

Copyright © 1998, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A SURVEY OF MULTI-VALUED

SYNTHESIS TECHNIQUES

by

Robert K. Brayton and Snnil P. Khatri

Memorandum No. UCB/ERL M98/61

30 October 1998

A SURVEY OF MULTI-VALUED

SYNTHESIS TECHNIQUES

by

RobertK. Braytonand SunilP. Khatri

Memorandum No. UCB/ERL M98/61

30 October 1998

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia, Berkelej'

94720

A Surveyof Multi-valued Synthesis Techniques

Robert K Brayton SunilP Khatii
University of California

Berkeley,CA 94720
{brayton, linus}®ic.eecs.berkeley.edu

Abstract

We survey some of the methods usedfor manipulating,
representing, and optimizing multi-valued logic with the
view of both building a better understanding of the more
specialized binary-valued logic, as well as motivating re
search towards a true multi-valued multi-level optimization
package.

1. Introduction

Logic design is normally thought of in terms ofbinary sig
nals;however forhigher level design it is natural to thinkof
variables withsymbolic values. For example, it is easier to
conceive of a traffic lightprocessor with a signal light tak
ingonthree values red,yellow, andgreen rather than deal
ing with lighto = 1, lighti = 0 to stand for the lightbeing
red.Theprocess ofconverting thesemulti-valued variables
to binary signals is called encoding. In many casesthe en
coding is done initially, mostly arbitrarily, and thenbinary
valued logic synthesis is appli^ to the resulting circuit. An
alternative is to first manipulate and optimizethe logic di
rectly as multi-valued logic. Then theresulting form of the
network canbeused(possibly) intelligently to selecta good
encoding. Oncetheencoding isdone, fiirtho' optimizations,
notpossible in thepurelymulti-valued form, canbe applied
to the resulting binary network. The intelligent encoding
should take into accotint this additional optimization which
will dependon the final binarycodes selected.

However, this alternative approachis not used often be
cause:

• There is no good multi-valued multi-level logic op
timization package for a multi-valued logic network
(such as SIS for binary networks).

• Although many of the algorithms in logic synthesis
have been generalized to multi-valued logic, a com
plete suite of algorithms has not been developed

• The encoding problem ishard for large circuits since it .
is difficultto see how an encoding decision ultimately
affects the logic thatresults after powerful logic opti
mizations are applied.

Multi-valued logic is a generalization. Oneadvantage in
dealing with generalizations is that it can lead to intreased
insight into the specialized problem. Ageneralization helps
differentiate the special properties fi^om the general ones.
Often a property tiiat is known for thespecial case can be
a general property in disguise ora specialization ofa more
general property. When this isunderstood, firequently there
is a sense of "oh, is that what I was really doing". Thus
theattempt to generalize helps understand thespecial case
better.

In this paper, we survey several of the concepts, algo
rithms, andoptimizations ffiat have found extensions from
binary to multi-valued logic. We first deal with two-level
logic where most of theconcepts directly generalize. Then
we look at several methods for representing multi-valued
logic; sum-of products (SOPs), multi-valued decision di
agrams (MDDs), and multi-level multi-valued networks
(MV-networks). We look at algorithms for manipulating
Boolean networks (decomposition, factorization using ker
nels, andextensions of don't cares (SPFDs)) and see their
generalizations toMV-networks. We discuss extensions to
a popular RTL language (Verilog) toMV-variables, and use
this to build a front-end to VIS, an MV-logic optimization
andverification package. Rnally,thestateassignmentprob
lem is revisitedand we conclude the paper with a discussion
of someopenproblems and workfor the future.

2. Notation

Definition 1 A muKI-valued variable X, can take on vtz/-
Pf = (oto, tti, •••,a|i^l_i}.

Since each symbolic value Of can be associated with
a unique integer /, we henceforth only consider multi
valued variables with integer values, for unifonnity, and
A = {0.1,...,|A|-1}.

Xi Xi 7

0 0 1

0 1 2

1 0 1

1 1 1

2 0 0

2 1 2

Figure 1. A Multi-valued Function of 2 vari
ables

Definition 2 A vertex is a point in the space Pi x x
•••X Pn

Definition 3 A multl-valued function !F is a Junction
which mapsvertices inPixPiX-xPnto P<f, formally,

:P\xPiX"-xPn^Pj.

An example of a multi-valuedfimction is shown in Fig
ure 1. Assume that Pi = {0,1,2}, Pi = {0,1}, and Pf =
{0,1,2}.

If Pj = {0,1,*}, iF is a multi-valued function with a
binary-valu^ output. Ifavertex (minterm) is mapped to the
1value, itissaid to be in the on-set of7, m^p^ to 0, in
the off-set, and to *, in the don't-coK set. The binary ideas
of implicants, prime implicants, covers, and prime covers
can extend^ to multi-valued functions for functions 7
with binary valued outputs.

