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The Ptolemy project studies heterogeneous modeling and design ofconcurrent systems. The focus
is on embedded systems, particularly those that mix technologies, including for example analog and
digital electronics, hardware and software, and electronics and mechanical devices (including MEMS,
microelectromechanical systems). The focus is also on systems that are complex in the sense that they
mix widely different operations, such as signal processing, feedback control, sequential decision mak
ing, and user interfaces.

Modeling is theact of representing a system or subsystem formally. A model might bemathemati
cal, in whichcase it can be viewed as a set ofassertions about properties ofthe systemsuch as its func
tionality or physical dimensions. A model can also be constructive, in which case it defines a
computational procedure that mimics a set of properties of the system. Constructive models are often
used to describe behavior of a system in response to stimulus from outside the system. Constructive
models are also called executable models.

Design is the act of defining a system or subsystem. Usually this involves defining one or more
models of the system and refining themodels until the desired functionality is obtained within a setof
constraints.

Design and modeling are obviously closely coupled. In some circumstances, models may be
immutable, in the sense that they describe subsystems, constraints, or behaviors that are externally
imposed ona design. For instance, they may describe a mechanical system that is not under design, but
must be controlled by an electronic system that is under design.

Executable models are sometimes called simulations, an appropriate term when the executable
model is clearly distinct from the system it models. However, in many electronic systems, a model that
starts as a simulation mutates into a software implementation of the system. The distinction between
the model and the system itself becomes blurred in this case. This is particularly true for embedded
software.

Embedded software is software that resides in devices that are not first-and-foremost computers. It
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is pervasive, appearing in automobiles, telephones, pagers, consumer electronics, toys, aircraft, trains,
security systems, weapons systems, printers, modems, copiers, thermostats, manufacturing systems,
appliances, etc.A technically active person probably interacts regularly with more pieces ofembedded
software than conventional software.

A major emphasis in the Ptolemy projectis on themethodologyfor defining andpro
ducing embedded software together with thesystems within which it is embedded.

Executable models are constructed under a model of computation^ which is the set of "laws of
physics*' thatgovern theinteraction of components inthe model. If the model is describing a mechani
calsystem, then themodel ofcomputation may literally bethe laws ofphysics. More commonly, how
ever, it is a set of rules that are moreabstract, and provide a framework within whicha designer builds
models. A set of rules thatgovern theinteraction ofcomponents is called thesemantics ofthemodel of
computation. A model of computation may have more Aan one semantics, in that there might be dis
tinct sets of rules that impose identical constraints on behavior.

The choice of model of computation depends strongly onthe type ofmodel being constructed. For
example, for a purely computational system that transforms a finite body of data into another finite
body of data, the imperative semantics that is common in programming languages such as C, C-H-,
Java, and Matlab wiU be adequate. Formodeling a mechanical system, the semantics needs tobe able
tohandle concurrency andthetime continuum, in which case a continuous-time model ofcomputation
such that found in Simulink, Saber, Hewlett-Packard's ADS, and VHDL-AMS is more appropriate.

The ability of a model to mutate into animplementation depends heavily on the model ofcompu
tation thatis used. Somemodels of computation, forexample, aresuitable for implementation only in
customized hardware, while others arepoorly matched tocustomized hardware because of their intrin
sically sequential nature. Choosing an inappropriate model ofcomputation may compromise the qual
ityofdesign by leading thedesigner into a more costly or less reliable implementation.

A principle of the Ptolemy project is that the choices of models of computation
stronglye^ect the qualityofa system design.

Forembedded systems, the most useful models ofcomputation handle concurrency and time. This
is because embedded systems consist typically of components that operate simultaneously and have
multiple simultaneous sources ofstimuli. Inaddition, they operate ina timed (real world) environment,
where the timeliness of their response to stimuli may be as important as the correctness of the
response.

The objective in Ptolemy II is tosupport the construction andinteroperability ofexe
cutable models that are built under a wide variety ofmodels ofcomputation.

