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1.1 Movum m mi6N

The Ptolemy project studies heterogeneous modeling and design ofconcurrent systems. The focus
is on embedded systems, particularly those that mix technologies, including for example analog and
digital electronics, hardware and software, and electronics and mechanical devices (including MEMS,
microelectromechanical systems). The focus isalso on systems that are complex inthe sense that they^
mix widely different operations, such as signal processing, feedback control, sequential decision mak
ing, and user interfaces.

Modeling is the act ofrepresenting asystem or subsystem formaUy. Amodel might be mathemati
cal, in which case itcan beviewed as a set ofassertions about properties ofthe system such as its func
tionality or physical dimensions. A model can also be constructive, in which case it defines a
computational procedure that mimics aset ofproperties ofthe system. Constructive models are often
used to describe behavior ofa system in response to stimulus from outside the system. Constructive
models are also called executable models.

Design is the act ofdefining a system or subsystem. Usually this involves defining one or more
models ofthe system and refining the models until the desired fiinctionality isobtained within a set of
constraints.

Design and modeling are obviously closely coupled. In some circumstances, models may be
immutable, in the sense that they describe subsystems, constraints, or behaviors that are externally
imposed on adesign. For instance, they may describe amechanical system that isnot under design, but
mustbe controlled by an electronic system that is underdesign.

Executable models are sometimes called simulations, an appropriate ten® when the executable
model isclearly distinct from the system it models. However, inmany electronic systems, a model that
starts as a simulation mutates into a software implementation oif the system.'The distinction between
the model and the system itself becomes blurred in this case. This is particularly true for embedded
software.

Heterogeneous Concurrent Modelingand Design 1-1
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Embedded software is softwaie that resides in devices that are not first-and-foremost computers. It
is pervasive, appearing in automobiles, telephones, pagers, consumer electronics, toys,aircraft, trains,
security systems, weapons systems, printers,jmodems, copiers, thermostats, manufacturing systems,
appliances, etc.A technically active person probably interacts re^larly withmore pieces of embedded
software than conventional software.

A major emphasis in Ptolemy II is on the methodologyfor defining and producing
embedded software togetherwith thesystems within which it is embedded.

Executable models are constructed under a model of computation^ which is the set of **laws of
physics*' thatgovern theinteraction ofcomponents in themodel. If themodel is describing a mechani
cal system, thenthe model of computation mayliterally be the laws of physics. Morecommonly, how
ever, it is a set of rules that are more abstract,and provide a fnuneworkwithin which a designerbuilds
models. A setof rules thatgovern theinteraction ofcomponents iscalled ihtsemantics of themodel of
computation. A model of computation may have more than onesemantics, in thatthere might be dis
tinct sets of rules that impose identical constraints on behavior.

The choice of model of computation depends strongly on thetypeof model being constructed. For
example, for a purely computational system that transforms a finite body of data into another finite
body of data, the imperative semantics that is common in programming languages such as C, C++,
Java, andMatlab will be adequate. Formodeling a mechanical system, the semantics needs to be able
to handle concurrency and thetime continuum, in which casea continuous-time model of computation
such that found in Simulink, Saber, Hewlett-Packard's ADS, and VHDL-AMS is more appropriate.

Theability of a model to mutate intoan implementation depends heavily onthe model of compu
tation that is used. Some models ofcomputation, for example, are suitable for implementation only in
customized hardware, while others arepoorly matched to customized hardware because of theirintrin
sically sequential nature. Choosing aninappropriate model ofcomputation may compromise thequal
ityof design by leading thedesigner intoa more costly or less reliable implementation.

A principle of the Ptolemy project is that the choices of models of computation
strongly affectthe qualityofa system design.

Forembedded systems, the most useful models ofcomputation handle concurrency and time. This
is because embedded systems consist typically of components that operate simultaneously and have
multiple simultaneous sources ofstimuli. Inaddition, they operate ina timed (real world) environment,
where the timeliness of their response to stimuli may be as important as the correcmess of the
response.

The objective in Ptolemy II is to support the construction and interoperability of
executable models that are built under a wide variety ofmodels ofcomputation.

U mVUS Of COMPUTAWN

There area rich variety ofmodels ofcomputation that deal with concurrency and time in different
ways. In this section, we outline some ofthe most useful models for embedded systems. All of these
will lend a semantics to the same bubble-and-arc,or block-and-airowdiagram shown in figure 1.1.
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One possible semantics for the syntax infigure 1.1 is that ofdifferential equations. The arcs repre
sentcontinuous functions of a continuum that is inteipreted as time. The bubbles rqiresent relations
between these functions. Thejob of a simulator is tofind a fixed-point, i.e.,a setof functions thatsat
isfy all the relations.

Differential equations are excellent for modeling analog circuits and many physical systems. This
is the model ofcomputation used in Simulink, Saber, and VHDL-AMS, and is closely rela^to that in
Spice circuit simulators. However, they have disadvantages. Since they directly describe a physical
system, they are tightly bound to animplementation, leaving few implementation options. Moreover,
they are only applicable to relatively well-understood technologies, where lumped-parameter model
ing is appropriate. They must begeneralized topartial differential equations forless understood tech
nologies, where solution techniques such as finite elements can bequite costly. For well-understood
technologies, they can be expensive to simulate compared to digital representations of comparable
fiinction^ty (and hence, they can be expensive to implement in software).

Embedded systems frequently contain components that are bestmodeled using differential equa
tions, such as MEMS and other mechanical components, analog circuits, and microwave circuits.
These components, however, interact with an electronic system that may serve as a controller or a
recipient of sensor data. This electronic system may bedigital, in which case there is a fundamental
mismatch in models ofcomputation. Joint modeling ofa continuous subsystem with digital electronics
is known as mixed signal modeling.

12.2 VifFERENCi KUATIOHS

Differential equations can be discretized to get difference equations, a conunonly used model of
computation in digital signal processing. This model of computation canbefurther generahzed to sup
port multirate difference equations. In either case, a global clock defines thediscrete points at which
signals have values (at the ticks).

Difference equations areconsiderably easierto implement in software, andhenceleave morefree
dom of implementation. Their key weaknesses are the global synchroni2:ation implied by the clock,
and the awkwardness of specifying irregularly timed events and control logic.

The synchronous dataflow (SDF)domain in Ptolemy n is extended witha modelof timeto model
difference equations. Dat^ow models are discussed below in section 1.2.7.

FIGURE 1.1. A single syntax (bubble-and-arc or block-and-arrow diagram)
can have a number of possible semantics (interpretations).

Heterogeneous Concurrent Modeling and Design 1-3
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In FSMs, bubbles represent system state and arcs represent state transitions. The simple FSM
model ofcomputation isnot concurrent. Execution isa strictly ordered sequence ofstate transitions.

FSM models areexcellent for control logic in embedded systems* particularly safety-cntical sys
tems. FSM models are amenable toin-depth formal analysis* and thus can beused toavoid surprising
behavior. Moreover* FSMs are easily mapped toeither hardware orsoftware implementations.

FSM models have a number ofkey weaknesses. First* at a very fundamental level* they arenotas
expressive as the other models of computation described here. They are not sufficiently rich to
describe all partially recursive functions. However* this weakness isacceptable in light ofthe formal
analysis that becomes possible. Many questions about designs are decidable for FSMs and undecidable
for other models ofcomputation. Asecond key weakness isthat the number ofstates can get very large
even in theface of only modest complexity. This makes themodels unwieldy.

The latter problem can often be solved by using FSMs in combination with concurrent models of
computation. This was first noted by David Harel* who introduced that Statecharts formalism. State-
charts combine a loose version of synchronous-reactive modeling (described below) with FSMs [15].
FSMs have also been combined with differential equations* yielding the so-called hybrid systems
model of computation [17].

Amajor (ongoing) result ofthe Ptolemy project has been to show that FSMs can be hierarchically
combined with a huge variety ofconcurrent models ofcomputation. We call the resulting formalism
"♦charts" (pronounced "starcharts") where the star represents a wildcard [14].

U.4 SYNCHRONOUS/RiACm MODELS

In the synchronous/reactive (SR) model of computation [4], the arcs represent data values that ^
aligned with global clock ticks. Thus, they are discrete signals, as with difference equations* but unlike
difference equations, asignal need not have avalue at every clock tick. The bubbles represent relations
between input and output values at each tick, and are usually partial functions with certain technical
restrictions to ensure determinacy. Examples of languages that use the SR model of computation
includeEsterel [6], Signal [5],Lustre [9], and Argos [24].

SR models are excellent for applications with concurrent and complex control logic. Because of
the tight synchronization, safety-critical real-time applications are a good match. However, also
because of the tight synchronization* some applications are overspecified in the SR model* limiting the
implementation alternatives. Moreover, in most realizations, modularity is compromised by the need
to seek a global fixed point at each clock tick.

U.5 mCRETHVENTMODELS

In discrete-event (DE) models ofcomputation, the arcs represent sets ofevents placed in time. An
event consists ofa value and time stamp. This model ofcomputation is popular for specifying hard
ware and simulating telecommunications systems, and has been realized in a large number ofsimula
tion environments, simulation languages, and hardware description languages, including VHDL and
Verilog. Unlike the SR model, there is no global clock tick* but like SR* differential equations* and dif
ference equations, there isaglobally consistent notion oftime.

DE models are excellent descriptions ofconcurrent hardware* although increasingly the globally
consistent notion oftime is problematic. In particular, itover-specifies (or over-models) systems where
maintaining such aglobally consistent notion is difficult, including large VLSI chips with high clock
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rates. A key weakness is that it is relatively expensive to implement in software, as evidenced bythe
relatively slow simulators.

116 mcmoNovs msA^ PASsm

In synchronous message passing, processes communicate in atomic, instantaneous actions called
rendezvous. If two processes aretocommunicate, and one reaches the point first at which it is ready to
communicate, then it stalls until the other process is ready to communicate. "Atomic" means thatthe
two processes are simultaneously involved inthe exchange, and that the exchange isinitiated and com
pleted ina single uninterruptable step. Examples ofrendezvous models include Hoare*s communicat
ing sequentialprocesses (CSP) [19] and Milner's calculus ofcommunicating systems (CCS) [27]. This
model ofcomputation has been realized ina number ofconcurrent programming languages, including
Lotos and Occam.

Rendezvous models areparticularly well-matched to ^iplications where resource sharing is a key
element, such as client-server database models and multitasking or multiplexing of hardware
resources. A key weakness of rendezvous-based models is diatmaintaining determinacy canbe diffi
cult. Proponents ofthe approach, ofcourse, cite the ability tomodel nondeterminacy asa key strength.

1.2.7 ASYNCmOHOUS MESSAGE PASSm

Inasynchronous message passing, processes communicate bysending messages through channels
thatcanbuffer themessages. The sender of the message need notwait for the receiver to be ready to
receive the message. There are several variants of this technique, but we focus on those that ensure
determinate computation, namely Kahn process networks [20] anddataflow models.

In a process network (PN) model of computation, the arcs represent sequences of data values
(tokens), andthebubbles represent functions that map input sequences intooutput sequences. Certain
technical restrictions on these functions are necessary to ensure determinacy, meaning that the
sequences arefully specified. Dataflow models, popular in signal processing, area special caseof pro
cess networks [22].

PN modelsare excellentfor signalprocessing. Theyare looselycoupled, and hencerelatively easy
to parallelize or distribute. They can be implemented efficiently in boA software and hardware, and
hence leave implementation options open. A key weakness of PNmodels is that they areawkward for
specifying control logic.

Several special cases of PN are useful in certain circumstances. Dataflow models construct pro
cessesof a process networkas sequences of atomicactorfirings. Synchronous dataflow(SDF)is a par
ticularly restricted special case withthe extremely useful property thatdeadlock and boundedness are
decidable. Booleandataflow (BDF) is a generalization that sometimes yields to deadlockand bound
edness analysis, although fundamentally these questions are undecidable. Dynamic dataflow (DDF)
uses only run-timeanalysis, and thus makesno attemptto statically answerquestionsabout deadlock
and boundedness. The generalcase, processnetworks (PN), is implemented in Ptolemyn using Java
threads for the processes.

1.2.8 mid CSPAHD Tim PN

CSP and PN both involve threads that communicate via message passing, synchronously in the
former case and asynchronously in the latter. Neither model intrinsically includes a notion of time,
which can make it ^fficult to interoperate with models that do include a notion oftime. In fact, mes-
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sage events are partially ordered, rather than totally ordered as they would be were theyplaced on a
time line.

Both models of computation canbe augmented with a notion of time to promote interoperability.
Threads assume that time does not advance while they are active,but can advance when they stall on
inputs, outputs, or explicitly indicate thattime canadvance. Bythis vehicle, additional constraints are
imposed on the order ofevents, and determinate interoperab^ty with timed models ofcomputation
becomes possible.

1.3 CHOOSm MODELS OF COMPUTATtON

The rich variety of concurrent models of computation outlined in the previous section can be
daunting to a designer faced with having to select them. Most designers today donotface this choice
because they getexposed toonly one ortwo. This is changing, however, asthelevel ofabstraction and
domain-specificity of design software both rise. We expect that sophisticated and highly visual user
interfaces will be needed to enable designers to cope wiA this heterogeneity.

An essential difference between concurrent models of computation is their modeling of time.
Some are very explicit by taking time to bea real number thatadvances uniformly, and placing events
on a time line or evolving continuous signals along the time line. Others are more abstract and take
time to be discrete. Others are still more abstract and take time to be merely a constraint imposed by
causality. This latter interpretation results in time that is partially ordered, and explains much of the
expressiveness in process networks and rendezvous-based models of computation. Partially ordered
time provides a mathematical framework for formally analyzing and comparing models of computa
tion [23].

A grand unified approach to modeling would seek a concurrent model of computation that serves
all purposes. This could be accomplished by creating amelange^ amixture ofall ofthe above, but such
a mixture would beextremely complex and difficult to use, and synthesis and simulation tools would
be difficult to design.

Another alternative would be to choose one concurrent model of computation, say the rendezvous
model, and show that all theothers aresubsumed as special cases. This is relatively easy to do, in the
ory. Most ofthese models ofcomputation are sufficiently expressive tobeable tosubsume most ofthe
others. However, this fails to acknowledge the strengths and weaknesses of each model of computa
tion. Differential equations, for instance, are very good atdescribing the interaction ofpoint masses in
a model ofa MEMS system, but not as good at describing the discrete control logic that may beulti
mately controlling the actuators in the MEMS system. Similarly, finite-state machines are good at
modeling atleast simple control logic, but hopelessly inadequate for modeling the interaction ofpoint
masses. Thus, todesign interesting systems, designers need to use heterogeneous models.

1.4 VISUAL SYNTAXES

Visual depictions of electronic systems have always held a strong human sq)peal, making them
extremely effective in conveying information about a design. Many ofthe domains ofinterest in the
Ptolemy project use such depictions tocompletely and formally specify models.

One of the principles of the Ptolemy project is that visual depictions ofsystems can
help to offset the increased complexity that isintroduced by heterogeneous modeling.
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These visual depictions offer an alternative syntax to associate with the semantics ofa model ofcom
putation. Visual syntaxes can be every bit as precise and complete as textual syntaxes, particularly
when they arejudiciously combined withtextualsyntaxes.

^^sual representations ofmodels have amixed history. In circuit design, schematic diagrams used
to be routinely used to capture all of the essential information needed to implement some systems.
Schematics are often replaced today bytext inhardware description languages such asVHDL orVer-
ilog. In other contexts, visual representations have largely failed, for example flowcharts for c^tunng
the behavior ofsoftware. Recently, a number ofinnovative visual formalisms have been garnering sup
port, including visual dataflow, hierarchical concurrent finite state machines, and object models. The
UML visual language for object modeling has been receiving a great deal ofattention, and in fact is
usedfairly extensively in the design of Ptolemy n itself.

A subset of visual languages that are recognizable as **block diagrams** represent concurrent sys
tems. There are many possible concurrency semantics (and many possible models of computation)
associated with such diagrams. Formalizing thesemantics isessential if these diagrams are tobeused
for system specification and design. Ptolemy n supports exploration of the possible concurrency
semantics. Aprinciple of the project is that the stren^s and weaknesses of these alternatives make
them complementary rather than competitive. Thus, interoperability ofdiverse models isessential.

1.5 miEMYII

Ptolemy II offers a unified infrastructure forimplementations ofa number of models ofcomputa
tion. The overall architecture consists of a set of packages thatprovide generic support for all models
of computation and a set ofpackages that provide more specialized support for particular models of
computation. Examples of the former include packages that contain math libraries, grt^h algorithms,
an interpreted expression language, signal plotters, and interfaces tomedia capabilities such as audio.
Examples of the latter include packages that support clustered graph representations of models, pack
ages Aat support executable models, and domains^ which are packages that implement a particular
model of computation.

i.5.i PACKAGE mmm

The package structure is shown in figure 1.2. This is a UML package diagram. The name of each
package is in the tab at the top of each box. Subpackages are contained within their parent package.
Dependencies between packages are shown by dotted lines with arrow heads. For example, actor
depends onkemeievent which depends onkernel which depends onkemelutil. Actor also depends on
data and graph. The role of each package is explained below.

actor Thispackage supports executable entities thatreceive andsenddatathrough ports.
It includes bothuntyped and typed actors. For typedactors, it implements a sophis
ticated typesystem that supports polymorphism. It includes the baseclassDirector
for domain-specific classesthat control the execution of a model,

actonlib This subpackage is a library of polymorphicactors.
actor.process This subpackageprovides infrastructure for domains where actors are processes

implemented on top of Java threads. ^
actonsched This subpackage provides infrastructure for domains where actors arestatically

scheduled by the director,

actor.util This subpackage containsutilities that support directorsin variousdomains. Spe-
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data

cifically, itcontains asimple FIFO Queue and asophisticated priority queue called
a calendar queue.

This package provides classes that enc£q>sulate and manipulate data that istrans-
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FIGURE 1.2. The package structure of Rolemy II. The actor.lib package has not yet been fully
constructed.
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data.expr

graph

kernel

kernel.util

math

media

plot

schematic

ported between actors in Ptolemy models.
This classsupports an extensible expression language and an interpreter for that
language. Parameters can have values specified by expressions. Theseexpressions
mayreferto otherparameters. Dependencies between parameters arehandled
transparently* as in a spreadsheet* whereupdating the valueof one willresultin the
update of all those that depend on it
Thispackage provides algorithms for manipulating andanalyzing mathematical
graphs. Mathematical graphs are simplerthanPtolemy n clustered graphs in that
thereis no hierarchy* and arcs linkexactly two nodes. Thispackage is expected to
supply a growing library of algorithms.
Thispackage provides the software architecture for thekey abstract syntax* clus
teredgraphs. TTie classes in diispackage support entities withports* andrelations
thatconnect theports. Clustering iswhere a collection ofentities is encapsulated in
a single composite entity* anda subset of theportsof theinsideentities areexposed
as ports of the cluster entity,

kernel.event Thispackage contains classesandinterfaces that support controlled mutations of
clustered graphs.Mutations are modifications in the topology* and in general* they
are permitted to occurduring the execution of a model. But in certaindomains,
wheremaintaining determinacy is imperative* the directormay wish.toexercise
tight controlover precisely whenmutations are performed. This packagesupports
queueing of mutation requests for later execution. It uses a publish-and-subscribe
design pattern.

This subpackageof the kernel packageprovides a collection of utility classes that
. do not dependon the kernelpackage. It is separated into a subpackage so that these
utility classes can be used without the kernel. The utilities include a collection of
exceptions, classes supporting named objects with attributes* lists of named
objects, a specialized cross-reference list class, and a thread class that helps
Ptolemy keep track of executing threads.
This package encapsulates mathematical functions and methods for operating on
matrices and vectors. It also includes a complex number class and a class support
ing fractions.

This package encapsulates a set of classes supporting audio and image processing.
This package provides two-dimensional signal plotting widgets.
This package provides a top-level interface to Ptolemy n. A GUI can use the
classes in this package to gain access to Ptolemy n models.

15.2 OVERVIEW Of mClASSES

Some of the key classes in Ptolemy n are shown in figure 1.3. This is a static structure diagram in
UML (unified modeling language). The key syntactic elements are boxes* which represent classes, the
hollow arrow, which indicates generalization* and other lines, which indicate association. Some lines
have a small diamond, which indicates aggregation. The syntax of this diagram and the details of these
classes will be discussed in subsequent chapters. u

Instances of all of the classes shown can have names; they all implement the Nameable interface.
Most of the classes generalize NamedObj* which in addition to being nameable can have a list of
attributes associated with it. Attributes themselves are instances of NamedObj.

Heterogeneous Concurrent Modeling and Design 1-9
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Entity, Port, and Relation are three key classes that extend NamedObj. These classes define the
primitives of the abstract syntax supported byPtolemy n. They will be fiilly explained in the kernel
chapter. ComponentPort, ComponentRelation, and ComponentEntity extend these classes by adding
support for clustered graphs. CompositeEntity extends ComponentEntiQ^ and represents an aggrega
tion of instancesof ComponentEntity and ComponentRelation.

The Executable interface, explained intheactors chapter, defines objects that can beexecuted. The
Actor interface extends this with capability fortransporting data throu^ ports. AtomicActor and Com-
positeActor are concrete classes that implement this interface.

Anexecutable Ptolemy n model consists ofa top-level CompositeActor with aninstance ofDirec
tor andan instance of Manager associated with it Themanager provides overall control of theexecu
tion (starting, stopping, pausing). The director implements a semantics of a model of computation to
govern the execution of actors contained by theCompositeActor.

Director is the baseclass for directors that implement models of computation. Each suchdirector
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FIGURE 1.3. Some ofthe key classesIn Ptolemy II. Theseare defined In the kernel, kemeiutil,
and acfor packages.
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is associated witha domain. Wehave defined in Ptolemy II directors that implement continuous-time
modeling (ODE solvers), process networks, synchronous dataflow, discrete-event modeling, and com
municating sequential processes.

1.5.3 CAmiiims

Ptolemy n isa second generation system. Itspredecessor, Ptolemy 0.x, still has many active users
and developers, and may continue to evolve for some time. Ptolemy n has a somewhat different
emphasis, and through its use ofJava, concurrency, and integration with the network, is aggressively
experimental. Some of the major capabilities in Ptolemy n that we believe tobenew technology in
modeling and design environments include:
• Higher level concurrent design in Javc?^. Java support for concurrent design isvery low level,

based onthreads andmonitors. Maintaining safety andliveness canbequitedifficult [21].Ptolemy
n includes a.number of domains thatsupport design of concurrent systems at a much higher level
of abstraction. Theseinclude, at varying levels of maturity, process networks, communicating
sequential processes (rendezvous based), dataflow, synchronous/reactive modeling, continuous-
timemodeling, and hierarchical concurrent finite-state machines.

• Better modularization through theuse ofpackages. Ptolemy 11 is divided intopackages thatcanbe
used independently and distributed onthenet, ordrawn ondemand from a server. This breaks with
tradition indesign software, where tools areusually embedded in huge integrated systems with
interdependent parts.

• Complete separation of theabstractsyntaxfrom thesemantics. Ptolemy designs arestructured as
clustered graphs. Ptolemy II defines a clean andthorough abstract syntax forsuchclustered
graphs, and separates into distinct packages the infrastructure supporting such graphs from mecha
nisms that attach semantics (such as dataflow, analog circuits, finite-statemachines,etc.) to the
graphs.

• Improved heterogeneity. Previous realizations ofPtolemy provided a wormhole mechanism for
hierarchically coupling heterogeneous models of computation. Thismechanism is improved in
Ptolemy II through theuse ofopaque composite actors, which provide better support formodels of.
computation thatare very different from dataflow, thebestsupported model in priorversions of
Ptolemy software. These include hierarchical concurrent finite-state machines andcontinuous-
time modeling techniques.

• Thread-safe concurrent execution. Ptolemy modelsare typicallyconcurrent, but in the past, sup
port for concurrent executionof a Ptolemy modelhas been primitive. Ptolemy n supports concur
rency throughout, allowing for instancefor a model to mutate(modify its clusteredgraph
structure) while the user interface simultaneouslymodifies the structure in different ways. Consis
tencyis maintained throughthe use of monitors and read/write semaphores [19]built upon the
lower level synchronization primitives of Java.

• A softwarearchitecture based on object modeling. Since the first Ptolemyimplementation, soft
ware engineeringhas seen the emergenceof sophisticated object modeling[26][35][37] and
design pattern [13] concepts. We havesq>plied theseconcepts to thedesign of Ptolemy n, and they
have resulted in a more consistent, cleaner, and more robust design. Wehave also iq)plied a simpli
fied softwareengineeringprocess that includessystematicdesign and code reviews [25][29].

• A trulypolymorphic typesystem. Earlierimplementations of Ptolemysupported rudimentary poly
morphism through the "anytype** particle. Even with such limitedpolymorphism, type resolution
provedchallenging, and the implementation is ad-hocand fragile. Ptolemy 11 has a more modern
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type systembased on a partialorderof typesand monotonic type refinement functions associated
with functional blocks. Typeresolution consistsof finding a fixedpoint,usingalgorithms inspired
by the type system in ML [28].

• Domain-polymorphic actors. In earlierimplementations of Ptolemy, actor libraries wereseparated
by domain. Through the notion of subdomains,actors could operate in more than one domain. In
Ptolemy n, this idea is taken much further. Actors with intrinsicallypolymorphicfunctionalitycan
be written to operate in a much larger set of domains.The mechanism diey use to communicate
with other actors dependson the domain in which they are used. This is managedthrou^ a con
cept that we call a process level type system.

ISA FUTURE CAPABimS

Capabilities that we anticipate making available in the future include:
• Extensible XML-basedfile formats. XML is an emergingstandardfor representation of informa

tion that focuses on the logical relationships between piecesof information. Human-readable rep
resentations are generated with the help of style sheets. Ptolemy II will use XML as its primary
format for persistent design data.

