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Abstract

The goal ofthis project is to assess the utility ofa Develop Rate Monitor (DRM) as a in-situ
sensor for deep-ultraviolet (DUV) lithography control. The DRM collects normal incidence

interferometry signals at several wavelengths. The interferometry signals contain information

about the resist thickness, the optical properties of the resist and the underlying geometry,

and can also be used to calculate the dissolution rate.

This study analyzes different filtering methods for the extraction of the resist thickness

from the raw interferometry data. It also examines the sensitivity of the develop rate to

processing parameters such as exposure dose and characterizes the quality of measurements

needed to accurately and consistently infer thickness. In the context of DUV lithography

control, the DRM is evaluated as an in-situ sensor.
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Chapter 1

Introduction and Background

1.1 Introduction

As feature sizes and line widths in integrated circuit production shrink, the lithography se

quence becomes increasingly critical in the operationofcost effective, competitive production

lines.

It is essential to produce small critical dimensions (CDs) with little variability. The tra

ditional method of reducing variability is to fine-tune machines and design stable processes.

This is reaching its limits and the cost of equipment is now so high, that their lifetime has

to be extended while they are being pushed to higher performance. This compels us to

introduce automatic control methods onto the manufacturing fioor.

A key step to successfully applying automatic control is the availability of reliable, ac

curate sensors. One opportunity for control in the lithography sequence is to engineer a

develop rate sensor. This sensor can potentially be used for run-to-run and real-time con

trol. A real-time control application is that of an end-point detector. In combination with

other sensors, the develop rate measured on the current wafer can be used in run-to-run

control to adjust exposure dose, PEB bake or other process inputs for the next wafer in the

lot to achieve less CD variability. This application requires a model of the dependence of

develop rate on these process inputs.

In this study we evaluate the performance of a DRM and we asses its capabilities. The

current limitations are described. Finally, we develop guidelines to asses the accuracy re

quired for DRMs to be effective for run-to-run control.



1.2 Application of DRMs to 1-Line Processes

Develop rate monitors have been in existence for many years and several applications for
I-line lithography have been explored.

The classical DRM application is as an end-point detector. A single wavelength reflec-

tometer is used to measure the reflected light intensity off the wafer. This signal reaches a

steady state when the resist is completely developed. The flattening of the signal indicates

the end of the develop. This can be detected using various signal processing methods. End-

point detection is much simpler than measuring thickness or develop rate. Algorithms for
the thickness/develop rate extraction (described later in thisstudy) need an initial condition
for thickness, models for the dynamic behavior of thickness and normalizing measurements

for reflectance. This is in contrast to algorithms for end-point detection which only use the

shape of the signal.

The difficulty in end-point detection lies in having to focus the reflector beam onto a
spot of resist that is developing. This spot may not represent the average behavior across
the wafer. In addition, the noise level of the signal has to be known in order to optimize
detection while minimizing the delay in end-pointing.

For I-line resists there was a need to detect the end-point accurately to avoid over or

under developing of the resist. These conditions lead to large variations in the CD. It has
been shown in Sautter et al[1] that the develop end-time is highly sensitive to changes
in process variables such as exposure dose, and the actual CD is also very sensitive. This
has two implications. First it means that by adjusting develop time one can compensate for
deviations in earlier processing steps and reduce variability in CD. Second, the end-point
can be used to monitor variations in processing variables and faults in previous steps. This
knowledge can then be applied to appropriately adjust the settings of the exposure and PEB
steps for the following wafers.

Another use of end-pointing is early detection of faulty wafers. It is costly and time
consuming to measure CD oflf-line on every wafer to ensure that they meet speciflcations.
The end-point ofevery wafer can be measured in line without interrupting or slowing ofthe
process flow. Awafer whose end-point is out-of-spec can be automatically removed from the
process flow, measured off-line and reworked before other processing steps occur. This can
minimize the amount of scrap and re-processing required.

Despite good solutions to these problems, DRMs did not become hugely popular in pro-



duction facilities, although they were successful in research laboratories. This is principally
because the integration of the DRM into the production line was too complicated. For pat
terned wafers the end-point algorithms needed to be tuned to each specific process, which is
difficult on production lines that run a variety of designs and processes.

The introduction ofchemically amplified resists (CARs) has shifted the focus from end-
point detection to more complex variables such as develop rate. CA resists introduce a
high ratio ofselectivity between exposed and unexposed areas so that even very long over
develop times do not significantly aflFect CD. This indicates a decreased need to control the
develop time accurately using end-point detectors. Potentially, end-point detection could
be used to increase throughput, but the develop station is inexpensive and not a resource
bottleneck. Another possible application is to use the end-time as a modeling variable and
model its dependence on exposure dose and other process inputs. Given a good model, the
end-time could be used to monitor process variations and adapt inputs using run-to-run

control algorithms.

An altogether different role ofthe DRM is to measure thickness and develop-rate in real
time. This measurement is much more complex than end-point and could be used for more

accurate models. In this study we examine this problem and associated difficulties. We

describe the theory that connects resist thickness and reflectivity measurements and explore
various algorithms to extract thickness from measured intensities.



Chapter 2

The Deep-Ultra-Violet Lithography

Sequence

This chapter provides an overview of the sequence of processing steps involved in DUV
lithography and of the characteristics of chemically amplified resists. For each process step
the main variables are described, and their infiuence on the final resist profile is examined.
This information allows us to evaluate the necessity of measuring develop rate in the context

of various control strategies.

2.1 Chemically Amplified Resists

The term chemically amplified resist (CAR) describes a family of photo sensitive substances
thatuse a catalytic reaction toincrease the sensitivity of the resist toexposure. Achemically
amplified resist usually consists of multiple components including the polymer resin and a
photo-acid generator (PAG). For positive resists the polymer has a side-group attached that
renders it unsoluable in the developer, i.e. the side group blocks dissolution. Polymers with
the side groups are called blocked sites. During the processing this side group is broken and
the resist gets more soluble. This deblocking is done in a sequence of chemical reactions.
In the first step, the photon energy during exposure creates acid and byproducts from the
photo-acid generator.

PAG Acid+ Byproduct

During the post exposure bake, heat fuels a thermally induced catalytic reaction between



the acid and the side group of the polymer. The side groups disconnect and acid is regen
erated. This process is self-catalyzed and self-quenching. Overall the acid is not consumed,
and to the first order acid concentration remains constant.

Resin Resin

Acid
+ Byproduct

Heat

Sidechain

The kinetics of this reaction are more complex, since the reactive sites are consumed

during the process and the catalytic rate decreases.

This type ofcatalytic reaction creates a highratio between the dissolution rate ofexposed

and unexposed areas. This high selectivity leads to short develop times and very sharp

features. Conversely, it creates high sensitivity to process drifts and need for tight process

control. Usually the chosen operating region, as shown in Figure 2.1, can tolerate small

deviations in the process inputs without large changes in selectivity. Changes in the process

inputs will cause changes in the develop rate for the exposed areas, but this new develop

rate is still much larger than that of unexposed areas.

standard
operating
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B
2
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>
V
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Figure 2.1: Sensitivity of CA resists

2.2 The Processing Sequence and its Variables

The outcome of a lithography processing sequence is a complicated function of many param

eters. Variables that influence the final resist proflle enter at every step during the process.



