If q € {91,93} 2 = 0.

3.4.2 Seven-Mode Conflict Resolution Example

For the seven-modeconflict resolution exsimple shown in Figure 2.9, the dynamics

can be modeled by the automaton of Figure 3.4.

As before, the flight management system of aircraft 1 predicts the velocity of

aircraft 2 up to some uncertainty, and computes the parameters ai, the relative
distance at which the maneuver must start, and T, the time in the "straight2" and

"straight4" modes toensure separation is maintained. The unsafe set Gis represented
a.s

G = {9„... ,9r} X{i 6 A' I -I- < 5^} (3.12)

Let e represent any action of either aircraft 1 or 2.

QxX = {gi,...,97} X(3^^ X[-7r,7r) XR)
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cruise2

Xr = -U +dcOS'^fr
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Figure 3.3: In qi the aircraft follow a straight course, in q2 the aircraft follow a half
circle; in q^ the aircraft return to a straight course.

The control input is defined to be the linear velocity of aircraft 1, u = vi € 17,

and the disturbance input as that of aircraft 2, d = V2 € D, where U and D denote

the range of possible linear velocities of each aircraft. Thus the flight management

system of aircraft 1 computes the parameters ai, Ui, and the radius of its avoidance

maneuver, predicting the velocity of aircraft 2 only up to some uncertainty. Safety

is defined in terms of the relative distance between the two aircraft: we define the

region at which loss of separation occurs as a 5 nautical mile cylinder around the

origin in the j/r, V'r, 2) space:

G = {91,92,93} X{a.- ^X\xl + yl< 5^} (3.11)

The dynamics of the maneuver can be encoded by the automaton of Figure 3.3.

Let e represent any action of either aircraft 1 or 2.

QxX =

U xD =

Si X S2 —

f{q,x,u,d) =

{91,92,93} X X [-7r,7r) x

{(71, e) X{(72, c}

—U + d cos tf^r + U>iyr

d sin ipr —wi^r where w,- =

UJ2 — (jJi

1 if 9 = 92

0 otherwise
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We treat the controller synthesis problem cis a dynamic game between twoplayers,

Pi and P2. The first player represents the controller and is responsible for choosing

u and <71, in the face of possible environmental disturbances, which are modeled by

d and <72. In the following chapters, we use discrete and differential game theory to

derive controlled invariant sets and least restrictive control laws which guarantee that

the trajectory acceptance condition H is always met.

3.4 Examples

We now return to the examples ofSection 2.4, to show how they may be modeled

using the formalism of this chapter.

3.4.1 Three-Mode Conflict Resolution Example

Consider the three-mode conflict resolution example shown in Figure 2.8, with

dynamics in each mode given by equation (2.9), such that in modes 1 and 3, iO\
(jj2 = 0, and in mode 2, a;i = a;2 = 1-

•The discrete state takes on one of three possible values, Q = {qi^ 92, ^s}- The state

qi corresponds to cruising before the avoid maneuver, q2 corresponds to the avoid
mode and 93 corresponds to cruising after the avoid maneuver has been completed.
There are two discrete actions. The first (<7i) corresponds to the initiation of the

avoid maneuver and can be controlled by choosing the range at which the aircraft

start turning. The second transition (<72) corresponds to the completion of the avoid
maneuver. This transition is required to take place after the aircraft have completed

a half circle: the continuous state space is augmented with a timer 2: € K. to force

this transition. Let x = (a^r, J/r, V'r, 2:).

At each transition, both aircraft change heading instantaneously by it12 radians.

Because the origin ofthe relative frame is placed on aircraft 1, meaning that aircraft
1 always has a relative position and heading of (0,0,0)^ in the relative frame, the
transitions rotate the state variables {xr.Vr) by 7r/2 radians. We represent this with

the standard rotation matrix i?(7r/2).
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Y=QXX

tL

H

Figure 3.2: Composition of Plant H and State-State Feedback Controller He to form
the controlled system H. The plant is assumed to be directly observable, as shown.
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is defined as

H, = {Uc, Se, 4, Invc, Yc, he) (3.10)

where Uc = Y) x Sc —> {0,1}, Invc ^ Uc, Yc = U, and he •Uc ^ '•

We assume that the plant is directly observable, meaning that y = Q x X, so
that the controller has complete access to the state.

The controller generates continuous control inputs u £ U through its output
function he'' since Ue = Y = Q x X, then

he'.QxX-^ 2^

Thus the control inputs depend on the state of the plant.

The controllable actions <7i € Si are generated in the controller via the discrete

transition function ' Q ^ {3? 1} ^-nd the invariants Inve Q Q 'x X.
When Se(q,x,ai) = {1}, cti is enabled, meaning that it can occur at any time. When
5e(q, x,(7i) = {0}, cTi is disabled from occurring. Transitions are forced to occur
through the controller's invariants: cri is forced to occur if it is enabled (Se(q,x,ai) =
{!}), and if (q-ix) € InVe-

The composition of plant and controller is shown in Figure 3.2. For slightly more
general definitions of Hand He, itmay be shown that the composition of if and is
itself a hybrid automaton. Since we will not have occasion to use this generalization,
we refer the reader to [20].

Definition 6 (Controlled Invariant Set) A set of states W C Q x X is said to
be controlled invariant if there exists a feedback controller such that if I C W then
(q(t),x(t)) GWfor all trajectories (r,qf[-],a:(-),w(-),d(i)5fi[-])<'"2[*]) allt € r with
u(-) and 0*1 [•] generated by the controller.

Afeedback controller, He, that renders W invariant is called least restrictive if for all
{q,x) e Q XX all other feedback controllers that render W invariant have output
maps, transition relations, and invariants which are contained in the output map he,
the transition relation 8c and the invariants InVe of He-
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We cissume that / is globally Lipschitz in x and continuous in u and d. Then, by

the existence and uniqueness theorem of solutions for ordinary differential equations,

for each interval given the value of (9[2],r(t)) for some i € and input

and disturbance trajectories u(-),d(-) over [Tj,T/] there exists a unique solution rF(-)

over [t,, r/]. However, existence and uniqueness of trajectories over t ^ T are not

guaranteed in general. If the set <^(9, a;, <71,0-2) were empty for any then the hy

brid system could deadlock. Also, since the hybrid automaton is non-deterministic,

multiple trajectories could occur for the same initial conditions and inputs. Finally,

there is no guarantee with the above model that the hybrid automaton is non-Zeno^

meaning that only a finite number of discrete transitions are allowed in finite time^

In fact, one of our air traffic examples is a Zeno hybrid automaton; in Chapter 6 we

describe the difficulties in synthesizing controllers for such a system.

Again, we are interested in safety specifications, which translate to trajectory

acceptance conditions of the form fl = DF, where F represents a safe subset F C

Q X A' (meaning for alH 6 t and i G Z, the state trajectory (q'[2],a:(t)) G F).

3.3 Controlled Hybrid Systems

Consider a nonlinear hybrid automaton i/, with an acceptance condition Q = OF

for F C Q X X. Do all trajectories of H satisfy D? If not, how can we restrict the

trajectories of H so that the restricted set satisfies D? In this section, we describe the

mechanism by which a hybrid automaton may be composed with a controller automa

ton, so that the result is a hybrid automaton which exhibits the desired behavior.

We refer to the nonlinear hybrid automaton, /f, whose behavior we wish to control,

as the plant. A controller may affect the behavior of H though its continuous and

discrete control inputs u € U and <7i G Si:

Definition 5 (Static State Feedback Controller) A static state feedback

controller He of a hybrid automaton H = (Q x A, x Z), Ei x E2, /, Inv, /, V,h, D)

^The name "Zeno" comes from the ancient Greek Zeno who lived in Elea, a Greek colony in
southern Italy, in the fifth century B.C.. Zeno spent his time posing paradoxes about time.
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Figure 8.2: Airspace simulation tool, incorporating dynamic models of aircraft in an
interactive environment.

elevator as inputs. I igure 8.2 displays a view of three aircraft, on a prototype version

of our software tool, called SmartPlanesII.
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Figure 8.1: Conflict resolution for three aircraft: the roundabout maneuver.

aircraft has access to different amounts of information about the system as a whole.

In this work, we generate protocols for maneuvers using Reeds-Shepp paths from
robotic motion planning [82].

Future Directions in Air Traffic Management

Part of our research program is to build a design and simulation platform, on a

network of workstations to be used as a testbed for these algorithms. The platform

will include dynamic models of different aircraft and their autopilots, a hybridsystem

modeling and simulation tool, as well as thestandard computation tools ofMatlab and
Mathematica. It will provide an environment in which different concepts for a new air

traffic management system can be tested, and it will be set up hierarchically so that
the user will be able to implement "macroscopic" algorithms on a complete air traffic

system at the same time as "microscopic" algorithms on each individual aircraft.
Realistic simulation is the first step to successful implementationof the algorithms in

future air traffic systems. A first version of this simulation tool has been developed

for three dimensional dynamic models of aircraft with throttle, aileron, rudder, and
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hybrid system model and controller synthesis scheme presents a method by which
the system design process may be automated (which is important for inexpensive and
rapid prototyping ofreal-time software systems), and by which one may achieve better
performance, handle larger systems, and have greater confidence that the system will
work as planned. While there would still be need for simulation and testing, as we

discuss below, one should not have to rely on these methods.

Future Directions in Controller Synthesis

The emphasis in this dissertation has been on developing least restrictive control
laws for safety critical systems: our controllers restrict actions of the system only
when the state approaches unsafe regions ofoperation, and all possible mode switches

which satisfy the safety constraints are derived. Our original motivation for studying

flight modes and the switching between them was in work with Meyer [49] and Hynes
[54], in which control schemes were sought which guided an aircraft safely through
"optimal" sequences of flight modes. Our current work focuses on designing specific
control laws for each mode, which may be integrated with the constraints for safety

to provide bumpless transfer between modes.

