

Copyright © 1998, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

COMBINATIONAL VERIFICATION REVISITED

by

Sunil P. Khatri, Sriram C. Krishnan, Alberto Sangiovanni-
Vincentelli and Robert K. Brayton

Memorandum No. UCB/ERL M98/60

30 October 1998

COMBINATIONAL VERIFICATION REVISITED

by

Sunil P. Khatri, Sriram C. Krishnan, Alberto Sangiovaimi-Vincentelli
and Robert K. Brayton

Memorandum No. UCB/ERL M98/60

30 October 1998

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia, Berkeley

94720

Combinational Verification Revisited

Sunil P. Khatri (linus@ic.eecs.berkeley.edu) *
Sriram C. Krishnan (krishnan@ic.eecs.berkeley.edu) *

Alberto Sangiovanni-Vincentelli (alberto@ic.eecs.berkeley.edu) *
Robert K. Brayton (brayton@ic.eecs.berkeley.edu) *

Abstract

We revisit the area of combinational circuit verification. We study the existing methods for combinational
verification, and propose a new method based on the computation ofa Partial Satisfi^ility Dont-Care (PSDC)
ofthe networks being compared. The method involves the use ofReduced Ordered Boolean Decision Diagrams
(ROBDDs) to compute the PSDC ofthe networks. Results based on our implementation ofthis scheme and some
of its variants are discussed.

In addition we implement aseparate method for combinational verification based on Brand's scheme [3]. This
method relies on an Automatic Test Pattern Generation (ATPG) package to detommetheequivalence of subnet
works within the two networks being compared.

Our results compare the two schemes, and discuss the conditions under which each scheme performs well. We
also identify opportunities for potential improvement inour implementations ofthe two schemes.

1 Introduction and Previous Work

The problem ofcombinational circuit equivalence has been well researched. It is aproblem frequently encountered
indigital circuit design. There are many instances where a designer is given two different circuits, and would like
to know if they implement the same boolean function. Alternately, a designer may like to know if a given circuit
correctly implements a specification, where the specification could bedescribed atahigher level ofabstraction.

The knowledge about whether a circuit correctly implements a specification is of critical importance. Many
simulations performed before anIC ismanufactured are done using ahigher level specification, for efficiency reasons.
Inorder tohave a correctly functioning IC, tokeep manufacturing costs down, and tohave a quick time to market, it
isvery important that we reliably know whether acircuit isequivalent tothe specification, against which many ofthe
simulations were done. If theproblem of combinational verification is efficiently solved, it can have a great impact
on the IC design process.

Ina similar way, wemay sometimes want to know if a proposed revision toanexisting design would function cor
rectly. If weknow that the two revisions are equivalent, and if we know that the existing design correctly implements
thespecification, wecanbe assured thattheproposed revision functions correctly.

Prior research in this areahas takenthree fundamental approaches. The firstis to rq)resent the two networks in a
canonical form, and then prove their equivalence. This is thebasis ofmany ROBDD (henceforth referred to asBDD)
based approaches, where theBDDs for both networks are built interms of the network primary inputs. Since BDDs
arecanonical, the test for whether the networks areequivalent simply involves ensuring that the BDDs are identical.

•CAD Research Group, Department ofElectrical Engineering and Computer Sciences, University ofCalifornia, Berkeley, CA94720. This
research was funded under the Semiconductor Research CorporationGrant SRC-324-040.

1

This is a constant time operation. However, these schemes canrequire a great deal of memory. It hasbeen shown in
[4] that for commonly occurring functions, BDDs canbe of exponential size. As a result, there havebeen extensive
attempts to come up with better ordering schemes, allowing the scheme to verify somewhat larger circuits. Such
improvements were made in [9], [7], and [6]. In all these schemes, the BDDs ofthenetwork arebuilt in terms ofthe
primary inputs of the networks.

