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Abstract

To meet the increasing demand on wireless networks, there has been intense eifort in
the past decade on developing multi-user receiver structures which mitigate interference
between users in spread-spectrum systems. While much of this research is performed
at the physical layer, the appropriate power control and choice of signature sequences
in conjunction with multiuser receivers and the resulting network capacity is not well
understood. In this paper we will focus on a single cell and consider both the uplink
and downlink scenarios and assume a synchronous CDMA (S-CDMA) system. We
characterize the capacityof a single cell with both the optimal linear receiver (MMSE
receiver) and matched filter receiver structures. The capacity of the system is the
maximum number of users per unit processing gain admissible in the system such that
each user has its quality-of-service (QoS) requirement (expressed in terms of its desired
signal-to-interference ratio) met. We also identify the "optimal" signature sequences
and power control strategies so that the users meet their QoS requirement. We propose
a simple construction scheme for the "optimal" signature sequences that we identify.
We also characterize the effect of transmit power constraints on the capacity.

1 Introduction

A central problem in the design of wireless networks is how to use the limited resources such
35 bandwidth and power most eflficiently in order to meet the quality-of-service requirements
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of applications in terms of bitrate and loss. To meet these challenges, there have been
intense efforts in developing more sophisticated physical layer communication techniques.
A significant thrust of work has been on developing multi-user receiver structures which
mitigate the interference between users in spread spectrum systems. (See for example [19,
6, 7, 21, 8, 12, 14].)

Despite significant work done in the area, there is still much debate about the network
capacity of the various approaches to deal with multi-user interference in spread-spectrum
and multi-antenna systems. One reason is that the networking level problems of resource
allocation and power control are less well understood in the context ofmulti-user techniques
than with more traditional multi-access schemes, such as TDMA, FDMA and conventional
CDMA systems. For example, much of the previous work on performance evaluation of
multiuser receivers focus on their ability to reject worst-case interference (so-called near-far
resistance [6]) rather than on their performance in a power-controlled system.

In this paper, we would like to study the capacity ofa power-controlled spread-spectrum
system with multiuser receivers. We consider a single cell synchronous CDMA (S-CDMA)
system. Although such complete synchronism is rarely achieved in practice, the study of such
systems is a first step towards an^ysing asynchronous models. The users are distinguished
from each other by their signature sequences or codes. The processing gain represents the
degrees offreedom in the system. We assume that at the receiver, each user is demodulated
using a linear receiver structure. We are interested in the capacity of both the uplink (mobiles
to base station) and the downlink (base station to mobiles) of this system equipped with
multi-user linear receiver structures. We say that a set of users is admissible in the uplink
system with processing gain L if one can allot signature sequences to the users and control
their transmit power such that the signal-to-interference (SIR) of each user is greater than its
SIR requirement. We are interested in the problem of characterizing the maximum number of
users per degree of freedom, called the capacity of the uplink system. Analogous definitions
of admissibility and capacity can be made for the downlink.

Though any choice of linear receiver is allowed in this framework, in practice, two linear
receivers are of particular interest; the MMSE receiver which is the best linear receiver
(in the sense of maximizing the SIR of each user, see [21, 8, 12, 14]),and the conventional
matchedfilter receiver. We consider each receiver separatelyand characterize the capacity of
the system. Our main results, which hold both for the uplink and downlink, are as follows:

1. With the MMSE linear receiver structure for each user, M users each having a SIR
requirement of p are admissible in the system with processing gain L if and only if
M < 1 -L i
L ^ 0'

2. With the matched filter receiver structure for each user, M users each having a SIR
requirement of /? are admissible in the system with processing gain L if and only if
M <; 1 -l_ i. Thus we have the unexpected result that by a choiceof "good" signature
sequences there is no loss in capacity by using the, a priori inferior, matched filter
receiver.



Voice and data users may well be in the same system and it is important to have a
level of generality in the model that caters to users having diiferent SIR requirements.
We say that a user is of class I ifit has SIR requirement Pi and we assume that there is
a finite number, say iV, ofclasses. The following statements are truewith both MMSE
and matched filter receivers.

• If Ml users of class I are admissible in the system with processing gain L then

A

• Conversely, if

1=1 ^ + A

A

(=1 " + A
then for every class /, ai users per unit processing gain of that class are asymp
totically admissible in the system as L —)• oo.

This allows us to characterize the admissibility of users via a notion of effective band
width. If we consider as the effective bandwidth of a user of class /, then Mi users
of class I are admissible in the system with processing gain L implies that the sum of
the effective bandwidths of all users is less than or equal to L.

4. We identify the "optimal" signature sequences and the "minimal" transmit powers of
the users to admit the maximum number of users in the system. We also provide a
simple algorithm to construct the "optimal" signature sequences that we have identi
fied.

<L.

< 1,

In [16], the authors consider the scenario when the signature sequences of the users axe
independent and randomly chosen. They show that the SIR of the users of such a large
system converges (in probability) and analyze the capacity of the system based on the value
to which the SIR converges. It is interesting to compare the performance of that system
with the one considered here when the sequences are optimally chosen:

1. Under the MMSE receiver, the capacity of a system using random sequences is asymp
totically identical to that of a system with optimally chosen sequences. This holds
when there are no transmit power constraints, or equivalently, when the background
noise power is low. We will provide an explanation for this phenomenon.

2. Under the conventional matched-filter receiver, a system using random sequences ad
mits 1 user per degree of freedom less than when the sequences are optimally chosen.
This shows that while the MMSE and the matched-filter receivers have the same per
formance when the sequences axe optimally chosen, the MMSE receiver is much more
robust to the choice of spreading sequences.



Under transmit power constraints, systems employing random sequences admit strictly
less users than the corresponding systems with optimal sequences. We quantify pre
cisely the gap in performzince.

In related work, there has been a great deal of research studying the problem of power
control of the users for conventional CDMA systems. Distributed iterative algorithms that
achieve power control of the users is discussed in for example [1] and [2]. These ideas
were extended subsequently to systems with MMSE receivers [18], [5], but they focused on
deriving convergent power control algorithms rather than analysing the achievable capacity.
Theproblem ofidentifying good signature sequences has been studied in [11] in the context of
a spread-spectrum system with conventional receiver and equal received power for all users,
and in [10] in an information theoretic setting. Different from these works, we here study
the joint optimization problem of designing multiuser receiver structure, power control and
spreading sequences, and obtain simple characterizations of the resulting system capacity in
various scenarios.

An important special case subsumed by our framework is when the signature sequences
are constrained to be chosen from an orthogonal sequence set. This corresponds to dividing
the entire bandwidth into frequency slots (or channels), i.e., a joint FDMA/CDMA system.
In this case the receiver is trivial and both MMSE and matched filter receiver structures
coincide. Our main result in this framework is as follows: M users each with SIR requirement
(3 are admissible in the system with processing gain Lifand only ifM < ^[1+^J • We observe
that the maximumnumberofusers admissible per unit processing gain differs from the earlier
results by just an integer part. Thus, we identify the gain by using non-orthogonal codes
and multi-user linear receivers5 the difference depends on the factor ^ and the processing
gain L. In the scenario when users are differentiated by their SIR requirement, we identify
the capacity of the system.

This paper is organized as follows: In Section 2, we give a precise definition ofthe uplink
model and of the admissibility of the users. Capacity of the uplink system is identified in
Section 3 and Section 4 deals with the situation when the receiver structure is fixed to be the
matched filter. Section 5 discusses the situation when users have different SIR requirements.
Ina physical system, the power transmitted by a user is constrained naturally. In Section 6,
we adopt a model ofmobility oftheusers and appropriately define capacity ofthesystem with
a transmit power constraint. We characterize this capacity for both MMSE and matched
filter receiver structures, which turn out to be identical. In Section 7, we will focus on
the downlink. We can ask our admissibility and capacity region questions in this setup
too. As can be expected, there is a lot of connection between the downlink and uplink
scenarios and we summarize the results. Section 8 focuses on the joint FDMA/CDMA setup
that corresponds to the restriction of signature sequences to be chosen from an orthogonal
sequence set and identifies the capacity of the system under various settings. Section 9
contains our conclusions.



2 Model and Definitions

We consider a multi-access symbol-synchronous spread spectrum system and focus on the
uplink. Each user spreads its information on a common channel through modulation us
ing its signature sequence. Let the processing gain of the system be L. Traditional spread
spectrum systems choose their signature sequences from {—1, +1} s-iid a simple multiplica
tive demodulator followed by a low pass filter. With a choice of a general linear receiver,
we assume that the signature sequences come from the unit sphere in . Suppose
there are M users in the system and each has signature sequences 5i,S2,...,5m. We can
model the information transmitted by eachuser as zero mean, independent random variables

The variance E [Xf] is the power at which user i is received. We denote
the received power of user i as p,-, the product of the transmit power of user i and the path
gain from user i to the receiver (bcise station ). We assume an ambient whitegaussian noise,
denoted by W ~ A^(0,(t^/) independent of the transmitted symbols. Then the received
signal at the receiver, represented by y, can be written as:

M

y = ^5.x.-fW
t=i

Suppose the symbol of user i is decoded using a linear receiver, denoted by Ci(a vector in
7^^), then the signal to interference ratio of user i {SIHi) is

CTu _ (Cn^t) Pi Qx
(C,-, Ci) -I- (C,-, Sj)^ Pj

We say that M users are admissible in the system if there is a choice of positive powers
Vi-)-" tPMi signature sequences si,...,sm € and linear receiver structures ci,...,cm
such that

SIRi > /? Vz = 1... M

Here (I > 0 is some fixed SIR requirement of each user that has to be met for satisfactory
performance.