The DUVlithography sequence consists of the following main steps: resist coating, pre-bake,

formation of an aerial image, exposure, post-exposure-bake (PEB) and develop. The follow

ing sections describe the variables entering the system at each process step and show how

they influence the final CD.

DEPOSIT EXPOSE DEVELOP

Figure 2.2: The Lithography Sequence

2.2.1 Resist Coating and Pre-bake

The spin-coat process is the most popularway to apply photoresist to a wafer. The thickness

ofthe applied resist depends on the spinspeed and spintime and on environmental properties

such as humidity, vapor pressure and temperature. The uniformity of the film is infiuenced
by the geometry of the underlying layers, dirt particles and the quality of the spin-coat
tool. Aside from thickness and uniformity, the optical properties of the resist influence the

final CD. These properties can vary from batch to batch and also as the resist ages. The
reflectivity of underlying layers influences the final resist profile by changing the intensity

within the resist duringexposure even though anti-reflective coatingcan minimize this effect.

The pre-bake step hardens the resist by evaporating the solvent and reduces its thickness
(5-10%) which can also influence uniformity if the bake plate is non-uniform.

2.2.2 Aerial Image Formation

The formation of the aerial image, i.e. the distribution of light intensity in the volume of

the resist is a combination of many effects, including the intensity of the light source at the

exposing wavelength, the optical design, i.e. lenses and mirrors and the mask pattern.

Next to the intensity of the light source, the dominant effect is the diffraction of light when

it passes through the mask. The electromagnetic field behind the mask can be described by

the Fraunhofer diffraction integral if the slit size is small enough compared to the distance
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Figure 2.3: Schematic of the exposure tool

from the lens to the mask. The diffraction pattern is then the Fourier transform of the

mask pattern. The objective lens only captures part of the light of the diffractive pattern
dependent on its numerical aperture. The lens must capture at least one higher diffraction
order in addition to the zeroth-order to yield an acceptable image. This defines the resolution

of the system. The theoretical resolution of the projected image depends on the type of
pattern, e.g. isolated lines, dense equally spaced lines, or others. An ideal lens would
produce the inverse Fourier transform ofa diffraction pattern and therefore would produce
a perfect image. However, a real lens is imperfect and the image will be fuzzy. A optical
system is called diff'raction limited if the image differs from the pattern primarily because of
uncaptured diffraction orders and not because of lens geometry.

In addition to these first order effects that cause variations in the projected image, second

order effects result from partially coherent and non-normal incident light. IN addition to

the theoretically known effects there are deviations of the real imaging system from its
ideal theoretical behavior which are called aberrations. They result from defects in the

imaging system, changes in the environmental conditions and intentional design deviations
to minimize other effects. One of the most important types of aberration is defocus, which

can be described by the optical path difference between the focus plane and the wafer.
Defocus adds a phase difference to higher diffraction orders which changes the intensity of
the superposition of different.orders. The focal plane is an important processing parameter

and its optimal position is determined experimentally.

Most of the inputs that influence the aerial image depend on the equipment and are
assumed to be fixed. The inputs controlled in the process are the energy delivered, the light
source, the mask pattern and the focal plane.



2.2.3 Exposure Kinetics and Standing Wave Effects

In chemically amplified resists the exposure energy generates acid that during the post
exposure bake (PEB) changes the solubility of the resist. A positive resist consists of a
photo-acid generator (FAG) and a polymer resin, which in part is blocked by side chains to
inhibit dissolution. The photo-acid generator forms an acid upon exposure to DUV light.

The amount of generated acid depends locally on the intensity and length of exposure and
the concentration of photo acid generator.

During exposure, standing waves are produced inthe resist layer. Standing waves are the
result ofinterference ofthe incoming andthe refiected light. Assuming normal incidence light
the intensity at each point through the depth of the resist depends on the resist thickness,
the refractive indices of the resist and the underlying layer and the wavelength. Standing

waves lead to variations in develop rate through the resist, which cause the final features to
have fringed edges. The use of an anti-refiective coating can minimize standing wave effects
at the expense of additional processing steps.

After exposure a 3-dimensional latent image ofacid remains in the resist. For the calcu
lation of this image the spatial distribution of intensity (including standing wave effects and
variations in intensity during exposure) have to betaken into account. Differential equation
models that describe the rate of production of acid during exposure are available.

2.2.4 PEB Chemistry and Diffusion

During post exposure bake two main processes take place: diffusion, and a change in the
chemical composition of the resist. The post exposure bake thermally induces a chemical
reaction that is catalyzed by the acid generated during the exposure. This reaction, called
deblocking of the polymer, changes its solubility. Initially a hydroxyl group is attached to
the longer chain polymers, which cause the solubility of the polymer to be greatly reduced.
The acid and heat induce a reaction that detaches the hydroxyl groups and renders the

remaining polymer soluble. During this reaction acid is consumed but is automatically
replenished. Some of the reaction byproducts are also volatile, leading to thickness loss in
the resist. The sensitivity of the resist can be changed by varying the ratio of blocked to
unblocked polymer sites.

The second major effect of PEB on the resist is diffusion. The original acid distribution
changes due to diffusion, quenching and evaporation ofthe acid. Since the acid concentration
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magnifies the deblocking of the resist, accurate knowledge of the acid profile at all times is
essential. The acid diffusion reduces the effect of standing waves but exact models of the

diffusion process are not well known. This isbecause secondary effects such as the change of
diffusivity and reactivity ofthe blocked sites contribute to complicating the equations. First
order diffusion models combined with differential equations describing the chemical reactions

provide the models currently used.

2.2.5 Develop

The main variable related to develop rate is the 3-dimensional distribution of deprotected

sites in the resist. Surface inhibition effects and the developer diffusion between the solution

and the resist must also be considered in modeling the develop process. Secondary effects

are the enhancement of the solubility by reaction byproducts. Develop is a surface limited

process, i.e. the develop rate of the top part of the resist is more constraining than the

diffusion of the developer into the resist and dissolution from within.

2.3 The Dominant Variables

Even though there are dozens of variables infiuencing the develop rate of the photoresist, we

can only discuss a few in detail in this study. We will introduce two parameters, effective

exposure dose and effective PEB time, which can accountfor the effects ofvariationsin other

variables.

In general, the optics of an-exposure tool are such that we can consider most deviations

in the aerial image formation secondary. There is an intensity loss factor from the light

source to the focal plane, that is assumed to be uniform across the image and is lumped into

the effective exposure dose' parameter. Aberrations are taken into account by adjusting the

focal plane whenever the process is changed.

Variations in the absorption of the resist and in the exposure intensity both lead to

variations in the acid generation. Therefore, they can be lumped into the effective dose

parameter which can also accommodate changes in the optical properties of the underlying

layers and variations of the resist composition.

Similarly, one can lump many other variablesduring the PEB step into an effective bake

time parameter. For example, an increase in the initial percentage of protected sites can



be described as an increase in bake time needed to achieve an equal final percentage of

deprotected sites.

The choice of these particular two parameters, namely effective dose and effective bake

time is reasonable because they can account for many other variables and because one can

easily actuate them to control the process.

10



Chapter 3

The Develop Process

This section examines the develop step in more detail. It describes how a dissolution rate

monitor works, the theory behind reflectometry and the difficulties that arise when taking

real measurements.