The second approach attempts to decompose thenetworks into smaller subnetworks, which areeasier to verify.
This is the approach of [2], where nodes of the two networks that are determined to be potentially equivalent are
attempted tobe simultaneously decomposed. Asimultaneous decomposition ofthexandidate nodes is one in which
the decomposed circuit shares a common subfunction. Inorder todetermine if the nodes are functionally equivalent,
it is sufficient to showthat the nodes in the simultaneous decomposition that are not part of the common subfunction
are equivalent Exhaustive simulation isemployed todetermine ifthis istrue, ifthe remaining circuits are sufficiently
small, otherwise further decomposition isdone. Inthis fashion, nodes that are detamined to beequivalent areadded
tothe list ofequivalent nodes, and are treated as primary inputs. The authors concede that this procedure can result
infalse negatives, where the method declares two networks tobedifferent, even when they are identical. This results
from thefact that nodes determined to beequivalent aretreated asindependent signals. Asa result, this scheme is not
complete.

Most recently, [3] and [8] brought a new approach tothe problem. Their approach eliminates the false negative
problem of [2], by recognizing that the internal nodes of the two networks need not implement identical functions
inorder to beequivalent The idea that they utilize is that under certain input minterms, the output of a node does
not determine the output(s) of the entire network. For such input mintOTns, the nodes from the two networks are
free to havedifferent values. Brand's scheme [3] makes use of a test generator to checkif twopotentially equivalent
nodes are indeed equivalent. The two nodes are connected toan XOR gate, and the output oftiiis gate is tested for a
stuck-at-zero fault, at thenetwork outputs. This implicitly checks thecondition mentioned above. If theXOR gate
is not stuck-at-zero testable, thenthe two nodes are equivalent, andoneof the nodes is replaced by the other. This
replacement is done in order to keep the test generation process for future potentially matching nodes as simple as
possible. Kunz's scheme [8] is similar to Brand's, and uses recursive static learning inaddition. Learning is done
based on implications for agiven set ofspecified signals. Iflearning alone isnot sufficient toprove equivalence, atest
generator is used, which uses the learned clauses todetermine if the networks are equivalent.

Ageneralization ofthis concept isfound in[5]. Here, the problem was stated interms ofcross-controllability and
CTOSs-observability relations between nodes on acut that spans both the networks. This procedure iscomplete.

A weakness of Brand's scheme is that it defers the difficulty of the problem of verification to the ATPG program
that it calls. This routineis a structural test routine, and as such can requireexponential searchtime before it deter
mines whether a fault is testable. Inorder to keep this problem under control, testgeneration is abandoned if it takes
more than apreset amount oftime. As aresult, Brand's procedure isnot complete. An interesting point to be made
hCTe is that even if the test generation is abandoned for a node, it does not preclude future nodes from being declared
as equivalent and replaceable.

Our approach, like Berman's [2] approach, isbased on computing internal equivalences inthe network. Unlike the
Brand scheme, we call two nodes equivalent only if their functions are identical. We compute a Partial Satisfiability
Dont-Care set (PSDC) ofthe networks. Our scheme isbased onaflieorem that states that two networks are identical
if and only if their PSDC sets are identical. We build a BDD to compute the PSDC sets ofthe two networks, and
declare the networks to be equivalent ifthe PSDC BDDs are identical. The BDDs we build are interms ofthe network
primary inputs, as well as the equivalent internal nodes. Under the condition that there isauniform distribution of
equivalent internal nodes, we expect that PSDC BDDs will be well behaved. Itis observed in [3] as well as in [2]
tiiat even after significant optimizations are done on anetwork, there are still alarge number ofnodes whose function
remains unaltered. Further, when one network is transformed intoanother, based on manual edits, this is even more
likely to hold true.

2 Problem Statement

The problem ofcombinational circuit equivalence can be stated as follows. Given two combinational networks t|i
and t|2, we are to determine if t|i = TI2.

Two functions /: 5" {0,1} and ^{0,1} are equivalent (/ = ^) if

Vm e B"(/(m) = g(m))

Ifft are the primary outputs oft|i, and giare the primary outputs oft|2, then the two networks are equivalent if
the following holds.

3 Preliminaries and Definitions

A Boolean Network is a directed acyclic graph (DAG), with each node i having a logic function fi(x,y) associated
with it Here xj Gxisaprimary input, and yjt Gyisanode variable representing the internal node k. There is an edge
(i,j) from nodey,- to yj if fj depends explicitly on fi.