• Interoperabilitythroughsoftware components. Ptolemyn will usedistributedsoftwarecomponent
technology suchas CORBA, JINI,or COM,in a numberof ways. Components (actors) in a
PtolemyII model will be implementable on a remote server. Also, components may be parameter
izedwhere parameter values are supplied by a server(this mechanism supports reduced-order
modelings where the model is provided by the server). Ptolemy n models willbe exported via a
server. And finally, Ptolemy n will support migrating software components.

• Embedded software synthesis. Pertinent Ptolemy n domains willbe tunedto run on a Java virtual
machine on an embedded CPU. Hardware, firmware, and configurablehardware componentswill
expose abstractions to thisJavasoftware thatobeythemodel of computation of the pertinent
domain. Java's native code interface will be used to define a stub for the embedded hardware com
ponents so thatthey are indistinguishable from anyotherJavathread within the model ofcomputa
tion. Domains that seemparticularly well suited to this approach includePN and CSP.

• Embedded hardware synthesis. Earlierversions of Ptolemy had onlyveryweakmechanisms for
migrating designs from idealized floating-point simulations through fixed-point simulations to
embedded software, FPGA, and hardware designs. Ptolemy n will separate the interface definition
of component blocks from their implementation, allowing libraries to be constructed where com
patibility across implementation technologies is assured [36]. This work is currently being proto
typed in Ptolemy 0.7.1.

• Integrated verification tools. Modem verification tools based onmodel checking [18] could be
integrated with Ptolemy n at least to theextent thatfinite state machine models canbechecked.
We believe thattheseparation ofcontrol logic from concurrency will greatly facilitate verification,
since only much smaller cross-sections ofthesystem behavior will beoffered to theverification
tools.
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2.1 ASSmCT SYNTAX

The kernel defines a small set of Java classes that implement a data strocture supporting a general
form of uninterpreted clustered graphs, plus methods for accessing and manipulating such graphs.
These graphs provide an abstractsyntaxfor netlists, state transition diagrams, block diagrams, etc. An
abstract syntaxis a conceptual data organization. It can be contrasted with a concretesyntax, which is
a syntax for a persistent, readable representation of the data, such as EDIF for netlists. A particular
graph configuration is called a topology.

Although this idea of an uninterpretedabstract syntaxis present in the original Ptolemykernel [7],
in fact the original Ptolemy kernel has more semanticsthan we would like. It is heavily biased towards
dataflow, the model of computation used most heavily. Much of the effort involved in implementing
models of computation that are verydifferent fromdataflow stemsfrom havingto workaroundcertain
assumptions in the kernel that, in retrospect, proved to be particular to dataflow.

A topology is a collectionof entities'relations. Weuse the grt^hical notationshownin figure
2.1, where entities are depicted as rounded boxes and relations as diamonds. Entities have ports,
shown as filled circles, and relations connect the ports. We consistently use the term connection to
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denote the associationbetweenconnectedports (or their entities), and the term linkto denote the asso
ciation between ports and relations. Thus, a connection consists of a relation and two or more links.

The use of ports and hierarchydistinguishesour topologies from mathematical graphs. In a mathe
matical graph, an entity would be a vertex, and an arc would be a connection between entities. A vertex
could be represented in our schema using entities that always contain exactly one port. In a directed
graph, the connections are divided into two subsets, one consisting of incoming arcs, and the other of
outgoing arcs. The vertices in such a graph could be representedby entities that contain two ports, one
for incomingarcs and one for outgoingarcs. Thus, in mathematicaJ graphs, entities always have one or
two ports, depending on whether the graph is directed. Our schema generalizes this by permitting an
entity to have any number of ports, thus dividing its connections into an arbitrary number of subsets.

A second difference between our graphs and mathematical grt^hs is that our relations are multi-
way associations, whereas an arc in a graph is a two-way association. A third difference is that mathe
matical graphs nonnally have no notion of hierarchy (clustering).

Relations are intended to serve a mediators, in the sense of the Mediator design pattern ofGamma,
et al. [13]. '^Mediator promotes loose coupling by keeping objects from referring to each other explic
itly..." For example, a relation could be used to direct messages passed between entities. Or it could
denote a transition between states in a frnite state machine, where the states are represented as entities.
Or it could mediate rendezvous between processes represented as entities. Or it could mediate method
calls between loosely associated objects, as for example in remote method invocation over a network.

2.2 UML NOTATION

The most basic classes in the Ptolemy n kernel package and their relationships are shown in figure
2.2, using UML notation [12][33]. Such relationships are called an object model, and represent many
essential features about the design. We show only the static structure diagrams, or class diagrams of
UML.

The class name is shown at the top of each box, its attributes are shown below that, and its meth
ods below that. The attributes are usuadly not directly visible to a programmer using these classes (they
are implemented as privatemembers). But theyare a usefulpart of the objectmodelbecausethey indi
cate the state information contained by an instance of the class.

Subclasses are indicated by lines with white triangles (or outlined arrow heads). The class on the

Connection

Relation

Connection m Connection

Port

Entity

FIGURE 2.1. Visual notation and terminology.
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side of the arrow head is the superclass or base class. The class on the other end is the subclass or
derived class. The derived class is said tospecialize the base class, orconversely, thebase class togen
eralize the derived class.The derived class inheritsall the methods shownin the base class, and may
override orsome ofthem. Inour object models, we do notexplicitly show methods that override those
defined in a baseclassor inherited from a base class. For example, in figure 2.3, Attribute has all the
methods ofNamedObj, but only shows die one method it adds. Thus, the complete set ofmethods ofa
class is cumulative. Every class hasits own methods plus those ofall its superclasses.

Our object models do not show private methods, which are not inherited. For completeness, our
object models do show all public and protected methods of these classes, although a proper object
model might only show those relevant to the issues being discussed. We also show the constructors,
whichalwayshave the samename as the class and no returntype.

Attributes with leading underscores, such as_portList, are private orprotected members ormeth
ods. In the UML diagrams, private members are indicated with a leading Public methods have a
leading "+" and protected methods a lekling

Classesshownin boxesoutlinedwithdashed lines,such as NamedObj, CrossRefList, and Named-
List in figure 2.2, are fully described elsewhere. This is not standard UML notation, but it gives usa
convenient way to partition diagrams. Often, these classes belong to another package. In the case of
figure 2.2, those classesare shownfully in figure 2.3.

Figure 2.3 also shows an example of an interface^ Nameable, which is indicated by the label
"«Interface»" and byitalics in thename. Aninterface defines a setofmethods without providing an
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FIGURE 2.2. Key classes inthe kernel package and theirmethodssupporting basic (non-hierarchi
cal) topologies. Methods that override those defined ina base dass or implement those inan inter
face are not shown. The V indicates public visibility, "#"indicates protected, and indicates
private. Capitalized methods are constructors.The classes shown with dashed outlinesare in the
kemel.utll subpackage.
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implementation for them.When a class implements an interface, the objectmodelshows the relation
ship witha dotted-line withan arrow. Any concreteclass (onethatcan be instantiated) that implements
an interface must provide implementations of all its methods. In our object models, we do not show
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FIGURE 2.3. Support classes in the kemel.util package.
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those methods explicitly in the concrete class, just like inherited methods, but their presence isimplicit
in the relationship.

We will occasionally show abstract classes^ which are like interfaces inthat they cannot beinstan
tiated, but unlike interfaces in that they may provide default implementations for some mediods, and
may even have private members. Absti^tclasses are indicated by italics inthe class name.

Inheritance and implementation are types of associations between entities in the object model.
Associations ofother types are indicated by other lines, often aimotated widi ranges like **0..n" orwith
diamonds on one end or the other.

Aggregations are shown as associations with diamonds. For example, an Entity is an aggregation
of any number (0..n) instances of Port More strongly, we say that a Port is contained by 0 or 1
instances of Entity, or that Entity is a composition of Ports.

This containment is mediated bytheNamedList utility class, shown in figure 2.3. Unlike thecon
tainment association, however, the Port hasno reference to a NamedList that refers to it, andanynum
ber of NamedList instances can refer to it. Only one Entity can contain it The stronger form of
aggregation (containment orcomposition) isindicated by the filled diamond, while the weaker form is
indicated by the unfilled diamond.

As usual in UML, return types of methods are shown after a colon. Types of arguments arealso
shown aftera colon, but within Ae parentheses that delimit the argument list.

Z3 mtmHmm commioNS

We have made an effort to be consistent about naming of classes, methods and members. Class
names are capitalized, with internal word boundaries also capitalized (as in **NamedObj"). Method
names that are plural, such as getPorts(), usually return an enumeration (or sometimes an array). As
explained before, private and protected members and methods have a leading underscore. Members
and methods are not capitalized, although internal word boundaries usually are. Considerable discus
sion was involved in the choice of most class and method names, although inevitably, we had to make
some compromises.

2A NON-HUmCMCAL T0P0L06IES

Theclasses shown in figure 2.2 support non-hierarchical topologies, likethat shown in figure 2.1.

Z4J LINKS

AnEntity contains any number of Ports; such an aggregation is indicated by the association with
an unfilled diamond and the label "0..n" to show that the Entity can contain any number of Ports, and
the label "0..!" to show that the Port is contained by at most one Entity. This association is uses the
NamedList class shownat the bottomof figure2.2 and defined fully in figure2.3. There is exactlyone
instance of NamedList associated with Entity, and it aggregates the ports.

A Port is associated with any numberof Relations (the association is called a link), and a Relation
is associated with anynumber of Ports.Linkassociations useCrossRefList, shown in figure 2.3.There
is exactly oneinstance of CrossRefList associated with each portandeach relation. The links define a
web of interconnected entities.
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2A2 msfsmcY

A major concern in the choice of methods to provide and in their design is maintaining consis
tency. By consistency we mean that the following key properties are satisfied:

• Every link is symmetric and bidirectional. That is, if a port has a link to a relation, then the relation
has a link back to that port.

• Every object that appears on a container's list of contained objectshas a back reference to its con
tainer.

In particular, the design of these classes ensures that the .container attributeof a port refers to an entity
that includes the port on its .portList This is done by limiting the access to bo^attributes. The only
way to specifythat a port is containedby an entity is to call the setContainerQ methodof die port.That
method guarantees consistency by first removing the port from any previous container's por^ist, then
adding it to the new container's port list. A port is.remoyed from an entity by calling setContainerQ
with a null argument.

A change in a containment association involves several distinct objects, and therefore must be
atomic, in the sense that other threads must not be allowed to intervene and modify or access relevant
attributes halfway through the process. This is ensured by synchronization on the workspace, as
explained belowin section 2.8. Moreover, if an exception is thrownat any pointduringthe process of
changing a containment association, any changes that havebeenmademustbe undone so thata consis
tent state is restored.

25 SUPPORT ClASStS

The kernel package has a subpackage called kemel.util that provides some underlying support
classes, some of which are shown in figure 2.3. These classes define notions basic to Ptolemy n of
containment, naming, and parameterization, and providegenericsupportfor relevantdata structures.

2.5.1 CONTAINERS

Although these classes do notprovide support forconstructing clustered graphs, theyprovide rudi
mentary support for container associations. An instance of these classes can have at most one con
tainer. That container is viewed as the owner of the object, and "managed ownership" [21] is used as a
central tool in thread safety, as explained in section 2.8 below.

In the base classes shown in figure 2.2, only an instanceof Port can have a non-null container. It is
the only class with a setContainerQ method. Instances of all otherclasses have no container, andtheir
getContainerQ method will return null. In theclasses of figure 2.3, only Attribute hasa setContainerQ
method.

Every object is associated with exactly one instance ofWorkspace, as shown in figure 2.3, butthe
workspace is not viewed as a container. The workspace is defined when anobject is constructed, and
nomethods are provided tochange it. It is said tobeimmutable^ a critical property initsuse forthread
safety.

Z5.2 mtmmmi
% * • • » - • •

The Nameable interface supports hierarchy in the naming so that individual named objects in a
hierarchy can be uniquely identified. By convention, ihtfull name ofan object is a concatenation of
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the iiill name of its container, if there is one, or the name of the woikspace, if there is not, a period
andthe name of the object The fiill nameis usedextensively for errorreporting.

NamedObj is a concrete class implementing the Nameable interface. It alsoserves as an aggrega
tion of attributes, as explained below in section 2.S.4.

Names of objects areonly required to be unique within a container. Thus, even thefull name is not
assured of being globally unique.

Here, names are a property of the instances themselves, rather than properties of an association
between entities. Asargued byRumbaugh in [38], this is notalways theright choice. Oftra,a name is
more properly viewed as a property of an association. For example, a file name is a property of the
association between a directory and a file. A file may have multiple names (through the useof sym
bolic links). Our design takes a stronger position onnames, and views them asproperties of theobject,
much as we view the name of a person as a property of the person (vs. theiremployee number, for
example, which is a property of their association withan employer).

Z5.3 WOmPACS

Workspace is a concrete class that implements the Nameable interface, as shown in figure 2.3. All
objects in a topology are associated with a workspace, and almost alloperations that involve multiple
objects are only supported for objects in the same workspace. This constraint is exploited to ensure
thread safety, as explained in section 2.8 below. The name of the workspace is always thefirst term in
the full name. If the workspace has no name (a common situation), then the fiill name simply has a
leading period.

2.5A AmiBUTiS

In almost all applications of Ptolemy II, entities, ports, and relations needto be parameterized. The
base classes shown in figure 2.3 provide for these objects to have any number of instances of the
Attributeclass attached to them. Attribute is a NamedObj that can be contained by another NamedObj,.
and serves as a base class for parameters.

Attributes are added to a NamedObj by calling their setContainer() methodand passingit a refer
ence to the container. They are removed by calling setContainer() with a null argument. The Named
Obj classprovides the getAttribute() method, whichtakesan attributename as an argument and returns
the attribute, and the getAttributes() method, which returns an enumeration of all die attributes in the
object.

By itself, an instance of the Attribute class carries only a name, which may not be sufficient to
parameterizeobjects. A derived class called Parameteris defined in the data package.

25.5 UST CLASSES

Figure 2.3 shows two list classes that are used extensively in Ptolemy n. NamedList implements
an ordered list of objects with the Nameable interface. It is unlike a hash table in that it maintains an
ordering of the entries that is independent of their names. It is unlike a vector or a linked list in that it
supports accesses by name. It is used in figure 2.3 to maintain a list of attributes, and in figure 2.2 to
maintain the list of ports contained by an entity.

The class CrossRefList is a bit more interesting. It mediates bidirectional links between objects
that contain CrossRefLists, in this case, ports and relations. It provides a simple and efficient mecha
nism for constructing a web of objects, where each object maintains a list of the objects it is linked to.

HeterogeneousConcurrent Modelingand Design 2-7
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That list is an instanceof CrossRefList. The classensuresconsistency. That is, if one object in the web
is linked to another, then the other is linked back to the one. CrossRefList also handles efficient modi
fication of the cross references. In particular, if a link is removed from the list maintained by one
object, theback reference in theremote object alsohastobedeleted. This isdone in0(1) time. A more
brute force solution would require searching theremote listfortheback reference, increasing die time
required andmaking it proportional to the number of links maintained byeach object.

Z6 ewsmiDmm

Theclasses shown in figure 2.2provide only partial support forhierarchy, through theconcept ofa
container. Subclasses, shown in frgure 2.4, extend diese with more complete support for hierarchy.
ComponentEntity, ComponentPort, and ComponentRelation are used whenever a clustered graph is
used. All ports ofa ComponentEntity are required to instances ofCompoiientPort. CompositeEntity
extends ComponentEntity with the capability ofcontaining ComponentEntity and ComponentRelation
objects. Thus, it contains a subgraph. The association between ComponentEntity and CompositeEntity
is the classic Composite design pattern [13].

Z6.1 ABSTRACTiON

Composite entities are non-atomic (isAtomic() return false). They can contain a graph (entities and
relations). By default, a CompositeEntity is transparent (isOpaque() returns false). Conceptually, this
means that its contents are visible from the outside. The hierarchy can be ignored (flattened) by algo
rithms operating on the topology. Some subclasses ofCompositeEntity are opaque (see the Actor chap
ter for examples). This forces algorithms to respect the hierarchy, effectively hiding the contents ofa
composite and making it appear indistinguishable from atomic entities.

AComponentPort contained by aCompositeEntity has inside as well as outside links. Itmaintains
two lists of links, those to relations inside and those to relations outside. Such a port serves to expose
ports in the contained entities as ports ofthe composite. This is the converse ofthe "hiding" operator
often found inprocess algebras [27]. Ports within an entity are hidden by default, and must beexplic
itly exposed to be visible (linkable) from outside the entity^The composite entity with ports thus pro
vides an abstraction of the contents of the composite.

A port ofa composite entity may beopaque or transparent It isdefined tobeopaque if its con
tainer isopaque. Conceptually, ifit isopaque, then its inside links are not visible from the outside, and
the outside linksare not visible from the inside. If it is opaque, it appears from the outside to be indis
tinguishable from a portof an atomic entity.

The transparent port mechanism is illustrated by the example in figure 2.5^. Some of the ports in
figure 2.5 are filled in white rather than black. These ports are said to be transparent. Transparent ports
(P3 and P4) are linked torelations (R1 and R2) below their container (El) in the hierarchy. They may
also be linked to relations at the same level (R3 and R4).

ComponentPort, ComponentRelation, and CompositeEntity have a set ofmethods with the prefix
"deep," as shown in figure 2.4. These methods flatten the hierarchy by traversing it. Thus, for example,

1. Unless level-crossing links areallowed, which is discouraged.
2. In that figure, every object has been given aunique name. This isnot necessary since names tmly need to be

unique within acontainer. In this case, we could refer to P5 by its full name E0E4.P5, assuming the workspace
has noname (the leading period indicates this). However, using unique names makes ourexplanations more
readable.
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FIGURE 2.4. Keyclasses supporting clustered graphs.
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the ports that are "deeply" connected to port PI in figure 2.5 are P2, P5. and P6. No transparent port is
included, so note that P3 is not included.

Deep traversals ofa graph follow a simple rule. If a transparent port is encountered from inside,
then the traversal continues with its outside links. If it is encountered from outside, then the traversal
continues with its inside links. Thus, for example, the ports deeply connected to P5 are PI and P2.
Note that P6 isnot included. Similarly, the deepGetEntities() method ofCompositeEntity looks inside
transparent entities,but not insideopaqueentities.

Since deep traversals are more expensive than just checking adjacent objects, both ComponentPort
and ComponentRelation cache them. To determine the validity of the cached list, the version of the
workspace is used. As shown infigure 2.2, the Workspace class includes a getVersionQ and incrVer-
sionO method. All methods ofobjects within a workspace that modify the topology in any way are
expected toincrement the version count ofthe workspace. That way, when a deep access isperformed
by a ComponentPort, it can locally store the resulting list and the current version of the workspace.
The next time the deep access is requested, itchecks the version ofthe workspace. Ifit is still the same,
then it returns the locally cached list. Otherwise,it reconstructs it.

ForComponentPort to support both inside links and outside links, it has to override thelink() and
unlinkO methods. Given a relation as an argument, these methods can determine whethera link is an
insidelink or an outsidelink by checking thecontainerof the relation. If that containeris also the con
tainer of the port, then the link is an inside link.

2.6.2 Lmt-mssm CONNECTIONS

Fora few applications, such as Statechaits [15], level-crossing links and connections areneeded.
The example shown in figure 2.6 has three level-crossing connections that are slightly different from
one another. The links in these connections are created using the liberalLink() method of Component-
Port. The link() method prohibits such links, throwing an exception if they are attempted (most appli
cations will prohibit level-crossing connections by usingonlythe link() method).

An alternative that may be more convenient for a user interface is to use the connect() methods of
CompositeEntity rather than the link() or liberalLink() method of ComponentPort. To allow level-

MO

FIGURE 2.5. Transparent ports (P3 and P4) are linkedto relations (R1 and R2) belowtheir con
tainer (E1)in the hierarchy. They may also be linked to relations at the same level (R3and R4).
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crossing links using conneciQ, first call allowLevelCrossingConnectO with atrue argument
The simplest level-crossing connection in figure 2.6 is at the bottom, connecting P2 to P7 via the

relation R5. The relation is contained by El, but the connection would be essratially itoti^ ifitwere
contained by any other entity. Thus, the notion of composite entities containing relations is somewhat
weaker when level-crossing connections are allowed.

The other two level-crossing connections in figure 2.6 are mediated by transparent ports. *^s sort
of hybrid could come about in heterogeneous representations, where level-crossing connections are
permitted in some parts but not in others. It is important, therefore, for the classes to support such
hybrids.

To support such hybrids, we have to modify slightly die algorithm by which aport recognizes an
inside link. Given arelation and aport, the link is an inside link ifthe relation is contained by an entity
that is either the same as or is deeply contained (i.e. directly or indirectly contained) by the entity that
contains the port. The deepContainsQ rnethod ofNamedObj supports diis tesL

2.6,3 TUNNEUN6 ENTITIES

The transparent port mechanism we have described supports connections like that between PI and
P5 in figure 2.7. That connection passes through the entity E2. The relation R2 is linked to the inside of
each ofP2 and P4, in addition to its link to the outside ofP3. Thus, the ports deeply connected to PI
are P3 and P5, and those deeply connected to P3 are PI and P5, and those deeply connected to P5 are
PI and P3.

Atunneling entity is one that contains arelation with links to the inside of more than one port. It
may of course also contain more standard links, but the term '̂mnneling" suggests that at least some

FIGURE 2.6. Anexample withlevel-crossingtransitions.
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deep graph traversals will see right through it.
Support for tunneling entities is a major increment in capability over theprevious Ptolemy kernel

[7] (Ptolemy 0.x). That infrastructure required an entity (which was called a star) to intervene in any
connection through a composite entity (which was called a galaxy). Two significant limitations
resulted. The Hrst was that compositionality was compromised. A connection could notbe subsumed
into acomposite entity without fiindament^ly changing the structure of the ^plication (by introduc
ing a new intervening entity). The second was that implementation of higher-order functions that
mutated the graph [22] was made much more complicated. These higher-order functions had to be
careful to avoid mutations that created tunneling.

2.6.4 DESCmm

Theintent of Ptolemy n is thatmost applications will usegraphical rather than textual syntaxes to
visualize topologies. However, this isnot always possible, and inany case, a graphical description may
depict only the starting point ofa topology that mutates. It can get difficult to und^tand an intricate
topology.

The descriptionO method inthe Nameable interface (figure 2.3) provides a way to obtain detailed
information about a topology in a human and machine readable format. This method is implemented
by the NamedObj class, which also provides an alternative method that takes a detail argument. This
argument canbe used to control how much information is obtained.

An example is shown infigure 2.8, which describes the topology infigure 2.7. The general syntax
for describing an object is *'classname {fullname} keyword {value} keyword {value}". The value is
often itself a description in exactly this form, ora list ofdescriptions inthis form. For example, infig
ure 2.8, the keyword "attributes" is always followed by an empty value because no attributes have
been set. The keyword "ports" precedes a list of contained ports, each a description. The keyword
"entities" precedes a list ofcontained entities. The rest ofthe description should beevident.

2.6.5 cmm

The kernel classes are all capable ofbeing cloned, with some restrictions. Cloning means that an
identical but entirely independent object is created. Thus, if the object being cloned contains other
objects, then those objects are also cloned. Ifthose objects are linked, then the links are replicated in
the new objects. The clone() method in NamedObj provides the interface for doing this. Each subclass
provides an implementation.

FIGURE 2.7. Atunneling entity contains a relation with inside links to more thanone port.
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There is a key restriction to cloning. Because they break modularity, level-crossing links prevent
cloning, ^th level-crossing links, a link does notclearly belong to any particular entity. Anattempt to
clonea composite thatcontains level-crossing linkswilltrigger an exception.

Z6.6 ANELABOmnXAMPLE

Anelaborate example ofa clustered graph is shown in figure 2.9. This example includes instances
ofall thecapabilities we have discussed. The top-level entity is named All other entities in this
example have containers. A Java class that implements this example is shown in figure 2.10. A script
in the Tel language [30] that constructs the same graph is shown in figure 2.11. This script uses
TclBlend, an interface between Tel and Java that is distributed by Sun Microsystems.

The order in which links are constructed matters, in the sense diat methods that return lists of
objects preserve this order. The order implemented inboth figures 2.10 and 2.11 is top-to-bottom and

pt.kernel.CompositeEntity {.EO} attributes { } ports { } entities {
pt.kernel.CosponentEntity {.EO.El} attributes { ) ports {

pt. kernel. ComponentPort .{.EO.El. PI} attributes { } links {
pt.kernel.ConponentRelation {.EO.Rl} attributes { }

} insidelin)cs { }
}
pt.kernel.CompositeEntity (.E0.E2} attributes { } ports {

pt.kernel.ConponentPort (.E0.E2.P2) attributes { } links {
pt.kernel.ConponentRelation (.EO.Rl) attributes { }

} insidelinks {
pt.kernel.ConponentRelation (.E0.E2.R2} attributes { )

)
pt.kernel.ComponentPort {.E0.E2.P4} attributes ( } links {

pt.kernel.ConponentRelation {.E0.R3} attributes { }
} insidelinks (

pt.kernel.ConponentRelation {.E0.E2.R2} attributes { )
}

) entities (
pt.kernel.ComponentEntity {.E0.E2.E3) attributes { } ports {

pt.kernel.ComponentPort {.E0.E2.E3.P3} attributes { } links {
pt.kernel.ConponentRelation {.E0.B2.R2} attributes { }

} insidelinks { }

}
} relations {

pt.kernel.ComponentRelation {.E0.E2.R2) attributes ( } links {
pt.kernel.ComponentPort {.E0.E2.P2) attributes ( }
pt.kernel.ConponentPort {.E0.E2.B3.P3} attributes ( )
pt.kernel.ConponentPort {.E0.E2.P4) attributes { )

}

)
pt.kemel.ConponentEntity {.E0.E4) attributes ( ) ports {

pt.kernel.ComponentPort {.E0.E4.P5) attributes { } links {
pt.kernel.ComponentRelation {.E0.R3) attributes { )

} insidelinks { }

)
} relations {

pt.kernel.ComponentRelation (.EO.Rl) attributes ( ) links (
pt.kernel.ComponentPort (.EO.El.PI) attributes ( )
pt.kernel.ConponentPort (.B0.E2.P2) attributes ( )

)
pt.kernel.CranponentRelation (.E0.R3) attributes ( ) linJcs (

pt.kernel.ComponentPort (.E0.E2.P4) attributes ( )
. pt.kernel.ComponentPort (.E0.E4.P5) attributes ( )

FIGURE 2.8. An example of the syntax returned by the description() method.
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left-to-right in figure 2.9. A graphical syntax, however, does not generally have a particularly conve
nient way to completely control this order.