Definition 4 A mUltl-vaiued liteFai is a logicJunction
ofthe form

Xf = (Xi = Yi) -f •••-H (Xj = Y*), where yj € Cj CPf

Definitions A cube c = Cixc2X'-'XCnCanbe written
as a product ofMV-literals in theform:

Xj'X2^...X„-«

Note that if c,- = Pi, we can omit from the expression

ofthe cube, since x/^ = 1. Ifvariable X/ is binary valued,
the lito'al Xi can be written in the new notation as xj-^\
Similarly, the literal^ can be written asx/°^. If the variable
Xi takes on both its values (also written as a this is
written asx/°'̂ ^.

The next four definitionsapply specificallyto binary val
ued functions of multi-valued inputs.

Definition 6 Animpllcant is a cubec suchthatfor all ver
tices V€ c, ^(v) ^ 0.

Definition7 A prime impllcant is an implicant c such that
there is no in^licant d such that dDc.

Definitions A cover of 7 is a set of implicants whose
unioncontainsevery point in the onsetof 7 and no points
in the offset.

Definition 9 A prime cover of 7 is a cover, each ofwhose
elementsis prime.

The multi-valued function in Figure 1 can be written in
the form of a sum of cubes for each of its values. One such
cover for 7 is,

fW=xPx2^°^
pfi} =x/°'̂ ^xj°^

=x/°%2^^^
A convenientrq)resentation of literals and cubes utilizes

positional notation:

Definition 10 Positional Notation: A literal Xf is as
signedpositions (orcolumns) vo,vi,•••V|/ |̂_i, such that

ifj e Ci C Pi
otherwise

_ / 1 ij
" I 0 0

For example, the multi-valued function in Figure 1 can
be written in positional notation as:

Xi Xi 7

001 10 0

110 10 1

010 11 1

101 01 2

3. Generalizations

3.1. Boolean Algebra

A Boolean algebra is a set of objects on which there are
two operations defined. The operations obey a certain set
of rules. A Booleanalgebra is often associatedwith binary
functions of binary variables. The Boolean algebra in this
case is the algebraof the manipulation of binary logic func
tions. Each such function can be thought as a set of points,
its onset. It is just thecharacteristic functionof its onset,i.e.
it is 1 when applied to a point in its onset and 0 otherwise.
Two functionsyUVDed together is the same as taking the in
tersection of their onsets. Similarly ORing corresponds to
taking the union. It is known that any Boolean algebra is
isomorphic to the Boolean algebraof sets whereunion and
intersection are the two operations. Note that nothing has
been said about the size of the domain space. In fact one
can use multi-valued variables to describe a point in some
space. Forexanq)le, suppose weuse twovariables, x with5
values, andy with 3 values. Then there are IS points in the

domain space. A point (orminterm) in thespace is given
by assigning each of the variables a value from their do
mains, e.g. (x= 3, y = 1). A function is just an arbitrary
subset of such minterms. Thus the mathematics of Boolean
algebras directly applies tobinary functions ofmulti-valued
variables. Considering eachoutput valueasa separate func
tion, one can treat the case where the range of the function
is also multi-valued. Thus for example, the set of points
wh^e thesignal lightis redis theonset of onefunction, the
pointswherelightisyellow another function, etc.

3.2. One-Hot Encoding and Multi-valued Sig
nals.

One of the first methods used to treat multi-valued variables
in logic wastheuse of a one-hot encoding for thesignals,
with an associated set of don't cares. For example, consider
the traffic light processor and signal light. A one-hoten
coding would create three three signals lights lighty, lightg
with the set of don't caresgivenby the logicexpression,

lightr'lighty -I- lightr •lightg+lighty •lightg

which says that we don't care for example thatboth lightr
and lighty are 1, since it will never occur. This formula
tionis fully equivalent to manipulating multi-valued signals
andits advantage is thatit mapstheproblem backto thebi
narycaseandhencethe fully developed binary algorithms
^ply directly. Further, future developments inbinary meth
ods can be used when they develop. The disadvantages are
that many more signals are introduced and the associated
don't cares can become very large. In the area of two-level
logicoptimization, theselatterreasonswereenoughto spur
the development ofESPRESSO-II, a packagefor two-level
multi-valued logic optimization. (However, in the multi
levelcase, this motivationhas not been sufficientso far). An
interesting foomote is that when ESPRESSO-II was com
pletedandcompared to theoriginal ESPRESSO whereboth
wereapplied topurelybinaryfunctions, ESPRESSO-II was
faster. "Die explanation was that the generalization to multi
valued logic led to a superior method of representation of
the functions for computer manipulations.

3.3. Multi-valued Logic Minimizatioii in
ESPRESSO-n

For a multi-valued function with a binary-valued output,
most of the binary logic minimization theory can be gen
eralized. As alreadydiscussed, the conceptsof implicants,
prime implicants, covers and prime covers are easily ex
tended to such functions. As in the binary case, the process
of logic minimization involves generating primes, generat
ing a covering table, and solving this covering table. The

notions of cofactors and the Shannon expansion theorem
have also beengeneralized to themulti-valued case.