The transitive fanout of node j {TFOf) is defined as

node i s.t. i=j or 3 path from j to i

Hie transitive fanin of node j {TFIf) is defined as

node i s.t. i=y or 3 path from i to j

The Satisfiability Dont-Care set of a node i is defined as

SDCi=(yiefi)

It reflects the fact that nodeswithinthe Boolean networkare not independent, but are dependent on the primaryinputs
(and other nodes). SDCi represents a setofvariable values that cannot occur in thenetwork, over theextended space
of networkvariables (whichincludesprimaryiiqiuts and internal nodes).

The Satisfiability Dont-Care set of the network is definedas

sDc=YSyi®fi)
i£l

where / C {1,•••,m},andmis thenumber of nodes in thenetwork.
The Partial Satisfiability Dont-Care PSDCset of the networkcan be written as

*

PSDC=Yjbi®fi)
i=\

The PSDC set is the SDC set of a subset of nodes of the network. The nodes that do not appear in the PSDC set are
eliminated. The PSDC set can be thought of as the SDCset of an equivalent transformed network, in which these
nodes do not appear.

The Global Function of a node i of the networkis the function f of the node i expressedin terms of the primary
inputs.

A Reduced Ordered Boolean Decision Diagram ((RO)BDD) is a Shannon Cofactoiing ^Tree" which has the
same order of cofactoring variables for every branch. Further, it is reduced in the sense that nodes with identical
BDDsare merged, and a nodewhichhas identical BDDsas its children is eliminated.

A Stuck-At-Fault is a model for the faulty behavior of a circuitnode. In this fault model, we assume that under
the action of the fault, the circuit behaves as if that node was statically stuck at a 0 or a 1.

Bgure 1: A miter

Figure 2: Testingifg can replace /

4 The Brand Scheme

Brand, in [3] proposed a test-generation based scheme to test for the equivalence of two combinational networks.
Assuming that we were trying to test two functions F and G for equivalence, he observes that we could simply
form the XOR of the signals F and G, and test theoutput of theXOR gate for a stuck-at-0. Brand refers to such a
configuration ofgates asa miter. Ingeneral a miter consists ofa2-input XOR gate, plus thesymmetric setdifference
between the TFIs of the fanins of thetwo inputs to theXOR gate. Alternately stated, a miter starts at an XOR gate,
and extends towards the primary inputs until nets that are common toboth the cones oflogic are encountered. Such a
miter is shown in figure 1.

If wefind a testforthisfault, wehave aninputvector under which F ^ G,andthe functions arenotequivalent If
we cannot find such a test then F = G.

However, Brand observes, mosttest generators have difficulty withmiters. So he proposes a scheme where the
miter is always kept small, inorder tokeep the test generation problem manageable. Suppose / is asub-function ofF,
and gis a subfunction ofG. Under his scheme, hefirst tries tosee if / and g are equivalent, modulo their surrounding
logic. The means for pCTforming this check isATPG. An XOR gate is inserted between / and its immediate fanouts,
and the other input ofthe XOR gate isconnected tog. Hence amiter iscreated. This is shown infigure 2.

If the miter output is not stuck-at-0 testable, then either / = g,or / 5^ g,but their difference is not observable at
theoutput. Inthe latter case, the fault can bejustified, but not propagated, touse testing tCTininology.

Iftwo nodes / and g are found to beequivalent inthe above sense (i.e. the initer output isnot stuck-at-0 testable).

Figure 3: How g replaces /.

then the node g replaces thenode / in F, as shown in figure 3. This is animportant aspect of thescheme, since it
ensures that in subsequent efforts to test nodes for equivalence, the miter would remain small, since the new network
F shares thenode g with network G. Proceeding in this fashion, if weareable to replace theoutputs of F with the
outputs of G, then the networks are indeed equivalent The proof of this statement is provided in the paper, and is
repeated here for clarity

Theorem 4.1 LetxGff* bea vector ofvariables, /: B" ->^ {0,1}, andg: B" {0,1}. Then,

F(xJ) =F(x,g) iffF(xJ^g) = F(x,0)

and

F(xJ) =F(x,g) iffF(xJ®g) = F{x,\)

(1)

(2)

Proof: Thetwoequations areshown to be truefor any x. Fora given x, there canbe four combinations of values on
/ and g. For examples, take / = 0, and g = 1. Then, 1 becomes

and 2 becomes

F(x.O) =F(x,l) i//F(x,l) = F(x,0)

F(x,0)=F(jc,0) iffF(xA) = F{x,\)

(3)

(4)

The RHS of 1 states that the output of the miter is untestable for stuck-at-0, and the LHS states that g can replace
/.

