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Abstract

In this work a CNN-based algorithm for image segmentation by active contours
is introduced. It is based on an iterative process of expansion of the contour and
its subsequent thinning guided by external and internal energy. This strategy leads
to a high level of control over the contour evolution which makes their topologic
transformations eeisier. Therefore processing of multiple contours for segmenting
several objects can be carried out simultaneously.

1 Introduction

Image segmentation techniques by means of deformable models, or more specifically,
active contours (so-called snakes) represent an interesting approach among segmentation
strategies. They are introduced by Kass et al.[4], and usually consist ofelastic curves that,
located over an image, evolve from their initial shapes and positions in order to adapt
themselves to the notable characteristics of the scene. This evolution comes as a result of
the combined action of external and internal forces. The external forces lead the snakes
towards features of the image, whereas internal forces model the elasticity of the curves.
In a parametric representation, a snake appears as a curve u{s) = (r(s),2/(s)),s E [0,1],
with u(0) = u(l). Its internal energy is often defined as

(1)

It is made up of two factors: the membrane energy a|u5(s)p, which weights its resistance
to stretching, and the thin-plate energy /3|u.,,(s)p, that weights its resistance to bending.

"On leave from Department ofElectronicscuid Computer Science. University ofSantiagode Compostela.
E-15706. Spain.
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Us(s) and Uss(s) represent the first and second derivatives respectively. The elasticity
parameters a and j3 control the smoothness of the curve.
The external energy is generally defined as a potential field P,

EexM = [ P(u(s))ds. (2)
Jo

This.external potencial is a combination of different terms based on the application and
the characteristic of interest. Typical terms in the expression of the external energy are
[1, 5]:

P{u{s)) = 7|V(G„(«(s)) »I(u(s)))\ + CI(u{s)) + (3)

The first term in (3) corresponds to the gradient ofthe image convoluted with a Gaussian
in order to reduce noise; the second to the intensity and the third to the distance to the
closest borders obtained for the zero crossing. Finally 7, C, t} are positive constants that
weight the contributions of the different terms in the external energy.
The total energy of the snake will be the sum of the external and internal energy terms
along the curve w(s):

Esnake

The solution to the problem of detecting the contour is found in the minimization of this
energy function. In order to numerically compute a minimal energy solution it is necessary
to discretize the expression of the energy. Different procedures to approach both the
discretization and the minimization of (4) can be used. However all of them require, to a
greater or lesser degree, a high computational effort, which renders them inappropiate for
applications needing fast response. On theother hand, due to their parametric natme, they
usually cannot split a contour or merge to ofthem into one. This limits their application to
segmentation tasks where thenumber ofinteresting objects and their approximate locations
are known a •priori.

The development of strategies based on active contours by means of cellular neural
networks (CNN) could become an alternative to classical active contour techniques. The
main motivation in pursuing this is the possible implementation as specific integrated
circuits or taking advantage of architectures as the CNN Universal Machine [6] which
would allow the use of massively parallel processing to reduce processing time.
The reduction in computational costwould justify this kind oftechnique. However it is not
the only reason for investigating such an approach to active-contour image segmentation.
In fact, the CNN-based solution provides a higher control of the evolution dynamics of
the snakes and thus allows us to approach complex tasks for classical techniques as simple
topologic tranformations.

2 CNN Architecture applied to Active Contours

In [7], a CNN-based strategy for the segmentation of an image on the basis of active
contours has been proposed. The proposed method consists of an iterative process of



expansion of an initial contour, and its subsequent thinning, guided by external information
which will indicate the direction of the displacement of the contour. Also, it obeys the
influence of internal energy terms which try to maintain the connectivity of the contour
(implicit to the thinning state) as well as to smooth the contour. The design has been
realized using DTCNNs with cyclic time-variable cloning templates ([3] [2]) in such a way
that,, differently from classical strategies, all of the contour points have an influence on
the way the contour evolves. Therefore it could be considered as a continous treatment
of the contour, given that its discretization is of the same order as the spatial variable
in the images to be treated (pixel-level discretization). Therefore greater precision in the
adaptation of the contour without additional computational cost is possible due to the
greater freedom of movement of each point in the active contour.
However, because of the need for maintaining the connectivity of the contours, breaking
of the active contours is not allowed. Therefore, as in classical active contour techniques,
it is constrained to applications with a previous knowledge of the approximate location of
the objects into the scene under processing.
Here we consider an CTCNN-based modification of that algorithm in [7] in order to allow
the topologic transformation of the snakes. To this end, new processing steps are introduced
to carry out the splitting and merging ofthe contours whenever they are needed to reach a
valid final segmentation. In Figure 1, a diagram with the main processing steps is shown.