3.1 Typical Develop Rate Curves

Since chemically amplified resists are very sensitive and are often tuned to specific processing

conditions, the develop rate varies greatly with the processing parameters. A given process

does not have a single develop rate. Rather it varies both spatiallyacross the wafer and into

the depth of the resist. Locally, a typical thickness vs. time plot during develop for typical
processing conditions is shown in Figure 3.1.

Even though typical develop steps last about 50 seconds, most of the resist is removed
during the first 10 seconds. The good selectivity of chemically amplified resists makes this
long over-develop time possible without causing damage.

To compare different process settings, we must agree on a measure of quality that can

be computed from the develop rate time signal. There are many choices for this measure,
such as the average rate until the thickness is less then a threshold, the coefficient of an
exponential fit to the develop rate vs. time curve, or the slope of a linear fit to the first
few seconds of the thickness vs. time curve. Although these choices will lead to diflFerent

numerical values for the quality measure, they exhibit the same qualitative behavior when

varying the process settings, such as exposure dose. In the remainder ofthis report we refer
to the time signal and the chosen quality measure by "develop rate".

11



Thickness vt. thne

Figure 3.1: Prolith simulation of thickness vs. time

A typical profile of develop rate vs. exposure dose is shown in Figure 3.2

Average develop rale tor vstying PEB times

PEB-time=90sec
PEB-timer:^5sec
PEB-tiiTte=:1OOsec
PEB-timeolOSsac

exposure dose (mJrcm^)

/ /
/ /

' /

Figure 3.2: Prolith simulation of develop rate vs. exposure dose

One commonly used method to obtain profiles ofdevelop rate vs. exposure dose is called
Poor Man's DRM (described in detail in [9]). A Poor Man's DRM experiment uses multiple
wafers with the same processing conditions and develops each wafer for increasing lengths of
time. The remaining thickness is measured on each wafer. The difference in thickness and
develop time determines the develop rate. This is a relatively simple experiment that can
be used to corroborate DRM results.
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3.2 The Dissolution Rate Sensor

A develop rate monitor (DRM) is basically a reflectometer. It measures the intensity oflight
reflected of a thin film which then is used to infer thickness of the thin film, A DRM records

light intensity at a single wavelength or multiple wavelengths.

To understand the measurements of a DRM one has to study the behavior of electro

magnetic waves as they pass through thin films and reflect onfilm boundaries. A good source
for the relevant theory is [7].

The measured light intensity is a function of the reflected and absorbed portions of the

electromagnetic wave as shown in Figure 3.3.

Ingoing Outgoing
Intensity Intensity

Substrate

Figure 3.3: Light reflected of a thin film

Consider a thin film of thickness d and complex refractive index n-\-ik on a thick substrate

with index n.. At the measured wavelength between 700—900nm the absorption coefficient

k is negligible for materials such as air, silicon and photoresist, and the characteristic matrix

M simplifies to

M.I ) <«•«—tnsm{^nd) cos(^nd) J

The characteristic matrix M describes the behavior of the electro-magnetic wave as it

passes through the film. The characteristic matricesof a stack of thin films can be multiplied

(respecting the order) to obtain the combined characteristic matrix of the stack.

For transparent layers the reflectance coefficient is

^ (tTI^II -j~ m.^2 '̂ s)'̂ air (^21 d" ^>22 ^5) ^2 22)
~ (mil + "lis ns)nair + (m'21 -h ^5)
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where denotes the ij-th element of the characteristic matrix M and ()' denotes complex
conjugation.

The reflectivity Tl = |rp is the ratio of incident to reflected light intensity. Since the
DRM measures only the reflected intensity, this measurement has to be calibrated with a
measurement for the incident intensity. We use a-multiplicative parameter p to account

for absorption not captured in this measurement. We do not include the dependence of
this parameter on wavelength although in reality absorption of the developer depends on
wavelength. Modeling this dependence would unnecessarily increase the number of unknown
parameters. As a consequence,

7^ = p|r|' (3.2.3)

It is easy to see that 7^ is a complicated non-linear function of thickness d, refractive
index n and wavelength A. The refractive index itself also depends on the wavelength. For
wavelengths above 3OO71771 the dependence is straightforward, and it is possible toanalytically
compute first derivatives of %with respect to thickness d and other parameters, which can
be used for computation and optimization.

The shape of the reflectivity data depends on the dynamic behavior of the thickness
during the develop step. Ifthe thickness decreases linearly, i.e. develop rate is constant, the
reflected intensity has the shape of Figure 3.4

Reflectivity tor linearly decreasing mickness

Figure 3.4: Simulated reflectivity for linearly decreasing thickness

The simplest way to infer develop rate is to record the time between maxima and minima
ofthis curve which are apart, where a isthe develop rate. Thismethod is not adequate for

14



real-time application and does not yield thickness. On the other hand the signal processing
methods to detect a minimum are very robust and the results are accurate. In reality the

develop rate decreases with depth into the resist and the distance between maxima and
minima changes with time as can be seen from Figure 3.5.

RoflactMty lor oxpotMntially daeraosino thickness

Figure 3.5: Simulated reflectivity for decregising develop rate

Real data from a DRM is much more complex and also contains standing waves and noise

such as (Figure3.6). This figure shows all the complications that arise in real measurements,

which are described in the following section.

ReKectlvtty data

L

Figure 3.6: Measured reflectivity data from a DRM
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3.3 Measurement Difficulties

There are two main problems associated with recording DRM data. First the DRM actually

measures only the intensity of the reflected light, but the theoretical model of reflectance %

versus thickness d depends also on the intensity of the light entering the fllm which therefore

needs to be measured as well. In practice, we measure the incident light intensity needed

to calibrate reflectance using a pure silicon wafer, which we assume to completely reflect

the light and not absorb any intensity at long wavelengths. During this measurement the
developer is present, so that it also captures the absorption of the developer when the light

passed through it, while entering and exiting the fllm. The developer is a thick film and does

not contribute to the interference pattern. We use the data taken on a pure silicon wafer

not only to normalize reflectance but also to assess the noise levels (see Section 4.2)

The second problem is the combination ofdevelop speed and the mechanics ofthe develop

station. In a typical industrial process the main part of the develop takes place during

the first 5-10 seconds. This is problematic, especially for a puddle develop tool, since the

dispensing of developer happens during that period and this adds large amounts of noise to
the measurements. It is difficult to track a rapidly changing variable such as thickness using

very noisy data. Starting the measurement after this noisy initial period is also difficult,
because of the lack of a good initial condition, to which most of the filtering methods are

sensitive.

16



Chapter 4

Experimental Study

This section describes the experiments that we conducted at National Semiconductor Corpo

ration in order to obtain DRM data. In addition, the amount of noise in the experimental

data is estimated in order to evaluate algorithm performance. The discrepancies between

the experimental data and the model are described.

4.1 Data Acquisition

We obtained the data for this section using a Site Services DRM-Lithacon. We conducted

the experiment at National Semiconductor Corporation. Eight silicon wafers were coated with
a 750nm thick resist film and exposed between 1.3 - 3.25mJ/cm^. They were all baked at
the same temperature for the same amount of time. We did not use anti-reflective coat

ing and we used blanket exposures as opposed to a patterned mask. After the PEB step,
we took the wafers out of the track and measured the thickness using a Tencor 1250SE

ellipsometer. Thickness variations in the wafer are due primarily to the different expo

sure doses. Next, we returned the wafers into the track and developed them for 60 sec

onds. The DRM was mounted on top of the develop station as shown in Figure 4.1, and

uses a broadband light source and records the reflected light at eight wavelengths, namely
704,767,800,830,840,890,930,960nm.

