Copyright © 1998, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

HYBRID SYSTEMS: COMPUTATION
AND ABSTRACTION

by

George James Pappas

Memorandum No. UCB/ERL M98/78

16 December 1998

HYBRID SYSTEMS: COMPUTATION
AND ABSTRACTION

by

George James Pappas

Memorandum No. UCB/ERL M98/78

16 December 1998

ELECTRONICS RESEARCH LABORATORY

_College of Engineering
University of California, Berkeley
94720

The dissertation of George James Pappas is approved:

M bee [, 141

Mo A @ Dec. (6,198
c’

. Date

,Mw A M & o, 198

Date
Ao Cuw:,g [odee 'Y
: Date

University of California at Berkeley

Fall 1998

HYBRID SYSTEMS : COMPUTATION AND ABSTRACTION
by

George James Pappas

B.S. (Rensselaer Polytechnic Institute) 1991
M.S. (Rensselaer Polytechnic Institute) 1992

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy

in
Engineering - Electrical Engineering and Computer Sciences
in the

GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Shankar Sastry, Chair
Professor Thomas Henzinger
Professor Andrew Packard
Professor Pravin Varaiya

Fall 1998

HYBRID SYSTEMS : COMPUTATION AND ABSTRACTION

Copyright Fall 1998
by
George James Pappas

Abstract

HYBRID SYSTEMS : COMPUTATION AND ABSTRACTION
by

George James Pappas
Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Shankar Sastry, Chair

Recent advances in computation and communication have enabled the control of large scale,
multi-agent, distributed, and hierarchical systems such as automated highway and air traffic
management systems. Improving the performance, safety, and reliability of such systems is
extremely challenging as it requires new modeling formalisms accompé,nied by novel analysis
and design techniques.

Hybrid systems combine discrete event and continuous time dynamics in a manner
that can capture decision logic, agent dynamics, and inter-agent communication in a unified
modeling framework. The expressive power of hybrid systems has been successfully applied
in both automated highway and air traffic management systems. Given the safety criticality
of such systems, one of the most important problems in the area of hybrid systems is the
computation of the reachable space of a hybrid system in order to verify that no undesirable
states are feasible.

The first part of this dissertation focuses on algorithmic methods for exactly com-
puting the reachable states of hybrid systems. State of the art methods from theoretical
computer science perform reachability computation for timed, multirate, and rectangu-
lar automata before reaching undecidability barriers. Using the very recent notion of o-
minimality from mathematical logic, the first class of hybrid systems with linear differential
equations having a decidable reachability problem is obtained. This result is important
given the wide applicability of linear systems in control theory and applications.

The second part of this dissertation focuses on reducing the complexity of reacha-

bility calculations for continuous systems. In particular, a notion of abstraction for control

systems is introduced. In addition to complexity reduction, the notion of control system
abstraction is useful in hierarchical system design. Conditions are derived under which one
control system is a consistent abstra.ctibn of another, in the sense that checking reachability
on the abstracted model is equivalent to the detailed model. For linear systems, this leads
to a hierarchical controllability algorithm, whose computational advantages are verified by

recovering the best known controllability algorithm from numerical linear algebra.

P

<

; N\f//“xf

Professor Shankar Sastry
Dissertation Committee Chair

L

Contents

List of Figures
List of Tables

1 Introduction

1.1 Research Areas and Stateof the Art
1.2 Issues Addressed and Dissertation Qutline

2 Mathematical Background

2.1 Differential Geometry i e
2.1.1 Differentiable Manifolds
2.1.2 Tangent SPaces o ottt e e e
2.1.3 VectorFields i i

2.2 Subanalytic Geometry e
2.2.1 Semianalytic and SubanalyticSets
2.2.2 Subanalytic Stratifications oo oo

2.3 Mathematical Logic oo
2.3.1 Languagesand Formulas.
232 Model Theory. ¢ v o i i it i it e e e s e e e e
2.3.3 Decidability and Quantifier Elimination

Straightening Out Differential Inclusions

3.1 Straightening Out Differential Equations

3.2 Straightening Out Differential Inclusions

3.3 ConcluSions . . . v v v v it e e e e e e e e e e e e e e e e

Computable Hybrid Systems
4.1 Bisimulations of Transition Systems
4.2 Bisimulations of Hybrid Systems
4.3 O-Minimal Theoriest
4.4 O-Minimal Hybrid Systems
4.5 Classes of O-Minimal Hybrid Systems
46 Linear Hybrid Systems
4.6.1 Nilpotent matrices« i e

A+

4.6.2 Diagonalizable matrices with rational eigenvalues
4.6.3 Diagonalizable matrices with imaginary eigenvalues.
47 Conclusions i i i i e e e e e e

5 Abstractions of Control Systems

5.1 Abstractions of Vector Fields
5.2 Control System Abstractions
5.3 Consistent Control Abstractions
5.4 Consistent Linear Abstractions
5.5 Hierarchical Controllability Algorithm . . .
56 Conclusions

6 Conclusions
Bibliography

A Appendix
A.1 Implemetation of Algorithms 5.37 and 5.38

..................

..................

..................

71
74
79

80
83

86 -

92
97
110
116

117
120

132

vi

List of Figures

1.1 Example of a timed automaton, 3
1.2 Supervisory control of continuous systems 4
1.3 System analysis using abstractions 8
1.4 Two layer control hierarchy 9
2.1 Example of a partition but not a stratification. 22
2.2 Example of subanalytic stratification 23
2.3 Infinite crossings on a bounded interval 24
3.1 Rectangular hybrid automaton TR 32
3.2 Straightening the flow ofa vector field 33
4.1 A typical hybridautomaton 51
4.2 Bisimulation algorithm does not terminate 55
4.3 Inductive definitionofcells, 58
5.1 Two layer control hierarchy 81
5.2 Comparison of Algorithm 5.38 and the Kalman rank condition 115

5.3 Comparison of Algorithm 5.38 and the Popov-Belevitch-Hautus test 115
5.4 Comparison of Algorithm 5.38 and Algorithm 537 withk=1.. 116

3

vii

List of Tables

4.1 Definable sets and flows in o-minimal theories 57

R

viii
Acknowledgements

Being a graduate student at Berkeley was one of the most tremendous experiences in my life.
The guiding light through this amazing journey has been my advisor, Professor Shankar
Sastry, who has created a highly charged and scientifically stimulating atmosphere in his
group while respecting the academic freedom of his students. His vision, advice, support,
and continuous inspiration are comparable only to his wine tasting abilities and highly
cultured taste of life. I will always be grateful for everything he has taught me about
science and life.

I would like to thank Professors Tom Henzinger, Andy Packard, and Pravin Varaiya,
for serving on my Qualifying and Dissertation Committees. Tom’s course on Computer
Aided Verification has inspired much of the work in this dissertation, as he motivated me
to transfer computer science concepts to control theory. A special note goes to Professor
Gerardo Lafferriere with whom I had an excellent collaboration during his sabbatical stay
at Berkeley.

I have greatly benefited from being surrounded by such a talented group of students
and postdocs. Datta N. Godbole, John-Morten Godhavn, T. John Koo, Jana Kosecks,
John Lygeros, Yi Ma, Bruno Sinopoli, Claire Tomlin, and Sergio Yovine have not only
collaborated with me, but have also made my every day life in the office extremely pleasant
and enjoyable.

Many of you may know that I have spend an enormous amount of time for coffee
breaks at Nefeli Cafe. This would not be possible without the help of Kostas Adam, Nick
Biziouras, Jana Koseckd, John Lygeros, Anna Papafragou, Jason Vassiliou, and the rest of
my friends and local Greek Mafia. Our daily discussions on life, science, art, sports, stocks,
and politics, will never be forgoten...

Last but not least, this dissertation is dedicated to my family. My parents have
given me complete autonomy from a very young age, and have supported my every decision.

To them, I owe more than I could possibly have...

Chapter 1

Introduction

In the past few decades, advances in computation and communication have enabled
the development and control of large scale, highly complex systems. Air traffic management
systems, automated highway systems, flight management systems, communication networks,
and power distribution networks are a few examples that are important not only from an
engineering perspective but also from their prevalence in our everyday lives and the well
being of the economy.

The nature of the above systems is distributed as various subsystems or agents
either compete or cooperate to satisfy individual or common objectives. As the computa-
tional ability of individual agents and the communication between agents increase rapidly,
next generation systems attempt to balance centralized and decentralized designs by allow-
ing individual agents to self optimize their own objectives but coordinate with other agents
when conflicts arise. This naturally leads to multi-agent, multi-objective systems which are
also multi-modal in the sense that the system functions in various modes of operation.

In addition, large scale systems such as air traffic management systems and au-
tomated highway systems, are systems of very high complexity. Complexity is typically
reduced by imposing a hierarchical structure on the system architecture, where systems at
higher levels utilize coarser system models than lower levels. Hierarchical structures also
arise as a reflection of a hierarchy of system objectives.

In order to improve the performance, safety, and reliability of such systems, en-
gineers are currently faced with the challenge of developing appropriate models, analysis,
and design methods. The candidate modeling frameworks must have the expressive power

to describe both agent dynamics, typically described by differential equations, as well as

decision logic and communication protocols, usually modeled by discrete event systems. In
addition, they must be equipped with composition and abstraction operators in order to
capture the distributed and hierarchical nature of such systems. Composition operators
perform the proper interconnection and synchronization of subsystems whereas abstraction
operators allow macromodeling, or the ability to hide unnecessary details at the higher level.

A solution to this modeling challenge is offered by hybrid systems. Hybrid systems
are discrete event systems with possibly different differential equations in each discrete loca-
tion. One nigdeling approach is to extend the formalisms and tools of finite state machines
to incorporate continuous dynamics. This approach has been pursued by theoretical com-
puter science, and has been applied in modeling real time hardware and software systems.
In the control community, a variety of hybrid system models extend differential equations
and control systems to capture discrete decision logic, and switching behavior. Naturally,
computer science models focus hybrid systems with sophisticated discrete dynamics but
simple continuous dynamics, whereas control theory models include complicated continu-
ous dynamics but relatively rudimentary discrete behavior. It is becoming apparent from
applications that a synergy of techniques from these fields is needed in order to analyze

hybrid systems with complicated continuous dynamics and sophisticated discrete behavior.

1.1 Research Areas and State of the Art

The new modeling paradigm of hybrid systems has generated numerous issues
that need to be resolved from both a theoretical and applied perspective. We list a few
of them below while reviewing state of the art techniques in each area of hybrid systems
research. More thorough and detailed starting points in the area of hybrid systems include
[4, 6, 7, 41, 44, 74].

Modeling

Various hybrid system models have been proposed in the literature. Computer
scientists consider hybrid automata which extend finite state machines to include simple
continuous dynamics. This has resulted in timed automata [3], where clock dynamics of the
form £ = 1 where inserted within each state. The automaton would instantaneously jump
from one discrete location to another depending on the comparison of the clock value with

integer constants. An example of a timed automaton is shown in Figure 1.1. Timed au-

L

X>5 — X=10 Y=3

Y>10 —> X=-5 Y=0

-

Figure 1.1: Example of a timed automaton

tomata are useful for modeling and analyzing properties of real time hardware and software
systems, such as real time communication protocols. Timed automata have been extended
to fixed slope and multirate automata [2] which capture dynamics of the form & = ¢, and
rectangular automata [48, 91], where continuous dynamics are modeled by differential inclu-
sions of the form Z € [a,b]. Finally, the most expressive but still computable class of hybrid
systems is linear hybrid automata [46], which capture dynamics of the form Az < b. Hybrid
input/output automata extend the input/output framework of [72], which has been used
to analyze distributed algorithms and protocols. All the above models are equipped with
composition operators which allow the parallel composition of various subsystems. This is
an important modeling feature for the so called concurrent systems where different system
components interact and synchronize with their environment across well defined boundaries.

On the other side, the control community starts with complicated differential equa-
tions and control systems, and starts adding discrete behavior [13, 23, 99, 108, 112]. Nat-
urally, switched systems [80], and systems with discontinuous dynamics [40] are hybrid
systems with special structure. Another way in which hybrid systems arise in control the-
ory is the framework of supervisory control of continuous systems, shown in Figure 1.2. In
this framework, a purely continuous plant is interconnected with a discrete event controller
by generalized analog to digital and digital to analog converters. The outputs of the plant
are quantized by the analog to digital converter, which generates discrete events as inputs
to a discrete event supervisor. The supervisor encodes some computer program or decision
logic, and outputs its control decision to the generalized digital to analog converter which
parses the discrete command to a continuous control law. This framework is a special type

of hybrid system that has been considered in (8, 26, 32, 50, 81, 93]. More unified modeling

Supervisor
_> |
Discrete System l
A/D D/A
| Physical Plant
-—
Continuous System

Figure 1.2: Supervisory control of continuous systems

approaches which capture general continuous and discrete dynamics include [18, 67]. The
fundamental modeling components of these formalisms is truly hybrid, as state, inputs,
and outputs can have both a discrete and continuous component. In addition, modeling
formalisms accompanied by the first simulation tools for hybrid systéins include SHIFT [37],
OmoLA/OwMsiM [5], and HYBRID CC [27].

With a few exceptions [99, 108], most of the above models lack qualitative results
which guarantee their well posedness. As a result, there are very few results on existence,
uniqueness, or robustness of system trajectories. Even though it is becoming apparent that
hybrid systems, in general, are not robust, theorists are searching for the correct notion
of continuity for hybrid systems [33]. Another manifestation of the complicated nature
of hybrid system models is the zeno property. A hybrid system is zeno when there exist
system trajectories with infinite switching in finite time. Zeno hybrid systems are not valid
mathematical abstractions of physical processes. Much more work is needed in this area in

order to understand the complex behavior that hybrid systems are capable of generating.

Analysis and Verification

Since hybrid models are used to describe safety critical systems, like air traffic
management systems, it is important to have guarantees of safe operation. This is the
goal of formal verification methods which, given a mathematical abstraction of the system,
attempt to prove that the actual system satisfies the desired properties. Computational

approaches to system verification is typically a three step methodology:

,,;f.l"

1. Modeling : The system is modeled in some hybrid system formalism
2. Specification : Desired properties are expressed as temporal logic formulas
3. Analysis : The system is analyzed using algorithmic or deductive methods

In the computer science community there are essentially two approaches to hybrid system
verification. Model checking approaches essentially completely explore the whole state space
to check whether the system satisfies the desired specification. The advantage of model
checking approaches is that they can be completely automated, resulting in meaningful
computer aided verification tools. In addition, the lack of structure of purely discrete
systems makes computational approaches to model checking inevitable. Even though model
checking methods are very successful in verifying properties of discrete systems with finite
state spaces, their application to hybrid systems with infinite state spaces makes the issue
of decidability extremely' important.

The main tool for obtaining decidable classes of hybrid systems is given by the
concept of bisimulation [79). Bisimulations are simply quotient systéms which preserve the
properties of the original system. For purely discrete systems, bisimulations are used in
order to reduce the complexity of verifying properties of very large scale systems. If an
infinite state hybrid system has a finite state bisimulation, then checking properties for the
hybrid system can be equivalently performed on the finite, discrete, quotient graph. Since
the quotient graph is finite, the algorithm will terminate. If in addition, each step of the
algorithm can be encoded and implemented by a computer program, then the problem is
decidable.

The first decidability result of this kind for hybrid systems was obtained in [3] for
timed automata, which are finite state machines with clock dynamics. This was extended
to multirate automata [2), as well as initialized rectangular automata [48, 91] which at each
discrete location contain constant rectangular differential inclusions of the form z € [a, b].
Based on these results, computational tools have been developed for automatic verification
of timed (KRONOS [34] and UPPAAL [15]) and linear hybrid automata (HYTECH [47]). In
(48], various relaxations of these models were shown to be undecidable.

The use of deductive methods is the second approach in the computer science
for hybrid .system verification. Deductive methods try to prove properties using formal

deduction based on a set of inference rules [72, 76]. Even though deductive methods are

not constrained by any decidability frontiers, their application requires significant human
intervention. This makes their application to large scale systems difficult. However, semi-
automated tools like STEP [17], autoﬁate part of the verification procedure, thus reducing
the human workload.

The response of the control community to hybrid system verification uses game
theoretic methods [67]. Instead of verifying all system trajectories, a game is solved resulting
in the worst possible system trajectory. If the worst trajectory satisfies the specification
then so does every other system trajectory. The difficulty with this approach is in solving
the game and obtaining the worst system trajectories. Other analysis results have.focused
on the stability of various classes of switched and hybrid systems. The first extension
of Lyapunov type theorems to hybrid systems used multiple Lyapunov functions {18, 19].
Other Lyapunov type results include [117] as well as more constructive stability results for
switched linear systems [52]. A hierarchical stabilization method for systems with changing

dynamics can be found in [118].

Controller Synthesis

~ Whereas verification ensures properties of completed designs, controller synthesis
attempts to design systems so that they are guaranteed to satisfy the desired specifications.
For hybrid systems, however, the notion of control is much broader than the classical open
loop or feedback control found in continuous control theory. Controlled variables exist not
only in the continuous domain, but a,léo in the discrete domain. Therefore the controller syn-
thesis problem ask us to design not only continuous control laws but also discrete strategies
in order to satisfy the system specification.

In the computer science community, one approach to controller synthesis is the
parametric verification problem. As long as one has a decidable class of models, then
model checking algorithms can determine ranges of parameter values for which the system
will satisfy the specification. A more standard method synthesizes a control automaton
which, when composed with the plant automaton, results in the system meeting the desired
specification. This has been explored in [11, 75] for timed systems, and [115] for linear
hybrid automata.

The control community has naturally generated a variety of control methodologies

for hybrid systems, as various frameworks that apply to purely continuous systems have

been extended to capture hybrid systems. Optimal control approaches have been used in
[20, 18, 71] to formulate and solve an optimal control problem for a class of hybrid systems,
while providing existence of optimal and near -optimal control policies. Relaxed optimal
control problems is also the fundamental machinery in the control framework advocated
in [54, 81]. There is considerable research effort in the direction of supervisory control
of continuous systems [8, 26, 32, 50, 81, 93], which is trying to formalize the control of
continuous systems by computer programs. Control methods in the spirit of viability theory
[12] have been used by [36, 55]. Control of hybrid systems with integrator dynamics in each
location is considered in [101]. Game theoretic approaches were first proposed in [70, 67],
and have been applied in automated highway systems [68], and air traffic management
systems [102]. Games are very common in the synthesis problem of purely discrete systems
[29, 100], but they also have very natural applications in continuous systems [14]). As a
result, the game theoretic approach is a uniform controller synthesis platform for purely

continuous, purely discrete, and true hybrid systems [69, 103].

Computational Complexity

The above analysis and control techniques face serious challenges in the near fu-
ture. With the exception of simulation tools, control theoretic approaches are not currently
accompanied by meaningful computational tools. Computer scientists do provide compu-
tational tools, but it has been recognized, mainly in the control community that uses more
sophisticated dynamical models, that the expressive power offered by decidable hybrid sys-
tems is limited. However, the main obstacle that significantly limits the application of both
computer science and control theoretic approaches is computational complezity.

There are two main techniques to deal with complexity: compositional methods
and abstraction. As the main cause of state space explosion is parallel composition, com-
positional methods attempt to decompose the analysis of a large scale system into a set
of smaller problems for individual system components. Very often, however, compositional
verification of hybrid systems is difficult due to the strong coupling of system components.

On the other hand, abstraction techniques tackle the complexity involved in ver-
ifying that a given large scale system satisfies certain properties, by extracting a simpler
but qualitatively equivalent abstracted system, shown in Figure 1.3. Checking the desired
property on the abstracted system should be eguivalent or sufficient to checking the prop-

Abstracted
Model

Original
Model

Figure 1.3: System analysis using abstractions

erty on the original system. Abstraction techniques have been rather successful in facing
problems of exponential complexity for purely discrete systems [31, 66]. Depending on the
property, special graph quotients which preserve the property of interest are constructed.

In addition to complexity reduction, abstraction techniques have been the main
tool in expanding the applicability of current decidability results. In particular, [43, 49, 83,
92] have abstracted hybrid systems with complicated dynamics by overapproximating their
trajectories by decidable hybrid models. In [90], the reachable set of Lipschitz differen-
tial inclusions is overapproximated using rectangular hybrid automata. Such conservative
overapproximations are sufficient abstractions, in the sense that verifying the abstraction
is a sufficient but not necessary condition. If the abstracted system satisfies the property,
then so does the original system. If, however, the abstracted system does not satisfy the
required specification, then this may be attributed to the redundant trajectories feasible in
the abstracted system but not by the original system.

In addition to the analysis of large scale systems, abstractions are also extremely
useful in hierarchical system design. The main classes of hierarchical structures are nicely
described and classified in [78]. Figure 1.4 shows a typical two-layer control hierarchy which
is frequently used in the quite common planning and control hierarchical systems. In this
layered control paradigm, each layer has different objectives. In performing their tasks,
the higher level uses an abstracted model of the lower level. One of the main challenges in
hierarchical systems is the extraction of a hierarchy of models at various levels of abstraction
which are compatible with the functionality and objectives of each layer. A theory of
abstraction would be critical in designing valid hierarchies.

Hierarchical systems for discrete event systems have been formally considered in

(25, 113, 114,119]. The supervisory control framework of Figure 1.2 is another example

Planning Layer
Abstracted Model

Control Layer
Detailed Model

Physical System

Figure 1.4: Two layer control hierarchy

of a hierarchical system consisting of discrete abstractions of continuous systems. This has
been considered in [24, 26] as well as [8, 32, 93]. For purely continuous systems, the only
existing notions of aggregation are in the spirit of model reduction [9, 57, 58, 59, 60]. These
methods perform only state aggregation as opposed to both state and input aggregation.
The above approaches, however, are quite a distance away from being applicable to truly
large scale, hierarchical systems, like Automated Highway Systems [109], and Air Traffic
Management Systems [88, 95].