External Information

Contour Image

Figure 1: Block diagram of the complete algorithm.

The contour consists of a set of black pixels into a binary image, the so-called contour
image. External information is represented by an array with real values called the external
information image whose size coincides with that of the image under processing.

The algorithm consists of an iterative process in such a way that a complete cycle is
carried out after the processing of the steps in Figure 1 along the four cardinal directions.
Following a description of each elementary block is given.



2.1 CE module: Contour Evolution

The moving of the active contours is accomplished in the CE module of Figure 1. In
Figure 2 a block diagram of the processing steps within the CE module are shown.
The block called EXP acts on the contour image (binary image) and the EP block on the

External Energy

CPD_
Output

!/Coat<Htr !

Crotour Thinning

Contour |
Image

Figure 2: Block diagram for the processing in the CE module.

images ofexternal and internal energy (The CPD output influence will be discussed later
in this paper. For the moment, it will not be taken into account). Finally, the TH block
combines both binary images from the output of EXP and EP^ in order to carry out the
correct evolution of the snake. So, unlike the classical proposals in defonnable models, a
contour reaches a final location after a dynamic process of activation and deactivation of
pixels in a contour image. Following is a more detailed description ofeach block.

2.1.1 EP block: Information processing

In this block a weighted sum of gradients is calculated based on external (external
output) and internal information (from the contour image) and subsequently, the result
is thresholded. Therefore the EP output will be a binary image whose deactivated pixels
indicate valid locations to move the contour in the EXP and TH stages. Figure 3 shows
the block diagram associated with the operations in EP.
In the Figure, Arepresents a constant (which may be changed over time) that weights the

influence of each kind of energy. A default template for the directional derivative can be
(for the processing in the Notherly direction);

"0 0 0 1

Aep = 0 Bep=- 0 1 0 Iep = 0 (5)
0-10
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Figure 3: Block diagram of the EP processing block.

However, a more complex template can be used depending on the quality of the guide
information.

2.1.2 EXP block: Contour expansion stage

This block makes a contour expansion process for the direction under consideration.
The expansion will be allowed for one pixel only in order to make the subsequent thinning
process easier. Also, only one duplication is allowed if the direction of processing coincides
with the correct one for the movement of the contour based on the guide information.
Figure 4 shows the blocks diagram associated to the EXP block processing.

Contour Image

EP
Output Ert., -^4.-. .<;=• V-

Figure 4: Block diagram of the EXP processing block.



In EXP(1) all activated pixels in the contour image are two-pixel shifted along the
direction of processing. This is achieved by operating twice with the template (for the
processing in North direction):

^EXP(l)

' 0 0 0 • • 0 0 0 '

0 1 0 Bexp(i) — 0 0 0

0 0 0 0 1 0

'EXP{1) = 0 (6)

where the contour image is introduced as both initial state and external input. Following,
a logical OR operation is carried out on the output from EXP(l) and EP blocks. The
OR output is used as a fixed state map for the EXP(2) operation with template (for the
processing in North direction):

^EXP{2) —

• 0 0 0 • ' 0 0 0 '

0 1 0 BeXP{2) — 0 1 0

0 0 0 0 1 0

'EXP{2) = 1 (7)

where the contour image is introduced as both initial state and external input. Therefore
in EXP(2) only a contour duplication along thecorrect direction (according with theguide
information) is allowed.
In order to obtain the templates for the other directions Bexp(1) Bexp(2) are suitably
rotated.

2.1.3 TH block: Thinning stage

Through the TH block shown in Figure 2, a guided thinning process is carried out
on the previously expanded contour in the EXP stage. The objective is to obtain a new
thin contour slightly shifted and/or deformed based on the guide information from the EP
block.