Since the automatic trigger was not installedon this track, we initiated the measurements

manually, which results in small delays that vary from wafer to wafer.

After the develop step, we measured the film thickness again using the 1250SE. The
wafers with low exposure dose exhibited little loss of resist, whereas the ones with high

17
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Figure 4.1: Set-up of the Site-Service Sens5r

exposure dose were completely stripped of resist. For the wafer with medium exposure
dose the remaining thickness can be used to confirm the results from the various thickness
estimation schemes.

In addition to these wafers, we used a blank silicon wafer to record DRM data to provide

a reference for the incident light intensity. This measurement was also used to evaluate

measurement noise. The data can also be used to estimate the correlation of the noise

between the eight measured wavelengths.

4.2 Noise Model

The Site Services reflectometer records reflected intensity data at eight wavelengths. Initially,

it appears that the measurement noise in each channel should be independent from the
others. However, the influence of the motion of the developer adds some correlation. To
investigate this, we compare the signals at different wavelengths from a pure silicon wafer
with each other. There are two noticeable effects shown in Figure 4.2. First there seems to

be significant correlation between the noise channels that needs to be taken into account in
the models and algorithms. Secondly there are spikes at similar times in each channel and
for each wafer, independent ofthe resist thickness. This can beseen by comparing Figure 4.2
and Figure 4.3. In both figures there are spikes at lOsec, ISsec, 42sec and 60sec. Some of
theses spikes are caused by the wafer motion, e.g. at 45sec the wafer is rotated and at 60sec
it is removed from the develop station. The spikes in the beginning of the develop are due
to the dispense of the developer. Spikes resulting from the process should be disregarded,
but it is difficult to automatically differentiate between maxima due to thickness change and



spikes resulting from the process disturbances such as motion of the developer.
•ISoon w«fw without rooltt. vortout wtvoiongth

3000

Figure 4.2: DRM measurement of a pure silicon wafer. The steady state section of this
measurement is used as a reference.

700 •

.650

' 600

Mi

Wavelengtti>704. various wafers

/ J

i i/

¥

30 40

ttme

silicon only
c!ose°2.5
dosQ=3.1

Figure 4.3: DRM measurement of wafers with different exposure doses

We computed the covariance matrixover the stationaryportionof the eight signals from
the pure silicon wafer shown in Figure 4.2 to estimate the size ofthe noise and the correlation
between the channels.

Let Gy be the diagonal elements of the noise covariance matrix and Ay the normalized
cross covariance, so that

C = diag{Gv) Ay diag{Gv) (4.2.1)

where C is the covariance matrix of the noise signal and diag(Gy) is a matrix whose diagonal

is the vector Gy and all other elements are zero. In this experiment
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and

^ = [0.56 0.72 1.18 0.50 4.11 1.32 0.13 1.62]

A„ =

1 -0.33 -0.01 0.25

-0.33 1 0.24 -0.52

-0.018 0.25 1 -0.026

(4.2.2)

(4.2.3)

The largest ofF-diagonal element of Ay is 0.52 and this indicates that there is quite a bit
of correlation in the channels. However, no pattern emerges to explain the source of this
correlation.

4.3 Modeling Errors

rofltcttvtty moMuromanla
FMlKlMly lor nponMMir dnrMJlng thlcknM*

Figure 4.4: Measured and simulated reflectivity data

Thissection describes the differences between the experimental data and the available model.
During this study we assume that the model for reflectance derived in section 3.2 describes
the true system yielding the experimental data. Comparing the experimental data with a
set of data simulated using this reflectance model (Figure 4.4) raises questions about this
assumption. The differences cannot only be attributed to using the wrong parameters for
the simulation. The shape of the experimental data does not resemble the simulated data,
even after discounting the noise spikes described in the previous section. For these reasons,
we believe that a different model for reflectivity or directly for the measured intensity has to
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be found in order to succeed in extracting thickness or develop rate. In order to find a better

model for reflectivity, many experiments need to be conducted that use methods similar to

the poor mens DRM to measure thickness.

Because of this discrepancy in the available model we only tested some of the filter

ing methods on the experimental data. Most of the conclusions are drawn, based on our

experience with simulated data.

4.4 The State Space Model

The measured intensity is modeled by the reflectivity described in Section 3.2 normalized by

the measured incident intensity.

Any unknown parameter can be treated as a state of the system. In the simplest case

the reflective index, or the Cauchy parameters are known and the only parameter to be

estimated is the thickness d at each time.

There are many possiblemodelsfor the dynamic behavior of the thickness d. The simplest

is assuming a constant develop rate r

^k+l —
dk+1 \ _ I —fk
Tk+l ) \ '̂ k

where k denotes the time index and r is the develop rate.

A more realistic model assumes exponential decay in the thickness

= fi^k)

^ dk+i ^
rrik+i

Tk+l

\ Pk+i }

rrik dk-rk\
rrik

Tk

Pk }

= K^k)

(4.4.4)

(4.4.5)

where m is the exponential decay coefficient and p is the extra absorption coefficient intro

duced in Section 3.2.

On can conceive of increasingly complex models that include other parameters such as

the Cauchy coefficients as states. The tradeoff between estimating more parameters and

errors due to noise or the lack of the data limit the benefits of more complex models. The

output of this state-space model is reflectivity R
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j,'=7e(AS4) + ECy4 (4-4.6)
J

where e is white noise and C is the covariance matrix of the noise channels. For simplicity

we assume only additive output error. We are neglecting modeling error which would appear

as a colored noise term adding to the state equation. The models described in this section,

are used in the following chapter as the basis for the filtering methods that estimate the

"state" thickness.
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Chapter 5

Filtering methods

In this chapter we describe the filtering methods used to extract thickness. They include
Extended Kalman filtering, non-linear Least Squares and filtering for output non-linearities.

5.1 Extended Kalman Filtering

The Extended Kalman Filter (EKF) is an estimation method for the state ofa non-linear dy

namic system. Unknown parameters in systems governed by non-linear ordinary differential

equations can usually be estimated as artificial states.

The basic principle of the EKF is to use, at each sampling point, a linear Kalman Filter

computed for the linearization of the non-linear system model at that time. Equivalently
this algorithm:

• takes the non-linear system model at the current time

• linearizes around current state estimate

• computes Kalman Gain for linearized system

• computes new state estimate with linear KF

5.1.1 The Kalman Filter

The standard Kalman Filter is an optimal observer for the states of a linear systems driven

by white noise. This type ofsystem can be expressed in the following form:
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Figure 5.1: Schematic of the Extended Kalman Filter

I

Ak Bk I

I 0 0

Kk Ck Dk 0

Figure 5.2: Schematic of a Kalman Filter

Xk+i = AkXk + B^Uk + B^Ck

Vk = CkXk + DJfcUjt + Dlck

dXest

dyest

^st

(5.1.1)

(5.1.2)

Here Xk denotes the systemstate at time k, yk is the measured output, Uk is the known input

and ejk is random noise. A,B, C and D are the matrices describing the dynamic system.