2. mms Of eoMPOTArm

There are a rich variety ofmodels ofcomputation that deal with concurrency and time in different
ways. In tiiis section, we outline some ofthe most useful models for embedded systems. All of these
will lenda semantics to the samebubble-and-arc, or block-and-arrow diagram shownin figure 2.1.
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Z1 VlffERENTIAL EQUATIONS

One possible semantics for the syntax in figure 2.1 is that ofdifferential equations. The arcs repre
sentcontinuous functions of a continuum that is interpreted as time. The bubbles represent relations
between these functions. The job ofa simulator is tofind a fixed-point, i.e., a set offunctions that sat
isfy all the relations.

Differmtial equations are excellent for modeling analog circuits and many physical systems. This
is the model ofcomputation used in Simulink, Saber, and VHDL-AMS, and is closely related to that in
Spice circuit simulators. However, they have disadvantages. Since they directly describe a physical
system, they are tightly bound to an implementation, leaving few implementation options. Moreover,
they are only applicable to relatively well-understood technologies, where lumped-parameter model
ing is ^propriate. They must be generalized to partial differential equations for less understood tech
nologies, where solution techniques such as finite elements can be quite costly. For well-understood
technologies, they can be expensive to simulate compared to digital representations ofcomparable
function^^ (and hence, they can be expensive to implement in software).

Embedded systems frequently contain components that are best modeled using differential equa
tions, such as MEMS and other mechanical components, analog circuits, and microwave circuits.
These components, however, interact with an electronic system that may serve as a controller or a
recipient ofsensor data. This electronic system may be digital, in which case there is a fundamental
mismatch inmodels ofcomputation. Joint modeling ofa continuous subsystem with digital electronics
is known as mixed signal modeling.

12 DIfFERENCE EQUATIONS

Differential equations can be discretized to get difference equations, a commonly used model of
computation indigital signal processing. This model ofcomputation can be further generahzed to sup
port multirate difference equations. In either case, a global clock defines the discrete points at which
signals have values (at the ticks).

Difference equations are considerably easier toimplement in software, and hence leave more free
dom of implementation. Their key weaknesses are the global synchronization implied by the clock,
and the awkwardness of specifying irregularly timed events and control logic.

The synchronous dataflow (SDF) domain inPtolemy n isextended with a model oftime to model
difference equations. Dataflow models arediscussed below in section 2.7.

FIGURE 2.1. A single syntax (bubbie-and-arc orblock-and-arrow diagram)
can havea numberof possiblesemantics (interpretations).
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Z3 FINITS-STATE mmES

In FSMs, bubbles represent system state and arcs represent state transitions. The simple FSM
model ofcomputation is notconcurrent. Execution isa strictly ordered sequence ofstate transitions.

FSM models are excellent for control logic in embedded systems, particularly safety-critical sys
tems. FSM models are amenable to in-depth formal analysis, and thus canbe used to avoid surprising
behavior. Moreover, FSMs areeasily mapped to either hardware orsoftware implementations.

FSM models have a number of key weaknesses. First, at a very fundamental level, they arenot as
expressive as the odier models of computation described here. They are not sufficiently rich to
describe all partially recursive functions. However, this weakness is acceptable in light ofthe formal
analysis that becomes possible. Many questions about designs are decidable for FSMs and undecidable
for other models ofcomputation. Asecond key weakness is that the number ofstates can get very large
even in thefaceof onlymodest complexity. This makes themodels unwieldy.

The latter problem can often be solved by using FSMs in combination with concurrent models of
computation. This was first noted by David Harel, who introduced that Statecharts formalism. State-
charts combine a loose version of synchronous-reactive modeling (described below) with FSMs [8].
FSMs have also been combined with differential equations, yielding the so-caUed hybrid systems
model of computation [9].

Amajor (ongoing) result ofthe Ptolemy project has been to show that FSMs can be hierarchically
combined with a huge variety ofconcurrent models ofcomputation. We call the resulting formalism
"♦charts" (pronounced "starcharts") where the star represents a wildcard [7].