Due to the fact that thinning is made by parallel processing, a higher control is needed in
order to avoid breaking of the contour. In Figure 5 a block diagram associated with the
TH block is shown. This illustrates with a simple example of the thinning process on a
previously expanded contour. To simplify the case, we have not considered any infiuence
from the EP block (i.e all pixels of output image from EP are deactivated).

The operation of the thinning algorithm proceeds as follows: The output of the EXP
block is introduced as external input and initial contour of the block TH(1) in Figure 5.
Also the output from the EP block is used to mcisk those pixels that must not change
their state based on the guide information (fixed state map). The TH(1) output will be
almost a copy of the contour image from the EXP block. The difference is the deactivation
of the contour borders in the direction of processing whose locations coincide with white
pixels in the EP output. Therefore we will have a thinned contour image but with possible
ruptures. Steps TH(2) and TH(3) act on areas with opposite slope in order to activate
those pixels deactivated in TH(1) but needed to restore continuity of the contour. These
two steps use the EXP as both external and initial state. Also, each block uses the output
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Figure 5: Block diagram for the TH processing block.

ofthe previous one as a fixed state map in such a way that only white pixels in the previous
step can change their states. Templates for these operations for processing to the North
are as follow:

• 0 0 0 1 r 0 -2.5 0 '

AthW =010 = 0 5.0 0 /rif(l) = -2.5 (8)
0 0 0 0 2.5 0

"000

= 0 10

0 0 0

'00 1

Bth{2)= 0 1 -1
0 0 0

Ith(2) ——2

Ith(^) ——2
• 0 0 0 1 r 1 0 0 *

Ath{^)= 0 1 0 Bth{^)= -1 1 0 Ith{^) = -2 (10)
0 0 0 J [ 0 0 0

The outlined algorithm operates as an eight-connectivity thinning process when a white
image is used eis a mask for TH(1). However, in some situations eight-connectivity might
not be reached at certain locations because of the influence of the guide information from
the EP block.

2.1.4 IE block: Internal energy processing

Sometimes the external energy information is enough to guide the contour [8]. How
ever, in those cases where the external information is insufficient or is corrupted by noise,



anchored pixels may appear in the contour, preventing it to reach its correct final location.
The function of internal energywill be to smooth the contour shape in order to avoid rough
deformation, so that a better convergence to the final contour is achieved.
In classical approaches, the internal energy depends onthe tension ofthe contour (Equation
(1)) and it may be measured as a function of distances among adjacent points according
to the used discretization. This approach can not be directly applied to our case because
the contour is not defined as a predetermined number of discretization points but the evo
lution of a set of black pixels of a binary image is based on the activation and deactivation
of pixels belonging to this contour image. However, the desired smoothing effect can be
obtained by assigning a higher amount of energy to those pixels in the contour image that
are situated in concavities, with respect to those situated outside. Thus, it is possible to
locally alter the infiuence ofexternal energy, and so, invert the state of interesting pixels in
the output image of the EP block. This approach recalls the thin-plate energy method in
classical deformable-model strategies. One way to carry this out is by means of a diffusion
operation in the IE block that has a binary image input (contour image from TH) and
continuous output. Therefore the IE output will be proportional to the number of active
pixels in the neighbourhood considered [7]. A template for this operation would be:

0.5 1 0.5

Aie = 1 -5 1

0.5 1 0.5

Bje —0 IjE —0 (11)

The internal energy, appropiately weigthed in EF by the parameter A, leads to smoothing
of the contour shape. This infiuence will be higher at locations where the contour has a
rough shape euid will decrezise in smooth areas.

In order to show the operation of the CE module, in Figure 6 an example of evolution
for one complete cycle of the CE module is shown. This Figure shows the initial contour
and the external information images, as well as the output of blocks EXP, EP and TH
for each direction and iteration. Each row includes the results of all the processing steps
for a given direction. The columns represent the output from all blocks for a particular
processing step. The time sequence goes from left to right and from top to bottom. The
guide information is constantly decreased in North-East direction and the internal energy
infiuence is considered negligible (A 0). Therefore the contour is moved in the direction
of decreasing external energy. Highlighted images (i.e. output of TH(3) for the West di
rection of processing) are the external output after the complete cycle.