The general problem ofestimating the system state x given data for u and y and a model
Ay B^C,D consist of solving the following minimization problem

= argimnE[(a;fc —m)(a;fc —m)*] (5.1.3)

where E is the expected value.

The solution of this problem is the best estimate for x given the information y in a

Maximum-Likelihood sense.

To solve this problem, we make the following standard assumptions

1. {Afc, Bky Ck, Dky Uky yk}^ aro known.
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2. Xq ^ A/'(0, Po)

3. e = {efc}g° is zero-mean, Gaussian, white noise with E[ee*] = I

4. Xq and {ejt}o° are uncorrelated.

Here, the crucial assumption is that e and xq are jointly Gaussian. The zero mean and
unit variance assumptions can be met by scaling, and whiteness can be met by adding a
coloring filter. It is eminently reasonable to assume that xq and e are uncorrelated in the
DRM application. The computation relies on the correctness of the model and problems will
arise in complex systems that include large amounts of modeling error.

The solution to the minimization problem in equation ( 5.1.3) is

= AkXk\k+ ^kiVk - CkXk\k - ^k'̂ k) (5.1.4)

where K is the Kalman gain matrix that is computed by solving Riccati equations (see Ap
pendix). Xk+i\k is the optimal state estimate in the sense that it has the smallest covariance.
For more information on Kalman Filtering see [5] and [6].

5.2 Non-linear Least Squares

There are many methods that can be applied to estimate thickness from the intensity mea
surement. The simplest method is to use non-linear least squares, which minimizes the
Euclidean norm between the measured data and a non-linear model function depending on

the minimization parameter. In this case

(5-2.5)

where is the measured intensity vector normalized by the measured incident intensity.

This minimization is done at every time point. Again, there are many methods to solve

the minimization itself. The method of choice for this problem is non-linear programming

using a Gauss-Newton approximation as the search direction for a line search.

Non-linear programming uses iterative algorithms to solve min^ J{6). The basic steps
are:

Choose ^0) set /c = 0
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• Choose search direction 6^

• Solve a = arg mina J{9^ —a6^) and set = 6^ —

• Check stopping rule

• stop 01 k = k + 1 and repeat step 2

• ay

Two common methods are the Steepest Descent Method which uses the gradient P = ^

of J as a search direction and secondly the Newton Method which uses the inverse Hessian

times the gradient H~^g. To be a valid choice the search direction has to be a descent
direction, i.e. the cost has to decrease in that direction. This is always true for the Steepest
Descent method but not necessarily for the Newton Method.

Since one searches in a different direction at the next iteration, the line search itself in

each step does not need to be solved exactly.

In addition to the choice ofsearchdirection, there are many variables in these algorithms

that have to be determined by the user. These include the initial guess for 6, the stopping
criteria for the line search and the stopping accuracy for the whole algorithm.

In this particular application, we choose the Gauss-Newton approximation to the Hessian
as a search direction 5, which is computed by

J(d) = (5.2.6)

Q= g (5.2.7)
g = g =0*[7e(d)-s,*"°] (5.2.8)

H = (5-2-9)

6 = (5.2.10)

The advantage ofthis method is that the search direction is easily computed, and that
it is always a descent direction. Convergence analysis is difficult, because the line search is
often ad-hoc. We chose the initial guess of thickness at each time step to be the computed
estimate of thickness of the previous step. This assumes that thickness is changing slowly
compared to thedataacquisition ratewhich, with 40 samples per second, appears reasonable.
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The disadvantage of this method is that it does not take the dynamic behavior of the
thickness into account, i.e. there is no model on how thickness changes with time, and
consecutive time steps are only connected by the choice of initial thickness. Also the method
does not account for noise and is not computationally suitable for full spectrum DRMs

because the involved matrices become too large.

5.3 Filtering for Output Non-linearities

This section describes an ad hoc filtering method that can be used for systems governed by a

linear state equation, but with a non-linear output equation. To use this method we assume

that the thickness changes linearly with time. The model here is:

dk+i = dk-rk (5.3.11)

rk+i = ro-\-Wk (5.3.12)

yi = 9\dk) + vi (5.3.13)

where d is the thickness, r is the develop rate, is the reflectivity indexed by the wavelength

and w and v are white noise sequences.

The fllter used is based on a second order approximation of the error, and assumes

knowledge of the gradient of the output function g. The flltering equations are:

dk+i = dk - h - Hy'k - y'k) (5.3.14)

fk+1 = ro (5.3.15)

• yi = 9'(4) (5.3.16)

where ( ) denotes estimated variables and L is the flltering weight.

Let the errors be denoted with ( ), then

dk+i = dk+i ~ dk+i ^ (1 —LVg)dk —fk-h Lvl (5.3.17)

fk+i = rk-n - n+i = -^k (5.3.18)

yi = yi-yi^^ffdk-vi (5.3.19)

where high order terms are assumed to be negligible. In choosing the weight L appropriately,

the errors decay to zero. The appropriate choice is for the eigenvalues of the dynamic matrix

of the errors to be inside the' unit circle.
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The eigenvalues /x are determined by the equation

^2 _ (1 - LVg)fjL = 0 (5.3.20)

The optimal choice is

1 1LV9 = 1 or . r = - ^ (5.3.21)
^ dd

where n is the number of wavelengths that are being measured. This choice of solution gives

equal weight to all noise channels. If the data came from the exact model, the estimate
would converge extremely fast, unless the noise takes the estimate out of the region where

the first order approximation is valid.
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Chapter 6

Results

In this chapter the various filtering methods described previously are tested on simulated

and experimental data. Their advantages and disadvantages are discussed.

6.1 Extended Kalman Filtering

simulated reflectivity data for 830nm witti 1% noise

•B0.25

-100

estimated thickness for simulated data

true thickness
estimated thicknesses

10
time

Figure 6.1: Simulated data with 1% noise and estimated thickness using random 5% devia
tions from true initial conditions .

Because of the difficulties with the measured data described in section 4.3, the filtering

methods have to be evaluated usingsimulated and experimental data. First we use simulated

data to evaluate the Extended Kalman Filtering algorithm. White noise is added to the

refiectivity, which is simulated using the linear state equations (6.1.1). The three states
(thickness, absorption and develop rate) areestimated from thisdata using initial conditions

29



e-
oo.a

S0.7

estimated absorption factor for simulated data
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estimated develop rate for simulated data
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Figure 6.2: Estimated absorption coefficient and develop rate from simulated data with 5%
noise using random 5% deviations from true initial conditions.

randomly distributed around the simulation conditions.

^ dk+1 ^ ^ dk-rk^
^fc+l — Tk+l — Tk

\ Pk+l \ Pk )
=

(6.1.1)

The first simulation had 1% noise added to the reflectivity data (Figure 6.1). The esti

mated states shown in Figure 6.2 used initial conditions deviating 5% from the true initial
conditions used in the simulations. The thickness and develop rate are estimated well, but

the absorption coefficient is not a good estimate of the true value.

simulated reflectivity data for 830nm with 10% noise

-0.05

estimated thickness for simulated data, 5% dev. in init.cond
1000

- 600

n 200

-200

true thickness
estimated thicknesses

10
time

Figure 6.3: Simulated data with 10% noise and estimated thickness using random 5% devi
ations from true initial conditions.
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simulated reflectivity data for 830nm with 1% noise
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Figure 6.4: Simulated data with 1% noise and estimated thickness using random 10% devi
ations from true initial conditions.