2.4 SmemONOUS/RFACmMODELS

In the synchronous/reactive (SR) model ofcomputation [1], the arcs represent data values that are
aligned with global clock ticks. Thus, they are discrete signals, as with difference equations, but unlike
difference equations, asignal need not have avalue at every clock tick. The bubbles represent relations
between input and output values at each tick, and are usually partial functions with certain technical
restrictions to ensure determinacy. Examples of languages that use the SR model of computation
include Esterel [3],Signal [2],Lustre[5], andArgos [16].

SR models are excellent for applications with concurrent and complex control logic. Because of
the tight synchronization, safety-critical real-time applications are a good match. However, also
because ofthe tight synchronization, some applications are overspecified in the SR model, limiting the
implementation alternatives. Moreover, in most realizations, modularity is compromised by the need
to seeka globalfixedpoint at eachclocktick.

25 DtSCKETE-EVENTMODELS

In discrete-event (DE) models ofcomputation, the arcs represent sets ofevents placed intime. An
event consists of a value and time stamp. This model ofcomputation is popular for specifying hard
ware and simulating teleconununications systems, and has been reahzed in alaige number of simula
tion environments, simulation languages, and hardware description languages, including VHDL and
Verilog. Unlike the SR model, there is no global clock tick, but like SR, differential equations, and dif
ference equations, there isa globally consistent notion oftime.

DE models are excellent descriptions of concurrent hardware, although increasingly the globally
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consistent notion oftime is problematic. In particular, itover-specifies (or over-models) systems where
maintaining such aglobally consistent notion is difficult, including large VLSI chips with high clock
rates. Akey weakness is diat it is relatively expensive to implement in software, as evidenced by the
relatively slow simulators.

2.6 SmmONOUS mSSA6E PASSING

In synchronous message passing, processes conununicate in atomic, instantaneous actions called
rendezvous. Iftwo processes are to communicate, and one reaches the point first at which itis ready to
communicate, then it stalls until the other process is ready to communicate. "Atomic" means that the
two processes are simultaneously involved in the exchange, and that the exchange is initiated and com
pleted in a single uninteiruptable step. Examples of rendezvous models include Hoare sconwiunicat-
ing sequential processes (CSP) [ll]and Milner*s calculus ofcommunicating systems (CCS) [19]. This
model of computation has been realized in anumber of concurrent programming languages, including
Lotos and Occam.

Rendezvous models are particularly well-matched to applications where resource sharing is akey
element, such as client-server database models and multitasking or multiplexing of hardware
resources. Akey weakness of rendezvous-based models is that maintaining detemunacy can be diffi
cult. Proponents of the approach, of course, cite the ability to model nondeterminacy as akey strength.

2.7 ASmmONOUS MESSAGE PASSING

In asynchronous message passing, processes communicate by sending messages through channels
that can buffer the messages. The sender ofthe message need not wait for the receiver to be ready to
receive the message. There are several variants of this technique, but we focus on those that ensure
determinate computation, namely Kahn process networks [12] and dataflow models.

In a process network (PN) model of computation, the arcs represent sequences of data values
(tokens), and the bubbles represent functions that map input sequences into output sequences. Certain
technical restrictions on these functions are necessary to ensure detemunacy, meaning that the
sequences are fully specified. Dataflow models, popular in signal processing, are aspecial case of pro
cess networks [14].

PN models are excellent for signal processing. They are loosely coupled, and hence relatively easy
to parallelize or distribute. They can be implemented efficiently in both software and hardware, and
hence leave implementation options open. Akey weakness of PN models is that they are awkward for
specifying control logic.

Several special cases ofPN are useful in certain circumstances. Dataflow models construct pro
cesses ofaprocess network as sequences ofatomic octotfirings. Synchronous dataflow (SDF) is apar
ticularly restricted special case with the extremely useful property that deadlock and boundedness are
decidable. Boolean dataflow (BDF) is a generalization that sometimes yields to deadlock and bound
edness analysis, althou^ fundamentally these questions are undecidable. Dynamic dataflow (DDE)
uses only run-time analysis, and thus makes no attempt to statically answer questions about deadlock
and boundedness. The general case, process networics (PN), is implemented in Ptolemy n using Java
threads for the processes.

