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Abstract

We give aformal framework for studying real-time discrete-event systems. Itdescribes concurrent

processes as sets of possible behaviors. Compositions of processes are processes with behaviors in the

intersection ofthe behaviors ofthe component processes. The interaction between processes isthrough

signals, which are collections of events. Each event is a value-tag pair, where the tags denote time.

Zeno conditions are defined and methods are given for avoiding them. Strict causality ensures determi-

nacy under certain technical conditions, and delta-causality ensures the absence of 2^no conditions.

1. Introduction

Discrete-event systems, where atomic events occur along a physical time line, provide a useful

abstraction for many real-time digital systems. This paper gives a formal framework for talking about

such systems. Unlike temporal logics[16], which focus on 'feventually" and "always, this methodol

ogy focuses on "when." Unlike models based on transition systems [2], this one is input/output ori

ented, is more concerned with simulation than with verification. As such, the focus of the paper is

on definability and determinism (existence and uniqueness ofsolutions), although hints are given at

extensions that support nondeterminism. Some aspects of the modeling techmque are inspired by



Yates [26] and Broy [6]. The mathematical framework that isused here was introduced in [15], but we

have repeated theessential material inorder tomake this paper self-contained.

2. Discrete-Event Systems

2.1 SIGNALS

2.1.1 Values and tags

Given a set ofvalues V and tags T = 91, the reals, we define an eventc to be a member of

E = TxV, I.e., anevent has a tag and a value. We use tags to model time. The values can represent

the operands and results of computation. For some applications,! V] = 1 , in which case the events are

said to be pure. They carry no value (of interest). Sometimes it is useful to construct models with an

earliest time, in which case we user = [0,») .

2.1.2 Signalsand tuplesofsignals

We define Sisignal j € S to be aset ofevents, so the set ofall signals isS = ^ {E) (fii^owerset,

or the setofallsubsets of£). Note that bythis definition, a signal cannot contain two identical events.

They are modeled as asingle evenl. Plfunctional signal is apartial function from T to V.By 'partial

function" we mean a function that is defined for a subset ofT .By "function" we mean that if

gj = (r,Vi) e s and ^2 = ('»^2) ^ j , then Vj = V2 .

Given atag re T and signal j e 5 ,we definej(f) c 5 to be the subset of events widi tag .Asig

nal is functional if andonly if!5(0l ^ ^ e T ,

Itisoften useful to form 2Xuple s ofN signals, written s = [s^,.., sjf . The set ofall such tuples

will be denoted . Position inthe tuple serves the same purposes as naming ofsignals in process cal

culi [13][22]. Reordering of the tuple serves the same purposes as renaming. Asimilar use of tuples is

1. Analternative is todefine a signal asa multiset, asdone byPratt [23].

_ Edward A. Lee
2 of 29



found in the interaction categories of Abramsky [1]. We defines(f) = ^^(0 •

The empty signal (one with no events) will bedenoted b)^ , and thdV -tuple ofempty signals by

Aj^f. These are signals like any other, soX,e 5 andA^^e ^ .For any signals =s (ordinary

set union). For any tuple se ^ ,s\j A^/ = s ,where by the notations vj Ajf we mean the pointwise

union of the sets in the tuple.

Following Birkhoff and Mac Lane [5], we defme5° to be aset with asingle element, which we

denote c.

2.1.3 Continuous-time, discrete, and Zeno signals

Let T{s)^ T denote the set of distinct tags in a signals . Acontinuous-time signal s satisfies

T{s) = T. Adiscrete-event signal OT discrete signalisonQ vfhQTQ T{s) isorder-isomorphic \o b. sub

setof the integers^. The setofdiscrete signals isdenoted5^ c S . We explain this now inmore detail.

Amap fiA —» B from one ordered setA to anotherB isorder-preserving or monotonic ifa <a'

implies that f(a) <f{a') , where the ordering relations are the ones for the appropriate set. A map

f\A —> B is a bijection if /(A) = B (the image of the domain is the range) andn ^ a implies that

f{a)v^f{a*) . An order isomorphism is an order-preserving bijection. Two sets are order-isomorphic

if there exists an order isomorphism from one to the other.