Figure 6.3 shows the same estimation of thickness using simulated data with 10% noise

added. The thickness continues to be estimated accurately. This shows that the EKF

algorithm rejects output noise well as predicted. Figure 6.4 shows an estimation using the

same reflectivity data, but with initial conditions deviating by 10% from the true values. The

estimation is much less accurate, which shows the sensitivity of the EKF to initial conditions.

measured reflectivity data

704nm

767nm

BOOnm

830nm

840nm

890nm

gsonm

geonm

Figure 6.5: Measured reflectivity data with exposure dose 1.9mJ/cm^.

We also tested the EKF algorithm on the measured data shown in Figure 6.5. The

mean initial condition for the estimation was determined from the thickness measured before

develop and the end-point of 15sec that wasextracted from the data. These initial conditions

were also used to simulate data for the previous section.

To assess the robustness of the algorithm we also estimated the thickness with a different

mean initial condition for develop rate using the same measured data set. The two thickness

31



estimated thickness for experimental data estimated thickness for experimental data

develop rate seed=1.0=40nrTvsec develop rate seed=1.7=68nnVsec

-200 -100

Figure 6.6: Estimated thickness from measured data with two different initial develop rates
for five random initial states

estimates are shown in Figure 6.6. Although the same data is used, both estimates follow
the path prescribed by the model, instead of both converging to the path prescribed by the
data. This shows that the EKF method is not robust to modeling errors. It follows the faulty

model and does not compensate for the discrepancy between the data and that model.

The first plot in Figure 6.6 and the associated develop rate and absorption estimates
shown inFigure 6.7, suggest that thealgorithm works well. However, theestimates follow any
prescribed trajectory from the state equations and only adapt for random noise. Figure 6.7
also demonstrates the dynamic behavior of the filter. The overshoot in the estimate of
develop rate is damped out by the filter dynamics.

estimated absorption factor for experimental data

time

estimated develop rate for experimental data

10
time

Figure 6.7: Estimated absorption and develop rate using measured data for five random
initial states
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6.2 Non-linear Least Squares

•hnulalad ra(l«oUvty dau wtlmatM tniottiWM troen MmHalad data

Figure 6.8: Simulated reflectivity data and estimated thickness using initial thickness dj**" =
760nm and d"* = 650nm.

rollactlvny data lor walarlS aaUcrratad Ihlcttnaaa lor varying wual attlmalo

d-ntlaSOOnm
d-initaGOOnm
Ct-iR!l<i700nni
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Figure 6.9: Measured reflectivity data with dose = 2.bmJ/cm^ and estimated thickness
using varying initial conditions.

First, we tested this method on simulated data. We simulated the reflectivity data using a
linear thickness model from equation ( 4.4.4) and a fixed absorption coefficient. Normally

distributed, uncorrelated noise was added to the data. The variance was proportional to the
reflectance at the initial condition for each wavelength respectively. As shown in Figure 6.8

the noise added is not insignificant, but the method proves robust for initial estimates over

lOOnm from the true starting value, where the estimate recovers immediately.

The next step was to run the estimation on real data. We chose the data set from wafer
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Figure 6.10: Cost function for varying initial guess using experimental data

#5 which had an exposure dose of 2.bmJ/cm^ and a measured thickness of 713nm before
develop, and no resist remaining after develop.

Figure 6.9 shows that the real reflectivity data does not resemble the theoretical data
shown in Figure 3.4. It is therefore not surprising that the estimation does not provide good
results. One can observe from Figure 6.9 that the robustness of this estimation method still
holds. Even though the four estimates are started with initial conditions with a range of
300nm they eventually return to the same estimate.

The remaining cost shown in Figure 6.10 is correlated to the spikes in the reflectivity data
between 10 - 20sec. This shows that the method is even robust to these disturbances from

the process in the data. It appears that there is another source of error that accounts for
the difference between the estimated thickness that plateaus around 500nm, when it should
return to zero according to the final measurement taken on the Tencor. This source might
be a fundamental difference in the model for the reflectivity TZ and the true system that

generates the intensity data. Overall the robustness of this method is promising ifa better
model can be provided.

6.3 Filtering for Output Non-linearities

Again, we first tested this algorithm on simulated data. In all models the simulation pa
rameters were restricted to be positive, i.e. the develop rate and thickness are set to zero

when the simulated thickness becomes negative. This raises the issue of on how to naturally
restrict the estimation. There are two restrictions that should be incorporated. First the
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estimated thickness should decrease and secondly it should be non-negative. These should

not be strictly enforced because of noise in the data.

We chose to not let the estimated thickness increase by more then 5% and to set the

estimated develop rate to zero, when the thickness estimate was negative. We added these

restrictions to the state estimate equations ( 5.3.14)-( 5.3.16).

We measured the noise levels for w and v in percent relative to the main signal. Let

rk = ro + Wk = ro(l + <l>ek) (6.3.2)

where e A/'(0,1) , then x% noise corresponds (j) = with a choice of 3(7 bounds for
the percentage. Similarly, we determined the noise level for v in percent of 72. and we chose

the random initial condition of the estimation relative to the known initial condition of the

simulation.

Figure 6.11: Estimatedthickness from simulated data withvarious random initial thicknesses

(5% variation) for uncorrelated noise levels {w 10%, v 1%).

a.esl*7K2369nr i
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Figure 6.12: Estimated thickness from simulated data withvarious random initialthicknesses

(5% variation) for uncorrelated noise levels {w ^ 10%, v 5%).

Figure 6.11 shows the simulated and estimated thickness for four random initialconditions

varying within 5% of the real initial condition. The noise level for w and v were chosen to

be 10% and 1% respectively.

The algorithm seems to be especially sensitive to output-noise, i.e. the noise level for
V. For more than 1% noise in the output the estimate diverged for almost every run (see

Figure 6.12).
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Figure6.13; Estimated thickness from simulated data with various randominitial thicknesses

(5% variation) for correlated noise levels (w 10%, u 1%).

Figure 6.14: Estimatedthickness from simulated data withvarious random initial thicknesses

(5% variation) for correlated noise levels (w ^ 10%, v ~ 5%).

An increase in the modeling noise w, did not result in a significant reduction in the

estimation accuracy. The algorithmis alsonot verysensitive to the initial thickness estimate.

In the first set of simulations the noise channels of the output were not correlated. Since

they are correlated in reality, we attempted to see if this makes the estimation easier. For
this second set of simulations half of the noise level was uncorrelated and the other half was

completely correlated.

We used the same noise levels as in the previous plots for Figure 6.13 and Figure 6.14.

There appears to be at most a slight improvement in tolerance.
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Chapter 7

Simulation Study Using PROLITH

In this chapter we use PROLITH simulations to explore the sensitivity of the develop rate

with respect to process input variables such as exposure dose and PEB time. The PRO

LITH simulator uses detailed models for all lithography processing steps starting from the

aerial image formation to diffusion during the post exposure bake and the develop step. The

modeling parameters for the resist are obtained experimentally and supplied by the manu

facturer. The PROLITH guide to lithography [3] provides an excellent summary of the

models used and variables involved in each process step.