1.2 Issues Addressed and Dissertation Outline

Despite the initial progress in developing a theoretical basis for modeling, analyz-
ing, and designing hybrid systems, the majority of the successful developments have been
either too discrete or too continuous. The main reason is that there are fundamental limita-
tions to the techniques of both theoretical computer science and control theory. Theoretical
computer science techniques are usually of a combinatorial nature due to the lack of struc-
ture on the discrete dynamics, and rely on powerful computational tools. However, they are
not well suited to handling complicated continuous dynamics. The structure of differential

equations naturally suggests the use of deductive techniques for their analysis by control

i

Bt

10

theorists. Deductive techniques, even if they are conceptually appealing and insightful, will
require algorithmic methods in order to be applicable to complex hybrid systems with large
numbers of discrete states. It is becoming clear that in order to successfully handle true
hybrid systems with many discrete states and complicated dynamics, a synergy of concepts
and methods from computer science and control theory is needed.

In Chapter 2, we present the necessary mathematical tools from differential ge-
ometry and mathematical logic that will be used in this dissertation. Differential geometry
is the natural framework for studying differential equations and control systems, whereas
mathematical logic is the heart of theoretical computer science. Even though these two
mathematical areas seem disconnected, an amazing bridge between them has been recently
built by geometric model theory. This connection is fully exploited in subsequent chapters.

Chapter 3 describes the first attempt to enlarge the modeling frontier of decidable
hybrid automata, namely rectangular hybrid automata. In rectangular hybrid automata,
continuous variables must satisfy constant, decoupled, rectangular differential inclusions
of the form # € [a,b]. A natural problem is the characterization of general rectangular
differential inclusions which can transformed to constant, decoupled inclusions by state
transformation. The resulting conditions are quite restrictive and presented a serious barrier
to extending the decidable classes of hybrid systems. The results of this chapter can also
be found in [87].

The goal of Chapter 4 is to extend the known decidable classes of hybrid sys-
tems. The main tool for obtaining decidability results for hybrid systems is the concept
of bisimulation. If a hybrid system has a finite bisimulation, then reachability properties
of the original hybrid system can be equivalently checked on a finite, discrete graph. In
the search of new classes of hybrid systems with finite bisimulations, the very recent notion
of o-minimal theories from geometric model theory is used. O-minimal theories connect
the seemingly disjoint worlds of geometry and logic presented in Chapter 2. Using this
powerful mathematical machinery, the notion of o-minimal hybrid systems is introduced as
hybrid systems with all relevant sets and flows definable in an o-minimal theory. It is shown
that all o-minimal hybrid systems admit finite bisimulations. This is followed by a list of
o-minimal hybrid systems which captures versions of most hybrid systems known to admit
finite bisimulations. Furthermore, it includes new classes of hybrid systems with linear
dynamics in each discrete location. This result is the evolution of previous attempts which

were more geometric in nature [61, 65], but were restricted to planar dynamics. Showing

11

that o-minimal hybrid systems admit finite bisimulations, must be followed by methods to
construct them, in order to obtain new classes of hybrid systems with a decidable reach-
ability problem. The constructive methods that are used come from mathematical logic.
Sets are symbolically represented as formulas in first order logic, and reachability calcu-
lations are performed using guantifier elimination.techniques. Since quantifier elimination
is possible for the theory of reals with addition, we either find or transform subclasses of
o-minimal hybrid systems which are definable in this theory. This procedure results in the
first class of hybrid system with linear dynamics in each discrete location with a decidable
reachability problem. Chapter 4 is a review of the results in [62, 63].

Whereas Chapter 4 is concerned with extracting discrete abstractions from hybrid
systems, Chapter 5 focuses on continuous abstractions of continuous control systems. In
particular, Chapter 5 introduces a notion of control system abstraction. Given a control
system, and a map which performs state aggregation, an abstracted system is any control
system which overapproximates the abstracted trajectories of the original system. This
notion of abstraction is formalized by generalizing the classical notion of ®-related vector
fields to control systems. Furthermore, this notion mathematically formalizes the concept of
virtual inputs used in backstepping designs. In hierarchical systems, however, aggregation
is not independent of the functionality of the layer at which the abstracted system will be
used. Our goal is to not only extract abstractions of control systems, but to also ensure
that certain properties propagate from the abstracted to the original model. Properties of
interest include reachability, controllability, stabilizability, and trajectory tracking. Reach-
ability preserving abstractions are defined as consistent, in the sense that controllability
requests from the abstracted systems are implementable by the detailed original model.
We focus on controllability of linear control systems and characterize consistent linear ab-
stractions. In this spirit, a hierarchical controllability criterion is obtained for large scale,
linear systems. Intuitively, instead of checking controllability of a large scale system, we
construct a sequence of consistent abstractions and then check the controllability of a sys-
tem which is much smaller in size. Consistency will then propagate controllability along
this sequence of abstractions from the simpler quotient system to the original complex sys-
tem. The computational advantages of this approach are verified by recovering the best
known controllability algorithms from numerical linear algebra [39], as a special case of the

hierarchical controllability criterion. Chapter 5 reviews most of the material in [86] and

[85, 89].

e

12

Finally, Chapter 6 presents many directions for future research. As the field of

hybrid systems is young, there are many more questions than answers...

13

Chapter 2
Mathematical Background

In this chapter, we review some facts from differential geometry, subanalytic geom-
etry, and mathematical logic. Differential geometry is the natural mathematical framework
for nonlinear control systems and geometric control theory. Subanalytic sets is the richest
class of sets that is closed under unions, intersections, complements, forward, and inverse
maps. These operations of subanalytic sets are the main ingredients of first order logic,
which is reviewed along with some elementary model theory. In Chapter 4, the above no-

tions will be directly linked, as first order predicate logic will be used to capture subanalytic

sets.

2.1 Differential Geometry

Our treatment of differential geometry follows that of [51). For a more thorough

introduction to geometry, the reader may wish to consult numerous books on the subject

such as [1, 96].

2.1.1 Differentiable Manifolds

Recall that a function h : A — B is a homeomorphism iff & is a bijection and both
h and k™! are continuous. In this case, topological spaces A and B are called homeomorphic.
A function f : R®* = R is called smooth or C™ if all derivatives of any order exist and are
continuous. Function f is real analytic or C¥, if it is C™ and for each z € R" there exists a

neighborhood U of z, such that the Taylor series expansion of f at x converges to f(z) for

=

.
AV,

14

all z € U. A mapping f : R* = R™ is a collection (f1,...,fm) of functions f; : R* - R
The mapping f is smooth (analytic) if all functions f; are smooth (analytic).

Definition 2.1 (Manifolds). A manifold M of dimension n is a metric space 1 which is

locally homeomorphic to R".

A manifold, which is of great interest to us, is R" itself. A subset NV of a manifold M
which is itself a manifold is called a submanifold of M. Any open subset N of a manifold
M is clearly a submanifold, since if M is locally homeomorphic to R* then so is N. In
particular, an open interval I C R is also a manifold.

A coordinate chart on a manifold M is a pair (U,$) where U is an open set of
M and ¢ is a homeomorphism of U on an open set of R*. The function ¢ is also called a
coordinate function and can also be written as (¢1,...,¢,) where ¢; : M — R lfpe U
then ¢(p) = (¢1(p),.-.,Pn(p)) is called the set of local coordinates in the chart (U, ¢).

When doing operations on a manifold, we must ensure that our results are consis-
tent regardless of the particular chart we use. We must therefore impose some conditions.
Two charts (U, ¢) and (V, %) with U NV # 0, are called C*® (C*) compatible if the map

Yoo lipUNV)CR' —yp(UNV)CR

is a C® (C%) function. A C*® (C“) atlas on a manifold M is a collection of charts (U, ¢q)
with @ € A which are C® (C¥) compatible and such that the open sets U, cover the
manifold M, so M = Uae 4Ua. An atlas is called maximal if it is not contained in any

other atlas.

Definition 2.2 (Differentiable Manifolds). A differentiable (analytic) manifold is a man-
ifold with ¢ mazimal, C* (C*) atlas.

Now that we have imposed this differential structure on our manifold M we can
perform calculus on M. In particular let f : M — R be a map. If (U,9) is a chart on M

then the function
f=fo¢:¢(U)CR* —R

is called the local representative of f in the chart (U,). We therefore define the map f

to be smooth (analytic) if its local representative f is smooth (analytic). Notice if f is

!More generally, we may replace metric space with Hausdorff and second countable topological space

15

smooth (analytic) in one chart, then it is smooth (analytic) in every chart since we required
our charts to be C*® (C*) compatible and our atlas to be maximal. Hence our results are
intrinsic to the manifold and do not depend on the particular chart we use. Similarly, if we
have a map f: M — N, where M,N are differentiable manifolds, the local representation
of f given a chart (U, ¢) of M and (V,%) of N is

f=v¢ofog!

which makes sense only if f(U)NV # 0. Again f is smooth (analytic) if f is a smooth
(analytic) map.

Let f : M — N be a map between two manifolds. The map f is called a
diffeomorphism if both f and f~! are smooth. In this case, manifolds M and N are called
diffeomorphic.

The rank of a smooth map f : M — N at p € M is defined to be the rank of
the Jacobian matrix of f expressed in local coordinates. The rank is independent of the
particular choice of coordinate charts used. If the rank of f is equal to the dimension of M
for all p € M, then f is called an immersion. If the rank of f is equal to the dimension of
N for all p € M, then f is called an submersion. If f : M — N is an injective immersion,
then f(M) is called an immersed submanifold of N. If, in addition, the topology induced
on f(M) from M coincides with the topology of f(M) as a subset of N, then f(M) is an
embedded submanifold of V.

2.1.2 Tangent Spaces

Let p be a point on a manifold M and let C*(p) denote the vector space of all

‘smooth functions in a neighborhood of p. A tangent vector X, at p € M is an operator

from C*(p) to R which satisfies for f,g € C®(p) and a,b € R, the following properties,
1. Linearity Xp(a-f+b-g) =a- Xp(f) +b- Xp(g)
2. Derivation Xp(f - g) = f(p) - Xp(9) + Xp(f) - 9(p)

The set of all tangent vectors at p € M is called the tangent space of M at p and is denoted
by T,M. The tangent space T,M becomes a vector space over R if for tangent vectors

Xp, Y, and real numbers c;,c; we define

(c1- Xp+c2-Yp)(f) =1 Xp(f) +c2- Yo(f)

Aty

16

for any smooth function f in the neighborhood of p. The collection of all tangent spaces of
the manifold,
™ = | J T,M
PEM

is called the tangent bundle. The tangent bundle has a naturally associated projection map
m: TM — M taking a tangent vector X, € T,M C TM to the point p € M. The tangent
space T, M can then be thought of as 7~ 1(p).

The tangent space can be thought of as a special case of a more general mathe-
matical object called a fiber bundle. Loosely speaking, a fiber bundle can be thought of as

gluing sets at each point of the manifold in a smooth way.

Definition 2.3 (Fiber Bundles [82]). A fiber bundle is a tuple (B, M, 7,U, {O; }ic1) where
B, M, U are smooth manifolds called the total space, the base space, and the standard fiber
respectively. The map m : B — M is a surjective submersion and {O;}ics is an open cover
of M such that for every i € I there ezists a diffeomorphism ®; : #71(0;) — O; x U
satisfying

mood=m

where T, is the projection from O; x U to O;. The submanifold n~(p) is called the fiber
at p € M. If all the fibers are vector spaces of constant dimension, then the fiber bundle is

called a vector bundle.

The tangent bundle is a vector bundle and the fiber at each point p € M is the
tangent space T,M. From Definition 2.3 it is clear that fiber bundles are locally diffeomor-
phic to O; x U. Therefore, fiber bundles are manifolds of dimension ny + ny where nyy
and ny are the dimensions of M and U respectively. In particular, the tangent bundle TM
has dimension 2n.

Now let M be a manifold and let (U, ¢) be a chart containing the point p. In this

chart we can associate the following tangent vectors

o ...5
31" 8¢

-defined by

d . _0(fog™!)
675,-(” = om

17

" for any smooth function f € C®(p). The tangent space T,M is an n-dimensional vector
space and if (U, ¢) is a local chart around p then the tangent vectors

S

91’ Oy
form a basis for T,M. Therefore if X, is a tangent vector at p then

= 0
Xp = Zai%

i=1

where ai,...,a, are real numbers. From the above formula we can see that X,(f) is an

operator which simply takes the directional derivative of f in the direction of [a,,...,an)}.
Now let M and N be smooth manifolds and f : M — N be a smooth map. Let

p € M and let ¢ = f(p) € N. We wish to push forward tangent vectors from T, M to T,N

using the map f. The natural way to do this is by defining a map f. : T,M — T, N by

(f+(Xp))(9) = Xp(g o f)

for smooth functions g in the neighborhood of g. One can easily check that f,(X,) is a
linear operator and a derivation and thus a tangent vector. The map f, : T,M — Ty,) N
is called the push forward map of f. The push forward map f, : T,M — Ty N is a linear
map, and furthermore if f : M — N and g : N — K then

(9o f)r=geo fu
which is essentially the chain rule.

2.1.3 Vector Fields

A vector field on a manifold M is a smooth map X which places at each point p
of M a tangent vector from T, M. Therefore since a vector field, X, places at each point p
a tangent vector X(p) we have that in the chart (U,) the local expression for the vector
field X is

X(p) = ;ai(p)a%

The vector. field is smooth (analytic) if and only if a;(p) is C* (C¥).

18

Let I C R be an open interval containing the origin. An integral curve of a vector
field is a curve ¢ :] — M whose tangent at each point is identically equal to the vector

field at that point. Therefore an integral curve satisfies for all ¢ € I,
d =c (1) = X(c)

A vector field is called complete if the integral curve passing through every p € M can be
extended for all time, that is we can choose I = R Integral curves of smooth (analytic)
vector fields are smooth (analytic).

Now let ® : M — N be a smooth map between two manifolds and let X be a
vector field on M. At every point p € M we can use @, to push forward X (p) of the vector
field to Ty, N. If @ is a diffeomorphism, then this procedure results in a well defined vector
field on N denoted ®,(X). If ® is surjective, then ®.(X) is a well defined vector field only
when & and X are such that ®.(Xp,) = ®.(X,,) whenever ®(p;) = ®(p2). This is captured
by the following definition.

Definition 2.4 (®-related Vector Fields). Let X and Y be vector fields on manifolds
M and N respectively and ® : M —s N be a smooth map. Then X and Y are ®-related iff

the following diagram commutes
M 25 N
x| v| (2.1)
T™ -2 TN
or in other words iff 2,0 X =Y 0 &.

If ® is not surjective, then X may be ®-related to many vector fields on N. If,
however, ® is surjective, then X can only be ®-related to a unique vector field on N.

Given two vector fields X and Y on manifold M, we define their Lie bracket,
denoted [X,Y], by the following rule

[X,Y]p(f) = Xp(Y(£)) — Yo(X(f) (2.2)

for functions f € C®(p). It can be easily verified that [X,Y], € T,M, and thus [X,Y] is
indeed a vector field. If X and Y are given in local coordinates as vectors f(z), g(z), then

the expression for their Lie bracket [f,g] in local coordinates is simply

.ol = 27 - 2Ly 23

5k

o

19

Finally, there is an interesting relation between Lie brackets and ®-related vector fields.
Let ® : M — N be a surjection, let X; and X, be two smooth vector fields on M, and let
®.(X,) and ®.(X2) be ®-related to X; and X, respectively. Then

D.([X1, X2]) = [2.(X1), Bo(X2)] (24)

The above fact is, of course, also true when @ is a diffeomorphism.

2.2 Subanalytic Geometry

In much of the subsequent analysis, we shall be dealing with sets and operations
on sets. In general, if one starts with a general class of sets, and performs on them unions,
complements, closures, intersections, and projections, then either the class of sets is closed
under these operations, or new, more complicated sets emerge. In this section, we present

classes of sets which are closed under unions, complements as well as forward and inverse

maps.

Definition 2.5 (Boolean Algebras of Sets). A boolean algebra of a set X is a nonempty
collection C of subsets of X, C C 2% , such that if A,B € C, then AUB and X \ A belong

to C.

It is immediate from the above definition that @, X € C, and if A,B € C then
AN B € C. Given a family of sets A = (A;)ick, with K = {1,...,n}, we denote by
B(.A) the boolean algebra of sets generated by (A;)ick, that is the smallest boolean algebra

containing (4;)icx- It can be shown that the elements of B(.A) are exactly the finite unions

(g A,-) N (,Q X\ A,-) (2.5)

with J C K. Consider now sets of the form

of sets of the form

{x € Rnlfl(x) = Oa”'afp(x) = Ozgl(x) > O)"'vgq(x) > 0}

where functions fi,..., fp,91,--.,9¢ : R* — R are of the form a,zn +- - +6121 +ay0. Such
sets are called basic semilinear sets. A semilinear set is a finite union of basic semilinear

sets. If functions f1,..., fp,91,...,9¢ are allowed to be polynomials in z,,...,Z,, then

20

we obtain the analogous notions of basic semialgebraic and semialgebraic sets. Clearly,
semilinear sets are a special case of semialgebraic sets. The boolean algebra generated by
semilinear (semialgebraic) sets is well known to be a closed family of sets with respect to

linear (polynomial) maps.

2.2.1 Semianalytic and Subanalytic Sets

In our search for a rich family of well behaved sets, sets defined by smooth functions
appear as the next obvious candidate. Unfortunately, given any closed set Z of the real
line (for example the Cantor set), there exists a smooth function f : R — R such that
Z = {z € R| f(z) = 0}. Fortunately, real analytic functions are free from such pathologies.

The following classical result illustrates this point.

Proposition 2.6. Let I C R be an open interval and f : I = R be an analytic function.
Let Z = {z € I | f(z) = 0}. Then, either Z = I or Z has no accumulation point in I.
Also, if f is not identically zero, then every compact subset K of I contains at most a finite

number of zeros of f.

The above proposition has motivated the use of analytic functions for describing
subsets of R®. Given open neighborhood U C R", let C¥(U,R) denote the set of analytic
functions from U to R. Denote by B(C¥(U,R)) the boolean algebra generated by sets of

the form
{z e Ulfi(z) =0,..., fp(z) = 0,01(z) > 0,...,g4(z) > 0} (2.6)
where fi1,...,fp,91,...,9¢ € C“(U,R).

Definition 2.7 (Semianalytic Sets). A subset A of R* is semianalytic if for every z €
", there is an open neighborhood U of = such that ANU € B(C*(U,R)).

Semianalytic sets can therefore be locally described by a finite number of equalities
and inequalities of analytic functions. It is clear from the definition that semianalytic sets are
closed under complementation, and locally finite unions and intersections. Unfortunately,
images of semianalytic sets under analytic maps are not in general semianalytic. However,

semianalytic sets can be enlarged to a larger class which has this desirable property.

Definition 2.8 (Subanalytic Sets). A subset A of R* is subanalytic if for every z € R"
there is an open neighborhood U of z, and a bounded semianalytic set Y C R**™, such that
ANU is the projection of Y into U.

21

Therefore, subanalytic sets are projections of semianalytic sets. Even though this
construction forces closure with respect to analytic maps, it endangers closure with respect
to complementation. Fortunately, the following proposition summarizes the nice properties
of subanalytic sets. Recall that a map f is called proper if f~!(K) is compact whenever K
is.

Proposition 2.9 (Properties of Subanalytic Sets [16]). The class of subanalytic sets
has the following properties

1. Subanalytic sets are closed under locally finite unions and intersections.
2. If A is subanalytic, then R™ \ A is subanalytic.
3. Let f : R* — R" be an analytic map. If A is subanalytic, then f~1(A) is subanalytic.

4. Let f : R* — R be an analytic, proper map. If A is subanalytic, then f(A) is

subanalytic

Example 1. Points are subanalytic, and so is any locally finite union of points, for example
Z" as subset of R*. Clearly § and R" are also subanalytic. Let a, b € R, a < b, then [a,],
[a,}), (a,b] and (a,b) are subanalytic in R Let B(p,r) be the open ball centered at p of
radius r in R*. Then B(p,r) is subanalytic. In general, as is clear from the definition,
semianalytic sets are subanalytic. In particular, any semialgebraic or semilinear subset of

R" is subanalytic.
The following example shows an undesirable set that is not subanalytic.

Example 2. Consider the set Z = {2 : n € N}. The set Z is not subanalytic. To see
why simply consider any open neighborhood U of the origin. But then, by Proposition 2.6,

U N Z cannot be expressed as the zero set of a analytic function.

The above example suggests that graphs of analytic functions can only have locally
finite intersections with subanalytic sets. Such good intersection properties may be useful
in avoiding zeno hybrid systems, which exhibit infinite switching in finite time. In the next
section, we describe well known results about subanalytic sets, that may be useful in such

areas of research. However, the results of the next section will not be used in the next

chapters.

22

Figure 2.1: Example of a partition but not a stratification

2.2.2 Subanalytic Stratifications

Stratifications are special partitions of sets that have a very nice hierarchical struc-
ture. Roughly, the boundary of each set is a set of lower dimension. To give a formal

definition, denote by S the closure of a set S, and consider,

Definition 2.10 (Stratifications). An analytic (C*) stratification” of R* is a partition S
of R® with the following properties:

1. each S € S is a connected analytic embedded submanifold of R",
2. S is locally finite,

3. given two sets S,P € S, P # S, such that SNP #0 then S C P and dimS < dim P

The sets in a stratification are called strata.

Example 3. Consider the partition of the plane into the four embedded submanifolds
according to Figure 2.1. The two 2-dimensional strata are the complement of the closed
unit disk, and the complement of the spiral in the open unit disk. The two 1-dimensional
strata are the unit circle and the spiral. Notice that the unit circle is contained in the
closure of the spiral and yet it has the same dimension. Therefore, this partition is not a

stratification.
The following theorem is a powerful property of subanalytic sets.