This definition of discrete-event signals corresponds well with intuition. It says thatthe tags that

appear in any signal can beenumerated inchronological order. Note that it isnot sufficient tojustbe

able toenumerate the tags(theordering is important). It captures theintuitively appealing concept that

between any two finite tags there will be a finite number of tags. Mazurkiewicz gives a considerably

more complicated but equivalent notion ofdiscreteness in terms of relations [20].

Let ^(s) denote the set of tags appearing in any signal in the tuples . Clearly^s)c T . Adis-

1.This elegant definition is doe to Wan-Teh Chang.
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crete-event tuple ordiscrete tuple s is one where 7'(s) is order-isomorphic with a subset of the inte

gers. Let denote the set ofall discreteiV tuples. Note ^ (hence the paretheses in the

superscript).Consider for example the two signals

jj = {(t,v):r =0.l ^ ...} 0)

Sn = 0.v):, =y |...

While each is a member of, the tuples = [Jj, . Such a tuple, called tZeno tuple^ can

cause major difHculties insimulation because the mere presence ofsigna^2 itnplies aneed to process

an infinitenumberof events before time can advance beyond = 1 , assuming events areprocessed in

chronological order.

In some communities, notably the control systems community, a discrete-event model also

requires that the set ofvalues Vbe countable, oreven finite [8][12]. This helps to keep the state space

finite in certain circumstances, which canbe a bighelp in formal analysis. Nonetheless, we adopt the

broader use of the term, and will refer to a system as a discrete-event system whethefl^ is countable,

finite, or neither.

2.1.4 Merging signals

The merge of m signals is defined to be

sj = u... (2)

The merge ofan m tuple is the merge of itscomponent signals,

W(s)=M([Ji,ij ... ij, ) = ... J„). (3)

Note that s^) <where r, and are given by (1), is not discrete, despite the fact thats, andt^

arediscrete. M(Ji, J2) is called aZeno signal.

^ 29 Edward A. Lee



Note further that if and S2 are functional signals, that does not imply thatA/(5^2) is afunc

tional signal. Itcould have two values for the same tag. Define \h^o-way biased merge by

= s^^{S2-S2) W

where ^2 is the largest subset of^2 such thatr(J2) C -Itt other words, ifyj andy2 have events

with the same tag, the biased merge includes only the event fromji . Thon v/^^iased merge for

m>2 is

M^(j) = s (5)

The biased merge ofa tuple is the biased merge ofits component signals. The biased merge offunc

tional signals is fimctional.

2.2 PROCESSES

Aprocess P is a subset of for some N. Aparticular s e is said to satisfy the process if

s GP. An s that satisfies aprocess iscalled ^.behavior of the process. Thus ^process isa set ofpos

sible behaviors. For A> 2, process may also beviewed assj'elation between the N signals ins . The

merge and biased merge are processes withA = m + 1 .

2.2.1 Composing processes

Since a process isa set ofbehaviors, acomposition ofprocesses should be simply the intersection

ofthe behaviors ofeach of the processes. Abehavior of the composition process should bea behavior

ofeach of the component processes. However, we have to use some care in forming this intersection.

Before we can form suchan intersection, each process to be composed must be defined as a subset of

the same set ofsignals ^, called by some researchers itssorr [3].

I. A relation between setsA and B is simply a subset of A x £ .
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Consider for example the two processesPj andP2 in figure 1. These are each subsets off ,but

they are of different sorts. Pj relates an entirely different set of signals thanP2 . The composition

involves eight signals, so to form the composition, we must first augmentP j ancp2 to defme them in

terms of subsets of S . Let

P, = PiX5^ . (7)

P2 = 5^xP2

We call these transformations ofsonaugmentation. Below we will give a notation for such transfor

mations in general. Since Pj andP2 are now of the same sort, and composition is simply their inter

section,

Q= PjnP2 = (PiXS'*)n(S'̂ xP2). (8)

This can be simplified to

e = /',x/'2-

This parallel composition of non-interacting processes is simply the cross produa of the sets of

FIGURE 1. Compositionof independentprocesses.

1. The tensor product is used in the interaction categories of Abramsky [IJfor the same composition. Here itfol
lows from the intersection of behaviors.