Sometimes, the number of active contours that are being processed do not coincide with
the number of objects in the scene. These situations lead to collision between different
contours (or different parts of the same contour). We will deal with such situations by
separating or joining different contours. The procedure consists of two actions:

1. The possible collision between contours must bedetected and avoided. This operation
will be carried out by the CPD module of Figure 1. The locations of the contour
image where collision can occur are called collision points (CP).
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Figure 6; Example of the evolution of the contour in the North-East direction through one
complete cycle of the CE module.



2. Based on the information about CP, topological trsinsfonnations must be used to
allow the splitting and merging of contours. This operation is carried out in the CPE
module.

2.2 CPD module: Collision Point Detection

In this module a search for collision points is Ccirried out. We can classify the behaviour
of collision points as follows:

1. Passive collision points (POP): Pixels whose activation can lead to connections be
tween two different contour pieces in the next processing step in the CE module.
They axe detected in CPD to generate a one-pixel wide wall that keeps the two
colliding contour sections apart. These CP do not generate breakpoints.

2. Active collision points (ACP): They are those CP that resolve one coUision by means
of the sphting and merging of the coUided contours. They are detected in the CPE
module.

Also the CP can be classified based on their distribution in the contour image:

1. Isolated CP (ICP): They are those CP without connection with other CP.

2. Vertical CP (VCP): They are those CP connected to at leaist another CP in the
vertical direction. Also we will call VCP-A to those VCP whose two closer neighbors
in the horizontal direction belong to some contour.

3. Horizontal CP (HCP): They are those CPconnected to a least another CP in the hor
izontal direction. Also we will call HCP-A to those HCP whose two closer neighbors
in the vertical direction belong to some contour.

4. Diagonal CP (DCP): They are all those CP not included in the previous cases.

Taking processing in the North direction asexample, possible collision points would be
those shown in Figure 7,

l~y

H3 Ep

Figure 7: Examples ofpossible CP in the case ofprocessing in the North direction.

In the Figure they axe representated as:
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Black cells: Activated pixels in the contour image before processing in the North
direction.

White cells: Deactivated pixels in the contour image before processing in the North
direction.

Grey cells: Collision points (also deactivated pixels before the processing in the North
direction).

Dotted line cells: Pixels with any state (cictivated or deactivated).

All the CP of the Figure 7 are detected by a single CNN operation based on the
template:

r 0 0 0 1 [ 0.5 0.5 0.5
(12)A =

• 0 0 0 " • 0.5 0.5 0.5

0 1 0 B = -2 -2 -2

0 0 0 0 2 0

7 = -5

The examples of CP in Figure 7 are the more usual ones. However other CP that are not
considered in that figure could appear. Figure 8 shows examples of this kind of CP.

Figure 8: Example of possible CP not detected by the operation with template (12) in the
processing in the North direction.

In order to take into account all the possible CP, multiple CNN operation are employed.
Figure 9 shows a diagram of blocks for the CPD operation.

The operation CPD(l) is characterized by template (12). Then the principal and
secondary diagonals are detected by the operation in CPD(2) and CPD(3). All of the
CPD blocks take as initial state and external input the contourimage (from CPE output).
Also the output of each operation is used as a fixed state map for the next operation in
order to avoid the deactivation of previously detected CP. Templates for the operation in
CPD(2) and CPD(3) are as follow:

r

O

O

O

• 1 -10"

AcPD(2) — 0 1 0 BcPD(2) — -1 -1 1

1

o

o

o

1

o

0
1

o

o

o

'0-1 1 •

^CPD(Z) = 0 1 0 Bcpd(Z) — 1 -1 -1

o

o

o
•

0 1 0 .

11

iCPD{2) = -5

icPD(3) = —5

(13)

(14)
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Figure 9: Block diagram for the CPU operation.