Theorem 2.11 (Subanalytic Stratification [42]). Let A be a locally finite collection of
subanalytic sets of R*. Then there is a C¥ stratification S of R* such that:

23

y! y
P3
S1
F F C3 C2
D1
S2 X : P1 C1 P2 X
D2

Figure 2.2: Example of subanalytic stratification

1. All strate in S are subanalytic,
2. S is compatible with A. That is, every set in A is a union of strata from S.

In fact, one one can stratify R in a manner that is compatible not only with a
1)

collection of subanalytic sets, but also with a finite number of analyf.ic vector fields.

Theorem 2.12 (Subanalytic Stratifications with Vector Fields [97]). Let A be a lo-
cally finite family of nonempty subanalytic subsets of R*. For each A € A, let F(A) be a
finite set of real analytic vector fields on R". Then there ezxists a subanalytic stratification
S of R*, compatible with A, and having the property that, whenever SES, SC A, A€ A,
X € F(A), then either (i) X is everywhere tangent to S or (ii) X is everywhere transversal
to S.

The above theorem is illustrated by the following example.
Example 4. Let F be the following analytic vector field on R?
& = z?+9°
vy =0
which has an isolated equilibrium at the origin and points in the positive z-direction oth-
erwise. Consider the following two subanalytic sets
S = {(z,9) €eR®|y>0 and (z-12+y°=1)}
Sy = {(z,y) €eR?|y=0 and 0<z<2}

24

ThaaV

Figure 2.3: Infinite crossings on a bounded interval

shown in Figure 2.2. A subanalytic stratification of R? which is compatible with the sets
S1, S2 and the vector field F is also shown in Figure 2.2. It consists of

e 0-dimensional strata
- P, =(0,0), P, =(2,0), and P; = (1,1)
¢ 1-dimensional strata
- C={(z,y) eR?|y=0 and 0<z<2}

- C={(z,y) R |y>0 and 1<z<2 and (z—1)>+y*=1}
-C={(z,y) €eR|y>0 and 0<z<1 and (z-1)%+y?=1}

e 2-dimensional strata

-Di={(z,y) eR? |y>0 and (z—1)2+3%<1}
— Dy =R?\ {P,, P, P;,C1,C2,C3,D1}

Notice that the vector field is tangent to P, since it is an equilibrium as well as to Cy, Dy and
D,. The vector field is transverse to all the other strata. Moreover, S = PUPUP;UC,UC3
and S, = PLUP,UC,.

The following proposition illustrates some of the good intersection properties that
analytic curves have with subanalytic sets. The finiteness property indicated in the propo-

sition makes it possible to define transitions between strata in a natural way.

Proposition 2.13. Let I be an open interval, M a real analytic manifold and v: 1 - M

a real analytic function. Let S be an analytic stratification of M by subanalytic sets. If

25
[a,b) C I then there ezists a finite partition {z1,... ,Zn} of [a,b] with the property that for
eachi=1,... ,n — 1 there exists a stratum S; € S such that v((zi,Zi4+1)) C Si.

Such good finiteness properties are useful in having well defined discrete abstrac-
tions of continuous systems. The following example shows that the assumption of subana-

lyticity in the proposition above can not be dropped.

Example 5. Consider the stratification of R? by the following five sets (see Figure 2.3).
Sl = {(Oa 0)}
So=<(z,y):2>0 A y=xsin%

(z,y):z <0 A y=xsin;

S4 J{(0,9): y>0}

1
(z,y):z#0 A y>zsin;

Ss Uiy :y<0}

&
]
Pt

1
(z,9):z#0 A y<msin;

Each set is an embedded analytic submanifold of R? and they clearly satisfy the condition
on the dimension of the strata in the closure of other strata. Finally, consider the constant
vector field X = a%' Then the integral curve v of X through (0,0) is the z-axis (parame-
terized by z itself). Therefore, the image by -y of any interval containing 0 intersects both

S4 and S5 an infinite number of times.

For other important results on subanalytic sets as well as their relevance to control
theory, the reader is referred to [16}, [42], and [97].

2.3 Mathematical Logic

In this section we give a brief introduction to mathematical logic and model theory.
Logic will serve as the main computational tool for symbolically representing sets as well as
performing boolean operations on them. The reader is referred to [104] for a more detailed

introduction.

26

2.3.1 Languages and Formulas

A language is a set of symbols separated into three groups: relations, functions
and constants. More formally, a language is £ = {Ry,...,Rn, f1,.+-,fm,€0,-..,C1}, Where
Ry,..., R, are the relation symbols, f1,..., fm are the function symbols, and cy, ..., ¢ are
symbols for constants. For example, the sets P = {<,+,—,0,1}, R = {<,+,—,,0,1}, and
Rexp = {<,+,—,€xp, 0,1} are examples of languages where < (less than) is the relation,
+ (plus), — (minus), - (product), and exp (exponentiation) are the functions, and 0 (zero)
and 1 (one) are the constants.

Let £ = {Ry,...,Rn, f1,---»fm+C0,-..,¢1} be a language, and zo,z1,... be a

countable set of variables. We define the following two syntactical categories.
Definition 2.14 (Terms). The set of terms of L are defined inductively as follows
1. Constants and variables are terms
2. Ifty,...,tm are terms, and f is a function, then f(t1,... ytm) '_is a term.

For instance, z — 2y + 3 and z + y2z2 — 1 are terms of P and R, respectively. In
other words, terms of P are linear expressions, and terms of R are polynomials with integer
coefficients. Notice that integers are the only numbers allowed in expressions (they can be

obtained by adding up the constant 1).

Definition 2.15 (Atomic Formulas). The atomic formulas of a language are of the form

t; =tg, or R(ty,... ,tn), where t;, i=1,... ,n are terms and R is an n-ary relation.

For example, zy > 0 and z? + 1 = 0 are atomic formulas of R. Note that the
equality symbol = is part of our language even though it was not explicit is the set of
language symbols. In general, we will assume that every language contains the equality

symbol.

Definition 2.16 (First-order Formulas). The set of first-order formulas of language L

is recursively defined as follows:
1. Atomic formulas are formulas
2. If ¢, are formulas, then ¢ A, ¢V ¢, and ~¢ are formulas

3. If ¢ is a formula, then Vz; : ¢ and 3z; : ¢ are formulas

27

Formulas defined in a language £ are called £-formulas. Examples of R-formulas

are:
VzVy:zy >0 (2.7)

Ir:22-2=0 (2.8)

Jw:zwl+yw+2=0 (2.9)

The occurrence of a variable in a formula is free if it is not inside the scope of
a quantifier; otherwise, it is bound. For example, z, y, and 2 are free and w is bound in
(2.9). We often write ¢(z,... ,Z,) to indicate that z,,... ,z, are the free variables of the
formula ¢. A sentence of R is a formula with no free variables. Formulas (2.7) and (2.8)

are sentences.

2.3.2 Model Theory

Syntax would not be interesting without semantics. A model appropriate to a
language consists of a non-empty set S and a semantic interpretation of the relations,
functions and constants. For example, (R, <,+,—,-,0,1) and (Q, <,+, —, -,0, 1), are models
assigning the usual meaning to symbols of R.

Every sentence of a language will be either true or false in a given model. For
instance, formula (2.8) is true over R, but false over Q. Formulas that are not sentences
may hold for some assignments of values to the free variables but not for others. For
instance, formula (2.9) holds in R for the assignment (1, 1,0) of (z, y,), but not for (1,0,1)
(there is no real number w such that w?+ 1 = 0).

We say that a set Y C S™ is L-definable or simply definable in a language L, if

there exists a formula ¢(z;,... ,z,) such that
Y ={(ai1,... ,an) € S*| ¢(a1,... ,an)} (2.10)

For example, over R, the formula 22 — 2 = 0 defines the set {v/2,—v2}. Two formulas
o(z1,... ,zp) and Y(z3,... ,z,) are equivalent in a model, denoted by ¢ = ¥, if for every
assignment (ai,...,an) of (z1,...,Zs), ¢(a1,... ,ay) is true if and only if ¥(a;,... ,a,) is

true. Equivalent formulas define the same set.

28

Example 6. As an interesting example consider the vector field defined by the differential

equation

T = 2
. (2.11)
T2 = -1

Let Y = {(11,¥2) € R? | ¢(y1,2)} be a R-definable set. Let Pre(Y’) be the set of all points
(z1,22) € R? that can reach a point (y1,y2) € Y following a trajectory satisfying (2.11).
Then Pre(Y) is also R-definable since Pre(Y) = {(z1,z2) € R? | 9(z1,22)}, where

A
Y(z,22) = Iy e 3t oYL y) AL20AN =21+ 2 Ay =22 - ¢
Example 7. Consider now the linear vector field defined by

o~
o o (2.12)

:iz = —I2
The set of points (z1,73) € R? that can reach a point (y1,%2) in an R-definable set Y
following a trajectory solution of (2.12) is definable in Rexp. That is Pre(Y) = {(z1,2z2) €
R? | ¥(z1,z2)} where

A _
P(1,%2) = Iy Jyp It Gy,) At 2 0AY = z? Ayp = z0e™

2.3.3 Decidability and Quantifier Elimination

Every model defines a theory as the set of all sentences which hold in the model. We
denote by Lin(R) the theory defined as the formulas of P that are true over (R, <,+,—,0,1).
In other words, Lin(R) is the theory of linear constraints (polyhedra). We denote by OF(R)
the theory obtained by interpreting R over (R,<,+,—,+,0,1). In other words, OF(R) is
the set of all true assertions about the set of real numbers when viewed as an ordered
field. The theory OFxp(R) is the extension of the ordered field of real numbers with the
exponentiation. .

Given a theory, it is important to determine the sentences of the language that
belong to the theory. Tarski [98] showed the remarkable fact that OF(R) is decidable, that is
a computational procedure that will decide whether any R-sentence ¢ is true in the model

(R, <,+,—,-,0,1). The decision procedure is a two step procedure:

1. Every formula ¢(z,...,Z,) is converted to an equivalent quantifier free formula

P(Z1,...,Zn)-

29

2. There is an algorithm for deciding the truth of quantifier free sentences.

For example, formula (2.9) is equivalent to the quantifier free formula 4zz — y? < 0. Then,
given assignments for z,y,z, one can easily decide whether the quantifier free formula is
true or false. Theories that admit quantifier elimination have the desirable property that
every R-definable set Y C R" is definable without quantifiers. This immediately shows
that every definable set in OF(R) can be described by the boolean algebra generated by
polynomial functions. Therefore, the definable sets in OF(R) are exactly the semialgebraic
sets. A similar line of reasoning shows that the definable sets in Lin(R), which also admits
quantifier elimination, are the semilinear sets.

Moreover, the decidability of a theory implies that there is a computational pro-
cedure for checking whether Y is empty. In particular, for decidable theories that admit
quantifier elimination, a definable set Y = {(y1,... ,¥n) € R* | ¢(v1,... ,¥n)} = 0 if and
only if the sentence 3y; ... 3y, : (¥1,... ,Yn) is equivalent to the (quantifier-free) formula
false. Furthermore, quantifier elimination allows to compute to compute Pre(Y) of Ex-

ample 6. This reachability calculation is illustrated in the following example.

Example 8. Consider the vector field defined in Example 6 and let Y = {(y1,%2) € R? |
y1 = 4 Ayp = 3}. Then Pre(Y) = {(z1,72) € R? | ¥(z1,%2)}, where

P(z1,2) I e H:t20A Ay =4Ayp =3 Ay =21+ 2tAYy2 =22 — 1

FH:t>0Nz1+2t=4Az9—-1t=3
—(4—.’1,‘1) =2(3-.’L’2)

= 7;+4222-10=0Az2-32>0.

Tarski’s result, even though spectacular, is far from being efficient computation-
ally. More recent approaches to quantifier elimination are based on cylindrical algebraic
decomposition techniques [10, 110]. This has resulted in meaningful computational tools
that perform quantifier elimination, like REDLOG [38] and QEPCAD [30).

Note that in Example 8, the set Pre(Y) is an R-definable set, and by the decid-
ability of OF(R), the formula % is equivalent to a quantifier free formula. If we are to use the
same approach for Example 7, we immediately run into difficulty as the corresponding for-
mula for Pre(Y) is definable in OF ¢y (R). Tarski envisioned an extension of his decidability

result for OF(R) to the theory of reals with exponentiation OFexp(R). Such an extension

ER

30

is of great interest to control theory, as the exponential function allows us to describe the
flows of linear vector fields.
Though it is not known whether OFxp(R) is decidable, it has been shown in [105]

that the following formula
y>0A3w(wy =z Az=ye")

is not equivalent to a quantifier-free Rexp-formula. In other words, OFexp(R) does not admit
quantifier elimination. Even if quantifiers could be eliminated, there is no obvious algorithm

for deciding quantifier-free sentences in Rexp, like

e2-2 _ 5 _ g3+e”?

€ €

Deciding whether such sentences are true depends on whether there are no surprising ex-
ponential algebraic relations holding over the integers. It is known, that if the famous
Schanuel’s conjecture in number theory holds, then there are no uqexpected exponential-
algebraic relationships over the integers. In fact, it has been shown in [73], that if Schanuel’s
conjecture is true, then the theory ~OFe,q,(IR) is decidable!

Until this issue is resolved?, in Chapter 4, we identify several subsets of Rexp where
quantifiers can be eliminated. This allows us to perform reachability calculation for classes

of linear vector fields.

2Hopefully this will take less than Fermat’s Last Theorem!

31

Chapter 3

Straightening Out Differential

Inclusions

Computer aided verification is one of the main, formal approaches for the analysis
of hybrid systems. In the verification community, hybrid systems are modeled as hybrid
automata where differential equations or inclusions exist in each discrete state of a finite
state machine. Transitions from one discrete state to another are triggered by guards on
the variables of the system. An example of a hybrid automaton is shown in Figure 3.1.
Given a desired specification for a hybrid automaton, such as satisfying certain reachability
properties, verification algorithms check whether the system indeed satisfies the desired
specification by exactly computing the reachable states of the system. A very important
issue in computer aided verification is the decidability of the resulting algorithms.

The state of the art in the verification of hybrid systems is that the reachability
problem for initialized, rectangular hybrid automata is decidable [91]. Rectangular hybrid
automata are automata where in each discrete location the continuous dynamics are de-
scribed by decoupled, constant, rectangular differential inclusions. Thus, the time derivative
of each continuous variable must belong to a constant interval of the form [a,b] C R, as
shown in Figure 3.1. Furthermore, checking properties on various relaxations of the above
hybrid automaton model have been shown to be undecidable [48]. Therefore, initialized,
rectangular hybrid automata lie on the boundary between decidability and undecidability.
However, it has been recognized, mainly in the control community which is used to more

sophisticated dynamical models, that the expressive power offered by a rectangular hybrid

J\““

32

X=0

\Y=0

X>5 —» X=10 Y=3

. Y<-10 —>» X=-5 Y=0

Figure 3.1: Rectangular hybrid automaton

automaton is limited.

In an effort to expand the applicability of the abovementioned decidability results,
it is natural to characterize more general hybrid systems that can be transformed to initial-
ized rectangular automata. Such a characterization would be useful as it could capture the
modeling frontier of the known decidability frontier. Along this direction, in this chapter,

we focus on the following, continuous version of this problem.

Problem 3.1 (Straightening Out Rectangular Inclusions). Under what conditions can

a coupled, rectangular differential inclusion of the form,

5.31 € [fl(wh'"’xn)’gl(mlv"‘!xﬂ)]

I, € [fn(wla ‘e 1xn)agn(x17 ces 1$n)]

where = [z1,...,2,)T €U C R, f1,...,fns91,...,9n sSmooth maps from U to R, and
for each 1 < i < n and for all z € U, gi(z) > fi(z), be converted by a smooth coordinate

change z = ®(x) to a decoupled, constant, rectangular inclusion of the form

z1 € [a1,h]

Z2n € [Gn,bn)
where a;,b; are real constants for all1 <i<n?

It should be noted that solving Problem 3.1 focuses only on the continuous part of

transforming a general hybrid automaton to a rectangular automaton. In general, one must

Sape

33

Figure 3.2: Straightening the flow of a vector field

also transform the maps associated with the discrete transitions as well. In addition, the
only parameters allowed in the description of a rectangular hybrid automaton are rational
numbers, as only rational numbers can be symbolically represented and manipulated by
computers. Therefore, in general, one must restrict the class of coordinate changes to
ensure that rational numbers are being mapped to rational numbers. Even though Problem
3.1 does not consider these issues, it will be shown that even this relaxed version of the
problem gives rise to quite restrictive conditions.

In order to derive necessary and sufficient conditions for the solution of Prob-
lem 3.1, two versions of the well known straightening out theorem for differential equations
are used. In the next section, these classic results are reviewed, and in Section 3.2 they are

used for solving Problem 3.1.

3.1 Straightening Out Differential Equations

Given any vector field on a manifold, then away from equilibria, there exists a

local change of coordinates which transforms the flow of the vector field to straight lines.

Theorem 3.2 (Straightening Out Theorem). Let X be a smooth vector field on man-
ifold M with X (p) # 0 at some p € M. Then there ezists a coordinate chart (U,z) =
(U, 21,...,2n) of p such that on U vector field X is ezpressed as

3
X=5- (3.1)

34

Therefore given a differential equation of the form

& = f(z)

where z € R*?, and f : R* — R" is smooth, then away from equilibria, f(z) # 0, there
exists a local change of coordinates z = ®(z) such that in the z coordinates the differential

equation is expressed as
=1 Z23=0 2, =0 (3.2)

An intuitive, planar explanation of this remarkable theorem is shown in Figure 3.2.
Assume without loss of generality that z is at the origin of the (z1,z2) coordinate system.
Integrating vector field f in a neighborhood of zg results in foliating the state space by
integral curves. Each point z in a neighborhood of zg can be then uniquely characterized
by the unique leaf of the foliation to which it belongs, and the time it takes for the integral
curve to reach the point from the z, axis. The derivative of the coordinate which describes
the leaf of the foliation is zero since the leaf is invariant under the flow. The derivative of
the coordinate which measures time is simply one. Therefore the desired diffeomorphism
is simply the time parameterization of the integral curves (21) along with the leaves of the
resulting foliation (zy, ... ,2,) which is induced by integrating the system. Since obtaining
the desired diffeomorphism involves explicit integration of the differential equation, the
straightening out theorem is a local and non-constructive result. Constructive cases are
feasible if the vector field can be integrated analytically. A complete proof of this theorem
can be found in most differential geometry books like [1, 96].

In the case where many vector fields must be straightened out by the same change
of coordinates, then the following theorem is useful. It can be considered as a generalization

of Theorem 3.2 for multiple vector fields.

Theorem 3.3 (Straightening Out Multiple Vector Fields). Let Xy, ..., Xy be k smooth,
linearly independent vector fields in a neighborhood of p € M satisfying

(X, X;]=0 1<i,j<k (33)

Then there ezists a coordinate chart (U,z) = (U, z,...,2,) such that on U we have for
1<i<k

Xi= 2 (3.4)

35

Therefore given n differential equations of the form
T = fi(z)

where 1 < i< n,z € R* and f; : R®* — R" are smooth, then at any zo € R" where
the vectors {fi(zo)}, is a linearly independent set!, and the Lie bracket conditions hold,
there exists a local change of coordinates z = &(z) such that in the z coordinates the i-th

differential equation is expressed as
21=0 zZi=1 zZn =0 (3.5)

Like the Flow Box Theorem, Theorem 3.3 is also local and non-constructive. The Lie bracket
condition, which simply says that the flows of the vector fields commute, is necessary in
order for the change of coordinates to be well defined. More important though, in the new

coordinates, the vector fields in addition to being straightened out are also decoupled.

3.2 Straightening Out Differential Inclusions
A differential inclusion on R” is defined as
i € F(z) (3.6)

where F' is a map which at each z € R" assigns a subset of T;R". From now on, we focus

on rectangular differential inclusions of the form
z; € [fl(.’L‘l,...,1:"),91(.’31,...,:1)73)]'
: (3.7)
:bﬂ € [fn(xly---,zn),gn(xl,---,xn)]

where the derivative of each coordinate lies in an interval. A more convenient representation

of rectangular inclusion (3.7) is given by the following expression

)
g=| : | € F(z) = Fi(z) + Fo(z) + - + Fp(z) (3.8)

Zn

!Note that linear independence at o requires that o is not an equilibrium of any of the n vector fields.
By smoothness, the linear independence condition extends to a neighborhood of zo

Wi & -

36

with
¢ T . - 7)
0 0
Fi(z)=coS | filz) | » | gi(z) | } =co{fi(z)ei, gi(z)ei} (3.9)
0 0
\ L - - - 7
where co{p1,p2} stands for the convex hull of vectors p, and p2, and ej,...,e, is the

standard orthonormal basis for R".
Given a smooth change of coordinates ® : R* — R" and differential inclusion
(3.6), we can naturally push forward the differential inclusion by pointwise assigning to each

z = ®(z), the push forward of all tangent vectors belonging in F(z). Thus
z € O,(F(z)) (3.10)

is the differential inclusion resulting from the change of coordinates. We can now proceed
to the main theorem.
Theorem 3.4 (Straightening Coupled Rectangular Inclusions). Consider the cou-
pled, rectangular differential inclusion in R",
£ € [fl(:vl,. .. ,:z;n),gl(a:l, . ,:L‘n)]
: (3.11)

j"n € [fn(xh- .. :mn)agn(zl" .. ,.’L‘n)]

where = [21,...,2n)T € U C R?, f1,..., fasG1,.--,9n Gre smooth maps from U to R,
and for each i and for all z € U we have gi(z) > fi(z). Then there ezists a local change
of coordinates z = ®(z) on U such that in the new coordinates the differential inclusion is

ezpressed as

2 € [a,bi]
: (3.12)

Zpn € [am bn]
if and only if for all z € U and for all1 < 4,5 < n,

[f,'(:z:)ei , gj(:z:)ej] =0 (3.13)

37

[£i@ei, fi(a)e| =0 (3.14)
and for all 1 <i < n and for all z € U there ezist k; € R, such that either
gi(z) = kifi(z) or fi(z) = kigi(z) (3.15)

Proof. Before we begin with the proof, we remark that conditions (3.13,3.14,3.15) contain
some redundancy. However, a minimal set of conditions would be notationally complicated.

