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Abstract

Since the first large-scale computer network was built in the early 1960s,

the protocol design problem has become a more important issue toefficiently coor

dinate distributed system nodes. Recently, in response to the fast growing demand

for connecting various devices with current network infrastructures, many intricate

protocols have been designed to support communications across such heterogene

ity. However, today very few tools that we can identify allow such a system-level

simulation, including both protocols and models of system entities. Since simula

tion is the major stage in the development cycle of a complex hardware and soft

ware distributed system, a tool facilitates modeling and simulating protocols in a

system context is substantially valuable.

In this report, we propose a hybrid model of computation including CSP,

FSM, and DE for specifying protocols as well as toenable mixing them with other

subsystem models. Based on this proposal, a software tool, SiP (SPIN in Ptolemy),

has been implemented by integrating a protocol simulation tool, SPIN, into a sys

tem-level design environment, Ptolemy. We demonstrate the expressive power of

SiP by using it to specify several fundamental elements ofnetwork protocols rang

ing from the data link layer to the session layer in the OSI Reference Model. We

also leverage the reusability feature of SiP toconstruct a model ofa complete net

work system using those elements. From both the experience ofprotocol specifica

tion and the result of system-level simulation, SiP is proved to remarkably

facilitate thedesign and performance evaluation of network protocols.
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1

Introduction

Modem communication systems aremore powerful and complex than their

older counterparts. They are at the same time more compact and cheaper due tothe

improvement of hardware technology. This is achieved by integrating many sub

systems into a tiny module, e.g. a single-chip processor [1], and fabricating them

together.

The distributed and heterogeneous nature of subsystems enter the picture

when this approach is adopted. Even inside such a compact system, protocol ele

ments are necessary to guide data interchange and handle interfaces. Forexample,

a general-purpose micro-controller usually contains control, signal processing and

conununication elements. Those subsystems could have very different reaction

speeds and I/O rates in face ofa request to interchange data [25]. Therefore, vari

ous protocols are often embedded into that system to implement reliable interac

tion over unreliable channels, synchronization across distributed elements and

security in transactions among systemnodes.

To verify the functionality and evaluate the performance ofsuch a system is

a difficult task. First, A framework to model and simulate heterogeneous systems

is desirable. It should be able to model each subsystem in a natural and efficient

manner and have an interface mechanism to integrate them into a whole. Ptolemy,

developed atUC/Berkeley, is a system-level design framework that allows mixing

of multiple models of computation called domains [4]. Using Ptolemy, users can

freely choose the most suitable domain to describes each subsystem and perform



system-level simulation. Therefore, Ptolemy is a good candidate as a modeling

framework to meet our need.

Another consideration in choosing a simulation tool is the expressiveness

to represent a protocol compactly and intuitively. Possible choices aresynchronous

language [11], process network (PN) [21], finite state machine (FSM) [40] and

communicating sequential processes (CSP) [18]. Ptolemy itselfprovides a prelim

inary hierarchical FSM domain [3] which allows nested embedded domains in an

FSM and any built-in concurrency model. However, some implementation issues

of complex guard/action transition and repeated triggering in the current FSM

domain of Ptolemy are still envolving. We thus chose a more sophisticated CSP-

like description language, PROMELA, for protocol specification. PROMELA

(PROcess MEta LAnguage), developed by Lucent Technologies - Bell Labs, is

widely adopted in academe for protocol modeling andvalidation. Associated with

the language is an interpreter, called SPIN, to simulate and verify the protocol

specification. In this report, we will propose a methodology to integrate SPIN into

Ptolemy for simulating protocols in a system context.

The integration will utilize Ptolemy'sability to support heterogeneity. For

tunately, Ptolemy is designed withan object-oriented paradigm and supports heter

ogeneity using the principle of polymorphism. Its kemel defines basic classesand

generic functions. The application-dependent objects are derived from these

classes and overridden with specific functions. Also, data abstraction and encapsu

lation make the maintenance easier. The ultimate goal is to retain a compact and

generalized kemel which is extensible. As a result, any object derived from a

domain-specific class would be regarded as an specialized object in that domain,

but is still reachable from the corresponding basic class. This implies that if the

behavior of the derived object follows the loosely predefined requirements, it

works well with Ptolemykemel. An intuitive idea is to encapsulate a desire opera

tion as a regular computation unit in Ptolemy. However, two problems arise by



doing this: Does the semantics of synchrony of host doniain match the parasitic

modules? Is the concurrencymodel still applicable to them? [13]

Many researchers have done several similar embedding or combination.

The Argos language combines FSMs with a synchronous/reactive (SR) concur

rency model. SDL embeds FSMs in process networks. Codesign FSM (CFSM) [6]

embeds FSMs in DE. Simulink, form MathWorks, Inc., mixes continuous-time

concurrency model withFSMs. The main consideration of such a coupling is just

the questions we posed. This is because computation cannot be scheduled across

two domains without given careful definition of their synchrony and concurrency

[10][17].

Tointegrate SPIN into Ptolemy, we intend to model and simulate protocols

with other heterogeneous systems. Therefore, we should select an appropriate

domain in Ptolemy as the host platform for SPIN. Leveraging on Ptolemy'sability

to support heterogeneous design, SPIN imitates a regular Ptolemy computation

unit to interact with units in other domains. In this report, we will show that it is

appropriate to embed protocol modules in a discrete-event (DE) concurrency

model with careful definition of its semantics.

The rest of this report is organied as follows. In Chapter 2, we propose a

hybrid architecture of the domains to model protocols. Based on thatproposal, we

have developed a software toolby integrating SPIN intoPtolemy. Chapter 3 gives

a detailed roadmap of the implementation. In Chapter 4, we specify several funda

mental buidling blocks of network protocols using our tool to demonstrate its

expressive power. By reusing these blocks, in Chapter 5 we construct an applica

tionexample involving all protocols we discussed in Chapter 4. Finally, in Chapter

6, we summarize our ideas and draw conclusions.



2

Computational Model of Protocols

In [3], B. Lee et al. characterize a concurrent system as "modulesconsist

ingof relatively autonomous agents that interact through messaging of some sort",

andgives thedefinition of its computation model as "therules of interaction of the

agents and the semantics of the composition". This description is general enough

to include most popular models in the literature suchas a process network, discrete

event,synchronous reactive, multi-thread, dataflow, and 7c-calculus.

Among these models of computation, the discrete-event (DE) model is

especially useful and commonly adopted in modeling distributed or parallel enti

ties together with their communication infrastructure. Its system states evolve at

the granularity of the time spans of consecutive events and is assumed static

between them. In addition, the transition of states is regarded as instantaneous. It

hence well coincides with our perception of protocols, which usually neglect the

details of message propagation and respond to occurring events with a negligible

latency as compared with the duration between events..

However, an appropriate model to govern the concurrency and synchrony

of distributed modules of a protocol is not necessarily a goodmodel to specify the

modules themselves. In fact, the behavior of a protocol module is best character

ized by a set of control sequences and I/O actions [8] rather than a series of pre

defined discrete events. Therefore, a control-dominated computation model with

theexpressiveness of I/Oconunands would be a good candidate. In thischapter, by

distilling protocols, weconclude Communicating Sequential Process (CSP) [15] is



a suitable model to specify protocol modules. And, a Finite State Machine (FSM)

enables CSP to operate in a modal execution fashion. Our resulting computational

model suggests that embedding CSP and FSM in DE will be convenient and ade

quate in expressing communication protocols. In Section 2.1, we provide a

detailed view of protocols and identify their key features. Then in Section 2.2 and

2.3 we give brief introduction to CSP, FSM, and DE. Finally, a proposed hybrid

architecture for modeling protocols is illustrated in Section 2.4.

2.1 Protocol Specification

Conceptually, a conmiunication protocol is a distributed algorithm that

coordinates two or more entities to accomplish a shared or collective task. It uses

messages passed backand forth among entities, defining bothmessage format and

interpretation and conditional sequences of messages. If one would try to give

more specific definition, the terms coordinate, entity, task, conditional sequence,

and message all have to be carefully defined [51]. This tums out to be non-trivial

because it is equivalent to elaborating the details of the combinational structures

and computational models of the algorithm [24]. In next section we will see that

the issues of selecting an appropriate structure or model does not have a definite

answer. Instead, most of time we compromise on the trade-offbetween mathemat

ical elegance and intuitive perception [14].

To show the importance of this point, let us look at the internalprocess of a

network interface card where the data-link layer protocol has been built in. While

analyzing its performance, we treat the full-duplex link as two separate channels

and neglect the interference. In addition, upon receiving a packet we assume the

process is able to examine its correctness and then take actions in an instant. Such

an "idealization"greatly reduces hassles while formulating the metrics of the com

munication system [52].However, we know in fact there is only one single coaxial

cable connected to the card and the respondence to an incoming packet does take

processing time.



A tool to model protocols must compromise on the issue of abstraction

level eventually. Therefore, the expressiveness of the tool has been carefully cho

sen to considerably match our perception of nature but still retain the simplicity

and effectiveness for implementation. Before introducing the adopted description

language for protocols, let us return to our conceptual definition of protocols and

re-explain those fundamental features in detail as follows.

"entity": Usually a hardware device or software code. However, while

describing a protocol, it is always useful to isolate the embedded control logic

from the actuators to identify the imaginary actors of the protocol. An actor here

means an agentprocess that provides conununication services to a physical entity.

It could be a single reactive module as well as a combinational aggregation of

modules..

"conditional sequences": A series of logical control statements that guard

respondent actions. Typical guards arepacket arrival, signal triggering, andexpira

tion of timers. A simple form is similar to the IF-THEN-ELSE construct if a spe

cific condition is expected to happen. The CASE-THEN-ELSE is used to switch

the execution flow into a certain branch if a corresponding condition in a guard list

is satisfied. The switching may be nondeterministic if more than one condition in

thatguardlist are evaluated to be true. In that case,one branchwillbe chosenfrom

all qualified ones with equal probability.

"coordinate": The actions taken by the distributed autonomous processes.

There is no overall supervisor directing the interaction among distributed nodes.

Instead, each process hasa predefined script to decide its response to an event and

then enter an appropriate state to keep the system healthy (e.g., no deadlock). By

sending out or waiting for a notification event, the physically distant nodes hence

coordinate themselves to accomplish data communications.

"task": Most of time means to exchange information, i.e., sending and

receiving actions plus the data propagation over channels of two communicating



processes. Here these actions are described in ahigh-level sense and we neglect all
dependencies ofdevices and protocols. Specifically, the sending and receiving are

just insertion and removal operation respectively to a queue. However, note that
the queue is not necessarily a substantial data structure dedicated to representing
the channel. Depending on the synchrony model, it could be a FIFO queue or a

collection of separated events on a chronological queue. This flexible definition

enables various characterizations of channels such as random order, propagation

delay, and packet corruption.

"message": The information passing from node to node over a channel.

The usual forms of message are packets and signals. A packet usually contains

many fields such as control header, data payload, and error detection code. A sig

nal could bea pure triggering or a valued event tonotify itscounterpart that some

thing is happening.

These explanations characterize the basic requirements of a description

language to specify distributed processes. A simple but adequate protocol model

ing language, PROMELA, caught our attention because its expressiveness was

designed to specify precisely these protocol features. Figure 2.1 gives a

PROMELA example specifying a semaphore mechanism that functions as the

basis of many asynchronous transmission protocols.

eh
A — • B

• ack • req

PA() { PB() {
loop: loop:
(req=:=1)->ch!HEADER,DATA; req=1;
ack=1; (ack==1)->ch?h,x;
(req=0)->ack=0; req=0;
goto loop; (ack=0)->goto loop;

} }

Figure2.1 Asynchronous transmission using a semaphore mechainsm.



In this example, A and B are two distributed nodes connected by a data

channel ch. PA andPB aretwoprocesses builtin A andB respectively which coor

dinate the transmission. Signals req and ack areaccessible to both PA and PB and

are used to inform the other node that system status has changed. Buffer h and x

are the temporary spaces where header and data are stored. A typical scenario

starts from setting req to 1 by PB. As soon as perceiving the change of req, PA

sends HEADER and DATA onto channel ch and sets ack to 1. Seeing ack turned

on, PB storesHEADER and DATA in bufferand resets the req signal. This reset

ting results inthe releasing ofsignal ack byPA, and then allows both PA and PB to

retum to their original states. At this point, PA and PB are ready for the next itera

tion.

This example shows how effective PROMELA can express the protocol

features discussed. It uses independent processes to represent distributed "entities".

The "conditional sequences" guarding the evolution of system state are given by

Boolean expressions. The actions updating the system state to "coordinate" pro

cesses aredone by assignments. The I/Oactions to "exchange" data through chan

nels are succinctly abbreviated as ? and !. "Messages" passing over channels are

easily formatted by explicitly enumerating all fields in order. Moreover, the

sequential specification fits well the convention ofdesigning protocols by examin

ing intended scenarios. We will retum to PROMELA inthe next chapter.

2.2 CSP and FSM

One way tounderstand PROMELA isto look at its original computational

model, CSP. As its name suggests, CSP allows us to describe a concurrentsystem

by a group of sequential processes which take part in sequences ofevents. Those

processes operate independently and conununicate with one another over well-

defined channels. To justify the appropriateness ofspecifying protocols using CSP,

the rest of this section we will examine a simple polling protocol to highlight the

notation and semantics of CSP.



Figure 2.2 shows the CSP specification of a simple polling protocol. The

three defined processes are running concurrently and each executes sequentially.

Notation c?x:M stands for a guard which waits for a message x of type M from

channel c. If thatmessage hasnotarrived, this statement blocks theexecution flow

of the process. The symbol"[]" is followed by an alternative to the uppermost con

dition. Note these collateral conditions are not necessarily mutually exclusive.

Notation c!xdenotes sending a message x onto channel c. The symbol simply

means "then do".

Sender = (ch?y:{POLL}->dataln?x:msgOK
[]ch?y:{NACK})->ch!x->Sender

Requester = (ch!POLL->Receiver)
Receiver = (ch?x:msgOK->dataOut!x->Requester

Dch?y:msgOK'->ch!NACK->Receiver)

Figure 2.2 CSP specification of a simplepollingprotocol.

The protocol works in the way that the Requester first sends a POLLmes

sage to the Sender. After the Sender have seen the POLL message, it retrieves a

protocol dataunit (PDU) from the local dataln channel and sends the PDUto the

designated channel. Once the Receiver gets the PDUcorrectly, it delivers the data

to local dataOut channel and revisits Requester to send another POLL message. If

the Receiver receive a corrupted PDU, a NACK message will be sent and the

Sender will resend anothercopy of the PDU on receiving the NACK.

Though the CSP specification is organized and self-explanatory, it lacks

hierarchy. Suppose now the Sender has two superstates, running and suspended.