The results of various method accesses on the graph are shownin figure 2.12. This table can be
studiedto betterunderstand the precisemeaning of eachof the methods.

2.7 opAQVi mmntmmts

One of the major tenets of the Ptolemyproject is that of modelingheterogeneous systemsthrough
the use of hierarchicalheterogeneity. Information-hiding is a central part of this. In particular,transpar
ent ports and entities compromise information hiding by exposing the internal topology of an entity. In
some circumstances, this is inappropriate, for example when the entity internally operates under a dif
ferent model of computation from its environment.The entity should be opaque in this case.

An entity can be opaque and composite at the same time. Ports are defined to be opaque if the
entity containing them is opaque (isOpaque() returns true), so deep traversals of the topology do not
cross these ports, even though the ports support inside and outside links. The actor package makes
extensive use of such entities to support mixed modeling. That use is described in the Actors chapter.
In the previous generation system, Ptolemy 0.x, composite opaque entities were called wormholes.

FIGURE 2.9. An example of a clustered graph.
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public class ExaispleSystein {
private CoopositeEntity eO, e3« e4, e7, elO;
private CoaponentEntity el, e2, e5, e6, e8, e9;
private ConponentPort pO, pi, p2, p3, p4, p5, p6, p7, p8, p9, plO, pll, pl2, pl3, p4;
private Coin>onentRelation rl, r2, r3, r4, rS, r6, r7, r8, r9, rlO, rll, rl2;

public ExampleSystemO throws IllegalActionException, HameDuplicationException {
eO = new CosqpositeEntityO;
eO.setNameCEO');

e3 = new Con®>ositeEntity(eO, 'El*);
e4 = new ConpositeEntity(e3, •E4*);
e7 = new CompositeEntity(eO, 'ET);
elO = new CoinpositeEntity(eO, 'ElO*);

el = new CoaponentEntity(e4, 'El*);
e2 = new ConponentEntity(e4, *E2*);
eS = new CoaponentEntity(e3, *E5*);
e6 = new ConponentEntity(e3, *E6*);
e8 = new CoaponentEntity(e7, 'ES*);
e9 = new ConponentEntity(elO, •E9");

pO = (ConponentPort) e4.newPort(•PO*);
pi = (ConponentPort) el.newPortCPl*);
p2 = (ConponentPort) e2.newPort(•P2");
p3 = (ConponentPort) e2.newPort(•P3 *);
p4 = (ConponentPort) e4.newPort(*P4*);
p5 = (ConponentPort) e5.newPort(•P5 *);
p6 = (ConponentPort) e5.newPort(* P6•);
p7 = (ConponentPort) e3.newPort(•P7•);
pS = (ConponentPort) e7.newPort(•P8*);
p9 = (ConponentPort) e8.newPort(*P9*);
plO = (ConponentPort) e8.newPort("P10*);
pll = (ConponentPort) e7.newPort('Pll*);
pl2 = (ConponentPort) el0.newPort(•P12');
pl3 = (ComponentPort) el0.newPort('P13*);
pl4 = (ConponentPort) e9.newPort('P14*);

rl = e4.connect(pi, pO, 'Rl');
r2 = e4.connect(pi, p4, *R2*);
p3.1inl((r2);
r3 = e4.connect(pi, p2, •R3');
r4 s e3.connect(p4, p7, *R4*);
r5 = e3.connect(p4, p5, 'RS');
e3.allowLevelCrossingConnect(true);

r6 = e3.connect(p3, p6, "Re*);
r7 = eO.connect(p7, pl3, "R7*);
r8 = e7.connect(p9, p8, 'RS');
r9 = e7.connect(plO, pll, •R9*);
rlO = eO.connect(p8, pl2, 'RIO');
rll = elO.connect(pl2, pl3, *R11*);
rl2 = elO.connect(pl4, pl3, *R12');
pll.lin)c(r7);

FIGURE 2.10. The same topologyas in figure2.9 implementedas a Java class.
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Z8 eoNmmcy

Weexpect concurrency. Topologies often represent the structureof computations. Those computa
tions themselvesmay be concurrent, and a user interfacemay be interactingwith the topologies while
they execute their computation. Moreover, using RMI or CORBA, Ptolemy n objects may interact
with other objects concurrently over the network via RMI or CORBA.

Both computations within an entity and the user interface are capableof modifying the topology.
Thus, extra care is needed to make sure that the topology remains consistent in the face of simulta
neous modifications (we defined consistency in section 2.4.2).

2-16

i Create composite entities
set eO [java::new pt.kernel.CompositeEntity £01
set e3 [java::new pt.kernel.Con^ositeEntity $eO E3]
set e4 [java::new pt.kernel.CompositeEntity $e3 E4]
set e7 [java::new pt.kernel.CompositeEntity $eO E7]
set elO [java::new pt.kernel.CompositeEntity $eO ElO]

i Create component entities,
set el [java::new pt.kernel,
set e2 [java::new pt.kernel,
set eS Ijava::new pt.kernel,
set e6 [java::new pt.kernel,
set e8 [java::new pt.kernel,
set e9 [java::new pt.kernel.

# Create ports,
set pO [$e4 newPort PC]
set pi [$el newPort PI]
set p2 [$e2 newPort P2]
set p3 [$e2 newPort P3]
set p4 [$e4 newPort P4]
set p5 [$e5 newPort P5]
set p6 [$e6 newPort P6]
set p7 [$e3 newPort P7]
set p8 [$e7 newPort P8]
set p9 [$e8 newPort P9]
set plO [$e8 newPort PIO]
set pll [$e7 newPort Pll]
set pl2 [$elO newPort P121
set pl3 [$elO newPort P13J
set pl4 [$e9 newPort P14]

ConponentEntity $e4 El]
ComponentEntity $e4 E2]
ConponentEntity $e3 E5]
ComponentEntity $e3 E6]
ComponentEntity $e7 B8]
ComponentEntity $elO E9]

< Create links

set rl [$e4 connect $pl $pO Rl]
set r2 [$e4 connect $pl $p4 R2]
$p3 link $r2
set r3 [$e4 connect $pl $p2 R3]
set r4 [$e3 connect $p4 $p7 R4]
set rS [$e3 connect $p4 $p5 R5)
$e3 allowLevelCrossingConnect true
set r6 [$e3 connect $p3 $p6 R6]
set r7 [SeO connect $p7 $pl3 R7]
set r8 [$e7 connect $p9 $p8 R8]
set r9 [$e7 connect $plO $pll R9]
set rlO [$eO connect $p8 $pl2 RIO]
set rll [$elO connect $pl2 $pl3 Rll]
set rl2 [$elO connect $pl4 $pl3 R12]
$pll link $r7

FIGURE 2.11. Thesame topology as infigure 2.9 described bythe TclBlend commands to create It.
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Concurrency could easily corrupt a topology ifamodification to a symmetric pair ofreferences is
interrupted by another thread that also tries to modify the pair. Inconsistency could result if, for exam
ple, one thread sets the reference to the container ofan object while another thread adds the same
objectto a different container's listof contained objects.

Ptolemy II prevents such inconsistencies from occurring. Such enforced consistency is called
thread safety.

Z8J UMfTATIOHSOFMOHmS

Java threads provide a low-level mechanism called a monitor forcontrolling concurrent access to
data structures. Amonitor locks anobject preventing other threads from accessing the object (adesign
pattern called mutual exclusion). However, the mechanism is fairly tricky to use correctly. It is non-
trivial to avoid deadlock and race conditions. One of the majorobjectives of Ptolemy II is provide
higher-level concurrency models that can be usedwithconfidence by nonexperts.

Monitors are invoked in Java viathe"synchronized" keyword. This keyword annotates a body of
code or a method, as shown in figure 2.13. It indicates that anexclusive lock should beobtained ona
specific object before executing the body of code. If the keyword annotates a method, as in figure
2.13(a), then themethod's object is locked (aninstance ofclass Ain thefigure). Thekeyword canalso
be associated with an arbitrary body of code and can acquire a lock on an arbitrary object In figure
2.13(b), the code body represented by ellipses (...) can beexecuted only after a lock has been acquired
on object obj.

Table 1: Methods of ComponentRelation

Method Name R1 R2 R3 R4 R5 R6 R7 R8 R9 RIO Rll R12

getLinkedPorts PI PI PI P4 P4 P3 P7 P9 PIO P8 P12 P14

PO P4 P2 P7 P5 P6 P13 P8 Pll P12 P13 P13

P3 Pll

deepGetLinkedPorts PI PI PI PI PI P3 PI P9 PIO P9 P9 P14

P9 P2 P3 P3 P6 P3 PI PI PI PI PI

P14 P9 P5 P9 P3 P3 P3 P3 P3

PIO P14 P14 PIO P9 PIO PIO PIO

P5 PIO PIG P14

P3

Table 2: Methods of ComponentPort

Method Name PO PI P2 P3 P4 PS P6 P7 P8 P9 PIO Pll P12 P13 P14

getConnectedPons PO PI PI P7 P4 P3 P13 P12 P8 Pll P7 P8 P7 P13

P4 P4 P5 Pll P13 Pll

P3 P6

P2

deepGetConnectedPoits P9 PI PI P9 PI P3 P9 PI PI PI PI P9 PI PI

P14 P9 P14 P3 P14 P3 P3 P3 P3 P3 P3

PIO P14 PIO PIO PIO PIO P9 P9 PIO PIO

P5 PIO P5 P14 P14

P3 P5
>

P2 P6

FIGURE 2.12. Key methods applied to figure 2.9.
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Modifications to a topology thatnin the riskof comiptingthe consistency of the topology involve
more than one object. Java does not directly provide any mechanism for simultaneously acquiring a
lock on multiple objects. Acquiring the locks sequentially is not good enough because it introduces
deadlock potential. I.e., one thread couldacquire the lockon the first objectblocktrying to acquirea
lock on the second, while a second thread acquires a lock on the second objectand blocks trying to
acquire a lockon the first. Bothmethods blockpermanently, andthe application is deadlocked. Neither
thread can proceed.

Onepossible solution is to ensure thatlocks arealways acquired in thesame order[21]. Forexam
ple, we could use the containment hierarchy and always acquired locks top-down in the hierarchy.
Suppose forexample thata body of code involves twoobjects a and h, where a contains b (directly or
indirectly). In thiscase,"involved** means thatit eithermodifies members of theobjects ordepends on
their values. Then this body of code would be surrounded by:

synchronized(a) {
synchronized (b) {

}

}

Ifallcode thatlocks a and b respects this same order, then deadlock cannot occur. However, if thecode
involves two objects where onedoes notcontain theother, then it is notobvious what ordering to use
in acquiring the locks. Worse, a change might be initiated that reverses the containment hierarchy
while another thread is in theprocess of acquiring locks onit.A lock must beacquired to read thecon
tainment structure before the containment structure can be used to acquire a lock! Some policy could

2-18

public class A {
public synchronized void £00() (

)

(a)

public class B {
public void foo() {

synchronized(obj) {

(b)

pxiblic class C extends NamedObj {
public void foo() (

synchronized(workspace()) {

)

(c)

try {
workspace().getReadAccess();
// ... code that reads

} finally {
workspace().doneReading();

)

(d)

try {
workspace().getWriteAccess();
// ... code that writes

} finally {
workspace().doneWriting();

)

(e)

FIGURE 2.13. Using monitors for thread safety. The method usedin Rolemy II is In (d) and(e).
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certainly be defined, but the resulting code would be difficult to guarantee. Moreover, testing for dead
lock conditions isnotoriously difficult, so we implement a more conservative, and much simpler strat
egy. ...

Z8.2 READ AND WRiTE ACCESS FERMlSSiOHS FOR WORRSPACE

One way toguarantee thread safety without introducing the risk ofdeadlock istogive every object
animmutable association with another object, which we call itsworkspace. Immutable means that the
association is set up when the object is constructed, and then cannot be modified. When a change
involves multiple objects, those objects must be associated with the same workspace. We can then
acquire a lock on the workspace before making any changes or reading any state, preventing other
threads from making changes at the same time.

Ptolemy n uses monitors only on instances ofthe class Workspace. As shown infigure 2.3, every
instance of NamedObj (orderived classes) is associated with a single instance of Workspace. Each
body ofcode that alters ordepends on the topology must acquire a lock on its workspace. Moreover,
the workspace associated with an object is immutable. It is set inthe constructor and never modified.
This isenforced by a very simple mechanism: a reference tothe workspace is stored ina private vari
able of the base class NamedObj, as shown in figure 2.3, and nomethods are provided to modify it.
Moreover, in instances of these kernel classes, a container and its containees must share the same
workspace (derived classes may be more liberal in certain circumstances). This '̂managed ownership" •
[21] is our central strategy in thread safety.

As shown in figure 2.13(c), a conservative iqiproach would beto acquire a monitor on the work
space for each body ofcode that reads ormodified objects in the workspace. However, this approach is
too conservative. Instead, Ptolemy n allows any number of readers to simultaneously access a work
space. Only one writer can access the workspace, however, and only if no readers are concurrently
accessing the workspace.

The code for readers and writers is shown in figure 2.13(d) and (e). In (d), a readerfirst calls the
getReadAccessO method ofthe Workspace class. That method does not return until it is safe to read
dataanywhere in theworkspace. It is safe if there is noother thread concurrently holding (or request
ing) a write lock on the workspace (the thread calling getReadAccessO may srfely hold both a read
and a write lock). When the user is finish^ reading the woricspace data, it must call doneReadingO.
Failure to do so will result in no writer everagain gaining write access to the workspace. Because it is
so important to call this method, it is enclosed in the finally clause of a try statement That clause is
executed even if an exception occurs in the body of the try statement

Thecodeforwriters is shown in figure 2.13(e). Thewriter first callsthegetWriteAccess() method
of the Workspace class. That method does notreturn until it is safe to write into the workspace. It is
safe if no other thread has read or writepermission on the workspace. The calling thread, of course,
may safely have both read and write permission at the same time. Once again, it is essential thatdone-
WritingObe called after writing is complete.

This solution, whilenot as conservative as the singlemonitorof figure 2.13(c),is still conservative
in that mutual exclusion is applied even on write actions that are indq)endent of one another if they
share thesame workspace. This effectively serializes some modifications thatmight otherwise occur in
parallel. However, there is no constraint in Ptolemy II on the number of workspaces used, so sub
classes of thesekernel classes couldjudiciously use additional workspaces to increase the parallelism.
Butthey must dosocarefully to avoid deadlock. Moreover, most of themethods in thekernel refuse to
operate on multiple objects thatarenot in the sameworkspace, throwing an exception on any attempt
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to do so. Thus,derivedclassesthatare moreliberalwillliave to implement theirownmechanisms sup
porting interactionacross workspaces.

There is one significantsubtletyregarding read and write permissions on the workspace. In a mul
tithreaded application, normally, whena threadsuspends (for exampleby callingwaitQ)* if that thread
holds readpermission on the workspace, that permission is not relinquished duringthe time the thread
is suspended. If another thread requires writepermissionto perform whateveraction the first thread is
waiting for, then deadlock will ensue. That thread cannot get write access until the first thread releases
its read permission, and the first thread cannot continue until the second thread gets write access.

The way to avoid this situation is to use the waitQ method of Workspace, passing as an argument
the object on which you wish to wait (see Workspace methods in figure 2.3). That method first relin
quishes all read permissionsbefore calling wait on the target object. When waitQreturns, notice that it
is possible that the topology has changed, so callers should be sure to re-read any topology-dependent
information. In general, this technique should be usedwhenever a threrd suspends wl^e it holdsread
permissions.

2.8.3 MAmOA WOmPACE REAP ONLY

Acquiring read and write access permissions on the workspace is not free, and it is performed so
often in a typical application that it can significantly degrade performance. In some situations, an
application may simply wish to prohibit all modifications to the topology for some period of time. This
can be done by calling setReadOnlyQ on the workspace (see Workspacemethods in figure 2.3). Once
the workspace is read only, requests for read permission are routinely(and veryquickly) granted, and
requests for write permission trigger an exception. Thus, making a workspace read only can signifi
cantly improve performance, at the expense of denying changes to the topology.

Z9 TOPOLOGY MUTATIONS

Often it is necessary to carefully constrain when changes can be made in a topology.For example,
an application that uses the actor packageto execute a programdefined by a topologymay require the
topology to remain fixed during segmentsof the execution. During these segments, the workspacecan
be made read-only (see section 2.8.3), significantly improving performance.

A subpackage of the kernel, called the event package, provides support for carefully controlled
mutations. The classes and interfaces in this package are shown in figure 2.14. The style of this design
is strongly inspired by the event model in the AWT.

The typical usage pattern involves a source that wishes to have a mutation performed, such as an
actor (see the Actors chapter), and an object that can safely perform the mutation, such as a director,
(again, see the Actors chapter). The source creates an instance of the class TopologyChangeRequest
and enqueues that request by calling the queueTopologyChangeRequestQ of the director. When it is
safe, the directorexecutes the changeby cdling performRequestQ on each enqueuedTopologyChang
eRequest. In addition, it informs anyregistered listeners of the mutations so that theycan reactaccord
ingly.

We have taken some liberties with the notation in figure 2.14. There is no class called Source, so
the name is shown in parentheses and theclasswithdashed outlines. Thisclassrepresents Qq>ical uses
of the event package,but are not includedin the event package.

The Directorclass in the actorpackageallowstopology mutations to occuronlybetweeniterations
of an iterative execution of an application (see the Actors chapter). To supportthis, it has a queueTo-
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FIGURE 2.14. Classes and inter

faces in kemeLevent, which supports
controlled topology mutations. A
source requests topology changes
and a director performs them at a
safe time. There is no dass called

"Source ' so its name is shown in

parentheses.
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pologyChangeRequestO method that permits any other code to specify a mutation to be performed at
the first opportunity.

19.1 mmmtffwmoevmmRmiST

Internally,each topology change request contains a sequence of topology events. Each event repre
sents a primitive operation on the topology, such as adding an entity or creating a link between a port
and a relation. Thus, a topologychangerequestis an aggregation of topologyevents. Althoughis it not
enforced (and probably cannot be), each such aggregation should be constructed so that the graph is
transformed from one consistent, executable state to another.

A director processes a topology change request by calling its performRequest() method. This
method activates each event by calling its doTopologyChange() method. If any of the events fails to
perform (that is, it throwsan exception) the entire requestis rolledback- that is, undone- so that the
graphremains in a consistent state.Todo so, the undoEventAction() method of eachevent If the undo
completes successfully, doTopologyChange() throws a TopologyQiangeFailedExcqption containing
the original exception that cause the event to fail. If the undo fails to complete, it throws a Topology-
ChangeFailedException containingboth the originalexceptionand the exceptionthrown by the unsuc
cessful undo operation.

Note that the attemptto roll back an unsuccessful topology changerequestcan only go back as far
as the start of the failed request. In general, directors and other classes that process topology changes
should not attempt to roll back requests that have already been successfully completed, especially if
there may be listeners that have already been notified about the change.

If the request completes successfully, the director then notifies all topology change listeners
attached to it. It does this by calling the notifyListenersO method of the TopologyChangeRequest
objects, which in turn calls the notifyListenersO method of the TopologyEvent objects. The notifyLis
tenersO method of the TopologyEvent objectcalls the appropriate method in the listenerinterface.

Because of the possibility of failure of a change request, the director performs each request and
notifies listeners immediately, ratherthan performing all requests and then notifying listeners of all of
them. Any other classes that later supporttopology changes should be written to follow this pattern.
Theassumption is thatchanges thatcanbe aggregated will be aggregated in a single instance of Topol
ogyChangeRequest.

The TopologyChangeRequest class is abstract. In particular, onemethod, constructEventQueue()
is abstract. Thus, to builda topology change request, a source willtypically define an anonymous inner
class, like this:

TopologyChangeRequest change = new TopologyChangeRequest() {
public void constructEventQueue () {

)

)
director.queueTopologyChangeRequest(chemge);

The body of the constructEventQueue() method should create entities, relations, ports, and so on. It
should not directly insert these into the topology, however. Instead, it should call the (final) methods
queueEntityAddedEventO, queuePortAddedEvent(), and so on. These methods indicate what muta
tions are to be performed later. These methods internally create instances of TopologyEvent. The
source is responsible for ensuring that the complete event, when performed, will leave the kernel struc-
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ture in an executable state.

For example, thecode in the constructEventQueueQ method to create, add, and link a new entity
might look like this:

Entity fred = new ^EntityClass("Fred");
ComponentEntity myContainer = getContainer();
c[ueueEntityAddedEvent (rnyContainer, fred);
queuePortLinkedEvent(fred.getPort("input"), someRelation);

When performRequestO is called, theentity named fred will be created, added to myContainer^ and
linked to someRelation. When notifyListeners() is called, listeners willhavetheirratityAddedQ meth
ods called with an event containing myContainer andfred, and then AeirportLinked() mediod called
with an event containing/red'5 input port and someRelation.

2.9.2 VmCTORSAtWUSmm

Any director can safely perform topology changes. (In general, otherobjects may also perform
topology changes.) It provides addTopologyListeneif) and removeTopologyListener() methods, sothat
interested objects can register to be notih^ when topology changes occur. In addition, it provides a
method that topology change sources canuseto queue requests. Thedirector is responsible for obtain
ingwrite access to the workspace, calling theperformRequestO and notifyListeners() methods of each
queued request, and releasing write access. It alsodeals with failure of any topology change request,
and decides if and how to recover from such an exception.

A topology listener is any object that implements the TopologyListener interface, and will typi
callyinclude userinterfaces, visualization components, schedulers, andso on.Theseobjects canattach
themselves to a director with the method addTopologyListener().

The notifyListenersO method accepts a TopologyListener objectas aigument, and dispatches each
eventin the queueto that listener. It doesnot checkthat the events represent mutations that have been
performed. It is up to the director to ensure thatmutations are performed before listeners are notified.

The TopologyEvent contains all information about an atomic topology change, such as adding an
entity or liiiking to a port. Its id signifies what kind of event it is - for example, whether it represents
adding an entity to a composite entity, linkinga relation to a port, and so on. The fields compositeEn-
tity, entity^ party relationy componentEntityy and componentRelation containthe objectsinvolvedin the
event. For any given event, only two of these fields will be non-null, and the listener is assumed to be
written correctly and to use the right ones. The event class contains methods for setting and getting
these public fields. In addition, it contains methodsto process the topologychangerepresented by the
event and to undo it.

The TopologyListener follows the AWT listener conventions, and contains a series of methods,
one of which is called for each event type. Each method accepts a single TopologyEvent as aigument,
which contains the information about what the event means. There are two concrete classes that imple
ment TopologyListener in this package: TopologyMulticaster, which can have other listeners attached
to it and to which it forwards each method call; and TopologyAdaptor, which is an empty implementa
tion of TopologyListenerthat makes it more convenient to create anonymous event listener classes.
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Z10 ixemioNS

Ptolemy n includes a set of exception classes that provide a uniform mechanism for reporting
errors that takes advantage of the identification of named objects by full name. These exception are
summarized in the class diagram in figure 2.15.

Ziai BASi CLASS

KemelException. Not used directly. Provides common functionality for the kernel exceptions. In par
ticular, it provides methods that take zero, one, or two Nameable objectsplus iai optional detail mes
sage (a String). The arguments provided are arranged in a default organization that is overridden in
derived classes.

•_message: String
'fKemeiExceptionO
•iXemelExceptioniol: Nameable, o2: Nameable. message: String)
^getMessageO: String
•_getName(obj: Nameable); String
•_getFullName{obj: Nameable): String
»_8etMes58ge(message: String)

RuntbiwExeaptlon

InvallriStataExeeptlon

-^message: String

4-lnvalidStateException(msg: String)
^-InvalidStateExceptioniot^: Nameable, msg:String)
♦lnvalidStateExoeption{o1: Nameable, o2: NamaaUe, msg: String)
4'lnvaiktStateExBeption(objects: Enumeration, msg: Siring)
♦gatMessageO: String
a_getName(obj: Nameable): String
a_getFullName(obj: Nameable): String
a„satMe8sage(ma8sage: String)

NeSuehttamExoaption iRtMnalErrorExoaptlon

'^message: String

«NoSuchltemExcept>on(msg: String)
»NoSuchltemExe6pt»on(obi:Nameabte. msg: String)

44ntemaIErrarExDaption(m8ssage:String)
♦ptMassageQ: String

NamaOiipllcatioitExcaptlon

•fNameDuplicationExoeption{comainer: Nameable, msg: String)
44\lameOupIicationExoeption{eomainer; Nameable, woukSBeContainer: Nameable)
*NameDuplicationException{container: Nameable,woukCeContainer:Nameable,msg: String)

HlagsiActionExeaptlon

^yegslActionExoeption(inessage: String)
*^ltlag8lActiflnExoeption(obj: Namaabla)
4-ineg8lActionExoeption(otij: Namaabla, massags: String)
fItlegalActionExeeptioniol : NamaaMa, o2: Nantaable. msg: String)

FIGURE 2.15. Summary of exceptions defined inthe kemel.util package. These are used primarily
through constructor calls.The form ofthe constmctorsis shown inthe text. Exception and Runt-
imeException are Java exceptions.
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Z10.2 LESS SEVERE EmmHS

These exceptions generally indicate that an operation failed to complete. These can result in a
topology that isnot what the caller expects, since the caller*s modifications to the topology did not suc
ceed. However, they should never result inaninconsistent orcontradictory topology.

lllegalActionException. Thrown on an attempt toperform an action that isdisallowed. For example,
theaction would result in aninconsistent orcontradictory datastructure if it were allowed tocomplete.
E.g., attempt to set the container ofan object to be another object that carmot contain itbecause itis of
the wrong class.