(Necessity) Consider rectangular inclusion (3.7) along with it’s useful representa-
tion (3.8,3.9). Note that for ¢ # j, any vector in Fj(z) is linearly independent from any

vector in Fj(z). Performing the change of coordinates z = ®(z) results in

i € ®.(F(z)
= &,(Fi(z) + Fa(z) + -+ - + Fa(z)) (3.16)

By the linearity of &, we have that
z € B,(Fi(z))+ Du(Fo(z)) + - + Du(Fr(z)) (3.17)

Since @, is pointwise an isomorphism, we retain the property that any vector from &, (F;(z))

is linearly independent from any vector in ®,(F;(z)) for i # j.
Now, by assumption, the change of coordinates results in inclusion (3.12) which is

also expressed as

2
z= €EZ=20+22+---+2, (3.18)
Zn
where Z; is the constant set
(o] [o]
Zi=co | a; | » | b | ? =co{aie;, bie;} (3.19)
0 0
\ L. - L -/

Note again that for i # j, any vector from Z; is linearly independent from any vector in Z;.

By assumption we then have that

i € B(Fi(2) + Bu(Fa(z) + -+ Bu(Fa(2) =21+ 2o+ + 2 (3.20)

38

Since for all ¢ # j, vectors in ®,(F;(z)) (also Z;) are linearly independent from vectors in
®,(Fj(z)) (respectively Z;) then (3.20) requires that for each i there exists some j; such
that ®.(F;(z)) = Zj;. Therefore, up to a permutation of the indices, the sets ®,(F;(z)) are
equal to the sets Z;.

In general, for linear map A and vectors p;,ps the following property of convex
hulls

Aco{p1 , p2} = co{Ap1 , Ap2} (3.21)
can be easily checked. By applying this property on (3.17,3.9) we obtain that

®.(Fi(z)) = ®.(co{fi(z)e;, gi(z)ei})
= co{®. (filz)e:) , Bu(gi(z)er)} (3.22)

The above calculations essentially show that in order to push forward a rectangular differ-
ential inclusion, one only needs to push forward the finite number of vector fields that are

needed to define the rectangular set of tangent vectors.
But since ®.(Fi(z)) = Zj;, condition (3.22) results in

co{®. (fi(z)e:) , @u (9i(z)es)} = co{ajiej; , bjeji} (3.23)
which means that either
@, (filz)e:) = ajie5; and D, (gi(z)e:) = bj.ej; (3.24)
or
®. (fi(z)e:) = bj;e;; and D, (gi(z)e;) = ajiej, (3.25)

Assume without loss of generality that the first case holds (equations (3.24)). Then for all
0<i,l<n,

o, ([fi(-’l:)ei) gz(w)e‘t]) = [‘P. (fi(z)e:) , Ds (gl(z)et)]
= [aj,.e,-,.,bj,e,-,] =0 (3.26)

which results in the necessary conditions

[#i@)ei, alz)a] =0 forall 0<il<n (3.27)

%

39

since ®, is pointwise an isomorphism. In a similar manner one obtains
[fi(x)ei , f;(:c)el] =0 forall 0<il<n (3.28)

In addition, since g;(z) > fi(z), if fi(z) # 0 we can express g;(z) as a nonlinear function of
fi(z) by gi(z) = ki(z) fi(z) (if fi(z) = O then express fi(z) as g;j(z) multiplied by zero and

proceed in the same way). Then

bjej; = @.(gi(z)e;) = o (ki(z)Sfi(z)e:)
= ki(z)®. (fi(z)e;) = ki(z)aj;e;; (3.29)

must hold for all z € U. Thus k;(z) must be constant and g;(z) must be a constant multiple
of f;(z) for all z € U. Note that for each ¢ either f;(z) or g;(z) can be zero (but not both
since g;(z) > fi(z)). However, if fi(z) or g;(x) is zero at some point zy, say gi(zo) = 0 and
fi(zo) # 0, then smoothness and the fact that g;(z) must be a constant multiple of f;(z)
for all z € U, force g;(z) to be identically zero on U.

(Sufficiency) Consider conditions (3.13,3.14,3.15) and assume without loss of gen-
erality that for all ¢, fi(z) # 0. (if fi, = O for some %, then pick g;, which must be nonzero

and proceed in a similar way). Then, the set of vector fields
{fi(z)e}icy (3.30)

satisfies the conditions of Theorem 3.3. Thus, there exists a diffeomorphism 2z = ®(z) such

that
®. (fi(z)e:) = e (3.31)
Now pushing forward the rectangular inclusion
z € Fi(z)+ F(z)+---+ Fy(z) (3.32)
by ®, results in

z € ®,(F(z))
= ®.(Fi(z) + Fa(z) + -+ + Fu(z))
= ®.(F1(z)) + 2:(Fo(z)) + -+ + ®u(Fu(z)) (3.33)

40

But since for each ¢ and for all z we have g;(z) = k;fi(z) for some constant k; (positive,

negative or zero), we obtain

O.(Fi(z)) = @ (co{fi(z)e:, kifi(z)ei})
= co{®. (fi(z)e:) , Ba (kifi(z)es)}
= co{e;i, kie;} (3.34)

and thus in the 2 coordinates we obtain the inclusion

2 € [1, kl]

z2n € [1,kn)

Note that some of the k; may be zero or even negative in which case the corresponding

intervals must be flipped. This completes the proof. O

Note that the necessary part of the proof of Theorem 3.4, depends on the fact that
gi(z) is stricgly greater than f;(z) for all 7. Therefore Theorem 3.4 is not a generalization of
the straightening out theorem for differential equations. Even though straightening out a
differential equation is always possible away from an equilibrium, straightening out a rect-
angular differential inclusion, requires straightening out many vector fields, while using the
same change of coordinates. This places restrictions on the types of rectangular differential
inclusions that can be straightened out. The following example shows how restrictive this

class is.

Example 9. Consider the coupled differential inclusion

&1 € [fi(z1,72),91(21,72))

2 € [fa(z1,22), 92(1,%2))

where we have fi(z),z2) # 0 and fa(z1,z2) # 0 on some set U C R2. Then conditions
(3.15) require that g;(z1,z2) is a constant multiple of f;(z1,Z2). Thus necessary conditions
(3.13,3.14) reduce to simply checking whether

[f1(z1,2z2)e1 , fa(z1,32)e2] =0 (3.35)

41

" as all other Lie brackets are guaranteed to be zero if the above one is. But

oL f,
[fi(z1,z2)e1 , falz1,T2)er] =0 = | 2 =0 (3.36)
’ 5L
But since f; # 0 and f2 # 0 on U, this requires
oh _, Oh_
s Om (3:37)

which means that it is necessa.ry for the rectangular inclusion to be already decoupled!

The above example suggests that the conditions of Theorem 3.4 are quite re-
strictive. In the case that f;(z) and g;(z) depend on z; alone, the Lie bracket conditions
(3.13,3.14) are trivially satisfied. As a corollary of Theorem 3.4, we obtain the following

straightening out theorem for decoupled, rectangular inclusions.

Corollary 3.5 (Straightening Out Decoupled Inclusions). Consider the scalar dif-

ferential inclusion

z € [f(z), 9(=)] (3.38)

withz € U CR, f,g: U — R smooth, and assume that for all z € U we have g(z) > f(z).
Then there ezists a local chenge of coordinates z = ®(z) such that in the new coordinates

the differential inclusion is expressed as
z € [a,b) (3.39)

if and only if for all z € U either g(z) is a constant multiple of f(z) # 0 or f(z) is a
constant muftz'ple of g(z) #0.

As a corollary of Corollary 3.5 we obtain

Corollary 3.6. The following scalar inclusions can be locally transformed to constant rect-

angular differential inclusions:
o Linear Differential Inclusions : £ € [a,blz, 2 # 0
o Nonlinear Differential Inclusions : & € [0, f(z)], f(z) >0

e Nonlinear Differential Inclusions : & € [f(z),0], f(z) <0

42

e Nonlinear Differential Inclusions : & € [a,b)f(z), f(z) #0

Corollaries 3.5 and 3.6 show that scalar rectangular differential inclusions cannot
be straightened out unless one boundéry vector field, g(z), is a constant multiple of the
other, f(z). This result is intuitively clear. By Theorem 3.2, any vector field, say f(z),
can be straightened out away from singularities. But if the same diffeomorphism must also
straighten the flows of the other vector field, g(z), then g(z) must be a constant multiple
of f(z). But if g(z) is a constant multiple of f(z), then after factorization, we obtain that
a differential inclusion of the form % € [a,b]f(z) is the limiting case of an inclusion which

can be straightened out.

Example 10. Consider the following simple differential inclusion
z € [3,5)z

on U = {z € R| z > 0}. Then z = Inz satisfies
» . _Olnz

£ oz

i€ 13,500 = [3,5)

. and the inclusion is straightened out on U.

3.3 Conclusions

The goal of this chapter was to potentially expand the applicability of the known
decidability results, for computationally verifying properties of hybrid systems. However,
given the restrictive nature of the necessary conditions, Theorem 3.4 presents a serious
modeling barrier in the battle against decidability. This leaves control theorists unsatisfied
as the modeling power of decidable hybrid systems does not capture meaningful continuous
dynamics.

The next two chapters present an effort to computationally analyze hybrid sys-

“tems with more complicated dynamics. Even though the undecidability results in [48] in
conjunction with the results of this chapter, restrict hybrid systems to very simple continu-
ous dynamics, we shall escape this undecidability frontier by restricting the type of discrete
transitions allowed in our model. This will give us a lot of room to maneuver on the con-
tinuous side, and will allow us to capture classes of linear vector fields in each discrete

location.

43

Chapter 4

Computable Hybrid Systems

Verification algorithms perform reachability computations and check whether tra-
jectories of the hybrid system can reach certain undesirable regions of the state space.
When such computational algorithms are applied to systems with infinite state spaces, they
are in danger of never terminating. ‘This makes the issue of decidability, which guarantees
termination of the algorithm, a very important one.

The main tool for obtaining classes of hybrid system for which the reachability
problem is decidable, is given by the concept of bisimulation [79]. Bisimulations are simply
reachability preserving quotient systems. If an infinite state hybrid system has a finite state
bisimulation, then checking reachability for the hybrid system can be equivalently performed
on the finite, discrete, quotient graph. Since the quotient graph is finite, the algorithm will
terminate. If in addition, each step of the algorithm can be encoded and implemented by
a computer program, then the problem is decidable. Therefore, in order to obtain classes
of hybrid systems with a decidable reachability problem, we must answer the following two

questions:

e Step 1 : When does a hybrid system admit a finite bisimulation?

e Step 2 : If a finite bisimulation exists, can we construct it?

Up to now, answering the above two questions has been done simultaneously by
explicitly constructing a partition which is checked to be a bisimulation. This approach has

resulted in timed automata (3], multirate automata [2], and initialized rectangular automata

48, 91).

.

44

In this chapter we shall deal with the above questions separately. In particular,
we first answer the question regarding the existence of finite bisimulations. To answer the
finiteness question, we need to identify classes of sets and flows with globally, finite inter-
section properties. This is f)rovided by the concept of o-minimal theories in mathematical
logic [106]. Using this concept, we introduce the notion of o-minimal hybrid systems, and
prove that o-minimal hybrid systems always admit finite bisimulations. We then list var-
ious o-minimal hybrid systems which capture versions of most hybrid systems known to
admit finite bisimulations. Moreover, we present hybrid systems with much more complex
dynamics which are definable in recently discovered o-minimal theories and thus also admit
finite bisimulations.

In order to construct bisimulations, we need to symbolically represent, and ma-
nipulate sets. The main computational tool for symbolic set manipulation in this context
is quantifier elimination. Since quantifier elimination is possible for the theory of reals
with addition and multiplication [98], we either find or transform subclasses of o-minimal
hybrid systems which are definable in this theory. This immediately leads to an extension
of the decidability frontier that captures classes of hybrid systems with linear vector fields
in each discrete location. The importance of this result is immediately clear given the wide
applicability of linear systems in control theory.

In order to get to this desired goal, in the next section we review the well known

notion of bisimulation of transition systems.

4.1 Bisimulations of Transition Systems

Transition systems should be thought of as abstract graph models, which do not
necessarily consist of a finite number of states. In fact, transition systems are abstract
enough to include both finite state machines and differential equations can be thought of

as transition systems.

Definition 4.1 (Transition Systems). A transition system T = (Q, X, =, Qo, QF) con-

sists of:
o A set Q of states

e An aiphabet 3 of events,

45

e A transition relation -C Q@ x X x Q,
o A set Qo C Q of initial states,

e A set Qr C Q of final states.

It is customary to denote a transition (q),0,q92) €— as q 5 gy. The transition -

system is finite if the cardinality of @ is finite, and it is infinite otherwise. The transition

system T is deadlock free, if for any state g € Q, there exists a state ¢’ € Q and an event
o € T such that ¢ > ¢'.

Example 11. To see the generality of transition systems, consider the simple differential

equation £ = f(z) where z € R". The differential equation defines a transition system

whose state space is R*, has event alphabet t € ¥ = R, and the transition relation z; 4 To

means that the solution of the differential equation from z; reaches z; in time .

A region is a subset P C Q. Given ¢ € ¥ we define two regions, Pre,(P) and

Post,(P) of a region P as

Pre,(P) = {¢g€Q|3pe Pandqg> p} (4.1)
Post,(P) = {g€Q|3pePandp> g} (4.2)
Thus Pre,(P) is the set of states that can reach P with a single o event. Similarly, Post,(P)

is the set of states that can be reached from states in P with a single o event. The set of

states that can reach P, or can be reached by P in one step for all o events is

Pre(P) = {g€Q | 3ceX3Ipe Pandq>p} (4.3)
Post(P) = {g€Q | 3o€Z3pe Pandp— q} (4.4)
The set of states that are reachable from P in two steps is simply Post(Post(P)) and is

denoted Post?(P). In general, Post!(P) consists of states that are reachable from P in %
steps. Similar definitions hold for Pre!(P). Then

Pre*(P) = |JPréi(P) (4.5)
ieN

Post*(P) = | Post'(P) (4.6)
ieN

are simply the set of states that backward and forward reachable from P. A problem that

is of great interest for transition systems is the reachability problem.

1

46

Problem 4.2 (Reachability Problem). Given a transition system T, is a state g5 € QF

reachable from a state g, € Qo by a sequence of transitions?

In other words, we want to check whether Post*(Qo) N Qr # 0 or, similarly,
whether Pre*(Qr) N Qo # 0. The reachability problem is also referred to as the safety
verification problem. The set of final states encode an undesirable or unsafe region of the
state space. The reachability problem is tackled using either of the following reachability

algorithms.

Forward Reachability Algorithm
set R:=Qo
while true do

if RN Qr # 0 return unsafe ; stop
if Post(R) C R return safe ; stop
else R:= RU Post(R)

end while

Backward Reachability Algorithm
set R:=QFf
while true do

if RN Qo # 0 return unsafe ; stop
if Pre(R) C R return safe ; stop

else R:= RU Pre(R)

end while

If the state space of the transition system is finite, then both algorithms are guar-
anteed to terminate, since in the worst case, both algorithms can only add a finite number
of states. If the state space is infinite, then there is, in general, no guarantee that the above
reachability computations will terminate after a finite number of steps. In fact, it may be

the case that the forward reachability algorithm terminates and the backward reachability

47

algorithm does not, and vice versa. One must therefore use both algorithms for transition
systems for which we have no termination guarantees. Our goal, however, is to find classes
of infinite state transition systems for which we can compute the reachable space in a finite
number of steps. This is accomplished by reducing the infinite state transition system to
a finite state quotient system with equivalent reachability properties. In order to achieve
this, the notion of a quotient transition system needs to be defined.

Given an equivalence relation ~C @ x Q on the state space, the definition of
quotient transition system T/ ~ is natural. Let Q/ ~ denote the quotient space. For
a region P, we denote by P/ ~ the collection of all equivalence classes which intersect
P. Given an equivalence relation ~ on @, we call a set a ~-block if it is a union of
equivalence classes. The transition relation —.. on the quotient space is defined as follows:
for Q1,Q2 € Q/ ~, Q1 2~ Qy iff there exist ¢; € Q; and g2 € Q2 such that g = go. The
quotient transition system is then T/ ~= (Q/~, X, =~,Qo/ ~, QF/~)-

Definition 4.3 (Bisimulation). Let T = (Q, X, —=,Q0,Qr) be a transition system. The

equivalence relation ~ is a bisimulation of T iff
e Qo,QF are ~-blocks
o For all o € ¥ and all ~-blocks P, Pre,(P) is a ~-block.

If ~ induces a bisimulation, then transition systems T and T/ ~ are called bisimilar. A

bisimulation is called finite if the quotient space is finite.

Therefore, the crucial property of bisimulations is that the intersection of Pre,(P)
and Q, for equivalence classes P, Q, and 0 € Z, is either the empty set or all of Q.

Alternatively, if ~ is a bisimulation, it can be easily shown that if p ~ g then
1. peQriffgeQr,andpe Qo iff g€ Qo
2. if p 5 p’ then there exists ¢’ such that ¢ > ¢’ and p’ ~ ¢’

The above characterization of bisimulations leads to the following theorem.

Theorem 4.4 (Reachability Equivalence). LetT = (Q, X, —,Q0,QF) andT/~= (Q/~
B, =~ Qo/ ~,QF/ ~) be bisimilar transition systems. Then the reachability problems for

T and T/ ~ are equivalent.

b

48

Proof. Let pg 3 ;B .- 3 p, be a sequence of transitions of T with pp € Qo and
Pn € Qr. Let h: Q — Q/ ~ be the natural map that takes each state to the equivalence
class it belongs. Then by the definition of T/ ~, h(po) = h(p1) 3 --- 33 h(py) is a sequence
of transitions of T/ ~ from h(pg) € Qo/ ~ to h(ps) € Qr/ ~.

Conversely, let Py 33 P, 33 ... 33 P, be a sequence of transitions of T'/ ~ where ‘
Py, P,,..., P, are equivalence classes, and Py € Qo/ ~, Pn € Qr/ ~. Since Py 3 Py, then
by the definition of T'/ ~, there exist pp € Py and p; € P, such that pg 3 p. Similarly,
since P, 33 P, then by the definition of T/ ~, there exists r; € P, and r; € P, such that
r1 B ry. Butsince p; ~ 71, 1 &3 ro and ~ is a bisimulation, then there exists p; ~ 1
such that p; 3 p2. Therefore, po 4 P1 3 p2. By continuing the same process, there exist
po € Py, p1 € Py, ..., pn € P, such that pg BB -3pr,andp €Qo,pn€Qr. O

Therefore, checking reachability properties on the bisimilar transition system T’/ ~
is equivalent to checking properties of the original transition system 7. This has two
immediate applications. If T has a finite state space, then reachability algorithm are always
guaranteed of terminating. For finite. transition systems, bisimulations are very useful in
reducing the complexity of reachability verification algorithms where the state space Q is
finite but very large.

If, however, T has an infinite state space, then reachability algorithms are not
guaranteed to terminate. For such systems, if we can find a bisimilar but finite transition
system T'/ ~, then checking reacixability of T can be equivalently done on T’/ ~ for which the
reachability algorithm is guaranteed to terminate. Therefore, bisimulations are the main
tool for obtaining classes of hybrid systems with a decidable reachability problem. Note that
even though for finite transition systems, a finite bisimulation always exists (equality), this
is not the case for infinite transition systems. This philosophy has successfully resulted in
various decidable classes of hybrid systems, like timed automata [3], initialized rectangular
automata [91], and linear hybrid automata [45].

A conceptual algorithm that computes a bisimilarity partition of the state space
starts with a given transition system T, and computes increasingly finer partitions of the
state space Q. If the algorithm terminates, then the resulting quotient transition system is

a finite bisimulation.

Bisimulation Algorithm for Transition Systems

49

set Q/~= {Qo,Qr,Q\ (Qo U Qr)}
while 3 P,P' € Q/~ and o € T such that § # PN Pre,(P’) # P do

set Py = PN Pre,(P'), P, = P\ Pre,(P')
- refine Q/~= (Q/~\{P}) U{P,, P}

end while

Therefore, given an infinite transition system T, the bisimulation algorithm results,
if it terminates, in a finite, bisimilar transition system T'/ ~. We can then apply either the
forward or backward reachability algorithm on T/ ~, which are guaranteed to terminate.
It is easy to show however, that if 7 has a finite bisimulation, then either forward or
backward reachability algorithms on T will terminate. Therefore, instead of constructing
the bisimulation partition, we can simply compute the reachable set of the original transition
system. Therefore, the above bisimulation algorithm is used mainly as a theoretical device
for obtaining classes of transition systems with a decidable reachability problem. The actual
reachability calculation, in practice, is usually performed with the backward or forward

reachability algorithms.
In addition to showing that the bisimulation algorithm terminates, decidability

requires that each step of the algorithm is computable. This means that we must be able
to represent sets symbolically, perform boolean operations, check emptiness of a set, and
compute Pre,(P) for any o € £. In the next sections, the above ideas will be applied for

a class of transition systems generated by hybrid systems.

4.2 Bisimulations of Hybrid Systems

We focus on transition systems generated by the following class of hybrid systems.
Even though the following model is rather abstract, we shall eventually introduce enough

structure on the model in order to make it amenable to analysis.