We are also exploring different techniques to simplify the computation of optimal

control and disturbance trajectories (u*('),d*(-)). One promising technique comes

from exploiting special geometric properties of the continuous dynamics. In [81], we

describe the dynamical games solution when the underlying dynamics correspond to

left-invariant control systems on a Lie group. In this formulation, some simplification

in the derivation of saddle and Nash strategies follows from the use of Marsden-

Weinstein reduction techniques: we give an outline for the solution of A'̂ -aircraft

conflict resolution using Ncish type strategies. This simplification allows us to effi

ciently compute optimal solutions to complex conflict resolution problems for more

than 2 aircraft, using numerical techniqueswhich could be programmed into the flight

management computers on boardeach aircraft. For three aircraft coming into conflict

this approach produces the roundabout maneuver, shown in Figure 8.1.

We have also begun work on investigating the optimal trajectories when each
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Chapter 8

Future Work

In this dissertation we have presented a model for hybrid systems, and an al

gorithm, based on two-player zero-sum game theory for automata and continuous

systems, for computing reachable sets and for synthesizing control schemes for hybrid

systems. The reachable set calculation is exact: the solution to the coupled Hamilton-

Jacobi equations in Chapter 5 describes the reachable set for nonlinear hybrid systems

of any continuous and discrete state space dimension. One of the main topics of our

current and future work is the numerical computation and approximation of reach

able sets. In Chapter 7 we presented our initial results in using a level set method

for computing solutions to the Hamilton-Jacobi equation, and our future plans in

clude developing connections to polygonal and ellipsoidal methods to approximate

and efficiently store reachable sets.

Our goal is to develop a software tool to perform these calculations automatically

or semi-automatically for hybrid systems with an arbitrary number of discrete states,

and an arbitrary continuous state dimension. In this tool, the user will specify the

system model and the desired property to verify, and the tool will verify that either

the safety property is maintained by the system, or will provide a trace to the user

as to why the system fails the safety test.

The second goal of this dissertation is to present a very rich application domciin

in air traffic systems. The control used in these systems today is either manual, by

a human controller, or by automation which has not been formally verified. Our



105

Ellipsoidal Methods

A similar idea is to use ellipsoids as inner and outer approximations to the reach

set [79], [80]. [80] presents efficient algorithms for calculating both the minimum vol

umeellipsoid containing given points, and the maximum volume ellipsoid in a poly

hedron, using matrix determinant maximization subject to linear matrix inequality

constraints.
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used to approximate the differential inclusion is known to be decidable, thus one can

guarantee that the reachable set as t —oo can be computed in a finite number of
steps. The amount of preprocessing required to initially approximate the dynamics
may be quite formidable however, especially to achieve a close approximation of the
true reach set.

7.2.2 Approximating non-smooth sets with smooth sets

We have shown that the reach set at any time t € (—oo, 0] may have a non-smooth

boundary due to switches in (u*,d*)^ non-smooth initial data, or the formation of

shocks. The level set scheme propagates these discontinuities, yet its implementation

may require a very small timestep to do this accurately. In [31] we present a method

for over-approximating such non-smooth sets with sets for which the boundary is

continuously differentiable. Suppose that there exist differentiable functions /Jj, i =

1,..., such that

G = {a: € X IVi G{1,..., k}, l^{x) < 0} (7.18)

Following [77, 78] we define two smooth functions:

G'(x) = eln[sjLie'=<''/']
Ge(x) = G^(x) —c\nk

Now defining

G, = {a: G X I G,(x) < 0}

G' = {a: G X I G'(a:) < 0}

it is easy to show that Ge C G C G^ and we can prove that limc_^oG^e = G^ and

lim«_i.o G^ = G. By applying Algorithm (5.6) to smooth inner and outer approxima

tions of the sets G and E, we calculate smooth inner and outer approximations to

the true reach set.
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Figure 7.1 displays the result ofapplying this algorithm to the two-aircraft example

with zero angular velocity and [ui,vi] = [2,4], [vai'̂ 2\ = [1,5] and V'r = 27r/3 (Figure

6.10).

This example presents the very basic idea in level set methods; for special forms

of the Hamilton-Jacobi equation, many extremely efficient variants of this method

exist [72]. In particular, the narrow band and fast marching methods speed up the

algorithm by confining the computation to a narrow band around the evolving front.

It is essential that a bound on the error due to approximation be known at each

step of the algorithm, in order to guarantee that the computed surfaceis a conservative

approximation to the actual surface.

7.2 Other Methods

Other methods have been presented for approximating the reach set calculation:

here we discuss twc methods, one which approximates the continuous dynamic equa

tions with simpler equations, and one which approximates the reach set itself.

7.2.1 Approximating Dynamics with Differential Inclusions

Suppose the continuous dynamics in the nonlinear hybrid automaton (3.6) were

approximated with the differential inclusion

(7.16)

where g(q^x) = {/(g,a:,u,d) | V« € ?7, d € D}. A computationally efficient method

for approximating the reach set of g(qyx) is to conservatively approximate giq^x) by

a set of constant inclusions, each of the form

X^ [S'min, fi'max] (7.17)

and then to compute the reach set of the constant inclusions. This method is pre

sented in [75], [76] where it is proved that the approximation error can be made

arbitrarily small by approximating the differential inclusion arbitrarily closely (e-

approximation). An advantage of this method is that the class of constant inclusions
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Figure 7.1: {x € X | < 0} shown in the (xr, j/r)-plane for [ui,ui] = [2,4],
^25^2] = [1?5] and V'r = 27r/3.
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1. Compute

' ax, )
jmf_ dj*{xij,t) dJ*{Xij,t). (7 9)

dxr ' dx, )
using the initial approximations to the derivatives

dJ {xjj^i) _ j^oxi _ j^ox2
dxi ' dx2

2. Calculate/(x,j,u*, d')

3. If —f{xij^u*,d*) flows from larger to smaller values of Si, let

dJ*{xij,t) _ (7.10)
dxi

otherwise let dJ*(xij,t) _ (7.11)
dxi

If —/{xij^u'̂ d*) flows from larger to smaller values of X2, let

dJ (xjj^t) _ j^+x2 (7-12)
dx2

otherwise let

dx'

4. Compute J*(a;ij,< —Ai):

For Xij such that J*(xij^t) > 0,

At) =J'(xij,t) +At^^^^^^^f{xij,u\d') (7.14)
For Xij such that J"(i,j,<) < 0,

t) + Ai^^^^fixij, u',d')
\f?^^nxii,u',d')<0 (7.15)

J'(xij,t) otherwise

J-{xij,t - At) =
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derivative must be used. Consider an example in two dimensions, with X discretized

into a grid with spacing Aa;i and Ax2. The forward difference operator at

X= {x\^X2) is defined as:

D+«r(x,<) = + (7 2)
AX2

The backward difference operator D~^* is defined as

D-"J'{x,t) = J'{x,t) - Axi,X2),t).
Axx

D-''r(x,t) = Ax2),<)
1^X2

The central difference operator is defined as

j^oxj ((^1 "b ^Xi,X2)',i) —J ((3:1 ~Aa:i,a:2)?0

£l°*V(i i) = +Ai2),<) - •/•((Xl,l2 - Ax;),<) gj
' 2Aa:2

At each grid point x = (a:i,X2), the partial derivatives and may be

approximated to first order using either the forward, backward, or central difference

operators. The correct choice of operator depends on the direction of /(a*,

(in our Ccise it depends on —f{x^u*^d*) since we compute backwards in time). If

—f(xyU*,d*) flows from left to right (from smaller to larger values of a:i), then

should be used to approximate (and vice versa); and if —/(a:,u*,d*) flows

from bottom to top (from smaller to larger values of 0:2), then should be used

to approximate (and vice versa). Such an approximation is called an upwind

scheme, since it uses information upwind of the direction that information propagates.

The algorithm for the two dimensional example proceeds as follows. Choose a

domain of interest in X and discretize the domain with a grid of spacing Axi, Aa:2.

Let Xij represent the grid point (iAxi, jAa:2) and let J*{xij^t) represent the numerical

approximation of J*{xij^t), Using the boundary condition J*(a:,0) = /(x), compute

J*(x,j,0) for each x,j.

Let t = 0.

While J*{xij^t) ^ J*(xij^t —A^) perform the following steps:
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7.1 A Level Set Method for Boundary Approxi

mation

Consider the Hamilton-Jacobi equation (4.37), repeated here:

dJ'{x,t) _ f for {i e 1J'{x,t) > 0}
dt for{x€X| r(x,<)<0}

with boundary condition J*(x,0) = l{x). Recall from the discussion in Chapter 4

that we define a viscosity solution [66, 67] to (4.37) as the solution as e —>• 0 of the

partial differential equation (4.39):

dJ'ix,t) _ j H'(x,S^^) +tAJ'(x,t) for {i €X IJ'(x,t) >0}
~ dt ~\ min{0, H'(x, +cAJ:(x,t) for {x €X| J:(x,t) < 0}

with boundary condition J*(x,0) = lc{x).

The level set methods of Osher and Sethian [38] ([72] provides a comprehen

sive survey) is a set ofcomputation schemes for propagating interfaces in which the
speed ofpropagation is governed by a partial differential equation. These numerical
techniques compute the viscosity solution to the Hamilton-Jacobi partial differential
equation, ensuring that shocks are preserved. The methods have proved fruitful in
many applications, including shape recovery problems in computer vision [73], and
plasma etching problems in micro chip fabrication [74].

The key idea of the level set method is to embed the curve or surface to be
evolved, for example the n-dimensional boundary ofthe capture set, as the zero level
set of a function in n -1- 1-dimensional space. The advantage of this formulation is

that the n -f 1-dimensional function always remains a function as long as its speed

of propagation is smooth, while the n-dimensional boundary may develop shocks or
change topology under this evolution. The numerical methods of [72] choose the
solution of (4.37) (with zero viscosity) to be the one obtained from (4.39) as the
viscosity coefficient e vanishes. We present an outline of the method below for a
two-dimensional example.