NcaneDuplicationException. Thrown on an attempt to add anamed object to a collection that requires
unique names, and finding that there already isan object by that name inthe collection.

NoSuchltemException. Thrown on access to an item thatdoesn't exist. E.g., attempt to remove a port
by name and no such port exists.

2M3 MORE SEVERE EXCEPTIONS

The following exceptions should never trigger. If they trigger, it indicates a serious inconsistency
in the topology and/or a bug in the code. Atthe very least, the topology being operated on should be
abandoned and reconstructed from scratch. They are runtime exceptions, so they do not need to be
explicitly declared to be thrown.

JnvalidStateException. Some object or setof objects hasa state that in theory is notpermitted. E.g., a
NamedObj has a null name. Or a topology has inconsistent or contradictory information in it, e.g. an
entity contains a port that has a different entity as itscontainer. Our design should make it impossible
for this exception to ever occur, sooccurrence is a bug. This exception is derived from the Java Runt-
imeException.

IntemalErrorException. An unexpected error other than an inconsistent state has been encountered.
Ourdesign should make it impossible for this exception to ever occur, so occurrence is a bug. This
exception is derived from the Java RuntimeException.
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3.1 mcmm COMPUTATION

In the kernel package, entities have no semantics. They are syntactic placeholders. Inmany ofthe
uses of Ptolemy II, entities are executable. The actor package provides basic support for executable
entities. It makes a minimal commitment to the semantics of these entitiesby avoidingspecifying the
order in which actors execute (or even whether the execute sequentially or concurrently), and by
avoiding specifying the communication mechanism between actors. These properties are defined inthe
domains.

In mostuses, these executable entities conceptually (ifnotactually) execute concurrently. Thegoal
of the actor package is to provide a clean infrastructure for such concurrent execution that is neutral
about the model of computation. It is intended to support dataflow, discrete-event, synchronous-reac
tive, communicating sequential processes, and process networks models of computation, at least. The
detailed model of computation is then implemented in a setof derived classes called a domain. Each
domain is a separate package.

Ptolemy II is an object-oriented application framework. Agha*s actors [1] extend the concept of
objects to concurrent computation. His actors enc£q>sulate a thread ofcontrol and have interfaces for
interacting with other actors. They provide a framework for "open distributed object-oiioited sys
tems." An actor can create other actors, send messages, and modify its own local state.

Inspired by this model, we group acertain set ofclasses that support computation within entities in
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the actor package. Our use of the term "actors/* however, is somewhat broader than Agha*s, in that
ours does not require an entity tobeassociated with a single thread ofcontrol, nor does it require the
execution of thr^s associate with entities to be fair. Some subclasses, in other packages, impose
suchrequirements, as we will see, but not all.

Agha's actors can only send messages toacquaintances —actors whose addresses it was given at
creation time, or whose addresses it has received in a message, or actors it hascreated. Ourequivalent
constraint is thatan actor canonly send a message to anactor if it has (orcanobtain) a reference to an
input port ofthat actor. The usual mechanism for obtaining a reference toan input port uses the topol
ogy, probing for aport that it isconnected to. Our relations, therefore, provide explicit management of
acquaintance associations. Derived classes may provide additional implicit mechanisms. We define
actor more loosely torefer toan entity that processes data diat it receives through itsports, orthat cre
ates and sends data to other entities through its ports.

The actor package provides templates for two key support functions. These templates support mes
sage passing and the execution sequence (flow ofcontrol). They are templates in that no mechanism is
actually provided for message passing orflow ofcontrol, but rather base classes are defined so that
domains only need to override a few methods, and so that domains can interoperate.

12 MESSAGE PASSm

The actor package provides templates for executable entities called actors that communicate with
one another via message passing. Messages are encapsulated in tokens (see the Data chapter). Mes
sages are sent via ports. lOPort is the key class supporting message transport, and is shown in figure
3.2. An lOPort can only be connected to other lOPort instances, and only via lORelations. The lORe-
lation class is also shown infigure 3.2. TVpedlOPort and lypedlORelation are subclasses that manage
type resolution. This is described indetail inthe Types chapter.

An instance of lOPort can be an input, an output, or both. An input port (one that is capable of
receiving messages) contains one or more instances ofobjects that implement the Receiver interface.
Each of these receivers is capable ofreceiving messages from a distinct channel.

The type of receiver used depends on the communication protocol, which depends on the model of
computation. The actor package includes two receivers. Mailbox and QueueReceiver. These are
generic enough to be useful in several domains. The QueueReceiver class contains aFIFOQueue, the
capacity of which can be controlled. Italso provides a mechanism for tracking the history of tokens
that are received by the receiver. The Mailbox class implements aFIFO (first in, first out) queue with
capacity equal to one.

3.11 miA TRANSPORT

Data transport is depicted in figure 3.1. The originating actor El has an output port PI,indicated in
the figure with an arrow in the direction of token flow. The destination actor E2 has an input port P2,
indicated in the figure with another arrow. El calls the send() method ofPI to send a token t to a
remote actor. The port obtains areference to aremote receiver (via the lORelation) and calls the put()
method ofthe receiver, passing it the token. The destination actor retrieves the token by calling the
get() method of its input port, which in turn calls the getQ method of the designated receiver.

Domains typically provide specialized receivers. These receivers override get() and putQ to imple
ment the communication protocol pertinent tothat domain. Adomain that uses asynchronous message
passing, for example, can usually use the QueueReceiver shown in figure 3.2. Adomain that uses syn-
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chronous message passing (rendezvous) hasto provide a new receiver class.
In figure 3.1 there is only a single channel* indexed 0. The "0" aigument of the sendQ and get()

methods refer tothis channel. A port can support more than one channel, however, as shown in figure
3.3. This can berepresented by linking more than one relation tothe port, orby linking a relation that
has a width greater than one. Aport that supports this iscalled a multiport. The channels are indexed
0,^-1, where N is the number ofchannels. An actor distinguishes between channels using this
index in its send() and get() methods. Bydefault, anlOPort is not a multiport, and tiius supports only
onechannel. It is converted intoa multiport by calling its setMultiport() method witha true aigument.
After conversion, it can support any number of channels.

Multiports are typically used by actors that communicate via an indeterminate number ofchannels.
For example, a "distributor'' or "demultiplexor" actor might divide an input stream into a number of
output streams, where the number ofoutput streams depends on the connections made to the actor. A
stream is a sequenceof tokens sent over a channel.

An lORelation, bydefault, represents a single channel. Bycalling itssetMdth() method, however,
it can be converted to a bus. A multiport may usea bus instead of multiple relations to distribute its
data, as shown in figure 3.4. The width ofa relation is thenumber of channels supported by the rela
tion. If the relation is not a bus, then its width is one.

The width of a port is the sum of the widths of the relations linked to it In figure 3.4, both the
sending and receiving ports are multiports with width two. This is indicated bythe"2"adjacent toeach
port. Note that the width ofa port could bezero, if there are norelations linked toa port (such a port is
said to be disconnected). Thus, a portmay have width zero, even though a relation cannot. Byconven
tion, in Ptolemy II, if a token is sent from such a port, the token goes nowhere. Similarly, if a token is
sentviaa relation that is not linked to anyinputports, thenthe token goes nowhere. Such a relation is
said to be dangling.

^nd(0,t) reoeiver.put(t)

token ty

FIGURE 3.1. Message passing Ismediatedbythe lOPort class. Itssend() methodobtainsa refer
ence to a remote receiver, and calls the put()method of the receiver, passing Itthe token f. The
destination actor retrieves the token by callingthe get() method of its input port.

6end(0.t0

El PI

(send(l.tl)

receiver.put(t1)

raoeiver

token tq>

I token WJ

FIGURE 3.3. Aport can support more than one channel, permitting an entityto send distinctdata
to distinct destinations via the same port. This feature is t^ically used when the number of desti
nations varies in different instances of the source actor.
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FIGURE 3.2. Port andreceiver classesthat provide Infrastructure for message passing under
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Agiven channel may reach multiple ports, as shown in figure 3.5. This is represented by arelation
that is linked tomultiple input ports. Inthe default implementation, inclass lOPort, a reference tothe
token is sent to all destinations. Note that tokens are assumedto be immutable,so the recipientscannot
modify the value. This is important because inmost domains, it isnot obvious inwhat order the recip
ients will see the token.

lOPort provides a broadcast() method for convenience. This method sends a specified token toall
receivers linkedto the port, regardless of the widthof the port.

3.Z2 iXAMHE

An elaborate example showing allofthe above features is shown infigure 3.6. Inthat example, we
assume that links are constructed in top-to-bottom order. The arrows in theports indicate thedirection
of the flow of tokens, and thus specify whether theport is an input, an ou^ut, or both. Multiports are
indicated by adjacent numbers larger than one.

The top relation isa bus with width two, and the rest are not busses. The width ofport PI is four.
Its first two outputs (channels zero and one) gotoP4and tothe first two inputs ofP5.The third output
ofPI goes nowhere. The fourth becomes the third input ofP5, the first input ofP6, and the only input
ofP8y which is both an input and anoutput port. Ports P2and P8send their outputs to the same set of
destinations, except that P8 does notsend to itself. Port P3haswidth zero, soits send() method cannot
be called without triggering anexception. Port P6 has width two, but its second input channel has no
output ports connected to it, so calling get(l) will trigger an exception that indicates that there is no
data.Port P7 has width zeroso callingget()withanyargument will triggeran exception.

send(0.to;

E1 PI

send(1 .tl

rec8iver.put(tO)
r0C8iver.put(t1)

get(O). get(1)

token to. tly

FIGURE3.4. A bus Is an lORelation that represents multiplechannels. It is indicated by a relation
with a slash through it, and the numberadjacent to the bus is the width ofthe bus.

8end(0.t)

El PI

reoeiver.put(t}

tftT^^nd(l.tl)

receiver.put(t)

get(0) token
(done of t)

E3

tokentJ

FIGURE 3.5. Channels may reach multiple destinations. This is represented by relationslinking
multiple input ports to an output port.
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12.3 TMHsmmmrs

Recall that a port is transparent if its container is transparent (isOpaque() returns A Com-
positeActor is transparent unless it has a localdirector. Figure 3.7 showsan elaborate examplewhere
busses,input, and output ports are combined with transparent ports.The transparent ports are filled in
white, and again arrows indicate the direction of token flow. The TclBlend code to construct this exam
ple is shown in figure 3.8.

By definition, a transparent port is an input if either
• it is connected on the inside to the outside of an input port, or
* it is connected on the inside to the inside of an output port.
That is, a transparent port is an input port if it can accept data (which it may then just pass through to a

3-6

f
PI

P2

P3

L

FIGURE 3.6. An elaborate example showing several features of the data transport mechanism.

FIGURE3.7. An example showing busses combined with input, output, and transparent ports.
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transparent output port). Correspondingly, a transparent port is an output port ifeither
• it is connected on the inside to the outside of an output port, or

• it is connected on the inside to the inside of an input port

Thus, assuming PI is anoutput port and P7, P8, and P9are input ports, then P2, P3, and P4are both
inputand output ports, while P5 andP6 are inputportsonly.

Two of therelations that areinside composite entities (R1 and R5) arelabeled asbusses with a star
(♦) instead ofa number. These arebusses with unspecified width. Thewidth is inferred from thetopol
ogy. This is done by checking the ports that this relation is linked to from the inside and setting the
width to themaximum ofthose portwidths, minus thewidths ofother relations linked tothose ports on
theinside. Each such portis allowed to have at most oneinside relation with an unspecified width, or
an exception is thrown. If this inference yields a width of zero, then the width is defined to be one.
Thus,R1 willhavewidth 4 andR5 willhavewidth3 in thisexample. The width of a transparent port is
the sum of the widths of the relations it is linked to on the outside (just like an ordinary port). Thus, P4
has width 0, P3 has width 2, and P2 has width 4. Recall that a port can have width 0, but a relation can
not have width less than one.

When data is sent from PI, four distinct channels can be used. All four will go throu^ P2 and P5,
the first three will reach P8, twocopies of the fourth will reach P9, the first two will go through P3 to

set eO [java::new ptolemy.actor.ConpositeActor] $rl setWidth 0

$eO setDirector Sdirector $r2 setWidth 3

$eO setManager Smanager $r4 setWidth 2

$r5 setWidth 0

set el [java::new ptolenv.actor.ConpositeActor $eO El]
set e2 (java::new ptoleny.actor.AtomicActor $el £2] $pl link $rl

set e3 [java::new ptoleny.actor.ConpositeActor $eO E3) $p2 link $rl

set e4 [java::new ptoleny.actor.AtomicActor $e3 E4] $p3 link Sri
set eS [java::new.ptoleny.actor.AtomicActor $e3 E5] $p4 link $rl

set e6 [java::new ptoleny.actor.AtomicActor $eO E6] $p2 link $r2

$P5 link $r2
set pi (java::new ptoleny.actor.lOPort $e2 PI false true] $p2 link $r3

set p2 ljava::new ptoleny.actor.lOPort $el P2] $p5 link $r3
set P3 [java::new ptoleny.actor.lOPort $el P3] $p6 link $r3

set P4 [java::new ptoleny.actor.lOPort $el P4] Sp3 link $r4
set P5 [java::new ptoleny.actor.lOPort $e3 P5] Sp7 link Sr4
set p6 [java::new ptoleny.actor.lOPort $e3 P6] $p5 link $r5
set P7 [java::new ptoleny.actor.ZOPort $e6 P7 true false] $p8 link $r5

set p8 [java::new ptoleny.actor.ZOPort $e4 P8 true false] $p5 link $r6
set P9 [java::new ptoleny.actor.ZOPort $e5 P9 true false] $p9 link $r6

Sp6 link $r7

set rl [java::new ptoleny.actor.ZORelation $el Rl] $p9 link $r7

set r2 [java::new ptoleny.actor.ZORelation $eO R2]

set r3 (java::new ptoleny.actor.ZORelation $eO R3]

set r4 (java::new ptoleny.actor.ZORelation $eO R4]

set rS [java::new ptoleny.actor.ZORelation $e3 R5]

set r6 (java::new ptoleny.actor.ZORelation $e3 R6]

set r7 [java::new ptoleny.actor.ZORelation $e3 R7]

$pl setHultiport true
$p2 setHultiport true
$p3 setHultiport true
$p4 setHultiport true
$p5 setHultiport true
$p7 setHultiport true
$p8 setHultiport true
Sp9 setHultiport true

FIGURE 3.8. TdBlend code to construct the example in figure 3.7.
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P7, and none will go through P4.
By default, an lORelation is not a bus, so its width is one. To turn it into a bus with unspecified

width,call setA^^dthQ with a zero aigument Note that getWidthQ will nonetheless never return zero (it
returns at least one). To find out whether setWidth() has been called with a zero argument, call
isWidthFixedO (see figure 3.2). If a bus with unspeciHed width is not linked on the inside to any trans
parent ports, then its width is one. It is not allowed for a transparentport to have more than one bus
with unspecified width linked on the inside (an exception will be thrown on any attempt to construct
such a topology). Note further that a bus withunspecifiedwidth is still a bus, and so can only be linked
to multiports.

In general, bus widthsinsideand outsidea transparent port need not agree.For example, if Af < N
in figure 3.9, then first M channels from PI reach P3, and the last N-M channels are dangling. If
M>Ny then all N charmels from PI reach P3, but the last Af-N charmels at P3 are dangling.
Attempting to geta token from these charmels willtrigger an exception. Sending a token to thesechan
nels just results in loss of the token.

Note that data is not actually transported through the relations or transparent ports in Ptolemyn.
Instead, each output portcaches a list of the destination receivers (in the form of the two-dimensional
array returned by getRemoteReceiversO), and sends data directly to them. The cache is invalidated
whenever the topology changes, and only at that point will the topology be traversed again. This sig
nificantly improves the efficiency of data transport.

3.2.4 MTA TRANSFER IN VARIOUS MODELS OF COMPUTATION

The receiver usedby an input port determines the communication protocol. This is closely bound
to the model of computation. The lOPort class creates a new receiver when necessary by calling its
_newReceiver() protected method. That method delegates to the director returned by getDirector(),
calling itsnewReceiver() method (theDirector class will bediscussed in section 3.3below). Thus, the
director controls the communication protocol, in addition to its primary function of determining the
flow of control. Here we discuss the receivers that are made available in the actor package. This should
not be viewedas an exhaustive set, but rather as a particularlyuseful set of receivers. These receivers
are shown in figure 3.2.

Mailbox Communication. The Director base class by default returns a simple receiver called a Mail
box. A mailbox is a receiver has capacity for a single token. It will throw an exception if it is empty
and get() is called, or it is fiill and put() is called. Thus, a subclass of Director that uses this should
schedule the calls to put() and get() so that these exceptions do not occur, or it should catch these
exceptions.

P3

FIGURE 3.9. Bus widths inside and outside a transparent port need not agree..
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Asynchronous Message Passing. This issupported by the QueueReceiver class. AQueueReceiver con
tains an instance of FIFOQueue, from the actor.util package, which implements a first-in, first-out
queue. This is appropriate for all flavors ofdataflow aswell asKahn process networks.

In the Kahn process networks model ofcomputation [20], which is a generalization ofdataflow [22],
eachactorhas its ownthreadof execution. The threadcallinggetOwill stall if the corresponding queue
is empty. If the size ofthe queue isbounded, then the thread calling put() may stall if die queue is full.
This mechanism supports implementation ofa strategy that ensures bounded queues whenever possi
ble [32].

Inthe process networks model ofcomputation, the history oftokens that traverse any cormection is
determinate under certain simple conditions. With certain technical restrictions onthefunctionality of
theactors (they must implement monotonic functions under prefix ordering of sequences), our imple
mentation ensures determinacy in that the history does not depend on the order in which the actors
cany out their computation. Thus, the history does not depend on the policies used by the thread
scheduler.

FIFOQueue is a supponclass that implements a first-in, first-out queue. It is part of the actor.util
package, shown in figure 3.10. This class has two specialized features that make it particularly useful
in this context. First, its capacity can be constrained or unconstrained. Second, it can record a finite or
infinite history, thesequence of objects previously removed from thequeue. Thehistory mechanism is
useful both to support tracing anddebugging andto provide access to a finite buffer of previously con
sumed tokens.

An example of an actor definition is shown in figure 3.11. This actor has a multiport output. It
reads successive input tokens from the input port and distributes them to the output channels. This
actoris written in a domain-polymorphic way, and can operate in any of a number of domains. If it is
used in the PN domain, then its input will have a QueueReceiverand the output will be connected to
ports with instances QueueReceiver.

Rendezvous Communications. Rendezvous, or synchronous communication, requires diat the origina
tor of a token and the recipientof a token both be simultaneously ready for the data transfer. As with
process networks, the originator andtherecipient are separate threads. The originating thread indicates

public class Distributor extends AtomicActor (

piiblic Distribute(ConqpositeActor container. String name)
throws NameDuplicationException, IllegalActionException {

super(container. name};
_input = new IOPort(this, *input*, true, false);

" -Output = new lOPorttthis, 'output*, false, true);
-Output.setMultiport(true);

}

public void fireO throws IllegalActionException {
for (int i=0; i < _output.getWidth(); i++) {

.output.send(index, .input.get(0));
)

)

private lOPort .input;
private lOPort .output;

}

FIGURE 3.11. An actor that distributes successive input tokens to a set of output channels.

HeterogeneousConcurrent Modelingand Design 3-9



Actors

a willingness to rendezvous by calling send(), which in turn calls the put() method of the ^[^ropiiate
receiver. The recipient indicates a willingness to rendezvous by calling getQ on an inputport,which in
turn calls get() of the designated receiver. Whichever thread does this first must stall until the other
thread is ready to complete the rendezvous.

This style of communication is implemented in the CSP domain. In the receiver in that domain, the
put() method suspends the calling thread if the get() method has not been called. The get() method sus
pends the calling thread if the put() method has not been called. When the second ofthese two methods
is called, it wakes up the suspended thread and completes the data transfer. The actor shown in figure
3.11 works unchanged in the CSP domain, although its behavior is different in that input and output
actions involve rendezvous with another thread.

Nondeterministic transfers can be easily implemented using this mechanism. Suppose for example
that a recipient is willing to rendezvous with any of several originating threads. It could spawn a thread
for each, lliese threads should each call getQ, which will suspend the thread until the originator is will
ing to rendezvous. When one of the originating threads is willing to rendezvous with it, it will call
put(). The multiple recipient threads will all be awakened, but only of them will detect that its rendez
vous has been enabled. That one will complete the rendezvous, and others will die. Thus, the first orig-
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FIGURE 3,10. Static staicture diagram for the actor.utll package.
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mating thread to indicate willingness to rendezvous will be the one that will transfer data. Guarded
communication [3] can also be implemented.

Discrete-Event Communication, In the discrete-event model of computation, tokens diat are trans
ferred between actors have a time stamp^ which specifies the order in which tokens should be pro
cessed by the recipients. The order is chronological, by increasing time stamp. To implement this, a
discrete-event system will normally use a single, global, sorted queue rather dian an instance ofFIFO-
Queue in each input port The kemeLutil package, shown in figure 3.10, provides the CalendarQueue
class, which gives an efficient and flexible implementation ofsuch a sorted queue.

3.Z5 VlSmSIONOF THE MA TMHSFER MECHANISM

Thisdata transfer mechanism has a number of interesting features. First,note that theactual trans
fer of datadoes notinvolve relations, so a model of computation could be defined thatdidnot rely on
relations. For exaihple, a global name server might be used to address recipient ports. For example, to
construct simulations ofhighly dynamic networks, such as wireless communication systems, itmay be
more intuitive tomodel a system asa aggregation ofunconnected actors with addresses. Aname server
would return a reference toa port given an address. This could be accomplished simply by overriding
the getRemoteReceiversO method oflOPort, orby providing an alternative method for getting refer
ences to receivers. The subclass of lOPort would also have to ensure the creation of the jqjpropriate
number of receivers. Thebaseclassrelies on the width of the portto determine howmany receivers to
create, and the width is zero if there are no relations linked.

Note further that the mechanism here supports bidirectional ports. An lOPort may return true to
both the isInputO and isOutput()methods.

3.3 mcmm

The Executable interface, shown in figure 3.12, is implemented by the Director class, and is
extended by the Actor interface. An actor isan executable entity. There are two types ofactors, Atom-
icActor, which extends ComponentEntity, and CompositeActor, which extends CompositeEntity. As
the names imply, an AtomicActor is a single entity, while a CompositeActor is an aggregation of
actors.

TheExecutable interface defines howan object canbe invoked. Therearesix methods. The initial-
ize() method is assumed tobe invoked exactly once during the lifetime ofan execution of a model. It
may beinvoked again torestart an execution. The prefire(), fire(), and postfire() methods will usually
beinvoked many times. The fireQ method may beinvoked several times between invocations ofpre-
fireO and postfiie(). The wrapupQ method will beinvoked exactly once per execution, atthe end ofthe
execution.

TheterminateO method is provided as a last-resort mechanism to interrupt execution based on an
external event. It is not called during the normal flow of execution. It should be usedonlyto stoprun
away threads thatdo notrespond to more usual mechanism forstopping anexecution.

An iteration is defined to be one invocation of prefireO* any numberof invocation of fireO. and
one invocation of postfire(). Anexecution is defined to be one invocation of initializeO, followed by
any number of iterations, followed byone invocation of wrapupO- The methods initializeO, prefire(),
fireO, postfireO, and wrapupO arecalled theaction methods. While, theaction methods in the execut
able interface are execut^ in order during the normal flow ofan iteration, the terminateQ method can
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FIGURE 3.12. Basic classes in the actor package that support execution.
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beexecuted at any time, even during theexecution of theother methods.
The initializeO method ofeach actor gets invoked exactly once, much like the beginQ method in

Ptolemy 0.x. Typical actions of the initialize() method include creating and initializing private data
members. In domains that use typed ports and/or schedulers, type resolution andscheduling has not
been performed when initializeO is invoked. Thus, the initializeQ method may define the types ofthe
ports andmayset parameters thataffect scheduling.

The prefireO method may beinvoked multiple times during an execution, but only once peritera
tion. The prefireO returns true toindicate that the actor is ready tofire. Inopaque composite actors, the
prefireO method isresponsible for transferring data from the opaque ports ofthe composite actor tothe
portsof the contained actors. See section 3.3.5below.

The fireO method may be invoked multiple times during an iteration. In most domains, this
method defines the computation performed by the actor.

The postfireQ method will be invoked exactly once during aniteration, after all invocations of the
fireO method in thatiteration. Anactormayreturn false in postfire to indicate that the actorshould not
be rired again. It has concluded its mission.

The wrapupO method is invoked exactly once during the execution of a model, unless an excep
tion prevents its invocation. Typically, wrapupO is responsible for cleaning up after execution has
completed, andperhaps flushing output buffers before execution ends.

The terminateO method may be called at any time during an execution, but is not necessarily
calledat all. When terminateO is called,no more executionis important,and the actor shoulddo every
thing in its power to stopexecution right away. Thismethod should be used as a lastresort if all other
mechanisms for stopping an execution fail.

3,3,f vmom.

A director governs the execution of a composite entity. A manager governs the overall execution
of a model. Anexample of theuseof these classes is shown in figure 3.13. In thatexample, a top-level
entity, EO, hasan instance of Director, Dl, that serves the roleof its local director. A localdirector is
responsible forexecution of thecomponents within thecomposite. It will perform anyscheduling that
might be necessary, dispatch threads that need to be started, generate code that needs to be generated,
etc. In the example, Dl alsoserves as an executive director for E2.The executive directorassociated
with an actor is the director that is responsible for firing the actor.

M; Manager

Dl: local director

D2: local duoclor

FIGURE 3.13. Example application, showing a typical arrangement of actors, directors, and man
agers.
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A composite actorthat is notat the top level mayor maynot haveits ownlocal director. If it has a
local director, then it defined to be opaque (isOpaqueQ returns true). In figure 3.13, E2 has a local
directorand E3 does not The contents of E3 are directly under the control of Dl, as if die hierarchy
were flattened. By contrast, thecontents of E2areunder thecontrol of D2,which in turn is under the
oontrol ofDl. In theterminology of theprevious generation, Ptolemy 0.x,E2 was called a wormhole.
In Ptolemy II, we simply call it a composite opaque actor. It will beexplained inmore detail below in
section 3.3.5.