Everything works normally in the running stateand stops totally in the suspended

state. In addition, the transition between these two states can happen at any time

[23]. It would be cumbersome to add a Boolean condition (state=running) in front

of every single statement in Sender to implement the high-level behavior. This

shows a drawback of CSP for its inconvenience in specifying behaviors hierarchi

cally because basically all processes are flattened out [43].



CSP is not the only control-dominated computation model. FSM has long

been used to specify intricatecontrol sequences [16]. Some elaborated FSM such

as Statecharts [7] allows FSM to be hierarchically and concurrently combined. To

examine its expressive power, we redo the modeling by using hierarchical FSM

(HFSM) and show it in Figure 2.3. The resulting state diagram models the proto

col, but is not as clear as the textual representation in CSP.This impression comes

from two side-by-side observations. First, scattered guard/action pairs mess up

their relativity as compared with the aligned ones in textual form. Second, unim

portant states complicate the diagram as all states at the same level have to be

explicitly shown. Suchcomplexity is aggravated when the specification is further

elaborated. Thoughapplying more hierarchy helps to simplify the diagram at each

level, we lose the sequential continuity of logical statements.

Running

Suspended

/•<:h?y:{NACK}/ch!x ch?y:{POLL}/

Wait

Message

(x in msgOK)/

><xinmsgOK)/

Check

Data

/chlPOLL

Request

dataln?x/-
(x in msgOKV

dataOutlx I Check

Figure2.3 An HFSM representation of a simple polling protocol.

Fortunately, W.-T. Changet al. advocate a newfamily of modelsof compu

tation called *charts, which decouples the concurrency model from the hierarchi

cal FSM semantics [12]. Therefore, using *charts allows embedding a CSP model

in a hierarchical FSM to solve our dilemma of choosing CSP or FSM in represent

ing a protocol. Specifically, automata which implement the fundamental elements

of a protocol are specified in CSP to retain the logical clarity, butthey allunavoid

ably appear as the leaf cells of the hierarchy. HFSMs are then applied to group

10



those automata in consideration of their functionality, geographical location, inter

face encapsulation, or behavior at higher levels. Since we treat CSP modules as

automata, such a heterogeneous hierarchy is straightforward. Figure 2.4shows an

example ofembedding a CSP module inside FSM. Simply mapping each Boolean

expression and event waiting as a state plus a guard, assignment and event emis

sion as an action, and symbol Qas a new transition, we can always transform a

simple CSP module into an FSM. Figure 2.5 shows the resulting hierarchical dia

gram.

Suspended

Running

ch?x,y->
((x>y)->ch!x,y
n(x<=y)->ch!y,x)->Sorter

Figure2.4 Embedding a CSPspecification in an HFSM diagram.

Suspended Wait x,y

Running

ch?x,y/

(x>y)/ch!x,y

(x<=y)/chiy.x

Compare

Figure2.5 A direct transform of a simpleCSPspecification into an HFSM.

By usingthis embedding methodology. Figure2.6 givesour ultimate speci

ficationof the simple polling protocol with a succinct and intelligible diagram.
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Suspended

Running

Sender

(ch?y:{POLL)->dataln7x:msgOK
Dch?y:{NACK})->chlx->Sender

Requester

Receiver

ch7x:msgOK->dataOutlx->Requester
[lch7y:msgOK'->ch!NACK->Receiver

Figure 2.6 A hybrid representation of a simple polling protocol,

2.3 Discrete-event Model

The discrete-event model of computation is the most popularly adopted

semantics for modeling distributed or parallel systems in computer-aided simula

tions [5]. This fact results from the trade-off between our perception of nature and

the ability of computers. While conducting a simulation using digital computers,

computation is inevitably discrete. This limitation leads to the discreteness of state

evolution and that contradicts our recognition of temporal continuity. One compro

mised choice could be simulating the system with condensed source events. We

then obtain a discrete version of system state evolution, which is similar to a sam

pled version from the continuous one [38]. In order to sort those discrete events

chronically as well as to synchronize parallel subsystems, the DE model carries a

notion of global time to indicate the occurrence of events [26]. These time stamps

help to pinpoint system states on the timeaxis andform a discrete version [53]. As

long as the time span between each two consecutive events remain short, the dis

crete version gives a good approximationto the real world [39].

Since a protocol is a collection of rules guiding the interaction among dis

tributed and parallel processes, the DE concurrency model [20] also applies to the

simulation of protocols and theirunderlying communication infrastructures. How

ever, the semantic subtleties while combining DE, FSM and CSP have to be care

fully examined and defined before we can do so. For example, how should a

12



process interact with its counterpart when both the synchronization mechanisms of

DE and CSP are acting? How should a signal be converted while it is running

through the interface between DE andCSPmodels?

In order to embed CSP inside DE, we examine how a CSP module refines a

DE computation unit (actor). When a DE actor fires [19], which occurs when there

is an event at one of its inputs carrying the earliest time stamp, the CSP module

imitates the DE actor and responds to the environment. Several data associated

withthe event are usedto update the state of the CSPmodule:

1. The time stamp of the event is used to adjust the timers declared in theCSP
module.

2.The"present" indicator corresponding to the input port where theevent
arrives is set.

3. A valued event uses its accompanied value to update the intemal CSPvari
able designated to the input port.

4. A message event forwards the message to theintemal CSP channel desig
nated to the input port.

After updating, the CSP module examines its currently blocked condition

andexecutes statements as many as the encountering conditions are non-blocking.

The execution is regarded as an instantaneous action that takes zero time. Upon

reaching the first unexecutable statement, the CSP module outputs new events, if

any, and surrenders control to the DE environment to finish one iteration. Each of

these outputting new events could bea pure event, a value, or a message generated

by an assignment or sending command during the iteration. However, in DE, they

must be assigned a time stamp todenote their birth times. Recall ourassumption of

zero-delay execution, these events are assigned the same time stamp as the input

that triggered the reaction.

Consider the example shown in Figure 2.7. Suppose that an eventp with a

earliest timestamp t arrives at porta of process A, andboth process A andB are in

their initial states. The DE system reacts as follows:

13



1. Fire A: The waiting for event p is satisfied after forwarding the pure

event p from input port a to internal channel a. A then sends a pure event q to

channel c and that is immediately wrapped with time stamp t and put onto the out

put port c. After that A still tries to execute more statements, but there is no reset

event shown on channel b. This blocking forces A to surrender control to the DE

environment.

2. Fire B: B takes event q from channel d and sends out event r with time

stampt to channele. After that B returns to its initial state, i.e., waitingfor another

event q from channel d. Since there is no more event in channel d, the statement is

unexecutable and B hence surrenders the control.

DE

Figure 2.7 TwoCSP modules that refine DE actors.

DE

a?x:{p}->c!q->
ta=0->

(b?x:{reset}
Q(ta=:=5))->A

Figure2.8 Timed-CSP and untimed-CSP modules refine DE actors.
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Now, suppose that A has a timer ta which synchronized with the environ

ment to measure the time A has waited for the reset event. A timeout event hap

pens when ta reaches 5 time units and the reset event has not arrived atchannel b.

In this case, A resets itself anyway as having received the reset event. The new

specification ofprocess A is given in Figure 2.8. Note that we have to equip A a

pair offeedback ports fi and fo for self-triggering. Adetailed explanation ofimple

menting such timing features inCSP [41][55] isdiscussed in the next chapter.

2.4 A Hybrid Architecture

Summarizing the proposed structure of domains in above sections, we

depict an ultimate modeling architecture inFigure 2.9 using the same simple poll

ing protocol example. The DE model serves as the host environment where CSP

modules and hierarchical FSMs containing CSP leaf cells sit in. Three features

make this hybrid architecture a compelling model forprotocol modeling and simu

lation:

DE

Suspended

dauin

Running

Sender

{cWn7y;{P0a)->
dxtaln?x:msgOK
Dct)ln?y:(NACK))->
chOutb('>Sendw

chOut

req ch

n^ueitiir
raq?REOUEST»
cti!POU.->Raquester :

iRequettcf

chin cbOul

Receiver

ct)ln7xinsgOK->
dxtaOutlx->
reqiREQUEST

Oct)ln7y;ni8gOK'->
Gt)Ou«NACK->Rec8lvor j

req

Receiver dattOut

Figure2.9 Proposed hybrid architecture for modeling protocols.

First, specifying protocol elements in CSPmatches our intuitive perception

in distributed communication and parallel tasking. Its textual representation also

retains a clear and intelligible form in notation.

15



Second, hierarchical FSMs enable a modal execution of CSP modules.

Similar to the command "watch" in some synchronous languages [11], embedding

CSP in FSM allows activating and suspending CSP modules at any state. It also

helps to represent a protocol at different levels of abstraction.

Third,DE modelprovides a global systemtime whichfacilitates the adjust

ment of the timers in timed-CSP modules. It therefore proliferates the timing state

ments in timed-CSP that remarkably reduce the burden in specifying timing

behaviors.
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3

Software Implementation

In this chapter, we present the details of the software tool that realizes our

proposed hybrid architecture for protocol modeling and simulation. To leverage on

existing tools, we integrate SPIN, the interpreter of PROMELA, into Ptolemy, a

framework providing many domains including FSM and DE. The integration faces

many challenges such as coordination of two simulation kernels, event conversion

and forwarding, implementation of timed-CSP statements, and scheduling of CSP

and DE.

We give a briefoverview ofPtolemy in Section 3.1 and point outa possible

niche in its structure to accommodate an extemal tool. Then we explain the simula

tion kemel of SPIN and discuss the extension of its input language PROMELA to

include temporal expression in Section 3.2. Section 3.3 describes the implementa

tion considerations while embedding SPIN in Ptolemy. Finally, we introduce our

tool SiP (SPIN in Ptolemy) in Section 3.4.

3.1 An Overview of Ptolemy

Ptolemy is a modeling and simulation framework for heterogeneous sys

tems. It covers many aspects of designing signal processing and communication

systems, ranging from algorithms, system modeling, simulation, through parallel

computing, software/hardware synthesis, andreal-time applications. The non-dog

matic kemel of Ptolemy allows users to freely choose a best matched domain to

specify each of the subsystems from many built-in domains including synchro-
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nous/Boolean/dynamic dataflow, discrete-event, process network, etc. Ptolemy

also functions as a coordination framework that deals with the scheduling of simu

lation across all mixing domains.

The basic computation unit of modularity in Ptolemy is the Block. A sys

tem modeled by Ptolemy can thus be viewed as an interconnected block diagram.

Blocks communicate one another by propagating streams of messages/data

through links amongthem. Derived fromBlock, a Star is the lowest level objectin

Ptolemywhichcontainsa moduleof code that is invoked at run-time. Also derived

fromBlock, a Galaxy may hierarchically containboth Galaxiesand Stars to form a

computation unit at a higher level. As expected. Universe is the name of the object

that contains a complete system.

Every Star in Ptolemy contains a "goQ" method which will be executed

every time the Star is triggered. Typical scenario of the "go()" method is first

examining Particles present at the inputports of the Star, getting Particles and per

forming computation, and then generating new Particles on the output ports. We

found the "goQ" method is actually a greatnicheto storethe code for communicat

ing with an external tool. Such a bridging "go()" method contains 3 parts in our

design:

1.Get data from inputports andconvert theminto the format usedby the exter
nal tool.

2. Call an external procedure to perform an iteration of computation.
3. Wrap up the computation results and put them on output ports.

This is our main idea of the agent star described in Section 3.3. By wrap

ping up a SPIN process to imitate a Star, we enable Ptolemy kernel to execute

extemal computation withoutmodifying the kernel..

3.2 SPIN and PROMELA

SPIN is a tool allows simulating and validating distributed modules of

concurrent systems. Actually, it was originally designed to perform simulation and
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verification ofcommunication protocols. Inthis report, we only focus onitsability

of simulation andtry to modify andintegrate it intoPtolemy.

The input language to SPIN is called PROMELA, which is a description

language for extended FSMs. Its syntax loosely bases on Dijkstra's guarded com

mand language notation and C.A.R. Hoare's language CSP [30]. PROMELA sup

ports only three types ofobjects: processes, variables, and channels. Processes are

like C functions in design, and like UNIX processes in behavior. The body of a

process isasequence ofCSP-like statements that specify the behavior ofa distrib

uted entity. Variables can beglobal orlocal, and can begiven values byassignment

or receiving statements within proper scopes. Supported types are Boolean, bit,

byte, integer, and user-defined structures. Channels are essentially queues that

shared among processes. A channel is declared to pass a certain type of message,

and is given a fixed finite length.

One obvious shortage of PROMELA, similar to most reactive model

description language, is the lacking of temporal statements. However, the correct

functioning ofa distributed real-time system depends on the timely coordination of

its interacting components [22]. The protocol elements thus inevitably have to

react according to those timing requirements. In Section 3.2.1 we propose several

temporal statements andtheir reacting semantics.

3.2.1 Extending PROMELA's Expressiveness

The original PROMELA grammar has neither timer data type nor timing

commands. The SPIN simulation kernel regards the execution time of each atomic

PROMELA statement, a singlecommand or an atomic block of commands, as one

iteration. Therefore, every time span between two consecutive atomic statements is

considered as a universally equal and indivisible duration. This assumption looks

awkward while coupling SPIN and DE domain because DE model requires each

operation having been assigned anexecution duration. Forregular DEcomputation

units, the duration could be either constant or variable, and is assigned as the total
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consuming time of the executed commands in one iteration. This is acceptable if

the operation is similar in each iteration such as parity bit checking or extracting

header froma packet. However, during each iteration a protocol module couldexe

cutea very different setof commands andhence a fluctuating execution time. One

usual way to work around it is to define theduration of each executed atomic state

ment as one time unit. But, this assumption seems too coarse since it may regard a

long arithmetic computation and a simple register shifting taking same operation

time.

We adopt a more flexible approach to specify the execution time of

PROMELA code. A Programmer could place a d%\2iy{duration) command after

each atomic statement whose execution time is not negligible and assume those

ahead it are zero-delay. Forexample, suppose during some state a protocol module

needs to perform two register shifting and one shortest path searching, we could

place delay(10) after that searching procedure toindicate the aggregate duration of

these three statements is 10 time units. Besides, the delay() command can also be

used to assure the correcmess of received data if signal settle time and bus skew

time are taken into consideration while modeling a bus I/O protocol.

Another temporal event in protocol specification is time-out. A typical case

is to start a timer after sending a packet and retransmit the packet if an acknowl

edgment has not been received after a predefined duration. To specify this timing

mechanism in PROMELA, we need to create the timer data type. A timer can be

reset to any starting time at any place of codes by assigning a value. Progranmiers

are allowed to use as many timers as necessary and have them running simulta

neously. The expire(rfmer, target-time) command is used to check if a specific

timer has expired as well as to register a likely time-out event in the future. Note

the registered time-out event is not deterministic to happen since other events

could abort the waiting state or a timer reset command could change the target-

time.
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Routine state checking is also useful while specifying a protocol. A proto

col module may enter an idle state for a long time and be unaware of something

going wrong. In this case, programmers could use a timer and set a target-time to

inspect states again. Or, implicitly, using command T^txan{duration) will register a

promissory retum time to invoke the module again.