If the miterfaultcannotbe provenuntestable in a specified amountof time,the ATPG for that miteris abandoned.
Thisdoesnot preclude subsequent nodesfrombeingdeclared equivalent, as discussed earlier. Of course, this implies
that the scheme is not guaranteed to verify a design.

4.1 Our Implementation of the Brand Scheme

We implemented this scheme within the SIS [10] firamework. The program consists of around 1000 lines of code
writtenin the C programming language. It makesextensive use of the network, node and atpg packages in SIS.

Our scheme first simulates all the nodes of both the networks with a common randomly generated set of input
vectors. The signatures of all the nodes are hashed, and nodes fi'om differentnetworks that share the same signature

are considered potential matches. ^ Next, for each node / in F, moving from the primary inputs to the primary
outputs, we look for potential equivalences g in G. If there is a node from G that shares its name with the node
being considered, it is tested for equivalence first We create the miter node, and call ATPG on the miter node, for a
stuck-at-0 fault If the fault is untestable, then the node g replaces the node / in F.

in our case, we set a limit on the numberof backtracks that the ATPG package is allowed. This is currentlyset at
50.

5 Our Approach

Until Brand's work [3] the de-facto standard scheme for Combinational Verification, since the advent of Bryant's
Reduced Ordered Binary Decision Diagrams, has been building BDDs and testing for equivalence. Brand borrowed
from methods existing for testing, exploited the multi-level structure of the circuit, and transformed the equivalence
problem to that of satisfiability. Testing techniques have the advantage of being more time-intensive than space-
intensive, and can succeed where BDDs for the functions cannot be built. In addition Brand's scheme works on the
network structure itself, i.e. it exploits and retains the multi-level structure of the original circuit completely. Multi
level circuits are a powerful and compaa means of representing logic functions and vmfication schemes that can
retain this structure are desirable.

The new approach we suggest borrows some ideas from network optimizationtheory [1], but is still BDD-based.
Although our scheme is BDD-based, we exploit and retain the multi-level structure to a certain extent

Berman and TVevillyan [2] suggested some schemes for choosing sub-frmctions (in the subject combinational
networks) to test for equivalence. Once nodes have been detected to be equivalent in the corresponding networks they
are treated as "primary" inputs. This scheme has the drawback of not being able to detect subsequent nodes to be
equivalent although they actually may be.

Cm: means of testing functional equivalence is not checking the equivalence of the two BDD's built but checking
the equivalence of a special kind of partial SDC-set For simplicity assume that we have two single ouq)ut com
binational networks on the same set of Pis, which we want to test for equivalence. Along the lines of Berman and
Trevillyan andotherschemes, we chooseinternalnodesappropriately, and test if they are equivalent. Rather than build
BDDs of these internal nodes in terms of the Pis (the naive way), or treat previously computed equivalent internal
nodesas primaryinputs, we imposethe relative correlation amongst the internal nodesvia a partial-SDC set.

Giventwo internalnodes (the subject nodes)to be tested for functional equivalence, we build the partial-SDC set
(see Equation 5) for the networks and compare them to test for equivalence. Equation (5) is termed a partial-SDC
set because, one can think of recursively eliminating internal nodes if these nodes have not been detected equivalent
between the two subject networks; the partial-SDC set is preciselythe SDC set for this "collapsed" network. In this
"collapsed"networkall internal nodeshavetheir functional counteq)arts in fiieother collapsed network.

Theorem 5.1 asserts that this scheme for detecting equivalences via building the SDC set is complete.