We define the director (vs. local director or executive director) of an actor to be either its local
director (if it has one) or its executive director (if it does not). A composite actor thatis notat the top
level has as its executive director the director of the container. Every executable actor has a director
except the top-level composite actor, and that director iswhat is returned by die getDirectorQ method
of the Actor interface (see figure 3.12).

When any action method is called on an opaque composite actor, the composite actor will gener
ally call the corresponding method in its local director. This interaction is crucial, since it is domain-
independent and allows for communication between different models ofcomputation. When fire() is
called in the director, the director is free to invoke iterations in the contained topology until the stop
pingcondition for themodel of computation is reached.

The postfireO method ofadirector returns false to stop its execution normally. Itisthe responsibil
ity ofthe next director up inthe hierarchy (or the manager if the director isatthe top level) to conclude
the execution of this director by calling its wrapupO method.

The Director class provides a default implementation of an execution, although specific domains
may override this implementation. In order to ensure interoperability ofdomains, they should stick
fairly closely to the sequence.

Two common sequences ofmethod calls between actors and directors are shown infigure 3.14 and
3.15. These differ in the shaded areas, which define thedomain-specific sequencing of actorfirings. In

• figure 3.14, the fire() method ofthe director selects an actor, invokes its prefire() method, and if that
returns true, invokes its fire() method some number of times (domain dependent) followed by its post
fireO method. In figure 3.15, the fire() method ofthe director invokes the prefire() method ofall the
actors before invokingany of their fire() methods.

When a director is initialized, via its initializeO method, it invokes initialize() on all the actors in
the next level of the hierarchy, in the order in which these actors were created. The wrapupO method
works in a similar way, deeply traversing the hierarchy. In other words, calling initializeO ona com
posite actor is guaranteed to initialize in all the objects contained within that actor. Similarly for wra
pupO.

The methods prefire() and postfire(), on the other hand, are not deeply traversing functions. Call
ing prefireO on adirector does not imply that the director call prefiie() on all its actors. Some directors
may need to call prefire() on some or all contained actors before being able to return, but some direc
tors may not need to call prefire() on any contained objects at all. A director may even implement
short-circuit evaluation, where itcalls prefire() on only enough ofthe contained actors todetermine its
own return value. PostfireO works similarly, except that it may only be called after at least one suc
cessful call to fire().

The fireO method is where the bulk ofwork for a director occurs. When a director is fired, it has
complete control over execution, and may initiate whatever iterations of other actors are appropriate
for the model ofcomputation that it implements. It is important tostress that once a director isfired,
outside objects do not have control over when the iteration will complete. The director may not iterate
any contained actors at all, or itmay iterate the contained actors forever, and not stop until terminate()
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Actors

iscalled. Ofcourse, inorder topromote interoperability, directors should define a finite execution that
they performin the fire() method.

In some domains, the firing ofa director corresponds exactly to the sequential firing of thecon
tained actors in a specific predetermined order. This ordering is known as a static schedule for the
actors. Work isunder way toprovide classes that support this style ofexecution. There isalso afamily
of domains where actors are associatedwith threads. Woric is under way to provide classes to support
this as well.

3.3.2 iHANAGEK

While a director implements a model ofcomputation, a manager controls the overall execution of
a model. The manager interacts with a single composite actor, known as a top level composite actor.
The Manager class is shown in figure 3.12. Execution can beinitiated in a manager by either of two
methods, run() and staitRun(). ThestartRunO method spawns a thread that calls run(), and then imme
diately returns. After initializing the hierarchy by calling initialize() in the top-level composite actor,
the manager will run multiple iterations within the top-level composite. This continues until postfire()
in the top-level composite actor returns false, oreither terminate() orfinish() is called in the manager.
The terminateO method corresponds to an immediate halt of execution, and should be used only if
other more graceful methods for ending an execution fail. The finish() method aUows the system to
continue until the end of the currentiteration in the top-level composite actor, and then invokes wra-
pup().

Execution may also be paused between top-level iterations by calling thepauseQ method. After
each top-level iteration, the manager checks to see if pause() has been called. If so, then the manager
will not start thenext top-level iteration until after resumeQ is caUed. In certain domains, such as the
process networks domain, there is not a very well defined concept of an iteration. Generally these
domains do not rely on repeated iteration firings by the manager, andpause() andresume() will have
no effect.

3.3.3 EXECUTIONLISTEHER AND EXECUTiOHEVEtiT

The ExecutionListener interface and the ExecutionEventclass provide a mechanism for a Manager
to report events of interest to a user interface. Generally a user interface will usethe events to notify
theuser of theprogress of execution of a system. A userinterface canregister oneor more Execution-
Listeners with a Manager using the method addExecutionListener() in the Manager class. When an
event occurs, the appropriate method will get called in all the registered ExecutionListeners with an
ExecutionEvent that describes the context of the event.

Several kinds of events are defined in the ExecutionListener interface. A listener is notified of
theseevents by calling theappropriate method. TheexecutionStarted() method indicates thatexecution
has successfully begun and the system is about to be initialized. Likewise, executionFinished() indi
cates that executionhas completedwithouterror and all the actors in this systemhave completedexe
cution of wrapupQ. TheexecutionTenninated() method indicates that theuserrequested thatexecution
cease immediately, through the terminateO method, and the system has done whatever possible to
remm itself to a consistent state. The executionPaused() and executionResumedQ methods are called
when execution successfully pauses and resumes.

Note that in general,while these notification methods roughly correspond to methodsin the Man
ager class, calling the methods in a manager does not imply that the events will occur immediately.
The events are only issued to the listeners after the associated action is actually performed. An exam-
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pie of this is thatcalling thepauseQ method multiple times in a Manager without interleaving calls to
resumeO will result in a maximum of one executionPaused() call in the listeners.

Prior to each top-level iteration, the executionIterationStarted() method is called. This is intended
to provideend users with confidencethat executionis under way.

The executionErrorO method is called when the Manager catches an exception that was thrown
duringexecution. All suchexceptions are caughtin the Manager, andif anyexecution listeners are cur
rently registered with the Manager, then an ExecutionEvent will be created with the Exceptionencap
sulated. If no execution listeners are registered then the stack trace will be printed to the standa^
output. In any domain that begins independent threads of execution, exceptions created during execu
tion will be passed up to the run() method of each thread. In order to view these exceptions through the
executionErrorO call to listeners, the independent threads should catch all exceptions and pass them
along to the Manger using the fireExecutionError() method in the Manager class.

A default implementation of the ExecutionListener interface is provided in the DefaultExecution-
Listener class. This class reports all events on the standard output.

3.3A mJAVONS

A mutation is a run-time modification of a model. In most domains, it is not safe for mutations to
occur at arbitrary times during an execution. For example, a schedule may need to be re-calculated to
take into account the mutation, l^pe resolution may need to be re-done. Or a domain may wish to have
tight control over when parameters of an application change.

The Director class leverages the event subpackage of the kernel, which provides support for
requesting and tracking changes in the topology.This support is documented in the kernel chapter. The
general strategy in Director is simple. Any code that wishes to perform a mutation queues that muta
tion with the director rather than performing it directly (using the queueTopologyChangeRequest()
method, shown in figure 3.12). When it is safe, that mutation is performed, and all mutation listeners
that have been registered with the director (using the addTopologyListener() method) are informed of
the mutation. In subclasses of Directory, the mutations are typically performed in the prefireO method.

The .newActorsO method of Director returns an enumeration of actors that are created in a batch
of mutations. This list is used to initialize these actors. It is possible that initialization of the new actors
will result in further mutations (for example, if they are higher-order functions). Thus, the prefire()
method of subclasses of Director needs to iteratively initialize new actors until there are no more pend
ing mutations.

3,3.5 COMPOSITE OPAQUE ACTORS

One of the key featuresof Ptolemyn is its ability to hierarchically mix modelsof computation in a
disciplined way. The way that it does this is to have actors that are composite (non-atomic) and
opaque. Suchan actorwas calleda wormhole in the earliergeneration of Ptolemy. Its portsare opaque
and its contents are not visible via methods like deepGetEntitiesQ.

Recall that an instance of CompositeActorthat is at the top level of the hierarchymust have a local
director in order to be executable. A CompositeActor at a lower level of the hierarchy may also have a
local director, in which case, it is opaque (isOpaque() return true). It also has an executive director,
which is simply the director of its container. For a composite opaque actor, the localdirector andexec
utive director need not follow the same model of computation. Hence hierarchical heterogeneity.

The ports of a composite opaque actorare opaque, but it is a composite (it can contain actors and
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relations). This has a number ofimplications onexecution. Consider the simple example shown in fig
ure 3.16.Assumethat both EO and E2 have local directors (D1 and D2), so E2 is opaque. The ports of
E2therefore areopaque, as indicated inthe figure bytiieir solid fill. Since itsports areopaque, when a
tokenis sent from the outputport PI, it is depositedin P2, not PS.

Inthe execution sequences offigures 3.14 and 3.15, E2is treated asanatomic actor byDl; i.e. D1
acts as an executive director to E2. Thus, the fire() method of Dl invokes the prefireQ, fireQ, and post-
fireO methods ofEl, E2,andE3.Thefire() method of E2 is responsible for transferring the token from
P2 to PS. It does this by delegating to its local director, involdng its transferlnputsO method. It then
invokes the fire() method of D2, which in turn invokes the prefireQ, fireQ, and postfireQ methods of
E4.

During its fireQ method, E2 willinvoke thefireQ method of D2,which typically willfire theactor
E4,which may send a token viaP6.Again, since theports ofE2areopaque, thattoken goes only asfar
as P3.ThefireQ method of E2is then responsible for transferring thattoken to P4.It doesthisby dele
gating to its executive director, invoking its transferOutputsQ method.

The CompositeActor class delegates transfer of its inputs to its local director, and transfer of its
outputs to its executive director. This is the correct organization, because in each case, the director
appropriate to themodel of computation of thedestination port is theonehandling the transfer. It can
therefore handle it in a manner appropriate to the receiver in that port.

Note thattheportP3 is anoutput, but it has to becapable of receiving datafrom theinside, as well
as sending data to the outside. Thus, despite being an output, it contains a receiver. Such a receiver is
called an inside receiver. The methods of lOPort offer only limited access to the inside receivers (only
via the getlnsideReceiversQ method and getReceivers(re/arion), where relation is an inside linked
relation).

In general, a port may be both an input and an output. An opaqueport of a compositeopaqueactor,
thus, mustbe capable of storing twodistincttypesof receivers, a set appropriate to the insidemodel of
computation, obtained from the local director, and a set appropriate to the outside model of computa
tion, obtained from its executive director. Most methods that access receivers, such as hasTokenQ or
hasRoomQ, refer only to the outside receivers. The use of the inside receivers is rather specialized,
only for handling composite opaque actors, so a more basic interface is sufficient.

M: Manngor

Dl: ioca! ditccior

D2: local dirc-clor

FIGURE 3.16. An example of an opaque composite actor. EOand E2 both have local directors, not
necessarily Implementing the same model of computation.
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Neil Smyth
YuhongXiong

4.1 mmucTioN

The data package provides data encapsulation, polymorphism, parameter handling, an expression
language, anda typesystem. Figure4.1 shows the keyclasses in the main package (subpackages will
be discussed later).

4.2 MTA SNCAPSUIATION

The Tokenclass and its derived classes encapsulate application data. The encapsulateddata can be
transported via message passing between Ptolemy n objects. Alternatively, it can be used to parame
terize Ptolemy II objects. Encapsulating the data in such a way provides a standard interface so that
such data can be handled uniformly regardlessof its detailed structure. Such encapsulationallows for a
great degree of extensibility, permitting developers to extend the library of data types that Ptolemy n
can handle. It also permits a user interface to interact with application data without detailed prior
knowledge of the structure of the data.

Tokens in Ptolemy II, except ObjectToken, are immutable. This means that their value cannot be
changed after the instance of Token is constructed. The value of a token must therefore be specified as
a constructor ailment, and there must be no other mechanism for setting the value. If the value must
be changed, then a new instance of Token must be constructed.

There are several reasons for making tokens immutable.

• First, when a token is to be sent to several receivers, we want to be sure that all receivers get the
same data. Each receiver is sent a reference to the same token. If the Token were not immutable,
then it would be necessary to clone the token for all receivers after the first one.

• Second, we use tokens to parameterizeobjects, and parametershave mutual dependencies.That is,
the value of a parameter may depend on the value of other parameters.The value of a parameter is

HeterogeneousConcurrent Modelingand Design 4-1



4-TokenO
4«dd(ri|)htArB:Tokan): Toktn
+«ddn««rs«{l0tiArg: Toksn): Tokan
♦convBrtftokan : Tokan^ : Tnkan

*<Svida(divisor:Tokan); Tokan
HSvidaRovarM(dMdand: Tokan): Tokan
fBqual8(tokan: Tokan): BoolaanTokan
imdukKrightArg; Tokan): Token
Mno(luloRavarM(leftA(g:Tokan): Token
4niun^iy(leltFaBtor: Tokan): Toksn
4multiplynavarsa(tightFactor: Tokan): Tokan
+oneO: Tokan
4-8trtngValueO: String
4«ubtraet(rightAig: Token): Token
'»'Sut>tfactflavefse(lettArg:Toksn): Tokan
'ftoStringO: String
♦aetoQ: Token

StringTokan

•_value: String
'fStringTokenO
•»StftngToKen(value: String)

tntToken

-.value: Int

-flntToksnQ
'•'IntToken(vaIue; Int)
♦lntToken(value: String)

OoublaTokan

-.value: double

4'Ooub!eToken()
't{)oubleToken(value: double)
♦DoubleToken(value: String)

1

ScatarToksfl

fComplsxValueO: Complex
'KtoubleValueO: double
*4ntValue(); int
«tongVaIu^); long

A

TypeLaOlca

4eonni»ra(e1 :aass.eg:ClaMt:tnt

WMmaamttt : Tokan. Ig ; Tokant: tut

*tettlean:timBh.CPO

♦fcATvnate:Ctoat: bootaan
♦islnstantiabteTuna/ft• ra».«t •

a.i type eonvanien hiofwcriy

BoolaanTokan MttrUTetatn

_value: boolaan

Data

ObJactTokan

-.value: Object
♦BooleanToksnO

48oo(eanToken(vaIue; boolean)
♦BooleanToken(v8lue;String)
'tbooleanValueO: boolean
•MiegateO: BooleanToken

♦complejMatrixO:Comple<S]
'KioubleMatrixO: doubl^]
^ntMatrtxO: IntQQ
♦tengMatrixQ: longnn
♦numColumnsO: kit
mimRowsO: kit
»oneRigt>lO: Token

4ObjectToken0
40^aclToken(vBlue; Object)
♦getValueQ: Object

LongTokan

-.value: long

UjongTokenO
Hx>ngToken(vBlue: long)
♦LongTokenjvalue: Str^)

ComplixToktn

-.value: Complex
4ComplexTokenO
♦Complextokan(value:Complex)

I
DoelaanllatflkTokan

-.numRows: kit
-.numColumns: kit
-.value: boolaanOn

-fSooleanMstrixTokenO
♦BooleanMatrixTokentvalue:boolean(H])
«boolaanMatrixO: booleenDQ
♦getEtementAtjrow: Int. column: Int): boolean

IntMalfM'okan LongllatriitTekan

-.numRows: kit
-.numColumns: int
-.value: Intffll
^ntMatrixToken()
«1ntMatriin'okan(vaIua: kitOQ)
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FIGURE 4.1. Static Structure Diagram (Class Diagram)for the classes in the data package.
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represented by an instance of Token. Ifthat token were allowed to change value without notifying
the parameter, then the parameter would not be able to notify other parameters that depend on its
value. Thus, amutable token would have to implement apublish-and-subscribe mechamsm so that
parameters could subscribe and thus be notified of any changes. By making tokens immutable, we
greatly simplify the design.

• Finally, having our Tokens immutable makes them similar in concept to the data wr^[>pers in Java,
likeDouble, Integer, etc.,which are alsoimmutable.
An ObjectToken contains areference to an arbitrary Object created by the user. Since the user may

modify the Object after the token is constructed, ObjectToken is an exception to immutability. More
over, the getValue () method returns a reference to the token. That reference can be used tomodify
the object. Although ObjectToken could clone the object in the constructor and return another clone in
getValue (), this would require the object to be cloneable, which severely liimts the use of the
ObjectToken. In addition, even ifthe object is cloneable, since the default implementation ofclone()
only makes a shallow copy, it is still not enough to enforce immutability. In addition, cloning a large
object could be expensive. For these reasons, the ObjectToken does not enforce uiunutability, but
rather relies on the cooperation of the user. \^olating this convention could lead tounintended non-
determinism.

For matrix tokens, immutability requires the contained matrix (Java array) to becopied when the
token is constructed, and when the matrix is returned in response to thequeries suchas intMatrix (),
doubleMatrix(), etc. This is because arrays are objects in Java. Since the cost of copying large
matrix is non-trivial, the user should not make more queries then necessary. The getElementAt {)
method should be used to read the contents of the matrix.

4.J POLYMOmiSM

4.3.1 mmmicAmmmmMOK

One of the goals of the data package is to support polymorphic operations between tokens. For
this, the baseToken class defines methods to overload the primitive arithmetic operations, which are
add (), multiply (), subtract (), divide (), modulo () and equals (). Derived classes over
load these methods to provide class specific operation where appropriate. The objective here is to be
able to say, for example,

a.add(b)

where a and b are arbitrary tokens. If the operation a +b makes sense forthe particular tokens, then the
operation iscarried out and a token ofthe appropriate type isreturned. If the operation does not make
sense, thenan exception is thrown. Consider the following example

IntToken a = new IntToken(5);

DoubleToken b = new DoubleToken(2.2);

StringToken c = new StringToken("hello");

then

a.add(b)

gives a new DoubleToken with value 7.2,
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a.add(c)

gives a new StringToken with value "5HeIIo'\ and
a.modulo(c)

throws an exception. Thus in effect we have overloaded the operators +, *, A% and
It is not always immediately obvious what is the connect implementation ofan operation and what

the return type should be. For example, the result of adding an integer token to a double-precision
floating-point token should probably be a double, not an integer. The mechanism for making such
decisions depends on a type hierarchy that is defined separately from die class hierarchy. This type
hierarchy is explained in detail below.

The token classes also implement the methods zero () and one () which return the additive and
multiplicativeidentities respectively. These methods are overridden so that each token type returns a
token of its type with the appropriate value. For numerical matrix tokens, zero () returns a zero
matrix whose dimension is the same as the matrix of the token where this method is called; and one ()
returns the left identity, i.e., it returns an identity matrix whose dimension is the sameas thenumber of
rows of the matrix of the token. Another method oneRight () is also provided in numerical matrix
tokens, whichreturnthe right identity, i.e., the dimension is the sameas the numberof columns of the
matrix in the token.

Since data is transferred between entities using Tokens, it is straightforward to write polymoiphic
actors that receive tokens on theirinputs, perform one or moreof the overloaded operations and output
the result. For example an add actor that looks like this:

might contain some code like:

Token inputl, input2, output;
// read Tokens from the input channels into inputl and input2 variables
output = inputl.add(input2);
// send the output Token to the output channel.

We call suchactors data polymorphic to contrast themfrom domain polymorphic actors, which are
actors that canoperate in multiple domains. Ofcourse, anactor may beboth dataanddomain polymor
phic.

4.3.2 LOSSLESS TyPimmSION

For the above arithmetic operations, if the twotokens being operated on havedifferent types, type
conversion is needed. In Ptolemy H, only conversions thatdo not lose information are implicitly per
formed. Lossy conversions must be explicitly done by the user, either through casting or by other
means. The lossless type conversion relation among different token types is modeled as a partially
ordered setcalled thetype lattice, shown in figure 4.2. In thatdiagram, type Ais greater than type B
if there is a path upwards from BtoA. Thus, ComplexMatrix is greater than Int. Type Ais less than
type B if there is a path downwards from BtoA. Thus, Int is less than ComplexMatrix. Otherwise,
types Aand Bareincomparable. Complex and Long, forexample, areincomparable.
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In the type lattice, a type can belosslessly converted to any type greater dian it This hierarchy is
related to the inheritance hierarchy of the token classes in that a subclass is always less than its super
class inthe type lattice. However, some adjacent types inthelattice are not related byinheritance.

This hierarchy is realized bythe lypeLattice class. Each element in thelattice isaninstance of the
Java class Class corresponding to a token type. The top element. General^ wWch is "the most general
type", is represented by the base class Token; the bottom element, NaT (Not aType), is rqjresented by
java.lang.Void.TYPE. ThelypeLattice class provides methods tocompare two token types.

Two ofthetypes. Numerical and Scalar^ areabstract. They cannot beinstantiated. This is indicated
in the type lattice by italics.

Type conversion is done bythestatic method convert () in the token classes. This method con
verts theargument intoan instance of theclass implementing this method. Forexample, DoxibleTo-
ken.convert (Token token) converts the specified token into an instance of DoubleToken. The

General

Numerical

BooleanMatnx FixMatrix LongMatrix ComplexMatnx
Object

DoubleMatnx

IntMatnx

Boolean Fix Long Complex

Double

FIGURE 4.2. The type lattice.
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convert () methodcan conveit any token immediately below it anthe type hierarchyinto an instance
of its.own class. If theargument is higher in the typehierarchy, or is incomparable with its ownclass,
convert () throws an exception. If the argument to convert () is already an instance of its own
class, it is returned without anychange.

The implementation of the add(), subtract(), multiplyO, divideO, moduloO, and
equals () methods requires that the type of the argumentand the implementing class be comparable
in the type hierarchy. If this condition is not met, thesemethods will throwan exception. If the type of
the argument is lower than the type of the implementingclass, then the argument is converted to the
type of the implementing class before the operation is carried out.

The implementation is more involved if the type of the argument is higher than the implementing
class, in which case, the conversion must be done in the other direction. Since the convert () method
only knows how to convert types lower in the type hierarchy up, the operation must take place in the
class ofthe argument Furthermore, since many ofthe support^ operations are not commutative, for
example, '•Hello" +: "world" is not the same as "world" + "Hello", and 3-2 is not the same as
2-3, the implementation of the arithmetic operations cannot simply call the same method on the class
of the argument. Instead, a separate set of methods must be used. These methods are addReverse (),
subtreetReverse (}, multiplyReverse {), divideReverse (), and moduloReverse (). The
equality check is always commutative so no equalsReverse () is needed. Under this setup,
a.add(b) means a+b, and a.addReverse(b) means b+a, where a and b are both tokens. If, for
example, when a. add (b) is invoked and the type of b is higher than n, the add () method of a will
automatically call b. addReverse (a) to cany out the addition.

For scalar and matrix tokens, methods are also provided to convert the content of the token into
another numeric type. In ScalarToken, these methods are intValueO, longValueO, doubl-
eValue (), and ComplexValue () (fixValue () will be added later). In MatrixToken, the methods
are intMatrixO, longMatrix(), doubleMatrix(), and ComplexMatrix{) (fixMatrixO
will be added later). The default implementation in these two base classes just throw an exception.
Derived classes override the methods if the corresponding conversion is lossless, returning a new
instance of the appropriateclass. For example, IntToken overrides all the methods defined in ScalarTo
ken, but DoubleToken does not override intvalue (). A double cannot, in general, be losslessly con
verted to an integer.

4.3.3 LIMITATtONS

As of this writing, the following issues remain open:

• FixTokenand FixMatrixToken classes are planned for supporting fixed-point computation,but
they do not exist yet.

• For numerical matrix tokens,only the add () and addReverse () methodsare supported; other
arithmetic operations are not implemented yet.

4.4 pAmnm

A Parameter in Ptolemy II is a containerfor a Token. Ptolemyn has only a singleParameter class,
shown in figure 4.3, in contrast to Ptolemy 0.x, which had a plethora of type-specific parameter
classes. The Parameterclass is derived from ptolemy.kemel.util.Attribute and so that instancescan be
attached to any instance of NamedObj. Since most interesting classes in Ptolemy II are derived from
NamedObj,most classescan have parametersattachedto them.
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FIGURE 4.3. Static structure diagram for the data.expr package.
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4AJ ¥ALUES

The token stored in a parametercan be set in two ways, either by simply placing an instanceof
Token in the parameter, or by giving the parameter an expression (represented as a string) which is
evaluated to produce a token. If the parameteris given a string expression, the expression must be
evaluated via a call to evaluate (). The expression language recognized by parameters is explained
below. If there is an expression waiting to be evaluated and getToken () is invoked, then the expres
sion will be automaticallyevaluated before returningthe token. As an example, consider the following
code segment:

Parameter p = new Parameter();

p.setExpression(*'1.6 •«- 8.3');
p.evaluate() ;

System.out.println(p.getToken().stringValue{));

// Now put a new token into the Parameter
DoubleToken t = new DoubleToken(7.7);

p.setToken{t);
System, out .println (p. getToken 0 . stringValue ());

// Now set the value from a String expression
p.setExpression("(true) ? 5.5 ; \*hello\'");
System.out.println(p.getToken().stringValue());

The result of running this code segment will be:

9.9

7.7

5.5

The syntax of expressions is described below in section 4.5.

4A2 VARIABLES

An expression givento a parametercan referby name to other parameters within the scope of this
parameter. The scope of a parameter is the set of parameters contained by the same NamedObj and
those containedby the NamedObj one level up in the hierarchy (i.e. contained by the container of the
container ofthis Parameter, if it has one). In ^e above example, no container was specified, sothere
are no other parameters within the scope of the parameter. The following code segment illustrates
expressions that use other parameters:

Entity e = new Entity();
Parameter pi = new Parameter(e,"pi', new DoubleToken(1.1));
Parameter p2 = new Parameter (e, •p2', new DoubleToken(2.2)) ;
Parameter p3 = new Parameter (e, *'p3*);
p3.setExpression("pl + p2");
System.out.println(p3.getToken().stringValue());

This results in
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3.3

Note therefore that parameters can be used as variables. If two parameters have complicated expres
sions witha common factor, this common factor could be placedin a separate parameter to be refer
enced bythe other parameters. The syntax ofexpressions isdescribed below in section 4.5.