Definition 4.5 (Hybrid System). A hybrid system H = (X, Xo, Xr,F,E,I,G,R) con-

sists of

e X = Xp x Xc is the state space with Xp = {qi1,...,qn} and Xc a manifold.

e Xy C X is the set of initial states

%

50

e Xr C X is the set of final states

e F: X — TXc assigns to each discrete location ¢ € Xp a vector _ﬁeld F(q,-)
e EC Xp x Xp is the set of discrete transitions

e I: Xp — 2%Xc assigns to each location a set I (g) € Xc called the invariant.

e G: E — Xp x 2%Xc assigns to e = (q1,92) € E a guard of the form {@} x U,
U C I(q1).

e R: E — Xp x 2%c assigns to e = (q1,92) € E a reset of the form {g} x V,
V C I(g2)-

Trajectories of the hybrid system H originate at any (g,z) € X, and consist of
either continuous evolutions or discrete jumps. Continuous trajectories keep the discrete
part of the state constant, and the continuous part evolves according to the continuous
flow F(q,-) as long as the flow remains inside the invariant set I(g). If the flow exits I(g),
then a discrete transition is forced. If, during the continuous evolution, a state (g,z) €
G(e) is reached for some e € E, then discrete transition e is enabled. The hybrid system
may then instantaneously jump from (g,z) to any (¢’,z') € R(e) and the system then
evolves according to the flow F(¢,-). Notice that even though the continuous evolution is
deterministic, the discrete evolution may be nondeterministic. Finally, we assume that our
hybrid system model is non-blocking, that is from every state either a continuous evolution

or a discrete transition is possible.

Example 12. A typical hybrid system is shown in Figure 4.1. The state space is {g1, g2} X
R2. The initial states are of the form {@:} x {(z,9) € R? |0 <z < 1,1 < y < 2}.
The discrete dynamics consists of two transitions e; = (g1,¢2) and e = (g2,41). Within
location ¢q;, the continuous variables £ and y evolve according to a differential equation
as long as (z,y) € I(q1) = {(z,y) € R? | z < 5}. Once z > 5, discrete transition e,
is forced and z,y are nondeterministically reset to values in fixed sets. The system then
flows according to the flow associated with g;. The evolution from that point on is similar.

A typical reachability problem asks whether the system will reach the set of final states
{92} x {(z,y) € B | z < -5}

51

0<X<l1

\:<Y<2

X>5 —>» 0<X<] Y=1
el >

- Y<-10 -;-2>- X=0 Y=1

Figure 4.1: A typical hybrid automaton

Every hybrid system H = (X, Xo, X, F, E,I,G, R) generates a transition system
T = (Qaza—hQOaQF) by Setting Q = X, QO = Xo, QF = X, & = EU{T}a and
—= (Ueeg —=)U = where

Discrete Transitions (g,z) = (¢',z') for e € E iff (g,z) € G(e) and (¢’,z') € R(e)

Continuous Transitions (g;,z;) — (g2,%2) iff ¢ = go and there exists § > 0 and a
curve z : [0,6] — M with z(0) = z;, (§) = z and for all £ € [0,4] it satisfies
' = F(q,z(t)) and z(t) € I(q1)-

The continuous 7 transitions are time-abstract transitions, in the sense that the time it
takes to reach one state from another is ignored. Having defined the continuous and discrete
transitions = and - allows us to formally define Pre,(P) and Pre.(P) for e € E and any
region P C X using (4.1).

Note that the discrete transitions allowed in our model are memoryless, constant,
but possibly set valued. Every time a discrete transition is taken, the whole state must be
reinitialized. The state is not allowed, for example, to remain the same after the discrete
transition is taken. In other words, identity (or other nonconstant) maps are not allowed as
reset maps. Because of this restriction, Definition 4.5 does not capture all possible discrete
dynamics allowed in timed and rectangular automata [2, 3, 91]. In general, in rectangular
automata, the continuous dynamics are decoupled and each component of the continuous
part of the state may be either reset nondeterministically to an interval or remain the same.
If, however, the dynamics of a particular component changes then the reset map cannot be
the identity map on that component. As will be shown, restricting the reset maps will allow

us to capture much more complex and coupled dynamics than [2, 3, 91] without violating

52

the undecidability results of [48].

To show that the reachability problem for a class of hybrid systems defined in
Definition 4.5 is decidable, we must show that the bisimulation algorithm will terminate
after a finite number of steps. The memoryless structure of the discrete transitions allowed
in our hybrid system model results in

0 if PNR(e)=0
Pre.(P) = 4.7
G(e) if PNR(e)#0
for all discrete transitions e € E and regions P. Therefore, if the sets R(e) and G(e) are
blocks of any partition of the state space, then no partition refinement is necessary in the
bisimulation algorithm due to any discrete transitions e € E. This fact, in a sense, decouples
the continuous and discrete components of the hybrid system. In turn, this implies that
the initial partition in the bisimulation algorithm should contain the invariants, guards and
reset sets, in addition to the initial and final sets. This allows us to carry out the algorithm
independently for each discrete location.)

More precisely, given any region P C X, and ¢ € Xp, define thé set P, ={z €

Xc : (g,z) € P} as the continuous projection of the set. For each location ¢ € Xp consider

the finite collection of sets
Aq = {I(‘I)a (Xo)q, (XF)q} U {G(e)q, R(e)q re€ E} (4.8)

which describes the initial and final states, guards, invariants and resets associated with
location g. Let S, be the coarsest partition of Xc compatible with the collection Ag, that
is each set in A, is a union of sets in S,. The finite partitions S; can be easily computed by
successive intersections between each of the sets in A, and their complements. Define (g, S;)
to be the set {{g} X P | P € S;}. The collections (g, S,) will be the starting partition of the
bisimulation algorithm. In addition, since by definition Pre,(P) applies to regions P C X
but not to its continuous projection P,, we define for Y C Xc and discrete state g the
operator Pre,(Y) = (Pre;({q} X Y)). The general bisimulation algorithm for transition

systems then takes the following form for the class of hybrid systems under examination.

‘Bisimulation Algorithm for Hybrid Systems

set X/~ = Uq(q$ Sq)

53

-for g€ Xp

while 3 P,P' € S, such that @ # P N Prey(P') # P do
set P, = PN Prey(P'), P, = P\ Prey(P')
refine S, = (S,\ {P})V {P1, P2}

end while

end for

It ‘is clear from the structure of the bisimulation algorithm that, the iteration
is carried out independently for each discrete location. In order for the above algorithm
to terminate, the partition refinement process must terminate for each discrete location
g € Xp. It therefore suffices to look at one discrete state of the hybrid system at a time
and see whether we can construct a finite bisimulation that is consistent with all relevant
sets of each location g as well as with the continuous flows of the vector field F(g,).

As mentioned before, decidability requires that the above algorithm is computa-
tional and the underlying transition must admit a finite bisimulation. We must therefore

resolve the following issues:
e Computability

— Represent sets symbolically,
— Perform set intersection and complementation,
— Check emptiness of sets,

— Compute Pre,(Y) of aset Y.

e Finiteness
— Determine whether the algorithm terminates in a finite number of steps.

A natural platform for solving some of the computational issues is provided by mathematical
logic where sets would be represented as formulas of first-order logic. Boolean operation
are natural in logic, and, as noted in Section 2.3, emptiness of a set can be decided in a
decidable theory. Furthermore, Examples 6 and 7 hint at the possibility of using quantifier
elimination for computing Prey(P) for a definable set P. However, none of these concepts

allow us to tackle the finiteness issue. The heart of the finiteness problem is illustrated by

54

the following example which shows a simple hybrid system which does not admit a finite

bisimulation.

Example 13. Consider the hybrid system with only one discrete location ¢q and let F be

the linear vector field

T = —-x1+ T2 (4.9)

:i:z = =1 — T2
- on R2. Assume the partition of R? consists of the following three sets (see Figure 4.2):

P = {(z,00:0<z<4}
P, = {(z,0):-4<z<0}
P = R\ (PUPR)

The integral curves of F are spirals moving away from the origin. The first iteration of the
algorithm partitions P, into Py = P, N Prey(P1) = {(z,0) : 1 < z < 0} and P, \ Prey(P).
Here z; < 0 is the z-coordinate of the first intersection point of the spiral through (4,0) with
P,. The second iteration subdivides P, into P; = Py N Preg(Py) = {(x,0) : 0 < z < 72}
and P, \ Pre,(P;) where zz > 0 is the z-coordinate of the next point of intersection of the
spiral with P;. This process continues indefinitely since the spiral intersects P; in infinitely

many points, and therefore the algorithm does not terminate.

From the above example it is clear that the critical problem is the intersection
of the flow of F(q,-) with the sets Sy for a single location q. For example, it is impor-
tant that during the partition refinement process, the global intersection of the predecessor
of an equivalence class with any other equivalence class has a finite number of connected
components. Such finite interaction properties are reminiscent of the properties enjoyed by
the classes of sets reviewed in Section 2.2. In the past decade, very recent developments in
mathematics have captured these desirable geometric properties in the framework of mathe-
matical logic. This astonishing connection between geometry and logic is the mathematical
formalism that will allow us to tackle both computational and finiteness issues within a

unified framework.

55

LYY _/
AR /
NNANNS =z,
X\\\\\\s.—,,/

\\\.—-"’///
‘\\;\\Q\\\M-._,///

[
/
/
-2} y;
r'e

NN~ -~
AN N

\
N
N
N

Figure 4.2: Bisimulation algorithm does not terminate

4.3 O-Minimal Theories

Geometric mode] theory is a very recent and growing area of mathematical logic
that studies the relationship between theories of the reals and properties of their definable
sets. The search for desirable finiteness properties of definable sets has lead to the notion
of o-minimality or order-minimality. While this concept applies to any theory, we only

consider theories over the real numbers.

Definition 4.6 (O-Minimal Theories). A theory of the reals is o-minimal if every de-

finable subset of R is a finite union of points and intervals (possibly unbounded).

For example, consider the A = {z € R | p(z) < 0}, where p(z) is a polynomial.
Since any polynomial has a finite number of real roots, the set A can only consist of a finite
number of intervals. O-minimality requires that this property is true even if replace the
polynomial p(z) by any first order formula ¢(z), including quantifiers!

The class of o-minimal theories is quite rich. Consider first, the theories Lin(R) and
OF(R), defined in Section 2.3. Since both of these theories admit quantifier elimination [98],
every definable subset of R in Lin(R) is a semilinear set, whereas every definable set R in

OF(R) is a semialgebraic set. But then semilinear and semialgebraic sets on the real line can

56

only have a finite number of connected components. This immediately shows that Lin(R)
and OF(R) are o-minimal.

The search for new o-minimal theories started by extending OF(R) by restricted
analytic functions. Given a real analytic f in a neighborhood of the cube [-1,1]* C R, let
f: R* = R be the function defined by

(o) = f(z) ifze[-1,1}"

0 otherwise

Function f is a restricted analytic function since it restricts f on a compact cube. The
resulting theory, denoted by OF,,(R) seems quite unnatural. Remarkably, definable sets
in OF 4 (R) capture the bounded subanalytic sets described in Section 2.2! Furthermore, it
was shown in [35] that OF;,(R) is o-minimal.

Therefore, definable sets in o-minimal theories provide a uniform way of capturing
exactly the desirable properties enjoyed by semilinear, semialgebraic, and subanalytic sets.
However, for the purposes of the bisimulation algorithm, we also need well behaved flows
of vector fields. Even though o-minimal theories capture desirable classes of sets, flows of
vector fields require functions that are globally defined. As shown in Example 6, the flow
of the vector field £ = 1 is definable in Lin(R). In general, OF(R) gives us the modeling
power to describe vector fields with polynomial flows. Restricted analytic functions are,
by definition, restricted on a bounded time interval, and therefore do not capture any new
flows of vector fields.

Fortunately, a big breakthrough occurred in [111], where it was shown that OF o (R)
is o-minimal. Recall from Section 2.3 that OFxp(R) extends OF(R) by the globally defined,
exponential function e®. Globally defined exponential functions allow us to capture flows
of linear vector fields within an o-minimal theory, as shown in Example 7. Furthermore,
in [107], it was shown that OFxp an (R), the model that extends both OF exp (R) and OF ., (R),
is o-minimal. Table 4.3 summarizes o-minimal theories, along with some examples of sets
and flows that are definable in these theories.

In addition to having desirable finiteness properties, definable sets in o-minimal
structures are free of topological pathologieé. Many topological and geometric properties of
o-minimal theories can be found in [106]. In the remainder of this section, we present those

topological properties that are used in subsequent analysis.

Theory Model Definable Sets _Definable Flows
Lin(R) (R, +,-,<,0,1) Semilinear sets Linear flows
OF(R) (R, +, -, x,<,0,1) Semialgebraic sets | Polynomial flows
OF¢n(R) (R, +,-,%,<,0,1,{f}) Subanalytic sets | Polynomial flows
OF exp(R) (R, +, -, x,<,0,1,€%) Semialgebraic sets | Exponential flows
OFexpan(R) | (R, +,—, X, <,0,1,€%, {f }) | Subanalytic sets | Exponential lows

Table 4.1: Definable sets and flows in o-minimal theories

57

Consider a fixed o-minimal theory of the reals, and let definability refer to this
theory. Let f : A — B be a function. The graph of f is defined as I'(f) = {(z, f(z)) | z €
A} C A x B. A function f is definable if its graph is a definable set. We can now define

cells as nonempty definable sets of a particularly simple form.

Definition 4.7 (Cells). Cells in R® are inductively defined as follows:

1. The cells in R are points {c} with c € R and open intervals (a,b) with —oo <a <b <

+00.

2. Let C T R be a cell and let f,g : C — R be definable continuous functions such
that f < g on C. Then the following are cells in R**1

¢ (—00,f) ={(z,r) e CxR:7 < f(2)},

o I'(f) = {(z f(=)) | z € C},

* (f,9) ={(z,7) € C xR: f(z) <r < g(z)} C K™,

o ['(g) = {(z,9(z)) |z € C},

o (f,+00)={(z,7) €CxR: f(z) <r}
e CxR

A more geometric and useful view of cells is as fibers over their projections, as

shown in Figure 4.3. Now recall from Section 2.2 that given a collection of subanalytic sets,

there exists a stratification (partition) of R*, compatible with the collection of the these

sets. The following theorem should be thought of as a generalization of Theorem 2.11 for

all o-minimal theories.

Theorem 4.8 (Cell Decomposition [53]). Given any finite family {A1,... , A1} of de-

finable subsets of R™ there ezists a finite partition of R" into cells so that each A; is a union

of such cells.

58

H
\
H
H
H
1}
% AN
\ 7

C R"

Figure 4.3: Inductive definition of cells

Note that o-minimality is a finiteness condition of definable sets on the real line.
However, o-minimality and the cell decomposition theorem constrain definable sets in R"

to have an analogous finiteness property.

Theorem 4.9 (Uniform Finiteness). Any definable set has a finite number of connected
components, each of which is a definable set. Moreover, if A C R* xR is definable then there
ezists a positive integer N such that for each = € R* the number of connected components
of A = {t e R: (z,t) € A} is less than N.

Therefore, even though each fiber A, over z has a finite number of connected
components, o-minimality and cell decomposition provide us with a globally uniform bound
of connected components that A; can be partitioned to, independent of z!

Finally, recall from elementary topology that arcwise connected sets are connected.
The converse is not always true, and a classic counterexample is related to the construction
used in Example 5. Fortunately, sets definable in o-minimal theories are free from such

pathologies.

Theorem 4.10 (Connectedness). If A is definable and connected, then it is arcwise con-

nected.

Definable sets in o-minimal theories enjoy many more nice topological properties.

A very nice introduction to their topology can be found in [106].

59

4.4 O-Minimal Hybrid Systems

As shown in Example 13, the termination of the bisimulation algorithm critically
depends on whether the intersection of trajectories and sets consists of a finite number of
connected components. If, however, all relevant sets and trajectories are definable in an

o-minimal theory, then such a possibility is avoided. This motivates the following definition.

Definition 4.11 (O-Minimal Hybrid Systems). A hybrid system, defined in Definition
4.5asa tup}_e H = (X,Xy,Xr,F,E, I,G,R), is said to be o-minimal if

e Xe=R"
e for each q € Xp the flow of F(q,-) is complete
e for each q € Xp the family of sets
Ag = {I(g), (Xo)q, (XF)q} U{G(e)q, R(e)q : € € E}
and tlge“ flow of F(q,-) are definable in the same o-minimal theory of R.

Therefore a hybrid system is called o-minimal if for each discrete location, the
invariants, guards, resets, initial and final conditions, as well as the flow of the differential
equation are definable in the same o-minimal theory. Different o-minimal theories could be
used in different discrete locations. For example, in one discrete location one can use Lin(R)
to describe polyhedral sets and linear flows, whereas in another location of the same hybrid

system one can use OFexp(R) to describe semialgebraic sets and flows of some linear vector

fields.

Theorem 4.12 (Finite Bisimulations). Every o-minimal hybrid system admits a finite

bisimulation. Equivalently, the bisimulation algorithm terminates for all o-minimal hybrid

systems.

Proof. We will assume that we are given a fixed o-minimal theory of the reals in which
all relevant objects are definable. From now on, definable will mean definable in this fixed
o-minimal theory. We start by applying the cell decomposition theorem on each family
Aqg. As mentioned in Section 4.2, the special form of Pre.(P) allows us to construct the

bisimulation quotient on each set {g} x X separately. Therefore, we assume given a finite

60

partition P of R® into definable sets and a vector field F whose flow is definable. Moreover,
we will simply write Pre for Pre,.

The outline of the proof is as follows. We first perform an initial finite refinement
P of P which has the property that the intersection of any trajectory with each set has
one connected component. Because of this property we can use a slight variation of the '
iterative step of the bisimulation algorithm to construct a finite partition B which is a
further refinement, and satisfies the bisimulation condition, namely, that for any B € B,
the set Pre(B) is a finite union of set in B. This guarantees that the bisimulation algorithm
terminates.

We first notice that if f : R = R” is continuous, periodic, and not constant, then f
is not definable. Indeed, for such f there is y € R” such that theset R= {z € R: f(z) = y}
consists of an infinite number of isolated pbints. On the other hand, if f is definable, then
so is R, but this contradicts o-minimality.

For each z € R®, v,(t) will denote the integral curve of F which passes through
z at t = 0. That is, 9z(t) = F(7z(t)) and 72(0) = z. Therefore, ®(z,t) = 7z(t) denotes
the flow of F and is definable by hypothesis. Combining this with the comment above we
conclude that for each z € R", v,(-) is either constant or injective.

We will need the following lemma.

Lemma 4.13. Let F and &(z,t) be as above, and let y be an integral curve of F. Define
I =Im(y) = {7(t) : t € R}. Let S be a definable set and C a connected component of
I'NS. If ty,t; € R are such that y(tp),v(t1) € C, then (t) € C for all g <t < 1.

Proof. Since C is definable and connected, it is also arcwise connected. Let 8: [0,1] — C
be continuous and such that B(0) = () and B(1) = ¥(t1). If v is constant there is
nothing to prove. We can then assume 7 is injective and F(v(t)) # 0 for any ¢. Therefore,
the restriction of 4 to any compact interval [a,b] is a homeomorphism between [a,b] and
~([a,b]). If B([0,1]) € 7([a,b]) then y~* o B is continuous and so y~* o B([0, 1]) is an interval
containing to,%;. Therefore, for all t € [to, t1], ¥(t) € B([0,1]) € C as desired.

Assume then that 8([0,1]) is not contained in the image under y of any finite
interval. Hence there exist a sequence {t,} with [t;] = oo and ¥(t,) € B([0,1]) for all n.
By taking a subsequence if necessary we may assume that v(¢,) = Z € B([0,1]). Therefore,
& = (i) for some { € R. We will show that this is a contradiction. In a (definable)

neighborhood B of # we can make a definable change of coordinates centered at Z, so that

61

in these coordinates F = ?3::_1' In fact, after a translation and rotation (which are definable!)
we can assume that Z =0 and F(0) = 59-1—1. Then the desired change of coordinates is given
by

W15+ 1 ¥n) — 2((0,92,--- ,¥n)s11)

Therefore, in that neighborhood all integral curves of F are of the form y(t) =
(t,a2,... ,an) for some constant az,...,a,. By restricting the neighborhood further we

may assume it is of the form
B ={(z1,... ,2n) : g; < z; < @i}

The set I'N B is a union of at most countably many sets of the form I,, ., =
{(t,az,... ,81) : gy <t < @1} and so each such set is a connected component. By o-
minimality, I'N B is a union of finitely many such sets. By shrinking the set B, if necessary,

we may assume that
rnB={(0,...,0):a, <t <ai}.

For n large enough we must have ¥(¢,) € I' N B. Therefore, for such an n there
exists ¢ near £ such that v(t) = y(¢,), which contradicts the injectivity of -y. This concludes
the proof of the lemma. O

We now continue with the proof of the main theorem. Given a set S, we define
H = {(z,t) € R**! : &(z,t) € S}. If S is definable, then H is definable. Moreover,
by o-minimality there exists Ns € N such that the number of connected components of
H, = {t: (z,t) € H} is less than N for all z € R®. This implies that if S is definable and
I’z denotes the trajectory of F passing through z, then the number of connected components
of 'z N S is bounded above by a constant independent of z. We choose N € N larger than
the corresponding N for all sets S € P.

We begin the construction of the partition B by subdividing each set S in P as

Note that rotation requires multiplication which does not exist in Lin(R). However, flows definable in
Lin(R) are already complete and straightened.

62

follows. Let

So {z€X:Vt2>0 v(t) € S}
S = {x€S\Sp:Vt>0 (1z(t) €S\ So=>Vt'2t(t') €S\ So)}

S; = {.’BES\(S()U-”US,‘_I):
VE>0 (1z(t) € S\ (SoU---USim1) = V' 2t 1z (t') € S\ (SoU---USi1))}

The set S; is clearly definable for every i. For i > 1 the set S; consists of those z
for which -, leaves the set S\ (Sp U---U S;_;) but never returns to it.

Claim: S =0 for £ > N.

To prove the claim it suffices to show that if z € S; with i > 1, then I'z N S has at

least ¢ connected components. To prove this we will use a couple of lemmas.