9*7* Ix f)
In order for the numerical scheme to closely approximate the gradient —

especially at points of discontinuity, an appropriate approximation to the spatial
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In practice, the usefulness of the algorithm for hybrid controllersynthesis depends

on our ability to efficiently compute the optimal control and disturbance trajectories

(u'(-), d*(-)), as well as solutions to the Hamilton-Jacobi partial differential equation

(4.37). As discussed in Chapter 4, numerical solutions are potentially complicated

by the facts that the right hand side of (4.37) is non-smooth and that the initial

data F may have non-smooth boundary, that (u*(-),(/•(•)) may be discontinuous, and

that the solution J*{x^i) may develop shocks over time. New optimal control tools

[71] can make the solution of computing (u*(-),d*(-)) feasible, at least numerically,

and in this section, we discuss a numerical technique developed by Osher and Sethian

which computes the viscosity solution to the Hamilton-Jacobi equation, ensuring that

discontinuities are preserved. We present the results of applying this technique to the

two-aircraft example.
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Similarly, W~^ = F, = F, and the fixed point is W* = meaning that the
maximal controlled invariant set contained in F is F itself! This is clearly incorrect

for the real system: the calculations to produce Figures 6.14 and 6.16 in the previous
sectionshowed that certain "corners" of F are not controlled invariant. The error lies

in the fact that this system is Zeno: if forced into one of these corners, the system

could avoid fiowing out ofF by switching infinitely often inzero time between discrete
states. Unlike the previous examples, there is no specified minimum time for the

system to stay in each discrete state.

A possible remedy is to enforce that the system remain in each discrete state,
for some minimum time T > 0. If this is the case, then the algorithm calculates

W as the union of and Wy^ for their applicable discrete modes. The mode
switching logic is implicit in these calculations: as the aircraft approaches maximum
or minimum altitude, the FMS must force the autopilot to switch to modes 4 or 5 and
choose a control scheme which satisfies the limits on h. As the aircraft approaches its

maximum or minirixum speed and flight path angle, the FMS must force the system

into modes 1, 2 or 3 and select those control inputs which either drive the aircraft
back inside the envelope, or keep it on the boundary of the envelope.
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Figure 6.16: The set in (h, V, h)-space, with control law as indicated. Altitudes
are /imtn ~ 10A:^i, hmax —51/?/"^.

scheme is cis indicated. This calculation incorporates the limits on the altitude h into

the previous calculation: at h = hmax, the control must be chosen so that h < 0,

wherecis a,t h = /imm, the control is restricted to force h>0.

6.2.2 Controller Synthesis

We would now like to apply Algorithm (5.6) to generate the controllable actions

crj-' which force transitions between discrete states to ensure safety. However, we

quickly run into a problem. At the first step of the algorithm, = F, and since
there are no uncontrollable actions, Pre2{F) = F''. However, since the controllable

actions are always enabled, Prei{F) = F. Thus

Reach{Pre2(F)^ Prei(F)) = F' (6.50)

and therefore

W-^ = F\F' = F (6.51)
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Additional Constraints for Passenger Comfort

Cost functions involvingthe linear and angular accelerations can be used to encode

the requirement for passenger comfort (we use J^jJe in the following, after Ji to J4

of the previous section):

^5((V, 7), «(•),<)) = - max IV(<)|, J6((V, 7), "(•),«)) = - m^ I )7(<)l (6-45)

The requirement that the linear and angular accelerations remain within the limits

determined for comfortable travel are encoded by thresholds:

^5((V,7),«(-),<))>-0-lS, W.7),«(-).<))>-0-lS (6-46)

Within the class of safe controls, a control scheme which addresses the pcissenger

comfort requirement can be constructed. To do this, we solve the optimal control

problem:

^5((^-7))= max Js, Je({V,^)) = max Je (6.47)
«{-)efl(V,7) w(-)€5(V,7)

From this calculation, it is straightforward to determine the set of "comfortable"

states:

{(V,7) e Wy^ Ij;(V,j) > -O.lg a J|(V,7) > -O.ls} (6.48)

The set of comfortable controls may be calculated by substituting the bounds on the

accelerations into equation (2.14), (2.15) to get

-0.lMg-\-aDV^ +Mge'inj < T < 0AMganV^ Mg smj ^
0.1Mg 1—C7 I Mgcos7 ^ f) 0.1Mg _ 1-C7 I Mg cos7
aiV^c c ai^V^c — — olV^c c oiV^c

These constraints provide lower and upper bounds on the thrust and the pitch angle

which may be applied at any point (V, 7) in while maintaining comfort.

Speed, Altitude Modes

Repeating these calculations for the speed and altitude modes (modes 4,5), using

the dynamics (2.13) and envelope illustrated in Figure2.11(b), the controlled invariant

subset is computed and shown in Figure 6.16, and the least restrictive control
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either tangent to or to the left side ofthe boundary {(V,7) 1 = Knax) A(76 < 7 <

7max)}. At the point (V;nax,76), where r6(76) = Tmin, Tmin is the unique thrust which
keeps the system trajectory tangent to Fv-y (lower right boundary of Fv-y in Figure

6.15).

Similar calculations along the upper and lower sides of dFv-y yield that the values

of $ for which the vector field becomes tangent to dFy-y are 9c[y) and Od{V) of

equations (6.43) and (6.44). •

In Figure 6.14, the portions ofWy^ for which all control inputs are safe (5f(V,7) =

U) are indicated with solid lines; those for which only a subset are safe (5^(^,7) C U)
are indicated with dashed lines. The map defines the least restrictive safe control

scheme and determines the mode switching logic. On and the system must

be in Mode 2 or Mode 3. Anywhere else in Wy^^ any ofthe three modes is valid as

long as the input constraints ofequation (6.40) are satisfied. In the regions Fy^\Wy^
(the upper left and lower right corners ofFy^)^ no control inputs will keep the system
inside of Fy^.



p(V,7) = U n g(V,i), where:

9[y,l) = { 0
T > r,(7)

e = A r = T„ax

6 < e,{v)

T < nil)

6 = 6maz t\T = Tmin

0 > 0d{V)

with

if (V,i) e (W^^r
if [V - A(7„i„ < 7 < 7a)

t/(V,7)€aj'' -

«/(7 = 7moi) A(Va < V < V„„i)

i/ {y —Knar) A(76 ^ 7 —Imax^
if {V,-,) € dJ'

if (7 = 7mtn) A(Kni„ < V < V(,)}

Tah)

nh) =

0c(V) =

0d(V) =

= aDV^i„ + Mgemt

+ Ma sin 7
M Igcos7„„i aiV(l_-£TWi)\

otVc V V M )
M IgC0S7„in _ aLV(l - C7min)'\

aiVc V ^ M J

Proof: Consider the set {(V, 7) 1(V —^min) A{'ymin < 7 < 7a)}. For each (y,7) in

this set, denote by (Ta(7), 0a(7)) the values of (T,6) for which the vector field (V/,7)
becomes tangent to this set. These axe the (T,0)for which V = 0: setting V = 0 leads

to equation (6.41) for all ^a(7) € \0mtni 0max]. Thus, {[Ta(7)^Tmaxl ^ [^mtru ^max]} Q U

keeps the system either tangent to or to the right side ofthe boundary {(V,7) I =

Vmin) A(7mm < 7 < 7a)}. At the point (Vmm,7i), where Ta{ia) = '̂ min the vector
field cone (V,7) for {T,0) G U points completely inside Fv-y- At 7a, the cone points

completely outside Fy-y^ and T = Tmax is the unique value of throttle which keeps

the system trajectory (V(t),7(t)) tangent to Fv-y- This is illustrated in Figure 6.15,

which shows the upper left boundary of Fy-y, and the cone of controls at the point

7a).

The calculation may be repeated for the set {(V,7) | (V = Vmax) A (76 < 7 <

7max)}. Here, denote by (^6(7), ^6(7)) the values of (T,6) for which the vector field
(V,7) becomes tangent to this set. Setting V = 0 leads to equation (6.42) for all

^6(7) € [Omin,0max]- Therefore, {[Tmm,71,(7)] x [^mtn,^max]} C U keeps the system
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(6.40)

(6.41)

(6.42)

(6.43)

(6.44)
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is tangent to {(^,7) 1Ji(Vn) = 0}. Thus the solution (V(t),7(<)) to equations
(2.14), (2.15) with u = (Tmax, Omin) evolves along Ji(V,7) = 0. Since, byconstruction,

(V,7) G satisfies equations (2.14), (2.15) with u = {Tmaxt^min), then (V,7) G
satisfies «/J'(V,7) = 0.

Repeating this analysis for {(V,7) [ /3(V,7) = 0}, we can show that

{(v,7) I^3*(^.7) = 0} = {(V,7) I(V = V„ex) A(7k <7 < 7m«x)} U{(^,7) €dj''}
(6.39)

On the remaining boundaries, ^^J((V',7),p) > 0 and /f4((V,7),p) > 0, so these

boundaries remain unchanged under the evolution oftheirrespective Hamilton-Jacobi

equations.

It remains to prove that Wy^ = n,g{i,2,3,4}{(^5 7) I ^ 0)- Clearly, any
state (V,7) for which there exists an i such that J*(V,7) < 0 must beexcluded from
Wy^^ since a trajectory exists which starts from this state and drives the system out
of ni6{i,2,3,4){(V,7) IJnv,i) > 0}- Thus C n.€0.2.3,4}{(V,7) 1 > 0}.
To prove equality, we need only show that at the points of intersection of the four
boundaries: {(K^Tmax), (Vmax,7max), (K,7„^i„), (l/;„m,7mtn)} there exists a control
input in U which keeps the system state inside n,e{i,2,3,4}{(V,7) 1^*(^,7) > 0}.
Consider the point (Va,7mox). At this point, the set of control inputs which keeps

the system state inside the set {(V, 7) | «/i*(V, 7) > 0} is {(Tmoxi^mtn)}? a-nd the
set of control inputs which keeps the system state inside {(^,7) | J|(V,7) > 0}
is the set {(r,e)|T € [Tmm.TmaJ.e € Since
these two sets have non-empty intersection, the intersection point (Vo7 7mox) ^

Similar analysis holds for the remaining three intersection points. Thus Wy^ =

n,GO.2.3,4}{(V,7)l</r(V,7)>0}.