4.4.3 rm

The type ofa parameter is defined tobe the type of thefirst token placed in it (which may be the
result ofevaluating anexpression, ormay begiven directly). Forexample if thefirst Token placed ina
Parameter is of type DoubleToken, then the parameter is of type double. Any Token diat can becon
verted in a lossless fashion to a tokenmatching the typeof the parameter can be placedin the parame
ter. Thus, for example, an IntToken could be placed in a parameter of type double, but a
ComplexToken could not. An attempt todosowill trigger anexception. Lossless type conversion will
be covered below.

The type ofa parameter can be modified viaa call to setType (). Thenew type of theparameter
must be compatible with the token already in the Parameter. This can be used to relax the type of a
parameter. Forexample you may want to have a parameter constrained to tokens of type double, even
though the first token placed in it was an IntToken. The parameter could not contain a DoubleToken
until setType () is called with the appropriate argument.

The setType (} method can also be used to constrain the type of a Parameter. For example if the
first token placed in a parameter was a DoubleToken, but it now contains anIntToken, then you could
constrain the parameter to only contain IntTokens from now on by calling setType {) with an
IntToken class argument.

4AA VEPimNCiiS

If an object (generally another parameter) wants to be kept notified of changes in a particular
parameter, it must implement the ParameterListener interface and register itselfas a listener of
that parameter. When the parameter evaluates an expression which refers to another parameter within
its scope, it is registered as a listener with that parameter. When a parameter changes it creates a
ParameterEvent which contains information about how it changed, and passes it to all registered lis
teners by calling their parameterChanged () method. In this way a parameter gets updated when
ever the value of a parameter it references changes. For example, if paramJ and param2 are two
parameters attached to the same Namedobj, both with the samenames as the variables used to refer
ence them, then after the following code

paraml.setToken(new DoubleToken(5.5));
param2 . setEjtpression(paraml + 2) ;
param2.evaluate();

paraml will be registered as a ParameterListener of paraml. Then if the Tokenin paraml changes, it
will create a ParameterEvent and pass it to paraml by invoking parameterChanged () on
param2. In this way paraml gets notifiedof any changes in paraml and updated.This mechanism, of
course, is the classic publish-and-subscribe design pattern.
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4.5 ttmSStONS

Ptolemyn includesa simplebut extensibleexpressionlanguage. This languagepermitsoperations
on tokens to be specified in a scripting fashion, without requiring compilation of Java code. The
expression languagecan be used to define parameters in terms of other parameters,for example. It can
also be used to provide end-users with actors that compute a user-specified expression that refers to
inputs and parameters of the actor.

4.5./ Wf mLlMYtl UmSSION LAfiBUAG^

The Ptolemy U expression language uses elements of the syntax of Java. Unlike Java, however, it
uses operator overloading.Although we fully agree that the designers of Java made a good decision in
omitting operator overloading, our expression language is used in situations where compactness of
expressions is extremely important Expressions often appear in crowded dialog boxes in the user
interface, so we cannot afford the luxury of replacing operators with method calls.

The Token classes from the data package form the primitives of the language. For example the
number 10 becomes an IntToken with the value 10 when evaluating an expression. Normally this is
invisible to the user.The expressionlanguageis object-oriented, of course, so methodscan be invoked
on these primitives. A sophisticated user, therefore, can make use of the fact that **10" is in fact an
object to invoke methods of that object.

The expression language is extensible. The basic mechanism for extension is object-oriented. The
reflection packagein Java is used to recognize method invocations and user-defined constants. Wealso
expect the language to grow over time, so this description shouldbe viewedas a snapshotof its capa
bilities.

Types. The types currently supported in the language are boolean, complex, double, int, long and
string. Weexpect the language to eventually supportall the matrixtypes as well. Note that there is no
float or byte. Use double or int instead. A longis defined by appending an integerwith*T'or **L", as in
Java. A complex is defined by appending an **i" or a *'j" to a double. This gives a purely imaginary
complex numberwhich can then leverage the polymorphic operations in the Token classes to create a
general omplex number. Thus2 + 31 will resultin theexpected complex number. Theexpression lan
guage supports the same lossless type conversion provided by the Token classes (see section 4.3.2).
Lossy conversion has to be done explicitly via a method call.

Arithmeticoperators. The arithmeticoperatorsare +, -, *, / and %. These operators, along with ==,are
overloaded, so their implementation depends on the types being operated on. Operator overloading is
achieved using the mediods in the Token classes. These methods are add (), subtract (), multi
ply (), divide (), modulo () and equals ().

Bit manipulation. The bitwise operators are &, I, and -. They operated on integers.

Relational operators. The relational operators are <, <=,>, >=, == and !=. They return booleans.

Logical operators. Thelogical boolean operators are &&, II,!, & and I. They operate on booleans and
return booleans. Note that the difference between logical && and logical & is that & evaluates all the
operands regardless of whether their value is now irrelevant Similarly for logical II and I. This
approach is borrowed from Java.

Conditionals. The language is an expression language, not an imperative language with sequentially
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executed statements. Thus, it makes no sense to have the usual if...then.. .else... cons^ct.
Such aconstract in Java (and most imperative languages) depends on side effects. However, Java does
have afunctional version ofthis construct (one that returns avalue). The syntax for this is

boolean ? valuel : value2

If the boolean is trae, valuel is returned, else value2 is returned. The Ptolemy 11 expression lan
guage uses this same syntax.

Comments. Anything inside /»...*/ is ignored, as is the rest of aline following //. (Expressions can be
split over multiple lines).

Variables. Expressions can contain references by name to parameters within the scope of the exi^s-
sion. An example is given above in section 4.4.2. Consider aparameter Pwith container Xwhich is in
turn contained by Y. The scope of an expression for Pincludes all the parameters contained by Xand Y.
The scope is implemented as an instance of NamedList, which provides a symbol table. Note that a
classderived fromParametermaydefine scopedifferently.

Constants. Ifan identifier isencountered in an expression that does not match aparameter inthe scope,
then it might be aconstant which has been registered as part of the language. By default only the con
stants PI and Eare registered, but as we will see later, this can easily be extended by auser. In addition,
literal constants are supported. Anything between quotes, is interpreted as a string constant.
Numerical values without decimal points, such as "10" or "-3" are integers. Numerical values with
decimal points, such as"10.0" or"3.14159" are doubles.

Functions. The language includes an extensible set of functions, such as sin (), cos (),etc. The func
tions that are built in include all static methods of the java.lang.Math class and the
ptolemy.data-expr.UtilityFunctions class. As we will see below in section 4.5.2, this can easily be
extended by a user by registering another class that includes static methods.

Methods. Every element and subexpression in an expression represents an instance ofToken (or more
likely, aclass derived from Token). The expression language supports invocation of any method of a
given token, as long as the arguments of the method are of type Token and the return type is Token (or
a class derived from Token). The syntax for this is (token) .naine(args), where name is the name
of the method and args is a comma-separated set of arguments. Each argument can itself be an
expression. Note that the parentheses around the token are required. As an example, this could be
used to convert a number to a string as follows

(2*4-6.5).stringValue0

This returns the string "1.5". The expression (2*4-6.5) evaluates to a double token, and
StringValue () is a methodof DoubleToken.

Note that methods, unlike functions, must take arguments that are oftype Token. This is logic^
because the methods belong to instances ofclass Token. Functions, however, are implemented as static
methods ofsome other class, such as java.lang.Math. Those classes cannot beexpected todefine inter
faces with Token. Thus, Tokens are converted, if this can bedone losslessly, to the type expected by
the function.

4.5.2 FUNCTIONS

By default all ofthe static methods in java.lang.Math and ptolemy.data.expr.UtilityFunctions are
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available.The functions cuirently supported in ptolemy.data.util.UtilityFunctions are:
• reading the stringlirom a file viaa readFile (*filename') function, and
• calling theparser again to process a String viaeval Forexample oneuseof eval ()

might be eval (readFile ("foo .bar')).

Eventually we hope to support calls to external packages such as matlab or tcl via tcl (**...') or
matlab Note this only requires that whatever isinside the parenthesis resolve toa StringTo-
ken, sowe could have for example tcl ("puts • + xx) where xx is a Parameter in thescope. We
alsoplan to support access to system environment variables via env (•name').

4.5.3 UMITAmNS

The expression language has a rich potential, and only some of this potential has been realized.
Here are some of the current limitations:

• The class ptolemy;data.util.UtilityFunctions containing the utility functions has not yet been fully
written. Currently the functions available are eval () and readFile ().

• Functions inthe math package need tobesupported inmuch the same way that java.lang.Math is
supported.

• Method calls arecurrently only allowed ontokens in theptolemy.data package.
• The languagedoes not yet handle matricesor vectors.
• Statements are not supported. It isnot clear that they ever will be, since currently the expression

language isstrictly functional, and converting it toimperative semantics could drastically change
its flavor.
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Ammx A: itmssm miuAWH

The evaluation ofan expression is done in two steps. First the expression isparsed to create an
abstract syntax tree (AST) for the expression. Then the AST is evaluated to obtain the token to be
placed in the parameter. In this appendix, "token" refers to instances of the Ptolemy n token classes, as
opposed to lexical tokens generated when an expression isparsed.

Ai emmm the parse tree

In Ptolemyll the expression parser, called PtParser^ is generated using JavaCC and JJTree. Jav-
aCC is a compiler-compiler that takes as input a file containing both the definitions of the lexical
tokens that the parser matches and the production rules used for generating the par% tree for an expres
sion. The production rules are specified in Backus normal form (BNF). JJTree is apreprwessor for
JavaCC that enables it tocreate an AST. The parser definition isstored inthe file PtParser.jjt, and the
generated file isPtParser.java. Thus the procedure is

PtParsenij . v PtParser.javaPtParser.jjt x\ PtParser.jj ^ v
•r JJTree ) JavaCC J

Note that JavaCC generates top-down parsers, orLL(k) in parser terminology. This is different
from yacc (or bison) which generate bottom-up parsers, or more formally LALR(l). The JavaCC file
also differs from yacc in that it contains both the lexical analyzer and the grammar rules in the same
file.

The input expression string is first converted into lexical tokens, which the parser then tries to
match using the production rules for the grammar. Each time the parser matches a production rule it
creates anode object and places itin the abstract syntax tree. The type ofnode object created depends
on the production rule used to match that part ofthe expression. For example, when the parser comes
upon amultiplication in the expression, itcreates an ASTPtProductNode.

The parser takes as input a string, and optionally a NamedList ofparameters to which the input
expression can refer. That NamedList is the symbol table. Ifthe parse is successful, itreturns the root
node of the abstract syntax tree (AST) for the given string. Each node object can contain a token,
which represents both the type and value information for that node. The type of the token stored in a
node, e.g. DoubleToken, IntToken etc., represents the type of the node. The data value contained by the
token is the value information for thenode. In theAST as it is returned from PtParser, the token types
and values areonly resolved for the leafnodes of thetree.

One ofthe key properties ofthe expression language isthe ability torefer toother tokens by name.
Since an expression that refers to other parameters may need to be evaluated several times (wheri the
referred parameter changes), itis important that the parse tree does not need to be recreated every time.
When an identifier isparsed, the parser first checks whether it refers toaparameter within the current
scope. Ifitdoes itcreates aASTPtLeafNode with areference to that parameter. Note that a leaf node
can have aparameter or a token. Ifithas aparameter then when the token to be stored in this node is
evaluated, it is set tothe token contained by the parameter. Thus the AST tree does not need toberec
reated when areferenced parameter changes as upon evaluation itwill just get the new token stored in
the referenced parameter. Ifthe parser was created by aparameter, the parameter passes in a reference
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to itselfin theconstructor. Then upon parsing a reference toanother parameter, theparser takes care of
registering the parameter that created it asa listener with the referred parameter. This ishow dependen
cies between parameters get registered. There is also a mechanism built into parameters to detect
dependency loops.

If theidentifier does not refer to a parameter, the parser then checks if it refers toa constant regis
tered with the parser. If it does it creates a node with the token associated with the identifier. If the
identifier is neithera reference to a parameter or a constant, an exception is thrown.

A2 EVALUATm THE PARSE TREE

The AST can be evaluated by invoking the method evaluateParseTree () on die root node.
The AST isevaluated inabottom upmanner as each node can only determine itstype after the types of
all its children have been resolved. When the type of the token stored in the root node has been
resolved, this token is returned as the result of evaluating the parse tree.

As an example consider the input string 2+ 3.5. The parse tree returned from the parser will look
like this:

Step 1: C™°D

Csum)

/ \
Q^^tToken(2)

which will then get evaluated to this:

Step 2: DoubleToken(5.5)

4-14

DoubleToken(3.5)

4
Tree evaluation

4

fsum) ' Tree evaluationv^^^ubleToken(5.5)
C^)lntToken(2) '3M)DoubleToken(3.5)

and DoubleToken(5.5) will be returned as the result.
As seen in the above example, when evaluateParseTree () is invoked on the root node, the

type and value of the tokens stored at each node in the tree is resolved, and finally the token stored in
therootnode is returned. If anerroroccurs during either thecreation of theparse treeor theevaluation
of the parse tree, an illegalArgumentException is thrown with aerror message about where the
error occurred.

If a node has more than two children, type resolution isdone pairwise from the left Thus **2 + 3 +
"hello"" resolves to Shello. This is the same approachthat Java follows.

Each time the parser encounters a function call, it creates an ASTPtFunctionNode object When
this node is being evaluated, ituses reflection to look for that function in the list ofclasses registered
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Token.

ASTPtRelationalNode. This is created when one of the relational operators(!=, ==, >, >=, <, <=) is
parsed. The resolved type of thetoken of this node is BooleanToken. The"==** and **!=** operators are
overloaded via the equals () methodin the tokenclasses.The other operators are only valid on Sca-
larTokens. Currently the numbers areconverted to doubles and compared, thisneeds to beadjusted to
take account of Longs.

ASTPtUnaryNode. This is created when a unary negation operator(!, -) is parsed. Type resolution
occurs in thenode, with theresulting type being thesame as thetoken in theonly child of thenode.

Al2EmNSiBILfTy

The Ptolemy n expression language has been designed to beextensible. Themain mechanisms for
extending thefunctionality of theparser is theability to register new constants with it and new classes
containing functions that can be called. However it is also possible to add and invoke methods on
tokens, or to evenaddnewrulesto thegrammar, although bothof these options should onlybeconsid
ered in rare situations.

To add a new constant that the parser will recognize, invoke the method registerCon-
stant (String name, Object value) on the parser. This is a static methodso whateverconstant
you add will be visible to all instances of FtParser in theJava virtual machine. The method woiks by
converting, if possible, whatever data the object has to a token and storing it in a hashtable indexed by
name. By default, only the constants in java.lang.Mathare registered.

To add a new Class to the classes searched for a a function call, invoke the method register-
Class (String name) on the parser. This is also a static method so whatever classyou add will be
searched by all instances of PtParser in the JVM. The namegivenmustbe the fullyqualified name of
the class to be added, for example "java.lang.Math". The method works by creating and storing the
Class objectcorresponding to the givenstring. If the classdoes not exist an exception is thrown. When
a function call is parsed, an ASTPtFunctionNode is created. Then whenthe parsetree is beingevalu-

. ated, the node obtains a list of the classes it should search for the function and, using reflection,
searches the classes until it either finds the desired function or there are no more classes to search. The
classes are searched in the same order as they were registeredwith the parser, so it is better to register
those classes that are used frequently flrst. By default, only the classes java.Lang.Math and
ptolemy.data.expr.UtilityFunctions are searched.
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with the parser for that puipose. The classes automaticaily searched are java.lang.Math and
ptolemy.data.expr.UntilityFunctions. To registeranother class to be searched when a function call is
parsed, call registerFunctionClass () on the parserwiththe full nameof the class to be addedto
the function search path.

When a parameteris informed that anotherparameterit references has changed, the parameterre-
evaluates the parse tree for the expression to obtain the new value. It is not necessary to parse the
expression again as the relevant leafnode stores a reference to theparameter, not the token contained
in the parameter. Thus at any time, the valueof a parameteris up to date.

A.2AN0ViTmS

There are currently eleven nodeclasses used in creating the syntax tree. For someof these nodes
thetypes of their children are fairly restricted and sotype andvalue resolution is done in thenode. For
others, theoperators thatthey represent areoverloaded, in which casemethods in thetoken classes are
called to resolve the nodes typeand value (i.e. the contained token!). By typeresolution we are refer
ringto the typeof the token to be stored in the node.

ASTPtBitwiseNode. This is created when a bitwise operation(&, I, happens. Type resolution occurs
in the node. The & and Ioperators are only valid between two booleans, or two integertypes. The ^
operator is only valid between two integer types.

ASTPtLeqfNode. This represents theleafnodes in theAST. Theparser will always place either a token
of the appropriate type (e.g. IntToken if '*2" is what is parsed) ora parameter ina leafnode. A parame
ter is placed so that the parse tree can be reevaluated without reparsing whenever the value of the
parameter changes. No typeresolution is necessary in thisnode.

ASTPtRootNode. Parent class of all the other nodes. As its name suggests, it is the root node of the
AST. It always has onlyonechild,and its typeand value is that of its child.

ASTPtFunctionNode. This is created when a function is called. Type resolution occurs in the node. It
uses reflection to call theappropriate function with thealignments supplied. It searches theclasses reg
istered with the parser for the function. By default it only looks in java.lang.Math and
ptolemy.data.expr.UtilityFunctions.

ASTPtFunctionallfNode. This is created when a functional if is parsed. Type resolution occurs in the
node. For a functional if, the first child node must contain a BooleanToken, which is used to chose
which of the other two tokens of the child nodes to store at this node.

ASTPtMethodCallNode. This is createdwhen a methodcall is parsed. Methodcalls are currently only
allowed on tokens in the ptolemy.data package. All of the arguments to the method, and the return
type, mustbe of typeToken (ora subclass).

ASTPtProductNode, This is created when a ♦, / or % is parsed. Type resolution does not occurin the
node. It usesthemultiply{), divide () andmodulo () methods in the token classes to resolve the
nodes type.

ASTPtSumNode. This is created when a + or - is parsed. Type resolution does not occurin the node. It
uses the add () and subtract () methods in the token classes to resolve the nodes type.

ASTPtLogicalNode. This iscreated when a && or II isparsed. Type resolution occurs inthe node. All
children nodes must have tokens of type BooleanToken. Theresolved typeofthenode is alsoBoolean-
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5.1 mmucTioN

The Ptolemy II kernel provides extensive infrastructure for creating and manipulating clustered
graphs of a particular flavor. Mathematical graphs, however, are simpler structures that consist of
nodes and edges, without hierarchy. Edges link only two nodes, and therefore are much simpler than
the relations of the Ptolemy n kernel. Moreover, in mathematical graphs, no distinction is made
between multiple edges that may be adjacent to a node, so theports of the Ptolemy II kernel are not
needed. A large number ofalgorithms have been developed that operate on mathematical graphs, and
many ofthese prove extremely useful insupport ofscheduling, type resolution, and other operations in
Ptolemy n. Thus, we have created the graph package, which provides efficient data structures for
mathematical graphs, and collects algorithms for operating on them. At this time, the collection of
algorithms is nowhere near as complete as in some widely used packages, such as LEDA. But this
package will serve as a repository fora growing suite of algorithms.

The graph package provides basic infrastructure for both undirected and directed graphs. Acyclic
directed graphs, which can be used tomodel complete partial orders (CPOs) and lattices, are also sup
ported with more specialized algoritlims.

The graphs constructed using this package are lightweight, designed for fast implementation of
complex algorithms more than for generality. This makes them maximally complementary tothe clus
tered graphs of the Ptolemy II kernel, which emphasize generality. A typical use of this package is to
construct a graph thatrepresents thetopology ofa CompositeEntity, runa gr^h algorithm, and extract
useful information fromthe result. For example, a graphmightbe constructed that represents data pre
cedences, and a topological sort might be used to generate a schedule. In diis kind of application, the
heirarchy oftheoriginal clustered graph is flattened, sonodes in the gnq)h represent only opaque enti
ties.

The architecture of this package is somewhat different from LEDA, in part because of the exist-
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ence of the complementary kernelpackage. UnlikeLEDA, there are no dedicated classeslepiesenting
nodes and edges in the graph. The nodes in this packageare represented by arbitrary instances of the
JavaObject class, andthegraph topology is storedin a structure similar to an adjacency list.

The facilities that currently exist in this package are those that we have had most immediate need
for. Sincethe type systemof Ptolemyn requiresextensiveoperations on latticesand CPOs, supportfor
these is better developed than for other types of graphs.

5.2 ciAsses m mmas in m mm packase

Figure 5.1 shows the class diagram of the gr2q>h package. The classes Gr^h, DirectedGr^h and
DirectedAcyclicGraph support graph construction and provide graph algorithms. Currently, only topo-
logical sort and transitive closure are implemented; other algorithms will be added as needed. The
CPO interfacedefines the basic CPO operations, and the class DirectedAcyclicGr£q>h implementsthis
interface. An instance of DirectedAcyclicGraph is also a finite CPO where all the elements and order
relations are explicitly specified. Defining the CPO operations in an interface allows future expansion
to support infinite CPOs and finite CPOs where the elements are not explicitly enumerated. The Ine-
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FIGURE 5.1. Classes in the graph package

5-2 nolemy II



Graph

quaUtyTerm interface and the Inequality class model inequaUty constraints over die CTO. The details
ofthe constraints will be discussed later. The InequalitySolver class provides an algorithm to solve a
set ofconstraints. This is used by the Ptolemy n type system, but other uses may arise.

The implementation of the above classes is not synchronized. If multiple threads access agr^h or
a set ofconstraints concurrently, external synchronization will beneeded.

5.Z1 mPH

This class models asimple undirected graph. Each node in the graph is represented by an arbitrary
Java object. The method add() is used to add anode to the grsqih, and addEdge() is used to connect two
nodes in the graph. The arguments of addEdgeO are two Objects representing ^o nodes already added
to the graph. To mirror a topology constructed in the kernel package, multiple edges between two
nodes are allowed. Each node is assigned anode ID based on the order the nodes are added. The trans
lation from the node ID to the node Object is done by die _getNodeObject() method, and the transla
tion in the other direction is done by _getNodeId(). Both mediods are protect^. The node ID is only
used by this class and the derived classes, it is not exposed in any of the public interfaces. The topol
ogy is stored in the Vector _graph. The indexes of this Vector correspond to node IDs. Each entry of
_graph is also aVector, in which alist of node IDs are stored. When an edge is added by calling add
EdgeO with the first argument having node ID iand the second having node JDj, an Integer con^ning
j is added to the Vector at the i-th entry of .^raph. For example, ifthe graph in figure 5.2(a) is con
nected using the sequence of calls: addEdge(nO, nl); addEdge(nO, n2); addEdge(n2, nl), where nO, nl,
n2 are Objects representing the nodes with IDs 0,1,2, respectively, then the data structure wiU be in
the form of 5.2(b).

Note that inthis undirected graph, the data format isdependent on the order ofdie two arguments
in the addEdgeO calls. Since each edge is stored only once, this data structure is not exactly the same
as the adjacency list for undirected gr^hs, but it is quite similar. This structure is designed to be used
by subclasses that model directed graphs, as well as by this base class. If it spears awkward when
adding algorithms for undirected graph, a new class diat derives fttim Graph may be added in the
future to model undirected graph exclusively, in which case. Graph will provide the basic support for
both undirected and directed graphs.

5.12 DIRECTED GRAPHS

The DirectedGraph class is derived from Graph. The addEdgeO method in DirectedGr^h adds a
directed edge to the graph. In this package, the direction of the edge is said to go from alower node to

(a)

FIGURE 5.2. An undirected graph
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a highernode, as opposed to from source to sinL, head to tail^ &tc. The terms lower andhi^er con
forms with theconvention of thegraphical representation ofCPOs andlattices (dieHasse diagram), so

.they can be consistentlyused on both directed gnqihs and CPOs.
Thecomputation of transitive closure is implemented in this class. The transitive closure is inter

nally stored as a 2-D boolean matrix, whose indexes correspond to node IDs. Theentry (i,j) is trueif
andonly if there exists a path from thenode with IDi todie node with IDj. This matrix isnot exposed
at the public interface; instead, it isused bythis class and its subclass todoother operations. Once the
transitive closure matrix is computed, graph operations like reachableNodes can be easily accom
plished.

5.2.3 vmmAcycucmmANDCPo

TheDirectedAcyclicGraph class further restricts DirectedGraph by not allowing cycles. Forper
formance reasons, this requirement is not checked when edges areadded to the graph, butis checked
when any ofthe graph operations is invoked. An exception is thrown if the graph isfound tobecyclic.

TheCPO interface defines thecommon operations onCPOs. Themathematical definition ofdiese
operations can befound in [10]. Informal definitions are given in the class documentation. This inter
face is implemented by theclassDirectedAcyclicGrsqih.

Since most of theCPO operations involve thecomparison of two elements, and comparison can be
done in constant time once the transitive closure is available, DirectedAcyclicGraph makes heavy use
of the transitive closure. Also, since most of the operations on a CPO have a dual operation, such as
least upper bound and greatest lower bound, least element and greatest element, etc., the code for the
dual operations can be shared if the order relation on the CPO isreversed. This isdone by transposing
the transitive closure matrix.

5.2.4 iNEOUALfTYTEm, iHEOUALlTIES, AND THE iNEOUALiTY SOIVER

The InequalityTerm interface and Inequality and InequalitySolver classes supports the construc
tion ofa set of inequality constraints over a CPO and the identification ofa member ofthe CPO that
satisfies theconstraints. A constraint is an inequality defined overa CPO,which caninvolve constants,
variables, and functions. As an example, the following is a set ofconstraints over the 4-point CPO in
figure 5.3:

a < w

P<ji:Aa
a< P

where a and p are variables, and a denotes greatest lower bound. One solution tothis set ofconstraints
is a = p = X.