Heterogeneons ConcuiTent Modelingand Design
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2.8 TIMBD CSP AND TtrnV PN

CSP and PN both involve threads that communicate via message passing, synchronously in the
former case and asynchronously in the latter. Neither model intrinsically includes a notion of time,
which can make it difficult to interoperate with models that do include a notion of time. In fact, mes
sage events are partially ordered, rather than totally ordered as they would be were they placed on a
time line.

Both models ofcomputation can beaugmented with a notion oftime topromote interoperability.
Threads assume that timedoes not advance while they areactive, butcanadvance when they stall on
inputs, outputs, orexplicitly indicate that time can advance. By this vehicle, additional constraints are
imposed on the order ofevents, and determinate interoperability with timed models ofcomputation
becomes possible.

3. CHOOsm moms of computation

The rich variety of concurrent models of computation outlined in the previous section can be
daunting to adesigner faced with having to select them. Most designers today do not face this choice
because they get exposed to only one or two. This is changing, however, as the level of abstraction and
domain-specificity ofdesign software both rise. We expect that sophisticated and highly visual user
interfaces wUl be needed to enabledesigners to copewiththis heterogeneity.

An essential difference between concurrent models of computation is their modeling of time.
Some are very explicit by taking time to be areal number that advances uniformly, and placing events
on a time line orevolving continuous signals along the time line. Others are more abstract and take
time to be discrete. Others are still more abstract and take time to be merely a constraint imposed by
causality. This latter interpretation results in time that is partially ordered, and explains much of the
expressiveness in process networks and rendezvous-based models of computation. Partially ordered
time provides a mathematical framework for formally analyzing and comparing models of computa
tion [15].

Agrand unified approach to modeling would seek aconcurrent model of computation that serves
all purposes. This could be accomplished by creating amelange, amixture of all of the above, but such
a mixture would be extremely complex and difficult to use, and synthesis and simulation tools would
be difficult to design.

Another alternative would be tochoose one concurrent model ofcomputation, say the rendezvous
model, and show that all the others are subsumed as special cases. This is relatively easy to do, in the
ory. Most of these models of computation are sufficiently expressive to be able to subsume most of the
others. However, this fails to acknowledge the strengths and weaknesses ofeach model ofcomputa
tion. Differential equations, for instance, are very good at describing the interaction of point masses in
amodel ofaMEMS system, but not as good at describing the discrete control logic ffiat may be ulti
mately controlling the actuators in the MBMS system. Similarly, finite-state machines ^e good at
modeling at least simple control logic, but hopelessly inadequate for modeling the interaction of point
masses. Thus, to design interesting systems, designers need to use heterogeneous models.
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4. VISUAL symtis

Visual depictions ofelectronic systems have always held a strong human appeal, making them
extremely effective in conveying information about adesign. Many of the domains of interest in the
Ptolemy project use such depictions to completely and formally specify models.

One ofthe principles ofthe Ptolemy project is that visual depictions ofsystems can
help to offset the increased complexity that is introduced by heterogeneous modeling.

These visual depictions offer an alternative syntax to associate with the semantics of amodel of com
putation. Visual syntaxes can be every bit as precise and complete as textual syntaxes, particularly
when they arejudiciouslycombined withtextual syntaxes.

Visual representations of models have amixed history. In circuit design, schematic diagrams used
to be routinely used to capture all of the essential information needed to implement some systems.
Schematics are often replaced today by text in hardware description languages such as VHDL or Ver-
ilog. In other contexts, visual representations have largely failed, for example flowcharts for capturing
the behavior ofsoftware. Recently, anumber ofinnovative visual formalisms have been garnering sup
port, including visual dataflow, hierarchical concurrent finite state machines, and object models. The
UML visual language for object modeling has been receiving a great deal of attention, and in fact is
used fairly extensively in the design of Ptolemy n itself.