Definition11 Thecofactor ofa Junctionf with respectto
a MV literal denoted fx*, isobtained byeliminating all
cubes off thataredisjoint to s, andexpariding the remain
ing cubes byunioning into the Xposition all values not in
s.

The cofactor withrespect to a MV-cube is obtained by
taking the sucessive cofactors with respect to each MV-
literal in the cube.

Theorem 3.1 Multi-valued Shannon Expansion Theo
rem: Let f be anyfunction and •••,c^} any setof
MV-cubes such that

Then,

Ic' = l
i=l

i=l

It follows from the above that

/=1 (fir /<j = 1 for each i.

An algorithm formulti-valued tautology canbe devised
based on this, much like in the binary case, who'e typically
the cubes x, are used.

Definition 12 Afunction f is said to be weakly unate in
Xi if there exists some value —j suchthat changing Xiffom
value = j to anyothervalue doesnotcausef to decrease,
i.e. f is not changedfrom 1 to 0.

Weak unateness is one multi-valued analog of unateness.
(Thereis anotheranlog, strong unateness,which for binary
valued functions is the same as weak unateness.) The uruue
reductiontheoremfor tautologyapplies in the multi-valued
case as well. Generation of primes and the binary routines
of essential primegeneration, reduce and irredundant re
main essentially unchanged.

Based on the above, ESPRESSO-II handles binary val
ued functions ofmulti-valued functions. Positional notation
is used to specifythe multi-valued portion of the function.
Symbolic variables are supportedas well. MV-applications
of ESPRESSO-n include state assignment [1] and PLAs
whereinputsare pairedand decodedto formMV-inputs.

3.4. Fiuitional Representation

We will review severalmethods for representing logic func
tions in the MV domain.

3.4.1 Sum-of-products

One of the earliest methods used for binary functions was
a two-level sum-of-product representation. Early logic syn
thesis work was done on this type of representation. Al
though it is inherently simple, th^e are certain functions
(like the odd or evenparity function)which have exponen
tial sizedrepresentations. As we havealready seen,multi
valued functions can be represented in a two-level sum-
of-product scheme. Logic minimization on such functions
can be performed in ESPRESSO-II. For certain functions,
this schemehas the drawbackof givingrise to exponential-
sized SOPs.

3.4.2 MV-networks

Another powerful representation technique is the multi
level boolean network, each of whose nodes are two-level
sum-of-products. This scheme has the ability to represent
implementable boolean functions verycompactly. A good
deal of research on this type of representationhas been per
formed, fuelled by the introduction of SIS, a sequential op
timization and synthesis tool. The multi-level network of
multi-valued nodes (called an MV-network) is a direct gen-
CTalization of this. It is similar to a multi-level boolean net
work except that each node is, in general, a multi-valued
function. VIS (VCTification Interacting with Synthesis) is a
research toolwhose inputis sucha network. The input for
mat format of VIS is called blif-mv. (VIS is discussed in
moredetail in Section4). It is hoped that tools like VIS will
result in increased research in synthesis for multi-valued
networks. The drawback of these network representations
(as well as sum-of-products) is that thwe are multipleways
to representa given function under these schemes.

3.4.3 MDDs

This drawback is eliminated in a boolean function repre
sentation scheme called Reduced Ordered Binary Decision
Diagrams (henceforth abbreviated as BDD). BDDs have
the appealing property that they are canonical, and hence
the problem of checking for functional equivalence is triv
ial. Yet, they also have thedrawback that for someimple
mentable circuits, the BDDis exponential in the number of
input variables.

BDDs have been generalized to the multi-valued case,
resulting in a Multi-valued Decision Diagram (MDDs).
MDDs apply to multi-valued functions withbinary-valued
outputs. However, if a multi-valued function has an «-
valued ouq)ut, where n > 2, multi-valued functions (MVFs)
are created first. Essentially, we constructMDDs for each
value of the multi-valued output variable. So, for exam
ple, if the multi-valued function / has 3 values, then the
MVF(/) has 3 MDDs, fa, fb andfc.

Figure 2. An MDD Node and its Correspond
ing BDD Nodes.

MDDs are a simple extension of BDDs. Each node in
an MDD has k children instead of just two, whwe k is the
number of values the variable associated with the node can
take. The result is a DAG with the root node representing
the fimction, and the leaf nodes representing 0 and 1. A
pureMDD packagewasbuiltandexperimented withseveral
years ago in Berkeley [2].

Another option is to encodeeachmulti-valued nodewith
kchildren using log2{k) binary variables. Thusforexample
an MDD node with 6 children would be split into 3 binary
variables. In Rgure 2, the MDD node on the left is trans
formed to thegroupofnodeson theright. Notethat in both
cases, the number of children is 6. Although with 3 binary
variables, it is possibleto represent8 children,the extratwo
leaves are used as don't cares in the process in a somewhat
arbitrary but specific way.