6 of 29
Edward A. Lee



behaviors. Since there is no interaction between the processes, a behavior of the composite process

consists ofany behavior ofPj together with any behavior o£P2 •Abehavior oQ is an 8-tuple, where

the first 4elements are abehavior ofPj and the remaining 4elements are abehavior of2 •

2.2.2 Interacting processes

More interesting systems have processes that interact. Consider figure 2. Aconnection Cc S is a

particularly simple process where two (or more) of the signals in the^V -tuple are constrained to be
g

identical.For example, in figure 2,C4 5c 5 where

S= ^3 ^7 ^ ^4,5 ^^^4 ~ ^5* (^0)

C2 7can be given similarly as ^2 = ^7 •There is nothing special about connections as processes, but

they are usehil to couple the behaviors of other processes. For example, in figure 2, the composite pro

cess may be given as

Q = (/'iXP2)nC4,5 rC27, (H)

where the first set is given by (9).

Given M processes in ^ of the same sort (some of which may be connections), a proces^

composed of these processes is given by

FIGURE 2. An interconnection of processes.

Edward A. Lee
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e= np>- (12)
P,6 P

where P is the collection of processes M .

2.2.3 Projection

As suggested by the gray outline in figure 2, often itmakes little sense to expose all the signals of

a composite process. In figure 2, for example, since signals52 and^s are identical 10^7 and54

respectively, itwould make more sense to 'hide*' two ofthese signals and to model the composition as

a subset of rather than 5®. This changes the sort of the composite, which may make it easier to

compose it again.

Let I = [tj,.., ijf be an ordered set ofM distinct indexes in the rangel N , and define the

projection iZj{s) of s = [jp .., s}f e onto by

ic/(s) = . (13)

Thus, the ordered set of indexes defines the signals that are part of the projection and the order in
0

whichthey appear in the resulting tuple. If/ = 0 , definercy(s) = 0 e 0

N • •

The projection can be generalized to processes. Given a process/* c S , define the projection

onto by

Kj{P) = {se s'̂ -.Bse Pwhere 7t;(s) =s}. (14)

Thus, in figure 2, we can define the composite process

l2* —^ji{P^^4,5 '^^2,7)^'^ '

where / =[l,3/t,Ci7 5 . Projection then facilitates composition ofthis process with others, since

the others will not need to be augmented to involve irrelevant signals.

If the two signals in aconnection are associated with the same process, as shown in figure 3, then

8 of29 Edward A. Lee



the connection is called ^self-loop. For the example in figure 3. = JC/(FnC,,3) , where

/ = {2,3 4} .For simplicity, we will often denote self-loops with only asingle signal, obviating the

need for the projection or the connection. This is simply asyntactic shorthand; iftwo signals are con

strained tobeidentical, we lose nothing by considering only one ofthe signals.

2.2.4 Transformations ofsort

Composition is set intersection. Augmentation and projection are syntactic operations that merely

give process definitions the right sort to enable composition by intersection. They play no semantic

role in composition. Moreover, they can be unified and generalized, providing anotation for arbitrary

transformations of sort.

Let/f be a map i? :{1,.., .., M} such that

H{n) =H{h)=>n = h. 0^)

Define the transformation of sort based onH by

Kjjis) = {s e S^: HU) =/=>

Augmentation is now aspecial case where Af >N andH is atotal function, in which case condition

(16) is equivalent to H being one-to-oneis the special case whereM <N andH is an onto

partial function. We can also dcfin&permutation, where M= Nand H is abijective total function.

FIGURES. A self loop.
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Because of condition (16), H can be represented compactly by a tuple[fti,where

{£, 1 ;2 iV}. The symbol /z,- = e indicates that there is no; g {1,2 N) such that

H{j) = i. Otherwise, = i.

Note that this sort transformation operator isreally quite versatile. There are several other ways we

could have used it to define the composition in figure 2, even avoiding connection processes alto

gether. In other process calculi, where names are used instead of indexes^cqpe is analogous to our

sortCondition (16) is equivalent to the requirement for unique names within ascope. The sort trans

formation accomplishes the same end as renaming and hiding in other process calculi.

Some basic examples are shown in figure 4. Note that the indexing of signals (vs. names) affects

10 of29
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Q = PiXPj Q = lt[, (P,)XP2XJC(, (P,) G = P,xS

= "[i.J t

© ©
Q = 1^ ^2) ^2,3)
= 7Cfj^,((FiX5)n(5xP2))

(d) (e)

FIGURE 4. Examples of composition of processes.
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the manipulation of processes to give them compatibie sorts. Note further that figure 4d shows that the
connecUon processes are easiiy repiaced by more carefuily constructed intersections.