A subset of visual languages that are recognizable as "block diagrams" represent concurrent sys
tems. There are many possible concurrency semantics (and many possible models of computation)
associated with such diagrams. Formalizing the semantics is essential ifthese diagrams are to be used
for system specification and design. Ptolemy n supports exploration of the possible concurrency
semantics. Aprinciple ofdie project is that the strengths and weaknesses of these alternatives make
them complementary rather than competitive. Thus, interoperability of diverse models is essential.

5. PTOLEMY II

Ptolemy n is a complete, from the ground up, redesign ofthe Ptolemy 0.x software environment
[4], which supports heterogeneous modeling and design of concurrent systems. Itoffers aunified infra
structure for implementations ofanumber ofmodels ofcomputation. The overall architecture consists
ofa set ofpackages that provide generic support for all models ofcomputation and a set ofpackages
tiiat provide more specialized support for particular models ofcomputation. Examples ofthe former
include packages that contain math libraries, graph algorithms, an interpreted expression language,
signal plotters, and interfaces to media capabilities such as audio. Examples of the latter include pack
ages that support clustered graph representations of models, packages that support executable models,
and domains, which arepackages that implement a particular model ofcomputation.

5.1 pAcmsmocrm

The package structure is shown in figure 5.1. This is aUML package diagram [22]. The name of
each package is in the tab at the top of each box. Subpackages are contained within their parent pack
age. Dependencies between packages are shown by dotted lines with arrow heads. For example, actor
depends on kemeievent which depends on kernel which depends on kemeiutil Actor also depends on
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FIGURE 5.1. The package structure of Ptolemy 11. The actor.lib package has not yet been fully con
structed.
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data and graph. The role ofeach package isexplained below.
actor This package supports executable entities that receive and send data through ports.

It includes both untyped and typed actors. For typed actors, it implements a sophis
ticated type system that supports polymorphism. Itincludes the base class Director
fordomain-specific classes that control the execution ofamodel,

actor.lib This subpackage is a library ofpolymorphic actors.
actor.process This subpackage provides infrastructure for domains where actors are processes

implemented on top of Java threads.
actor.sched This subpackage provides infrastructure for domains where actors are statically

scheduled by the director,

actor.util This subpackage contains utilities that support directors in various domains. Spe
cifically, it contains asimple FIFO Queue and asophisticated priority queue called
a calendar queue.

data This package provides classes that encapsulate and manipulate data that is trans
portedbetween actors in Ptolemy models,

data.expr This class supports an extensible expression language and an interpreter for that
language. Parameters can have values specified by expressions. These expressions
may refer to other parameters. Dependencies between parameters are handled
transparently, as in aspreadsheet, where updating the value of one will result in the
update of all those that depend on it.

graph This package provides algorithms for manipulating and analyzing mathematical
graphs. Mathematical graphs are simpler than Ptolemy II clustered graphs in that
there is nohierarchy, and arcs link exactly two nodes. This package isexpected to
supply a growing library of algorithms,

kernel This package provides the software architecture for the key abstract syntax, clus
tered grzq)hs. The classes in this package support entities with ports, and relations
that connect the ports. Clustering is where acollection ofentities is encapsulated in
a single composite entity, and asubset ofthe ports ofthe inside entities are exposed
as ports of the cluster entity,

kernel.event This package contains classes and interfaces that support controlled mutations of
clustered graphs. Mutations are modifications inthe topology, and ingeneral, they
are pemiitted to occur during the execution ofa model. But in certain domains,
where maintaining determinacy isimperative, the director may wish to exercise
tight control over precisely when mutations are performed. This package supports
queueing ofmutation requests for later execution. Ituses apublish-and-subscribe
design pattern.

kernekutil This subpackage ofthe kernel package provides a collection ofutility classes that
donotdepend on the kemel package. It isseparated into asubpackage so that these
utility classes can be used without the kemel. The utilities include acollection of
exceptions, classes supporting named objects with attributes, lists ofnamed
objects, a specialized cross-reference list class, and athread class that helps
Ptolemy keep track of executing threads,

math This package encapsulates mathematical functions and methods for operating on
matrices and vectors. It also includesa complexnumber class and a class support
ing fractions.
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media This package encapsulates aset ofclasses supporting audio and image processing,
plot This package provides two-dimensional signal plotting widgets,
schematic This package provides a top-level interface to Ptolemy n. AGUI can use the

clsisses in this package togain access toPtolemy n models.