AnMDD package wasalsodeveloped at Berkeley based
on this conversion to binary variables. The MDD package
wasconstructed as a high levelinterfaceto a BDDpackage.
In factany BDDpackagecan easilybe used. For the user,
onlymulti-valued variables are observable; theconversion
to binary variables is internal andtransparent. The advan
tages of this approach are:

• Thecontinuing development of BDDpackages can be
leveragedin the MDD package.

• Any newly developed BDDpackage thatproves to be
superior can be ea^yslipped under the covers.

• The binary variables associated with a multi-valued
variabledo not have to be kept adjacent in the binary
variable ordering, whareas witha purelymulti-valued
version, the effect is as if the associate binary vari
ablesare constrained to be togeth^ in the ordering. In
some examples, this leads to a significant increase in
MDD size. Thus in this case the initial and arbitrary
binaryencoding used does not seemto haveany nega
tive consequence.

3.5. Multi-valued Redundancy Removal

Recent methods [3] [4] for binary redundancy removal
avoid the use of state traversal. Additionally, [4] finds mul
tiple compatibleredundancies simultaneously. These pow
erful advances in the field of binary redundancy removal
were extended in [5] to perform redundancy removal for
multi-valued networks. This method works in the following
manner.

First a one-hot encoding ofall the multi-valuedvariables
of the design is performed.Multi-valued variablesare writ
ten outas binaryvariables,usingthis one-hotencoding.The
binary network is equivalent to the multi-valued network
modulo encoding.

Next, binary redundancy removal is invoked on the re
sultingnetwork.Weonlycheck for signalsstuck-at-O 'm the
binary network. In case a binary signal Si feeding binary
gate tj isdetermined tobestuck-at-0 redundant, this means
that the multi-valued signal s in its fanout to multi-valued
signal r is a don't care for value j. Hence we can choose to
remove the value of variable s occuring in any MV-cubes
of t with output j. Since each table has a default value, this
has the effect of making the output of such a cube restricted
to 5 = i equal to the default value. This simplifiesthe t^le
for t by reducing or removing cubes. We do not need to
worry about stuck-at-l redundancies in the binary network,
since because the signals are one-hot, a stuck-at-l on a value
of s, has to be associated with stuck-at-0*s on all the other
values of s.

All redundant binary signals are recorded in a file dur
ing the binary redundancy processing of the binary net
work. Then the original multi-valued network is modified
as above, based on the binary redimdancies thus computed.

Initial experiments using this technique show a 10-20%
reduction in the size of the multi-valued description.

3.6. Multi-Valued Factorizatiou

One of the more effective methods for treating multi-level
Boolean networks has been the use of kernels for finding
common factors among several binary logic functions. The
common factor can then be removed as a separate function
and used to simplify some of the functions. To see how this
concept is extended to multi-valued functions, consider the
following two functions

/2 = xO-^y-a-J+X^'^-bJ+d

We will show that the function

is a commonfactorof both fi and /i, and thus the network
can be rewritten as

fi = xW'̂ >-*-y3+c
/2 =

= xWA4>.a+x{W).&

The first step is to find all the kernels and co-konels by
successiveco-factoringby single binary literals. For this
example, we obtain the following table

Exp co-kemel kernel

fi 1

fi k

h 1 a.j.xi^Ai+b.j.X^^l+d

h J

Weput this in a co-kernelcube matrixM as follows

a b O'k b'k a-j b'j c d

1 0 0 X{0.1} xw 0 0 1 0

k xm X{2> 0 0 0 0 0 0

1 0 0 0 0 X<3.4} x{5} 0 1

j X<5} 0 0 0 0 0 0

Note that the binary parts of the cubes of the kernels are
extractedout at the top of each colunm. A rectangleof such
a matrix is a set of rows and a set of columns. For example
{(2,4), (1,2)} is a rectangle. Associated with a rectangle is
a matrix of MV entries, e.g.

Such a rectangle can give rise to a common factor provided
that the matrix is satisfiable, which means for every vari
able, e.g. X, if a value occurs somewherein row i and the
same value occurs somewhere in column j, then that value
must also occur in entry Mij. The above matrix is satisfi
able. For a satisfiablerectangle, we can extract the common
factor as follows. For each row of the rectangle, the union
of row entries is ANDed with the co-kernel associated with

that row. Similarly, for each column of the rectangle, the
union of all column entries is ANDed with the binary cube
attached to the column. The kernel is then the OR of the

results for all the columns of the rectangle. In the above
example, this yields for column 1, a and for col
umn and the kernela +b-X^^'^\ For
row 2 we get, k • and for row 4, j • yielding
a factorization

fi = k'X< '̂̂ ^\a

It has been proved that if k is a kernel found by the usual
Boolean kemeling process for some encoding, then it will
be found by the above MV factoring process. In addition,
the MV process can find some "Boolean factors" for an en
coding.