2.2.5 Inputs, outputs, andfunctional processes

Consider processes that have input and output signais, where the output signals are given as a

function of the input signais. Sudi processes are ailt^nctional. IntuiUveiy, input signals are not

constrained by the process, whiie output signals are. Because of the need to compose processes of the

same sort, process definiUons will typically involve some unconstrained signals that have no effect on
the outpuU. For convenience, we consider these disUnct from the input signals and call thenrre/evont

signals.

Formally, we can partiUon the index set{l,... JV} of its sort into disjoint subsets/ .0 , andR

such that

{1,.., N} luO^R.

/ is an ordered set of indexes of the input signals,0 is an ordered set of indexes of the output signals,

and is an ordered set of indexes of the irrelevant signals. The union here is interpreted as an ordered

merge. Given aninput tuple, ue ,where \l\ is the number of input signals, let

£/ = {s € 7C;(s) = u} .

Then B = Ur\P is the set of behaviors consistent with this input Equivalently,B c P satisfying

nj{B) = {u}

no(B) = {i^(u)}

where F: 5^^ is afunction relating the output signals to the input signals. Afunctional process

therefore is completely characterized by the tuple

{F,i 0 R). ^21)

11 of29
Edward A. Lee



In figures 2, 3, and 4, there is no indication of which signals might be inputs and which might be

outputs. Figure 5modifies figure 2by adding arrowheads to indicate inputs and outputs. In this case,

?! might be afunctional process with (F,/ P R) = (F, {1,2}, {3,4} {5,^ 7 8}) for some func

tion F; S —^ S

2,2,6 Nondeterminacy

Aprocess is determinate if given the inputs it has exactly one behavior. Otherwise, it imondeter-

minate. Thus, whether aprocess is determinate or not depends on how we define inputs. Afunctional

process is obviously determinate. The same structure as that of afunctional process can be used for

some nondeterminate processes. We define aquasi-functional process to be one given by

(O,/ Q R) (22)

where O is a set of functions of the form F: 5^^ —> 5' ' . Given an input tupleu e S , the set of

behaviors is B c F such that

12 of 29

7C;(B) = {u}

7C,(B) = 5""
KoiB) = {s €5'̂ '̂ :3F€ 0 where s=F(u)}

(23)

FIGURE 5. Apartitioning ofthe signals in figure 1into inputs and outputs.
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2.2.7 Source processes

Aslightly more subtle situation involves^owrcc processes (processes with outputs but no inputs),

like Pj ill figure 6. There, ifP2 isfunctional, then itwould be characterized by

(F,! 0 R) = (F,0 {4,5} {1,2 3}) (24)

where F: . Since is a set with a single element, the functionF always rettims the same

signalpair.Thus, a functional source is simply a determinate source.

Ofcourse, we can also define a process that is a sink, whereO = 0 . Asink process is trivially

determinate and functional.

3. Composition of Functional Processes

In Section 2.2.1, where we composed processes according to equation (12), tags, inputs, outputs,

and functions played no evident role. Composition was treated there as combining constraints. How

ever, set intersection gives us no direct way to answer certain key questions about composition, such as

whether the composition of two functional processes is functional. We develop inthis section a frame

work within which we can answer this and several other compositionality questions. In particular, we

will focus onthe notion ofcausality indiscrete-event systems and the role that causality plays incom

positionality.

Q ~ '̂ [1,3 J 1^ 2) ^2,4)

FIGURE 6. Composition of a functional processwith a sourceprocess.
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Intuition alone is sufficientto be convinced that the compositions in figure 4 result in functional

processes if the component processes are functional. Amore complicated situation involves feedback,

as illustrated by the example infigure 7.Whether the composition isfunctional depends on the tag sys

tem and more details about the process. Most interesting discrete-event systems include feedback.

3.1 CAUSALITY IN DISCRETE-EVENT SYSTEMS

Causality isa key concept in discrete-event systems. Intuitively, it means that output events do not

have time stamps less than the inputs that caused them. By studying causality rigorously, we can

address a family ofproblems that arise in the design of discrete-event models and simulators. These

problems center around how to deal with synchronous events (those with identical tags) and how to

deal with feedback loops. But causality comes in subtly different forms that have important conse

quences.