To enhance PROMELA with these temporal features, we have to modify

the parsing rules ofPROMELA and give corresponding execution codes inSPIN.

Our current implementation already includes all the features mentioned above. In

addition, we allow timers to be mixed withor assigned by otherarithmetic expres

sion. This requirement comes from that fact that timing is usually a parameter to

other functions and target-times areoften calculated by some formulas. Moreover,

It is also permitted to apply timers to comparison operations such as >, <, =, etc.

This facilitate programmers verifying the timing at any moment before the timer

has reached its target-time.

3.2.2 The Simulation kernel of SPIN

The simulation kemel of SPIN is implemented as an interpreter of

PROMELA. It relies on yacc to build a parse tree before the simulation can be

started. Also, many symbol tables will beestablished to facilitate the evaluation of

variables, operation ofqueues, and control ofprogram flow at run-time. Figure 3.1

gives a high-level view of the parse tree where two processes and their variables

and statements are shown.

The scheduler of SPIN randomly picks one sequential statement from one

of all non-blocking processes andcalls theevaluator to execute thatstatement. The

evaluator then updates variables if the statement contains assignments, or decides

next statement to be executed if the statement is a control flow command. Assume

the initial value of PC (next process to choose) in Figure3.1 points to process A,

and the internal PC of A and B point to statement P and Z respectively. Possible
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execution scenarios are PZQR, PQZR, and PQRZ if the control flows in A and B

remain sequential and the execution blocked after R or Z.

PC

c

variable list

,, PCb
statement list

process
variable list

statement list

Figure 3.1 The parse tree of processes built by SPIN simulationkernel.

Most of our modification is made to the scheduler and evaluator of the

SPIN simulation kernel. We disabled the nodeterministic scheduler of SPIN and let

the Rolemy DE scheduler take over the scheduling. We also rewrote the core sub

routines of the evaluator so that timing statements, floating-point operations, and

external C function calls could be understood by SPIN.

3.3 Integrating SPIN Into Ptolemy

The way we integrate SPIN into Ptolemy is to have both their simulator

kernel running at the same time. This approach requires an interface to interchange

data, events, timings and other more subtle information such as pointers of func

tions between SPIN and Ptolemy. Our idea is to create an agent star for each proto

col module written in PROMELA. An agent star is regarded as a regular DE star

by Ptolemy and is in charge of passing all information back and forth between

SPIN and Ptolemy such as propagatingdata through the input and outputchannels,

so-called ports, of a star and a protocol module.

To choose a suitable class from DE stars, we at first enumerate the features

of a PROMELA protocol module, so-called process, and selectthe starclass which

quitedescribes those attributes. A process has I/O channels, parameterizable states

and it is able to re-invoke itself after a specific duration. In addition, it always con-
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sumes all simultaneous incoming events beforereacts to the environment likeout-

putting data oremitting new events. Also, it ispossible that many processes trigger

one another simultaneously without a deterministic order. We soon found the

DERepeatStar classwith Phase mode and Delay typefits these requirements very

well. Therefore, we let all agent starsbe derived from the DERepeatStar classand

tuned to Phase mode and Delay type immediately after construction.

3.3.1 Communication Ports

In order to bind ports and states, we need to understand the data structure

of local variables of a process in SPIN. They could be single-space variables,

arrays, FIFO (first-in-first-out) queues, or arrays of FIFO queues and they are all

allowed to be ports or states. To improve execution efficiency, we create a pointer

for each port and state variables and make the links at the first visit to the agent

star. Also, at first visit, state variables are assigned the values which were parame-

terizable fromPtolemy environment as their initialization. After then,data arriving

star ports are written to the data structure of SPIN through their corresponding

pointers.

The FIFO queuesare accessed by using queue functions providedby SPIN.

Specifically, an agent star repeatedly gets a data unit, so-called particle, from an

input port and forwards it to the corresponding FIFO queue in SPIN. In the other

hand, if a port variable has been updatedduring an iteration, its updatedvalue will

be emitted to the output port of the agent star with an appropriatetime stamp. Sim

ilar actions apply to the FIFO queues if there are some data having been inserted

into the queue during an iteration. Figure 3.2 illustrates how a SPIN process is

bound with a Ptolemy star and Figure 3.3 shows the forwarding paths between

them.

A process not only cares the value of an incoming data, but also needs to

know if there are new events, i.e. new data, arriving a specific port. We introduce

conunand present(porr) to test if a new particle has arrived at the given port and
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turnofr(pt7rr) to turn off that indication. The command Sidadi(port) is used as

shorthand of testing and turning off immediately. An input port is also allowed

assigning the sustainment of present indication. The attributive keyword persist

indicates the present indication is persistent until it has been turned off explicitly.

Without declaring persist, an input port is considered volatile which retains the

indication onlyat the arrival timeof a particle. As time proceeding, it will be deac

tivated automatically.

Star A

parameter

vanable list

process

Figure 3.2 Extrapointers areused to bindtheI/Oprots ofPtolemy with the
correspondingvariables in SPIN.

Process G()

PROMELA

Ptolemy

Figure 3.3 Particles areforwarded between Ptolemy andSPIN.
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3.3.2 Discrete-event Agent Star

Recall that an agent star only bridges ports between SPIN and Ptolemy,

itself does not perform any operation specified in the protocol module it serves.

For any incoming event, the agent star first forwards the particle, indicates signal

present, and then calls aPROMELA interpretation procedure in SPIN to take over

execution. Given the process identification number passed by the agent star, SPIN

locates the desired process and reloads its program counter to resume interpreta

tion. As we defined in last section, all consecutivelyexecutable PROMELAstate

ments without a A'̂ sc^iduration) command beneath are considered zero-delay.

Therefore, SPIN always processes PROMELA codes continuously until an unexe-

cutable statement is reached and then it returns control to Ptolemy. However, this

does notimply thatstatement is forever unexecutable because other processes may

change the situation. If it does never get through, it is most likely anincorrect pro

tocol design which leads the system entering a deadlock or an abnormal termina

tion.

There are four cases of unexecutability. First, a dx\2Ly{duration) command

is always unexecutable because it will not be satisfied until global time has pro

ceeded by that duration. Second, an expire(rimer, target-time) command will not

be executable until the timer reaches its target-time. The third situation is the most

usual one, a logical false condition. For example, an expression ACK--1 is

regarded asan unexecutable statement HACK is not equal to 1at that moment. The

event present test command present(port) is considered as a logical expression as

well as all Boolean-typed functions. The lastcase is executing a ntum(duration)

command. This is obvious as the function of return() is just to register a future

visitbefore it yieldscurrentcontrol to Ptolemy simulation kernel.

3.3.3 Firing Mechanism

So far we have solved the semantics and implementation details related to

port binding and execution control transferring. However, they are not the main

reason we choose the DERepeatStarclass as the base class of agent stars. The spe-
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cialty of a DERepeatStar is that it is equipped a pair of feedback I/O ports by

default. By placing a particle with an appropriate time stamp onto its feedback out

put port, a DERepeatStar is able to re-invoke, so-called refire, itself at any future

time. This is because that particle will follow the feedback link back to the star's

feedback input port and become a triggering event when the global time reaches

the moment as the time stamp of the particle. Therefore, for the cases that SPIN

yields control caused by timing commands such as delay(), expire() and return(

), the agent star is able to schedule itself a future retiring by using feedback ports.

As for the logical unexecutability, the agent needs not schedule any retiring since

that will eventuallybe solvedby some input events sending from other processes if

the protocol was correctly designed [50].

The retiring time is assigned the earliest expected epoch when the unexe-

cutable statement may become executable. As a result, it is true that we can not

estimate the time when a logical unexecutability would be solved, and hence we do

not schedule a retiring for it. Nevertheless, we are able to schedule the retirings for

timing conditions. For example, a delay(dMrar/on) command definitely suspends

the process for duration time units. The retiring time stamp is simply current glo

bal time + duration. This also applies to the command Tt\XLTn{duration). Their

semantic difference is that delay() absolutely stops the evolution of process during

suspended time while return() allows other triggering to awake the process prior

guaranteed reentry. Command expire(ftmer, target-time) leads to schedule a retir

ing at currentglobal time + target-time - currentvalueof timer. Note this schedul

ing will keep updating as timer and target-time may vary before timeout. Briefly,

the principle of timing retiring is to invoke the process exactly at the time it

becomes executable. Otherwise, the evolution of that process is delayed and thus

the simulation violates the definition of concurrency. Such being this case, the

modeling of currentprocesses is distorted and the simulation result is incorrect.

In addition to regular event firing and timing retiring, the broadcasting

eventfiring alsoawakes agentstars. It is oftenusedin specifying protocol modules
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communicating through shared media such as a topology with a shared bus and

radio broadcasting via atmosphere. Since construction, every agent star isendued a

state parameter medium which could be freely designated. During simulation, any

agent star could listen and/or broadcast events to all other members on the same

medium, and have them be invoked to check if any further state transition is possi

ble. We propose two ways to specify the medium an agent star belongs to: explicit
assignment and implicit scope. The former method categories agent stars into dif

ferent medium groups according tothe given medium names throughout hierarchy.

The implicit scope method defines medium groups by the hierarchical levels ofthe

protocol structure. Based on the Ptolemy design paradigm, the level of a star is

uniquely determined by its parent compositional blocks, so-called galaxies. Spe

cifically, the compositional architecture decides the scopes ofmedia.

3.4 The Tool, SiP

Si? (SPIN in Ptolemy) is a preliminary software implementation of the

protocol modeling and simulation methodology proposed inthis report. Its experi

mental prototype is announced in SRC Annual Review, Austin, March 1998. The

first version SiP1.0, as a patch package supplemented with Ptolemy, was released

on June 29.SiP1.1, supporting C++ function calls in PROMELA, was released on

August 1.And SiP1.2, which allows floating-point operations in PROMELA, was

released onSeptember 10. All packages and their installation instructions could be

downloaded from the URL of http://ptolemy.eecs.berkeley.edu/dgm/protocol/.

SiP contains four major components:

1.A Ptolemy language codegenerator foragent stars, calledppl2pl.
2. Add-on Ptolemy source codes supporting agent stars.

3. A Ptolemy-supported SPIN package.
4. A protocol element library.

A typical scenario of protocol modeling and simulation using SiP is

described as follows.
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1. Specify each newly defined protocol module by PROMELA (enhanced with
new features).

2. Use ppl2pl to generate the Ptolemy language codes of the agent star for each
new protocol module.

3. Make the agent stars of new protocol modules under Ptolemy environment.
After doing this, a reusable icon for each new protocol module is created as
the modules in build-in library.

4. Specify the architecture of protocols and the connections between protocol
modules and system elements. Protocol modules can be grouped to form
more abstract compositional blocks as galaxies in Ptolemy.

5. Perform system-level simulation to verify the functionalities of the testing
protocols.

1

protocol
module

library

jiraOMELAcode
: yirgesenUlon

P^tjq[)edfication

i^lRtateny mm

Figure 3.4 Four phases of SiP's running cycle.

Figure 3.4 gives a closer view of the mnning cycle of SiP, which can be cat

egorized into four phases. Phase 1 is the Specification Phase indicating the editing

of protocol modules as well as system construction. After received a simulation

request, SiP enters Phase 2 to generateand preprocess PROMELA codes of all the

protocol modules on the system schematic. Once completing PROMELA code

generation, in Phase 3 SiP firsthas the SPINparser to constructthe parsingtree for

each module, and then it binds all interfaces between each pair of agent star and

PROMELA process. Figure 3.5 gives the detailed view of a pair of PROMELA

process and its corresponding parse tree in SPIN at this point. Next, SiP starts

Phase 4, the Ptolemy-SPIN Co-simulation Phase, to perform system-level simula-
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tion. Finally, the result of simulation feedbacks toPhase 1to help the designer val

idate the functionalities of protocols and evaluate thesystem-level performance.

Star name

—

proctype A()
{inport inl u;

outport bit v;
const int s;
bit t;

P; Q; R;
}

Stcu- parameter

process entry pointer

siatemen

variable list

PROMELA code
generation Parse tree

construction

Invoke SPIN 1 SPIN
pd»ROMEaAcoife5.'

Figure3.5 The side-by-side comparison of a PROMELA processand its
corresponding parse tree built by SPIN,
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4

Elements of Network Protocols

To justify the effectiveness of our tool, in this chapter we examine and

specify several network protocols using SiP. Although the following cases are fun

damental building elements of protocols, they become reusable modules afterrep

resented in SiP. Leveraging on the cumulative designs of new modules, one can

always construct more sophisticated protocol elements byexploiting thehierarchy

capability of the tool.

4.1 Connections

Data communication services in a network can be categorized into two

types, connectionless and connection-oriented. Typical examples are the Public-

Switched Telephone Network (PSTN) and the Internet Protocol (IP) switching net

work respectively. A connectionless service allows a node sending datapackets to

another node without having obtained a permission from it previously, while a

connection-oriented service needs a connection setup phase to guarantee the qual

ity of service (QoS) [28].

Specifically, ina connectionless communication, the switching process PA

can transfer a packet to its counterpart process PB at another switch each time the

packet is ready tobesent out. Both of the two switches have no information about

whether if the conducting packet is belonged to a certain data stream. Also, they

have no knowledge of the traffic of the subsequent packet flow. Consequently, PB

may startdiscarding packets when it runsoutof buffers.
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Unlike the connectionless communication, a connection-oriented service

requires PA to establish a connection to PB by a setup procedure before it sends

first data packet to PB. The established connection can later be disconnected by a

disconnection procedure similar to the connection procedure. We call the rules of

the procedures to establish and disconnect a connection as a connection protocol

[14].

Briefly, to establish a connection, PA first sends a connection request

(CON_REQ) to PB and waits for its response. After received the request, PB

checks the availability of its resource and replies PA with a positive acknowledg

ment (CON_ACK) or a negative rejection (CON_RBJ). Once the connection has

beenestablished, data packets can be transferred continuously from PAto PB. To

disconnect the connection, the disconnection request (DIS_RBQ) can be issued by

either PA or PB. And, to confirm that request, the one received DIS_REQ replies

CON_REJ as a confirmation.

We first use SiP to model the connection requesting side, i.e. PA, as fol

lows.