2,1 Structure of Optimum linear receiver

In the framework above, the choice of the linear receiver structure is left open. It is well
known that the MMSE receiver is the optimum linear receiver structure, optimum in the
sense of maximizing the SIR of each user. While there axe many derivations of the structure
of the MMSE receiver (see [8], [16] for example) ci,..., cm, we give an elementary derivation
of the same as the argument of a problem of minimizing a convex function over a convex set
below (this will also aid us in developing notation to be used in the characterization of the
capacity regions):

Fix the user powers pi,... ,pm, and the signature sequences si,..., sm- The optimum re
ceiver Ci is one that maximizes SIRi. Now, let S = [5i,S2,... ,sm] and D = diag (pi,... ,pm)



Slid S% — [sj •••) •••?̂ A/] s-iid Df — didig (pii •••^Pi—i »Pt+i •••jPm)' Let Zt
SiDiSj + a^I and Z = SDS^ + cr^/ and we note that they are positive definite. Let
Zi = UiAiUi for a positive diagonal matrix Aj and unitary Ui. Also, let SDS^ = UAW.
Then,

CTD Pimax SIRi = max
Ci^O Ci^O c\ZiCi

= Pi max
x.i^O X\Xx

I _i

xlAi ^UiSis\UiAi ^Xi i f-i—J I where x,- = A? UlCi

Thus the axgmax is given by x,- = A^ ^Ujsi and the optimal receiver structure is

Q = zr'5,- (2)

Hence, under the MMSE receiver,

SIRi = s\Zr'siPi (3)

3 Characterization of Capacity

In this section we derive the first main result of this paper: the identification of the capacity
ofa single cell S-CDMA system equipped with the MMSE receiver. We assume that each
user has the same SIR requirement /?. Observe that if the number of users is less than or
equal to the processing gain, the trivial choice of orthogonal signature sequences for the
users ensures arbitrary SIRrequirements to be met if we can scale up the power of the users.
Hence, without of loss ofgenerality we shall henceforth assume that the number ofusers is
greater than the processing gain.

Theorem 3.1 M users are admissible in the system with processing gain L if and only if

M<I 1 + -

Proof Step 1: Upper Bound on the number of users
Suppose M users are admissible in the system with processing gain L. Then, by definition,
thereexist sequences si,..., sm € , positive powers pi,... ,Pm 3 for every user 2, we have
SIRi > where the receiver structure is as in (2). Now, Vi = 1... M, from (3),

SIRi = s\Z-^SiPi

= s\(^Z - PiSisfj Sipi

- -i {'- +SiiS)""
S\Z ^SiPi

1 - s\Z-^SiPi
(4)



where we used the following formula in the second step:

/ A-i .-1 A~^xy^A~^{A-xy) =A +1_

whenever the terms exist. Here, every eigenvalue of Z is strictly bigger than p,- and thus all
the terms are well defined. Thus, we have

Now, summing up all the terms, we have

M

^s\Z-^SiPi = tr(5'2-'5£»)
t=l

= tr(5£»5*Z-')
= tr^A(A +CT^/)~'̂

= , where ku = A,
A; +

< L (6)

where we used the elementary fact that ii(AB) = tr (5^4) for all matrices A, B of dimensions
M X L and L x M respectively and for all M, L. Using (5) and (6), we have

P ^ Ar^-l
1+/3 ^

1 M

L

^ M
This completes the proof of the upper bound.

Step 2: Achievability of the bound
We shall need the following Lemma first.

Lemma 3.1 Fix M > L. Then, there exists a L x M real matrix S = [siS2 ••• j-sm] where
Si € Si and the rows of S are orthogonal and have I2 norm

Thus, VM > L, Lemma3.1 gives a real LxM matrix S = [siS2...,sm] such that SS^ = ^/.
We prove the lemma in Appendix B and also provide a method of construction of such vectors
Si,... ,sm VM > L. These sequences were first identified in [10] (but in their context the



sequences were in {1, —1} ) and the authors referred to such Si,...,as WBE sequences,
sequences that meet the so-called Welch Bound Equality (see [20]). WBE sequences have
also appeared in [11] in an information theoretic setting. The proof of the existence of WBE
sequences is missing and construction of WBE sequences is not exhibited for every M > L
in [11] and [10]. We shall henceforth assume that the WBE sequences for the pair (M, L)
are in .Sf.

Suppose M < L(l+ . Choose the signature sequences for the users as the WBE
sequences for the pair (M, L). Choose the powers to be

Then, by our particular choice of signature sequences, SS* = ^/. Using (4), Vi = 1... M,

1 + SIRi

_ M

SIRi i / , 2r\~^s\ (pSS^Sip

! sipS

Lp

Mp -1- Lcr2
13

1 + /?

Hence for each user t, we have SIRi = f3 and the M users are admissible in the system with
processing gain L. ®

Suppose M users are admissible in the system with processing gain L and suppose the
choice of the sequences can be made to be 5i,..., sm- Then, among all the choice of powers
Pi for the users that can be made so that SIRi ofeach user isgreater than or equal to /?, there
exists a component-wise minimal power choice (see [18]). With the choice of WBE sequences
for the pair (M,L) as the signature sequences of the users, the choice ofpowers for the users
in the proof above, namely pi = p = represents the component-wise minimal
power solution. We shall prove this in Section 6 when we revisit capacity with transmit
power constraints. In general, if the sequences chosen are 5i,..., sm let 5" = [5i... sm] ^-nd
denote ps as the component-wise minimal power choice.

It is interesting to compare this result with the corresponding one in [16]. The results in
[16] are asymptotic and are valid for a large system (i.e., a system with a large processing
gain and large number of users). Then, it is shown that for a system with M users (each
user having SIR requirement /?) and processing gain L as M oo and L —> oo and ^ >a,
the users have their SIR requirements met if and only if a < 1 + Thus for a large system
this suggests that using random sequences is as good as using the optimal WBE sequences
for the signature sequences of the users.

To gain more insights about why random sequences are as good as optimal sequences,
let us give a different interpretation to Theorem 3.1. We first give a formula for the MMSE



receiver and the associated SIR under the MMSE receiver, alternative but equivalent to (2)
and (3). First recall the channel model in matrix form:

Y = SX-{-W

where S is the matrix the columns of which are the signature sequences of the users and X
is the vector of transmitted symbols from the users. If X^ is the vector MMSE estimate of
X, a direct application of the orthogonality principle E[{X —XyY] = 0 yields

X=DS'lSDS* +cr^l]~W
A

and the covariance matrix of the error c = X —X is given by

K, =D-DS' [S£»5' +(tV] 5D (8)

where D = diag(pi,... ,pa/) is the covariance matrix of X. Right multiplying the above
equation with D~^ and taking the trace of both sides, we get:

trace(/\cZ)~^) (9)

= M- trace [SDS' +(tV] 5^
= M- trace (sDS' [5Z)5' + using the fact trace(v4B) =tTdice(BA)

^ A
^

where A,'s are the eigenvalues of the matrix SDSK If we let

- M-Em 110)

Pi

be the (normalized) minimum mean-square error for user i, then (10) says that

M L

= (11)

It is known that there is a simple one-to-one relationship between the SIR and the MMSE
error for each user (see eg. [8]):

When there are no maximum power constraint, the background noise power can be made
negligible by boosting up the power of all the users. In this case, (11) simplifies to:

M

Y, MMSE.- = M - rank (5) (13)
t=i



Note that the total MMSE of the users is a constant, independent of the relative powers of the
users and depending very wealcly on their signature sequences. To minimize the maximum
MMSE among all users (or equivalently, to maximize the minimum SIRs), it is therefore
optimal to have symmetry among the users such that they have the same MMSE. This was
achieved using equal received power and the WBE sequences described earlier. However,
this "symmetrization" can also be achieved asymptotically when random sequences are used,
since it is shown in [16] that the SIR's of all users will converge to the same number. But
maximizing the minimum SIR's is equivalent to maximizing the number of users in a system
with given equal SIR requirements. Hence, random sequences and the WBE sequences yield
the same capacity asymptotically.

4 Matched Filter Receiver and Capacity

The matched filter receiver is a traditional choice among designers and is computationally
very simple: just project the received signal onto the direction oftransmission. In this section
we shall analyze the capacity ofthe system equipped with such a receiver structure for every
user. Apriori, by choosing an inferior linear receiver (in the sense ofmaximizing the SIRs of
the users) we could be reducing the capacity; however we obtain the unexpected result that
the capacity is identical to the one obtained with the optimal linear receiver. This result is
now stated below; we shall make some comments on this at the end of proof. We assume
that each user has the same SIR requirement (3.

Theorem 4.1 M users are admissible in the system with processing gain L and equipped
with matchedfilter receivers if and only if

M <L

Proof Step 1: Upper Bound on the number of users
Since for any given choice ofsignature sequences and powers the achieved SIRs ofthe users
with matched filter receiver is less than that achieved with the MMSE receiver structure, an
appeal to Theorem 3.1 suffices. However the following direct proof will aid us in developing
notation and intuition in Section 6 when we consider capacity of the system with transmit
power constraints.