Lemma 4.14. Let S and S;, i > 0 be as above. Let I be an interval and v(-) an integral
curve of F such that v(I) C S. If y(to) € Si for some tg € I, then 7(I) C S;.

Proof. We proceed by induction. The statement is clearly true for Sp. Assume it holds for
i <k. Lety(I) C S, to € I and y(tp) € Sg+1. Then (to) € S\(SoU...USk). Forany t € I,
if 7(t) € SoU...U Sy then there is j < k such that v(t) € S;. By the inductive hypothesis,
4(I) C Sj, but this contradicts y(to) ¢ S;j. Therefore we have 7(I) C S \ (SoU...US).
Let t € I and t' > ¢ be such that (') € S\ (SoU...USk). Thent' € I and so t' > t,.
Since v(to) € Sk+1 we conclude that for any " > ¢’ we get ¥(t") S\ (SoU...U Sk). This
shows that v(t) € Sk+1- O

Lemma 4.15. If z € S; for i > 2 then there exist t; > 81 > t2 > -++ > sj—2 > ti—1 >
si—1 > 0 such that vz(s;) € S and z(t;) € Sj forj=1,...,i—1.

Proof. We proceed by induction. Let £ € S2. Then z € S\ (So U S1) € §\ 1. Therefore
there exist ¢ > s > 0 such that v.(s) € S\ So and ~:(t) € S\ So. We can not have
7z(8) € Sp because then we would also have v.(t) € So. Therefore y-(s) € S. We set
81 = s. If y-(t) € S; then we set t; = t. Otherwise, there exist ¢ > s’ > t such that
vz(s") & S\ So and 7z(t') € S\ So. Since z € S2, 1z(s) € S\ (SoU S1), and t' > s we must

63

have v(t') € S\ (So U S1). Therefore vz(t') € S and we set ¢; = t'. This completes the
proof for the case i = 2.

Assume now the conclusion holds for 7 and let = € S;;;. In particular, z € S\ S;,
and there are t > s > 0 such that vz(s) € S\ (SoU...US;-1) and v(t) € S\(SeU...US;_1).
If vz(s) € S; for some j < i—1 and 7,(3) € S for all s <3 < ¢, then Lemma 4.14 would
imply that ,(t) € S; which is not true. Therefore there exists 5, s < 3 < ¢ such that
7z(3) € S. We set s; =5.

If Qz(t) € S; then we set t; = ¢. Otherwise, there exist t' > s’ > t such that
ve(s") € S\ (SoU...US;i_1) and (') € S\ (SoU...U S;—1). Since z € Siy1, 7:(3) €
S\ (SoU...US;), and ' > 5 we must have y,(¢') € S\ (SoU...US;). Therefore 7,(t') € S;
and we set t; = t'.

By the inductive hypothesis there exist f; > 3; > -+ > #;—1 > §i—1 > 0 such that
Yo (t:)(35) & s 'y.,z(t,.)(t}) € Sj, for j =1,...,i—1. Setting s; = §; +;, t; = tj +t; for

j=1,...,i—1 we get the desired conclusion. O

The last lemma together with Lemma 4.13 proves that if z € S; then I'; N S has
at least 7 connected components. This, in turn, proves the claim.
Notice that Lemma 4.13 also implies that if z € S; then I'; N S; has exactly one

connected component.
By carrying out the subdivision into the sets S; for all S € P we obtain a new

finite partition P of R* with the property

(P) Foreach S € P, and each trajectory v of F such that (o), v(t1) € S we have y(t) € S
for all £ with g <t < ¢;. In particular, for each £ € S, the set I'; NS has exactly one

connected component.

We will denote by p = p(’ﬁ) the number of sets in P and write P = {Si:i=

1,...,p}
We introduce two functions, I and C, acting on pairs of sets, defined by

=

>

=
I

AN Pre(B)
A\ Pre(B)

Q

»

X
I

It is clear that if A and B are definable, then I(A, B) and C(A, B) are definable.
Notice also that for each A, B the sets I(A, B),C(A, B) form a partition of A.

64

For each 4, 1 < i < p consider all the partitions of S; defined by

I(S;, Q(Sj,, Q(Sipy- -+ »@(SjecrsSix) -+) (4.10)
C(Sia Q(SJN Q(szs seey Q(sjk_l) Sjk) s))) (4'11)

where Q is either T or Cand 1 < j; < p for I = 1,... ,k. This is a finite collection of
partitions. We let B denote the coarsest partition of R® compatible with all such partitions.

Claim: B is a bisimulation.

The intuitive basis for this proof is the fact that the partitions constructed so far
are done “along the flow of F.” That is, two sets in B which are subsets of the same set in
P can not be connected by a trajectory of F.

To prove the claim first notice that the sets in B are (finite) intersections of sets
of the form (4.10) or (4.11). Notice also that by construction B is a refinement of P.

To check the bisimulation property let B€ B, BC S € P, be written as

m
B=(\~
i=1

where each P, is of the form (4.10) or (4.11). We want to prove first that

Pre(B) = ﬁ Pre(R). (4.12)
i=1

The inclusion Pre(B) C N, Pre(P) is straightforward. For the other one let
z € N, Pre(P;). For each I there exists #; > 0 such that vz(t1) € Pi. Each set P is of the,
form I(S;, A;) or C(S;, A;) for some A;’s. Hence, v2(t;) € S; for all .. We now want to show
that indeed v;(#;) € B for all ¢;. Consider the following property of a set A.

(Q) for any trajectory yof F,ify(sg) E AC S € P, then for all s with ¥(s) € S, v(s) € A.

We show that if a set A has Property (Q), then so do I(S’, A) and C(S', A) for any S’ e-P.
Let v(so) € I(S',A) C §'. Then 7(sp) € S’ and there exists ¢ > so such that y(t) € A. If
v(t) € S, then we have S = S’ since both belong to P. By (Q) 7(s) € A C Pre(A) for
all s such that y(s) € S'. Therefore v(s) € I(S’, A) for all such s. On the other hand, if
v(t) € S, then ANS' C SNS' = 0. Let y(s) € S'. By Property (P) applied to S’ we get
that s < t. But then v(s) € Pre(A) N S’ as desired. The proof for C(5’, A) is analogous.

Proceeding by induction it is easy to show that the sets P, have Property (Q) and
this completes the proof of (4.12).

65

Notice also, that Pre(A U B) = Pre(A) U Pre(B) for all sets A, B.

To complete the proof that B is a bisimulation we only need to show that for each [,
and each set S € P, the set SNPre(F;) is a union of sets in B. The set SNPre(P) = I(S, R)
is of the form (4.10) with k < p+1. Ifk < p+1 we already know that I(S, P;) is a union
of sets in B. We only need to consider the case k = p + 1.

There are two possibilities for I(S, P,):
1. there are two occurrences of C in I(S, P),

2. there ‘are p + 1 occurrences of I in I(S, P,), and therefore, at least one S; € P is

repeated as an argument of I.

In case 1 the following two formulas, and boolean algebra, show how to rewrite

I(S, P,) either with fewer terms or using only 1.

C(S3,C(S2,Sl)) = C(S3352)UI(S3aI(SZ,SI)) (413)
C(83,1(S2,51)) = C(S3,52) UI(Ss3,C(S2,51)) (4.14)

Both formulas can be proved with arguments similar to the ones above, relying on Prop-
erty (P).
Finally, in case 2 we can show, again using (P) that I(S, A) = 0. This concludes

the proof that B is a bisimulation. O

4.5 Classes of O-Minimal Hybrid Systems

In this section, Theorem 4.12 is applied to several classes of o-minimal hybrid
systems. For each o-minimal theory of Table 4.3, we provide examples of definable, o-
minimal hybrid systems. While it is clearly possible to identify other special cases, the ones

described below cover versions of most known results, and several natural extensions.

The theory Lin(R)

The definable sets in this theory capture semilinear sets whereas the definable
flows capture linear flows. Therefore, Theorem 4.12 applied to the o-minimal theory Lin(R)

results in the following corollary.

Corollary 4.16. Consider hybrid system H where

66

e all relevant sets are semilinear
e all flows are linear
Then H aedmits a finite bisimulation.

Furthermore, since Lin(RR) is not only o-minimal but also decidable, there is a com-
putational procedure for computing Prey(P) of a definable set P. Therefore, the bisim-
ulation algorithm is both finite and computable, which immediately leads to a decidable
class of o-minimal hybrid systems. As a result, Corollary 4.16 captures versions of timed
automata [3], multirate automata [2], and rectangular automata [48, 91]. In general, timed
automata also allow identity maps as reset maps, whereas rectangular automata allow for
identity reset maps as long as the dynamics from one location to another remain the same.

This discrete behavior is not allowed in our hybrid model.

The theory OF(R)

The definable sets in OF(R) are the semialgebraic sets, whereas the definable flows
in this theory are polynomial. Therefore, the hybrid systems corresponding to this theory
are hybrid systems H, where all sets all semialgebraic and all flows all polynomial. Moreover,
since OF(R) is a decidable theory, we immediately obtain a new class of decidable hybrid

systems.

Corollary 4.17. Consider hybrid system H where
e all relevant sets are semialgebraic,
e all flows are polynomial.

Then H admits a finite bisimulation.

The o-minimality of this structure can also be used to show the existence of finite
bisimulations in special cases when the flow is not definable. This was illustrated in [64]
for the case of planar hybrid systems whose vector fields admit definable (polynomial)
Hamiltonians. This captures the decidability result of [28].

67

The theory OF,,(R)

In addition to semialgebraic sets, the definable sets in this theory, include bounded
subanalytic sets. Even though polynomial flows are definable in this theory, since the
restricted analytic functions f are zero outside a compact set, they cannot be used to define
complete flows. However, the Pre, operator corresponding to some periodic flows may still
be definable. Consider for example, a hybrid system H whose vector fields are diagonalizable
linear vector fields with purely imaginary eigenvalues. Since the restriction of sin on [—, 7]
is definable, the Pre, operator corresponding to this linear vector field is definable. This

leads to the following corollary.
Corollary 4.18. Consider hybrid system H where

e all relevant sets are semialgebraic or bounded subanalytic,

o all vector fields are diagonalizable, linear vector fields with purely imaginary eigenval-

ues.
Then H admits a finite bisimulation.

Note however that since OF,,(R) is not known to be a decidable theory, the above

corollary is not a decidability result.

The theory OF.,(R)

The main difference between OF exp (R) and the previous theories, besides enriching
the class of definable sets, is the fact that the symbol e* represents a globally defined
function. This allows new classes of definable flows. In particular, the flows of linear vector

fields with real eigenvalues are definable.
Corollary 4.19. Consider hybrid system H where
e all relevant sets are semialgebraic,
e all vector fields are diagonalizable, linear vector fields with real eigenvalues.

Then H admits a finite bisimulation.

Recall from Section 2.3 that it is not known whether OF¢xp(R) is decidable. In
fact in [73] it was shown that it would be a consequence of Schanuel’s conjecture in number

theory.

68

The theory OFep on(R)

This theory extends both OFg,(R) and OFexp(R). Corollaries 4.18 and 4.19 can

be combined to obtain the following result.

Corollary 4.20. Consider hybrid system H where
e all relevant sets are semialgebraic or bounded subanalytic,
e all vector fields are

- either diagonalizable, linear vector fields with real eigenvalues,

- or diagonalizable, linear vector fields with purely imaginary eigenvalues.
Then H admits a finite bistmulation.

The above corollary extends the planar results in [64] to R®. Note that relax-
ations of Corollary 4.20 would allow spiraling, linear vector fields which are not definable
in OF expan(R). As was shown in Example 13, such systems, in general, do not admit fi-
nite bisimulations. Therefore even though Theorem 4.12 provides sufficient conditions for
obtaining finite bisimulations, Coroilaries 4.16 to 4.20 as well as Example 13 show that the

sufficient conditions of Theorem 4.12 are tight.

4.6 Linear Hybrid Systems

Whereas the goal of the previous two sections were to find conditions that guar-
antee the termination of the bisimulation algorithm, the goal of this section is to make
the bisimulation algorithm constructive. This critically depends on being able to compute
Pre,y(Y) for definable sets Y in each discrete location g. If the sets and flows are definable
in a theory which admits quantifier elimination, then this reachability computation can be
performed as shown in Examples 6 and 8. Since Lin(R) and OF(R) admit quantifier elimi-
nation, Corollaries 4.16 and 4.17 are not only existential but also constructive, immediately
leading to decidability results. However, the theories associated with Corollaries 4.18 to
4.20 do not admit quantifier elimination. In order to be able to perform reachability com-
putations in these theories, the strategy will be to transform formulas in these theories to
equivalent formulas in the decidable theory OF(R). Even though this forces us to use semi-

algebraic sets in the system description, it will allow us to compute reachable sets for hybrid

69

systems with linear vector fields in each discrete location. This class of hybrid systems is
defined next.
Definition 4.21 (Linear Hybrid Systems). A hybrid system H = (X, Xo,XF,F,E,1,G,R)

is called linear if
e Xc=R".
e for each g € Xp the family of sets
Ag = {I(g),(X0)q, (XF)q} U{G(e)q, Rle)q | € € E}
is definable in OF(R).
e for each g € Xp the vecior field F(q,z) = Ayz, where Ag € Q" ™.

Linear hybrid systems should be distinguished from the notion of linear hybrid
automata which are hybrid automata with linear flows, and not vector fields, in each discrete
location. As indicated previously, because of the structure of the bisimulation algorithm,
we only need to investigate a single location and a single linear vector field F(z) = Az

where the subscript ¢ is dropped for notational convenience.

Since the invariant I(q) associated with discrete state g is a definable set, there
exists a formula I(z) such that I(q) = {z € R* | I(z)}. Now let Y = {yeR* | P(y)} bea

definable set. Then we can write explicitly

Pre(Y)={zeR'|3y3t : Py)At=>0Az = ety
AVE0<E <t = I(e)}

In order to simplify the following presentation, we will assume that I(z) is true. In this

case, the above definition reduces to
Pre(Y) = {z€R*|3y3t: P(Y)At>0Az =e 4y} (4.15)
= {z eR" [n(z)} (4.16)

It will be clear from the following results that more complicated invariant sets can be dealt
with by the same techniques.

From equation (4.15), we have that Pre(Y) is definable in theories which do not
admit quantifier elimination. Our goal in this section is to transform formula 7(z) to an
equivalent formula in OF(R), which is indeed decidable. Based on the eigenstructure of A,

we identify several classes of linear vector fields for which this transformation is feasible.

70

4.6.1 Nilpotent matrices

We consider first the special case when the vector field is linear with a nilpotent
matrix A, that is, A" = 0. Recall that nilpotent matrices can only have zero as an eigenvalue.
Another important property of nilpotent matrices is that we can express e~*4 explicitly as

a finite sum

n-1 tk
et = Z(—l)"FA" (4.17)
k=0 :

Thus, the formula 7(z) can be rewritten as follows:

n-1 k
n(z) = JyIH:Py)At>20Az = Z(—l)k-t—'Aky
pard k!

£ 3y:P(y) Ap(z,y)

Clearly, u(z,y) is a formula in OF(R), and so is n(z), which implies that the following

proposition holds.

Proposition 4.22. Let F(z) = Az be a linear vector field and A € Q**™ a nilpotent
matriz, and Y C R" definable in OF(R). Then Pre(Y) is definable in OF(R).

Therefore, based on the computational procedure for eliminating quantifiers in
OF(R), we can compute Pre(Y’) for linear vector fields with nilpotent matrices. Note that
nilpotent linear vector fields capture integrators which are an extremely important class of

linear systems.

Example 14. Consider the nilpotent linear vector field defined by

& 010)
%z = 0 01 . T2 (4.18)
dza 000 T3

dt

and consider the set ¥ = {(y1,2,3) € R® | P(y1,y2,y3)} where

N
P(y1,y2,u3) = 1 =4Ay2>2Ay2<4Ayz=5

71

Then Pre(Y) = {(z1, %2, 23) € R® | n(z1,z2,73)} where it can be easily checked that

A
n(z1,72,2z3) = 3y Jy2 Jys It : P(yr,y2,43) At > 0A

t2
z1=y1—tyg+5y3/\
To =Y2 — lys A
T3 =1Y3

Using REDLOG to perform quantifier elimination we get that 7(z1,z2,3) is equivalent to

the quantifier free formula

n(z1,%2,23) = 22173 —a:% —8z3+16>0A
2x1:z:3—:c§—8:c3+4<0/\
z3—5=0A

(123 — 423 <0V 2223 < 0)

4.6.2 Diagonalizable matrices with rational eigenvalues
In this case we can write A = TDT~! where D is a diagonal matrix with the

eigenvalues of A along the diagonal and both 7 and T~! have rational entries. Then

e_tAI

e—tA = ¢~tTDT™! _ T =[fi;(8)] (4.19)
e—thn

where f;(t) = X Fo,; aijke‘)‘k‘ with a;;x € Q for all ¢,j,k, and {\;} are the eigenvalues of
A. Moreover, £ = e~*4y can be written component-wise as follows

n n
= =kt
zi=), 2, ke ")yj
1

j=1

n n

—Axt
> aijey; | e
k=1 \j=1

n
=) Yuly)e Mt
k

1]
—

72

Therefore, n(z) can be rewritten as follows

n n
Jy3t:Piy)At2>20A /\ T = Zi/),-k(y)e')"‘t
i=1 k=1

e

n(z)

3y : P(y) Ap(z,y)

>

Since the formula for Y, P(y), is already in OF(R), we will concentrate on studying ¢(z, y).
First we reparameterize the time ¢ to reduce the problem to integers in the exponent. More
precisely, for each k = 1,... ,n let dx denote the denominator of A\x and let do = [di. We
assume that the \; are in reduced form, with positive denominators. Then dp > 0 and for

each k = 1,... ,n we write 1y = Axdy. Then we have that ¢(z,y) = vz(z, y) where
A n n
vz(z,y) = Is:s20A A\zi=) tuly)e™ (4.20)
i=1 k=1

Still, ¢z contains exponentials. We consider a second formula {(z,y) which does not involve

the exponential function:

n

¢(z,y)

n n
3z:0<2<1A Nzi=) vuly) 2 (4.21)
i=1 k=1

The following lemma holds.
Lemma 4.23. Formulas pz(z,y) and {(z,y) are equivalent.

Proof. =. If pz(z,y) holds, then there exists s > 0 such that

n

Nzi=> valy) e
k=1

i=1

Set z=¢e"%. Then0<z2<1and

n

Nzi=_valy) ™
k=1

=1
so {(z,y) holds.
<. Conversely, if {(z,y) holds, then there exists z, with 0 < z < 1 such that

Azi=D v 2™

i=1 k=1

73

By well known properties of the exponential function (continuity, monotonicity, and e =1,

e~ = 0) there exists s > 0 such that 2 = e™°. Then

n n

Nzi=D virly) e

=1 k=1
Hence, pz(z,y) = ((z,y). O
The third step eliminates negative polynomial powers. It consists of grouping the

indices 1,... ,n according to the sign of the corresponding eigenvalue. Let It = {k | r >
0}, I = {k | 7« <0}, and I° = {k | rx = 0}. Consider now the following formula:

v(z,y) £ Jw; Fws : (4.22)

w >0 Aw >0 Aww =1

ANzi= D v it + D daly) wi + Y Yi(y)

i=1 kel+ kel- kel®
Clearly, v(z,y) is a formula in OF(R). Furthermore, we have the following.
Lemma 4.24. The formulas {(z,y) and v(z,y) are equivalent.
Proof. The equivalence is immediate from the change of variables wy = 2z, wo = 1/z. O
The combination of the above lemmas gives the following proposition.

Proposition 4.25. Let F(z) = Az be a linear vector field and A € Q"*" a diagonalizable
matriz with rational eigenvalues, and Y C R® definable in OF(R). Then Pre(Y) is definable
in OF(R).

Proof. By the previous lemmas we have that 5(z) = 3y : P(y) Av(z,y) and v(z,y) definable
in OF(R). O

Proposition 4.25 implies that we have a computational procedure for computing
reachable sets for diagonalizable linear vector fields with rational eigenvalues. As an illus-

tration of Proposition 4.25, consider the following example.

74

Example 15. Consider again Example 7. Let Y = {(y1,%2) € R? | y» = 4Ay2 = 3}. Recall
that Pre(Y) = {(z1,z2) € R? | ¥(z1,22)}. Applying the previous lemmas we have that

¥(z1,22) 2 Iy Iy =4Ay2=3At>20AD =y1e'2t/\a:2=y2e‘
' Bylayg’:'lz:y;=4/\y2=3/\0<z51/\:1:1=y1z'2/\a:2=y2z

Jyy e 3w 3w iy =4A R =3Aw1 >0Aw >0 Aww =1

Azy = y1wi ATy = own

i

172 —36 =0A22 >0

4.6.3 Diagonalizable matrices with imaginary eigenvalues

In this case the matrix A is similar to a matrix in a special block-diagonal form,
a real Jordan form. First, the number of rows (and columns) of A, is even. Second, there

exist D and T such that A = TDT"!, T invertible, and D is block diagonal with each block

X

where b is the imaginary part of an eigenvalue of A. Moreover, if each eigenvalue is of the
form ir with r € Q, then the entries of D, T, and T~! are all rational.
We analyze the formula z = e~*4y in more detail. Assume D has diagonal blocks

of size 2 x 2 and of the form

Dy, ... ,Dy (n=2m). We can write

e—tDl
- _ -1 "—
¢—tA = ~tTDT-! _p 71

¢=tDm

In fact, for a matrix D = [0

b] we have

0

e~tD = cos(bt) — sin(bt)
- sin(bt) cos(bt))

Therefore, we also get

e~ = [£i;(2)]

7

with n
fij(t) = Z aijk cos(Bt) + byjx sin(Bt)

k=1
with a;jk, biji, Bx € Q. The formula z = e~tAy can be written component-wise as follows

T; = ZI (Z(aijk cos(Bxt) + byjk Sin(ﬂkt)) Yj

k=1

Z Za,Jky,) cos(Bt) + Z (Z b,_,kyj) sin(fkt)

k=1 \j=1 k=1 \j=1

=Y 9 (y) cos(Brt) + ¥ix(v) sin(Bet)

k=1
Therefore, 7(z) can be rewritten as follows:

A
n(@) = Jy3Ht:PE)At20A /\x, Em (y) cos(Bkt) + i (y) sin(Bxt)
i=1 k=1
A
= 3y:Py) Ae(z,y)
We now study the formula ¢(z,y). We start by reparametefizing t as before. That
is, for each k = 1,... ,n let dj, denote the denominator of B and let dp = [] dx. We assume
that the B; are in reduced form, with positive denominators. Then dp > 0 and for each

k=1,...,n we write r = Brdp. Then we have that ¢(z,y) = @z where

oz(z,y) £ 3Fs:s20A N\zi= h(y)cos(ris) + ¥l (v)sin(res) (4.23)
i=1 k=1

The equivalence is obtained by using the change of variable t = dps. The following result

will allow us to rewrite cos(rxs) and sin(rgs) in terms of cos s and sins.