#define IN_BUFF 32

#deflne OUT_BUFF 32

#define DATA.BUFF 256

mtype = {CON.REQ, CON.ACK, CON.REJ, DATA, DIS.REQ, IDLE, SETUP,
CONNECTED, TEARDOWN}

proctype PA()

{
Inport chan pktin = [IN_BUFF] of {Int};
Inport chan dataBuf = [DATA_BUFF] of {int};
outport chan pktOut = [OUT_BUFF]of {Int};
const Int SETUP_TIMEOUT=64;

const Int DATA_TIME0UT=5;

Int tempPkt;
Int state=IDLE;

timer t1;

do

::(state=IDLE)->
if
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::(len(dataBuf)>0)->pktOut!CON_REQ; state=SETUP; t1=0;
::(len(pktln)>0)->pktln?tempPkt;
::else->return(0);

fi;
::(state=SETUP)->

if

::pktln?CON_ACK->state=CONNECTED; t1=0;
::pktln?CON_REJ->state=IDLE;

::(len(pktln)==0)->
if

::expire(t1,SETUP_TIME0UT)->state=IDLE;

::else->return(0);

fi;

fi;
::(state=CONNECTED)->

if

::pktln?CON_REJ->state=IDLE;
::(len(dataBuf)>0)->dataBuf?tempPkt; pktOutlDATA; pktOutltempPkt; t1=0;
::(len(dataBuf)=0)->

if

::expire(t1 ,DATA_TIMEOUT)->pklOut!DIS_REQ; state=TEARDOWN;
::else->return(0);

fi;

fi;
::(state=TEARDOWN)->pktln?CON_REJ->state=IDLE;

od;

}

Figure 4.1 Si? specification of the connectionprocess at requestingside.

Process PA uses a pair of I/O ports, pktin and pktOut, to communicate

with process PB. It also provides a service access point (SAP), datain, for the

entity it served, A, to input data packets. In above specification, we adopt a timer

tl to simplify the interface between PA and A insteadof having one explicit con

trol port and one status feedback port. The former method lets timeout event ini

tiate a disconnection request automatically while the later method requires an

explicit external controlling signal.

Process PA has four states, IDLE, SETUP, CONNECTED, and TEAR-

DOWN. Initially, the state is set to IDLE. Once PAgets the first data packet from

A, it enters the SETUP state and starts to establish a connection with PB by send-
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ing CON_REQ toit. At the same time, a timer is started toprevent PA from wait

ing for PB's reply forever. If PA does receive a correct reply, it will be either

CON.ACK or CON_REJ and that decide the next state of PA tobeCONNECTED

and IDLE respectively. Or, the reply is lost and tl expires. In this case, PA sends

CON_REQ again and reset tl to startanother trial of connection.

When a connection has been established, PA sequentially forwards data

packets from A to PB. If there is no more data packet in dataln for

DATA_TIMEOUT timeunits,we assume this is thecase thatA has already sentall

data anda disconnection request DIS_REQ should be sent immediately. Bydoing

that, PA enters the TEARDOWN stateand wait for CON_REJ from PB to confirm

the disconnection. In fact, a CON_REJ from PB at any moment will force PAback

to the IDLE state.

Compared with PA, PB is simpler in theconnection protocol as it only has

two states, IDLE and CONNECTED. Its SiP specification is listed below.

#define IN.BUFF 32

#deflne OUT_BUFF 32

#define DATA.BUFF 256

proctype PB()

{
inport Chan pktln = [IN_BUFF] of {Int};
outport Chan pktOut = [OUT_BUFF] of {in!};
outport Chan dataBuf = [DATA_BUFF] of {int};
Int tempPkt;
int state=IDLE;

do

::(state=IDLE)->plctln?CON_REQ->
if

::(len(dataBuO<DATA_BUFF/2)->pktOut!CON_ACK;state=CONNECTED;
::else->pktOut!CON_REJ;

fi;
::(state=CONNECTED)->

if

::pktln?DIS_REQ->plctOut!CON_REJ;state=iDLE;
::pktln?DATA->pktln?tempPkt->

if

::(len(dataBuf)<DATA_BUFF)->dataBufltempPkt;
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::else->pictOut!CON_REJ; state=IDLE;

fi;

fi;

od;

}

Figure4.2 SiP speciiication of theconnection processat receiving side.

Initially set to the IDLE state, PB acknowledges the connection request

from PA only when at least half of its local buffer is empty. Otherwise, it replies

with CON_REJ to reject the connection. Once the connection has been estab

lished, PB is in CONNECTED state and it forwards every incoming packet to its

local buffer. If the incoming rate is much higher than the processing rate and thus

the local buffer is exhausted, PB will send PA a disconnection notification,

CON_REJ, and interrupt connection inunediately. After that, PB returns to the

IDLE state.

Although we now have built the two communicating modules of the con

nection protocol, it only models a simplex connection. Specifically, these two

modules only allow establishing a connection from PA side to PB sidebut not the

other direction. However, as explained in Chapter 2, more complicated protocols

can always be constructed if we have taken the reusability into account. Forexam

ple, the middle part of Figure 4.3 shows a design of half-duplex protocol where

each side consists of both PA and PB blocks. Since a half-duplex protocol at most

allows one connection from one side to the other, each side needs an extra control

input to switch between transmitting and receiving modes. The switching control

here is similar to the "push-to-talk" button on a talk radio whose position decides

the radio to send out or receive from a channel. As shown in the figure, we imple

mented this mechanism by using a relay and a multiplexer to direct and merge

packet streams. For each side, PA block is activated and PB is shut offwhen the

control is on andinversely when it is off.A galaxy iconrepresenting the schematic

is shown onthe right. It canbe reused to build even higher layer schematics such

as an N-port half-duplex module.

34



Simplex Connection

☆
E&.

☆
ES-

Half-duplex Connection

☆

Full-duplex Connection

☆
SL.

t

__|||g^^ IPBWfaoto

Figure4.3 Construct duplex connection protocols usingsimplex blocks.

A full-duplex connection protocol can be similarly constructed as shown in

thebottomof Figure 4.3. Note that in this casewe do not have an extracontrol line

because now PA and PB blocks are allowed to interact with their counterparts

simultaneously. That is, data packets now can propagate in both directions by

establishing a two-way connection.

4.2 Error Detection and Recovery

In last section, we assume the channel between two distant processes PA

andPB is perfect. That is, through that channel packets can always arrive the other

sidecorrectly. The real world, however, is not such perfect. Threedifferent typesof
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errors could happen during the delivery: corruption, loss, and out-of-order arrival

[27]. The sender or receiver hence has to detect whether some error happened dur

ing the transmission, and then either correct it or initiate a retransmission proce

dure.

Due to electrical interference or thermal noise, bits may be altered at any

point of the medium thorough the connection. To recover the corrupted bits, the

errorcontrol codeaccompanied with theerroneous packet needs tocontain enough

information for the correction. The price of this recovery ability is that more bits

are required for the error control code and thus less efficient in conveying data

[27]. The bit error rate (BER) of themedium andend-to-end latency are two major

considerations while making the trade-off between recovery ability and dataeffi

ciency. Intuitively, low BER requires less protection bits and small latency afford

multiple trials of transmission so that simpler protection techniques are preferred.

Today's wired networks, especially the optical links, suffer from very low

BER and moderate latency. Instead of trying to recover corrupted bits, niore effi

cient technique such ascyclic redundancy check (CRC) is widely used in thedata-

link layer to detect bit corruption. For example, an Ethernet frame carries up to

1,500 bytes of data requiring only a 4-byte CRC code. Besides, BISYNC byIBM,

DDCMP byDEC, IMP-IMP used in ARPANET, HDLC, FDDI and ATM alladopt

the CRC algorithm [2]. However, this protection code is only for detecting the

occurrence ofbit corruption butnot able forrecovery. Once a receiver detects a bit

error, it immediately discards the frame and executes a predefined routine to

inform the sender that a retransmission of that frame is required.

The elaboration of detection techniques is more like refining an algorithm

rather than a protocol design issue. Alternatives such as two-dimension parity and

Internet checksum algorithms also try to correlate data bits with much shorter

redundant bits. These techniques manipulate the data packets themselves but do

not involve in the interaction of distributed processes, which is the core issue of

specifying protocols. In fact, while designing a reliable communication protocol,
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we often assume that an error detection technique has been chosen and concentrate

on working out the routines to recover errors. Specifically, we enumerate possible

scenarios of errors, and then define corresponding recovery rules to resend cor

ruptedand lost packets and reorderout-of-order packets.

Recall the PA andPB processes in last section, the issuenow is to have the

packets sent by PA be delivered at PB without corruption, loss or reorder. The

usual approach of error recovery is having PB reply PA an acknowledgement

packet in response to thereceived datapackets sent by PA. Then PA examines the

received acknowledgements to perceive whichpacketshas lost or discarded by PB

due to corruption. After that PA can either resend those missing packets or on a

batch basis depending on the consideration of complexity and efficiency.

Three features are generally shared in the error recovery protocols. First,

each data packet sent by PAincludesa sequence number field. Thereforeby exam

ining the numbers, PB is able to reorder those out-of-order packets. Second, data

packets received by PB is acknowledged by replying PA an acknowledgement

packet. This response couldbe takenwith respectto each individual data packetor

a block of them. Third, a number is predefinedto limit the maximal amount of data

packets PA can send without receiving acknowledgement regarding any of them.

This upperboundis usuallycalled window size.Error recovery protocols with this

feature are hence named sliding-window protocols.

A typical sliding-window protocol works as follows. At sender's side, PA

continuously sends data packets containing increasing sequence numbers to PB as

long as allowed by the window size. Whenever PA receives acknowledgement, the

window is moved ahead of all acknowledged data packets. If the earliest sent

packet within the window has not been acknowledged for a predefined timeout

duration, PA resends that packet using its original sequence number. At receiver's

side, PB replies all correct packets and discards corrupted ones. For those correctly

received packets, PB only stores the unacknowledged ones because it recognizes

that the rest in fact have already been saved but whose past acknowledgements
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were lost. Besides,PB uses sequence numbers to store out-of-order packets in cor

rect order.

A practicalspecification of the sliding-window protocol using Si? is shown

below.

#define IN_BUFF 32

#deflne OUT.BUFF 32

#define DATA_BUFF 256

#define SWINSIZE 17

utility{

enCRC; deCRC; Max;

}

proctype PA()

{
inport Chan pktln = [IN_BUFF] of {int};
outport Chan pktOut = [OUT_BUFF] of {int};
inport ChandataBuf = [DATA_BUFF] of {int};
const int PKT_TIMEOUT=10;

int lar=-1, ips=-1, dataBkup[SWINSIZEl;
int tempPkl, tempSN, tempCRC;
timer tmfSWINSiZE];

do

::((lar+SWINSIZE > Ips) && (len{dataBuf)>0))->
dataBuf?tempPkt; lps++; pktOutltempPkt; pktOutllps; pktOutlenCRC(tempPkt, Ips);
dataBkup[lps%SWINSIZE]=tempPkt; tm[lps%SWINSIZE]=0;

:;((lps> lar)&& expire(tm[(lar+1)%SWINSIZE], PKT_TIMEOUT))->
pktOut!dataBkup[(lar+1 )%SWINSIZE]; pktOutllar;
pktOut!enCRC(dataBkupI(lar+1 )%SWINSIZE], lar+1);
tm[(lar+1)%SWINSIZE]=0;

::(len(pktln)>0)->pktln?tempPkt; pktln?tempSN; pktln?tempCRC;
if

::deCRC(ACK,tempSN,tempCRC)->lar=Max(lar,tempSN);
::else->skip;

fi;
od;

}
#define RWINSIZE 17

#defineACK255

proctype PB()

{
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inport Chan pktln = [IN_BUFF] of {int};
outport Chan pktOut= [OUT_BUFF] of{int};
outport Chan dataBuf = [DATA_BUFF] of {int};
boo! needAck=0, rcvlnd[RWINSIZEl;
int npe=0. dataBkup[RWINSIZE], i;
int tempPkt, tempSN, tempCRC;
i=0;

do

::(i<RWINSIZE)->rcvlnd[i]=0; i++;
::else->break;

od;

loop:

pktln?tempPkt; pktln?tempSN; pktln?tempCRC;
If

::deCRC(tempPkt,tempSN,tempCRC)->

if

::(tempSN < npe)->needAck=1;
::((npe<=tempSN) && (tempSN < npe+RWINSIZE))->

rcvindItempSN%RWINSIZE]=1; dataBkup[tempSN%RWINSIZE]=tempPkt;
do

::rcvlnd[npe%RWiNSIZEl->dataBufldataBkup[npe%RWINSIZE];
rcvlnd[npe%RWINSIZE]=0; needAck=1; npe++;

::else->break;

od;

::else->skip;

fi;
if

::needAck->pktOutlACK; pktOutlnpe-1; pktOut!enCRC(ACK, npe-1); needAck=0;
::eise->skip;

fi;
::else->skip;

fi;
goto loop;

}

Figure 4.4 SiPspecification ofa sliding-window protocol (PA fortransmitting
side; PB for receiving side)..

Variables, constants and auxiliary procedures used in these two processes

are defined as follows:

far: last acknowledgement received
Ips: last packet sent
npe: next packet expected
SWINSIZE: sending window size
RWINSIZE: receiving window size
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enCRC: encode CRC

deCRC: decode CRC

PA has three major states, sending a packet, acknowledgement timeout,

and receiving an acknowledgement packet. The prerequisite to send a packet is that

Ips has to be still within the sending window size and there must exist pending

packets to besent. After sending a packet, PA resets andstarts a timer to keep track

of the time it has been waitingfor that packet. If the timer of the oldestunacknowl

edged packet, which was sent PKT_TIMEOUT time units ago, expires, PA sends

that packet again andresets the timer. After receiving an acknowledgement packet,

PA first verifies its correctness by using CRC checking, and moves the sending

window ahead of the acknowledgedpacket index if the verificationis positive.

PB will be triggered only when a data packet arrives. After verifying its

correctness,PB takes actions with respect to the sequence number of the packet. If

the number is smaller than npe, PB recognizes that one earlier copy of this packet

has been successfully received but all of its acknowledgements have been lost. PB

then sends another acknowledgement for this packet again. If the number is equal

to or greater than npe and less than npe+RWINSIZE, the packet is said to be

within the receiving window. The data bytes contained in the packet will then be

stored but notyet delivered because they could be out-of-order packets. After that,

PB examines the receiving indications starting from npe and delivers the corre

sponding data bytes sequentially until the first negative indication is reached.

Finally, an acknowledgement is sent to acknowledge all packets prior the next

expected packet. The last case of a correctly received packet is that the packet has

a sequence number larger than theupper bound of receiving window. In that case,

PB has to discard the packet because it doesnot have spare buffer to store thedata

bytes of the packet. As forcorrupted packets, PB simply discards allof them.

4.3 Flow Control

At the end of last section, we mention that the receiving process PB has to

discard packets due to running of outbuffer, even though those packets have been
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correctly received. To avoid wasting transmission bandwidth like this, the sending

process PA should control the flow ofits outgoing packet stream so that itwill not

overwhelm PB's handling capability. However, on the other hand, PA should also

try tosend PB as many packets as possible for maximizing efficiency. The require

ment of such trade-off leads to the development of various flow control schemes

[48].