Let M users be admissible in the system with processing gain L. Then there exist
sequences 5i,...,sm 3^d powers pi,... iPm such that, analogous to (1),

SIRi^ • ^ ^>/?Vi = l...M (14)

The linear inequalities (14) can be rewritten in matrix notation as

10



where p = (pi,..^PmY ^-nd e = (1,1..., 1)* and Aij —(si^sj) Suppose that the sequences
si,..., SM are such that Ais irreducible. Then, the existence of p is equivalent, by an appeal
to Theorem 2.1 in [15], to

r(>l)<l +i (16)
As before, let 5 = [si,S2, •••,^m]- We may then write A = S'So S'S, where o represents
the Hadamard product defined as {A o B)ij = AijBij (see Chapter 5 in [4]). Since ^4 is a
symmetric matrix,

r(i4) > —-— ; the classical Rayleigh quotient

tv[S'SS'S] , r.i
= —-—— ; see Lemma 5.1.5 in [4J

M

tr [(55')']
M

^ {tT[SS']f
ML

= y since tr [55'] =tr [5'5] =M (18)
where, in (17), we used the fact (which can be shown easily), that for any symmetricmatrix

A, we have tr[>l^] > rank(l)' (16) and (18), we have M<l(l +^). If Ais
not irreducible, suppose it has C irreducible components each component having, say Mi
elements. Let us denote lib. irreducible component by X/ = jii,..., Let V/ = 1...C,
the sequences in the /th irreducible component, namely, ,..., s,t span a subspace of

1 Kfi

dimension n/. Then, necessarily, YliLi Mi = M and YYiLi ^ L and the sequences belonging
to different irreducible components are orthogonal. In this case, the M linear inequalities in
(14) split into C disjoint sets of linear inequalities each having Mi terms. By an argument
identical to the irreducible case, we now have,

^<l +iw=l...C (19)
ni p

A simple induction argument shows that

M, ^ Ef=i M,
mZLX > —7^ > —
I=i...c m - m - L

Using (19), we then have M<L(l + . •

Step 2: Achievability of the bound
Suppose M<L(l + . Choose the signature sequences for the users as the WBE sequences
for the pair (M, L). Choose the powers to be

11



Then, by our particular choice of signature sequences, SS^ = and thus (5,-, Sj)^ = ^
for every user j. We now have for every user 2,

Pi
SIRi =

- Pi + Pj (5n Sjf
Lp

L (cr^ —p) + Mp

= P

Hence M users are admissible in the system with processing gain L. •

This unexpected result of the performance of the system with matched filter receivers can
be explained by the intuition gained in the achievability parts of the proofs ofTheorems 3.1
and 4.1. We observe that the achievability proofs in both the two theorems used the same
signature sequences for theusers, namely, WBE sequences for the pair (M, L). Furthermore,
the powers chosen were the same for each user. In thissituation when the signature sequences
are the WBE sequences, and the powers chosen for the users are identical (equal to p =

l{\+p)-M0 ^ MMSE receiver for user i is given by, following (2),
a = Zf^Si

ii'i

= {o^I - psis\ +p55^) Si

= ^(7^1 - pSiS\ + Si
= Ksi

where K \s o. constant (which can be shown to be equal to ^). Thus the optimal linear filter
inthis situation is just a scaled version ofthematched filter and this explains thesystem with
matched filter receivers having the same capacity as the one equipped with MMSE receivers
even when there are more users than the processing gain (when the number of users are less
than the processing gain, the trivial choice oforthogonal signature sequences for the users
ensures identical capacities for the systems with MMSE and matched filter receivers).

Suppose the signature sequences chosen are si,..., sm and denote the [si... 5m]? a L x
M matrix by S. Then, among all the choices of power for the users such that the SIR
requirements ofthe users aremet, there isa component-wise minimal choice (see Theorem 2.1
in [15]) given by P5 = ^ (/ - o ewhere eis avector of all ones. When the
choice of signature sequences are the WBE sequences for the pair (M,L) then, it is easy
to verify that the component-wise minimal power choice is the one made above, namely,
„ _ „ _ c^0L
Pt —P — L(1+/3)-M/3*

As before, it is interesting to compare the analogous results obtained with random signa
ture sequences. In [16] the authors show that in a large system, a users per unit processing

12



gain have their SIR requirements met ifand only ifo; < Thus 1user per degree of freedom
is lost asymptotically when random sequences are used.

5 Multiple Classes and Capacity

Data and voice users may be sharing the common system and it is important to have a level
ofgenerality in the model that allows users to have different SIR requirements. To quantify
this notion, we introduce different "classes" of users. A user ofclass I has a QoS requirement
(3i and we assume that there are a finite number (fixed, in practice one can imagine about
2-3 classes), say TV, of classes. In this section we focus on the capacity of a system with a
given processing gain in both the cases when the system is equipped with matched filter and
MMSE receivers. We shall first focus on the system equipped with MMSE receiver structure.

As in Section 2, we define admissibility of M users (with SIR requirements , /?2, •.., Pm)
in the system with processing gain L and equipped with MMSE receiver structure as being
able to allot signature sequences and powers for the users such that for each user i the
achieved SIR (zis in (3)) is greater than or equal to ft. We first derive a necessary condition
on admissibility and then consider the achievability issue. As before, note that if the number
of users is less than or equal to the processing gain, then the users can be given orthogonal
signature sequences and trivially they are admissible in the system. Thus, with no loss of
generality, we assume that the number of users is greater than the processing gain.

Theorem 5.1 Suppose M users (with SIR requirements ft,/?2,• •• o,Te admissible in
the system with processing gain L and equipped with MMSE receivers for each user. Then

M Q.

Proof Since the M users are admissible, by definition there exist for each user signature
sequences s,- and powers pi such that SIRi (as in (3)) is greater than or equal to ft-. Then,
as in (4), we have

S;Z~^SiPi
>Pi1 - s\Z-^Sipi

SIRi

l-\-SIRi
= SiZ Sipi (21)

Also, as in (6), we have the upper bound

M

Yis\Z-'siPi < L (23)
t=l

13



Now using (21), (22) and (23) we have < L. •

This allows us to consider the quantity as the effective bandwidth of a user of class
/. Thus if M users axe admissible in a system then the above result shows that the sum
of their effective bandwidths is less than the processing gain of the system. We know that
Ldegrees of freedom can support [(l + L\ users each with SIR requirement p. This
suggests that we could "channelize" the system such that users of different classes do not
interfere with each other and achieve asymptotically achieve a/ users of class I per degree
of freedom whenever < 1. This is indeed true and we make this precise in the
following theorem. We assume the system is equipped with MMSE receiver structure and
has large processing gain (large compared to the number of classes N).

Theorem 5.2 Given ai,... ,a;v positive such that

y .SiiB- <1 (24)
fel +A ' ^ ^

we can admit at least ki = [a/L —1— users of class I in a system with processing gain L

Proof We shall proceed by "channelizing" the system by dividing the processing gain L
into N "parts". For every clciss /, we shall give users of class /, ni = degrees of
freedom (note that ^ L from (24) and due to our conservative choice and hence such
a division can be achieved). Now, in each "part" /, by an appeal to Theorem 3.1, we can
admit [n/ (l + users of class 1. Thus, we can admit at least

users of class /. This completes the proof. B

This result shows that by "channelizing" the system, we can admit a/ users per unit
processing gain of class I asymptotically whenever ]C/li result tends to be
weak for small processing gains, and our next result is true for any value of the processing
gain. We saw in Theorem 3.1 that when the M users have the same SIR requirement p
they are admissible in the system with processing gain L if ^ < L. It is reasonable to
expect that if the users have SIR requirements A,...,)5m that are not too different from
each other, then the M users should be admissible if make the notion
"not too different" precisebelow. Again weassume that the system is equipped with MMSE
receiver structure.
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Theorem 5.3 M users having SIR requirements (without loss of generality let
A ^ ^ admissible in a system with processing gain L if

M Q,
Y-^< L

and

Vn = l...i (25)
^ 1 + A 1 + A

Weprovethe theorem in AppendixC and alsoidentify the powers and signature sequences to
be alloted to the users so that their SIR requirements are met. This is a sufficientcondition on
the SIR requirements and the processing gain of the system so that the users are admissible.
We identify two important situations when (25) is satisfied:

1. When all the SIR requirements are identical, then (25) is trivially satisfied. This is the
result contained in Theorem 3.1.

2. When there are at least as many users in each class as the processing gain of the
system then it is straightforward to see that (25) is satisfied. Suppose class I has
Ml > L users and ^|j- < L. Then, we can make a familiar choice of signature
sequences for the users. Choose signature sequences for users of class I to be WBE
sequences for the pair [Mi^L). Choose powers the same for every user i of class I to
be p[ = p' = —=^r-!TT~- The SIR of user i of clciss / is, as in (4),

sir! = (^0 ^ Vi =1... iV, Vi =1... M, (26)
1- (^0'2-Mpi

where
N Ml

(27)
/=i »=i

Now by our choice of signature sequences, Z from (27) is Hence,
substituting in (26), for every user i of every class /,

_ (A'z-^s'p'
V V1 + SIR'i

P'
^2 +

A

1+A

This ensures that for every class /, Mi users of that class are admissible in the system.
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It is interesting to observe that the linearity of the boundciry of the capacity is a con
sequence of (13), that the total minimum mean-square errors of the users is a constemt
independent of the received powers and dependent very weakly on the signature sequences.
This also explains why here, as in the single class case, random sequences achieve asymptot
ically (as the processing gain gets large) the same performance as optimal sequences.