Lemma 6 The least restrictive controller that renders Wy^ controlled invariant is



denoted Wy^, is the set enclosed by

dW^^ = {{V,i)\ (V —̂ min) A("Ymtn ^ T—To)
{Vn)edJ<^

(7 = Tmoar) A(K < ^ < Vmax)
(V = Vmax) A(76 < 7 < 7max)

{Vi)edJ'

(7 = 7mtn) A(Kntn < ^ < H)}

Proof: We first prove that the boundary of the set njg{i,2,3,4}{(^)7) I ^

is the boundary constructed in equation (6.33). We then prove that this set is equal
to the maximal controlled invariant set contained in Fv-y.

Consider first the edge {(V,7) | li{Vn) = 0} in will show that

{(V,7) I^r(V,7) = 0} = {(v,7) I(V = Vmin) A(7m,n < 7 < 7a)} U{(V,7) € dr}
(6.34)

The optimal HamiLonian ifi((V,7),p) satisfies:

< 0 (V,7) € Fv-r n /i(V,7) = 0 n 7 > 7a

= 0 (V,7) € Fv^n/i(V,7) = 0n7 = 7o (6-35)
> 0 (V,7) e Fv-r n /i(V,7) = 0 n 7 < 7a

Thus, the set {(^,7) | (V = Vmin) A(7mtn < 7 < 7a)} remains unchanged under the
evolution of the Hamilton-Jacobi equation (6.30), since i/J" > 0 for this set. We now

prove that for (V,7) € Ji{V,'y) = 0. Ji{V,j) satisfies:

aiVil—cy) pcos7 aicVdJnv.'r)
dv

ajr(v,7)
9-y

Since

//r((V,7),P)

[•
aoV . , 1 7,

dV

aj.'(v.7)
O-y

M

V

V

V

V

V

+
. M

91

(6.33)

^mtnl = 0

(6.36)

(6.37)

is the inwajd pointing normal to {(V,7) | Ji(V,^) = 0}, then for each (V,7) in

{(^^>7) I vector field

-5fsin7 +
a^V^Cl—ct) flcos-Y I a,,cV/3

j^/f ~ v MM

(6.38)
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{(V,V\ J*(V,r) ^0}

ij(v,y) = o

Figure 6.13: Computing the set {(V,7) | Ji(V,j) = 0}.
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Figure 6.14: The set Wy^ in (V,7)-space, with control law as indicated. Values used
are for a DC-S: 7mtn = -tt/S rad, '̂ rnax = tt/S rad, Vmin = 180 m/s. Knar = 240 m/s,

= —7r/8 rad, Omax = 7r/8 rad, T^tn = 40 kN, r^ox = 80 kN.
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O''̂ max^
h (v,y) = 0

Pl>0-*- u^=Tfnax(PfPz) {p2<o-^ ii|=e
mm

i2(v,y) = o

Figure 6.12: Computing the boundary

[Omin.Gmax], the inward pointing normal to the solution (V'(t),7(i)) of the system
(2.14), (2.15), starting at (Vmtn, 7a) and proceeding backwards in time for small t < 0
using Ui = Uj, is such that p2 is negative. Thus, U2 = ^min* Denote the point of
intersection of the solution of (2.14), (2.15) with {(V,7) ] /2(V,7) = 0} as iyailmax)-,

and the solution to (2.14), (2.15) between (Knt„,7a) and (Va,7max) as as shown
in Figure 6.12. Repeat this calculation for the remaining three boundaries. Of the
remaining three, only {(^,7) | /3(V,7) ~ contains a point at which the associated
optimal Hamiltonian, /f3((K7),p)i becomes zero. We denote this point as (14jaa-i7fe)
where:

T
76 = Sin ( Mg Mg

and similarly calculate dJ^ and 14, as shown in Figure 6.14.

•) (6.32)

Lemma 5 For the aircraft dynamics (2.14), (2.15) with flight envelope Fy^ given by

(6.22), and input constraints (2.12), the maximal controlled invariant subset of Fy^,
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optimal cost is found by maximizing with respect to u:

•^r((K7),<)= maxyi((V,7))«(-)ii) (6-28)
u{-)eU

We seek to compute Wi = {(V,7) [ t/i(V,7) > 0}, which axe those (V,7) for which

there exists a control input which keeps the system to the right of /i(V,7) = 0.

The optimal Hamiltonian is given by the following, where we have substituted into

the dynamics the expressions for the lift L and drag D forces (2.11) (neglecting the

quadratic term in D):

rr»//w NX r / . 1 rnx ,aL^(l —C7) PC0S7 aicV...
^i(( '̂7).P) = M ^ +

(6.29)

where p = (pi,p2) € The Hamilton-Jacobi equation describing the evolution of

Jj*((V, 7),^) is obtained from (4.37):

dJi(x^t)
dt

^ ^ I •^r((^.7),<) > 0}
for {(^7) 6 X | mV,i),t) < 0}

(6.30)

with boundary condition «/r((V,7),0) = /i((V,7)).

The optimal control at / = 0 is computed from equation (6.29). The optimal

throttle input T may be calculated directly from this equation: ul(0) = Tmax (since

Pi > 0 for the inward pointing normal). The optimal pitch input must be calculated

indirectly^ Define [Vmin.la) = {(V,7) I^1(^,7) = OH //'i(V,7) = 0}. Then:

Integrate the system dynamics (2.14), (2.15) with (V(0),7(0)) = (K,m,7a), u =

(uj,u5), backwards from i = 0 to f = —T, where T is chosen to be large enough so

that the solution intersects {(V,7) | '2(^,7) = 0}. The optimal control is required

for this calculation. At the abnormal extremal (Knm, 7a)i any U2 € [^mtn? ^max] niay be

used. However, as we integrate the system, we leave the abnormal extremal regardless

of the choice of U2 instantaneously, and uj is uniquely determined. For all U2 €

^Since /fi((F,7),p) loses dependence on U2 on the set {(^,7) | /i(F,7) = 0), the calculations
involve computing the so-called abnormal extremals [68].
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the envelope ^hvk at all times.

Speed, Flight Path Modes

In the speed and flight path modes (modes 1,2,3 in Sectipn 2.4.2), V and7 are the

only controlled variables, therefore we may derive the maximal controlled invariant

set contained in Fv-y, using the (V,7)-dynamics (2.14), (2.15):

D . T
V = -flrsm7 + — cosa

M M
L T .

' yi = TT - fl' cos 7 + — sm aM M

where 0 = ^ —7. Let

Fv^ = {(1^,7) IVi € {1,2,3,4}, > 0} (6.22)

where

/i(l/,7) = V-Kxin (6.23)

/2(l/.y) = -7 + 7,„ax (6.24)

/3(V,7) = + (6.25)

h[y,l) = 1-lmin (6.26)

dFv-y is only piecewise smooth, contradicting the assumption of existence of a dif-
ferentiable function I : (V,7) —>• Msuch that dFy^ = {(V,7) | liY-,!) = 0}. We

show that, for this example, the calculation can in fact be performed one edge of the

boundary at a time: we derive a Hamilton-Jacobi equation for each and prove that

the intersection of the resulting sets is the maximal controlled invariant subset of Fy^.

The subscript i in each Ji,Hi will indicate that the calculation is for boundary /,-.

Starting with /i(V,7), consider the system (2.14), (2.15) over the time interval

[i,0], where / < 0, with cost function

Ji{{y.l).u(-),t) :R+ xRxU xR.-^R (6.27)

such that Ji((l/,7),7i(.),<) = /i(y(0),7(0)). Since there are no disturbances in our

model, the dynamic game of Section 4.2 reduces to an optimal control problem. The
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Figure 6.11: = (W~'̂ Y in qi. The enabling and forcing boundaries for ai are
shown, and the controller (5c, InVc) € He may be constructed cis shown.
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Figure 6.10: Jg^{x] < 0for (a) Modes 1 and 7 (i = 1,7), Wi = uj2 = 0 and [ui,Ui] =
[2,4], [u2i'̂ 2] = [1,5] (the jagged edge means the set extends infinitely); (b) Modes 3
and 5 (z = 3,5), wi —uj2 = 0 and [ui,Fi] = [2,4], [£2,^2] = [1,5]; (c) Mode 4 (z = 4),
a?! = a;2 = 1 and I'l = U2 = 5; and (d) Modes 2 and 6 (z = 2,6), a;i = W2 = —1 and
Vi = V2 = 5. In all cases, rpr = 27r/3.

where l{x) —x'f —5^. As in the previous example, let Gi be the unsafe set in

mode z, and let Jq^ be the optimal cost function in mode z.

The sets {x G A' | < 0} are shown in Figure 6.10 for z = 1,...,7. In the

straight modes, the sets are calculated using (zz*,d*) of Section 6.1.1 (and thus show

a close resemblance to the set in Figure 6.1(a)).

Figure 6.11 displays the fixed point \V = in qi. The controller (<5c, InVc) €

He is constructed as in the previous example, and is illustrated in Figure 6.11. The

time spent in the straight legs of the maneuver, T, may be chosen to maximize W*,

6.2 Mode Switching for the Longitudinal Axis

Dynamics of a CTOL Aircraft

6.2.1 Continuous Dynamics

Consider the longitudinal dynamics of the CTOL aircraft (2.13) in which the

state X= {x,x, /z, h)^ is required to stay in the envelope F, shown in Figure2.11(a) in

(1/-y).space, and 2.11(b) in /zFft-space. The specification maybe decoupled according

to Fvf and F^y/^: the airspeed V and flight path angle 7 must remain in the envelope

Fvy at all times; and the airspeed, altitude h and vertical speed h must remain in
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Gj enabled
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Y

Figure 6.9: Showing the enabling and forcing boundaries for G\ in state and the
result of increasing the radius of the turn in the avoid maneuver to increase W*.

the aircraft are doomed to collide. Figure 6.9(b) displays the result of increasing the

radius ofthe turn in 92- Notice that the set W* (the complement ofthe shaded region)

increcLses as the turning radius increases. This implies that the maneuver renders a

larger subset of the state space safe. Figure 6.9(b) shows the critical value of the
turning radius, for which the maneuver isguaranteed to be safe, provided the conflict

is detected early enough.