3.1.1 The Cantor Metric

Assume the discrete-event tag system where T = SH , the reals. Consider ann -tuple of signals

s = [r,,4 e5".Lets(r) = where is the subset of events in signal

Si with tag t. Thus, =X means thatt g T{Si) (there are no events with tagr ). We can define a

metric on the set5" ofn -tuples ofsignals as follow^:

FIGURE 7. Feedback (a directed self-loop).

1. Reed and Roscoe [25] use an infimum over times where the two signals are identical. For discrete signals, the
two metrics are identical.
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d{s, s') = s(0 '̂ s'(r), rer|. (25)

If we define x such that

d(s, s') = -1 (26)
2^

then Xisthe smallest tag where s ands' differ (if such a tag exists), or the greatest lower bound on

the tags where they differ (if there is no smallest tag). Such asmallest tag always exists ifi and are

not identical and are discrete. For identical signals, we define

d{s,s) = 0, (27)

a sensible extrapolation from (25) (letx —»-» in(26)).

It is easy to verify that (25) is ametric. In fact, it is dxiultrometriCt meaning that instead of the tri

angle inequality,

d(s,s') +d(s',s")>d(s,s") (28)

it satisfies the stronger condition

max{d{s, s'), d(s', s")} ^ d{s, s"). (29)

This metric is sometimes called \h&Cantor metric^.

The Cantor metric converts our setof« -tuples ofsignals into a metric space. In this metric space,

two signals are *blose"(the distance is small) ifthey are identical up to alarge tag. The metric induces

an intuitive notion ofan open neighborhood. An open-neighborhood ofradius* isthe set ofall signals

that are identical at least up to and including the taglog2(r ^) •

1. The applicability ofthis metric in this context was pointed out to us by Gerard Berry.
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3.1.2 Causal strictly causal, and delta causalJunctions

We can use this metric to classify three different forms of causality. AfunctionF iS" —> 5" is

causal if for all s, s' e iS",

d{F{s),F(s'))^d{s,s'). (30)

In other words, two possible outputs differ no earlier than the inputs that produced them. A causal

fimction is said to henon-expansive in this metric space.

Afunction F:^ i& strictly causal iffor all s,s' e 5*",

diF{s),F{s'))<d{s,s'). (31)

In other words, two possible outputs differ later than the inputs that produced them (or not at all).

A function F :S^ S" is delta causal if there exists a real number 8< 1 such that for all

s,s'€ 5"*,

d(F(s),F(s'))^5d(s.s'). (32)

Intuitively, this means that there is a delay of at leastA= log2(8 ) , a strictly positive number,

before any output of aprocess can be produced in reaction to an input event. Inequality (32) is recog

nizable as the condition satisfied by dicontraction mapping.

The mergefunction, defined in (3), satisfies

rf(M(s).Af(s')) = d(s.s'). (33)

Hence, merge is causal, but not strictly or delta causal. The baised merge, defined in (6), satisfies

^(M^(s),Mt(s'))<d(s,s'). (34)

and thus is also causal.

Consider asource, likeF2* ^ figure 6. Since^S has only one element, ali, s e 5 are

equal. Thus, every functional (determinate) source is delta causal withS = 0 .

Edward A. Lee
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3.1.3 Fixedpoints

Causality turns out to play a central role in the existence and uniqueness ofbehaviors under feed

back composition. To understand this, we review some basic properties ofmetric spaces.

Ametric space iscomplete ifevery Cauchy sequence ofpoints in the metric space that converges,

converges to alimit that is also in the metric space. It can be verified that the set of signal^ in adis

crete-event system is complete. ThcBcuuich fixed point theorem (see for example [7]) states that if

F: X—¥X is a contraction m£q)ping and X is a complete metric space, then there is exactly one

jce X such that F(x) = x. This is called &faed point. Moreover, the Banach fixed point theorem

gives aconstructive way (sometimes calledrft^ fixed point algorithm) to find the fixed point. Given

any XqG X^x is the limitof the sequence

Xj = F(Xo).X2 = F(Xi),X3 = FiXj) ... (35)

Consider a feedback loop like that in figure 7 in a discrete-event tag system. The Banach fixed

point theorem tells us that if the process P is functional and delta causal, then the feedback loop has

exactly one behavior (i.e. it is determinate). This determinacy result was also proved by Yates [26],

although he used somewhat different methods. Moreover, the Banach fixed point theorem gives us a

constructive way to find that behavior. Start with any guess about the signals (most simulators start

with an empty signal), and iteratively apply the function corresponding to the process. This is exactly

what VHDL, Verilog, and other discrete event simulators do. Itis their operational semantics, and the

Banach fixed point theorem tells us that ifevery process in any feedback loop is adelta-causal func

tional process, then the operational semantics match the denotational semantic^ I.e., the simulator

delivers the right answer. We will study the operaUonal semanUcs ofsimulators in more detail below.