2.3 CPE module: Collision resolution

As we have already commented, the operation in the CPD module generates a one-pixel
wide wall between two contours pieces that otherwise could collide. Given that situation,
it is needed to decide which CP can be deactivated and what effect must cause in order to
maintain the connectivity of the new contours. These CP are called active collision points
(ACP). Following, the strategy to separate contours will be described. In order to make
its understanding easier, a processing in a vertical direction will be considered (i.e. North
or South processing):
A HCP-A will always have its North and South neighbors activated in the contour image.
The first step to generate the rupture will be the deactivation of these pixels. Also lateral
neighboring pixels must be activated in order to close the new contours. However it is not
guaranteed that the new contours will be well defined. To achieve that it is required that
the lateral neighboring pixels of the CP under consideration are HCP-A as well.
All these operations are carried out in the CPE module. The block diagram of its operation
is shown in Figure 10.

CPE(l): Here it is detected if a pixel and its two lateral neighbors are HCP-A. The
output of this block consists of a binary image whose black pixels are ACP. A template
for this operation is as follows:

"000

Acpe(\) = 0 10
0 0 0

^CPE[l)

• 1 1 1

= -1 -1 -1

1 1 1

^CPE(l) —

It uses the contour image as both initial state and external input.
CPE(2): Here the North and South neighbors of a ACP are deactivated (breakpoints are
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Figure 10: Block diagrams of processing steps in the CPE module.

generated). A template for this operation is:

"000

•^CPEi2] — 0 10
0 0 0

BcPE{2) —

0-10"
0 0 0 IcPE{2)
0-10

For this block, the CPE(1) output is introduced as external input and the contour image
as both initial state and fixed state map. So the template only acts on the black pixels in
the contour image.

CPE(3): Here the lateral neighbors to each ACP are activated (the connectivity of
the new contours is guaranteed). A template for this operation is:

"000

AcpE{5) = 0 10
0 0 0

*CPE{3}

"000

= 10 1

0 0 0

^CPE{3) —1

The output of the CPE(2) block is introduced as external input and the contour image
as initial state. The complementary image of the contour image is used as fixed state
map. Therefore the template only acts on the white pixels in the contour image. Finally
it is needed to deactivate all those ACP that were activated during the CPE(3) operation
(the propagation ofthe rupture is allowed). This is carried out by means the logical AND
operation as shown in Figure 10.
In order to illustrate the operation of the CPE module, Figure 11 shows a single example
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CPE(l) CPE(2)
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Figure 11: Example of the operation in the module CPE.

of separation of two contours (North processing).
The first picture in Figure 11 corresponds to the contour images (the grey pixels represent

collision points).
In order to resolve the collision in the vertical direction (processing West or East) the
previously proposed templates must be rotated 90 degrees.
Since one contour pixel can generate either three HOP or three FC*P, the consideration
of DCP would not be needed in almost any case (note that only one AGP is enough to
resolve a collision).
Sometimes, separated AGP can appear between the same contours. That situation leads
to the appearance ofresidual contours which will collapse in a pixel because of the internal
energy influence. The elimination of these residual pixels may be important because they
can obstruct the evolution of well-defined contours. Their elimination is straighforward by
using a single CNN operation based on the template:

'111

Arce — 18 1
1 1 1

^RCE — —2

which deactivates those pixels with less than two neighboring pixels belonging to any
contour.



3 Examples

In order to show the validity of the proposed structure, we will show some simulations
results. In all of the following cases, the external energy images were generated in such a
way that the grey-level of each pixel is a function of the distance to the closest edge. The
energy is assumed to be inversely proportional to the intensity. As a result the contours
will move along decreasing energy directions.
The first example shows the consecutive adaptation of cm active contour to the final con
tour based on different guide information images. Figme 12 shows the initial contour and
the external information images.

Firstly, the image in Figure 12(a) was used as contoxir image and the image in Figure

(a) (b) (c)

Figure 12: Set ofartificially generated test images, (a): Initial contour image, (b) and (c):
External information images.