Matrices that are not satisfiable can be "reduced" to sat-
isfiablematiices by considering for each a subset of val
ues in order to remove any offending value in an entry. In
addition, don't cares can be expressed as if the
values of X = 6 or 7 are don't care for the function. Then

for a given entry Mij one has the option of including the
values 6,7 in order the make the matrix satisfiable.

See [6] for an extended discussion of these ideas.

3.7. SPFDs

A new method for specifying implementational flexibility
in boolean networks was introduced in [7]. This work was
generalized to MV-networks in [8]. SPFDs are like don't
cares but are more powerful. Unlike don't cares, which
computethe flexibility of a singlenodein a network, SPFDs
expressthe flexibility of a node in a networkalongwith the
nodes in its fanin.

In general, SPFDsare a set of inter-related Incompletely
SpecifiedFunctions (ISFs). An ISF can be represented as a
completebipartitegraph on the mintermsin the offsetsand
onsets. An ^ge between minterms indicates that afunction
that distinguishesthe onset and offsetmintermson that edge
is required. This kind of graph has exactly two minimum
colorings corresponding to implementing the onset or the
offset.

In the SPFD method, we first build the complete bipartite
graph of an ISF F. This givespairs of mintermsthat need
to be distinguished. Figure 3(a) shows an example bipar
tite graph with minterms i^e input y space.
Assume that the inputs to F are y = (gi(Jc),^2(Jt)>^3(Jc)).
as shown in Figure 3(b). Then, if minterms {y^/,/ }
are encoded differently from { } by g(jt), we have
enoughinformation in y to build a valid implementation of
F. The task of distinguishing different pairs of minterms
can be distributedto different input wires, as shown in Hg-
ure 4. Note that even though F started out as an ISF (a
completebipartitegraph), the graphs for gi are not bipar
tite, hence not ISFs. "ITiey are SPFDs. Any coloring of the
SPFDs of the 3 wires in Figure 4 is a valid implementation
of the functions gi(x),g2(jc) andg3(x). For example, input
1 has4 possible two-colorings, corresponding to 4 possible
implementations ofgi. In general, SPFDsprovidethe flex
ibility to changeboth the functions g whichimplement the
SPFDsderivedfor these inputs,and also to re-implement F
to reflect the new encoding of the inputs.

The above discussion on binary valued SPFDs is easily
generalized [8], as follows.

(a) Bipartite gnq)li for F. (b) Structure ofF.

Figures. SPFDs - an example

bpatI lapatZ lnpnl3

Figure 4. An implementation of F.

Definition13 A SPFD !f(y) on domainYis an undirected
graph (V, E) where each v e V is encoded as a minterm
v=(yi,y2,*--yt)eT.

Definition14 AJunctionf(y) implements an SPFD 7(y)
= {V, E) iff[y), yeVisa valid coloringof 7, le.

Analogous to the binary case, each valid coloring of the
SPFD gives an implementationof iF. The chromatic num
ber of the graph is the minimumnumberof values that the
resulting function is required to have in its range. Thus if
this is greater than 2, multi-valued functions are required.
Each validcoloringof the graphgivesrise to a MV-function.

3.8. Decoinposition of Multi-valued Fulictioiis

In [9], the authors extend the extensive work on the decom
positionof binary functions to MV-fiinctions. Considerset
functions ofthe form /:£"-> D", with n inputsxi ,^2, •♦ -Xn
and m outputs yi,y2,*-*ym which are partially specified.
Here F isa finite, nonempty set and D = 2® - {0}; ingen
eral, / assigns to any outputyi a nonemptyset of elements
of E. The problem of decomposition of /(JCi,JC2,---,Xi,)
in the form A(Mi,M2,'",Mr,^(vi,V2,'*',Vs)) is addressed.
Here X = {xi,x:2, •*• is the set of input variables, and
t/ = {«i,tt2, •••,ttr} and V= {vi,=V2, •••,Vi} aretwo sub
sets of X whose union is X. Figure 6 shows such a decom
position.

The function / is represented as a set matrix
My where each row consists of a n -t- m-tuple t =
tiy"'yt„ytn+iy'"t„+m. Thc mput piojection of r is =
ri, ••-fn,and the outputprojection oftistout =tn+i,'-' tn+m.
The matrix Mis requir^ to be consistent, which means that

Figure 5. Amulti-valuedSPFD.

uuv=x ^ ^

a) Ori^nal design

Hl-I

...

g

h

b) Decomposed design

Figure 6. Multi-valued decomposition

if the inputprojections of a set of rowscoveran input ver
tex, thenthe corresponding outputprojections shouldhave
acommon value. The function f isevaluated at vector eby
taking the intersection of the y values of all the rows that
cover e. Thedecomposition proceeds by first finding setsU
and V, then finding a blanket pg from M. From g andh
can be constructed.

Definition 15 Given a setS, a blanket p = {fii,B2,•••B*}
is a setofsetsofnonempty, distinct butnotnecessarily dis
joint subsets ofS calledblocks, whose union is S.

For example, if5= {1,2,3}, then ablanket of5 isp^ =
{{1,2},{2,3},{1}}.