An inequality term iseither a constant, avariable, ora function over a CPO. The InequalityTerm

FIGURE 5.3. A4-point CPOthat also happens to be a lattice.
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interface defines the operations ona term. If a term consists ofa single variable, dievalue of thevari
able can beset toa specific element of the underlying CPO. The isSettableQ method queries whether
the value of a term can be set. It returns true if the term is a variable, and false if it is a constant or a
function. The setValueQ method is used to set the value for variable terms. The getValueQ method
returns the current value of the term, which is a constant if the term consists of a single constant, die
current value ofa variable if theterm consists of a single variable, or theevaluation ofa funcdon based
on the currentvalueof the variables if the term is a function. The getVariablesO methodreturns all the
variables contained in a term. This method is used by the inequality solver.

The Inequality class contains two InequalityTerms, a lesser term and diegreater term. The isSatis-
fiedO method tests whether the inequality is satisfied over the specified CPO based on the current
value of the variables. It returns true if the inequality is satisfied, andfalse otherwise.

The InequalitySolver class implements analgorithm todetermine satisfiability of a setof inequal
ity constraints and to find die solution to the constraints if they are satisfiable. This algorithm is
described in [34]. It is basically an iterative procedure to update thevalueof variables untilall die con
straints are satisfied, or until conflicts among theconstraints arefound. Somelimitations on the typeof
constraints apply forthe algorithm to work. Themethod addbiequalityO adds aninequality to thesetof
constraints. Two methods solveLeast() and solveGreatest() can be used to solve the constraints. The
former tries to rind the least solution, while the latter attempts to find the greatest solution. If a solu
tion is found, these methods return true and the current value of the variables is the solution. The
method unsatisriedlnequalities() returns an enumeration of the inequalities that are not satisfied based
on the current value of the variables. It can be used after solveLeast() or solveGreatest() retumfalse to
find out which inequalities cannotbe satisfied after thealgorithm runs.The bottomVariablesQ and top-
VariablesO methods return enumerations of the variables whose current values are the bottom or the
top element of the CPO.

5.3 EXAMPLf USt

5.3.1 emmiNGA xmuLimACOummAcioR

The following is an example of using topological sort to generate a firing schedule for a Compos-
iteActor of the actor package.The connectivity information among the Actors within the composite is
translated into a directed acyclic graph, with each node of the gr^h represented by an Actor. The
schedule is stored in an array, where each element of the array is a reference to an Actor.

Object(] generateSchedule(CoinpositeActor composite) {
DirectedAcyclicGraph g = new DirectedAcyclicGraph();
// add all the actors contained in the cooqposite to the graph.
Enumeration allactors = conposite.deepGetEntitiesO;
while (allactors.hasMoreElementsO) (

Actor actor = (Actor)allactors.nextElement();
g.add(actor);

}

// add all the connection in the composite as graph edges,
allactors = composite.deepGetEntitiesO;
while (allactors.hasMoreElements()) {

Actor loweractor = (Actor)allactors.nextElement();

// find all the actors 'higher' than the current one.
Enumeration alloutports = loweractor.outputPortsO;
while (alloutports.hasMoreElementsO) {
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lOPort outport = (I0Port)alloutport8.nextElement();
Enumeration allinports ~ outport.deepConnectedlnPortsO;
while (allinports.hasHoreElementsO) (

lOPort inport s (IOPort)allinports.nextElement();
Actor higheractor = (Actor)inport.getContainer();
if (g.contains(higheractor)) {

g.addEdge(loweractor, higheractor);
>

)

)
)
return g.topologicalSort();

)

5.12 FoammAmsoivmcoHSTRAmsomACPo

The code below uses two classes implementingthe InequalityXerm interface.They model constant
and variable terms, respectively. The values of these terms are Strings. Inequalities can be formed
using these two classes.

//A constant InegualityTerm with a String Value,
class Constant inplements InegualityTerm {

// construct a constant term with the specified String value,
public Constant(String value) (

_value = value;

)

// Return the constant String value of this term,
public Object getValueO {

return _value;

}

// Constant terms do not contain any variable, so return an array of sire zero,
public InegualityTerm[] getVariables() (

return new InegualityTerm[0];
)

// Constant terms are not settable.

public boolean isSettableO (
return false

)

// Throw an Exception on an attes^t to change this constant,
public void setValue(Object e) thurows IllegalActionException (

throw new IllegalActionException('Constant.setValue: This term is a constant.*);
)

)

// the String value of this term,
private String _value = null;

//A variable InegualityTerm with a String value,
class Variable iiig>lements InegualityTerm (

// Construct a variable InegualityTerm with a null initial value,
public Variable() {

)

// Return the String value of this term,
public Object getValueO {

return _value;

)

// Return an array containing this variable term.

5.6 Ptdemy II



Graph

public InequalityTermd getVariables() {
InequalityTermll variable = new InequalityTermd] ;
variable[0] = this;
return variable;

}

// Variable tents are settable.
public boolean isSettableO {

return true;

)

// Set the value of this variable to the specified String.
// Not checking the type of the specified Object before casting for siavlicity.
public void setValue(Object e) throws IllegalActionException {

_value = (String)e;
)

private String _value = null;
)

As asimple example, the following Java class constructs the 4-point CPO offigure 5.3, forms aset
ofconstraints with three inequalities, and solves for both the least and greatest solutions. The inequali
ties are fl < w; 6 <a\ b<z, where wandzareconstants in figure 2.3,anda and b arevariables.
//An example of forming and solving inequality constraints,
public class TestSolver (

public static void main(String(] arv) (
// construct the 4-point CPO in figure 2.3.
CPO cpo = constructCPO();

// create inequality terms for constants w, z and
// variables a, b.
InequalityTerm tw = new Constant('w*);
InequalityTerm tz = new Constant('z*);
InequalityTerm ta = new Variable();
InequalityTerm tb = new VariableO;

// form inequalities: a<=w; b<=a; b<=z.
Inequality iaw = new Inequality(ta, tw);
Inequality iba = new Inequality(tb, ta);
Inequality ibz = new Inequality(tb, tz);

// create the solver and add the inequalities.
InequalitySolver solver = new InequalitySolver(cpo);
solver.addlnequality(iaw);
solver.addlnequality(iba);
solver.addlnequality(ibz);

// solve for the least solution
boolean satisfied = solver.solveLeastO;

// The output should Ise:
// satisfied=true, least solution: a=z b=z
System.out.println(*satisfied=* + satisfied ♦ *, least solution:*

+ • a=* ♦ ta.getValueO ♦ • b=* ♦ tb.getValueO) ;

// solve for the greatest solution
satisfied = solver.solveGreatestO;

// The output should be:
// satisfied=true, greatest solution: a^w b=z
System.out.println(*satisfied=* satisfied ', greatest solution:

+ * a=* ♦ ta.getValueO + * b=* ♦ tb.getValueO);

public static CPO constructCPO0 (
DirectedAcyclicGraph cpo = new DirectedAcyclicGraph();
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cpo.addCw*);
cpo.addCx');
cpo.addCy*);
cpo.addCz*) ;

cpo.addEdgeCx*, 'w');
cpo.addEdge('y•, 'w*);
cpo.addEdgeCz*, *x'};
cpo.add£dge(*z*, 'y");

return cpo;

Graph
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6.1 INTmUCTION

The computation infrastructure provided by the actor classes is not statically typed, i.e., the
lOPorts on actors do not specify the type of tokens that can pass through them. This can be changed by
giving each lOPort atype. One of the reasons for static typing is to increase the level of safety, which
means reducing the number ofuntrapped errors [8].

In a computation environment, two kinds of execution errors can occur, trapped errors and
untrapped errors. Trapped errors cause the computation to stop immediately, but untrapped errors may
go unnoticed (for awhile) and later cause arbitrary behavior. Examples ofuntrapped errors in ageneral
purpose language are jumping to the wrong address, or accessing data past the end of an array. In
Ptolemy II, the underlying language Java is quite safe, so errors rarely, ifever, cause arbitrary behav
ior.^However, errors can certainly go unnoticed for an arbitrary amount oftime. As an example, figure
6.1 shows an imaginary application where a signal from a source is downsampled, then fed to,a fast
Fourier transform (FFT) actor, and the transform result isdisplayed by an actor. Suppose the FFT actor
can accept ComplexToken at its input, and the behavior ofthe Downsampler is to just pass every sec
ond token through regardless ofits type. Ifthe Source actor sends instances ofComplexToken, every-

Source (S •(!) ^pler 0 ^6 FFT ( Display

FIGURE 6.1. An imaginary Rolemy II application

1. Synchronization errors inmulti-thread applications are not considered here.
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thing works fine. But if, due to an error, the Source actor sends out a StringToken, then the
StringToken will pass through the sampler unnoticed. In amore complex system, the time lag between
when a token ofthe wrong type is sent by an actor and the detection ofthe wrong type may be aibi-
trarily long.

In languages without static typing, such asLisp and the scripting language Tel, safety isachieved
by extensive run-time checking. In Ptolemy n, ifwe imitated this approach, we would have torequire
actors to check the type of the received tokens before using them. Forexample, theFFT actor would
have toverify that the every received token isan instance ofComplexToken, orconvert ittoComplex-
Token ifpossible. This approach gives the burden oftype checking to the actor developers, distracting
them from their development effort It also relies on a policy that cannot beenforced by the system.
Furthermore, since type checking is postponed tothe last possible moment, the system does not have
fail-stop behavior, soa system may generate an error only after running for an extended period oftime,
as figure 6.1 shows. To make things worse, an actor may receive tokens from multiple sources. If a
token with thewrong type is received, it might behard toidentify from which source thetoken comes.
All these make debuggingdifficult.

To address this and other issues discussed later, we added static typing to Ptolemy n. This
approach is consistent with Ptolemy 0.x. In general-purpose statically-typed languages, such as C++
and Java, static type checking done by the compiler can find a large f^tion ofprogram errors. In
Ptolemy U, execution ofa model does not involve compilation. Nonetheless, static type checking can
correspondingly detectproblems before any actors fire. In figure 6.1, if the Sourceactor declares that
its output port type is String, meaning that it will send out StringTokens upon firing, the static type
checker will identify this typeconflictin the topology.

In Ptolemy 11, because models are not compiled, static fyping alone is not enough to ensure type
safety at run-time. Forexample, even if the above Source actor declares itsoutput type tobe Complex,
nothing prevents it from sending outa StringToken at run-time. Sorun-time type checking is still nec
essary. With the help of static typing, run-time type checking can be done when a token is sent out
from a port. I.e., the run-time type checker checks the token type against thetype of the output port.
This way, a type error is detected at theearliest possible time, and run-time type checking (as well as
static typechecking) can be performed by the system instead of by the actors.

One design principle of Ptolemy n is that data type conversions that lose information are not
implicitly performed by the system. In the data package, a lossless data type conversion hierarchy,
called the type lattice, is defin^ (see figure 4.2). In that hierarchy, the conversion from alower type to
a higher type is lossless, and is supported bythe token classes. This lossless conversion principle also
applies to data transfer. This means that across every connection fn>m an ouq>ut port to an input, the
type of the output must be the same as or lower than the typeof the input. Thisrequirement is called
thetype compatibility rule. Forexample, an output portwith type Iracanbeconnected toaninput port
with type Double, butaDouble to Int connection will generate a typeerrorduring static type checldng.
This behavior is different from Ptolemy 0.x,but it should be useful in many {q)plications where the
users do not want lossyconversion to take place without theirknowledge.

As can be seenfrom aboveexamples,when a systemruns, the type of a tokensent out from an out
put port may not be the sameas the type of the input port the token is sent to. If this happens,the token
must be converted to the input port type before it is used by the receiving actor. This kind of run-time
type conversion is done transparently by the Ptolemy n system (actors are not aware it). So the actors
can safely cast the received tokens to the fype of the inputport Thismakes the actordevelopment eas
ier.

Ousterhout [31] argues that static typing discourages reuse.
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"Typing encourages programmers to create a variety of incompatible interfaces,
eachinterface requires objects ofspecific type and thecompilerprevents anyother
types ofobjectsfrom being used with the interface, even ifthatwould beuseful".

InPtolemy 11, typing does apply some restrictions ondieinteraction ofactors. Particularly, actors can
notbe interconnected arbitrarily if thetype compatibility rule is violated. However, thebenefit of typ
ing should far outweigh the inconvenience caused bythis restriction. In addition, theautomatic run
time type conversion provided by the system permits ports ofdifferent types to be connected (under
the type compatibility rule), which partly relaxes dierestriction caused by static typing. Furdiermore,
there is one important component in Ptolemy that brings much flexibility to die actor interface, the
type-polymorphic actors.

lype-polymoiphic actors (called polymorphic actors in the rest of this ch^ter) are actors that can
accept multiple types ontheir ports. Forexample, the Downsampler in figure 6.1 does notcare about
thetype of token going through it; it woiks with any type of token. Ingeneral, thetypes onsome orall
of theports ofa polymoiphic actor arenotrigidly defined tospecific types when theactor is written, so
the actor can interact with other actors having Afferent types, increasing reusability. In Ptolemy 0.x,
the ports on polymorphic actors whose types are not specified are said to have ANYTYPE, but
Ptolemy n uses the term undeclared type, since thetype onthose ports caimot bearbitrary in general.
The acceptable types on polymorphic actors are described by a setof typeconstraints. The static type
checker checks the applicability of a polymorphic actor in a topology by finding specific types for
them that satisty the typeconstraints. Thisprocess is called the typeresolution, and thespecific types
are called the resolved types.

Static typing and type resolution have other benefits in addition to the ones mentioned above.
Static typing helps to clarify the interface of actors and makes them moremanageable. Just as typing
mayimprove run-time efficiency in a general-purpose .language by allowing the compiler to generate
specialized code, when a Ptolemy system is synthesized to hardware, typeinformation canbeused for
efficient synthesis. For example, if the typecheckerasserts that a certain polymorphic actor willonly
receive IntTokens, then only hardwaredealing with integersneeds to be synthesized.

To summarize, Ptolemy n takes an approach of static typingcoupledwith run-timetype checking.
Lossless data type conversions during ^ta transfer are automatically implemented. Polymorphic
actors are supported through type resolution.

6.2 FOmUlAWN

6.Z1 rmcmmms

In a Ptolemy II topology, the type compatibility rule imposes a type constraint across every con
nection from an output port to an input port. It requires that the type of the output port, outType, be the
same as the type of the input port, inType, or less than inType under the type lattice in figure 4.2.1.e.,

outType^ inType (1)

This guarantees that information is not lost during data transfer. If both the outType and inType are
declared, the static type checker simply checks whether this inequality is satisfied, and reports a type
conflict if it is not.

In addition to the above constraint imposed by the topology, actors may also impose constraints.
This happens when one or both of the outTypeand inType is undeclared, in which case the actor con-
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taining the undeclaredport needs to describe the acceptabletypes through type constraints.All the type
constraints in Ptolemy n are described in the form ofinequities like the one in (1). If a port has a
declared type, its type appears as a constant in the inequities. On the other hand, if a port has an
undeclared type, its type is represented by a variable,called the type variable, in the inequalities. The
domain of the type variable is the elements of the type lattice. The type resolution algorithm resolves
the undeclared types subject to the constraints. If resolutionis not possible, a type conflict error will be
reported. As an example of the inequality constraints, consider figure 6.2.

The port on actors A1 has declared type int, the ports on A3 and A4 have declared type double;
and the ports on A2 have their types undilared. Let the type variables for the undeclared types be oc,
p, and Y> the type constraints from the topology are:

int ^ a

double ^ p
double

Now, assume A2 is a polymorphic adder, enable of doing addition for integer, double, and complex
numbers, and the requirement is that it does not lose precision during the operation.Then the type con
straints for the adder can be written as:

a<Y

PSY
Y^ Complex

The first two inequalities constrain the output precision to be no less than input, the last one
requires that the data on the adder ports can be converted to Complexlosslessly.

These six inequalities form the complete set of constraints and are used by the type resolution
algorithm to solve for cx, p, and y.

This inequality formulation is inspired by the type inference algorithm in ML [28]. There, equali
ties are used to represent type constraints. In Ptolemy E, the lossless type conversion hierarchy natu
rally implies inequality relation among the types. In ML, the type constraints are generated from
program constructs. In a heterogeneous graphical programming environment like Ptolemy E, the sys
tem does not have enough informationabout the function of the actors, so the actors must present their
type information by either declaring the type on their port, or specify a set of type constraints to
describe the acceptable types on the undeclaredports. The Ptolemy E system also generates type con
straints based on (1).

This formulation converts type resolution into a problem of solving a set of inequalities. An effi
cient algorithm is available to solveconstraints in rinite lattices [34],which is described in the appen-

doubl

double

FIGURE 6.2. A topology with types.
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dixthrough anexample. This algorithm finds thesetofmost specific types fortheundeclared types in
the topologythat satisfy the constraints,if they exist.

As mentioned earlier, the static type checker flags a type conflict errorif the type compatibility
rule is violated on a certain connection. There are other kind of type conflicts indicated by one of the
following:

• The set of type constraints are not satisfiable.
• Some type variables are resolved to NaT.
• Some type variables areresolved to anabstract type, such asNumerical indie typehierarchy.

Thefirst casecanhappen, forexample, if theportonactorA1 in figure 6.2hasdeclared type Com
plex. The second case can h^pen if an actor does notspecify any type constraints on an undeclared
output port. This is due to the nature of the type resolution algorithm where it assigns all the unde
clared types to NaTat thebeginning. If thetype constraints donotrestrict a type variable to be greater
than NaT it will stayat NaTafterresolution. The third case is considered a conflict since an abstract
type does not correspond to an instantiable token class.

To avoid the second case above, any ou^ut port must either have a declared Q^ie, or some con
straints to force its type to be greater than NaT. This requirement should be easily satisfied on most
actors. A situation that needs some attention is the source actor. A source actor carmot leave its output
porttype unconstrained. One way to cope with this is to declare the type at a time after thetype infor
mation is known, but prior to type resolution. For example, if the output data is determined by a
parameter set by the user, theparameter can be evaluated during the initialization phase of the execu
tionandthe port typecan be declared at the end of the initialization, which precedes typeresolution.

6.2.2 m-TIME TYPE CHEmNQ AND LOSSLESS TYPE CONVERSiON

The declaredtype is a contractbetweenan actor and the Ptolemyn system. If an actor declaresan
outputport to have a certain type, it asserts that it will only send out tokens whosetypes are less than
or equd to that type. If an actordeclares an input port to have a certain type, it requires the systemto
only sendtokens that are instances of the classof that type to that inputport.Run-timetypecheckingis
the component in the system that enforcesthis contract. When a token is sent out from an output port,
the run-timetype checkerfinds its type using the run-timetype identification (RTTI) capability of the
underlying language (Java),andcompares the type with the declaredtype of the outputport. If the type
of the token is not less than or equal to the declared type, a run-time type error will be generated.

As discussed before, type conversion is needed when a token sent to an input port has a type less
than the type of the input port but is not an instanceof the class of that type. Since this kind of lossless
conversion is done automatically, an actor can safely cast a received token to the declared type. On the
other hand, when an actor sends out tokens, the tokens being sent do not have to have the exact
declared outputport type. Anytype that is less than the declared type is acceptable. For example, if an
output port has declared type double^ the actor can send IntToken from that port. As can be seen, the
automatic type conversion simplifies the input/outputhandling of the actors.

Note that even with the convenience provided by the type conversion, actors should still declare
the input types to be the most general that they can handle and the output types to be the most specific
type that includes all tokens they will send. Uiis maximizes their £q>plications. In the previous exam
ple, if the actor only sends out IntToken^ it should declare the ouq>ut type to be int to allow the port to
be connected with an input with type int.

If an actor has ports with undeclared types, its type constraints can be viewed as both a require
ment and an assertion from the actor. The actor requires the resolved types to satisfy the constraints.
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Once the resolved types are found, they serve the role of declared types at run time. Le., the type
checkingand type conversion systemguaranteesto only put tokens that are instancesof the class of the

.resolved type to input ports, and the actor asserts to only send tokens whose types are less than or equal
to the resolved type from ouq)ut ports.

6.3 IMnmmATION ClASSSS

6.3.1 micimemiaiKmTmmoumoN

lype checking and type resolution are done in the actor package. The Actor interface, the Atomi-
cActor, CompositeActor, lOPort and lORelation classes are extended with lypedActor, lypedAtomi-
cActor, IVpedCompositeActor, lypedlOPort and lypedlORelation, respectively, as shown in figure
6.3. The container for TypedlOPort must be a ComponentEntity implementing the lypedActor inter
face, namely, TypedAtomicActor and TypedCompositeActor. The container for lypedAtomicActor
and TypedCompositeActor must be a 'I^q)^CompositeActor. lypedlORelation constraints that Type
dlOPort can only be connected with Ty^IOPort. TypedlOPort has a declared type and a resolved
type, plus the methodsto set and querythem. Undeclaredtype is represented by a null declared type. If
a port has a non-null declared type, the resolved type will be the same as the declared type. Calling
setDeclaredType () with a non-null argument will set both the declared and resolved type.

Static type checking is done in the checkTypes {) method of TypedCompositeActor. This
method finds all the connection within the composite by first finding the output poi^ on deep con
tained entities, and then finding the deeply connected input ports to those output ports. Transparent
ports are ignored for type checking. For eachconnection, if the types on both ends are declared, static
type checldng is performedusing the type compatibility rule. If the compositecontains other opaque
TypedCompositeActors, this method recursively calls the checkTypes () method of the contained
actors to perform type checking down the hierarchy. Hence, if this method is calledon the top level
TypedCompositeActor, type checking is performedthrough out the hierarchy.

If a type conflict is detected, i.e., if the declared type at the source end of a connection is greater
than or incomparable with the typeat the destination end of the connection, the ports at bothends of
the connection are recorded and will be returned in an Enumeration at the end of type checking. Note
thattypechecking does notstopafterdetecting thefirsttypeconflict, so thereturned Enumeration con
tains ail the ports that have type conflicts. This behavior issimilar to aregular compiler, where compi
lation will generally continue after detectingerrors in the source code.

The classInequality in the graph package is used to represent typeconstraints. This classcontains
two objects implementing the InequalityTerm interface,which represent the lesser and greater terms.
TypeTerm in the actor package is such a class that implements the InequalityTerm interface. In type
resolution, an inequality term canbe a typevariable that represents the typeof a portwithundeclared
type, a type constant thatrepresent the type of a portwith declared type, or a typeconstant not associ
ated with a port. Forexample, in theconstraint int^ a in figure 6.2, a is a type variable representing
the resolved type of one of the inputs of the adder A2, and int is a type constant representing the
declared type (and also the resolved type) of theportonactor A1; in theconstraint y^ Complex^ Com
plexis a type constant notassociated with any port. Toaccommodate these needs, theclass TypeTerm
provides two constructors, onewith a TypedlOPort argument, the other with a Class argument which is
a type in the type hierarchy. When an instance of TypeTerm is constructed using the first constructor,
the value of the TypeTerm is the resolved type of the associated TypedlOPort, and the term may be
either a constant or a variable, depending on whether the type of the port is declared or not. When a

6-6 Ptolemy II



Types

lypeTerm isconstructed using the second constructor, it represents a type ccmstant not associated with
a port. The class lypedlOPort has a method getTypeTerinO, which retums a TVpeTerm associated
with itself. Toform a type constraint between twoTVpedlOPorts, thecodecanbe written as:

// portl and port2 are two the constraint is that
// the type of portl is less than or equal to the type of port2.
Inequality constraint = new Inequality (portl. get^peTenn(), port2.get^rpeTerm());

Toform a type constraintlikey < Complex, the code canbe written as:

0..1
•_poft: TypedlOPort
•_type: Class

♦getPoftO:TypedlOPort

lypMUtomieActer

0..1

4.TYPE: int

-_declar«<n'ype: Class
•_rBsolve<fl'ype: Class
•JypaTenn: TypaTerm
•jconveilMethod: Method

♦TypedlOPortO
i-TypedlOPortCcomainer:ComponentEntity, name: String)
'fTypedlOPortCcontainer: Comi)onerttERt%, name: String, isinput:
^getOeclaredTypeO: Class
fgetResolvedTypeO: Class
*gelTypeTermO: InequaiityTerm
MatOedaretfTypeCc: Class)
»_setRaso>w9tfType(c: Class)

♦<ypeConttrtlnt»0: Enumwatior

0..n
0..1

0..1

0..n
0..1

hCheckTypesQ: Enumwittofi

0..n

I, isoutput: boolean)

fTypadlonalatlonO
fTVpoCtORMienfw: WoitapeM)
»TypedlORe>«tton(centtJnT; TypadOompoaHeActof.new: String)

FIGURE 6.3. Classes in the actor package that support type checking.
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// port is the l^pedlOPort associated with the type variable Y-
TypeTem conplexTerm = new !iypeTenn(ConiplexToken.class);
Inequality constraint = new Inequality (port. getTypeTezm(), ccHiq)lexTezm);

The TVpedActor interface has a typeConstraints () method, which returns the type constraints
of this actor. For atomic actors, the type constraints are different in different actors, but the lyped-
AtomicActor class provides a default implementation, which is diat the type of any input port with
undeclared type must be less than or equal to the type of any undeclared output port Ports with
declared types are not included in the default constraints. If all the ports have declared type, no con
straints are generated. This default works for most of the control actors such as commutator, multi
plexer, and the Downsampler in figure 6.1. It also covers most of the constraints for arithmetic actors
such as the adder in figure6.2. For the adder, the default type constraints covers a^y and p ^ y, the
typeConstraints () method of the adder only needs to add Complex. This method can be writ
ten as:

public Enumeration typeConstraints() (
LinkedList result s new LinkedList();
result.appendElements(super.typeConstraints());

TypeTerm con^ilexTerm = new lypeTenn(CoinjlexToken.class) ;
II _output is the output lypedlOPort.
TypeTerm portTerm = _output.getTypeTerm();
Inequality constraint = new Inequality(portTerm, conplexTerm);

result.insertLast(ineq);
return result.elements();

)

The typeConstraints () method in TypedCompositeActor collects all the constraints within
the composite. It works in a similar fashion as the checkTypes () method, where it recursively goes
down the containment hierarchy to collect type constraints of the contained actors. It also scans all the
connections and forms type constraints on connections involving undeclared types. As check-
Types 0, if this method is called on the top level container, all the type constraints within the compos
ite are returned.