12(b) as external information image. The result is used as the contour image for the sim
ulation guided by the image in Figure 12(c). Figure 13 shows the evolution of the active
contour superimposed on the external information images.
As we have already mentioned, sometimes infiuence of the internal energy is not needed

because of the good quality of the external information. However, in almost all practical
cases, the presence of noise impedes the generation of suitable guide information images
and therefore a final contour may not be reached. The internal energy leads to smoothing
of the contour shape as it is illustrated in the sequence in Figure 14 (obviously, the lack of
external energy leads to collapse of the contour).
In order to illustrate the infiuence of the internal energy we have carried out simulations

from the set in Figure 15 which corresponds with a highly irregular initial contour and a
noisy external information image.
In Figure 16 it can be seen the result ofsimulations from the image set in Figure 15 with

and without internal energy influence respectively.
As we canseein Figure 16(a) the active contour cannot continue its evolution towards the

desired final contour because of the appearance of anchored pixels which have remained
stuck due to the low quality of the guide information image. In these cases where the
external information is insufficient, internal energy plays an important role. In fact, the
smoothing effect permits the anchored pixels to escape from their locations and continue
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Figure 13; Evolution of the initial contour shown in Figure 12(a) guided by the external
information images in Figure 12(b) and 12(c).

Figure 14: Example of a contour evolution based on internal energy influence.



Figure 15: Set of artificially generated test images, (a): Initial contour image, (b): Exter
nal information image corrupted with Gaussian noise (a = 100).

Figure 16: Results of guiding the initial contour in Figure 15(a) with the noisy external
information image in Figure 15(b). (a): Simulation without internal energy influence, (b):
Simulation with internal energy influence.



towards the final contour (Figure 16(b)).

Finally, in order two show the behaviour of the proposed algorithm in situations that
requiere any topological transformations, we have carry out simulations using the image
set in Figure 17.
In Figure 17 the processing is initiated with the contour image 17(a) and guided by the

WBR

Figure 17: Set of artificially generated test images, (a): Initial contour image, (b) and (c):
External information images.

external information in i7(b). After reaching convergence, the obtained contour image is
used to be guided for the external information in Figure 17(c). Therefore that simulation
will require the splitting and merging of different snakes.

In Figure 18(b) we can see that a residual contour has been generated. These residual
contours usually appear far from any object of interest. Therefore the internal energy is
strong enough to collapse them.

4 Conclusions

In this work, an approach to segmentation by active contours using CNN is discussed.
It consists of an iterative process of expansion and thinning of the active contours which
are represented as a set of black pixels in a binary image, called a contour image. The
contours are shifted pixel by pixel to adapt their shape to those of the interesting object
in the scene. This movement is guided by external forces that lead the contours towards
salient features on the image under consideration. Also it obeys the influence of internal
energy terms which lead to a smoothing effect on the contour shape. Furthermore the
problem of the topological transformations of the snakes, needed for the processing of
multiple active contours is approached. The strategy consists on the detection of possible
collision between different contours pieces. This allows the algorithm to avoid the collision
and carries out either splitting or merging of the contours when the continuity of the new
contours are guaranteed.
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Figure 18: Evolution of the contour in Figure 17(a) guided by different external energy
images.



References

[1] L.D. Cohen and I. Cohen. Finite element methods for active ~»tour models b^bns
for 2d and 3d images. IEEE Trans. Patt. Anal. Machine Intell, {15).1131-1H7,1993.

[21 H. Hairer. Multilayer discrete-time ceUular neural networks using time-variable tem
plates. IEEE Trans. Circaits Syst, 40(3):191-199,1993.

[3] H. Harrer and J.A. Nossek. Disaete-time cellular neural networks. Int. Journal Cxrc.
Th. Appi, 20:453-467,1992.

[4] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contours models. Int. J.
Computer Vision^ (1):321-331,1988.

[5] P Radeva and J. Serrat. Rubber snake: Implementation on signed distance potential.
In Vision Conference SWISS'93, pages 187-194,1993.

[6] T. Roska and L.O. Chua. CNN Universal Madiine: An analogic array computer. IEEE
Trans. Circuits Syst, (3):163-173,1993.

(71 DL Vilarino, D. CabeUo, M. Balsi, and V.M Brea. Image segmentation based on
active contours using discrete-time ceUular neural networks. In Vedat Tavs^oglu.
editor, Fifth IEEE International Workshop on Cellular Neural Networks and Then
Applications^ pages 331—336,1998.

[8] D.L. Vilarino, D. Cabello V.M. Brea, and J.M. Pardo. Discrete-time CNN for image
segmentation by active contours. Pattern Recognition Letters, 19(8):721-734,1998.

20


	Copyright notice 1998
	ERL-98-67