It is remarkable that we are able to mahe the same statements (as for MMSE receivers)
for the a priori inferior matched filter receiver. As earlier, fix the receiver to be the matched
filter. As in the situation of MMSE receiver structures, we shall first derive a necessary
condition for the admissibility of the users and then discuss achievability of the capacity
identified.

Theorem 5.4 Suppose M users (with SIR requirements admissible in the
system with processing gain L and equipped with matched filter receivers. Then,

M Q.

Proof Since the achieved SIR with the matched filter receiver can only be less than that
achieved with the MMSE receiver for the same signature sequences and powers of the users,
an appeal to Theorem 5.1 suffices. ®

This result allows us to identify the quantity as the effective bandwidth of a user of
class I just as in the situation when we had MMSE receiver structure. We shall first consider
achievability in an asymptotic sense: for a large system, we show now, as in the MMSE
receiver situation, a/ users per unit processing gain of class I are admissible in the system if
Y^h=i 1^1 ^ make asharper statement that is exactly identical to that in Theorem 5.2.
The assumption below is that the system is equipped with matched filter receiver structure
and has a large processing gain.

Theorem 5.5 Given ai,... ,aiv positive such that

f-^<1
Si + A

we can admit at least ki = [a/L —2 — users of class I in a system with processing gain L

We observe that the proof follows identically as the proof of Theorem 5.2 and by an appeal
to Theorem 4.1 and hence omit the proof. Thus by "channelizing" a system with large
processing gain L we can admit q/ users of class / per unit processing gain if T2iLi < I-

The statement above is weak for a system with a small processing gain and we make a
statement analogous to Theorem 5.3 that deals with systems with any processing gain L.
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Theorem 5.6 M users having SIR requirements (without loss of generality let
01^ ^ Pm) admissible in a system with processing gain L if

and

Vn = l...i (28)

M Q.

n ^

+ A "Si+A

We shall outline the proof in Appendix C where we also identify the powers and signature
sequences to be used so that the users achieve their SIR requirements. However, we shall
identify two important situations when (28) is easily satisfied:

1. When all the SIR requirements are identical, then (28) is trivially satisfied (see Ap
pendix A for the details). This is the result contained in Theorem 4.1.

2. When there are at least as many users in each class as the processing gain of the
system then it is straightforward to see that (25) is satisfied. Suppose class I has
Ml > L users and Y!>iLi mahe a familiar choice of signature
sequences for the users. Choose signature sequences for users of class I to be WBE
sequences for the pair (M/,L). Choose powers the same for every user i of class I to
be p\ = ^ . By our choice of signature sequences, note that we have

Efcii (-s? ^ for every s G . Then the achieved SIR of user i of class / is, £is
in (14),

SIR\ = P\
0-2 - p\ +Ei=i Hkdi 4)Vi

- y + Ei=i
= Pi

which shows that for every class /, M/ users of class I are admissible in the system.

6 Power Constraint and Capacity

Our model has not included any constraints on the received power of the users. However,
in a cellular system, there is a natural constraint on the transmit power of the mobile. In
particular, one could consider two types of constraints: peah power constraint and average
power constraint. In this section, we shall focus on the average power constraint on the
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transmit power of the mobiles. Before being able to define such an "average" constraint, we
will need to have a model of mobility of the users in the system. We will adopt the following
model: for each user i the attenuation process (denoted by {gi(t)}t>o) is stationary and
ergodic with the mean of the stationary distribution, being equal to, say, G (the same for
every user). This is a fairly common model, for example see [17]. Now suppose M users each
with SIR requirement /? are admissible in the system with processing gain L. Suppose the
signature sequences can be chosen to be si,..., sm stnd denote the L x M matrix [5i... 5jvf]
by S and the received powers chosen to be ps. Note that our assumption of perfect power
control implies that we combat the fading by keeping the received powers fixed (to ps) at all
times. The transmit power of user i at time t is = pfgiit)- Then, the average transmit
power of user i is defined as

=.liJS 7/o' P'' 7II
The limit exists due to our assumption of stationarity of the process aJid hence,

_ Qp?^ Thus, the average transmit power constraint, say P, translates to the received
power constraint of each user z as pf ^

If the transmit power constraint P (G is fixed) is small, then that might lead to a
pathological situation when even a single user in thesystem cannot meet its SIR requirement
without exceeding the transmit power constraint. Suppose there is just one user in the
system. Then to meet a SIR requirement of (3 it should have a received power at least /?£7^.
Thus, to avoid the situation when even a single user is not admissible in the system with
any processing gain L, we shall henceforth assume that

I > (29)

Now, we can define the admissibility ofM users (each having SIR requirement (3) in the
system with processing gain L and average transmit power constraint P as equivalent to
being able to allot for every user i signature sequence Si and power pi < ^ such that the
achieved SIRi (given in (3) for MMSE receiver and in (14) for matched filter receiver) is
greater than or equal to (3. Our main result is to precisely identify the loss in capacity by
including such a power constraint. As before, we assume that the number ofusers is greater
than the processing gain. We state our main result below for thesystem with MMSE receiver
structure:

Theorem 6.1 M users (each having SIR requirement (3) are admissible in the system with
processing gain L and average transmit power constraint P if and only if

Proof Step 1: Upper Bound for the number of users
Suppose M users are admissible. Then, there exist signature sequences Si,...,5m € 5^,
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positive powers pi,... ,Pm < § 3 for every user i, we have SlRi> jS. Now, proceeding as
in (4), we have for each user i,

SIR, =, 'K.T ^^ (30)1 ~ s\Z-^SiPi

where Z I Yl^i Summing up the terms we have,

f^s'iZ-hiPi = ti(s'z-'sd)
»=1

= tr(5Z)5'2-')
= tr Ta (a + ^ viheie SDS'= UAU'
= 51 « 2 where A.-, = A,

ti A. + <r2

We note that

tr(A) = tr(S£>5')
= tr(ZJ)

where the second equality follows by some algebra and noting that the columns of S have
unit I2 norm. Now, if we let p* = then the vector (p*,p",... ,p*) is majorized
by the vector (Ai,..., Xl) (for the details see Appendix A). We now observe that the map
X i-> is concave in x and hence the symmetric concave map

(A„...,Az,)H^f:

Using (30), we have

.=1

is Schur-concave (see Appendix A for the definition and notation). Then we have

fej A, + <72 fat P* +

=

P* + <7^

m/- < (31)
which implies that p* > Since each p,- < § it follows that p* < We then
conclude that M < L ^ . •
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Step 2: Achievability of the bound
Suppose M < ^ Choose the signature sequences to be WBE sequences for
the pair (M, L). For each user choose the powers

Pi = P =

Since the choice is identical to the one made in the proof of Theorem 3.1, we have as in
the proof of Theorem 3.1, that for each user i, the achieved SIR is equal to (3. We only
need to verify that our choice of powers does not exceed the constraint Using the prior
M<L(l +^ we have for each user power

Thus the M users axe admissible in the system. •

Suppose M users are admissible in the system with processing gain L. Then for any
choice of signature sequences as the columns of a L x M matrix S and some user powers
(denoted by say p^) such that the SIR requirements of the users are met, from (31), we have
that

Vp? > (32)

The choice made in the proof of Theorem 6.1, namely the signature sequences being the
WBE sequences for the pair (M, L) and the powers all equal to p =
the lower bound in (32) is met with equality. We conclude that:

1. The choice p,- = p = is the component-wise minimal choice of powers when
the sequences are chosen as WBE sequences for the pair (M,L).

2. The choice of signature sequences as the WBE sequences for the pair (M, L) and the
corresponding minimal power choice gives the lowest possible (among all choices of
signature sequences and powers for the users) sum of received powers. In this sense,
the choice ofsignature sequences to be the WBE sequences is an "optimal" choice. The
simple scheme ofconstructing WBE sequences for any M > L outlined in Appendix B
makes this choice of signature sequences more appealing.

Again, it is interesting to compare the results with the performance under random se
quences. It is shown in [16] that with a power constraint P, the asymptotic capacity per
degree of freedom achieved by the MMSE receiver is:
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which is strictly less than that with optimal sequences, when the power constraint is finite.
To understand why, we can appeal to (11):

M ^

'£ MMSE,- = M- 2 (33)
i=l ,=1 ^

where A,'s are the eigenvalues of the matrix SDSK When the background noise power is
small compared to the received powers, any set of sequences which symmetrizes the MMSE
for all users axe optimal. When is non-negligible, good sequences should also minimize
the right hzmd side as well. The WBE sequences achieve that by making the eigenvalues
least "spread out", i.e. all the same. Using random sequences, the eigenvalues axe more
spread out, resulting in a capacity penalty when <7^ is non-negligible.