5.2 OmVIEW OF m CLASSES

Some ofthe key classes inPtolemy n are shown in figure 5.2. This isastatic structure diagram in
UML (unified modeling language). The key syntactic elements are boxes, which represent classes, the
hollow arrow, which indicates generalization, and other lines, which indicate association. Some lines
have a small diamond, which indicates aggregation.

Instances of all of the classes shown canhave names; they all implement the Nameable interface.
Most of the classes generalize NamedObj, which in addition to being nameable can have a list of

Attribute L
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o
0..1

container 0..n

•Interface*

NutmbU

Port

<j

Woricspece

link 0..n
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anetor

0..1

FIGURE 5.2. Some ofthe key classes in Ptolemy II. These are defined in the kernel, kemeiuiil, and actor
packages.
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attributesassociated with it Attributes themselves are instances of NamedObj.
Entity, Port, and Relation are three key classes that extend NamedObj. These classes define the

primitives of the abstract syntax supported by Ptolemy n. They will be fully explained in the kernel
chapter. ComponentPoit, ComponentRelation, and ComponentEntity extend these classes by adding
support for clustered graphs. CompositeEntity extends ComponentEntity and represents an aggrega
tion of instances of ComponentEntity andComponentRelation.

The Executable interface defines objects that can be executed. The Actor interface extends this
with c^ability for transporting data through ports. AtomicActor and CompositeActor are concrete
classes that implement diis interface.

An executable Ptolemy n model consists ofatop-level CompositeActor with an instance ofDirec
tor and an instance ofManager sissociated with it The manager provides overall control ofthe execu
tion (starting, stopping, pausing). The director implements a semantics ofa model ofcomputation to
govern theexecution of actors contained by theCompositeActor.

Director is thebase class for directors that implement models of computation. Each such director
is associated witha domain. We havedefined in Ptolemy n directors thatimplement continuous-time
modeling (ODE solvers), process networks, synchronous dataflow, discrete-event modeling, and com
municating sequential processes.

5.3 CAPABILITISS

Ptolemy n isa second generation system. Its predecessor, Ptolemy 0.x, still has many active users
and developers, and may continue to evolve for some time. Ptolemy II has a somewhat different
emphasis, and through its use ofJava, concurrency, and integration with the network, is aggressively
experimental. Some of the major capabilities in Ptolemy n that we believe to be new technology in
modeling and design environments include:
• Higher level concurrent design in Javc^^. Java support for concurrent design is very low level,

based onthreads andmonitors. Maintaining safety and liveness canbequite difficult [13]. Ptolemy
n includes a number ofdomains that support design ofconcurrent systems ata much higher level
ofabstraction. These include, at varying levels ofmaturity, process networks, communicating
sequential processes (rendezvous based), dataflow, synchronous/reactive modeling, continuous-
time modeling, and hierarchical concurrent finite-state machines.

• Better modularizotion through the use ofpackages. Ptolemy n isdivided into packages that can be
used independently and distributed on the net, ordrawn on demand from aserver. This breaks with
tradition indesign software, where tools are usually embedded in huge integrated systems with
interdependent parts.

• Complete separation ofthe abstract syntaxfrom the semantics. Ptolemy designs are structured as
clustered graphs. Ptolemy n defines a clean and thorough abstract syntax for such clustered
graphs, and separates into distinct packages the infrastructure supporting such graphs from mecha
nisms thatattach semantics (such asdataflow, analog circuits, finite-state machines, etc.) to the
graphs.