The sliding-window protocol discussed above in fact has a very primitive

design of flow control. Its sending window size, SWINSIZE, prevent PA sending

further packets if the number of imacknowledged packets already reaches the size.

This blocking remains until PA receives an acknowledgement for some packet

within the sending window.

There are three defects of the sliding-window protocol in terms of control

ling the packet flow. First, large SWINSIZE makes the control ineffective due to

the rare blocking on PA side. This happens when the round-trip time (RTT) of PA-

>PB->PA is long andwe try to "fill the pipe" to achieve higher efficiency. Second,

fixed SWINSIZE disables PA from adapting the sending window size to reflect

current situation of PB. Intuitively, one wouldlike to shrink SWINSIZE whenPB

is very busy andenlarge it whenPB is closeto idle. Third, in sliding-window pro

tocol, an acknowledgement bundles both the information of confirming reception

and allowing further sending, which makes PA less perceivable to the actual status

of PB. For example, PB may want to acknowledge some packets but still keep PA

blocked because it is currently too busy to acceptany new packets. The bundling,

however, is unable to differentiate this situation.

For the rest of this section, we will discuss a modified version of the slid

ing-window protocol that allows PA to change SWINSIZE depending on the fre

quency of discarding packets [14]. In the modified protocol, the constant

SWINSIZE is replaced with a variable swinsize whose value ranges from

MINSWS to MAXSWS. Depending on the occurrence of packetdiscard, swinsize

has the flexibility to be adjusted within that range and which actually tunes the
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tightness of sending window. Specifically, wheneveran acknowledgement timeout

happens and PAresends the corresponding packet,swinsize is reducedby a factor

of 2 if the new value is not less than MD4SWIN. On the other hand, every time PA

successfully sends THRSWS packets to PB without having to resend any one of

them, swinsize is incremented by 1 if the new value is not greater than MAXSWS.

The adaptation algorithm of this scheme, though effective, turns out too

pessimistic when timeouts happen consecutively. Say the waiting for acknowl

edgements of packet 3,4, 5,... expires one by one, swinsize will be decreasing

exponentially. However, we know that most timeouts are not caused by the trans

mission error which rarely happens in today's wired media. Most of time those

missing packets are discarded by the receiver due to insufficient bufferof process

ing ability. Therefore, it is expected that the syndrome of packet loss appears in a

burst fashion. In this case, after resending packet 3 and halving swinsize, PA may

not want to decrease swinsize again when the acknowledgement of packet 4 also

expires later.

One way to work around the problem is to keep track of an "unlikely win

dow" that specifies a continuous list of possibly discarded packets. After PA

resending a packet, it checks whether the sequence of the packet falls in the

unlikely window. If yes, swinsize remains unchanged; otherwise it is halved. The

updating of theunlikely window is done whenever theswinsize is reduced.

Figure 4.5 shows the PA process accomplished the flow control scheme

described above. Since the controlling is totally done by PA, in this schemePB is

the same as the one in last section.

utility{
enCRC; deCRC; Max; Min;

}

#define SWINSIZE 17

#define MINSWS 2

#define MAXSWS 17

#define THRSWS 2
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proctype PA()

{
InportChan pktin = [IN_BUFF] of {int};
outport Chan pktOut = [OUT_BUFF] of {int};
InportChandataBuf = [DATA_BUFF] of {int};
const int PKT_TIMEOUT=10;

Int lar=-1, lps=-1, uws=-1, uwe=-1, cap=0, swinsize=(MINSWS+MAXSWS)/2;
int tempPkt, tempSN, tempCRC, dataBkup[SWINSIZE];
timer tm[SWINSIZE];

do

;:((lar+swinsize > Ips) && (len(dataBuf)>0))->dataBuf?tempPkt;
lps++; pktOutltempPkt; pktOutllps; pktOutlenCRC(tempPkt, Ips);
dataBkup[lps%SWINSIZE]=tempPkt; tm[lps%SWINSIZE]=0;

::((lps > lar) && expire(tmI(lar+1)%SWINSIZEl, PKT_TIMEOUT))->
pktOut!dataBkup[(lar+1 )%SWINSIZE); pktOutllar;
pktOut!enCRC(dataBkup[(lar+1)%SWiNSIZE], lar+1); tm[(lar+1)%SWINSIZEl=0;
if

::((uws<=lar+1) && (lar+1<=uwe))->sklp;
::else->swinsize=Max(swinsize/2, MINSWS); uwe=lps;

fi;

uws=:lar+2; cap=0;
::(len(pktln)>0)->pktln?tempPkt; pktln?tempSN; pktln?tempCRC;

if

::deCRC(ACK,tempSN,tempCRC)->
cap=cap+M2ix(tempSN-lar, 0); lar=Max(lar, tempSN);
if

::(cap>=THRSWS)->swinsize=Min(swinsize+1, MAXSWS);
cap=cap-THRSWS;

:;else->skip;

fi;
:;else->skip;

fi;

od;

}

Figure 4.5 SiP specification of a modified sliding-window protocol for flow
control at transmitting side.

Variables and constants used in above specification are defined as follows.

swinslze: sending window size

cap: consecutively acknowledged packets
uws: unlikely window start
uwe: unlikely window end
MAXSWS: maximum sending window size

43



MINSWS: minimum sending window size
THRSWS: threshold of consecutive acknowledgements to increase swinsize

Note that PAnow has an adaptivewindow size, swinsize, which is updated

whenever timeout happens or cap>=THRSWS. These two cases in fact can be

regarded as the implicit and explicit status feedback from PB. Beside, the two

boundsof unlikely window, uws anduwe, areupdated only afterprocessed a time

out event. Being such case, cap is reset because the earliest unacknowledged

packet has been assumed discarded and thus the acknowledgement is no longer

continuous.

4.4 Routing

Generally, networks are constructed to allow distributed end-users to con

vey information one another. Such data interchanging would be trivial if the

intended communicating partneris always an adjacent node of the sender. In fact,

for above sections of this chapter, the protocols we mentioned will only work in

this trivial way if no effortis made to implement a forwarding mechanism between

the two communicating entities. This is where routing protocols enter the picture

to form a fiill circle of end-to-end connection.

The fundamental idea of routing is to attach an address tag of the destina

tion node to the datapacket and let the intermediate nodes figure out a way to for

ward the packet. In a packet switching network, the routing process is done in a

hop-by-hop fashion, i.e., each router only decides which neighboring router con

nected to it would probably be the best (fast and cheap) next hop in terms of for

warding a packet to its destination. A direct question arisen from this approach is

"Which neighbor should a router choose to forward a packet?". The answer is the

prosperity of currentdesigns of routing protocols.

A common necessity of routing processes is to establish and maintain a

routing table. The table lists the current best next hop firom the router to all of its

reachablenodes.Note that information may have to be updated as the status of the
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links belonged to the network changes. Arouter hence has tokeep gathering status

reports from other nodes and recalculating those best next hops periodically [48].

Twocommonproblemsassociated with routingtables are:

1.A routing table will notbe scalable if it enumerates all reachable nodes

in the table. Some simple designs useanentry foreachpossible destination

in the network. Doing this requires a table to be large enough to accommo

date the number of nodes in the network and that is usually not feasible in

consideration of memory requirement.

2. A routing table needs to store up-to-date information to reflect any

changes in the network topology and in the connection status of links. The

first consideration of the changes makes a routermorerobustto toleratethe

failure of other nodesand to support the mobility of end nodes. The second

leads to thedesign of an intelligent router that avoids congested linkswhile

routing a packet.

Various routing protocols, such as hierarchical, random, distributed, back

ward learning, source, and mobile routing [14] have been proposed to solve above

problems. Because most of these designs have the complexity andsubtlety beyond

the scopeof this thesis, we willonlydiscuss a simplified hybridrouting protocol in

this section. Nevertheless, it does partially solve the two problems and provides an

overview of the issues while designing a routing protocol.

Our hybrid routing protocol (HRP) mixes part of hierarchical, distributed,

and sourcerouting protocols. It is hierarchical becausethe wholenetworkis parti

tioned into several subnetworks and each subnetwork contains several hosts. The

address representation thereforehas 2 fields for two levelsof resolution. Welet the

routing process only consult the information at subnetwork layer and thus each

entry in the routing table now stands for a subnetwork instead of an individual

host. Doing this remarkably saves the memory requirement of the routing table.

Our routing protocol also allows a router to inform others about its connection sta-
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tuswithadjacent nodes, which is thesolefeature of thedistributed routing. Finally,

the source routing assumes that all hosts have current and complete information

about the network topology, so do the routers (but not end-hosts) in our assump

tion. In the source routing, when a packet is generated, the process calculates the

best route for the packet to reach its destination and attaches the route to the

packet. When a node in that route receives thepacket, it simply looks its successor

in the route andforwards the packet. This approach would be infeasible if the route

information is too long to be included in a packet. In our protocol, the routing

works on a hop-by-hop basis at each router although the complete information is

available to computer thewhole route. One advantage of thehop-by-hop routing is

thatno route is attached to a packet and thusless overhead is introduced.

Figure 4.6 shows the design of our hybrid routing protocol using SiP.

utility!

netproc;

}

#define IN^BUFF 32

#define OUT.BUFF 32

#define DATA_BUFF 256

#deflne DATA_TYPE 10

#define RTT_TEST 11

#define RTT.REPLY 12

proctype HRPQ

{
inportChan pktin= [IN_BUFF] of{int};
outport Chan pktOutI = [OUT_BUFF] of{int};
outport Chan pktOut2 = [OUT_BUFF] of{int};
inportchan InDataBuf = [DATA_BUFF] of{int};
outport Chan OutDataBuf = [DATA_BUFF] of{int);
const byte SUBNETJD=1;
const byte H0STJD=1;
intLONGJD;

int type,srcid.dstid,data;
int nbr, nextid, cost;

timer upd, rtt[2];
LONGJD=SUBNET_ID*256+HOSTJD;

upd=0;
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loop:

do

::expire(upd, 200)->
pktOut1!RTT_TEST; pklOutIISUBNETJD;
pktOut1!netproc(1, SUBNETJD, 1); pktOutHO;
pktOut1!RTT_TEST; pktOutIISUBNETJD;
pktOutl!netproc(1, SUBNETJD, 2); pktOutllO;
upd=0; rtt[0]=0; rtt[1)=0;

::(ien(lnDataBuf) > 0)->lnDataBLif?dstid; lnDataBuf?data;
type=DATA_TYPE; srcid=LONGJD; break;

::(len(pklln) > 0)->pktln?type; pktln?srcld; pktln?dstld; pktln?data; break;
::else->return(0);

od;

if

::(type==RTT_REPLY)->nbr=netproc(2, SUBNET.ID, srcid);
cost=rtt[nbr-1]/2; netproc(3, SUBNET_ID, srcid, cost);

::(type=RTT_TEST)->

if

::(netproc(2, SUBNET_ID, srcid)==1)->
pktOut1!RTT_REPLY; pktOutI ISUBNETJD; pktOutHsrcid; pktOutHO;

::(netproc(2, SUBNETJD, srcid)=2)->
pktOut2!RTT_REPLY; pktOut2!SUBNETJD; pktOut2!srcid; pktOut2IO;

fi;
::(type==DATA_TYPE)->

if

::(dstid/256==SUBNET_ID)->OutDataBufldata;
::else->nextid=netproc(4, SUBNET_ID, dstid/256);

if

::(netproc(2, SUBNETJD, nextid)=1)->
pktOut1IDATA_TYPE; pktOutllsrcid; pktOutlldstid; pktOutHdata;

::(netproc(2, SUBNETJD, nextid)=2)->
pktOut2IDATA_TYPE; pktOut2lsrcid; pktOut2ldstid; pktOut2ldata;

::else->skip;

fi;

fi:
::else->skip;

fi;
goto loop;

}

int netproc(int* args)

{
#define ROUTER_NUM 4

#define id2idx(ID) (lD-1)
static int net[R0UTER_NUM][R0UTER_NUM]={{1, 2,3, -1), {2,1,4, -1},

{3,1,4,-1}, {4, 2, 3,-1}};
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static Intcost[ROUTER_NUMlIROUTER_NUM]={{0, 90,50, -1}. {90, 0, -1,20},
(50, -1,0, 30}, (-1,20,30, 0}};

Intpathcost[ROUTER_NUM], tmpcost, src_sn, dst_sn, bestnext, node2, done=0,1, n;
switch (args[0]) {
case 1: retum(net[ld2ldx(args[1])][args[2]]);
case 2: for(l=1; l<ROUTER_NUM; I++)

if (net[id2ldx(args[1])][l]=args[2]) return I;
case 3: cost[ld2ldx(args[1])][ld2ldx(args[2])]=args[3];

cost[ld2ldx(args[2])][ld2ldx(args[1])]=args[3]; return 1;
case 4: src_sn=args[1]-1; dst_sn=args[2]-1; bestnext=dst_sn;
for(l=0;l<ROUTER_NUM;l++)
pathcost[l]=(cost[src_sn][l]>-1)? cost[src_sn][l]:MAXINT;

while (Idone) {
done=1; n=1;

while((n<ROUTER_NUM)&&(net[src_snl[n]>0)){
node2=id2idx(net[src_sn][n]);

if (cost[node2][dst_sn]>-1) {
tmpcost=pathcost[node2]+cost[node2][dst_sn];
If (tmpcost<pathcost[dst_sn]) {
pathcost[dst_sn]=tmpcost;
bestnext=node2;

done^O;

}

}
n++;

}

}
return(net[bestnext][0]);

}

}

Figure 4.6 SiPspecification of the Hybrid Routing Protocol with itsauxiliary
C procedure netproc().

HRP models a router having multiple input ports and 2 output ports. Nor

mally, it takes DATA_TYPE packets and use Bellman-Ford algorithm to decide to

which neighbor it should forward the packet for minimizing the latency of the

complete route. The implementation of the Bellman-Ford algorithm [2] is shown

in theabove auxiliary C procedure. Besides, in order to gather up-to-date status of

links used by the algorithm, a router generates extra packets, with type

RTT_TEST, andsendsthemto its neighbors to request a RTT measurement testing

every 200 time units. Whenever receives a RTTJTEST type packet, a router imme-
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diately sends a RTT_REPLY type packet back to the one initiated the testing.

Therefore, on receiving the RTT_REPLY type packet, the testing initiator isable to

obtain the RTT and update the current "cost" of a specific link with value RTT/2.

Note in HRP we assume this update is made globally and simultaneously to all

routers for simplicity. However, we know that actually this has to be done using

some broadcasting mechanism.

The auxiliary C procedure netproc implements more than one function.

The first argument serves as the index of intended function and the restarguments

have different meanings under different functions. A detailed description is given

below.