In Section 4 we had the unexpected result that the capacity of the system is unchanged
even when we made a restriction of using an a priori inferior matched filter receiver. It is
interesting to see if a power constraint changes this result. We show that the capacity of
the system with power constraints is unchanged even when we make the restriction to using
matched filter receiver.

Theorem 6.2 M users (each having SIR requirement (3) are admissible in the system with
processing gain L and average transmit power constraint P and equipped with matched filter
receivers if and only if

Proof Step 1: Upper Bound on the number of users
Since for any given choice of signature sequences and powers satisfying the power constraint
the achieved SIRs of the users with matched filter receiver is less than that achieved with the

MMSE receivers, an appeal to Theorem 6.1 suffices. However the following direct proof will
aid us in identifying "optimal" signature sequences. Let M users be admissible in the system
with processing gain L equipped with matched filter receivers. Then there exist signature
sequences si,...,5m and powers pi,...,PM ^ § for the users such that (14) is met. As
noted in Section 4, the component-wise power choice is given by

where Aand eare as defined in the proof of Theorem 4.1. Note that we have 1> •^r{A) >
(since, for a solution (34) to exist, it is necessary and sufficient that i^r{A) < 1and

z
M — G'

P =
f +/^Tn=0
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Now, rewriting (34) (see Lemma B.l in [15]) , we have



Now,

utivi = ilL -r ( '̂ Y —
M M l +/3^oVl+^/ M

We make the following conjecture:

e*yl"*e . /M'

M

Suppose (36) is true. Then, using (35),

(35)

> Wm > 1 (36)

t > tl
G - M

1 +/^m=0 +^),
La^/3

L(l+(3)'-MI3
(37)

Thus, from (37), M<L(l +^- ^). We now only need to prove our conjecture in (36).
We need the following lemma first:

Lemma 6.1 For any positive semidefinite A (of dimension, say M x M) and for any vector
X G we have Vm > 1,

x'A"'x <

Proof A can be written as U*AU for some unitary U and a non-negative diagonal matrix
A. Let A,-,- = Xi and Ux = y. Then,

x'A '̂x = (UxYA'̂ Ux
= y'A^y

M

= EvfAr
t=i

^ / m— 1\ / m-f 1\

= E (l 1 ' ) (l f-' I ' )
(M \\/M \2

using Cauchy-Schwarz inequality

= (I'A""-'!)'

This completes the proof of Lemma 6.1. •
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From Lemma 6.1 it follows that for all x 3 Ax ^ 0, we have ^
m > 1. We shall prove our conjecture (36) by induction using the above observation. We
first observe that the matrix A = S^SoS^S is positive semidefinite by appealing to the Schur
product theorem (see Theorem 5.2.1 in [4]). For m = 1, (36) is true by the argument used
in the proof of Theorem 4.1 (see (18)). Suppose it is true for all 2 < m < g. Since each
component of the vector Ae is at least 1,

e*A^e e^A'^e

M e*e

{e*A'̂ ~^ef
>

(e^i49~2e) (e*e)
' AQ-l

eM9-2e

Hence, ^̂ and (36) is true for m=^also. This verifies our conjecture (36)
and completes the proof of the upper bound. •

Step 2: Achievability of the bound
Suppose M< L(l +^ Choose the signature sequences to be WBE sequences for
the pair (M, L). For each user z, choose the powers

Pi = p =
1(1 + /?)-M/?

Since the choice is identical to the one made in the proof of Theorem 4.1, we have as in
the proof of Theorem 4.1, that for each user z, the achieved SIR is equal to /?. We only
need to verify that our choice of powers does not exceed the constraint Using the prior

M<L(l +^ we have for each user power

W ^ P
L{l+fi)-MI3 - G

Thus the M users are admissible in the system. •

Suppose M users are admissible in the system with processing gain L and equipped with
matched filter receivers. Then for any choice of signature sequences as the columns of a
L XM matrix S and some user powers (denoted by say p^) such that the SIR requirements
of the users are met, from (35) and (36), we have that

- L(l+/3)-M/3 ^ ^
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The choice made in the proof of Theorem 6.2, namely the signature sequences being the
WBE sequences for the pair (M, L) and the powers all equal to p = we have that
the lower bound in (38) is met with equality. This allows us to make the same conclusions
as in the previous subsection: the choice of WBE sequences as the signature sequences
is "optimal" in the sense of minimizing the received power of the users and their simple
construction scheme developed in Appendix B makes their choice more attractive.

7 Downlink and Capacity

Until now, we have been considering the uplink of the cellular system. In the downlink of
this system there is a single transmitter (the base station) and there are multiple receivers
(the users). The path gains from the base station to the users distinguishes the users. We
shall first formally define our model and then consider the capacity of the downlink.

7.1 Definitions and Model

Suppose there are M users in the downlink of the system. Let the path gain from the base
station (interchangeably referred to as transmitter) to user i be hi. We suppose that the noise
at the receivers is additive white gaussian with the same variance per degree of freedom
for each user (there is no loss ofgenerality in this assumption since we can incorporate this
into the path gain parameter /i,). We say that M users (with path gains from the base
station being /ii,...,/im and each having the same SIR requirement ofP) are admissible in
the downlink of the system with processing gain L if we can allot transmit power p,- and
signature sequence s,- at the transmitter corresponding to user i and the MMSE receiver at
the user i such that its achieved SIR

Sm = > 0 (39)
<7 (C,', Ci) 4* 2^3jti Pjhi Cj)

where Ci is the MMSE receiver given the signature sequences and the powers. Proceeding as
in Section 2.1, it is easy to verify that the optimal (in the sense of maximizing SIRfor each
user) linear receiver c,- for user i is

c.- = (40)

where Z,- = and the corresponding SIRi with the optimal receiver is

SIRi = s\Z-^SiPi (41)

It is clear that we can make a similar definition of admissibility of the users when the receiver
structure is fixed to be the matched filter. The similarity of the achieved SIR equation (39)
to the corresponding one in the uplink in (1) is apparent. Only the noise variance in (1)
is replaced now by p. Since the derivation of the main results of Sections 3 and 4, which
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were the identification of capacity of the system with MMSE and matched filter receivers
respectively, did not explicitly utilize the fact that the noise variance term in (1) was
identical for all users i, we may hope to achieve identical characterizations of the capacity.
This was essentially due to the fact that we had no constraints on the transmit power and
by choosing high enough transmit powers one could null out the additive noise. Indeed, this
turns out to be the case and we state the main results below.

7.2 MMSE receiver and Capacity

Our main result is the following. We assume that the system is equipped with MMSE
receivers.

Theorem 7.1 M users with path gains /ii,...,/iM from the base station and each having
the same SIR requirement (3 are admissible in the downlink of the system with processing
gain L if and only if

Proof Step 1: Upper Bound for the number of users
Suppose the M users are admissible in the downlink. Then, for each user z, there exists
signature sequence s,- and transmit power at the base station pi (as a function of the path
gains /ii,... ,/im) such that the achieved SIR of user i {as in (39)) is greater than or equal
to p. Using (41)

s\Z~^SiPi > P (42)
Proceeding as in (4), we have, for each user z.

s\Zi ^Sipi
1 - s\Z~^SiPi

AZ-'s^i = , ' :.T (43)

where Z,- = Z,- —PiSis\. Recalling the notation developed in Section 2, S = [^i,... ,sm] and

hi
D = diag {pi,... ,Pm} and SDS^ = UKU. Then we can rewrite Zj = ^ISDS^. We have,
from (42), that for each user z,

Equivalently, we have for each user z,

-1
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Denoting h = max^j /i,-, we have for each user z.



Summing up the terms, we have

MP

1-^(3

-1

= 5ny/+5Z)5M SiPi

-1

< tr + SD

-1

= tr SDS'\^j-I-{-SDS*
< L as in (6)

This completes the proof.

Step 2; Achievability of the bound
Suppose M< L(l H-and be arbitrary positive real numbers. Choose the
signature sequences for the users as WBE sequences for the pair (M, L) and powers

Pi =P = 1h (1 + /? —kP)
Vi = 1...M (44)

where h = minj^j hi. Then, by our particular choice of signature sequences, 55* = and
hence for every user i we have Zi = /. Using (43), Vi = 1..., M,

SIRi = -1

(45)

> 0 (46)

where we used the fact that (l P— ~ P ^since by hypothesis we have that
M<L(l +^) and h< hi. Hence the Musers are admissible. •

We have identified the WBE sequences as the choice of the signature sequences of the
users. But the choice of user powers in (44) is not the corresponding component-wise min
imal one. A simple closed form expression of the component-wise minimal power choice
seems unattainable. But it is worth emphasizing that the choice of signature sequences is
independent of the path gains and only the powers are chosen a5 a function of the path
gain. If we compare the proofof Theorem 7.1 with that of Theorem 3.1, we notice that the
upper bound part is identical while the achievability part used the same signature sequences
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(namely the WBE sequences) and only the choice of users powers was different. We shall
appeal to this similarity in the proofs ofthe uplink and the downlink case and just state our
capacity results for the other settings. However, to emphasize this, we shall detail the proof
of the capacity of the downlink system with matched filter receivers.

Let the system be equipped with matched filter receiver structures at the base station.
Then,

Theorem 7.2 M users with path gains hi^... ,hM from the base station and each having
the same SIR requirement p are admissible in the downlink of the system with processing
gain L if and only if

Proof Step 1; Upper Bound for the number of users
Since for a given choice of signature siequences and powers to the users the achieved SIR
of each user is less than or equal to that achieved with the MMSE receiver, an appeal to
Theorem 7.1 suffices.