The Manager class has a resolveTypes () meth(xl that invokes type checking and resolution. It
uses the InequalitySolver class in the graph package to solve the constraints. If type conflicts are
detected during type checking or after type resolution, this method throws lypeConflictException.
This exception contains an Enumeration of TVpedlOPorts where type conflictsoccur.The resolve-
Types () method is called insideManagerafter all the mutationsare processed.If lypeConflictExcep
tion is thrown, it is caught within the Manager and an ExecutionEvent is generated to pass the
exception information to the user interface.

6.3.2 m-rm imcmmm rm cowmm

Run-time typechecking is done in the send () method of lypedlOPort. Thechecking is simply a
comparison of the type of the token being sent with the resolved type of the port If the type of the
token is less than or equal to the resolved type, type checking is pass^ otherwise, an IllegalActionEx-
ception is thrown.

The needfor typeconversion is alsodetermined in the send() method. The type of the destina
tion port is the resolved type ofthe port containing the receivers that thetoken issent to.If the token is
not an instance of the class of the destination resolved type, type conversion is needed.
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The conversion is done by the convert () method in the token classes. This method is invoked
through the Reflection interface of Java. Each lypedlOPort has a method _getConvertMethod()
that returns ajava.reflect.Method for the convert () method ofthe resolved tj^. When type conver
sion isneeded, the send{) method ofthe port sending out the token calls _getConvertMethod () of
the destination port to get the convert() method, then invoke it to perform the conversion. Since
both the sendO and the _getConvertMethod() methods are in lypedlOPort, the
aetConvertMethod () is private. For efficiency, the reference to the convert method iscached in

lypedlOPort, and _getConvertMethod () will return die cached reference unless itis called for the
first time after the resolved type changes.

6A EXAimES

6.4.1 mmmicwmsAuam

In figure 6.1, if the Downsampler is designed to do downsampling for any kind oftoken, its type
constraint isjust samplerin ^ samplerOutt where samplerln and samplerOut are the types ofthe input
and output ports, respectively. The default type constraints works in this case. Assuming the Display
actor just calls the stringValue()mc(t\od ofthe received tokens and displays the string value in acertain
window, the declare type ofits port would be General. Let the declared types on the ports ofFFT be
Complex, theThetype constraints of this simple application are:

sourceOut < samplerln

samplerln < samplerOut

samplerOut < Complex
Complex < General

Where sourceOut represents the declared type of the Source output. The last constraint does not
involve a type variable, so it isjust checked by the static type checker and not included intype resolu
tion. Depending on the value ofsourceOut, the ports on the Downsampler would be resolved todiffer
ent types. Some possibilities are:
• IfsourceOut = Complex, theresolved types would besamplerln =samplerOut = Complex.
• If sourceOut = Double, theresolved types would besamplerln = samplerOut = Double. At run

time, DoubleTokens sentout from theSource will be passed to the DownSampler unchanged.
Before they leave the Downsampler and sent tothe FFT actor, they are converted toComplexTo-
kens by the system. The Complextoken outyut from the FFT actor are instances ofToken, which
corresponds tothe General type, so they are transferred tothe input ofthe Display without change.

• IfsourceOut =String, the setof type constraints donothave a solution, a typeConflictException
will be thrown by the static type checker.

6A.2 fOKfC CONNECTION

Consider two simple topologies in figure 6.4. where a single output is connected to two inputs in
6.4(a) and two outputs are connected toasingle input in6.4(b). Denote the types ofthe ports byal, a2,
a3, bl, b2, b3, as indicated in the figure. Somepossibilities of legal andillegal typeassignments are:
• In 6.4(a), if a] = Jnt, a2 = Double, a3 = Complex. Thetopology is well typed. At run-time, the

IntToken sent out from actor Al will be converted to DoubleToken before transferred to A2, and
converted toComplexToken before transferred toA3. This shows thatmultiple ports with different
types canbe interconnected as longas the typecompatibility rule is obeyed.
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* In 6.4(b),if bl = Int, b2 = Double, and b3 is undeclared. The the resolved typefor b3 will be Dou
ble. If bJ = int and b2 = Boolean,the resolvedtype for b3 wiU be String since it is the lowestele
ment in the type hierarchy that is higher than both Int and Boolean. In this case, if the actor B3 has
some type constraints that require b3 to be less than String, then type resolution is not possible, a
type conflict will be signaled.

6.4J AmmRSlfSTUH

Figure 6.5 shows a more complete system built in Ptolemy n DE domain. The types are marked by
the ports. The underline below some types means that the corresponding port has undeclared type and
those types are the resolved type. The functions of the actors are:

1. Clock and Poisson: The Clock actor generates events at regular interval. Its output is a **pure sig
nal*' without value, so the output port type is General, which corresponds to the base Token class.
The Poisson actor is similar to Clock except that the time spacing between the events follows the
Poisson probability distribution.

2. Ramp: This actor sends out events whose value changes by a constant amount eveiy time. It has
two Parameters for the initial value and step size. These two Parameters are set by the user and
evaluated at the initialization stage. The type of the output is the higher type of the two Parameters.
For example, if the initial value Parameter has type Int and the step size has type Double, the out
put type is Double. Figure 6.5 assumes the output type is Double. The input port of the Ramp

6-10

FIGURE 6.4. Two simple topologies with types.

Poisson

General

Clock (*) >
Genera

Gener

General

Double

Qsms.

Samplerl
Dsukk

General

Sampler2
Double

General

FIGURE6.5. A Sampler system built in the DE domain.
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serves asa trigger. The ou^utevent is sent outwhen a token is received from the input. Since the
trigger input does not care the value ofthe received token, its type isdeclared as General, which
means that any type of token can trigger the output.

3. Sampler: This isa polymorphic actor. It passes a token from itsinput port onthe left tothe ou^ut
on the right when a token is received from the bottom input port, sothe bottom input isalso atrig
ger input. This actor can do sampling for any type oftoken, but toensure that information isnot
lost, it requires that the type on the left input is less than orequal tothe type on the right output
This constraint iscovered bythedefault implementation ofthe type constraint inlypedAtomicAc-
tor, sothe Sampler class does not need tooverride the typeConstraixits () method.

4. Plot: This isalso a polymorphic actor. It plots the value ofthe received tcd^en ina certain window.
Assuming that it requires the input tobea kind ofScalarToken, then the type constraint ofthis
actor is that the input type is less than or equal to Scalar.

In this example, all theports with undeclared type areresolved toDouble.
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Amimt 8: TH£ TYPE RESOLUTION ALSOmHM

The type resolution algorithm starts by assigning all the type variables the bottom element of the
typehierarchy, NaT^ thenrepeatedly updating the variables to a greaterelement untilall the constraints
are satisfied, or when the algorithm rinds that the set ofconstraints are not satisriable. The kind of ine
quality constraints the algorithm can determine satisfiability are the ones with the greater term (the
right side of the inequality) being a variable, or a constant The algorithm allows the left side of the
inequality to contain monotonic functions of the type variables, butnot the right side. The first stepof
the algorithm is to dividethe inequalities into two categories, Cvar and Ccnst. The inequalities in Cvar
have a variable on the right side, and the inequalities in Ccnsthave a constanton the right side. In the
example of figure 6.2, Cvar consists of:

int ^ a

double ^ p
a<7

p<Y
And Ccnst consists of:

y ^ double

Y< Complex

The repeated evaluations are only done on Cvar, Ccnst are used as checks after the iteration is fin
ished, as we will see later. Before the iteration, all the variables are assigned the value NaT, and Cvar
looks like:

int < OL{NaT)

double < ^{NaT)
a(NaT) < y(NaT)

P(NaT)<y{NaT)
Where the current value of the variables are inside the parenthesis next to the variable.

At this point, Cvar is further divided into two sets: those inequalities that are not currently satis
fied, and those that are satisfied:

Not-satisfied Satisfied

int < a(NaT) a{NaT) ^ y(NaT)

double ^ ^(NaT) P{NaT) ^ y(NaT)
Now comes the update step. The algorithm takes out an arbitrary inequality fix>m the Not-satisfied

set, and forces it to be satisfied by assigning the variable on the right side the least upper bound of the
values of both sides of the inequality. Assuming the algorithm takes out int ^ (MNaT), then

a = ints/NaT = int (2)

After a is updated, all the inequalities in Cvar containing it are inspected and are switched to either
the Satisfied or Not-satisfied set, if they are not already in the appropriate set. In this example, after
this step, Cvar is:

Not-satisfied Satisfied

double < p(Nfl7) int ^ (x(inr)
a(i«r) < y(NaT) p(Mz7)^ Y(Nfl7)

The update step is repeated until all the inequalities in Cvarare satisfied. In thisexample, p andy
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will be updated and the solution is:
a = inf, p = Y=<fo«We

Note that there always exists a solution for Cvar. Anobvious one is to assign all thevariables to
the top element, GeneraU although this solution may not satisfy the constraints in Const, The above
iteration will find the least solution, or the set of most specific types.

After the iteration, theinequalities in Const arechecked based ondiecurrent value ofthevariables.
If all of them are satisfied, a solution to the set of constraints is found.

This algorithm can be viewed as repeated evaluation ofa monotonic function, and die solution is
the fixed point of the function. Equation (2) can be viewed as a monotonic function sqiplied to a type
variable. The repeated update ofallthetype variables can beviewed asthe evaluation ofa monotonic
function that is the composition of individual functions like (2). The evaluation reaches a fixed point
when a setof type variable assignments satisfying theconstraints in Cvaris found.

Rehof andMogensen [34] proved that the above algorithm is linear time in the number of occur
rences of symbols in theconstraints, andgave anupper bound onthenumber ofbasic computations. In
our formulation, the symbols are type constants and type variables, and each constraint contains two
symbols. So the type resolution algorithm is linearin the numberof constraints.
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PLOT

Edward A. Lee

Christopher Hylands

7.1 OVERVIEW

The plot package inPtolemy n is one ofseveral utility packages that provide support functionality
for simulations and applets. It is available ina stand-alone distribution, oraspartof thePtolemy n sys
tem. The class diagramis shown in figure 7.1. The key classes are:
• PlotBox: A panel that draws a box with axes along the edges, tick maiks along theaxes, axis

labels, a title, and a legend.

• Plot: Anextension ofPlotBox that supports a suite of two-dimensional plots ofsetsofdata, includ
ing x-y plots, scatter plots, and bar graphs.

• PlotLive: Anextension ofPlotdesigned to runcontinuously in its ownthread, continually updat
ing an on-screen plot.

• PlotApplet: An applet that contains asingle instance ofPlot and that can read the data tobe plotted
from a URL.

• PlotLiveApplet: An extension ofPlotApplet that contains aninstance ofPlotLive instead ofPlot.
This is usedfor ^plets with animated plotsthat arecontinually updated.

• PlotFrame: A window containing a single plotand a menu barwith commands foropening and
displaying new data Bles.

• PlotApplication: Anextension of PlotFrame thatis an application (a standalone Javaprogram).

7.2 USER INTERFACE

The user interface supported by these classes is very rodimentary. Zooming in and out is sup
ported. To zoom in, drag the mouse downwards to draw a box. To zoom out, drag themouse upward.
In addition, several of these classes permit the placement of buttons that exercise certain simplecon-
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♦PtotBoxO

«ad(fLagsn(i(tfstaset: M. Itgand: String)
*«ddXnBk{l8bel: String, position: doublo)
*addYTick(lat>el: String, position; doutM)
*clear(axs3; tMolean)
♦(illPlotO
♦oelColorBvNamafrwmB:Strinot: Cotor

PtolSox J

♦ptotrPlot

♦PlotFmmeO
♦PlotPramegitls;

ssamplePlotO
•_aboutO
•.cioseO
•.heW)
IjoponO
•_prtntO
•_s«veO
»_saweAsO

iMeiisge(msg: String)
+M«sswe{msg:String,bdcgnd: Color,fgnd: Color)

*gettJBgen(l(data8et: int): String
4g«tMinlmumSizeO: Dimension
4getPrs(erre<fSizeO; Dimension
M»ad(in: InputStream)
4«ample0
4setBackgroun(l(oolor:Color)
♦setBounOs(x: int.y: int.width: int. tieight: int)
4«etButtons(visitite: tioolean)
MOtForagroumKcolor: Color)
i-setGridtgrid: Iwolean)
'fsetLabelFonttfontname: String)
-fsetSize(width: int. height: int)
'i-setTitle(title: String)
4-setTitleFont(fontnan)e; String)
fsetXLaltelCiattel: String)
'fS6tXLog(log:tMMlean)
'fsetXRange(iower: double, upper: double)
•»^setYLabel(label: String)
MetYLogCtog; boolean)
MetYRangeilower:double, upper: double)
'Hwrite(out: OutputStream)
+zoom(lowx: double, lowy;double, highx:doutile, highy:double)
«_drawPlot(g ; Graphics,cleariirst: boolean)
•_drawPoint(g: Graphics, set: int. x; long, y: long, clip;boolean)
*_parseUne(iine: String)
»_setButtonsVisibility(vi$: boolean)
•_wTite(output: PrintWriter)
•_zoom(x ; int. y: int)
«_zoomBox(x: int. y: int)
«_zoomStart(x: int. y: int)

String)

PtetAppllcation

Plot

♦PlotAppUcationO
«PlotApplication{tlde:String)
Mnain(args: String)
fjwrseArgsO: int
»_usageO: String

♦PlotO

+addPoint(dataset: int.x: double, y: double,connected: boolean)
+3ddPotntWithErrorBars(ds: int. x: double, y: double, yiow: double. yHigh: double, crxrt: boolean)
«erasePoint(dataset; int. index: int)
'K>arseArgs(args: StringQ): int
'fparsePxgraphargslargs: String)
'freadPxgraph{input: InputStream)
4'SetBars(on: boolean)
4«etBar8(width:double, oflset: double)
4«etConnected{on: boolean)
4setlmpuIses{on: boolean)
*setimpulses{on: boolean, dataset: int)
'•setMari(sStyle(style:String)
+8etMarksStye(styie: String, dataset: mt)
'»setNumSets(numsets; int)
'»setPointsPersistence(numPoints: int)
•_ehecl(Datasetindex(dataset: int)
• drawBar(g; Graphics, dataset: int. x: long, y: long, dip: boolean)
#_dfawErrorBar(g: Graphics, dataset: int. x: long, yiow: long, ytiigh: long, dip: boolean)
• dr8wlmpulse(g: Graphics, dataset:int. x: long, y: long, : boolean)
»IdrawUne(g; Graphics, dataset: int. startx; loi^. starty: long, endx: long, endy: long)
•~drawPiot(g: Graphics, deaifirst: boolean)
•_drawPoint(g ;Graphics, dataset: int. x: long, y: long, dip: boolean)
•_parseLine(iine: String): boolean
»_write(output: PrintWriter)

FIGURE 7.1. The classes of the plot package.
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trols. The fill button fills the available space with the available data. The start and stop buttons, used by
the PlotLive class, start and stop an animated plot.

The PlotFrameclass adds a menu that contains a richer set of commands,including openingfiles,
saving the plotted data to a file, printing, etc. Currently, the set ofcommands isfar from complete. In
the future, we hope that on-line formatting ofthe plots and exporting topopular graphics formats will
be supported.

7.3 FILEFOmT

Instances of thePlotBox and Plotclasses canread a simple file format thatspecifies thedatato be
plotted. These files can be accessed via URLs. Each file contains a set ofcommands, one per line, that
essentially duplicate the methods of these classes. There are two sets of commands currently, those
understood by the base class PlotBox, and those understood by the derived class Plot Both classes
ignore commands that they do not understand. In addition, both classes ignore lines that begin with
"#", thecomment character. Thecoimnands arenotcase sensitive. In addition, for backward compati
bility, these classes can read the binary file format ofaprior plotting program called pxgraph.

NOTE: We are likely tochange thepreferred file format toone based onXML. We hope tomain
tain backward compatibility with thisformat, butdo notplan to extend this format.

7.3.1 COMMANDS CONfimiNO WSAXES

The following commands are understood by the base class PlotBox. These commands can be
placed ina file and then read via the read() method, orvia a URL using the PlotApplet class. The rec
ognized commands include:
• TitleText: string

• XLabel: string

• YLabel: string

These commands provide a title and labels fortheX (horizontal) and Y (vertical) axes. Astring is sim
ply a sequence of characters, possibly including spaces. There is no need here to surround them with
quotation marks, and in fact, if youdo, thequotation marks will be included in the labels.

The rangesof the X and Y axes can be optionally givenby commands like:
• XRange: mm, max

• YRange: min, max

Thearguments min andmaxarenumbers, possibly including a signanda decimal point If theyarenot
specified, then the ranges are computed automatically from the data and padded slightly so that
datapoints are not plotted on the axes.

The tick marks for the axes are usually computed automatically from the ranges. Every attempt is
made to choose reasonable positions for the tick marks regardless of the data ranges (powers of ten
multiplied by 1,2, or 5 are used). However, theycan alsobe specified explicitly usingcommands like:
• XTIcks: labelposition^ label position,...
• YTIcks: labelposition, label position,...

A label is a stringthatmustbe surrounded by quotation marks if it contains anyspaces. A position is a
numbergiving the location of the tick mark along the axis. For example, a horizontal axis for a fre
quency domain plot might have tick marks as follows:
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XTicks; -PI -3.14159, -PI/2 -1.570795, 0 0, PI/2 1.570795, PI 3.14159

Tick marks could also denote years, months, days of the week, etc.

The X and Y axes can use a logarithmic scale with the followingcommands:
• XLog: on
• YLog: on
The tick labels, if computed automatically, represent powers of 10. Note that if a logarithmic scale is
used, then the values must be positive. Non-positive values will be silently dropped.

By default, tick marks are connected by a light grey background grid. This grid can be turned off
with the following command:

• Grid: off

It can be turned back on with

• Grid: on

Also, by default, the first ten data sets are shown each in a unique color. The use of color can be
turned off with the command:

• Color: off

It can be turned back on with

• Color: on

All of the above commands can also be invoked directly by calling the corresponding public meth
ods from some Java code.

7J.2 COMMANDS FOR PLOnmMTA

The set of commands understood by the Plot class support specification of data to be plotted and
control over how the data is shown.

The style of marks used to denote a data point is defined by one of the following commands:
• Marks: none

• Marks: points

• Marks: dots

• Marks: various

Here, "points" are small dots, while "dots" are larger. If "various" is specified, then unique marks are
used for the first ten data sets, and then recycled. Using no marks is useful when lines connect the
points in a plot, which is done by default. If the abovedirective appears beforeany DataSet directive,
then it specifies the defaultfor all data sets. If it appears after a DataSetdirective, then it applies only
to that data set.

To disable connecting lines, use:
• Lines: off

To re-enable them, use

• Lines: on

You can also specify "impulses", which are lines drawn from a plotted point down to the x axis.
Plots with impulses are often called "stem plots." These are off by default, but can be turned on with
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the command:

• Impulses: on

or back olf with the command

• Impulses: oif

If thatcommand appears before anyDataSet directive, then thecommand t^pliesto all data sets. Oth
erwise, it applies only to the current data set.

Tocreate a bargraph, turnoif linesanduseanyof the following commands:
• Bars: on

• Bars: width

• Bars: width, offset

Thewidth is a real number specifying thewidth of thebarsin theunits of thex axis. Theoffset is a real
number specifying how much the bar of the i-th data set is offsetfrom the previous one.This allows
bars to "peekout"from behind the ones in front. Note that the frontmost dataset willbe the first one.
To turn off bars, use

• Bars: off

To specify data to be plotted, start a data set with the following command:
• DataSet: string

Here, string is a label that will appear in the legend. It is not necessary to enclose the string in quota
tion marks.

To start a new dataset without giving it a name, use:

• DataSet:

In this case, no item will appear in the legend.

If the following directive occurs:

• ReuseDataSets: on

then datasets with the same name will be merged. This makes it easier to combine multiple data files
that contain the same datasets into one file. By default, this capability is turned off, so datasets with the
same name are not merged.

The data itself is given by a sequence of commands with one of the following forms:

draw: x, y

move: x, y

jc, y, yLowErrorBar, yHighErrorBar

draw: jc, y, yLowErrorBar, yHighErrorBar
move: jc, y, yLowErrorBar, yHighErrorBar

The "draw" command is optional, so the first two forms are equivalent The 'inove" command causes
a break in connected points, if lines are being drawn between points. The numbers jc and y are arbitrary
numbers as supported by the Double parser in Java (e.g. "1.2", "6.39e-]S", etc.). If there are four num
bers, then the last two numbers are assumed to be the lower and upper values for error bars. The num
bers can be separated by commas, spaces or tabs.

The number of data sets to be plotted does not need to be specified.
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7.4 LimATIOMS

The plot package is a starting point, with a number of significant limitations.
• The PIotFrame and PlotApplication classes should be greatly extended to allow on-line dianges in

the format of the plots.
• A binary file format that includes plot format informationis needed.
• If you zoom in far enough, the plot becomes unreliable. In particular,if the total extent of die plot

ismore than 2^^ times extent ofthe visible area, quantization errors can result indisplaying points
or lines. Note that 2^^is over 4 billion.

• The log axis facility has a number of limitations listed in the documentation of the _gridlnit()
method in the PlotBox class.

• Graphs cannot be currently copied via the clipboard.
• There is no EPS export for graphs.

• There is no mechanism for customizing the colors used in a plot.
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mssAki

abstract syntax A conceptual dataoiganization. cf.concrete syntax.
action methods The methods initializeO* prefircO. postfireO, and wrapup() in

the Executable interface.

actor Anexecutable entity. Thiswascalled a block in Ptolemy 0.x.
anytype The Ptolemy 0.xname for undeclared type.
atomic actor Aprimitive actor. That is,one that isnot a composite actor. This was

called a star in Ptolemy 0.x.

attribute Anamed property associated with a named object inPtolemy II.
block The Ptolemy 0.x name for an actor.
channel Apath from an output port toan input port (via relations) that can

transport a singlestream of tokens.
clustered graph Agraph with hierarchy. Ptolemy n topologies are clustered graphs.
composite actor An actor that isinternally composed ofother actors and relations. This

was called a galaxy in Ptolemy 0.x.

concrete syntax Apersistent representation ofadata organization, cf. abstract syntax.
connection A path ftom one port toanother viarelations and possibly transparent

ports. Aconnection consists ofone ormore relations and two ormore
links.

container An object that logically owns another. APtolemy n object can have at
most one container.

dangling relation Arelation with only input ports oronly output ports linked toit.
data polymorphic Capable ofoperating with more than one token type.
deep traversals Traversals ofaclustered graph that see through transparent cluster

boundaries (transparent compositeentitiesand ports),
disconnected port A port withno relation linked to it.
director An object thatcontrols the execution of a model or an opaque com

positeentityaccording to somemodel ofcomputation.
domain An implementation ofa model ofcomputation inPtolemy n and

Ptolemy 0.x. *

domain polymorphic Capable ofoperating under more than one model ofcomputation.
entity A nodein a Ptolemy n clustered graph.
execution One invocation of initializeO, followed by any number of iterations,

followed by one invocation of wrapup().

executive director From theperspective ofanactorinside anopaque composite actor, the
director of the container of the opaque composite actor,

galaxy The Ptolemy0.x name for a composite actor.
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immutable property A propertyof an objectthat is set up when the objectis constructed
and that cannot be changed during the lifetime of the object.

iteration One invocation of preiiieO* followed by any number of invocations of
iireO* followed by one invocation of postfireQ.

link An association between a port and a relation.
manager The top-level controller for the execution of a model.
model A complete Ptolemy n application. This was called a universe in

Ptolemy 0.x.
model of computation The rules that govern the interaction, communication, and control

flow of a set of components.

multiport A port that can send or receive tokens over more than one chatmel.
opaque For a composite entity or a port, an attribute that indicates that the

inside should not be visible from the outside. That is, deep traversals
of the topology do not see through an opaque boundary,

opaque composite actor... A composite actor with a local director. Such an actor sq»pears to the
outside domain to be atomic, but internally is composed ofan inter
connection of other actors. This was called a wormhole in Ptolemy
0.x.

package A collection of classes that forms a logical unit and occupies one
directory in the source code tree.

parameter An attribute with a value. This was called a state in Ptolemy 0.x.
particle The Ptolemy 0.x name for a token.

port A named interface of an entity to which connections be made.
relation An object representing an intercormection between entities.
resolved type A type for a port that is consistent with the type constraints of the

actor and any port it is connected to. It is the result of type resolution.
star The Ptolemy 0.x name for an atomic actor.

state The Ptolemy 0.x name for a parameter.
subpackage A package that is logicallyrelated to a parent package and occupies a

subdirectory within the parent package in the source code tree,
token A unit of data that is communicated by actors. This was called a parti

cle in Ptolemy 0.x.

topology The structure of interconnections between entities (via relations) in a
Ptolemy U model. See clustered graph.

transparent For an entity or port, not opaque. That is, deep traversalsof the topol
ogy pass ri^t through its boundaries.

transparent composite actor
A composite actor with no local director.

transparent port The port of a transparent composite entity. Deeptraversals of the
topology see right through such a port.

type constraints The declaredconstraints on the token types that an actor can work
with.

type resolution The processof reconciling type constraints prior to running a model.
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undeclared type Capable ofworidng with any type oftoken. This was called anytype in
Ptolemy 0.x.

universe The Ptolemy 0.x name for a model.
width ofa port The sum ofthe widths of the relations linked to it,or zero if there are

none.

width of a relation The number of channels supportedby the relation.
wormhole The Ptolemy0.x name for an opaque composite actor.
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_newActors() method
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