Index Arguments Return Function Description

1 host ID,

neighbor index

neighbor
ID

Rettim the ID of a neighbor by giving
its index.

2 host ID,

neighbor ID

neighbor
index

Return the index of a neighbor by giv
ing its ID.

3 host ID,

neighbor ID, cost

1 Update the cost of the link between
two giving hosts.

4 source subnet ID,

destination sub
net ID

best next
ID

Decide the best next hop and retum its
ID.

4.5 Multiple Access

The protocols considered so far are designed for point-to-point conraiuni-

cation links, which assume that on a specific medium there is only one host send

ing signal at a time. Under such assumption, a receiver needs only consider the

transmitted signal from somepeerandnoise on the link,but not signals from other

peers which shared the same medium.

However, there are many widely used conununication mediasuch as radio

broadcast, satellite, and multitap bus [28], which may have two or more hosts are
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sending out signals simultaneously. In this case, different data streams will inter

fere with one another if no measures are taken to regulate the use of the medium.

Such a collision can be avoided if only one host is permitted to use the medium for

transmissionat a time. Twousually adopted approachesare used to implementthis

feature: token and carrier sense. The single token in a network allows only one

host transmitting at a certain moment, and all other hosts have to wait until they

hold the token. Two popular protocols based on this approach are Token Bus and

Token Ring protocols [27].

Carrier sense, as implied by its name, requires a host listening to the

medium before it can send out signals. As long as the medium is in use, existing

carrier signal, the resthosts refrain from transmitting and remain waiting. One dis

advantage of this approach is that a collision may still occur when two or more

hosts startsending at almost thesame time such thatthey all thought themedium is

cleared. The occurrence of a collision requires all receiving hosts throwing away

whatever they have received recently. In addition, all sending hosts have to stop

transmitting and, after some time, retransmit the same message. However, more

collisions mayhappen following the samescenario again and again [24]. A proto

col basedon this approach is called a CSMA/CD (Carrier Sense Multiple Access

withCollision Detection) protocol. In this section we will look at a simple proto

col using the CSMA/CD technique, which is actually is simplified version of the

most popular local area network (LAN) protocol, Ethernet protocol. Two key fea

tures of CSMA/CD are preserved in our Simple Ethemet Protocol (SEP): carrier

sense (to make surethemedium is free) andcollision detection (to see if any other

host is also transmitting). Data frame and jam frame are the only two types of

frames defined in this protocol. Under normal condition, a host broadcasts data

frames onto the medium for conveying information. The jam frame will be trans

mitted when a collision has been detected, which is meant to garble all frames on

the medium so that all hosts will be aware of the occurrence of the collision.
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The SiP specification of the transmitting and receiving processes of SEP

areshown in Figure 4.7(a) and Figure Figure 4.7(b) respectively. In theprotocols,

we assume that a frame is transmitted byte by byte at a speed of one byte per time

unit. The collision detection thus can be done between the transmission of each

two consecutive databytes. TheCRC computation procedures have been modified

to operate in a byte-by-byte fashion due to the same reason. Their first argument

has value 0,1 and 2 to differentiate the cases of starting, intermediateand end of a

frame. We also define an end-to-end propagation delay, PROP_DELAY, which

results in the possible unawareness of far-end transmission by using carriersense.

Theshare medium is modeled by a broadcasting channel BUS which is declared as

a wireless port.

utility{
enCRC; deCRC; randNum; Max;

}

#define DATA_BUFF 256

#define MAX.BYTES 1024

#deflne PL_BYTES 64

#define JAM 127

proctype XMT()

{
inport Chan dataBuf = [DATA_BUFF] of {int};
wireless chan BUS = [MAX.BYTES] of {int};
const byte HOSTJD=1;
const int PROP_DELAY=5;

const int RAND_WAIT=32;

bool rexmt=0;

int I, dstid, data, bidx, bmax=0, dataBkup[PL_BYTESl;
car_sen:

do

::(rexmt II (len(dataBuf)>0))->bidx=0;

if

::rexmt->sklp;

::else->dataBuf?dstid;

fi;

do

::(len(BUS)>randNum(PR0P_DELAY)+2)-> delay(1+randNum(RAND_WAIT));
::else->break;

od;
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BUSIdstid; BUSIHOSTJD; enCRC(0,dstld); enCRC(1, HOSTJD);
do

::(bldx<PL_BYTES)->

if

;:(rexmt && (bidx<bmax))->data=dataBkup[bidx];
;:else->dataBuf?data; dataBkup[bidx]=data;

fi;
BUSidata; enCRC(1, data); bidx++; delay(1);
If

::(Ien(BUS)>bidx+2)->i=0;

do

::(l<PROP_DELAY)->BUS!JAM; delay(1);
::eise->break;

od;

delay(PROP_DELAY+randNum(RAND_WAIT));
rexmt=1; bmax=Max(bmax,bldx); goto car_sen;

;:else->skip;

fi;
::else->BUS!enCRC(2, 0); rexmt=0; bmax=0; delay(1); goto car_sen;

od;

::else->return(0);

od;

}

Figure 4.7(a) Si? specification of the transmitting process of the SEP.

proctype RCV()

{
outport ChandataBuf = [DATA_BUFF] of {int};
wireless chan BUS = [MAX_BYTES] of {int};
const byte H0ST_ID=1;
int i, srcid, temp, bidx, dataBkup[PL_BYTES];
waitjrm:

BUS?HOSTJD->BUS?srcid;

deCRC(0, HOST_ID); deCRC(1, srcid); bidx=0;
do

::(bidx<PL_BYTES)->(len(BUS)>0)->
if

::BUS?[JAM]->delay(PROP^DELAY);

do

::(len(BUS)>0)->BUS?temp;
::else->break;

od;

do

::(len(BUS)=0)->return(0);
::((len(BUS)>0) && (BUS?[JAM]))->BUS?temp;
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::else->goto waltjrm;
od;

::else->BUS?temp; dataBkup[bldxHemp;
deCRC(1, temp); bidx++;

fi;
::else->BUS?temp;

if

::deCRC(2, temp)->l=0; dataBuflsrcId;
do

::(i<PL_BYTES)->dataBuf!dataBkup[il;
;:else->break;

od;

::else->sklp;

fi;
goto waitjrm;

od;

}

Figure 4.7(b) SiP specification ofthe receiving process ofSEP.

In the transmitting process, XMT, dataBuf is the service access point to the

higher layer protocol. Logical Link Control (LLC) sub-layer protocol, for input

ting data frames. The buffer dataBkup has a size ofPL_BYTES bytes to store the

payload ofthe currently conducting frame. During the earner sense phase, ifXMT

has a frame to send but the medium is in use, it waits a random duration of time

equiprobably between 1 and RAND_WAIT. XMT sends JAM signal for

PROP_DELAY time units when it is transmitting databytes and detects that extra

bytes from other host(s) have been inserting into BUS. Indices bidxand bmax are

used to indicate the position of next byte tobe transmitted and the position of the

byte where a collision was detected in last transmitting trial. Flag rexmt indicates

whetherif the transmitting process is in the retransmission phase.

Asforthereceiving process RCV, dataBuf is theSAP to the LLC sub-layer

where the correctly received frames are delivered. Normally RCV receives and

stores data bytes inbuffer dataBkup for later CRC verification. When a JAM signal

is detected, RCV discards all received bytes of the currently receiving firame and

removes all the following corrupted databytes andJAM signal until themedium is

cleared again.
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5

Application Example

Example Network

1.3 1.2

©—<i)

© "®

Figure5.1 Graphdiagram of the examplenetwork used in this chapter.

In order to validate our design of protocol elements discussed in last chap

ter, we construct an example network system by reusing those modules to model

the communication protocols running on thehosts androuters in thenetwork. Fig

ure 5.1 depicts a connected graph diagram showing the nodes and the links of the

network. The nodes are numbered in the format of hierarchical address, which is

represented as nl.ii2 to denote the sub-network index nl and the host index ii2.

Aliases Rl, R2, R3, and R4 are four routers located in sub-networks 1,2,3, and 4

respectively. Except sub-network 3, where all nodes share the same medium, all

nodes in other sub-networks are connected by point-to-point links. In the rest of
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this chapter, we will demonstrate how to build such a network system using SiP

and perform simulation ofa streaming video application running on it.

Figure 5.2 shows a SiP schematic that models the network in Figure 5.1.

Recall the concept westated inChapter 2, that each network node inSiPrepresents

a single protocol module oragroup ofthem. In other words, we perceive the activ

ities of a network as the interactions among protocol modules. Therefore, the

blocks with names ROUTERand HOST shown in Figure 5.2 are all protocol mod

ules instead ofphysical hardware entities. Starting from the left, HOST_A (alias A

in Figure 5.1) is a video encoder that generates and transmits a variable-bit-rate

packet stream toa multicast server [45], HOST_B (alias B). The server then dupli

cates and broadcasts the stream to two designated client hosts, HOST_Cl (alias

Cl) and H0ST_C2 (alias C2). For not overwhelming server B, the transmission

from A to B can not start until B confirms the connection request from A using the

connection protocol we discussed in Section 4.1. In addition, A and B follow a

flow control protocol to regulate their traffic using the sliding-window technique

introduced in Section 4.3. Figure 5.3gives a detailed views of thestructures ofpro

tocols inside A and B. A contains a video encoder (VENC), an address attaching

process (AttAddr), a flow control and a connection protocol of transmitting side

(SWPA and PA). B has a connection and a flow control protocol of receiving side

(PB and SWPB), a multicasting process (Distrb), and an SWPA.

Example Network

HTpl wfn IbTm»

l£r
Figure 5.2 A SiP schematicmodelingthe example network in Figure 5.1.
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Figure5.3 The internal structures of galaxies HOST_A and HOST_B.

Router R1 takes the both broadcasting streams from B and route them to

their designated destination sub-networks using the HRP routing protocol

explained in Section 4.4. Our initial parameters make R1 choose R3 to direct both

the packets for C1 and C2. This turns out congesting R3 quickly and slowing

down both streams to C1 and C2. Fortunately, HRP updates the routing table peri

odically andsoon figures out that, from Rl, R2 may be a better choice to deliver

packets to C2. After receiving packets from Rl, R2 realizes the destination of

those packets is sub-network 4 and thus it redirects them to R4. The simulation

result of this feature is given in Figure 5.4. As one can see, the shooting packet

flow via R3 turns flatter after R2 started to share the traffic at time 240.

To make the simulation more informative, we build flow control capability

in R4 but not R3 to evaluate the importance of traffic regulation in a connection

less network. Figure 5.5 shows the internal structure of R4, which consists of a

routing protocol (HRP), a finite-length queue (FINITE_Q), a flow control protocol

of receiving side (SWPB), and a selective acknowledgement protocol of transmit-
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ting side (SAPA, which is a slight variation of SWPA). The SWPB module here

will interact with the SWPA in host B to adaptively adjust the size of sending

Packets via R2

Packets via R3

Figure 5.4 Simulationresult showsthat using adaptive routing table
optimization can resolve traffic congestion at routers.

window and it hence mitigates bursting traffic between them. As for R3, no effort

is made to deal with a variable-bit-rate packet flow and thus all processed packets

will be discarded when its output buffer is filled. Figure 5.6(a) shows the simula

tion result of the output queue lengths of R3 (no-SW, the dots) and R4 (SW, the



crosses). We set both their maximum queue sizes as 18, so R3 discards packets

wheneverits queue length exceeds 18. R4 has a zigzag shape of queue length

Router 4

pktp

pMjOM

plepul

RfiSZEBE SAP*

Figure 5.5 The internal structureof the galaxy ROUTER_4.

around the maximum size of its queue because, once its queue gets too long,

SWPA cuts down its sending window size or even stops transmission to let R4

digest its queued packets. Andthen, afterreceiving more acknowledgements from

the SWPB in R4, SWPA enlarges its sendingwindow size gradually and that leads

to the rising of the queue length of R4 again. Since we set the maximum sending

window size as 17, one can see from the figure that the queue length of R4 stop

growing at that number. Therefore, R4is able to guarantee that nopacket would be

discarded due to an output buffer overflow. Figure 5.6(b) shows the cumulative

number of packets discarded at R3 andR4. Notsurprisingly, only R3 suffers from

buffer overflows.

Note that so far we have used the SWPA/SWPB pair many times. This is

themajoradvantage of using Si? to model network protocols because reusing pro

tocol modules remarkably reduces the burden in specifying the same or similar

protocols repeatedly. Moreover, since Ptolemy follows object-oriented paradigm,

all replicated modules of a specific protocol are actually different objects derived

fi-om the same class. They are the same protocol, but they can be given different

parameters and then evolve independently. The encapsulation property of object-
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oriented design also assures the state of these sibling modules not being garbled

one another.

0.0 05' tB '50
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Figure5.6 (a)Upper: Simulation resultshows thatusing flow control protocol
can constrain the queue length within maximumsize. (b)Lower: Not
using flow control protocol results in queue overflowsand thus some
packets have been discarded.

Return to our discussion of packet forwarding, which has been described

all the way from the video encoder to the destination sub-network of the packet.

We now consider the scenario of delivering a packet from a router to the destined

host within the same sub-network. Since C2 has a dedicated link directly connect

ing it with R4, we simply build a selective acknowledgementprotocol of receiving



side (SAPB) in C2 to coordinate its counterpart SAPA in R4 to accomplish the

communication. Unlike the above simple point-to-point communication, sub-net

work 3 needs a more elaborated protocol to deal with its multi-tap bus. As shown

in Figure 5.1, router R3 shares the same medium with other two peers, including

Cl. We use the multiple access protocol SEP, a CSMA/CD protocol introduced in

Section 4.5, to implement the communication process of all peers on the bus. Fig

ure 5.7 shows the intemal view of SEP, which consists of a transmitting and a

receiving process (SEPXMT and SEPRCV). Note that in our design, there is no

link among all the SEPXMT and SEPRCV processes in all peers on the bus. This

because we adopt "wireless" I/O ports while specifying the SEP protocol. The

broadcasting nature of these ports appropriately imitates the topology of shared

mediumand also comparatively simplifies the wiring.Following the SEP protocol,

R3 finally delivers the packets to Cl via the shared bus.

Simple Ethernet Protocol (SEP)

☆ ^
SEPXMT ISEPRCV

Figure 5.7 The intemal stmcture of galaxy SEP.