Step 2: Achievability
Let M< L(l + and /ii,..., hM be arbitrary positive real numbers. Choose the signature
sequences for the users as WBE sequences for the pair (M, L) and powers pi = p =

Then, since 5.9^ = ^/, we have for every user z.

Pi
SIRi =

<r^-Pi + T,f=lPj{Si,Sj)'
p

c^-p+^
> 0

due to an argument as in (46). Hence the M users are admissible in the downlink of the
system. •

We now state the following results without proof. As mentioned earlier, these results can
be verified by arguments similar to those used in the corresponding uplink situation.

1. If M users with path gciins from the base station fii,... ,/im and having SIR require
ments /?!,... ,/?M (without loss of generality, let /?i > ... > (3m) are admissible in the
downlink of the system with processing gain L then < L. This result is true
for both the situations when the users are equipped with MMSE and matched filter
receiver structures.
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2. For every class /, a/ users per unit processing gain of that class are admissible in
the downlink of a large enough system if < 1. This result is true in both
the situations when the users are equipped with MMSE and matched filter receiver
structures.

3. If

• i and

. Vn = l...i

then M users with path gains hi,... ,hM from the base station are admissible in the
downlink of the system with processing gain L. This result is true in both the situations
when the users have MMSE and matched filter receiver structures.

8 Joint FDMA/CDMA Case and Capacity

Traditional multiple-access schemes divide the channel into slots and it is important to note
that we can incorporate a slotted system into our framework. We achieve this by forcing
the signature sequences to be chosen only from an orthogonal sequence set. Then users that
have the same signature sequence are in the same "slot" or "channel" and do not cause
any interference to users in different "channels" due to the orthogonality of the signature
sequences. In this case the receiver is trivial and the MMSE and matched filter receivers
coincide. It isinteresting to identify thecapacity in this situation andthisexercise will enable
us to explicitly identify the gain in capacity by using non-orthogonal signature sequences.
In this section, we identify the capacity of the slotted system in the variety of settings. The
conclusion we draw from the results is that the capacity in this ca5e differs from the earlier
one by an integer part of a function of the SIR requirement. The assumption below is that
the signature sequences are now constrained to be chosen from an orthogonal sequence set
(whose linear span has dimension equal to the processing gain ofthe system). We first focus
on the uplink.

Theorem 8.1 M users each with SIR requirement f3 are admissible in the system having
processing gain L if and only if

M<L(l +i) «/l^J = |
M < L[1 + else

Proof Since the sequences are chosen from an orthogonal set, only users having the same
sequence (we shall refer to them as users in the same channel) cause interference to each
other. We shall hence focus on the capacity for a single channel. M users are admissible
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into a channel with SIR requirement /? if there exist positive powers pi,... ihai^
analogous to (1),

SIRi=^^ >;9Vi =l...M (47)

The existence of such powers can be seen to be equivalent to (see Theorem 2.1 in [15])

r(A)<l +i (48)

where r(-) is the Perron-Frobenius eigenvalue of the argument (which is a non-negative
irreducible matrix; for notation and definition see Chapter 1 in [15]) and A is & M x M
matrix with all entries being equal to 1. Since r(i4) = M, the existence of powers satisfying
(47) is equivalent to the number of users M < 1 Since we have L channels available,

this is equivalent to the total number of users M<L(l if ^and M<L[1
else. •

We shall focus on a single channel first.

Theorem 8.2 For every class I, Mi users of that class are admissible in the downlink of a
single channel if and only if

" MiP,

/=1 ^
< 1.

Proof Ml users of class / are admissible in the single channel iff there exist positive power
for every user i of class / denoted by p[ such that (analogous to (47)),

J

w r > 3,

These linear inequalities can be rewritten in matrix notation as

(/ - p>a'̂ Dpe (49)

where p= ,..., p^) and for every class /, p' = (p'j,... and Ais a Mi x M/
matrix of all ones and e is a Ml X1 vector of all ones and Dp is a diagonal matrix with
first Ml diagonal elements equal to and next M2 diagonal elements equal to and the
last Mn elements equal to An appeal to Theorem 2.1 in [15] shows that the existence
of a positive vector p satisfying (49) is equivalent to the condition r{DpA) < 1. Now, it is
straightforward to verify that r(DpA) = Hence the existence of positive powers
satisfying (49) is equivalent to < 1. Since there are L channels, for every class /,

total of Ml users of that class are admissible in the system is equivalent to < L. M
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The capacity of the slotted system with L slots now follows from the characterization
of the capacity of a single channel. Mi users of class I are admissible if there is a way of
dividing the users into the L channels such that within each channel the division does not
exceed the capacity.

Theorem 8.3 M users each with SIR requirement j3 are admissible in the system having
processing gain L and power constraint P if and only if

Let us consider the single channel first. M users are admissible in the single channel if there
exist positive powers pi,..., pM each upper bounded by ^ such that for each user i

sm = ^ ^

We can rewrite this in matrix notation as —f^) P^ where eis a Mx1vectors
of all ones. As in (48), the existence of such positive powers is seen to be equivalent to
r(ee*) = M < 1H- Furthermore, under this condition, there is a component wise minimal
power solution, (see Theorem 2.1 in [15]) given by

-1

1+/? some elementary algebra
Thus, M users are admissible in the single channel with power constraint P if and only if

i und < -
0 ana ^ gM < 1+ i and .A-ms ^ §• This is equivalent to

1 Ga^

Since there are L channels, we conclude that this is equivalent to the total number of users
(in all the L channels) M < L[1 + ^ ®

As earlier, we shall state the capacity for the downlink system in this situation without
detailing the proofs. The proofs can be obtained by an argument similar to the ones made
above.

1. M users (with path gains from the base station being /ii,...,/im) each with SIR
requirement /? are admissible in the downlink of the system having processing gain L
if and only if

M<i (l +i) if l^J = ^
M < L[1 + else
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2. M users (with path gains from the base station being hi,...,Hm) with SIR require
ments 01,..., 13m are admissible in a single channel in the downlink if and only if
y^M 0i ^ 1
2^t=i i+0i ^

9 Conclusions

We have characterized the capacity in a S-CDMA system using linear receiver structures for
both the uplink and the downlink. The effect on capacity by limitations such as choice of
receiver structure (restriction to matchedfilter) and transmit power has also been character
ized. Capacity when there are multiple classes of users has been discussed. We also identified
the signature sequences and the appropriate received powers to choose so that every point
in the capacity region is attained and provided a simple explicit means of constructing the
optimal signature sequences. In a practical system one has asynchronous reception of the
users' symbols by the base station and multi-paths are present. Furthermore, the assumption
of perfect power control made in this study is also not valid in practical systems. However,
these results give some insights to the best one can achieve. We axe currently studying the
capacity of systems with asynchronous reception, multi-paths and fading.

It also must be emphasized that these results are for the case of a single base station. In
a cellular system with many base stations, the characterization of the capacity region (now
a mobile will have to be distinguished by its path gains to the different base stations) is an
important problem. In particular questions such as how does the multi-base station receiver
capacity compare with the single receiver capacity will be answered by such a characteriza
tion. Our preliminary results in this direction show that the answer depends on the path
gains of the mobiles to the base stations and we discover an important property of these
systems - the need to do a kind of "channel-sharing". We have an explicit characterization
of the capacity region in the multi-receiver setup when the sequences are chosen from an
orthogonal sequence set and we conjecture that the capacity regions with no restriction on
the sequences (for both matched filter and MMSE receivers) differ from the earlier one only
by integer parts. This conjecture is based on the strength of the results obtained in the
single receiver case. We are currently working on verifying this conjecture.

A Definitions and Relevant Results from Theory of
Majorization

In this appendix we collect together relevant definitions and results from the theory of ma
jorization. All of these results can be found in the comprehensive reference on majorization
[9]. Majorization makes precise the vague notion that the components of a vector x are "less
spread out" or "more nearly equal" than are the components of a vector y by the statement
X is majorized by y.
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For any x = (xi,..., x„) € 7?,", let

a:[i] > "' > X[n]

denote the components of x in decreasing order. For x,j/ G7^", define

X -<
if f Efei 1(0 <E?=i S'W. k= l...n-l

\ I3?=l ^(t] ~ Ht'ssl y\i]

When X-< y say that x is majorized by y (or y majorizes x). An important though trivial
example of majorization is

fi,i X(a„...,a„) (50)
\n n nj

for every a € 7^" such that J27=i a,- = 1. An important characterization ofmajorization is the
result that x X y if and only if there exists a doubly stochastic matrix P such that x = yP.

A real valued function : 7?." -> 71 is said to be Schur-concave if for all x, y G 7^" such
that X-< y we have <l> (x) > </> (y). <f> is said to be Schur-convex if —</> is Schur-concave. Using
the observation in (50), for any Schur-concave function and for any vector x G7?,"

<f)(x)><t>(x)

where x = | _ Sisifi j, Awell known structure of Schur-convex functionsV n ' n ' ^ n J

is the following result (Theorem 3.C.1 in [9]): If y : 7^ 7^ is convex then the symmetric
convex function <l> (x) = ]C?=i 9(^t) Schur-convex. It is obvious that if y : 7^ —7^ is
concave then the symmetric concave function <t>{x) = g (a^i) is Schur-concave.