Theorem 5.1 Givetwocombinational networks iii and ^2 on the same set of Pis, and a syntacticcorrespondence (a
I-I map) on a subset of the internal nodes, then this implies a functional correspondence amongst thechosen nodes
ifand only if

m

1,fiJu+fikyi„ (5)
k=l

the partial-SDC set is equivalent for both networks, where is the variable corresponding to the internal node
and fi^ is the (global) function realized at thenode.

' Itispossible that even ifthe signatures oftwo nodes are different, they are still equivalent. Our scheme does not account for this possibility,
however.

Proof: If the identiiied nodes are functionally equivalent then it is clear tiiat the equality of Equation (5) for both
networks holds. Onthe other hand if (5) is equivalent forbothnetworks then theircomplements areequal as well.
Therefore in the space of fi""'"'" exactly the same minterms are present in both networks implying the functional
correspondence. •

Observe thatin (5)it is sufficient to express thefunction realized at the int^al node in terms of other int^al
nodes present in the correspondence subset, as well as Pis. That is, it is not necessary to build the BDD for the
function in terms ofjustPis; it is sufficient to compose functions ofint^al nodes starting from the "closest^* cutset
of the transitive fan-in cone of the node for which the function is being constructed.

In theworst case theBDD forthepartial-SDC setcould beexponential in the sizeof thenetwork even assuming
that the function of each internal node in terms of it nearest previously equivalent nodes is a constant size-BDD.
However, under good variable orders weexpect the size of thepartial-SDC BDD to be well behaved. Ihe scheme
suggested may beviewed asafunction decomposition scheme, i.e. the fiinction representing the multi-level network
is retained in multi-level form asfaraspossible by theretention of theintermediate variables. Therefore theproblem
that now arises is how best to order the variables. Pis and intermediate variables included, so as to exploit (retain) as
much of the multi-level nature of the circuit as possiblein a small BDD.

Inour scheme the decomposition points chosen are those with equivalent nodes intheother network. Ashas been
observed in [3] and [2], there areusually a large number of such decomposition points identifiable, even after one
networkis altered by variouscombinational optimization scripts.

5.1 Implementatioiis

We implemented the scheme in the C-programming language, under the SIS [10] framework. Our program consists
of about 1300 lines of code. We make extensive use of the ntbdd and bdd packages within SIS.

Our scheme first simulates all the nodes of both the networks with a common randomly generated set of input
vectors. This portion ofthe code is identical between this scheme and our implementation of Brand's scheme. The
signatures ofall the nodes are hashed, and nodes from different networks that share the same signature are considered
potential matches.

Inthe lazy PSDC scheme, we visit each node from one ofthe networlK, and try to find a matching node from the
oth^ network. If th^e aremultiple potential matches, then a match withthesame name asthenode being matched is
tried first. TheBDDs of bothnodes arebuilt, ^ andif they areidentical, then thenodes areconsidered to beidentical.
Subsequent BDDs are built interms ofprimary inputs, variables corresponding topreviously determined equivalences,
and also the variable corresponding to the nodes justdetermined tobeequivalent. Theposition of this variable inthe
variable ordering isdetermined based onadepth first search ofthe network. We proceed inthis fashion, and see if all
outputs can bematched. If so, then wedo not compute the PSDC BDD at all. If all outputs cannot bematched, we
repeat the process of visiting matched nodes, but this time we start to build the PSDC BDD ofthe network, in terms
of the Pis and the variablescorresponding to the previously determinedequivalences.

In another variant of the basic scheme calle the incremental PSDCscheme, we determine iffunction are equivalent
based on whethertheir PSDC BDDs are identical. Unlikethe lazy scheme,the PSDC BDDis built incrementally. If
two candidate nodes arebeing tested for equivalence, then their node SDCs areORed into thelatest PSDC, and if the
resulting BDDs areidentical, then the nodes aredeclared equivalent Just as in thelazy PSDC scheme, subsequent
BDDs are builtin terms of primary inputs, variables corresponding to previously determined equivalences, and the
variable corresponding to thenodes justdetermined tobeequivalent In this case, thenew variable is inserted intothe
variable ordering in the same position as in the lazy scheme.