6.1.3 Controller Synthesis for Seven-Mode Example

It is straightforward to repeat this analysis for the seven-mode example of Figure

2.9, modeled in Section 3.4.2. In this example, the input and disturbance sets U and

D are the ranges of possible airspeeds of aircraft 1 and 2 in the "straight" modes, as

described in Section 6.1.1. In the "circular axe" modes, these airspeeds are assumed

constant. Thus, our goal is to compute the relative distance of the aircraft at which

the maneuver must start, the lengths of the straight legs of the maneuver, as well as

the airspeeds u* and d*, to ensure safety.

G is defined as:

G = {91,..., 97} X e A' I l(x) < 0} (6.21)





Figure 6.5: (a) Prei(H



Figure 6.4: The jagged edge in qs means that the set extends infinitely.

Note that Prei{W') C {(gi,X)} for all i, since di is only defined for transitions from

qi. The set W~^ (Figure 6.4) is

^4/-i ^ iyO\/?eac/i(Pre2(iy°),Prei(VF°)) (6.20)

The set IT ^ involves computing/?eac/i(Pre2(14'' ^),Prei(iy ^)), this computation

is illustrated in Figure 6.5(a) and the set is shown in Figure 6.5(b) as the shaded

region. Figure 6.6 illustrates the set Figure 6.7 shows the computation of
Peac/i(Pre2(14^"^),Prei(VF~^)). Figure 6.8 illustrates the fixed point W* = W~^.

As we assumed in this example that the continuous control input u = ui is fixed,

we need only design the discrete part of the controller ((5^, Invc) G He for the action

di 6 Sc, which specifies when the maneuver should start. The design is as illustrated

in Figure 6.9(a). di must be disabled (5c(gi,3:,cri) = {0}) until the relative dynamics

in qi reach the dashed line as shown, otherwise the aircraft will lose separation with
each other either during the maneuver or after the maneuver is complete. At the

dashed line, (jj is enabled (^c(9i)3:,Ci) = {!})) meaning the transition from qi to q2

may occur at any time. di remains enabled until the solid line (boundary of IT*), at

which point it mustbe both enabled andforced; Sc{qi,x,di) = {1} and {qi,x) € InVc,
otherwise the aircraft lose separation immediately.

Note that there are states {xr.Vr) which are not rendered safe by the maneuver.

Indeed, if the initial state is in the darker shaded region shown in Figure 6.9(a), then



Figure 6.2: Ja^{x) < 0 for (a) Modes 1 and 3 (z = 1,3), uji = a;2 = 0 (thejagged edge
means the set extends infinitely), (b) Mode 2 {i = 2), uji = uj2 = 1. In both cases,
xl)r = 27r/3, and v\ =V2 = 5.

Figure 6.3:
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in which U and D are ranges of possible speeds, is considered in the next example.

Recall that our goal is to calculate the relative distance at which the system may

safely switch from mode 1 to mode 2, and the minimum turning radius R in mode 2,

to ensure that separation between aircraft is maintained.

The evolution of the protected zone in each mode, assuming no switches, may

be computed as in the previous section using the continuous-time Hamilton-Jacobi

method of Section 4.2. The unsafe set G is defined as:

G = {^1,92, q3} x{x ex \ l{x) < 0} (6.13)

where

l(x) = xl-\-y^-6^ (6.14)

and let

Gi = {qiA^^X\l(x)<0}) (6.15)

represent the unsaf*^ set in mode i. Thus the set

{xeX\Ja.('^)<0} (6.16)

where Jq. is theoptimal cost as defined inequation (4.30), is thebackwards evolution
of the protected zone in mode i, assuming no switches between modes. These sets

are shown in Figure 6.2.

Now let us implement Algorithm (5.6) for this example, at each step computing

the sets Prei, Pre2, and Reach(Pre2, Prei). In the first step, W° = F = the

complement of G:

= ((9i,{a:€X|/(a:)<0}'^n{a:€A:|2: = 0})U(92,{a:€X|/(a:)<0}'=)

u(93, {xex\ I(x) <oyn{xeX \z = o})) (6.1?)

as shown in Figure 6.3 (its complement is actually shown).

Prei(iy°) = (qu{xeX\l(x)<0yn{xeX\z = 0}) (6.18)

Pre2(W°) = G (6.19)
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Figure 6.1: The set {x e X \ < 0} shown in the (xr,yr)-plane for [ui,ui] =
[2,4], [v^;v2] = [1,5] and (a) = 7r/2, (b) = 0, (c) 'ipr = -7r/4, (d) xpr = -7r/2.

As can be seen from equation (6.4), the optimal airspeed u* depends on the

position of aircraft 2 relative to aircraft 1. If aircraft 2 is ahead of aircraft 1 in the
relative axis frame, then u* is at its lower limit, if aircraft 2 is behind aircraft 1 in

the relative axis frame then u* is at its upper limit. If aircraft 2 is heading towards

aircraft 1, then d* is at its upper limit, and if aircraft 2 is heading away from aircraft

1, d"* is at its lower limit. The unsafe sets of states are illustrated in Figure 6.1 for
various values of V'r, and airspeed ranges as illustrated.

6.1.2 Controller Synthesis for Three-Mode Example

Consider the three-mode conflict resolution example pictured in Figure 2.8, and

modeled in Section 3.4.1. We assume that for this example the airspeeds (^1,^2)

both aircraft are constant even in the straight modes, so that the input and distur

bance sets are singletons {U = Vi,D = V2) and u* = = V2. The general case.
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rO rO

—Xr{t) J Svi(s)cls —Xr(0) J 5vi(s)ds
+£2(0 - t)[a:r(i) cos tpr + J/r(<) sintpr]

+112(0 - 0[^r(0) COS Ipr + ?/r(0) slnV'r]

< xl(t) + y^(t) - a;r(Ovi(0 - t) - iCr(0)vi(0 -1)

+112(0 - t)[a:r(Ocosi/jr + yr{t)smipr]

+112(0 - <)[a;r(0) COS l^r + 2/r(0) sint/>r]

= J(x,u''(-),d*('),t) (6.9)

Similarly, let u = u* and vary d, ie. let d = ^2 + Sv2^ where Sv2 > 0. Then

J(x,u{'),d{-),t) = xl{t)y^rW - - ^r(0)vi(0 - t)

+112(0 - t)[Xr{t)cOSrl)r + yr{t)smipr]

+112(0 - O[a^r(0) COS V»r + yr(0) sinV^r]

+ / <Jv2(s)c^s[rCr(t) COS Ipr + yr(t)Sm l/^r]
rO

+ / (Ju2(s)ds[a;r(0)cosV'r + yr(0)sinV'r]

> ^l{t) + VrW - Xr{t)Vl{0 -t)- Xr(0)v,{0 - t)

+£2(0 - t)[Xr(t) COS V'r + yr{t) SlU ij^r]

+£2(0 - 0[^r(0) COS l^r + 2/r(0) sintpr]

= J(xX(').d*('),t) (6.10)

Summarizing, we have shown above that in this case,

J(xM-).d*(-),t) < J{xX{-).d%'),t) < J(a:,u-(-),d(.),0 (6.11)

Therefore, u* = £1, d* = £2 is the optimal solution for this case. The solutions for

the three other cases can be shown in a similar manner. •

The solution (u^^d*) given by equations (6.4), (6.5) is actually a saddle solution,

meaning that it is the optimal solution regardless ofwhether the control or disturbance

plays first:

maxmin J(a:,u(-),d(-),<) = minmax J(a:, u('),d(-),<) (6.12)
u^U dsV d^V u&A
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Proposition 6 [(«*,</*) for Airspeed Control] The optimal solution to the

system described by equations (6.1) with cost given by equation (4.9)

is

u' =I>0 (6 4)
[ vi ifsgn(si) < 0

d' = h ° (6.5)
t V2 ifsgn(s2) < 0

Proof: Starting at time / < 0 (free) and integrating to the final time 0, the solution

to equations (6.1) has V'r(0 = V'r(O) and

a:r(0) = Xr(t) - ft u(s)ds + costpr ft d{s)ds

2/r(0) = yr(t) + sin d{s)ds

Substituting equations (6.6) into the cost (4.9), (4.52) (ignoring the constant 5^)

results in

= x?(0) + j/,'(0) (6.7)/O rO
u(s)ds —a;r(0) J u{s)ds

+ / d(s)ds[a:r(^)cOS V'r + yr(Os^^V'r]

rO

+J d(s)ds[a:r(0) COS +yr(0) sin V'r] (^-S)

Definingthe switching functions 5i(t), S2{t) as in equations (6.3), we consider the case

in which, V< < 0,

sgn{si{t)) > 0, sgn{s2(t)) > 0

We will show that in this case u* = Vi and d* = V2. Note that we assume that in

the interval [t,0], neither Si(t) nor S2{t) change sign. If t is such that the switching

functions do change sign on this interval, then the interval must be broken into two

intervals, and the optimal solution calculated separately for each interval.

Let d = d* and vary u, ie. let u = Uj + 5ui, where Svi > 0. Then

J{x,u{-),d*{'),t) = xl(i)-{• y^(t) - Xr{t)vi(0 - t) - Xr(0)Vi(0 - t)
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6.1 Conflict Resolution for Two Aircraft in SE{2)

6.1.1 Continuous Dynamics

Consider the two-aircraft relative model (2.9): ...