• Improved heterogeneity. Previous realizations ofPtolemy provided a wormhole mechamsm for
hierarchically coupling heterogeneous models ofcomputation. This mechamsm isimproved in
Ptolemy n thmngh the use ofopaque composite actors, which provide better support for models of
computation dial are very different from dataflow, the best supported model in prior versions of
Ptolemy software. These include hierarchical concurrent finite-state machines and continuous-
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time modeling techniques.

• Thread-safe concurrent execution. Ptolemy models are typically concurrent, butin the past, sup
port forconcurrent execution ofa Ptolemy model has been primitive. Ptolemy II supports concur
rency diroughout, allowing for instance for a model tomutate (modify itsclustered graph
structure) while die userinterface simultaneously modifies the structure in different ways. Consis
tency is maintained through the use ofmonitors and read/write semaphores [11] built upon the
lower level synchronization primitives of Java.

• Asoftware architecture based on object modeling. Since the first Ptolemy implementation, soft
ware engineering has seen the emergence ofsophisticated object modeling [18][23][25] and
design pattern [6] concepts. We have applied these concepts to the design ofPtolemy n, and they
haveresulted in a more consistent, cleaner, andmorerobust design. Wehave alsoapplied a simpli
fied software engineering process that includes systematic design and code reviews [17][21].

• Atruly polymorphic type system. Earlier implementations ofPtolemy supported rudimentary poly
morphism through the "anytype" particle. Even with such limited polymorphism, type resolution
proved challenging, and the implementation is ad-hoc and fragile. Ptolemy n has amore modem
type system based on apartial order of types and monotonic type refinement functions associated
with functional blocks. TVpe resolution consists of finding afixed point, using algorithms inspired
by the type system in ML [20].

• Domain-polymorphic actors. In earlier implementations ofPtolemy, actor libraries were separated
by domain. Through the notion ofsubdomains, actors could operate in more than one domain. In
Ptolemy E,this idea is taken much further. Actors with intrinsically polymorphic functionality can
be written to operate in a much larger set ofdomains. The mechamsm they use to communicate
with other actors depends on the domain in which they are used. This ismanaged through acon
cept that we call a process level type system.

5.4 FUmECAPABimS

Capabilities that we anticipate making available inthe future include:
• Extensible XML-basedfile formats. XML isan emerging standard for representation ofinforma

tion that focuses on the logical relationships between pieces ofinformation. Human-readable rep
resentations are generated with the help ofstyle sheets. Ptolemy E will use XML as its primary
format for persistent design data.

• Interoperability through software components. Ptolemy Ewill use distributed software component
technology such as CORBA, JINI, or COM, in anumber of ways. Components (actors) in a
Ptolemy E model will be implementable on aremote server. Also, components may be parameter
ized where parameter values are supplied by aserver (this mechanism supports reduced-order
modeling, where the model is provided by the server). Ptolemy Emodels will be exported via a
server. Andfinally, Ptolemy E will support migrating software components.

• Embedded software synthesis. Pertinent Ptolemy Edomains will be tuned to run on aJava virtud
machine onanembedded CPU. Hardware, firmware, and configurable hardware components will
expose abstractions to this Java software that obey the model of computation of the pertinent
domain. Java's native code interface will beused to define a stub for the embedded hardware com
ponents so that they are indistinguishable from any other Java thread within the model of computa
tion. Domains that seem particularly well suited to this approach include PN and CSP.

• Embedded hardware synthesis. Earlier versions of Ptolemy had only very weak mechanisms for
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migrating designs from idealized floating-point simulations through fixed-point simulations to
embedded software, FPGA, and hardware designs. Ptolemy n will separate the interface definition
of component blocks from their implementation, allowing libraries to be constructed where com
patibility across implementation technologies is assured [24]. This work is currently being proto
typed in Ptolemy 0.7.1.

• Integrated verification tools. Modem verification tools based on model checking [10] could be
integrated with Ptolemy n at least to the extent that finite state machine models can be checked.
We believe that die separation of control logic from concurrency will greatly facilitate ve^cation,
since only much smaller cross-sections of the system behavior will be offered to the verification
tools.
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