Since eachprimary output must be included in thePSDC set weforce the SDC terms ofeach primary output to
be ORed into the PSDC set if the primary output was notdeclared equivalent in the first pass. This routine, called
psdcJast^asp, ORsin the SDCsof unmatched primary outputs intothe PSDC BDD.

^in terms ofprimary inputs and variables corresponding topreviously determined equivalences

If theresulting PSDC BDDs areidentical, then wedeclare thefunctions equivalent.
In all our schemes, including the Brand scheme, we tried to compare a network with an altered version ofthe

network, derived by running the combinational optimization script script.rugged on the original network.

6 Experiments and Results

Weran a seriesof benchmark circuits on boththe PSDCmethods, as wellas on the Brandmethod. The resultsof our
simulations are tabulated in Tables 1 and2. Wedetermined the execution times, number of matched nodes, and, in
the PSDC methods, the size of the PSDC BDD.

We notice that there are examples under which the incremental PSDC scheme performs very well compared to
other schemes. However, there are also examples where it takes much more time, probably because thePSDC BDD
grew too large while the scheme attempted to determine iftwo nodes are replaceable. Since the heuristic for choosing
the two candidate nodes is simply to seeif their simulation signatures match over a small number ofinput vectors, we
may accidentally choose two nodes that cause the PSDC BDD to grow out ofcontrol. This can probably be controlled
somewhat if weensured that the two nodes that are chosen forequivalence checking haveaboutthesamelevelin their
respective networks. We are able to prove equivalence for two examples (vda and e64) on which the Brand scheme
fails.

The lazy PSDC scheme showed some interesting results as well. In45 cases, it was able to determine circuit
equivalence without requiring tobuild the PSDC BDD atall, which isapretty reasonable fraction ofthe entire set of
circuits tested. It was able to verify vda and e64aswell, and in addition, verified some circuits that the incremental
scheme failed on. Inmany examples, ithad a significantly smaller execution time than the incremental scheme, likely
because it did not need to compute the PSDC set at all.

The Brand scheme completed onthe most number ofexamples. It failed onsome, but was themost robust ofthe
schemes. Webelieve that the PSDCschemes will get a significant increase in their speed and their ability to verify
large circuits when we implement a interleaved BDD variable order. Currently we use the orderjdfs routine ofSIS,
and since most ofourfunctions have a large number ofoutputs, weexpect interleaving toplay a bigrole inimproving
the PSDC schemes.

Interestingly, the Brand scheme, inalmost all cases, finds the exact same number ofinternal equivalences as does
theincremental PSDC method. This is good news forthe incremental PSDC scheme. Thelazy PSDC scheme finds
less equivalences ingeneral; in some cases, it finds half asmany equivalences astheother schemes.

7 Conclusions and Future Work

We implemented different schemes to determine combinational circuit equivalence. We implemented two types of
PSDC schemes, as well as the Brand scheme.

Wefindthat there are a set of functions under whicheach oneof the three schemes implemented provedto be the
best choice. We feel that there is still room for improvement in all the schemes.

Currently, for both the PSDC schemes, we use a variable ordering which isbased on a depth-first-search ofthe
network. We feel that incorporating an interleaved variable ordering scheme asreported in [6] could play asignificant
role in improving the capabilities of the PSDC schemes.

Another schemeis to use the Brand and PSDC schemesin tandem. This idea seemsto have merit, and we think it
is an interesting follow-on study to the current one.

Further, asmentioned earlier, wecould improve theefficiency ofalltheschemes bychoosing candidate matching
nodes that are closer together in level. This could supplement our current scheme, which simply chooses nodes that
have same names across the two networks, if there exist such nodes.