Definition 16 The blanket product of two blankets p and
p* isa blanketgivenby

P*p*= M7u/«p(ne{B,nBj|B,- e P,=Bj € P*}),
where ne{Bi} = {Bj} - (0). undupifSi) removes thedupli
cate entries in p.

Consider f = {{1},{1.3},{2}}. Hien P' » =

Definition 17 P< p' ^for each Bi € P, there isaBjG^
suchthatBiQBj.

In the above examples, p^» P^ < P^
In the remainder of this section, we refer to blankets of

rows of set matrices.

1 {1} {0,1,2} {0}
2 {1} {1} {0,2}
3 {0,1,2} {0,1} {0}
4 {1} {0,1} {0}
5 {0} {0,1} {1.2}

Table 1. Set matrix to illustrate row blanket

Definition 18 The row blanketP/ o/fl set matrix Mfor f
having h rows andkcolumns isgiven by

^f = ne{T3e} where
T^e = ^ ^1' 2

where Tis thesetof rows ofM, ande^E .

Consider the set matrix M given in Table 1. Note
that Tbooo = {3} and T^m = {1,3,4}. Listing all
the unique blocks corresponding to the minterms of the
table, we get the row blanket for this matrix P/ =
{{3},{5},{1,3,4},{1,2,3,4},{2},{1}}.

In the following, X = f/U V and the variables V corre
spond tothesupport ofthefunction g in thedecomposition.
s| refers to the projection of tuple Sm on theZ space.

Definition 19 For all tuples t and u, if there exist multi
valued mintermsd andesuch that ty Dd,andu^, De, then
t andu appear inthe same block o/p/. In this case, P/ is
saidtocorrespond to g with respect to V.

Theorem 3,2 LetsetfunctionfiX) bespecified bya consis
tentset matrix Toftuples, and let U, VofXbe suchthat U
UV= X. Forevery blanket p^satining

P/<Pga^P/*Ps<P/ (1)

there exists a decomposition (g,ft) off such that pg corre
sponds to g with respectto V

Consider thesetmatrix inTable 2. Theset = {xi} and
V- {x2,X3}. Hence

P? = {{!}, {2,4},{3,4}},

py = {{1,3,4},{1,4},{2,3},{2},{2,3,4},{2,4}},
P/ = {{1},{2,4},{4},{3,4},{2},{3}}.

Note that Pg = {{1,2,4},{2,3,4},{1,3,4}} satisfies equa
tion 1. Now encode these three blocks using a multi-valued
variable with values 0,1,2 respectively.

Theconstruction ofg from Pg proceeds as follows. For
each multi-valued minterm in V, we enumerate the rows of
T covering this minterm. Now all the blocks B,- of Pg are

Row Xl *2 X3 /i /2
1 {0} {0} {0.2} {0.1} {0}
2 {1} {1.2} {0.2} {0.2} {1}
3 {2} {0.1,2} {0} {1.2} {2}
4 {1.2} {0.2} {0.2} {0.1} {1.2}

Table 2. Example set matrix to Illustrate de
composition

Jt2 X}

VI
>ca.

codes g
0 0 {1,3,4} {1,3,4} 2 2

0 2 {1,4} {1,2,4},{1,3,4} 0,2 2

1 0 {2.3} {2,3,4} 1 1

1 2 {2} {1,2,4},{2,3,4} 0.1 1

2 0 {2,3,4} {2,3,4} 1 1

2 2 {2,4} {1,2,4},{2,3,4} 0,1 0

Table 3. Construction of ^ from

listed such that these blocks contain the rows of T cover

ing the minterm. From the feasible B,- for this minterm, we
choose one B,- as the implementation of g for that multi
valued minterm. Finally these B,- are encoded.

An example of the construction of g given P^ is diown
Tables.

Similarly, in theconstruction of h from p^,we first list,
for each multi-valued minterm of U, rows of T that cover it
(see first two columns below in Table 4. For each minterm
of U, we list the possiblemulti-valuedminterms of g, along
with their implemented code from the step above. Inter
secting the two sets gives us an element Bk. For each such
element, we list all elements Bj € p/ such that Bk < Bj.
Choose one element as the implementation. The outputs are
chosen by intersecting the ouqiuts of the rows correspond
ing to the chosen implementation element.

An example of theconstruction of h = (hi^hz) given p^
is shown in Table4. Note that h is kept as a set fimction for
maintainingflexibility for ftirtherdecompositions.

Finding P^ is notsimple, butanalgorithm forthisstarts

*1 Pi/ 8 P« Pt/»P« < P/ hi h2
0 {1} 2 {1,3,4} {1} {1} 0.1 0

1 {2,4} 2 {1,3,4} {4} {2,4},{4},{3,4} 0.1 1,2

1 {2,4} 0 {1,2,4} {2,4} {2,4} 0 1

1 {2,4} 1 {2,3,4} {2,4} {2,4} 0 1

2 {3,4} 2 {1,3,4} {3,4} {3,4} 1 2

2 {3,4} 0 {1,2,4} {4} {2,4},{4},{3,4} 0,1 1,2
2 {3,4} 1 {2,3,4} {3,4} {3,4} 1 2

Table 4. Construction of h from p^

with Pv, and merges blocks to get p'such that Pv <P'. Now
check ifpt; *p' < P/.