We used the simulated data obtained from PROLITH to evaluate the capabilities of a

DRM as a sensor for run-to-run control.

7.1 The Simulations

We used Shipley's UV5 resist to run the simulations on siliconwith AR2 anti-reflective coating

to reduce standing wave effects.

The output of the simulation was thickness vs. time data for various exposure doses

and PEB times, which we converted to develop rate vs. time using Euler differentiation.

Prom this time signal (shown in Figure 7.3) we extracted three quality measures. These are

the maximum develop rate and the mean develop rate (excluding regions of zero develop

rate) and the initial develop rate at time = 1.2sec. While these have different numerical

values, their general tendencies are similar. This is evident in Figures 7.1 and 7.2. Thus,

either measure can be used as the quality measure in modeling the develop rate. We chose

the maximum develop rate to conduct the sensitivity analysis in the following section. The
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linear fit to the maximum develop rate is also shown in Figure 7.2.

PEB time exposure dose

•o o>
rolOO

'20 ;1

PEB time exposure dose

Figure 7.1: Average and initial develop rate vs exposure dose and PEB time.

linear fit to the max develop rate

PEB time exposure dose PEB time exposure dose

Figure 7.2; Maximum develop rate and its linear fit vs exposure dose and PEB time.

These figures also show the high sensitivity of develop rate to the process inputs. Fig
ure 7.3 demonstrates how the develop rate changes during the develop process and that it is
necessary to chose a single valued measurable for the purpose of control models.

7.2 Develop Rate as a Run-to-Run Control Measur

able

Important questions remain to be answered. How valuable is a measurement ofdevelop rate
for a run-to-run control scheme? How does the difficulty with this measurement trade off

with the needed accuracy?



Exposure dose = 6.2mj/cm , varying PEB time

20.05

Figure 7.3: Develop rate vs time for varying exposure dose.

To answer these, we examined the use of a develop rate monitor for run-to-run control.

Musacchio showed in [4] the benefits of run-to-run control for the lithography sequence

using a thickness loss measurement to model variations ineffective exposure dose andeffective
post exposure bake time. For details on thickness loss measurements see [8]. Based on this
study we can determinethe reductionin CD variability possible with goodmodels fordevelop

rate vs. exposure dose and PEB time. This reduction would depend on the noise level added

to the model, which is determined by the accuracy of the sensor.

The control model used by Musacchio [4] has the form

z = Oil (rci-1-ei) +oi2 (^2 +62) +fiis Y^2 + 62)
2/1 = 021 (Xi + ei)-f-O22 (2:2 + 62) + ^23 + 63

(7.2.1)

(7.2.2)

where z is the CD, Xi and X2 are the exposure dose and the PEB time respectively and yi

is the square root of the measured thickness loss. The noise terms are ei, 62 and 63. The

problem is to estimate the z given the measurement of yi without knowledge of the dose or
time but given the statistics for the noise terms.

The noise Ci is assumed to be normally distributed

ei ~Ar(0,<r?) (7.2.3)

Adding a measurement for develop rate to equation 7.2.2 would change the variance of
the estimated z.

2/2 = ^31 (^1 + Ci) + 032 {^2 + 62) + O33 4- 64 (7.2.4)
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To make the computations simpler the square root term in equation 7.2.1 is linearized

about the operating point (xi,X2)

1 3

and the coefficients in equation 7.2.1 are combined to yield

I z \

where x is known. So

yi

\2/2 /

= A

^ N

yi

\y2 j

X2

\ 1 /

-{•A

/ ei ^

62

63

\ 64 /

M(Ax,AAA*)

(7.2.5)

(7.2.6)

(7.2.7)

Using Theorem 1 from the appendix we can compute the variance of the conditioned
variable z\y which will depend on the variance of the measurement noise in the develop rate
0-4

= K,- K,yK;'Ky, (7.2.8)

where

A =

K = AAA* =

( -0.016 -0.00050.4321 ^
2.5176 0.0334 -23.4615

0.0483 0.0033 -0.5254 )

K, K,y

Ky^ Ky

A =

40

\

(7.2.9)

-0.016 -0.0005 0 0

2.5176

0.0483

0.0334

0.0033

1 0

0 1

(7.2.10)

Figure 7.4 illustrates the relationship between the variance of the estimated CD and the
noise level in the develop rate sensor. To get a 10% improvement in the variance of the
estimated CD one can tolerate at most 20% measurement noise for develop rate.

Figure 7.5 shows the standard deviation for the estimate of CD with varying measure
ments. From the model alone the standard deviation is 7.16nm, but using the thickness

loss sensor it can be reduced to 6.89n?n. Using only a measurement of develop rate with

10% noise one can reduce the standard deviation to O.Olnm. Using both measurements the
estimate has a standard deviation of 5.84nm. The difference of improvement between the
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Figure 7.4: Relative change in Variance ofestimated CD with various levels ofmeasurement
noise for develop rate.

two sensors is due to the assumed measurement accuracy. The model for the square root of

thickness loss has about 20% measurement noise.

All of these numbers are dependent on the models for the dependence of develop rate

on exposure dose and PEB time and they would need to be recalculated for models derived
from experimental data. They do, however, capture the essential trend involved.

etandart davlaSen* wRh dlWiwil maaaurmanh

Figure 7.5: Standard Deviation of CD with different measurements.



Chapter 8

Conclusions

This study was intended to explore the potential of a develop rate monitor as an in-situ
sensor for the purpose of controlling the DUV lithography sequence.

A number of problems appeared during the investigation. Some of these stem from the
filtering methods, others from the physical process, and some are inherent to the DRM or
DUV resists.

The principal difficulty with thephysical process, which inthiscase was a puddle develop,
isa low signal to noise ratio. During thedispense ofthedeveloper thesignal isunrecognizable
and cannot be used for thickness extraction. A good initial estimate of thickness is available

before the develop begins, but lost after the dispense because DUV resists develop rapidly.
Some of the filtering methods however, depend on a good initial estimate of thickness. It is
this interplay of the problem sources that make this project challenging.

The advantage ofusing the develop step for an in-situ sensor is that the sensor is easily
mounted on the track and does not interfere with the process. The disadvantage is that it

is late in the process flow where damage might have already occurred. For spray develop
stations, in which the wafer isspinning, the problem ofchanging location ofthe measurement
becomes an issue. This can be solved by synchronizing the data acquisition rate with the

rotational speed of the wafer.

Problems inherent to the DRM are the lack of calibration of the intensity of the light

source and its sensitivity to measurement noise. This sensitivity will increase when dealing
with patterned wafers, especially when the ratio of exposed to unexposed areas decreases.
For rotating develop stations this is compounded by changes in the location of the small
developing areas. Using DRMs with additional wavelengths might help to increase the
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signal to noise ratio, but it will also increase the cost of the sensor and complexity of the
algorithms.

The reason for attempting to use control on the DUV lithography sequence is the high
sensitivity ofchemically amplified resist to slight variations in the processing conditions. It
is this inherent sensitivity that makes printing smaller feature sizes possible, but the same
chemistry produces very short develop times, which causes difficulties with the filtering
methods.