The contraction mapping condition prevents so-calledZe/io conditions where between two finite

1. This is sometimes called thefidl abstraction property.
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tags there can be an infinite number of other tags. Such Zeno conditions are not automatically pre

vented in VHDL, for example.

The constraint that processes be delta causal is fairly severe. We can slightly relax the delta causal

condition by observing that it is sufficient that there exist afiniteA^ such thatF^ is delta causal. I.e.,

Ncycles around afeedback loop introduce at leastA delay. This is still not ensured by VHDL simula

tors, for example, norby many other discrete-event simulators inpractical use.

Itis possible to reformulate things so that VHDL processes are correctly modeled as strictly causal

(not delta causal) (see [15] for details). Fortunately, aclosely related theorem (see [7], chapter 4) states

that if F: X->X isa strictly causal function and X isa complete metric space, then there i»t most

one fixed point xe X. F(x) = x. Thus, the "delta" delays in VHDL are sufficient to ensure determi-

nacy, but not enough to ensure that a feedback system has a behavior, nor enough to ensure that the

constructive procedure in (35) will work.

If the metric space iscompact rather than justcomplete, then strict causality is enough toensure

the existence of a fixed point and the validity of the constructive procedure (35) [7]. In general, the

metric space ofdiscrete-event signals is not compact, although it is beyond the scope ofthis paper to

show this. Thus, tobesure that a simulation will yield the correct behavior, without further constraints,

we must ensure that the function or a finite power of the function within any feedback loop is delta

causal.

3.2 COMPOSmONAUTY

We can now formulate precisely what conditions we wish the composition ofprocesses tosatisfy.

We denote acomposition of two processesFj c ^ andF2 C of the same sort by afunction

<ti: (36)

where
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«>(Pi,P2) = Pxr^PifC (37)

where C isthe intersection ofany number ofconnections ofthe same sort. We say tha^ ieomposi-

tional if is satisfies the following four conditions:

1. If Pi and P2 are functional, then(l)(Pi, Pj) isfunctional.

2. If Pi andPj are causal, then <|j(Pi,P2) is causal.

3. IfPi and P2 are stricdy causal, then(t)(Pi, P2) isstrictly causal.

4. If Pi and P2 are delta causal, then<j)(Pi, P2) isdelta causal.

3.2.1 Acyclic Compositions

First we address the easy case ofacyclic compositions oftwo processes. The general form of these is

shown in figure 8. In that figure, the arcs that are shown represent an arbitrary number of signals

(including zero) with indexes given by the sets adjacent to the arcs. These sets satisfy the following

constraints:

1. They are disjoint

2. 103l=|/3|.

3. Theirunionis{l,.., AO- •

The composition is given by

FIGURE 8. Generalized acyclic composition of twofunctional processes.
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(1)(Fi,P2) = PjOPj rc . (38)
C = {s:7Co^(s)=7C;^(s)}

This composition generalizes the ones shown in figures 1, 4, and 6, which is all acyclic compositions

we have considered. We wish toshow that ifPj andPj are functional thenj>(Pj, P2) isfunctional.

Let s, s' €<1) (Pi, P2). <|) is functional if

The left hand side implies

Since Pj is functional.

(39)

71; (S) =7C; (S') . (40)
'r ' M

V)=";j(s')

^Co,(s) =ito,(s') •
510,(5) =7Co^(s')

Since P2 is functional, (40) and(41)imply

5^02(5) =5^02(8') (^^^

which together with (41) implies the right hand side of (39), completing the proof.