4. The VIS System

VIS (Verification Interacting with Synthesis) is a software
tool distributed by the University of Califomiat Berkeley,
and the UnivCTsity of Colorado,Boulder. VIS is a tool inte
grating verification, simulation and synthesis of finite-state
hardware systems. It has a Verilogfront end, which gener
ates a blif-mv description of the network, blif-mv is a for
mat for representing MV-networks. VIS supports formal
verification (fair CTL model checking, language emptiness
checking and equivalencechecking),hierarchical synthesis
from a multi-valued description, and cycle based simula
tion of the multi-valued input. In this way, VIS provides
a strong platform for research in formal verification and in
the future, hierarchical multi-valued synthesis.

4.1 Multi-valued extensions to Verilog

Part of the VIS systemis a Verilog translator(vl2mv) which
which supports a multi-valuedextensionto Verilog(as well
as nondeterminism). The uso: can declare that a variable is
of a particular type with its range of values given by refer
ring to a typedefs\&\emoni. For example,

typedef color { red,yellow,green }
declares color as a type. Later,

signal light color
declares the variable light to have type color. The Verilog
translator, translates the input into an MV-network repre
sented in a file using blif-mv.

4.2 Blif-mv

blif-mv is an intermediate formatthat is output by the Ver
ilog translator. It represents an MV-network using tables
to represent multi-valued ftmctions. Each table is a cover
of MV-cubes of the corresponding multi-valued function.
These tables are fully specified (all multi-valued vertices
are assigned some ouqiut value) and deterministic (each
multi-valued vertex is assigned a unique output value).
blif-mv is a simpleextensionof blif the intermediateformat
usckI in SIS. blif-mvincludes for convenience some higher
level constructs not in blif. One such that is particularly
useful for multi-valued variables is the "equal" construct.
Consider a multiplexorwith a singlebinary control and two
multi-valued inputs a and b. In the pure table format, we
would have to say

X a b output

0 0 - 0

0 1 - 1

0 2 - 2

0 3 - 3

: 1

1 - 0 0

1 - 1 1

1 ;
1

)^th the equal construct, the table is compacted into
two lines,no matterhow manyvaluesare in the range of a
andb

X a b output

0 - -

1 - -

4.3 VIS internals

The MV-network in the blif-mv format is translated inside
VIS into a set of MVFs before any formal verification or
simulation is performed. A simple multi-valued simulation
in provided in VIS. It is performed by using theMDDs of
the MVFs of the functions to be simulated. Assume that
a function has an MVF with n MDDs, each corresponding
to the n values of the function. For the MDD, simula
tionproceeds by cofactoring this withrespect to the vector
corresponding to the system inputs. If theresult is a "1",
then the simulation output is /, and the remaining MDDs
are not evaluated, (sincethe multi-valued functions in VIS
are deterministic). If the result is a "0", the i+ F* MDD is
checked. If n -1 MDDs return a "0", then the simulation
output is n. (This is because the multi-valued function is
fully specified.)

Since an MV-network is fiilly represented in VIS, and
theVIS system allows theuse of a popular RTL to specify
such networks, we have an excellent opportunity in VIS to
create a multi-valued optimization package. Further, VIS
allows and keepshierarchy, so synthesis using hierarchy is
enabled. However, at this point,directsynthesis insideVIS
has not been developed since our first effortswere to take
advantage of the SIS system. The idea is that by convert
ing all signals into their one-hot (or even logarithmic en
coded binary versions), wecanexperiment andmake useof
the extensivedevelopments in SIS for binary optimizations.
However, this has provedmore difficultthat we had firstes
timated and perhaps it is ttoe to bite the bullet and do the
full development inside VIS.

5. State Assignment

As mentioned earlier, an alternative way of optimizing a
multi-valued logic function is to first do the manipulations
in the multi-valued domain, independent of any encoding,
and then to use the resulting structure to intelligently find
a good encoding. Perhaps the most successful example of
thisis theKISS approach forstateassignment of finite state
machines [1). Here the statevariableis multi-valued.

Consider all next state functions, one for each state
value, asmany separate binary valued functions ofoneMV-
variable and perhaps several binary valued variables. The
approach taken inKISS is to minimize thissetof functions
withESPRESSO-II resultingin a minimized coverof MV-
cubes. Consider one such cube. In its state variable position
is a MV-literal, which is a set of values. Each such cube in
thecover gives such a set. Themain ideain KISS is thatif
it ispossible to encode thestate variable in such a way that
each set of values associated with any cube in the resulting
minimized SOP cover can be also described as a cube in the
space ofbinary encoding variables, then eachMV-cube can
be replaced by the binary counterpart, and the size of the
cover is not increased.