Proposition 4.26. For each integer m > 1 there ezist homogeneous polynomials frm(z,y)

and gm(z,y) of degree m such that
cos(ms) = fm(cos s,sins)
sin(ms) = gm(cos s,sin s)

Proof. We give a recursive definition. For m = 1 we set fi(z,y) = = and g1(z,y) = y. For

m > 1 the trigonometric identities

cos(ms) = cos(s) cos({m — 1)s) — sin(s) sin((m — 1)s)

sin(ms) = cos(s) sin((m — 1)s) + sin(s) cos((m — 1)s)

76

lead to the following formulas for f,, and gm,

fm(zi y) = xfm-l(wa y) - ygm—l(xa y)
9m(2,y) = Tgm-1(2,9) + yfm-1(z,y)

It is immediate from the formulas that fp(z,y) will be homogeneous provided that both
fm-1(z,y) and gm-1(z,y) are homogeneous of the same degree. To conclude the proof we
need to check that the degree of fm(z,y) and gm(z,y) is m. It is easy to show by induction

that one of the terms of fm(z,y) is ™. Moreover, it is also clear that one of the terms of

gm(z,y) is mz™ 1y O
It is now clear that:

e(z,y) = 3s:520A
n n
A =i = 3" 98 (v) fir,|(cos s, sign(ri) sin 5) + Yk (y)9g)r, | (cos 5, sign(ri) sin 5)
i=1 k=1 .
where fi;,| and g|,,| are the polynomials given in the previous proposition. Due to the

periodicity of both sin and cos we have that

olz,y) = vz(z,y)
Jds:0<s<2n1 A

Ai =S 68@) firyi(cos 5, sign(ri) sin s) + Y2 (y)gyr,) (co5 5, sign(re) sin s)
i=1 k=1

Restricting s to a bounded interval (in this case [0,27]) is extremely important as this

makes the above formula definable in the o-minimal theory OF;,(R). We define now a new

formula:
((z,y) 2 3213z : 2+ 22 =1A (4.24)
n n
A zi =3 0%) firyl (21,5i80(rk)22) + Bfi (4)gyry) (1, SiED(rk) 22)
i=] k=1

Lemma 4.27. The formulas ¢(z,y) and {(z,y) are equivalent.
Proof. The equivalence is shown by setting up z; = cos s, 22 = sins. O

The combination of the above lemmas give the main proposition which shows the

desired decidability result.

7

Proposition 4.28. Let F(z) = Az be a linear vector field and A € Q"*" a matriz with
pure imaginary eigenvalues of the form ir with r € Q, and Y C R* definable in OF(R).
Then Pre(Y) is definable in OF(R).

Proof. By the previous lemmas we have that n(z) = 3y : P(y)A{(z,y) with {(z,y) definable

in OF(R). O

Proposition 4.28 implies that we have a computational procedure for the reacha-

bility problem of linear vector fields with pure imaginary eigenvalues of the form ir with

re Q.

Example 16. Consider the linear vector field defined by

n 0 1
@l = e (4.25)
P -10 T
and let Y = {(y1,¥2) € R? | y1 = 4 Ay2 = 3}. We have that:
Nz1,22) = 3y I R:y1=4Ay2=3At>0

Az) =7yjcost—ysint A zo = yacost + y; sint

3y1 3y2 321 322:)1 =4Ay =3A22+22=1

ATy =1Y122 — Y221 N2 = Y222 + Y121

= 224+23-25=0

The above three classes of linear vector fields for which Pre(Y’) can be computed,

immediately lead to the following constructive theorem.

Theorem 4.29 (Semidecidable Linear Hybrid Systems). Let H be a linear hybrid
system where for each discrete location ¢ € Xp the vector field is of the form F(g,z) = Az

where
o A€ Q™" is nilpotent or
o A€ Q%" is diagonalizable with rational eigenvalues or
o A€ Q"™ has pure imaginary eigenvalues of the form ir, r € Q.

Then the reachability problem for H is semidecidable.

78

Thus, the bisimulation algorithm could be implemented for the above class of
linear hybrid systems without guarantee that it would ever terminate. If it happens that the
algorithm terminates, then we can compute the reachable regions of the hybrid system. If
fact, Theorem 4.29 can be upgraded easily to include more complicated discrete transitions,
as long as there is a constructive method to compute Pre.(Y') for any discrete transition e.

We can now combine the semidecision result of Theorem 4.29 and the termination

result of Theorem 4.12 in order to obtain the desired decidability result.

Theorem 4.30 (Decidable Linear Hybrid Systems). Let H be a linear hybrid system
where for each discrete location q € Xp the vector field is of the form F(q,z) = Az where

o A € Q"*" is nilpotent or

e A € QP'*" is diagonalizable with rational eigenvalues or

o A € Q"™ has purely imaginary eigenvalues of the form ir, r € Q.
Then the reachability problem for H is decidable.

Proof. All relevant sets of linear hybrid systems are by definition definable in OF(R) and
the flows of linear vector fields are complete. Therefore, given the semidecision result of
Theorem 4.29, all we have to show is that the flow of the linear vector field Az is definrable in
an o-minimal theory. Then Theorem 4.12 would guarantee termination of the bisimulation
algorithm. If A is nilpotent then the flow is also definable in OF(R) which is o-minimal.
If A is diagonalizable then the flow ié definable in OF¢xp(R) which is also o-minimal. If A
has purely imaginary eigenvalues, then the flow contains the functions sin and cos which
are not definable in any of the o-minimal theories of Table 1. However, o-minimality of the
flow is only used in the proof of Theorem 4.12 to show o-minimality of the Pre operator.
Even though the flow of this vector field is not definable, the Pre operator corresponding
to these periodic flows is still definable, as all we need is the restriction of sin and cos on

[0,27]. These restrictions are indeed definable in OF,,(R) which is also o-minimal. 0O

Theorem 4.30 is the first decidability result in the area of hybrid systems that
provides the modeling expressiveness to capture relatively complex continuous dynamics.
The importance of these results is immediate given the wide application of (piecewise) linear
systems in control theory. In addition, Theorem 4.30 contains in it a purely continuous

version of reachability analysis for linear systems under state constraints, a problem which

79

is known to be very difficult. As a result, its potential application to analyze various realistic

hybrid systems using computational methods is significant.

4.7 Conclusions

This chapter presented a unified framework for obtaining classes of hybrid systems
with a decidable reachability problem. Decidability requires both the termination and
computa‘bility of the well known bisimulation algorithm. Termination of the algorithm
was guaranteed for o-minimal hybrid systems which are initialized hybrid systems whose
relevant sets and flows are definable in an o-minimal theory. Various examples from recently
discovered o-minimal theories were presented. The search for computable subclasses within
o-minimal theories leads to new decidable classes of hybrid systems. This resulted in classes
of hybrid systems with linear vector fields in each discrete location having a decidable
reachability problem.

Even though decidability may guarantee termination of an algorithm, the com-
plexity of the algorithm may be extremely expensive. Useful algorithms must be applicable
to systems of large scale and complexity. One of the main tools in tackling complexity
is abstraction, or extracting simple models from complex ones while retaining all relevant
information of interest. The next chapter develops a theory of abstraction for reachability
properties of continuous systems. A theory of abstraction of continuous systems will also
extremely useful in understanding and designing large scale, hierarchical systems which

utilize a hierarchy of models at various levels of abstraction.

80

Chapter 5

Abstractions of Control Systems

In order to tackle the complexity involved in verifying that a given large scale
system satisfies certain properties, one tries to extract a simpler but qualitatively equivalent
system, called an abstraction. Checking the desired property on the abstracted system
should be equivalent or sufficient to checking the property on the.original system. The
area of computer aided verification, which must be credited with this notion of abstraction,
typically faces problems of exponential complexity and abstractions are frequently used for
complexity reduction [31, 49, 66, 91). Depending on the property, special graph quotients
which preserve the property of interest are constructed. Bisimulations, the topic of the
Chapter 4, is an example of such a special abstraction.

In addition to analysis, modeling abstractions are also useful in hierarchical control.
Large scale systems such as automated highway systems [109] and air traffic management
systems [88] are systems of very high complexity. Complexity is typically reduced by impos-
ing a hierarchical structure on the system architecture. Figure 5.1 shows a typical two-layer
control hierarchy which is frequently used in the quite common planning and control hi-
erarchical systems. Multi-layered versions of Figure 5.1 are used in both [88] and [109).
In this layered control paradigm, each layer has different objectives. In performing their
tasks, the higher level uses a coarser system model than the lower level. One of the main
challenges in hierarchical systems is the extraction of a hierarchy of models at various levels
of abstraction which are compatible with the functionality and objectives of each layer.

In the literature, the notions of abstraction or aggregation refer to grouping the
system states into equivalence classes. Depending on the cardinality of the resulting quotient

space we may have discrete or continuous abstractions. With this notion of abstraction, the

81

Plannihg Layer
Abstracted Model

Control Layer
Detailed Model

Y

Physical System

Figure 5.1: Two layer control hierarchy

abstracted system will be defined as the induced quotient dynamics; Discrete abstractions
of continuous systems have been considered in [24, 26] as well as [8, 32, 93]. Discrete
abstractions of hybrid systems were the main topic of Chapter 4. Hierarchical systems for
discrete event systems have been formally considered in [25, 113, 114, 119]. In this chapter,
we focus on continuous abstractions of continuous systems. Therefore, our first priority is

to have a formal notion of quofient control systems. More precisely,
Problem 5.1. Given a control system
z = f(z,u) zeR® ueR" (5.1)
and some map y = ®(z), where & : R* — RP, we would like to define a control system
y=g(y,v) YER veR: (5.2)

which can produce as trajectories all functions of the form y(t) = ®(z(t)), where z(t) is a
trajectory of system (5.1). That is, ® maps trajectories of system (5.1) to trajectories of
system (5.2).

The function @ is the “quotient mé,p” which performs the state aggregation. Sys-

tem (5.2) will be referred to as the abstraction [86] or macromodel of the finer micromodel

82

(5.1). Note that the control input v of the coarser model (5.2) is not the same input u of
system (5.1) and should be thought of as a macroinput. For example, v can be velocity
inputs of a kinematic model whereas u may be force and torque inputs of a dynamic model.
This is therefore quite different from model reduction techniques which reduce or aggregate
dynamics while using the same control inputs [9, 57, 58, 59, 60].

We will solve Problem 5.1 by first generalizing the geometric notion of ®-related
vector fields to control systems. A notion of ®-related control systems would allow us to
push forward control systems through quotient maps and obtain well defined control systems
describing the aggregate dynamics. The notion of ®-related control systems introduced in
this paper is more general than the notion of projectable systems defined in [60] and [77)
as we will show that given any control system and any surjective map ®, there always
exists another system that is ®-related to it. Our notion of ®-related control systems
mathematically formalizes the concept of virtual inputs used in backstepping designs [56].
The fact that the aggregation map sends trajectories of (5.1) to trajectories of (5.2) will
enable us to propagate controllability from the micromodel to the macromodel.

Aggregation, however, is not independent of the functionality of the layer at which
the abstracted system will be used. Therefore, when an abstracted model is extracted from
a more detailed model, one would also like to ensure that certain properties propagate from
the macromodel to the micromodel. The properties that are of interest at each layer may
include optimality, controllability, stabilizability, and trajectory tracking. If one considers
the property of controllability, then one would like to determine conditions under which con-
trollability of the abstracted system (5.2) implies controllability of system (5.1). Obtaining
such conditions would ensure that the macromodel is a consistent abstraction of the micro-
model in the sense that controllability requests from the macromodel are implementable by
the micromodel. Such conditions will serve as good design principles for hierarchical control
systems. Different properties may require different conditions. For.example, the notions of
consistency [78], dynamic consistency [25] and hierarchical consistency [119] have been de-
fined in order to ensure feasible execution of high level objectives for discrete event systems.
In this chapter, we will focus on controllability of linear control systems and characterize

consistent linear abstractions. More precisely, we will solve the following problem:
Problem 5.2. Given the linear control system

z = Az + Bu zeR® ueR™ (5.3)

83

characterize linear quotient maps y = Cz, so that the abstracted linear system
y=Fy+Gv yeR veR (5.4)
is controllable if and only if system (5.3) is controllable.

After having characterized consistent linear abstractions, we obtain a hierarchi-
cal controllability criterion which has computational and conceptual advantages over the
Kalman rank condition and the Popov-Belevitch-Hautus (PBH) tests for large scale sys-
tems. Intuitively, instead of checking controllability of a large scale system, we construct
a sequence of consistent abstractions and then check the controllability of a system which
is much smaller in size. Consistency will then propagate controllability along this sequence
of abstractions from the simpler quotient system to the original complex system. The com-
putational advantages of this approach are verified by recovering the best of the known
controllability algorithms from numerical linear algebra [39] as a special case of the hierar-

chical controllability criterion.

5.1 Abstractions of Vector Fields

In this section, a notion of an abstraction for a dynamical system or vector field is
introduced. Consider a vector field X on a manifold M, the state space of the system. In
abstracting system dynamics, information about the state of the system which is not useful
in the analysis process is usually ignored in order to produce a simplified model of reduced
complexity. For example, each state could be mapped to part of the state or to certain
outputs of interest. What state information is relevant usually depends on the properties
which need to be satisfied. Our goal is to try to obtain another dynamical system or vector
field which describe the evolution of the dynamics of interest.

The system state p € M is thus mapped to an abstracted state ¢ € N by some
aggregation or abstraction map ® : M — N. This map, which we will assume from now
on to be surjective, groups the states in a very simple way: states p) and p» on M are
equivalent if ®(p;) = ®(p2). In order for the quotient space to have a manifold structure,
the equivalence relation must be regular [1].

Once a map ® has been given, then given a vector field X which governs the state
evolution on M, one is interested in obtaining the evolution of the abstracted dynamics.

The evolution of a dynamical system is characterized by its integral curves. Let ¢ be any

84

integral curve of X. Then if we push forward the curve ¢ by the map & we obtain that ®(c)
describes the evolution of the abstracted dynamics on N. If we therefore want to abstract
the vector field X on M by a vector field Y on N, then &(c) should be an integral curve of
Y. This motivates the following definition.

Definition 5.3 (Abstractions of Dynamical Systems). Let X and Y be vector fields
on M and N respectively and let & : M — N be a smooth surjective map. Then vector
field Y is an abstraction of vector field X with respect to ® iff for every integral curve ¢ of

X, ® oc is an integral curve of Y.
Therefore if the integral curve c satisfies
d =c.(l) = X(c)
then it must also be true that
(®oc) =(®oc)(l)=Y(Doc)

Therefore, if ©x and Iy denote all integral curves of vector fields X and Y respectively,
then vector field Y overapproximates the collection of curves ®(Xx) and allows redundant
evolutions. Then, instead of checking reachability of vector field X, it is sufficient to check
it on Y, which is of smaller dimension.

From Definition 5.3 it.is clear that a vector field Y may be an abstraction of some
vector field X for some map ®;, but may not be for another map ®2. In building hierarchical
models of large scale systems, the system may be modeled at many levels of abstraction.

The following proposition shows that abstracting dynamical systems is transitive.

Proposition 5.4 (Transitivity of Abstractions). Let X;, X2, X3 be vector fields on
manifolds My, My and M3 respectively. If X, is an abstraction of X, with respect to the
map &, : My = M, and X3 is an abstraction of Xo with respect to map ®2 : My — M3

then X3 is an abstraction of X, with respect to map ®2 0 ®;.

Proof. Let ¢ be any integral curve of X;. Since X5 is an abstraction of X1, then by definition
®;,(c) is an integral curve of X,. But since X3 is an abstraction of X2, ®2(®i(c)) =
(@2 0 ®1)(c) is an integral curve of X3. Thus for any integral curve c of X, (20 ®1)(c) is
an integral curve of X3. Thus X3 is an abstraction of X; with respect to abstracting map
P50 B,. ' O

85

Definition 5.3 is not an easily checkable condition since it involves integral curves
of vector fields. The following theorem shows that Definition 5.3 is equivalent to saying

that the two vector fields are ®-related.

Theorem 5.5 (Abstracted Vector Fields are ®-Related). Vector fieldY on N is an
abstraction of vector field X on M with respect to the map ® if and only if X and Y are
®-related.

Proof. Let vector field Y on N be an abstraction with respect to @ of vector field X on M.
Then by Definition 5.3, for any integral curve ¢ of X, ® oc is an integral curve of Y. Thus

(®oc) =(Poc)(l)=Y(Poc)=>
®,0c.(1)=YoPoc=>
®,0X(c)=YoPoc=
d,0Xo0c=Yodoc=>
d.,0X=Yod

But then, by Definition 2.4, X and Y are ®-related. Conversely, let X and Y be @ related.

Then for any integral curve c of X,
P, 0X=Yod=>
d,0Xo0c=Yodoc=
&, 0X(c)=Y(Poc)=>
®,0c.(l)=Y(®oc)=>
(®oc)(l)=Y(®oc)

and thus ® o ¢ is an integral curve of Y. Therefore Y is an abstraction of vector field X

with respect to ®. O

Theorem 5.5 allows us to check a condition on the vector fields rather than explic-

itly computing integral curves and verifying Definition 5.3.
Example 17. Consider for exaxhple the linear vector field

i=Az zeR (5.5)

86

and the linear, onto quotient map y = Cz. Then in order to obtain a well defined quotient

vector field,
y=Fy yeR™" (5.6)

by C-relatedness we must have CAz = FCz for all z € R*. But for z € K er(C) = {z €
R" | Cz = 0} we must have CAz = F(Cz) = 0 and thus Az € Ker(C). Thus, a necessary

condition to obtain a well defined quotient vector field is
AKer(C) C Ker(C) (5.7)

It turns out that this is also sufficient for the existence of a unique quotient vector field
[116).

As can be seen from Theorem 5.5 and Example 17, ®-relatedness of two vector
fields is a very restrictive condition which limits the cases where one dynamical system
is an exact abstraction of another. Even though ®-relatedness of vector fields is a rather
restrictive condition, the above discussion provides the correct couceptual framework for
generalizing these concepts to control systems, where due to the freedom of control inputs

the equivalent conditions will not be as restrictive.

5.2 Control System Abstractions

In this section, the notions of Section 2.1 for vector fields are extended to control
systems. We will develop such notions for rather general control systems. Generality will
ensure that the concepts of this section do not depend on the particular system structure.
We first present a global and coordinate-free description of control systems which is due
to Brockett [21, 22] and can also be found in [82]. This global description is based on the

notion of fiber bundles which were defined in Section 2.1.

Definition 5.6 (Control Systems). A control system S = (B, F) consists of a fiber bun-
dle # : B — M called the control bundle and a smooth map F : B — TM which is fiber

preserving, that is 7' o F = w where n' : TM — M is the tangent bundle projection.

Essentially, the base manifold M of the control bundle is the state space and the
fibers 7~1(p) can be thought of as the state dependent control spaces. Given the state p
and the input, the map F selects a tangent vector from T,M. The notion of trajectories of

control systems is now defined.

87

Definition 5.7 (Trajectories of Control Systems). A smooth curve ¢ : I — M is
called a trajectory of the control system S = (B, F) if there ezists a curve B:1 —B
satisfying

7l'°CB=C

d=c(l)=FocP

In local (bundle) coordinates, Definition 5.7 simply says that a trajectory of a
control system is a curve z: I — M for which there exists a function u: I — U satisfying,
satisfying # = F(z,u). Note that even though Definition 5.7 assumes ¢ to be smooth,
the bundle curve cB is not necessarily smooth. The definition therefore allows nonsmooth
control inputs as long as the projection 7 o cB = ¢ is smooth.

Recall that for vector fields, the notion of abstraction was equivalent to the notion
of ®-related vector fields. We now define ®-related control systems in a manner similar to

Definition 2.4 for vector fields.

Definition 5.8 (®-Related Control Systems). Let Sp = (Bm, Frm) withwp - By —
M and Sy = (Bn, Fn) with mn : By — N be two control systems. Let ®: M — N be
a smooth map. Then control systems Sy and Sy are ®-related iff for everyp € M

®, o Fpr (734 (9)) € Frv (n3' (2(p))) (5.8)

Control system Sy will be referred to as an abstraction of control system Sy ([86]).
Condition (5.8) states that for each p € M the left hand side of (5.8) first takes the input
space available at p, and pushes it through Fj to obtain all possible tangent directions of
the control system Sy at p. This set of tangent directions is pushed through ®, to obtain
a set of tangent vectors in Tp(;)N. In order for Sy and Sn to be ®-related, this set must
be contained in the image under Fy of the input space available at ®(p). Note that many
control systems Sy may be ®-related to Sy as the set of tangent vectors on NV that must
be captured, can be generated using many control parameterizations.