It is well known that the sum of diagonal elements of a matrix is equal to the sum of its
eigenvalues. When the matrix is symmetric the precise relationship between the diagonal
elements and the eigenvalues is that of majorization: Let /f be a n x n symmetric matrix
with diagonal elements fii,..., /in and eigenvalues Ai,..., An- Then h < X(Theorem 9.B.1,
[9]). That h and Acannot be compared by an ordering stronger than majorization is the
consequence of the following converse (Theorem 9.B.2, [9]):

Theorem A.l If hi > "• > hn and Ai > •••An are 2n numbers satisfying h •< \ in 7^",
then there exists a real symmetric matrix H with diagonal elements /ii,..., /in and eigenvalues
Al, . . . , An.

The proof of Theorem A.l suggests a way to construct such a symmetric matrix H and
this isof importance in constructing the WBE sequences. Hence, we outline the proof below.
We need the following lemma first (Lemma 9.B.3 in [9]).

Lemma A.l Given real numbers Ci,...,Cn-i and Ai,..., An satisfying the interlacing prop
erty

Aj ^ ^ A2 ^ C2 ^ ^ Cn—1 ^ An,
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there exists a real symmetric n x n matrix of the form

W =

with eigenvalues Ai,..., A„ where Dc is a diagonal matrix with diagonal elements Ci,.

D. v'
V Vr

• 1 Cn—1

Before we proceed to outline the proof of Theorem A.l, we need the following technical
lemma (Theorem 5.A.10 in [9]):

Lemma A.2 If x then there exist ci,.. .,Cn-i such that j/[i] > ci > yp] > ••*> Cn-i ^
y[n] and

2J[2]? •••1̂{n—1]) (^li ♦ 1Cn—1)

We are now ready to outline the proof of Theorem A.l.

Proof of Theorem A.l: The proof is by induction. First observe that the result clearly holds
for n = 1. From h •< X and Lemma A.2, there exist numbers ci,...,c„_i such that

Ai > ci > • • • > c„_i > A„ and

(/ij, . . . , /iji—1) (^1 i •••5̂ n—1)

By the inductive hypothesis there exists an —1 xn —1 real symmetric matrix Hi with
diagonal elements /ii,..., /in-i and eigenvalues ci,... ,c„_i. Let Q be an orthogonal matrix
such that

Q HiQ —Dc —diag (ci,..., Cn—i)
By Lemma A.l, there exists an n x n symmetric matrix

W =
Dc V*
V Vr

with eigenvalues Ai,..., An. Now form the matrix

•go" ' Dc v' ' ' Q' o' QDcQ' Qv^
0 1 V t)„ 0 1 Vn
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Then H hais characteristic roots Ai,...,A„ and diagonal elements /ii,... Vn- But
I3?=i hi + Vn and by hypothesis h ^ X. Hence Vn = hn which completes the
proof. •

This provides a constructive method of arriving at the matrix H given its diagonal
elements and its eigenvalues. This general scheme, though constructive, is non-algorithmic
in nature.



B Existence and Construction of WBE Sequences

In this section we shall prove Lemma 3.1, thereby showing the existence of WBEsequences.
As a byproduct of the proof, we shall obtain a means of constructing these sequences. As
a reprise, we repeat here the definition of WBE sequences. Fix M > L henceforth. Let
si,..., sm € 5^, the unit sphere in 7^^. Let S(m,l) = [^i)^2,...,5m]- Then, si,..., sm are
WBE sequences for the pair {M,L) and S{^m,l) the WBE matrix for the pair {MyL)^ if the
following three conditions are satisfied:

1. The rows of S(m,l) have the same I2 norm, equal to

2. The columns of 5'(m,l) have unit I2 norm.

3. The rows of 5(m,l) are orthogonal to each other.

Properties 1and 3can also be succinctly expressed as 55^ = ^/. When M= L, orthonormal
matrices are the only matrices satisfying the above 3 properties. Hence, without loss of
generality, we can take M > L. We shall now define some matrices that are central to the
proofof Lemma 3.1 and the construction of WBE sequences.

Let A(m,l) be a MX1vector with any Lentries equal to ^ and the other entries being
zero. Let cm be the M x 1 vector of all entries being unity. Then, A(m,l) majorizes cm-
For notation, see Appendix A. Then, appealing to Theorem B.2, Chapter 9 in [9],(also
see Appendix A for a restatement of this classical theorem) there exists a real symmetric
matrix, say P{m,l) with unit diagonal entries and eigenvalues ^ and 0 with multiplicities
(both geometric and algebraic) L and M—L respectively . Let us denote the set of such
matrices by V(m,l) ^ element of this set. Also, let uj ' \ ?'wi ^be the
normalized eigenvectors of P{m,l) corresponding to the eigenvalue ^(written as elements of

Let be the eigenvectors of P(m,l) corresponding to the eigenvalue 0,
written as elements of . Let

(M.L) -

(M.L) -1

AMD
V2

, U{M,L) =

r 1

iM,L) AMD
. ^M-L .

Then Q{m,L) is an orthonormal matrix.

B.l Existence of WBE Sequences

and Q{m,l) =
U(M,L)

Proof of Lemma 3.1: We claim that the choice the WBE matrix satisfies all
the three properties. Properties (1) and (3) of WBE sequences are satisfied by definition.
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Also,

= Q\m,L)

= P{M,L)

M/ 0

0 0
Q{M,L)

Since the square of the I2 norm of the columns of \f^y{M,L) isequal to the diagonal elements
of P(M,L) which by definition are equal to unity, this verifies property (2) also. If S(m,l) is
any WBE matrix for (M,L) then, we observe that rows of serves as the
eigenvectors corresponding to the eigenvalue ^ of some matrix P{m,l) € P{M,l)' Thus, the
claimthat everyWBE matrix has to be of this formfor some choice of P(m,l) € V{m,l)
is verified.

B.2 Construction of WBE Sequences

In Appendix A we indicated a recursive method of construction of the matrix P{m,l) and
^(M,L) can then be extracted from this. However, this is computationally cumbersome and
not algorithmic and it would be helpful to have a more explicit algorithmic computational
procedure. Below, we obtain an explicit form of V{m,l) which is an instance of all possible

Our construction is also recursive and we shall consider two Ccises M < 2L and
M>2L.

Theorem B.l Let M < 2L, Given any P(l,m-l) ^ hence given
and V(l,m-L) ihe corresponding matrices constructed from the eigenvectors of P{l,m-l)
above), define

^M,L) =

U{M,L) =

U{l,m-L) 0
and

—y{L,M-L)
'M-L

M

Then, y/^V(M,L) is a WBE matrix for the pair (M, L).

Proof It is easy to see that Q\m,l) = [^(M,l)^(a/,L)] an orthonormal matrix. We only
need to verify that has unit diagonal entries. By hypothesis.

M

'{L,M-L)
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Now, by definition,

[^(L,A/-L) ^{L,M-L)]

Equivalently,

[^(L.M-L) t^(L,M-L)]

Equivalently,

[^(L,M-L) ^Il,M-L)]

1

o

00 U(LM
-L) has unit diagonal entries

' -/ 0 • V(L,M-L)
0 0 U{L,M-L)

has diagonal entries all ^1 —

(M_i)/ 0
0

M r

L ^

V(L,M-L) has unit diagonal entries

Using this in (51), we obtain that has unit diagonal entries, verifying prop
erty 2 also. This completes the proof. •

Thus, when M < 2L, Theorem B.l describes a way to construct U{^m,L) a-nd given
a choice of the matrices U^lm-L) and V(l,m-L)- For the case when M > 2L, the following
theorem gives a way to construct and V(m,L) given a choice of the matrices U{m-l,L)
and V{m-l,l)' The proof is similar to the previous one and is omitted.

Theorem B.2 Let M > 2L. Given a choice ofU{M-L,L) define

andU{m,l) =

^M,L) =
'M-L

M

•^y{M-L,L) -\/-M
0

M-L

Then yfV(m,l) is a WBE matrix for the pair (M^L).

B.3 Observations and Examples

The following observations are straightforward to verify:

1. If S{m,l) is a WBE matrix for (M, L), then so is QS{m,l) for any L x L orthonormal
matrix Q. Hence, rotating all the WBE vectors together does not change the three
properties above. It is tempting to conjecture that the WBE matrix 5(m,l) is unique
under such rotations; however, later in this section we will see that this is not true in
general.
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2. If Ml > L and Mz > n, given WBE matrices and for the pairs (Mi, L)
and (M2,L) respectively, the matrix [5(a/i,l) S{M2,l)] is a WBE matrix for the pair
(Ml + M2,1'). This shows that we need restrict our attention only to M < 2L. When
the number of users is more than 2L, then the signature sequences can be "reused".

3. If 5i,52,...,SM are WBE sequences for (M, L) then so are ei5i, €262,. •., where
Vz = 1... M, e,- € {1,—1}. Thus the WBE sequences are sign independent.

We now consider the base cases and simple examples of constructing WBE sequences
using our general results above. It must be emphasized that these are some particular
choices of the WBE sequences.