Circuit Number of

outputs

Brand scheme Lazy PSDC Incremental PSDC

time matches time 1 matches | BDD size time matches BDD size

ex 1 0.043 1 0.035 1 * 0.039 1 8

ex2 2 0.050 2 0.055 2 14 0.035 3 14

C17 2 0.106 3 0.050 3 * 0.047 3 30

ttt2 21 2.957 37 6.304 27 29274 3.668 39 29850

x4 71 16.233 91 1.387 88 ♦
- - -

z4ml 4 0.317 9 0.129 7 * 0.149 9 221

term! 10 1.929 22 7.574 17 46427 3.656 23 51219

vda 39 _ — 58.336 59 11810 125.676 113 16043

t481 1 0.383 11 0.125 9 * 0.140 11 175

unreg 16 1.149 18 0.433 17 * 0.738 18 1049

xl 35 5.735 50 — - - -
— —

x2 7 0.328 9 0.172 7 * 0.168 9 176

tcon 16 0.293 8 0.305 8 1786 0.211 8 1786

pcierS 17 1.129 22 0.316 19 ♦ 0.976 22 8938

pole 9 0.602 14 0.191 14 ♦ 0.527 14 4954

parity 1 0.566 15 0.165 10 * 0.176 15 160

set 15 0.969 19 0.547 14 441 0.305 19 441

t 2 0.067 3 0.043 3 * 0.047 3 31

pml 13 0.656 17 0.175 16 * 0.207 17 399

mux 1 0.379 9 0.191 8 * 0.285 9 2638

majority 1 0.028 1 0.027 1 * 0.039 1 10

lal 19 1.332 23 10.469 18 90431 8.597 23 90431

my^dder 17 6.304 63 0.699 47 *
- - -

i5 66 9.562 66 0.883 66 * 77.186 66 114547

i3 6 6.875 62 0.770 62 *
- - -

fSlm 8 0.754 16 0.222 14 * 0.328 16 1155

il 16 0.543 13 0.344 13 261 0.180 13 261

frgl 3 1.282 13 1.371 10 5741 1.410 13 11302

example2 66 12.077 82 - -
- - — —

comp 3 1.340 18 0.355 17 ♦ 0.445 18 2252

decod 16 0.836 • 23 0.192 23 * 0.203 23 261

cordic 2 0.511 10 0.180 9 * 0.215 10 970

count 16 6.882 31 0.504 31 * 0.742 31 1158

cu 11 0.488 13 0.429 12 1130 0.242 13 1130

cmlS2a 1 0.089 1 0.063 1 * 0.070 1 17

cml63a 5 0.496 12 0.152 9 ♦ 0.218 12 664

cml62a 5 0.453 12 0.172 9 * 0.203 12 277

cm42a 10 0.383 13 0.137 13 * 0.195 13 106

cmSSa 3 0.281 6 0.132 6 * 0.144 6 107

cmb 4 0.289 8 0.179 8 * 0.152 8 259

cmlSla 2 0.137 4 0.082 4 * 0.082 4 305

cml50a 1 0.395 9 0.191 8 * 0.289 9 2638

cm82a 3 0.156 6 0.074 4 * 0.067 6 37

cc 20 0.817 18 0.695 18 3322 0.441 18 3322

cml38a 8 0.297 10 0.129 10 * 0.144 10 94

cht 36 3.594 44 0.602 41 ♦ 0.836 44 1161

b9 21 1.828 28 0.437 27 * 18.315 30 69093

apex? 37 5.796 56 - - - - - -

c8 18 2.008 34 9.323 34 69414 9.668 34 69414

bl 4 0.086 3 0.082 3 19 0.040 3 19

alu2 6 8.492 45 1592.879 23 4250 8.609 44 7457

Legend: -: method fails ♦ : Didnotneed tocompute PSDCs

Circuit Number of

outputs

Brand scheme Lazy PSDC Incremental PSDC

time matches time matches HDD size time 1 matches | HDD size

9symml 1 1.329 11 2.394 9 1337 0.899 11 1592

xor5 1 0.094 4 0.040 2 * 0.051 4 61

vg2 8 0.605 10 0.199 10 4> 0.320 10 2195

squarS 8 0.360 9 0.336 5 191 0.164 9 191

rd84 4 1.289 16 1.285 12 803 0.531 16 1024

rd73 3 0.668 16 0.207 13 * 0.253 16 379

sao2 4 1.332 17 2.355 13 2727 0.695 17 2727

rd53 3 0.183 5 0.226 3 55 0.113 6 55

misexl 7 0.360 10 0.164 9 * 0.172 10 118

misex2 18 1.516 25 0.301 23 * 0.434 25 1098

bw 27 3.535 — 1.418 16 716 0.718 34 716

e64 65 _ — 19.178 107 5543 30.525 107 5543

conl 2 0.101 3 0.058 3 0.070 3 46

clip 5 1.235 16 0.383 14 * 0.496 16 1438