We explored three different filtering techniques in trying to extract thickness from reflec
tivity data. Each has inherent advantages and disadvantages. Extended Kalman Filtering
and Non-linear Output Filtering are faster computationally than Non-linear Least Squares
and exploit the dynamic behavior of thickness. Least Squares is less sensitive to initial
conditions and output error. Its computational speed could be increased by using a more

sophisticated line search algorithm. On the other hand, the speed will decrease when us

ing more wavelengths and might not be practical for real time applications. The Output
Filtering method does not allow for a more complex, non-linear model of the state, i.e. in
the dynamic behavior of thickness and it is also very sensitive to noise in the measurement
signal, which becomes problematic for patterned wafers. The EKF works very well, if the
model used is accurate, and it is not sensitive to output noise. Modeling errors will render

this method unreliable.

The sensitivity study using PROLITH simulations shows the potential of a good develop

rate monitor. A DRM with 10% measurement noise would significantly reduce the variance

of the estimate of CD. This can allow reducing the mean value of the produced CD, provided

sufficient actuation authority. Still, the difficulties in obtaining such a sensor might favor

other sensors that are easier to realize and provide equal improvement.

Overall there are many problems associated with the data acquisition that need to be

solved. In spite of the noisy signals the Non-Linear Least Squares Method appears to be

most promising because of its robustness. This technique only requires a good model for
the source of the data. The challenge is to find a more realistic model for the reflectivity

11. Another project for future investigation would be to explore the end-point time as a

modeling variable for a run-to-run control scheme. End-point is not nearly as complex to
estimate as develop rate and may be sensitiveenough to the process inputs, such as exposure

dose and PEB time, to yield additional knowledge that can be used in the control algorithm.
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Appendix A

Appendix

A.l Derivation of the Kalman Filter

Define the collection of given information as

Ik = {yo,yw-^yk-i} (A.i.i)

The goal of the Kalman filter is to find

Xk\k = E[a^ifc IL] (A.1.2)

and the covariance matrix of this random variable where | denotes conditioning with given

data.

Let us introduce some short-hand notation

Xk\j = = conditioned random variable (A.1.3)
Xk\j = E[xA;|j] = conditional mean (A.1.4)
Pfclj = E[(a;A:|j-:rjk|j)(xA:|j-ffc|j)''] = conditional covariance (A.1.5)

For the derivation of the Kalman Filter we will need the following two results:

Lemma 1

For any random variables X, Y, Z we have

X\{Y,Z) = (X\Y)\(Z\Y)
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Theorem 1

Let X be a random n-vector, Y be a random m-vector, and let

Z =
X

Y
Af(mz,Azz) =Af

mx

my

^xx ^XY

^YX ^YY

Then, X\Y ^ where

mx\Y = T^X + ~

•^xx|y " ^xx ^xy^yy^xy

Conditioning the system equations (5.1.1)-(5.1.2) on the data leads to

Xk+i\k = Ak3:k\k + BkUk\k + Blek\k = AkXk\k + B^Uk + B^ek

yk\k = CkXk\k + D^Uk + Dlek

(A.1.6)

(A.1.7)

(A.1.8)

Here we used the fact that Uk is completely known and not random and that ek is independent

from previous output data through yk-i- Now define

where

and

z = A/" [
yk\k \

AkXk\k "i~ BjgUk

CkXk\k + D)iUk _

QJfc Pk

Pk Ik

Qjfc A

K Ik

AkPk\kAl + BIBf A^P^\,Cl + BlDf
CkPk\kA% + DlBi' CkPk\kCl + DlDf

Ph.\k 0
0 I

Mk Ml

Mk
Ak Bt

—

K

Ok

With the use of Lemma 1 we can define an expression for xt+i|ifc+i>

^k+l\k+l ~ ^fc+1 Ki/Oj •••)2/fc—li 2/fc)

= (ijfc+ili/o. •••.2/jt-i) 1(vklyo, •••.yt-i)

= (it+ii*) I{yk\k)
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(A.1.9)

(A.1.10)

(A.l.n)

(A.1.12)

(A.1.13)

(A.1.14)

(A.1.15)



Using Theorem 1 we can compute the mean value and the covariance for Xk+i\k+ii

it+ilA+i = (Xk+I\k) I(yk\k) = AkXk{k +B^Uk +hlk^ {vk - CkXk\k - I>?«a)(A.1.16)
ffc+i|/t+i = dk-hlk^^k (A.1.17)

Comparing equation (A.1.16) with equation (5.1.4) it follows that the Kalman Gain Kk

is defined by

Kk =

= {AkPk\kC', + BlDl')(CkPk\kC'k + DIDIT' (A-1.18)

Substitution of equation (A.1.18) into equation (A.1.17) then leads to the following Ric-
cati equation:

•Pfc+1|A:+1 = ^kPk\k^k + BkPk*~

(AkPkikC'k + BlDl'){CkPkikCt + DlDlT\CkPk\kAl + DlBt)
(A.1.19)

which iteratively updates Pk\k' This update is then substituted into equation (A.1.10) to
compute ajb, Pk and ^k for the next time step.

For time invariant systems, often the steady state Riccati equation

P = APA* + B'B'* - [APC* + B'D'*)(CPC* + DW^T\CPA* + D'B'*) (A.1.20)

is solved to reduce computational load.
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A.2 Derivatives of the Reflectivity Function

Most optimization algorithms use the derivative ofthe function that is being optimized, in
this case the reflectivity function TZ described in Section 3.2 to be

cos(2fnd) -isin(2fn<i) \ / m„ mi2 \ ^^2.21)
—insin(^nd) cos(^nd) j ^ "^21 ^7122 /

^ (m^l +^12 ^a)^air (^21 "h ^22 222)
(mil + ^12 n-air + (mil + ^71^2 W5)

7l=p|rp (A.2.23)

The derivative of this function with respect to a parameter 9 such as the thickness d or

the absorption coefficient p can be derived analytically instead ofnumerically. Thenumerical
computation would add computation time and result in less accuracy.

The derivative is developed by repeatedly applying the chain rule. This sequence of

equations can easily be implemented to compute ^

Using the shorthand notation

Ott
c = cos(—nd) (A.2.24)

A

Ott

s = sin(—nd) (A.2.25)
A

r = rR-\-iri (A.2.26)

ria = riair (A.2.27)

7I5 = '̂ silicon (A.2.28)

We start by expanding equation (A.2.22)

(c+ i^ns)na - (isn + cris)
(c + i^ns)na {isn + cus)
c'inl - nl) + -n^) +i [2 cs(% - n„n)]

C2(na+n,)2 +82(2^^ + 71)2

= (A.2.29)
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So that

rn = ^ (A.2.30)
r, = (A.2.31)

V

(A.2.32)

where wr and wj represent the real and imaginary parts of the numerator and v the denom
inator of r.

Now we can start applying the chain rule to equation (A.2.23)^

f . (A.«)
9rR _ (A.2.34)
89 ~
o dwt«. dv
^ _ 80 80 (A.2.35)
de "

^ = 2c|K-nD +2.|((2^)=-n^) (A.2.36)

dc 2n dd_ = —j;sn—

ds 27r dd

de "

(A.2.39)

(A.2.40)

This can easily be implemented by computing the sub-derivatives from the bottom up
where 0 is the parameter of interest.
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