Example B.l L = 1 and M arbitrary

Here, P(m,i) is a matrix of all ones. Thus,

^M,i) =

and rows ofC/(m,i) form a basis for the M—1 dimensional subspace {/:(1,1,...,1):/:G
The WBE matrix is trivial, given by (1,1,. ..,1).

The case M = L + 1 closely follows from the results for L = 1, by an appeal to Theo
rem B.l.

Example B.2 L = 2 and M arbitrary

First, consider M = 3. Then,

U(3,2) -

V{3,2) —

3'V3'

-4 0
[y/k ^fl \/IJ

For general M>2, it is easy to verify that the WBE vectors are sj = (sin (^) ,cos (^))
for all i = 1... M.

Example B.3 L = 3, M = 5
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In this case,

Thus,

^(5,3) -
1/(3,2) 0

. '\/i^(3.2) yf/

S{5,3) = Si =\ rV(5,3) -

y/5 \/%
3 3

# ¥
-#0 0

0 1 0

1 0 1

Example B.4 L = 3, M = 5 example revisited.

In this example, we shall attempt to follow the recursive procedure indicated in Appendix A
and arrive at VJs^a).

Step 1: Find a real4x4 symmetric matrix,say Pi, with unit diagonal entries and eigenvalues
|,|,0 with multiplicities (both algebraic and geometric) 1,2,1 respectively. Let Qi be an
orthonormal matrix such that Qi diag||, |, |,o} Q\ =Pi-
Step 2: Notice that

P(5,3) -

Pi =

Qi 0
0 1

Q2 0
0 1

r 5I 0 0 0 0
0 I 0 0 0
0 0 § 0 y|
0 0 0 0 0

0 0 yi 0 1
^From this, V(5,3) can be found and hence 5(5,3).

To complete Step 1, we need to go through another recursive step.
SubStep 1: Find a real, 3x3 symmetric matrix, say P2, with unit diagonal entries and
eigenvalues |, |, |. Let Q2 be an orthonormal matrix such that Q2 diag {§, |, g} Q2 =
SubStep 2: Notice that

r 5
I 0
0 I 0

1

6

0 0

0 0

.0 yi )/i 1

Q\ 0
0 1

Ql 0
0 1

To complete SubStep 1, we will need to go one further recursive step. We shall skip this
step and just note that P2 can be chosen to be:

Po =
a'+b* a'-b*

2 2

a*+b'

g'-b'

2

1

1 =where a* =
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Using this in SubStep 2, we have an expression for Pi. We can now use this expression in
Step 2, to obtain P(5,3) and hence V(5,3)- Then,

5(1 - vlV(5,3) -
0.7408 0.1693 0.9426 -0.4480 0

-0.6339 -0.7951 0.2888 -0.7142 0
-0.2222 0.5824 -0.1676 -0.5 1

Let us denote this matrix by S2 and it is easy to verify that S2S2 = and the I2 norms of
the columns of S2 are unity. Thus S2 is indeed a WBE matrix for (5,3). Now, suppose there
exists an orthonormaJ matrix Q such that Si = QS2 where Si was obtained in the previous
example. Then, S{Si would have to equal S2S2- It is easily verified that this is not the case;
in particular the (4,5) element of is zero while the corresponding element of SIS2 is
-0.5 . This shows that the WBE matrix S{m,l) is, in general, not unique up to orthonormal
transformations of all sequences.

C Proofs of Theorems 5.3 and 5.6

Proof of Theorem 5.3:

Let XG7^^ have L entries equal to ^ YJ^i and the other M —L entries equal to 0.
Since we are given that ft > ••• > /?m and that

M

LL ft ft'
L^l+ft "Sl+ft Vn = 1

we have x>- •••1+^) appeal to the definition of majorization in Appendix A.
Now, appealing to Theorem A.l, there exists a symmetric matrix, say P, with diagonal
entries •••, and eigenvalues ^ and 0 with multiplicities (both algebraic
and geometric) equal to L and M —L respectively. Let Ui,... ,U£, G be orthonormal
eigenvectors of P corresponding to the eigenvalue Following the notation de
veloped in Section 2, let D = diag{pi,... ,PAf} and S = [si,... ,sm]- Now choose powers
for the users pi = where c is a constant equal to a, • Choose the signature

sequences for the users as

C2^j=l
s =

Then, note that SDS^ = -—Hence,

Vl

V2

VL

-0.5D

/ c \Z=SDS' +a'̂ I= |cr2 + I
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Substituting in (4),

SIRi =
SjZ ^SiPi

1 - s\Z-^SiPi
Lpi

= ft (52)

Thus each user has its SIR requirement met which completes the proof.

Proof of Theorem 5.6:

We shall follow a line of proof that highlights the reason why Theorems 5.3 and 5.6 are
identical though one system is equipped with MMSE receiver structure while the other with
matched filter receiver structure. We shall choose the same signature sequences and powers
as in the earlier proof of Theorem 5.3. Note that with this choice of powers and signature
sequences the MMSE receiver structure for every user i is, as in (2),

a = Z'^Si

= {cr^I-piSis'i +SDS'y' Si
/ 2t t , ^^'=1 1+/3, T= \cr I - piSiSi + 2 ^

= KiSi

where Ki is a constant (which is easily seen to be (1 +ft) (l — T+^))- Thus the
MMSE receiver structure is just the scaled matched filter receiver structure and hence the
achieved SIR ofevery user i with matched filter receiver is identical to that with the MMSE
receiver which as seen in (52) is ft-. This completes the proof. B

References

[1] Foschini G. J., Miljanic Z. "A simple distributed autonomous power control algorithm
and its convergence" IEEE Trans. Vehic. Techn, Vol. 40., No. 4.:641-646, 1993.

[2] Hanly S. V. "An algorithm for combined cell-site selection and power control to maxi
mize cellular spread spectrum capacity" IEEE JSA C, special issue on the fundamentals
of networking^ Vol. 13, No. 7 September, 1995.

[3] Horn, R A. and C. R. Johnson, "Matrix Analysis", Cambridge University Press, 1985.

40



[4] Horn, R A. and C. R. Johnson, "Topics in Matrix Analysis", Cambridge University
Press, 1986.

[5] Kumar, P. and J. Holtzman, "Power control for a spread-spectrum system with mul
tiuser receivers", Proc. 6th IEEE PIMRC^ Sept. 1995, pp.955-959.

[6] Lupas, R. and S. Verdu, "Linear multiuser detectors for synchronous code-division mul
tiple access", IEEE Trans, on Information Theory,Jan., 1989, pp.123-136.

[7] Lupas, R. and S. Verdu,"Near-far resistance of multiuser detectors in asynchronous
channels," IEEE Trans, on Communications, COM-38, Apr. 1990, pp. 496-508.

[8] Madhow, U. and M. Honig, "MMSE interference suppression for direct-sequence spread-
spectrum CDMA", IEEE Trans, on Communications, Dec., 1994,pp.3178-3188.

[9] Marshall, A W. and I. Olkin, "Inequalities: Theory of Majorization and its applica
tions", Academic Press, 1979.

[10] J. L. Massey and Th. Mittelholzer, " Welch's bound and sequence sets for code-division
multiple access systems". Sequences II, Methods in Communication, Security and Com
puter Science, R. Capocelli, A. De Santis, and U. Vaccaro, Eds. New York: Springer-
Verlag, 1993.

[11] Rupf, M and J. L. Massey, "Optimum sequence multisets for Synchronous code-division
multiple-access channels", IEEE Transactions on Information Theory, Vol 40, No. 4,
pp. 1261-1266, July 1994.

[12] Rapajic, P. and B. Vucetic, "Adaptive receiver structures for asynchronous CDMA
systems, IEEE JSAC, May, 1994, pp. 685-697.

[13] Rockafellar R. T, "Convex Analysis", Princeton University Press, 1972.

[14] Rupf, M., F. Tarkoy and J. Massey, "User-separating demodulation for code-division
multiple access systems",/EjFjE' JSAC, June,1994, pp.786-795.

[15] Seneta E. "Nonnegative matrices and Markov Chains", Springer-Verlag, 2nd Ed. 1981.

[16] D. Tse and S. Hanly, "Multiuser Demodulation: Effective Interference, Effective Band
width and Capacity", submitted to IEEE Transactions on Information Theory, Dec.
1997.

[17] D. Tse and S. Hanly, "Multi-Access Fading Channels: Part I: Polymatroidal Structure,
Optimal Resource Allocation and Throughput Capacities", U.C. Berkeley Electronics
Research Laboratory Memorandum UCB/ERL M96/69, submitted to IEEE Transac
tions on Information Theory.

[18] Ulukus, S. and Yates R, "Adaptive power control cind MMSE interference suppression",
to appear in Wireless Networks, special issue on Multiuser Detection in Wireless Com
munications.

41



[19] Verdu, S., "Optimum multiuser asymptotic efficiency IEEE Trans, on Comm.^ COM-
34, Sept.1996, pp. 890-897.

[20] Welch, L.R. "Lower bounds on themaximum cross correlation ofsignals", IEEE Trans
actions on Information Theory^ vol.IT-20, pp.397-399, May, 1974.

[21] Xie, Z., R. Short and C. Rushforth, "A family of suboptimum detectors for coherent
multi-user communications", IEEE JSAC, May, 1990, pp.683-690.

42


	Copyright notice 1998
	ERL-98-6