This embedding of sets into faces of the cube of the
encoding variables is called theface embedding problem',
given a set of sets of points, encode each set with binary
variables so that each is precisely contained in a cube in
thebinary space. Thisis always possible if enough binary
variables are used, so a side constraint is to use a small or
minimum number of binary variables. The above proce
dure is known as the inputencoding problem. Note that we
treated the next state function as separatebinary functions.
Thus the fact that the next state variables will also be en
coded wasignored. Oncethenextstateoutput functions are
replaced by thederived codes used for the state variables,
then more optimization is possible because morecubescan
be combined due to sharing of the outputs.

ITiis procedure has been extended in a program called
NOVA [10] to considerboth the input and outputencoding
of the statevariables. The procedure works well for small
statemachines, sayless than30 states, but is ineffective for
large machines, say more than 50 states. There are exam
ples where an enct^ing given by the designer, possibly de
rived fromsomeknowledgeabout the structureof the prob
lem, leads to a much smaller implementation of the logic
than an implementation derived using NOVA. One specu
lation is that a better encoding could be obtained by de
composing themachine into a product of smaller machines
andapplying NOVA to the small machines. The encoding
obtain^ by concatenating the codes ofthe small machines
is an encoding of ttic large machine. Thus a first step in
the multi-valued domain would be the decomposition of the
machine. Unfortunately, we do not know of any really ef-

fective waytodo thisandthisis anareaforpotentially fruit
ful (but probably difificiilt) research.

6. Conclusions and Open Problems

We have surveyed two-level and multi-level logic opti
mizations for MV-variables. We discussed three methods
for representing MV-fiinctions (SOPs, MV-networks, and
MDDs). One-hot encoding represents a way to keep the
multi-valued structure, but to use binary operations for the
manipulations; however this is not always successful. Con
ceptually, the best way to deal with MV-logicis direct ma
nipulation and optimization followed by intelligent encod
ing, followed by binaryoptimizations. Aneffectivepackage
for this remains a challenge for the future. Although, as we
have seen in this paper, many of the concepts necessary for
suvch a package have been developed,efficientalgorithms
for their effective use in such a package are still missing.
The VIS system represents a framework for future devel
opments in this direction, but a significantamount of effort
and research remains to be done.

Acknowledgements

We're grateful for financial support for this research pro
vided by the SRC under contract 98-DC-324, and for the
support of the C^fomia Micro program and participating
industrial sponsors, Fujitsu, Motorola, Cadence, Synopsys,
Intel, and Metamor, Inc.

References

[1] G. D. Micheli, R. Brayton, and A. Sangiovanni-
\^ncentelli, "KISS: a program for optimal state as
signment of finite state machines,"in Proc. ofthe Intl.
Conf.on Computer-AidedDesign, Nov. 1984.

[2] S. Malik, A. Srinivasan, T. Kam, and R. Bray
ton, "Algorithms for discrete function manipulation,"
in Proceedings of the International Conference on
Computer-AidedDesign, 1990.

[3] M. Iyer, D. Long, and M. Abramovici, "Identifying se
quentialredundancieswithoutsearch,"in Proceedings
ofthe 33rd DesignAutomation Conference, 1996.

[4] A. Mehrotra, S. Qadeer, V. Singhal, R. Brayton,
A. Aziz, and A. Sangiovanni-Vincentelli, "Sequential
optimization without state space search," in Proceed
ings of the International Conference on Computer-
Aided Design, 1997.

[5] S.Khatri, R.Brayton, andA.Sangiovanni-Vincentelli,
"Sequential multi-valued network simplification using
redundancy removal," in to appear in Proceedings of
the InternationalConference on VLSI Design,1999.

[6] L. Lavagno, S. Malik, R. Brayton, and
A. Sangiovanni-Vincentelli, "MIS-MV: Optimization
of multi-level logic with multiple-valued inputs,"
in Proceedings of the International Conference on
Computer-AidedDesign,1990.

[7] S. Yamashita, H. Sawada, and A. Nagoya, "A new
method to expressfunctional permissibilities forLUT
basedFPGAsand its applications," in Proceedings of
the InternationalConference on Computer-AidedDe
sign, 1996.

[8] R. Brayton, "Undwstanding SPFDs: A new method
for specifying flexibility," in Workshop Notes, Inter
national Workshop on LogicSynthesis, 1997.

[9] J. Brzozowski and J. Lou, "Blanket albebra for
multiple-valued function decomposition," in Proceed
ings of the International Workshop on Formal Lan
guages and Computer Systems, 1997.

[10] T. Wla and A. L. Sangiovanni-Vincentelli, "NOVA;
State Assignment of Finite State Machines for Opti
mal Two-Level Logic Implementations," IEEE Trans.
Computer-Aided Design, vol. 9, pp. 905-924, Sept.
1990.

	Copyright notice 1998
	ERL-98-61