Similar methods canbe used to show thatcausality properties arepreserved. Forexample, to show

that if Pj and Pj are causal that <l)(Pi, P2) iscausal, we need toshow that

)) ^ ^(%, u/2(®)»^/| u/2^®

Todo this, weusetheobservation that for any two setsA, P £ {1,.., N) , ands, s* e ,

<'(5CAuB(s)»5tAuB(S*)) = max{(/(7C^(s),7C^(s')), £?(5Cb(s),7C ^(s'))} • (44)

We leave the of the proof as an excercise for the reader. Similar proofs work for strict and delta

causality, so compositionality follows.
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5.2.2 Feedback Compositions

Consider a general form of feedback composition, shown in figure 9. We have omitted the irrele

vant signals. We wish to show that ifFj is functional and delta causal, then\|f(Pi) is functional and

strictly causal. To show that it is functional, we need to show that

ni^{s)=%f^{s')=>ito^{s) = (45)

In order to show this, we have to construct an appropriate delta causal functional process with associ

ated function F: , and then invoke the Banach fixed point theorem. This can be done for a

particular input tuple TCy^(s) = q. In figure 10, we redraw the feedback composition, inserting a

source process Q to produce the constant signalq , and looping back the outputs with indexesOj , so

that they become inputs to the composition(p(P], Q) . Although they are inputs, they are ignored. But

this device allows us to observe that since the composition is(p(Pj, Q) is similarto those represented

FIGURE 9. General form of feedback composition.

FIGURE 10. Temporary construction to analyze the feedback composition.
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by figure 8, then ifFj is delta causal, the composition will be functional and delta causal, and there

fore can be described by acontraction mappingF: , whereAf = |̂ ?il + •Thus, it has a

unique fixed point s andJCo^(s) =itOj(s') as desired in(45).

Note that inthis case, it isnotsufficient forPj tobemerely strictly causal, because inthis case we

would notbe assured of theexistence of a fixed point If it is merely causal, then wearenot assured of

either existence or uniqueness. As a result, it may be that\j/(Fj) isnoteven functional.

We conclude that discrete-event systems are compositional under acyclic composition, but not

under cyclic composition. Under cyclic composition, they are only compositional if the process in the

feedback loop is delta causal, or some finite power of its function is delta causal.

4. Simulation

Thediscrete-event model of computation is frequently used in simulators for such real-time appli

cations ascircuit design, communication network modeling, transportation systems, etc. Atypical dis

crete-event simulator operates by keeping a list of events sorted by time stamp. The event with the

smallest time stamp is 'processed" and removed from the list. What we mean by "processed" is that

any process that sees that event on any ofits input signal/irej, performing some computation inreac

tion to the event. In the course ofprocessing the event, new events may be generated. This simulation

procedure provides an operational semantics for DE systems. We are interested inwhether the opera

tional semantics matches the denotational semantics we have been studying.

4.1 SEQUENCES OF FIRINGS

Formally, the operational semantics is given in terms of ^ring function for each process (we

assume all processes are functional). The set offiring functions form -input,n -output processes has

the form
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r = {/:5'"x7'->5"xr}. (46)

That is, afiring function/ takes as arguments atuple ofsignals and atime stamp, and returns atuple of

signals an anew firing function (called continuation). Itisrequired to satisfy the followingjtutrenng

condition

/(A„, f) = (A „./) for alU e r. (47)

This condition states simply that nothing changes ifno input events are offered to the firing.

We can relate the firing function/ to the process functionF as follows. Lets e 5 be the input.

Construct s* = F(s), s' € 5", according to the following sequential procedure:

s- = A„

while (s ) {

letT = min{T{M{s)))

let (s,/) = /(S(T),T )

lets = s-s(T)

let s' = s' u s

} (48)

The first statement initializes an empty result. The while loop processes pending events. Within the

while loop, the first statement uses the merge operator to identify the smallest pending time stamps .

The second line fires the process, offering as input eventss(T) , the events with time stampc . The

third line uses setsubtraction to remove processed events, and the fourth line uses set union toappend

resulting events to the result.

4.2 RELATIONSHIP BETWEEN THE FIRING FUNCTION AND THE PROCESS FUNCTION

This procedure can be viewed as afunctional that, givei/ , returnsF . Consider the simple special

case where
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/(s,T) = (s',/). (49)

I.e., the continuation is always the same firing function. Inthis case, it is easy to see that i/ is causal,

strictly causal, or delta causal, then so isF .

For the more general case, given a firing function/" , define it^ closure

7cr (50)

tobethe setof all firing functions reachable from/ . ThenF iscausal orstrictly causal if all functions

in/ are causal, strictly causal.