. Xr = -Vi + V2 COS Ipr +

yr = V2Sm'lpr —

Ipr = U2- tOi

in which the aircraft either follow straight paths (w, = 0,t = 1,2) or arcs of circles

(wt = 1,2 = 1,2). The continuous inputs are the airspeeds of the aircraft {u =
Vi,d = V2). In the straight modes, the airspeeds vary over specified ranges: uE U =

bi5^i] C d e D = [^2,^2] C IR"*", and model (2.9) reduces to

Xr = —U + d cos Ipr

yr = dsinV'r (6-1)

t/>r = 0

In the circular arc modes, the airspeeds are fixed at constant values: C/ = ui € IR"*",

D = V2 E M"*", and model (2.9) reduces to

Xr = —Vi + i;2cos + J/r

ifr = V2 sinV'r " (6-2)

tpr = 0

In this section, we derive the optimal control u* and worst disturbance d* for the

relative system in the straight modes of operation. Since equations (6.1) are linear

and simple to manipulate, rather than deriving the Hamiltonian we calculate (u*, d*)
directly, byintegrating equations (6.1) for piecewise constant u and d and substituting

the solutions into the cost function (4.9). Define the switching functions 5i and 52 as

^ (6.3)
S2{t) = Xr COS + 2/r sin V'r
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In this chapter, we apply our controller synthesis algorithm for hybrid systems to

the three air traffic examples introduced in Chapter 2. For each example, we first

derive and solve the Hamilton-Jacobi equation for the continuous dynamics only, as

described in Section 4.2, and then apply the controller synthesis algorithm of Section

5.1 to compute the maximal controlled invariant set and corresponding control law

so that each system satisfies its specified safety requirement. For these examples,

the Hamilton-Jacobi equations are simple enough, and the dimensions of the discrete

and continuous state spaces small enough, to permit solutions using the method of

characteristics with some help from MATLAB. For systems of many aircraft, each

modeled by nonlinear equations with hundreds of modes of operation, sophisticated

computation tools based on partial differential equation solvers are needed. This is

the subject of the next chapter.
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[70]. In practice, we are helped by the fact that we are usually interestedin finite time

computations, rather than computing for <—)• —oo or until a fixed point is reached.

Another problem is the requirement that the controller resulting from our algo

rithm be non-Zeno (does not enforce the safety requirement by preventing time from

diverging). The algorithm proposed here has no way of preventing such behavior, as

will be illustrated in the third example which we solve in the next chapter. We will

discuss in the next chapter a practical method of resolving the Zeno effect: adding a

requirement that the system must remain in each discrete state for a non-zero amount

of time.
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Theorem 1 (Characterization of Reach-Avoid) Assume that Jcix^t) (JEi^.t)

respectively) satisfies the Hamilton-Jacobi equation (5.8) ((5.9) respectively), and that

it converges uniformly in x as t ^ -oo to a function Ja{x) (Je{x) respectively).

Then,

Reach[G, E) = {x e X \ < 0} (5.23)

Proof: Let a:o € {a: € A | Jg{^) < 0}. Therefore, by construction, for all li(') e U
there exists d(') eV such that the state trajectory a;(-), starting at rro, will eventually

enter G. Also, by Lemma 3, Je(^o) > 0- Thus Vu(-) € W, 3d(-) € X>, such that the

state trajectory a;(-) starting at xq never enters E. Thus, {x € A | Jci^) < 0} C
Reach{G, E).

Now let a^o € {a^ € A' | ^ 0)- Assume for the sake of contradiction that

for all u(-) e U, there exists a d(-) € such that the trajectory a;(-), starting at

(a;o,0), enters G. Since for all x e G, Jq{x) < 0, there exists a time > 0 at
which this trajectory crosses {a: G A | Jg{x) = 0}. However, for all x such that
J* (a;) = 0, there must exist &u € U such that for all </ G f{x, u, d) points outside

of {x GA IJq{x) < 0}. This contradicts the assumption of existence of a d(-) which
drives the system to G. Thus, Reach(G, E) C {x GA' | Jg(x) < 0}. •

The controller which renders W* invariant is:

1 € t/1 > 0} ifi € ^
~ \ u ifx€(l'F")°

5c(q-,x,(Ti) = {1} •» (9,1) € Prei(lV*) (5.25)

Invc = (W)' (5.26)

5.2 Remarks

In general, onecannot expectto solve for W* using a finite computation. The class

of hybrid systems for which algorithms like the one presented here are guaranteed to

terminate is known to be restricted [69]. Techniques have been proposed to resolve

this problem, makinguseofapproximation schemes to obtain estimates of the solution
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which implies that J'̂ {xQ^t) = Je(xo^O) > 0 for all << 0, which contradicts (5.16).

A similar argument holds for the case in which Jo{xo,0) > 0 and Je{xo, 0) < 0.

Thus Jq(xo,0) > 0 and Je(xo,0) > 0. Since < 0^ there exists <2 € [^i,0]

such that 75(^0,^2) = 0, and for all t € [ii,<2], < 0- Thus for at lezist some

interval in [^1,^2], ^ allow jQ(xo,t) to decrease in this interval) and

23^2^1 =0 (5.18)
dt

But this contradicts the assumption that a:o € E^(ti). A symmetric argument holds

forJ|;(.To,0- ;

Therefore, 0 E°(t) = 0. •

Lemma 4 For all t < 0,

G(t) n E(t) = dG{t) n dE{t) (5.19)

Moreover, for all t' <i,

G(t) n E{t) C dG(t') n dE(t') (5.20)

Proof:

G(t)nE(t) = {G%t)nE'(t))U(dG{t)ndE(t))U{G''(t)ndE{t))U(dG{t)nE''(t)) (5.21)

From Lemma 3, (G°{t) fl E°{t)) = 0.

Assume that for some i = <1 < 0, xq € G°(<) fl dE(t). Therefore, Jcixo^ii) < 0

and J|;(xo,<i) = 0. Therefore, there exists ^2 € [<i,0] such that ^2) = 0 and for

all t € ^ 0. Thus for some interval of [ti,t2]j > 0 and

= 0 (5.22)
dt ^ ^

which contradicts the assumption that a^o € dE(ti). Thus G^(t) fl dE{t) = 0. A

symmetric argument holds for xq € dG(t)nE°{t) for <= < Q, thus dG(t)nE°(t) =

0.

Therefore, G(i) H E{t) = dG(t) n dE{t). That G(t) O E{t) C dG(t') n dE(t') for

t' < t follows from Lemma 2. •
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(xj (q, x)£ InvJ

Reach(G,E)

/ /

\ G

Jq (x, t) = 0

(x,t) = 0

Figure 5.2: The computation of Reach(G, E) in a single discrete state q.

Proof: Since > 0 when jQ{x,t) < 0 and > 0 when < 0, both

Jaix^t) and J^{x,t) are monotone non-increasing functions of —t when Ja(x,t) < 0
and JsixJ) < 0. Thus, as i decreases, the sets G(t) and E(t) do not decrease in
size, meaning that once a state x is inside G{t) {E{t) respectively) it stays inside G{t)
(E(t) respectively) as t decreases. •

Lemma 3 For all t < 0,

G°(0) n E°{0) = 0 => G%t) n E'{t) = 0 (5.15)

Proof: Assume for the sake of contradiction that xq G G°(i) H E^(t) for some t —

ti < 0, i.e. that

jQ(a:o,<i)<0 and J£(a:o,ii)<0 (5.16)

We first show that Jo{xo, 0) > 0 and Je(xo, 0) > 0 (meaning that Xq is outside

of both G and E aX t = 0). Suppose this is not true, i.e. suppose for example that

JqIxojO) < 0 and Je{xo,0) > 0. Then for alU < 0

dJE(xo,t)
dt

= 0 (5.17)



and

_dJk{x,t) ^ f • {ot{x€X\ J'dx,t) >0}
dt \ min{0, H'e(x, 2^^)} for {i 6X| J'e(x, <) <0}

where JG(^,u('),d{'),t) = Ig(^{0)) and JE(x,u{-),d(-),t) = /E(a:(0)), and
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(5.9)

tr./ for{x€X IJ^(x,i)<0}
+1, • (5.10)( maxuef/niindgjj-g^/(a:,n,d) otherwise

rr^, dJ'Es Jo ioT {xeX \J^{x,i)<0}He(x,^) = { dJ' X
[ minuGi/maXdeJD-^/(a;,w, d) otherwise

Equation (5.8) describes the evolution of the set G under the Hamiltonian Hq

(5.10). This is the "max^ minj" game of the previous chapter, with the modification

that Hq = 0 in {a? 6 A" I < 0} which ensures that the.evolution of Jaix^t) is

frozen in this set. Similarly, equation (5.9) describes the evolution of the set E under

the Hamiltonian He- Here a "min„ max^" isused, since it is assumed that the control

tries to push the sy^ '.em into E, to escape from G. He = 0 in {x € | J5(x,^) < 0}

to ensure.that the evolution of J^(x,<) is frozen in this set. Note that in both games,

the disturbance is given the advantage by assuming that the control playsfirst. In the

following sequence of Lemmas, we prove that the resulting set {x 6 X | Jq{x, 0 < 0}

contains neither E nor states for which there is a control u(-) € U which drives the

system into E; and the set {x € JV | Je(x, t) < 0} contains neither G nor states for

which there is a disturbance input d(-) G which drives the system into G. We then

prove that {x G A' | jQ(x,t) < 0} is the set Reach(Gy E). Figure 5.2 illustrates an

example.

For alH <0, let

G{t) ^ {x GA IJi(x,i) < 0} E(t) ^ {x GA IJ|;(x,0 < 0} (5.12)

Thus G = G(0) and E = E{0).

Lemma 2 For all t2 ^ U < 0,

G(U) C G{t2) (5.13)

E(U) C E(t2) (5.14)
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Consider the following jJgorithm.

Let W" = F,W-'^ = %,i = Q.