The last issue to consider in this simulation is, why not using flow control

protocoleverywhere so that no entity wouldeverdiscard a packet? This answeris,

not all application can afford long latency during transmission [44]. For direct-

immediate applications, such as videoconferencing, Internet phone, whiteboard,

talk, etc., long delay between continuous or consecutive information is not tolera

ble. Packetsthat successfully arrive their destinations with old time stampswill be

useless. As a result, the flow control protocol though effectively smoothes the traf

fic, the latency introduced by it leads to packet discard, too.Figure 5.8 gives a sim

ulation result that serves as a good example to account for this phenomenon. Each

symbol (dot or cross) in the figure indicates an event of receiving a packet. The

vertical axis in the figure represents the sequence number of a received packet and

the horizontal axis gives the time when the packet was received. Obviously, firom

60



the simulation result, using flow control (cross) suffers longer latency, although It

is free from packet loss. On the other hand, without using flow control (dot), one

can receive packetsearlier at the price of discarding packets. Nevertheless, one can

always adopts some error (loss) concealment algorithmto enhance the reconstruc

tion quality of the information. This latency consideration alsoleads to the general

adoption of UDP (UserDatagram Protocol, which does not includes flow control

mechanism) for delivering real-time and delay-sensitiveinformation in the Internet

realm. As for applications carrying deferrable information, such as FTP (File

Transfer Protocol), Web browser, etc., the TCP (Transmission Control Protocol,

which has a built-in sliding window protocol for flow control) is widely used to

reduce the impact to the Internet while conducting busty packet streams.

Sequence Numbers of Received Packets

Figure 5.8 Simulation result shows that using flowcontrol protocol could lead
to longer lantency due to buffering bursty traffic.
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Conclusions

Tosupportcommunication protocols modeling in a system-level design, in

this report we have proposed a hybrid model of computation to allow mixing pro

tocol modules with other subsystems. By embedding CSP in FSM and DE, we

found a protocol can be succinctly specified and effectively simulated in a system

context. The resulting architecture using such integration of domains has been

investigated to clarify and define its semantics of concurrency and synchrony.

Base on the proposal, we have prototyped a supporting software infrastruc

ture, SiP, by leveraging on two existing tools, SPIN and Ptolemy. The consider

ation of combining these two tools originates from the fact that SPIN is designed

for protocol specification and Ptolemy supports heterogeneity in system-level

modeling. We examine the internal data structure of SPIN and elaborate a specific

actor class in Ptolemy to accomplish data sharing and simulationscheduling. The

resulting software implementation not only enriches the expressiveness of the

input language of SPIN, PROMELA, in temporal statements, it also lightens a

niche in Ptolemy to accommodatean auxiliary co-simulationtool.

Thetesting of SiPstarts from the attempt at specifying several fundamental

communication protocols such as connection, error detection and recovery, flow

control, routing, and multiple access. Because the supporting commands of SiP

well cover the necessary expressions in protocol specification, we efficiently built

a reusable module for each of these protocols. In addition, we also examine the

extension of these modules by mixing them with other Ptolemy actors or external
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Clanguage subroutines. An early observation ofthe reusability ofthe tool has also

been identified, when wewere building a duplex connection module using simplex

ones and coupling the modules originally designed for error recovery and flow

control respectively.

To evaluation the capability ofSiPin modeling acomplete network system,

we construct an example network on which a streaming video application multi-

casts a packet flow to two remote client hosts. Byreusing allprotocol elements we

mentioned in last paragraph, with very little extra effort we finish the modeling of

the system. For this example, it proves the reusability of SiP does remarkably

reduce the burden in specifying similar protocol modules repeatedly. As for sys

tem-level simulation, many interesting results also have been discussed using this

example. We have observed how the fluctuation of queue length and transmission

latency affect the behavior of flow control, connection, and routing protocols. And,

how the parameters and adaptation schemes of these protocols impact the quality

of services over a network.

One open issue of SiP is, to exploit the formal verification capability of

SPIN and provide a model checking [46] tool using Ptolemy's graphical user inter

face. In [42], a compiler that translates Statecharts into PROMELA has been pro

posed. It is reported to facilitate the modeling and performing partial order

reduction [31][32] of a large number of reactive modules by using Statecharts plus

SPIN. Actually, webelieve thatby leveraging ontheobject-oriented kemel and the

well-developed code generation domain in Ptolemy, SiP should be able to provide

similar or even more superior features.
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Appendix A: SIP yl.2 User's Manual

A.1 Introduction

SiP (SPIN in Ptolemy) is a system-level protocol modeling tool developed

at University of California at Berkeley. It relies on a translator ppl2pl and a SiP

kernel to cooperate with the Ptolemy environment. The translator converts the

input language to SiP, calledPtolemy-supported PROMELA Language or ppl, into

the description language of Ptolemy Stars, called Ptolemy Language or pi. The

automaticallygeneratedpi code can then be used to build an agent Star in Ptolemy

to make a connection with its original ppl code. The SiP kemel is bulit into

Ptolemyenvironment to accomplish a Ptolemy-SPIN co-simulation involving both

agentStars of protocol modules and built-in Ptolemy Blocks(Stars and Galaxies).

Figure A.l illustrates the two phases of systemspecification whileusing SiP.

code ppl files

ppl2pl

design Ptolemy

schematic

edit I/O ports edit process body

Figure A.l SiP*s two phases of system specification.

The first phaseis to codeprotocol modules in ppl, and the second phaseis

to design a system schematic in Ptolemy using the agent Stars of these modules

and Ptolemy'sbuilt-in Blocks. Since agent Stars are regualr Stars in Ptolemy DE

domain, the second phase is almost the same as the usual way to construct a

Ptolemy schematic. The detailed explanation of how to construct a schematic in

Ptolemy environment can be found in the Volume I of Almagest, the Ptolemy's

User's Manual (ftp://ptolemy.eecs.berkeley.edu/pub/ptolemy/www/papers/almag-
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est/user.html). Also shown in the above figure, one minordifference in the second

phase is the extra step to execute ppl2pl if the declaration of ports in a protocol

module has been changed. This assures the consistency of an agent Star and its

corresponding protocol module. Note that if the change was the process body of

the protocol module, noaddition step needs tobe taken because the agent Starcon

tains no information about the process body.

This manual will focus on the first phase, the design of protocol modules.

Specifically, we will introduce the sjmtax and semantics of allconstructs of ppl in

the Section A.2 and demonstrate an example to walk through the two design

phases in Section A.3.

A.2 The Elements of ppl

In SiP, every leafprocess of a protocol is coded in ppl. The ppl file should

containexact one processand havea filename as sameas its processname. Gener

ally, a ppl file is organized as follows.

r This file, PP.ppI, shows the basic structure. 7
utility {

fund;

private:

func2;

}

#Glefine QSIZE 10

proctype PPQ {

inport Int IN;
outport int OUT;
const int WSIZE=^;

< statements; >

}

In the rest of this section, we will give an introduction to the use of ppl for

specifying protocol processes. While designing a process, one principle a user

should keep in mind is to minimize the specialness and complexity of the process.

This would facilitate the reusability of the process and reduce burden to debug it.
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A.2.1 Data Types, I/O Ports, and Constants

Six basicdata types, bool, bit, byte, short, int, and double, are supported

by ppl. Following the same order, they occupy 1,1, 8,16, 32, and 64 bits respec

tively. A variable is declared similarly to the syntax of C language. The declaration

below creates a byte array and two initialized variablesin Boolean type and double

type respectively.

byte frame[321;
bool done=0;

double RTT=60.514;

Variables are regarded as local to a process, so theirnames canbe reused in

other processes. One way to make a variable accessible by another process is to

declare it as a wireless port like:

wireless int votes;

In this case, all processes within the same scope can read/write value from/to the

variable votes. The scope is a parameter of every agent Star. It can be explicitly

specified a channel name to force different processes listening to thesame channel.

The timer data type has the same resolution as double but it has very dif

ferent behavior to previous basicdata types. A timercounts up automatically as the

simulation timeproceeds. It can be set to anyfloating-point numberat any moment

as if it is manually adjusted to thatepoch. The declaration 'timer t1=0.0' creates a

timer t1 and resets it initially.

The user-defined data typefollows the C-like syntax. For example, the fol

lowing declaration defines a new data type PDU and a variable packet in that

type.

typedef PDU {
int header;

byte data[1024l;
int checksum;

}
PUD packet;
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The same as the syntax of C, the third byte in the data field of variable packet is

expressed by packet.data[2].

I/O ports are the interface enables a process to communicate with another

process. They can be categorized into two types, signal channels and message

channels. A signal channel is an extension of a variable, which allows to send/

receive a value to/ffom a port. A typical declaration is given below.

inport byte Data;
outport double Result;

A message channel is unidirectional and first-in-first-out (FIFO). For instance,

inport Chan datain = [256] of {Int};
outport chan dataOut = [1]of {double};

declares an input message channel in Int type with a buffer space of 256slots and

an outputmessage channel in double type withsinglebufferspace.

Two adjective keywords mult! and persist are used to specify the proper

ties of I/O ports, mult! declares a multi-port that allows multiple connection todif

ferent processes, persist declares a persistent input port that keeps the present

indicator on even if the data arrived the port at an earlier time. Two examples are

given as follows.

mult! outport bit chipSelect;
persist inport double batchMeasure;

A const is usedto specify a parameter of a process. It becomes a state of

the agentStarbelonged to the process. It has an initialvalue butcan be given a new

value at run-time. A typical declaration looks like:

const int mylD=123;

A.2.2 General Statements

The arithmetic operation and Boolean expression of ppl are exactly the

same as C language.They include +, -, *, /, %, ++, and —for arithmetic; >, >=, ==,

<=, <, and != for comparison; &&, II, and ! for Boolean expression; &, I,
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and» for bitwise operation. Two consecutive statements are separated by a semi

colon or an arrow In ppl. Boolean expressions are simplified as regular

statements. Therefore, the condition ((a==b)&&(c>d)) can be an independent

statement. It will be either executable or blocked at run-time depending on the val

ues of variables. An unexecutable statement will block the process until the condi

tion becomes true later. This is the most common approach to synchronize with

another process.

By definition, an assignment is always executable. Assigning a value to

an output signal channel implicitly issues a dataoutput event. Forexample,

chipSelect>1;

sends out a bit' T to the outputport chipSelect. As for message channels, opera

tors '?' and '!' are used to receive and send data respectively. For example,

dataln?radius; dataOut!(radius*radius*3.14);

reads the head element from channel datain and writes it to variable radius. After

that a computation result is sent out to channel dataOut. The operator *?' can be

also used to test the head element of an input channel. The expression

dataln?[5];

is not a reading operation. Instead, it is a Boolean condition thatchecks if thehead

element of channel datain has a value of 5. The command len(dataln) is another

way to check the status of a message channel, which returns the current number of

elements queued ina message channel. The condition (len(dataln)>=5) isexecut

able when there are at lease 5 elements hold by datain.

Three commands are used to check and change the present indicator of a

input port, present(dataln) is executable if there is at least one new arrival at the

input port datain. turnoff(datain) is always executable that turns offthe indicator.

admit(dataln) functions as same as present(dataln), but it turns off the indicator

after the checkingif there is indeed a new arrival. It is equivalent to the statements

present(dataln)->turnoff(dataln).
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To assure aprocess operates correctly, auser could use the printf command

to print out the run-time values ofspecific variables. Its syntax is the same as the
printf command in C. Another way to detect design faults is to place assert state

ments at some checking points. For instance,

assert( (a>b) II (c<d));

takes no effect when the condition is true, but a violating condition will immedi

ately stop the simulation and respond a warning message to the user.

A.2.3 Control Flow

There are four control flow constructs in ppl: case selection, repetition,

watching guard, and unconditional jump. The general form ofa case selection is

if

"(condition 1)-> statements;
"(condition 2)-> statements;
::else-> statements;

fi

Exact one branch will be selected and executed at one time. If more than one con

dition are executable, one of themwill be picked withan equalprobability. On the

other hand, if no condition is satisfied, the statements on elS6 branch will be exe

cuted. Furthermore, suppose under thesame case and the elSG option is absent, the

process will beblocked until at least one condition becomes executable. To avoid

the blocking, usually the else branch is given as 'else->skip;', which means to

skipthe whole selection construct if no condition is satisfied.

The second control flow is do loop. A do loop has exactly the same struc

ture as the If construct. It will be executed repeatedly until it encounters a statement

break. A factorial function can be implemented as follows.

f=i;

do

::(n>1)-> f=f*n; n~;
::else->break;

od
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The watching-guardconstruct *unless' has a structure shown below.

{statement block 1} unless {statement block 2}

Before each statement in block 1 is executed, the first statement in block 2 will be

checked. If the later is unexecutable, statements in block 1 are executed repeatedly.

Once the first statement in block 2 happens to be executable, the executionof state

ments in block 1 stops immediately. Note that a statement break in block 1 would

also exit the loop.

The unconditional jump goto functions as it does in common computer

languages. For example, 'goto Waiting' forces the program counter switching to

the statement below label Waiting. Note that ppl identifiers cannot be labels.

A.2.4 Timing Commands

The command delay(ofuraf/on) suspends the process for duration time

units. It is always unexecutable if the duration is positive, becausethe systemtime

will not be advanced during an iteration. After having slept for duration time

units, the process wakes up again and continues executing the statements after the

delay command.

To model the time-out checking mechanism in a protocol, the command

expire(f/n7er, target-time) is used to check if a specific timer has expired. It also

registers a likely time-out event in the future. Note the registered time-out event is

not deterministic to happen since other events could abort the waiting state or a

timerassignment couldchange the target-time.

Routine state checking is useful while specifying a protocol. A protocol

module mayenteran idle state for a long timeand be unaware of something going

wrong. Aprogrammer could use abelatedly refiring command retum(cft/faf/on) to

register a promissory return time to invoke the process again. Besides, to suspend

execution immediately but notto register any return time, the command return(O)

is usually used to yield control of execution.
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A.2.5 External Function Calls

To declare external C++ functions, the utility construct is used to specify

the function names as well as their scopes. For example,

utility{
pubFOO;

private:

prvFOO;

}

declares two external functions pubFOO and prvFOO. The function pubFOO is

public and could be shared with other processes, while the function prvFOO is
private and not accessible by other processes. Suppose the ppl file containing
above utiiity construct is named testFOO.ppi, the templates ofthese functions will

be created in the names with pathes as *./utiiity/pubFOO.cc' and *7utility/t6St-

FOO/prvFOO.cc* after executing ppl2pl. It is user's responsibility to fill the code

in these templates. A typical template looks like:

// Arguments stored inargsIO], args[1], args[2],...
// Do not erase the remark symbol ahead function name.
// int pubFOO(int* args)

{

}

Note thedeclaration in the utility construct does notinclude the augments of func

tions. Therefore, given all variables are not double type, following forms ofcall

ings are all valid.

a=pubF00(1,2, i); b=pubFOO(2, k+2); c=prvF00(5,6,7,8);d=prvFOO();

APtolemy Block could bealso used as anextemal function. The command

extoper(oufpo/t, inport^ fires a Ptolemy Block and waits a reply from it. The

command sends outa triggering signal to outportand waits a new arrival, usually

the computation result from the Block, at inport. This command enables using

existing Ptolemy built-in Blocks asthecomputation subroutines ofa ppl process.
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A.3 A Simple Example

In this section, we use a simple example to walk through the design proce

dures of SiP. The following two processes implement a redundant transmission

protocol. Upon receiving a POLL request, the Sender process sends an integer and

a redundant copy of the number to the Receiver. The Receiver checks if the two

copies have the same value to decide whether the data havebeen corruptedduring

transmission. If the two copies are the same, the Receiver sends out the number to

dataOut channel and sends another POLL request to the Sender; otherwise, the

Receiver sends a NACK notification to the Sender for requesting a retransmission.