Delta causality is slightly trickier in this case because we need a uniform contractionF is delta

causal if there exists a 6 < 1 s.L for all/' € / ,s, s' e 5" , andx e T ,

d{q,q')<d{s,s') . (51)
(qj") =/'(s,x)
(q',/'") =/'(s'.x)

I

4.3 SOURCES

Procedure (48) can be adapted for sources (wherem = 0 ) as follows:

s' = A„

X = 0

while {true) {

let(s,/) =/(a,x)

letx = min{T(M(s)))

lets' = s'us

} (52)

Notice that the time stamp is trackingthe outputevents rather than the input eventsnow.

It is fairly common in discrete-event simulators to disallow sources, requiring them instead to be

implemented using feedback loops like that in figure 11. We assume for simplicity in the sequel that
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this is the case.

4.4 OPERATIONAL SEMANTICS

Procedure (48) cannow be used as a basis for an operational semantics for a network of discrete-

event processes. Suppose there areN signals andM actors with firing function^^j,

empty input index sets /j,.., and output index sets Oj,.., .Lets e 5^ denote the events ini

tially present (note that there must besome togetthings started in this semantics). The procediire is

while (s Ajy) {

s' = Aff

letT = min(T{M{s)))

for each is {1,.., Af} {

let (sJi) = /;•(?!/,(s(T)),'C)

lets' = s'uAQ^jfis)

)

let s = (s-s(x))us'

where

where

Edward A. Lee

Ao..n(^) = [/>!• ••• Pi ^ ^

_ X if 0,.= [Oj,.., oj,

7C[j (S) if 0^=J

FIGURE 11. A self loop used to realize a source.

(53)

(54)

(55)
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Although Dotationally difficult, the operatorAQ^j^(s) is conceptually simple. Itchange the sort oi ,

augmenting it to dimensionTV by inserting empty signals into the tuple.

4.5 DISCUSSION

If thefiring functions or a finite power arealldelta causal, then the operational semantics matches

the denotational semantics (the simulation procedure does 'the right thing"). If there is a firing func

tion or interconnection of firing fimctions that isonly strictly causal in afeedback loop, then 2^no sig

nals become a possibility. In this case, a simulator may fail toprogress beyond a finite point in time. If

there is a firing function that is only causal in a feedback loop, then we have no assurance of their

being a denotational solution, much less m operational one.

In the latter case, lessons could be taken from the synchronous languages [4] to define a fixed-

pointsemantics at each time stamp. This could bedone with functional signals and firing functions that

are monotonic over a Scott order on the event values. Efficient procedures exist for finding such fixed

points at run time [9], so this is by no means a far-fetched approach.

5. Conclusions

We have given a formal framework for a class of models of real-time systems based on tagging

events with the time at which they occur. The framework supports answering questions of composi-

tionality and correctness of an operational semantics.

Discrete-event models arepopular and intuitive, since events must occur at a particular time. If we

accept that time is uniform (neglecting relativistic effects), then our model reflects the global ordering

of events intrinsic in an interleaving semantics. However, when modeling a large concurrent system,

the model should probably reflect the inherent difficulty in maintaining a consistent view of time in a

distributed system [10][14][21][24]. This difficulty appears even in relatively small systems, such as

VLSI chips, where clock distribution ischallenging. If an implementation cannot maintain aconsistent
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view of time across its subsystems, then it may be inappropriate for its model to do so (it depends on

what questions the model is expected to answer). Timed models based on branching time and partial

orders may be more appropriate [23][14][11][17]. Some preliminary steps have been taken by

Mathews towards unifying partial order methods with metric space methods like the ones used here

[18][19].

It is assumed above that when defining a system, the setsT andV include all possible tags and

values. In some applications, it may be more convenient to partition these sets and to consider the par

titions separately. For instance, V might be naturally divided into subsetsVj ,V2 ♦ —according to a

standard notion of data types. Similarly, T might be divided, for example to separately model parts of

a heterogeneous system that includes continuous-time, discrete-event, and dataflow subsystems. This

suggests a type system that focuses on signals rather than values. Of course, processes themselvescan

then also be divided by types, yielding sprocess-level type system that captures the semantic model of

the signals that satisfy the process, something like the interaction categoriesof Abramsky [1].
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