While W do

W-' = W \ Reach(Pre2(W% Prei(W'))) (5-6)

2 = 2 — 1

end

In the first step of this algorithm, we remove from F all states from which there is a

disturbance d(-) e T> forcing the system either outside F or to states from which an

environment action 0*2 G S2 can force transitions outside F^ without first touching

the set of states from which there is a control action cti G Si keeping the system

inside F. Since at each step, C W\ the set decreases monotonically as i

decreases. If the algorithm terminates, we denote the fixed point as W*.

In order to implement this algorithm, weneed to calculate Prci, Pre2, and Reach.

The calculation of Prci and Pre2 is done by inverting the transition relation 6. The

calculation of Reach can be carried out by appropriately modifying the Hamilton-

Jacobi construction of Section 4.2, as we describe below.

•Note that in Algorithm (5.6), Reach{Pre2(W'), Prei(W')) iscomputed in parallel

in all discrete states in Q. In the following analysis, we describe this calculation for

one discrete state q £ Q- Abusing notation, v/e denote the unsafe set G as

G = {xeX\(q,x)eInvnF'} (5.7)

and implicitly assume that all subsets of states are restricted to {a; € A' | (9,0;) G

Inv}.

Let Ig X R and Ie '• X -> IR be differentiable functions such that G = {.r G

A' : Ig(x) < 0} and E = {x £ X \ Ie(x) < 0} (in general G and E may be expressed

as the intersection of a set of differentiable functions, as discussed in Chapter 7).

Consider the following system of interconnected Hamilton-Jacobi equations:

_dJa(x,t) ^ I ^^1^) for 6A' | J^(x, t) >0}
9t 1 min{0, H^{x, for {i €A' | Jo{x,t) <0}



67

5.1 Algorithm

Consider the nonlinear hybrid automaton (3.6) with trajectory acceptance con

dition n = DF, with F C Q X X. We seek to construct the largest set of states

for which the control (u(-)i guarantee that the acceptance condition is met

despite the action of the disturbance (d(-),cr2[-]). For any set K C Q x X, we define

the controllable predecessor Prei(K) and the uncontrollable predecessor Pre2{K) by

Prei{K) = {(q,x) eQ x X\3(Ti 6 Si Vcr2 € S2 S(q,x,au(J2) Q X} HK

Pre2(K) = {(^,3^) e Q XA'lVfTi 6 Si 3a2 E S2 S{q,x,<71,0-2) O 7^ 0} UK''
(5.4)

Therefore Prei(K) contains all states in K for which a controllable action cri can

force the state to remain in K for at least one step in the discrete evolution. The

intersection with K in the equation for Prei{K) excludes states which are outside of

K and have a transition into K. Pre2(K), on the other hand, contains all states in

the complement of K, as well as all states from which an uncontrollable action

02 may be able to force the state outside of K.

Proposition 5 Prei(K) fl Pre2(K) = 0.

Proof: Suppose (q,x) E Prei{K) fl Pre2(K). Since (q\x) € Prei(A'), there exists

a cTi € Si (call it o^) such that for all 02 E S2, S(q,x,01,02) C K. Since {q,x) 6

Pre2(K), for all (Ti € Si, there exists a 0-2 € S2 such that S{q,x, 01,02) O A'̂ 7^ 0.
But this contradicts the existence of crj. •

In order to construct the backwards iteration we need the "reach-avoid" operator:

Definition 7 (Reach-Avoid) Consider two subsets G C Q x X and E C Q x X

such that G n A = 0. The reach-avoid operator is defined as

Reach{G, E) = {(9,x) E Q x X \ \fu E U 3d e V and t > 0 such that

(q(t),x(i)) E G and (qf(s), a:(s)) E Inv \ E for s E [0,<]}

where (q(s),x{s)) is the continuous state trajectory of x —f(q(s),x(s),u(s),d(s))
starting at {q,x). The set Reach{G,E) describes those states from which, for all

u(-) € U, there exists a d(-) E V, such that the state trajectory (9(s),a:(s)) can be
driven to G while avoiding an ^escape" set E.
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{xl (q2, x) GInv)

{xl (q^, x) €Inv}
\\

\ Gi

force a transition
fromq^ to q2 "

Figure 5.1: In gi, the portion of the unsafe set which intersects the invariant of q2
may be made "safe" by switching from qi to <72-

ous chapter separately for each sJid derived sets

{x 6 X I € Inv and < 0} (5.2)

{a: 6 A' 1(q2,x) € Inv and Jc^(x) < 0} (5.3)

If there exists an xq in the intersection of the two invariants, as shown in Figure 5.1,

where Jg^(xo) < 0 but Jc^ixo) > 0, then hybrid system trajectories which start at
(91, xo) and stay in qi are unsafe, whereas trajectories which switch to q2 are safe.
Therefore, it makes sense to construct a discrete transition so that, if possible, the

system automatically switches from qi to <72 011 f^e boundary of the intersection of

the invariants. In such a way, the designer of a control scheme chooses not only the

continuous control law u(*) in each discrete state, but chooses so that states
f

which would have evolved into the unsafe set are made safe by discrete transitions.

In this chapter, we first derive an expression for the largest controlled invariant set

W* G F for the nonlinear hybrid automaton (3.6) with Q. = OF. We then describe the

process for generating the control law (u(-)?<''i['l) which guarantees that the system

remains in W*. In the next chapter, we apply this controller synthesis algorithm to

our three air traffic examples.
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Chapter 5

Controller Synthesis for Nonlinear

Hybrid Systems

In the previous chapter we derived expressions for the largest controlled invariant

set for both finite state automata and continuous differential equations. We also

derived the least restrictive control laws to ensure that the state trajectories of these

systems remain in W. For these two systems, if the system state strays from H*"",

then there is no way to guarantee safety of the system.

Now consider the corresponding problem of synthesizing a control law (u(-), cri[']),

in the presence of environmental disturbances (d(-),<72[-]), for the nonlinear hybrid

automaton (3.6)

H = (Q X X^U X D^Tii X S2, Inv, 7, Y, OF)

for F C Q XX. Associated to each discrete state <7, € Q is a subset of the continuous

state space {x G | (^i, a;) G Inv} in which the system may evolve when in g,-. As

an example, consider two discrete states qi and ^2? with invariants as illustrated in

Figure 5.1. The unsafe set (7 C Q x A" may be written as the union of two subsets of

A:

^=(911^^1)^1(92,^2) (5.1)

Suppose we performed the continuous-time Hamilton-Jacobi calculation of the previ-
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T (throttle) and the aircraft pitch 6 (through the elevators), thus there are two con

tinuous control inputs (^1,^2) = (?", ^)- Physical considerations impose constraints

on the inputs:

UG [TminiTjnox] ^ ^max] (2.12)

The longitudinal dynamics may be modeled by the Newton-Euler equations:

X

R'(a)
' -D ' ' t' 0

M

II

+
0

+
-Mflrh L

.

(2.13)

where R(q) and R{9) are standard rotation matrices, M is the mass of the aircraft,

and g is gravitational acceleration. The state of the system is x = (a;,x,/i,h)^.
The airspeed of the aircraft is defined as V = The simplified FMS

studied in this dissertation uses control inputs T and 6 to control combinations of the

airspeed V, flight path angle 7, and altitude h. The linear and angular accelerations

(V'̂ , V7) derived directly from (2.13):

D . T
V = —— psin7-t-— cosa

M M
L T .

(2.14)

(2.15)

Note that these dynamics are expressed solely in terms of (V, 7) and inputs (T, ^),

where a = 0 - thus equations (2.14), (2.15) are a convenient way to represent the

dynamics for modes in which h is not a controlled variable.

Safety regulations for the aircraft dictate that V,7, and h must remain within

specified limits:

V;nm < V < Kzax

Kmin < 7 < 7mox (2.16)

^min —^ —^max

where Vmin^Vmax.Jmin.^max.hmin.hmax are functions of such factors as airspace reg

ulations, type of aircraft, and weather. For aircraft flying in en-route airspace, we

assume that these limits are constants, and thus the aerodynamic flight envelope F

is as illustrated in Figure 2.11, in (\/,7)-space and (/i, V, h)-space, where h = Vsin 7.
The state trajectory must remain within F at all times during en-route flight. We
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Y (rad) h (mis)

'max

mm max

V (mfs)
hVh

h (m)

'mm
V(mh)

(b)

Figure 2.11: (a) Simplified Aerodynamic Flight Envelope in (V,7)-space: axes are air
speed V, flight path angle 7; (b) Simplified Aerodynanaic Flight Envelope in (h, V, h)-
space: axes are altitude h, airspeed V, vertical speed h.

also impose a secondary criterion^ that the state trajectory must satisfy constraints

on the linear and angular acceleration:

|V|<0.1fif, lV7l<0.1fir (2.17)

imposed for passenger comfort.

The system may be discretized into five flight modes, depending on the state

variables being controlled:

• Mode 1: (Speed, Flight Path), in which the thrust T is between its specified

operating limits (Tmin < T < Tmax), the control inputs are T and 6, and

the controlled outputs are the speed and the flight path angle of the aircraft

y =

• Mode 2: (Speed), in which the thrust saturates (T = Tmin VT = Tmax) and

thus it is no longer available as a control input; the only input is 0, and the

only controlled output is V]

• Mode 3: (Flight Path), in which the thrust saturates (T = Tmin VT = Tmax)'-,

the input is again 0, and the controlled output is 7;
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• Mode 4: (Speed, Altitude), in which the thrust T is between its specified

operating limits {Tmin <T < Tmax), the control inputs are T and $, and the

controlled outputs are the speed and the vertical position of the aircraft y =

• Mode 5: (Altitude), in which the thrust saturates T = Tmin VT = Tmax] the

input is and the controlled output is h.

In our calculations we use the following parameter values, which correspond to

a DC-8 at cruising speed: M = 85000kg, 6 = 0.01, c = 6, ul = 30, ao = 2,

Tmin = 40000 N, Tmax = 80000 N, Omin = "22.5% emax = 22.5°, = 180 m/s,.