ex5 63 12.644 86 1.367 79 * 4.316 86 5147

bl2 9 0.680 16 0.274 14 * 0.355 16 736

apex2 3 - - - - - - - —

5xpl 10 1.156 18 0.320 17 * 0.566 18 1645

9sym 1 1.016 9 0.879 8 889 0.477 9 889

o64 130 — — - - - - - —

duke2 29 37.611 70 201.448 31 81611 174.7 72 107029

ex4 28" 7.144 51 723.294 45 2719619

misex3 14 120.410 81 1872.607 59 175517 426.239 82 207060

C1908 25 - - - - - - - -

C1355 32 60.328 162 563.448 104 *
- - -

C499 32 52.118 162 561.699 104 *
- - -

C432 3 23.991 — 1636.403 30 655974 494.883 45 678124

C880 26 10.000 70 1.722 59 »
- - -

alu4 8 - -
- - - -

- -

frg2 144 - - -
- -

- - —

i4 6 — - - - - - -
—

17 67 17.878 77 2.422 75 ♦ 8.14 77 2735

16 67 12.902 76 1.735 74 * 2.949 76 2045

19 63 15.343 78 2.746 76 *
- - -

rot 93 73.281 — - - - - - -

ttt2 21 2.785 37 6.687 27 29274 3.621 39 29850

x3 99 37.099 144 - - -
- - -

Legend: -: method fails ♦ : Didnotneed tocompute PSDCs

References

[1] K. A. Baitlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, C.R. Morrison, R. L. Rudell, A.L. Sangiovanni-
Vincentelli, and A.R.Wang. Multilevel Logic Minimization Using Implicit Don'tCares. IEEE Transactions on
Computer-Aided Design ofIntegrated Circuits, 7(6):723-740, June 1988.

[2] C.L.Berman and L.H. TVevillyan. Functional Comparison ofLogic Designs for VLSI Circuits. InProc. ofthe
Intl Conf onComputer-Aided Design, pages 456-459, November 1989.

[3] D. Brand. Verification ofLarge Synthesized Designs. In Proc, of the Intl Conf on Computer-Aided Design,
pages 534-537, November1993.

[4] R. Bryant Graph-based Algorithms for Boolean Function Manipulation. IEEE Transactions on Computers,
C-35:677-691, August 1986.

[5] E.Cemy and C.Mauras. Thutology Checking Using Cross-Controllability and Cross-Observability Relations.
InProc. ofthe Intl Conf. onComputer-Aided Design, pages 34-37, November 1990.

[6] H. Fujii, G. Ootomo, and C.Hori. Interleaving Based Variable Ordering Methods for Ordered Binary Decision
Diagrams. InProc, ofthe Intl Conf. onComputer-Aided Design, pages 38-41, November 1993.

[7] M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and Improvements ofBoolean Comparison Method Based
on Boolean Decision Diagrams. In Proc. of the Intl Conf. on Computer-Aided Design, pages 2-5, November
1988.

[8] W. Kunz. HANNIBAL: An Efficient Tool for Logic Verification Based onRecursive Learning. In Proc. ofthe
Intl Conf. onComputer-Aided Design, pages 538-543, November 1993.

[9] S.Malik, A.R.Wang, R.K. Brayton, and A.Sangiovanni-Vincentelli. Logic Verification using Binary Decision
Diagrams inaLogic Synthesis Environment InProc. ofthe Intl Conf. on Computer-Aided Design, pages 6-9,
November 1988.

[10] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, R R. Stephan, R. K.
Brayton, and A. L. Sangiovanni-Vincentelli. SIS: A System for Sequential Circuit Synthesis. Technical Report
UCB/ERL M92/41, Electronics Research Lab,Univ. of California, Berkeley, CA94720, May 1992.

	Copyright notice 1998
	ERL-98-60