To differentiate the iterations of transmission, the Sender increases the sending

number whenever it receives a POLL request.

Senderppl:

#deflne POLL 1

#define NACK 2

proctype Sender()

{
Inport Chan chin = [10] of {byte};

outport Chan chOut = [10] of {int};

int x=0;

do

::chln?POLL->x++; chOutlx; chOutlx;

::chin?NACK->chOutlx; chOutlx;

od;

}

Receiver.ppI:

proctype Recelver()

{
Inport Chan chin = [10] of {int};
outport Chan chOut = [10] of {byte};
outport Chan dataOut = [10] of {Int};
Intx1,x2;

chOutlPOLL;

loop:

chln?x1->chln?x2;

If

;:(x1=x2)->dataOut!x1; chOutlPOLL;
::else->chOutlNACK;

fi;
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goto loop;

}

Applying ppl2pl to both processes, we obtain two pi files DESender.pl
and DEReceiver.pl indirectory './ptolemy/' asthe source code ofagent Stars. We

then create two agent Stars in the facet *./user.paP by using the 'make star' func

tion in Ptolemy environment. Now we are ready to open a new facet and specify

the schematic of our system. However, it is perceivable that the transmission will

beerror-free if wedirectly connect the I/O ports of thetwo agent Stars. To imple

ment an unreliable channel, we adopt thebuilt-in AWGN (Additive White Gauss

ian Noise) Galaxy to add noise todata. We also include a Delay Star to model the

propagation delay. Figure A.2 shows the design of the channel model.

floatO
A

into
InfToFloal AWnN — Delay FtoafToInt

Figure A.2 The model ofanunreliable channel with propagation delay.

The schematic ofoursystem is shown in Figure A.3. The XMgraph Star is

used to display the received data.

☆ ☆
/WVWI

Sender AWON Receiver

Figure A.3 A communication system over an AWGN channel.

Figure A.4 gives a simulation result of the above system. Note that there

was a transmission error at time 9 and a later retransmission made it up. However,

the redundant transmission protocol cannot guarantee the correcmess of received

data. Suppose the two copies of data were both corrupted during transmission and

happen to have the same value when the Receiver reads them, the Receiver will

regard them as a correctly received pair. As shown in Figure A.5, the Receiver

made a wrong decision at time 5.
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Received Data

B^fnaXm

Figure A.4 A simulation result shows the error recovery ability of the
redundant transmission protocol.

Received Data

ftectthMd Data

Figure A.5 Asimulation result shows that the redundant transmission protocol
cannot guaranteean error-free transmission.



Appendix B: SIPvl.2 Programmer's Manual

B.1 Introduction

SiP (SPIN in Ptolemy) is a system-level protocol modeling tool developed

atUniversity ofCalifomia atBerkeley. Its software package includes a stand-alone

executable file ppl2pl, a Ptolemy-supported SPIN package (modified from SPIN

v3.0 by Lucent Technologies - Bell Labs), and several supplemental files to the

Ptolemy DE domain. We assume in this manual that the readers are thoroughly

familiar with the DE domain and know how to write a DE Star. Refer to the Chap

ter 12 in Volume II of Almagest, the Ptolemy*s Programmer's Manual (ftp://

ptolemy.eecs.berkeley.edu/pub/ptolemy/www/papers/almagest/prog.html). Read

ers are also encouraged to read SiP User's Manual to have the background knowl

edge of the Ptolemy-supported PROMELA Language, called ppl. In following

sections, wewill focus on the implementation issues of ppl2pl, agent Star, andthe

Ptolemy-supported SPIN kernel.

B.2 Translator ppl2pl

Each leafcellofa protocol module is specified bya ppl process. It will nei

ther be understood by Ptolemy nor SPIN without translation. SiP provides the

ppl2pl translator to generate a pi (Ptolemy Language) file of thecustomized agent

Star from a ppl process, such that the Ptolemy kernel can access to that process

through its agent Star.

Sincean agentStar only customizes the mechanism to read/write Particles

from/to the internalchannels in SPIN, the ppl2pl only processes the declarationof

I/O ports, parameterizable constants, and external functions of a ppl process to

generate the code of its agent Star. The detailed actions taken by ppl2pl to deal

with these three types of declaration are listed as follows.

• I/O ports: The inport andoutport in a ppl process areconverted intothe input
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and output constructs in the pi file respectively. A port with data types bool,

bit, byte, short, and int in the ppl process are all specified as an integer-typed

port in the pi file, and the double is mapped to the float. Keyword multl is

retained to indicate theportis a multiple I/Oport, while keyword wireless tells

ppl2pl to neglect the port because a wireless port is not implemented as a

regualr Ptolemy I/O port. Usually in go() an extra statement is applied to each

input port to maintain the present indicator of the port. The keyword persist

disables that maintenance to keep the incoming Particles persistent. In go(),

each input port relies on a loop to forward all arriving Particles to its corre

sponding channel in SPIN. Each output port also has a loop to flush out all

queued elements in its corresponding channel in SPIN. These forwarding loops

are added in go() while an I/O port declaration is detected in the ppl process.

Because SPIN uses a special data structure to access its channels, in a pi file

some temporary variables in that data structure are included in the constructor

construct and are deleted in the destructor construct.

parameterizable constants: The const declaration in the ppl process is con

verted into the defsate construct in the pi file. Its data type and initial value are

specified by corresponding fields in thedefstate construct. Since the value of a

state could be changed at run-time, an extra statement is added in go() to set

the new value of the const in SPIN at the beginning of the first arrival to the

agent Star.

external functions: The ppl allows including public and private external C-H-

functions. A public function is included in the code construct in the pi file so

that it is accessible by other agent Stars. A private function is included in the

method construct to add a new member function to the class of the agent Star

(each agent Star is a new class derived from DESiPStar) so that the function is

only accessible by theagent Staritself. Since a function is tracked by a pointer

to make it accessible by the SPIN evaluator, for each function ppl2pl creates a
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pointer in the protectedconstruct and assigns itsvalue in the constructorcon

struct.

The ppl2pl also auto-documents the generated pi file by filling its author

and descriptor constructs. This will require executing some UNIX system com

mands.

B.3 Agent Star

The best way to understand the functions of an agent Star is to do a side-

by-side comparison ofits code with its original ppl process. An example is given
below to be referred by thediscussion in therest of thissection.

ppl process (MOD.ppl):
#define Base 100

proctype MOD()

{
wireless boo! running=1;

inport Int value;
outport int result;
const int modulus=10;

loop:
running->admit(value)->result=Base+(value-Base)%modulus;

goto loop;

}

generated pi file (DEMOD.pl):
defstar

{
name {MOD}
domain {DE}
derivedfrom {SiPStar}
author {Shang-Pin Chang}
descriptor {DEMOD.pl isan agent starassociated with PROMELA file MOappI. It^wp

generated by spchang@coulomb.eecs.berkeley.edu on Sun Dec 13 01:38:00 PST1998.)
copyright {Copyright (c) 1990-1998 The Regents ofthe University of California. All

rights reserved. Seethe file $PTOLEMY/copyright for copyright notice, limitation of liability,
and disclaimer of warranty provisions.}

output {
name {result}

type {int}

}
input {
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name {value}
type {int}

}
defstate {

name {scope}
type {string}
default {""}
desc {Scope of the wirelessports used In file MOD.ppI}

}
defstate {

name {InstOp}
type {Int}
default {0}

desc {Set to 1 foran Instantoperation module, otherwise0.}

}
defstate {

name {modulus}

type {Int}
default {"10"}

desc {Initialvalue of modulus used Infile MOD.ppI}

}
protected {

Symbol *sym_result;
Symbol *sym_value;
double lastP.value;

}
destructor {

unreglsterPXPStarQ;

}
method {

name {getScope}
access {protected}

argllst {"(void)"}
type {"const char*"}
code {return (const char*)scope;}

}
code{

extern RunLlst*flndproc3(lnt ID);
extern Symbol*findloc2(RunLlst *x,const char *s);

}
setup {

delayType = instOp? FALSE:TRUE;

}
begin {

SPINReady = FALSE;

DERepeatStar::begin();
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outputPML(((strlen(scope)>0)? 1:0),Vexport/coulomb/coulombl /spchang/thesis/
examples/",fullName0.name(),className(),(const char*)scope);

registerPXPStarO;

}
go{
If(ISPINReady) {
run_Proc = findproc3(siplD);
run_Proc->host = this;

sym_result = findloc2(run_Proc,"result");
sym_value = findloc2(run_Proc,"value");
lastP_value = 0.0;

((Int •)(findloc2(run_Proc,"modulus")->val))[0] = (lnt)(modulus);
SPINReady = TRUE;

}
if (lastP_value<arrivalTlme) sym_value->present = 0;
while (value.dataNew) {
((int ")(sym_value->val))[0] = (int)(value.get());
sym_value->present = 1;
lastP_value = arrivalTime;

}
if (arrivalTime>= completionTime) {
NxtFireDur = RunSpin(run_Proc,arrivalTime);
if (sym_result->updated) {
result.put(arrivalTime)«((int ")(sym_result->val))[0];

}
setNextFiringO;

GlobalUpdateQ;

}

}

}

B.3.1 PROMELA Code Generation outputPMLO

To generate the PROMELA code of all agent Stars on a schematic before

the first Star is fired, we include the function call outputPML() for PROMELA

code generation in the begin construct in the pi file. Since the begin method is

executed exactly once, all agent Stars would also output their PROMELA code

exactly once. However, there maybe many cloned agentStars on a schematic and

it results a very large PROMELA file containing repeated processes. This would

then reduce the efficiencywhile generating the parse tree. Benefitted from SPIN*s

ability to support multiple instances of a process, we only let the first visited agent
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Star generate the code and force its clones within the same scope be distinct

instances of the same process. Wewill discuss the scopeof an agentStar later.

Opposite to thefunction of ppl2pl, outputPML() processes theppl process

body instead of its I/O ports, constants, andexternal functions. The major task of

outputPMU) is to set all defines and wireless ports in the generated PROMELA

code having a correct scope. Forexample, suppose the agent Starof the above ppl

processMOD has a clone in both galaxyG1 and G2, its statement

#deflne Base 100

will appear in the generated PROMELA code twice, which is nota desired result.

This is solved by casting the define with the scopeof its agent Staras follows.

#define G1_Base 100

#define G2_Base 100

Such scope casting also applies to their process names and wireless ports. There

fore, the generated PROMELA code contains following statements:

proctype G1_MOD(lnt _SIPJD)

G1_running->admlt(value)->result=Base+(value-Base)%modulus;

proctype G2_MOD(lnt_SIP_ID)

G2_running->admlt(value)->result=Base+(value-Base)%modulus;

Note that in thiscase theirwireless ports listen to different channels G1_running

and G2_running. This is the usual case when the clones of an agent Star are

embedded in different galaxies. To force them having the same scope, explicitly

give the same name to the scope state of both clones (see defstate scope in

above DEMOD.pl). Forexample, let the name of scope be ALL andthe generated

PROMELAcode would contain only one process and two instances like:

#deflne ALL_Base 100

proctype ALL_MOD(lnt _SIPJD)

{

ALL_running->admit(value)->result=Base+(value-Base)%modulus;
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}

init

{
run ALL_M0D(1);
run ALL_M0D(2);

}

B.3.2 Pointer Binding

The pointer binding of the ports/states of an agent Star the channels/

constants in its corresponding SPIN process is accomplished during the first visit

to the go() method of the agent Star. The code within the (ISPINReady) block at

the beginning of the go() method in the above DEMOD.pl is the additional code

executed during the first visit to the go() method. The agent Star uses function

findproc3() to locate the pointer of itscorresponding SPIN process and locates two

signal channels value and result within thatprocess by using function

These pointers will facilitate the access to the process and channels in SPIN during

subsequent visits to the go() method of the agent Star. Note that the pointer of

const modulus is also located to set its initial value usingthe value of state mod

ulusofthe agent Star. At this point, the agent Star lets SPINReadybetrue toindi

cate the pointer binding is finished.

B.3.3 The Scenario of go() Method

Except the extra code executed at the beginning of the first visit to the go()

method, a regular execution scenario of the go() method is described as follows.

Readers should refer to thecode inside go() method after the (ISPINReady) block

in the above DEMOD.pl while reading this section.

The lastP_value is used to denote the arrival time of the previousarrival to

port value. If it isearlier than the current system time, the present indicator ofport

value is tumed off before the testing of new arrivals at the port. Then the agent

Star uses a loop to get all Particles in port value and writes them to the signal

channel value in its SPIN process. At thesame time thearrival time is recorded in
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lastP_value and the present indicator is turned on if any Particle has been detected

at the port.

After forwarded all Particles, the agentStar is ready to call SPIN kernel to

execute its corresponding SPIN process for one iteration. However, the prerequi

site is the arrivalTime must be later or equal to the completionTime. This would

notbe satisfied when theprocess is executing a delay() conunand and theduration

has not expired yet. Otherwise, the process will be executed for one iteration by

calling RunJSpinO. After that the agent Star checks whether if the outport result

has been updated during that iteration. If yes, the updated value is sentout to the

outputport result of the agentStar to form a newParticle.

The last two steps are setNextFiringO and GlobalUpdate(), The former

estimatesthe refiling time to the agent Star and sends out a dummy Particlewith a

future time stamp to tht feedbackOut port. The later checks whether if any wire

less outporthas been updated during the iteration at SPIN kernel. If so, it will fire

all agent Stars having a wireless inport listening to the same channel within the

same scope.

B.4 Ptolemy-supported SPIN Kernel Run_Spiii()

RunJSpinO allows the SPIN kemel to resume the interpretation of the pro

cess from the last unexecutable statement at its previous iteration till the first unex-

ecutable statement at the current iteration (could be the same statement). Before

the interpretation begins, two routines have to been done. First, all update indica

tors of outports are turned off. Thus an agent Star could check which ports have

been updated during the iterationand generatenew Particles for them. Second, all

timers in the process are advanced by the elapsed time from the last iteration to the

current system time. This is essentially important to the correct functioningof tim

ing commands in the ppl specification. Besides, the interpretation greatly relies on

the SPIN evaluator eval() defined in DESiPnin.cCy where all SiP command are

explicitly listedand self-explanatory to show theirdetailed stepsof evaluation.
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