= 240 m/s, 'ymin = -22.5° and jmax = 22.5°. The bounds on the pitch angle
6 and the flight path angle 7 are chosen to be symmetric about zero for ease of
computation. In actual flight systems, the positive bound on these angles is greater

than the negative bound. Also, the angles chosen for this example are greater than
what are considered acceptable for passenger flight (±10°). Since we are interested

in en route flight, the limits on the altitudes are: hmin = 15,000 feet, hmax = 51,000
feet.

Problem statement: Generate the mode switching logic for this flight manage

ment system, as well as the continuous control inputs {T,6) to use in each flight
mode, so that envelope protection is guaranteed.
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Nonlinear Hybrid System Model
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Our goal is to develop a mathematical representation ofsuch systems as described

in the previous chapter. The representation should be compact, yet rich enough to

describe both the evolution of continuous aircraft dynamics as well as the hundreds

of discrete maneuvers and flight modes. Since the model is to be used to verify safety

properties ofand synthesize controllers for real-life safety critical systems, we would
like it to be capable of modeling uncertainty in both the continuous and discrete

variables. Finally, the model should be fairly easy to program into a computer, so

that controller synthesis may be done automatically.

In this section we present a model for a nonlinear hybrid automaton which has allof

these properties. The model is called hybrid because it combines nonlinear continuous
dynamics with the dynamics ofdiscrete event systems. Along with control variables

through which the controller has access to the hybrid automaton, we incorporate in
the model environment variables which cannot be controlled and whose values are

uncertain. Also, we show in subsequent chapters how existing controller synthesis

techniques for purely discrete and purely continuous systems may be combined in

a clever way to produce a computationally feasible controller synthesis method for

nonlinear hybrid automata. Our model is based on the hybrid system model of [20],
developed further in [26] and [31].

As background, we first present a model for a discrete event system, and then one

for a purely continuous nonlinear system. We describe the state and input spaces,
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the control and environment variables, system trajectories and safety properties. We

then present a model for a nonlinear hybrid automaton. We describe compositions of
hybrid automata, define a special hybrid automaton called a controller, and present

an interconnection of two hybrid automata: plant and controller. Finally, wedescribe

how the three air traffic examples introduced in Chapter 2 are modeled as nonlinear

hybrid automata.

3.1 Background

3.1.1 Finite Automata

We describe a variant of a finite state automaton, whose actions are partitioned

into those of two "players", the controller and the environment. The controller's

actions may be used to achievea desired goal, whereas the actions of the environment

are uncontrollable, uncertain, and could possibly oppose the controller's actions. The

automaton is represented as

((3,E,(J,Qo,n) (3.1)

where Q = {^i,^2?• •• is a finite set of discrete states\ E = Si x S2 is a finite

set of actions^ 5 : Q x Ei x £2 —2^ is a partial transition relation^ Qo Q Q is

a set of initial states, and fl is a trajectory acceptance condition. Ei contains the

actions of the controller and E2 contains the actions of the environment, so that each

transition between states depends on a joint action (<ti,<72). Note that the behavior

of the finite state automaton is non-deterministic: the transition function 5{q,<71,(72)

represents a set of possible new states, rather than a single unique state. Transitions

are prevented, or blocked, from occurring at state q by setting S{q,ai,(72) = 0.

A system trajectory (q[-],o^i[-],o'2[']) € Q"' x E^ x S^ is a finite or infinite sequence

of states and actions which satisfies, for i E Z,

g[0] € Qo and qli + 1] € <?"2[«]) (3.2)

The trajectory acceptance condition describes a desired goal that the system

should achieve, which is expressed as a specification on the state trajectory. For
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safety specifications, in which the state trajectories must remain within a safe subset

F C Q, the trajectory acceptance condition is written as = OF, meaning that

V7',9[z] G F. The controller wins the game if the trajectory satisfies DF, otherwise
the environment wins.

3.1.2 Nonlinear Continuous-Time Dynamics

As in the discrete case we consider two players, controller and environment, com

peting over nonlinear continuous-time systems of the form

x{t) = f{x(t),u(t),d(t)), ar(0) GXo (3-3)

where x G A' is the finite-dimensional state in an n-manifold (frequently X = R"),

u ^ U Q R" is the control input which models the actions of the controller, d G

D C R®^ is the disturbance input which models the actions of the environment, / is a

smooth vector field over R", and Xq C A' is a set of initial conditions. The input set

UxD IS the continuous-time analog ofthe partition Ei x S2. The spaces ofacceptable

control and disturbance trajectories are denoted by the spaces of piecewise continuous

functions U = {u(.) GPC° \ u(t) GF, V< GR,F C R-}, V = {d(') GFC® | d{i) G
F, ViGR,FCR'^}.

A system trajectory over an interval [r, r'] C R is a map:

ix(-),u(-),d{-)) : [r,T'] X x U x D (3.4)

such that u(-) GU, d{-) G V, a:(-) is continuous, and for all t G [t,F] where u(-)
and d{') are continuous, x{t) = /(a:(^),u(t),d(t)). We assume that the function /
is globally Lipschitz in x and continuous in u and d. Then, by the existence and
uniqueness theorem ofsolutions for ordinary differential equations, given an interval
[r,r'], the value of a:(f) for some t G [t,t'] and input and disturbance trajectories
u(-),d(-) over [r,F] there exists a unique solution (a:(-),u(-),d(-)) to (3.3).

The safety specification considered here corresponds to the specification in a class

of zero-sum dynamicgames known cls pursuit-evasion games. The controller wins if it

can keep the state trajectory from entering a "bad" subset of the state space, called
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the "capture set" and defined as the interior of a region G, denoted G® and defined

as

G° = {xeX\ l(x) < 0} (3.5)

with boundary dG = {a: € ^ | /(a:) = 0} where /: JV —)• R is a differentiable function

of Xwith ^ 0 on dG. Equivalently, the specification may be written in terms of

a safe set F = (G®)®, the complement of G® in X. Our convention throughout this

dissertation is that safe sets F are closed sets, whereas the capture sets G® are open.

3.2 Nonlinejir Hybrid Automata

In this section we combine the finite automaton and nonlinear continuous dynam

ics into a nonlinear hybrid automaton which models both discrete and continuous

behavior. The control and environment inputs have continuous and discrete com

ponents, and so they may affect the system both continuously and through discrete

actions.

Definition 2 (Nonlinear Hybrid Automaton) We define a nonlinear hybrid

automaton as

H = (Qx A', f/ X D, El X E2, /, 8, Inv. /, K, h, 0) (3.6)

such that

• State space. Q x X is the state space, with Q = {91,92?••• o finite

set of discrete states, and X an n-manifold; the state of the system is a pair

(9i?^) ^ ^ ^ A,

• Continuous control inputs and disturbances. U x D is the product of the

set of continuous control inputs and the set of continuous environment inputs,

known as disturbances; the space of acceptable control and disturbance trajec

tories are denoted by U = {^(•) € PG^\u{t) (z U, E R}, T> = {d(-) €

PG°|d(T) R};
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• Discrete control and disturbance actions. Ei x E2 is the product of the

finite set of discrete control inputs, or control actions, and the finite set of
discrete environment inputs, or disturbance actions;

• Continuous map. f:QxXxUxD-¥ TX is the continuous map which
associates with each discrete state q^Q a control system f{q,x,u,d);

• Discrete transition function. 5 : Q x X x Ei x E2 —>• 2^^^^ is the discrete
transition function;

• Invariants. Inv C Q x X is the invariant associated with each discrete state,

meaning that the system evolves according to x = f(q,x,u,d) only if {q,x) €
Inv;

• Initial states. I C Q x X is the set of initial states;

• Continuous outputs. Y is the set of continuous outputs;

• Output map. h:Q XX ^ 2^" is the output map;

• Trajectory acceptance condition, is the trajectory acceptance condition
(here Q = OF for F Q Q x X).

State trajectories of a hybrid system evolve continuously as well as in discrete
jumps; the concept of a hybrid time trajectory is therefore needed.

Definition 3 (Hybrid Time Trajectory) A hybrid time trajectory is a se
quence of intervals of the real line

T= [0,ro][ri,T{][r2,T2]...[n-,rjJ) (3.7)

such that r/_i = Ti and t, < t[. The index k may be finite or infinite.

For t € R, we use f € r to represent t 6 for some i. Denote by T the set of all
hybrid time trajectories. Let (9[*], ^ Q'̂ ^ ^ ^2* extend this



(Q^X, UxD, ZjXX2, f, 6, Inv, I, Y, h, Q.)

(qi, x) € QxX

(u, d) € UxD

(^2,02)^

ftQxXxUxD^ TX

5: Q xZxSjX 22^

Inv C Qy.X

IC QxX

yey

h- QxX^ 2^
n = DF

Figure 3.1: Nonlinear Hybrid Automaton.
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'1.sequence of states and actions to a function over r by defining, for all for <€ [r,-, r/

q(t) =q\i]

ai{t) = o-i[z] (3.8)

a-^(t) = a2[i]

Definition 4 (Hybrid System Trajectory) A hybrid system trajectory is de

fined as

(t, q[-l a:(-), «(•)> d{'), o-i[-], <72[-]) (3.9)

where r E T, q[-] E Q'̂ , a:(-) : t X, u(-) : r U, d{-) : t D, <7i[-] E

and (72[*] E Sj. The initial condition satisfies (9[0],a:(0)) E I; the discrete evolution

satisfies

{q[i + l],3:(Ti+i)) € %[i],a:(r/),<Ti[t],o-2[!])

for all i and r; the continuous evolution satisfies (9[i],a:(f)) E Inv and

®(f) = f(q\ih3:{t),u(t),d(t))

for t E [Ti^T-]; and the output evolution satisfies y(t) E h(q[i], x{t)), for t E

The state trajectory is the (9[*],3:(-)) such that the above conditions are satisfied.
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