In a manner similar to Proposition 5.4, it is easy to show that ®-relatedness is
transitive. Indeed, if ®;: My = Ma, ®2: My = M3, Sy, is ®y-related to Spr,, and Sh, is
®,-related to Spy,, then Sy, is $o 0 ®;-related to Sps,. It therefore makes sense to consider
a sequence of ®-related systems. In addition, given M, N, amap &: M = N and a system
Sps, one can put a partial order on all possible ®-related systems Sy, where the partial

ordering arises from pointwise subset inclusion of the right hand side of (5.8) (see (86])-

88

To see that Definition 5.8 is a generalization of Definition 2.1, consider vector fields
Xy on M and Xy on N. Then X and X can be thought of as triQial control systems on
M and N respectively by letting By = M, By = N, mp = idpg, 7y = tdy, and Fy = Xy,
Fy = Xn. Condition (5.8) becomes @, o Xps(p) = Xn o ®(p), which is Definition 2.1 of
®-related vector fields.

The following proposition, which is an immediate consequence of Definition 5.8,
shows that every control or dynamical system is ®-related to some control system for any

map P.

Proposition 5.9 (Existence of Abstractions). Given any control system Sy = (Bar, Fr)
and any smooth map ® : M — N, then there exists a control system Sy = (By, Fn) which
is ®-related to Spr. In particular, every vector field X on M is ®-related to some control

system Sn.

Proof. Given Sy, construct Sy by simply letting By = TN and Fy : TN — TN equal
the identity. Then condition (5.8) is trivially satisfied. Thus Sy = (Bwn, Fn) is ®-related
to Su. . O

In local coordinates, Propositidn 5.9 simply states that the push forward of a
control system or a vector field is a differential inclusion which can be thought of as another
control system. Even though Proposition 5.9 is a simple existential result, it is important
as it shows that given any control system and any aggregation map, then an abstracted
control system always exists.

The conc;ept of ®-related control systems is a generalization of the notion of pro-
jectable control systems defined in [60, 77]. A control system is projectable, essentially,
when each vector field corresponding to a fixed input value is ®-related to some vector field.
Definition 5.8, instead of globally pushing a vector field for each fixed value of the control
input, takes a pointwise approach by pushing forward all possible tangent directions at a
state for all possible inputs available at that state. By Proposition 5.9, any projectable
system in the sense of [60, 77] is also ®-related in the sense of Definition 5.8. The following

example illustrates that ®-related control systems are not necessarily projectable.
Example 18. Consider the double integrator
1 = Zo

:i:2=u

89

" with z1,T2,u € R and the projection ®(z1,22) = z;. Using Definition 5.8, we obtain that
5:1 = T2

is a valid ®-related system.. The double integrator, however, is not projectable in the sense
of [77, 60] with respect to this map as for any fixed value of , the vector field [z2 u)T is

not ®-related to any vector field on R. For the nonlinear control system,

£y = filz1,z2)

) fa(z1, 22, u)

with states z,, z2, input u, and the projection ®(z;,z2) = z;, a ®-related system is
&1 = fi(z1,22)

with state z; but where z2 is now thought of as an input. This is the notion of virtual
inputs used in backstepping designs [56]. A more constructive methodology for generating

abstractions of linear systems will be presented in Section 5.4.

The following theorem should be thought of as a generalization of Theorem 5.5
for control systems. It establishes the connection between trajectories of ®-related control

systems.

Theorem 5.10 (Trajectories of -Related Control Systems). Let Sy = (Bn,Fn)
and Sy = (B, Fum) be two control systems and ® : M — N be a smooth map. Then Sy
and Sy are ®-related if and only if for every trajectory cpr of Sy, ® ocar s a trajectory of
Sn.

Proof. (Sufficiency) Assume that Sps and Sy are ®-related and thus for all p € M we have

®. o Fy (737 (p)) € Fn (75 (2(p))) (5.9)

Let cpr : I — M be any trajectory of S)s. We must show that @ o cps is a trajectory
of Sy. We must therefore find a curve ¢k : I — By such that for all t € I we have
N o cB(t) = docy(t) and (@ o ey)'(t) = Fi o cR(2).

Since cps : I — M is a trajectory of Sy, by Definition 5.7 there exists a curve

cf,, : I — B)s such that for all ¢t € I we have m)s ocf, (t) = epm(t) and ¢ (t) = Far ocf,(t).

90

By ®-relatedness of Sy and Sy we obtain that for all £ € I,

@, 0 Fy (n3f (em(t))) € Fn (75! (@(cm(t)))) =
&, 0Fpock(t) € Fy (i (®(cm(t)))) (5.10)

Condition (5.10) implies that for each ¢ € I there must exist at least one element c£(t) €
7y (®(cpm(t))) (and thus mx o cB(2) = ® o car(t)) such that

d.0Fpyock(t) = Fyoch(t)
®,0cy(t) = Fnocy(t)

(@ocm)(t) = FnocR(t)

Therefore @ o cps is a trajectory of Sy.
(Necessity) Assume that for every trajectory cpr : I — M of Sy, Pocpy is a

trajectory of Siy. Now for any point p € M let
Yo) € . (Fum(my (p)) " (5.11)

We must show that Yg(,) € FN(vr;,l(@(p))). We can write Yg(;) = @.(Xp) for some (not
necessarily unique) tangent vector X, € Fy (1r;,,l (p)). Then there exists a trajectory cps :

I — M such that at some t* € I we have

wu(t) = p (5.12)
dy(t) = X, (5.13)

Indeed, a curve cps satisfying (5.12,5.13) always exists by the existence theorems for differ-
ential equations. To show that ¢y is a trajectory, we need to find cf,: I — Bjs such that
mocB = cp. Let O be a bundle trivializing neighborhood of p and ¥: 7~1(0) — O x U
the trivializing map. There exists u € U such that X, = Fj o ¥~!(p,u). Restricting
I if necessary we may assume cp(I) C O. We can then define the desired curve by
cBi(t) = Far o W~ (cpr (),).

Since cps is a trajectory of Sys satisfying (5.12,5.13), then by assumption we have
that @ o cys is a trajectory of Sy. Therefore by Definition 5.7, there must exist a curve
¢l : I — By such that for all t € T we have 7y o c&(t) = ® o car(t) and (D o cpr)'(t) =

91

Fy o c&(t). In particular, at ¢* € I we have

(Rocm)(t') = Fnocq(t)
®,0c)(t") € Fn(n5'(@(cm(t))))
Y, = ®.(X,) € Fy(n5'(2(p)

Therefore, at all points p € M we must have &, o Fiy (73} (p)) € Fn(ny'(2(p))) and thus
Sy and Sy are ®-related. This completes the proof. O

If £5,, and g, denote all trajectories of control systems Sy and Sy respectively, then
Theorem 5.10 simply states that Sy and Sy are ®-related if and only if ®(Zs,,) C Zs, .
The quotient system therefore overapproximates the abstracted trajectories of the original
system which may result in trajectories that the macrosystem Sy may generate but are
infeasible in the micromodel Sy;.

Theorem 5.10 does not guarantee that the curve cg(t) is a smooth curve. The
main obstacle for generating smooth c¥ (¢) is whether the map Fy : By — TM is an
embedding. An example showing that Fiy being only an immersion is not enough can
be found in [85]. The following theorem shows that Fy being an injective embedding is
sufficient to guarantee smoothness of the c5(¢). Note that requiring Fy to be an injective
embedding implies that the dimension of the input space is less than the dimension of TN
and thus there are no redundant inputs (which covers the cases of interest). In particular,
if the control system Sy is affine in the controls then this is equivalent to saying that the
“controlled” vector fields are linearly independent at each point. That is, if we write the

system in local (bundle) coordinates of By and local (vector bundle) coordinates of TN as
) .
i=f(z)+)_ gilz)u;
i=1

then for each z the vectors g;(z),... ,gk(z) are linearly independent.

Theorem 5.11 (Control Input Smoothness). Let Sy = (Bn, Fn) and Sy = (Bum, Fr)
be two ®-related control systems where Fn : By — TN is an injective embedding. Let
cm: I — M be a trajectory of Sm and assume that the corresponding c:1 — By
is smooth. Then there exists a smooth curve ch : I — By such that for all t € I,

myoch(t) =P®ocpm(t) and Fyo cB(t) = (®ocu) (¢).

92

Proof. Since Sy and Sy are ®-related we have ®, o Fiy o c§,(t) € Fy (75 (®(cm(t))))
for each t € I. Moreover, since by assumption Fy is an embedding, the space By is

diffeomorphic to its image under Fy. We can then define
ch(t) = Fy'(®. 0 Far 0 ciy(t))

which is clearly smooth and satisfies the desired properties. O

5.3 Consistent Control Abstractions

In general, we are not simply interested in abstracting systems but also propagating
properties between the original and abstracted model. In particular, we shall focus on

various notions of controllability.

Definition 5.12 (Controllability). Let S = (B, F) be a control system on M. Forp €
M, define Reach(p,S) to be the set of points ¢ € M for which there ezists a trajectory
c:I — M of S such that for some t1,ty € I we have c(t1) = p and c(t2) = g. The control
system S is called controllable iff for all p € M, Reach(p,S) = M.

Theorem 5.10 allows us to always propagate the property of controllability from

the micromodel to the macromodel for any aggregation map.

Theorem 5.13 (Controllability Propagation). Let control systems Sy = (Bum,Fum)
and Sy = (Bn,Fn) be ®-related with respect to some smooth surjection ® : M — N.
Then for allpe M,

® (Reach(p, Sm)) C Reach(®(p), Sn)

Thus, if Sy is controllable then Sy is controllable.

Proof. Consider any p € M and let ¢ € ®(Reach(p, Supr)). Then there exists p; € ®1(q)
with p; € Reach(p, Spr). Thus there exists a trajectory cy of S such that cp (1) = p
and cp(t2) = p1. By ®-relatedness, the curve ® o cps is a trajectory of Sy which connects
®(cpm(t1)) = ®(p) and B(cam(tz)) = ®(p1) = g. Therefore ¢ € Reach(®(p), Sn).

If Sps is controllable, then for all p € M we have Reach(p, Sm) = M. But then
®(Reach(p, Sym)) = ®(M) = N = Reach(®(p), Sn). Thus Sy is controllable. O

Note that Theorem 5.13 is true regardless of the structure of the aggregation map

®. From a hierarchical perspective, the reverse question is a lot more interesting since it

93

would guarantee that controllability requests are implementable by the lower level system.
In order to arrive at this goal, we define the notions of implementability and consistency.

We also give descriptions of those concepts in terms of reachable sets.

Definition 5.14 (Controllability Implementation). Let Sy = (By, Fu) and Sy =
(BN, Fn) be two control systems and ® : M — N be a smooth surjection. Then Sy
is implementable! by Sy iff whenever there is a trajectory of Sy connecting gy € N and

g2 € N, then there ezist p; € ®~1(q1) and p2 € ®~1(q2) and a trajectory of Sy connecting
p1 and pa.

Implementability is therefore an existential property. If one thinks of the map @ as
a quotient map, then implementability requires that a reachability request is implementable
by at least one member of the equivalence class. It is clear from Definition 5.14 that
implementability is transitive, that is if Sps, is implementable by Sps, with respect to
®,, and Sy, is implementable by S, with respect to ®2, then Sy, is implementable
by Sum, with respect to ®; o ®3. This is important in hierarchical systems which should
consist of a sequence of implementable abstractions. It should be ﬁoted that the notion
of implementability defined above is related to the notion of between-block controllability,
defined in [25, 26).

Proposition 5.15 (Implementation Condition). Consider control systems Sy = (Bag, Fr)
and Sy = (Bn, Fn) and a smooth surjection ® : M — N. Then Sy is implementable by
Sy if and only if for allg€ N,

Reach(q, Sn) C ®(Reach(®~(q), Sum)) (5.14)

where Reach(®71(g), Sm) = Upea-1(q)Reach(p, Sir).

Proof. Let q' € Reach(q,Sy). By implementability, there exists a trajectory of Sps con-
necting some p € ®~1(q) to some p' € ®1(¢’) and thus p' € Reach(p,Spy). But then
qd = ®(p') € ®(Reach(p, Sp)) C ®(Reach(®~1(q), Snr)).

Conversely, let go € Reach(q1, Sn) for some ¢, € N. By assumption,

g2 € ®(Reach(®~1(q1),Sm)) = ®(Up,eo-1(q)Reach(p1, Su))

= Up ea-1(q)P(Reach(p1, Sm))

1n this paper, we only consider implementation of controllability requests. Thus implementability will
refer to controllability implementation.

94

But then there must exist at least one p| € ®~!(q1) such that g2 € ®(Reach(p},Snm))
which in turn implies that there exists p), € Reach(p}, Snm) with ®(p2) = g2 and thus Sy is
implementable by Sjs. This completes the proof. O

We will mostly be interested in implementability of ®-related systems, in which
case the above inclusion becomes an equality, by Theorem 5.13.

Implementability may depend on the particular element chosen from the equiva-
lence class ®~1(g). In order to make the controllability request well defined, it would have
to be independent of the particular element chosen from the equivalence class. This leads

to the important notion of consistency.

Definition 5.16 (Controllability Consistency). Let Sy = (Bu, Fm) be a control sys-
tem on M and let ® : M — N be a smooth surjection. Then Spr is called consistent with
respect to ® whenever the following holds: if there ezists a trajectory of Sm connecting p
and g, then for all p' such that ®(p) = ®(p') there ezists a trajectory of Sm connecting p'
to some q' with ®(q) = ®(¢).

Note that while implementability is a condition between two systems Sy and
Sn, consistency is a condition on a single system with respect to some quotient map .
Consistency requires that the ability to reach a particular equivalence class is independent
of the chosen element from the initial equivalence class. Notice that ®~1(®(p)) is the

equivalence class of p with respect to ®.

Proposition 5.17 (Consistency Condition). Consider a control system S = (B, F) on
M and @ smooth surjection ® : M — N. Then S is consistent with respect to ® if and
only if forallpe M,

®(Reach(®~(®(p)), S)) = ®(Reach(p, S)). (5.15)

Proof. Clearly ®(Reach(p,S)) C ®(Reach(®~1(®(p)),S)) for any p € M. Let ¢ = &(p')
with p' € Reach(®~1(®(p)), S). There exists pp € ®~1(®(p)) such that p' € Reach(po, S).
By consistency, since ®(pg) = ®(p), there exists p” € Reach(p, S) with &(p") = ®(p). But
then ¢ = ®(p") € ®(Reach(p, S)).

Conversely, assume (5.15) holds. Let ¢ € Reach(p,S) and ®(p’) = ®(p). Then
®(qg) €
®(Reach(®~!(®(p)), S)) = ®(Reach(p', S)) and there exists ¢’ € Reach(p’, S) with ®(q) =
2(q). O

95

Consistency does not place any conditions on which element of the final equivalence
class the system will be steered to. In some hierarchical systems, this may be acceptable as
the high level system Sy may be interested in its command having a feasible execution by
Sp without being interested about the particular state of Sps as long as it steers it to the

correct equivalence class. This form of generalized output controllability is now defined.

Definition 5.18 (Macrocontrollability). Let S = (B, F) be a control system on M and
let ® : M — N be a smooth surjection. Then S is called macrocontrollable if for allp € M
and any q € N there exists an trajectory of S connecting p to some p' € M with ®(p') = q.

By combining the notions of implementability and consistency, we can propagate
some controllability information from the coarser system Sy to the more detailed system
Sum.

Proposition 5.19 (Macrocontrollability Propagation). Consider control systems Sy =
(Bup, Fa) and Sy = (Bn, Fn) which are ®-related with respect to the smooth surjection
®: M — N. Assume that Sy is an implementation of Sy, and Sys is consistent. Then

Sy is macrocontrollable if and only if Sy is controliable.

Proof. Let p € M and q € N be any points. Let go = ®(p). Since Sy is controllable,
there exists a trajectory of Sy connecting gop and g. Since Sy is an implementation of
Sn, there exists a trajectory of Sys connecting some p; € @’l(qO) and some p; € ®~1(qg).
Moreover, since Sy is also consistent, there is a trajectory of S connecting p to some p’

with ®(p') = ®(p2) = gq. Therefore, Sy is macrocontrollable. The other direction follows
easily from Theorem 5.13. ' O

In order to propagate full controllability from Sps to Sn, we need a stronger notion
of consistency which would be independent from the elements chosen from both the initial

and final equivalence class.

Definition 5.20 (Strong Controllability Consistency). Let Sy = (Bum, Fur) be a con-
trol system on M and ® : M — N a smooth surjection. Then Sy is called strongly con-
sistent with respect to ® whenever the following holds: if there ezists a trajectory of Si
connecting p and q, then for all p' and for all ¢’ such that ®(p) = ®(p'), ®(q) = ®(¢’) there

exists a trajectory connecting p’ to ¢'.

96

Definition 5.20 is weaker than the notion of in-block controllability of [25, 26] as
it does not restrict the system to remain within the equivalence class in order to steer from

one element to another in the same class.

Proposition 5.21 (Strong Consistency Condition). Consider control system S = (B, F)
on M and the smooth surjection ® : M — N. Then S is strongly consistent with respect
to ® if and only if for allpe M,

Reach(p, S) = ®~1(®(Reach(®~(2(p)), 5)))- (5.16)

Proof. The inclusion Reach(p,S) C ®~!(®(Reach(®1(2(p)),S))) always holds. Let
g € &~ 1(®(Reach(®~(®(p)),S))). Then there exists ¢ € Reach(®~'(®(p)),S) with
®(¢') = ®(g). Let p' € &~ 1(®(p)) be such that ¢’ € Reach(p’,S). Since &(q) = ¥(¢')
and ®(p) = ®(p'), strong consistency implies ¢ € Reach(p, S).

Conversely, assume (5.16) holds. Let ¢ € Reach(p,S) and p’,q’' be such that
2(p') = ®(p), 2(¢') = 2(q). Then

&~ (®(Reach(p, S)))

&1 (®(Reach(®~}(2(p)), 5)))
&1 (®(Reach(®71(2(9)), S)))
Reach(p', S)

¢ € 271(2(g))

N N

Therefore, S is strongly consistent. O

Since strong consistency is a more restrictive notion, it is natural that condi-

tion (5.16) is stronger than condition (5.15) for consistency.

Proposition 5.22 (Controllability Equivalence). Consider control systems Sy = (Bun, Far)
and Sy = (Bn, Fn) which are ®-related with respect to smooth surjection ® : M — N.
Assume that Sps is an implementation of Sy, and Sy is strongly consistent. Then Sy is

controllable if and only if Sy is controllable.

Proof. Let py,ps € M any points. Let ¢ = ®(p;) and g2 = ®(p2). Since Sy is controllable,
there exists a trajectory of Sy connecting ¢ and go. Since Sps is an implementation of
Sn, there exists a trajectory of Sp connecting some p} € ®~!(q;) and some p) € ®~(g2).
Then, since Sy is strongly consistent, there is a trajectory of Sys connecting p; to p. The

other direction is given by Theorem 5.13. O

97

In this section we identified the relevant notions for the study of controllability
in ®-related systems. We also described them for arbitrary systems in terms of reachable
sets. In the following sections we give concrete characterizations of these concepts for linear
systems. Moreover, we show how to use them to construct explicit ®-related systems with

the desirable properties.

5.4 Consistent Linear Abstractions

The notion of ®-related control systems is now specialized for the case of linear,

time invariant systems with linear aggregation maps. Consider the linear control systems

(Z,) &=Az+Bu
(Z2) y=Fy+Gv
withz e R, u e R, yc R", v € R, A € R™" B ¢ R**k F € R™™ G g R™X!,

and the surjective, linear aggregation map y = Cz. Then by Definition 5.8, £, and X, are
C-related if for all z € R*, and u € R* there exists v € R! such that

C(Az + Bu) = FCz + Gv (5.17)

By Proposition 5.9, given any control system and any map @, there always exists another
control system which is ®-related to it. We are interested, however, in a constructive
methodology for generating ®-related systems. The following proposition gives us a sys-

tematic way to generate C-related linear abstractions of a linear system with respect to a

linear aggregation map y = Cz.

Proposition 5.23 (Construction of Linear Abstractions). Consider the linear system
(1) #=Az+Bu

and a surjective map y = Cz. Let
(T2) §=Fy+Gu

be the system where

F = CAC*
G = [CB CAv, ... CAv,)

98

with C* a left pseudoinverse of C and v1,...,v, spanning Ker(C). Then X, and I, are
C-related.

Proof. We need to show that for all z € R® and u € R¥, there exists v € R such that
C(Az+Bu) = Fy+Gv orequivalently
Gv = CBu+(CA-FC)z

Clearly, CBu belongs in the range of G for all u. Decompose R* = Ker(C) ® Ker(C)*. If
z € Ker(C)* then C*Cz = z and thus

(CA-FC)x=(CA-CACTC)z=0
If z € Ker(C) then (CA — FC)z = C Az which also belongs in the range of G. 0O

It is immediate from Proposition 5.23 that an abstraction of a linear system with
respect to a linear aggregation map can also be a linear system. Proposition 5.23 is inter-
esting as it constructively generates for linear systems the so called virtual inputs used in
backstepping designs [56]. In particular, if the aggregation map is a projection on some of
the states, then the states that are ignored appear as inputs at the abstracted system. As
another special case, suppose that Ker(C) = Im(B). Then we can take as vy, ..., v, the
columns of B. The input vectors for Xy are the images under C of the vectors Av;, which
correspond to the next r vectors in the controllability matrix of ¥;. That is, the image
under C of the first order Lie brackets of ¥, become the new input vectors for X5. The

following example illustrates the proposition.

Example 19. Consider again the double integrator
T = 9
Ty = u

and the projection y = z;. Then Ker(C) = span{[0 1]T} and the procedure of Proposi-
tion 5.23 resultsin F =0, G =1, so

¥y = o
Now consider the dynamics of the oscillating vector field

T = 1z

iz = —n

99

with the same projection map y = z;. Then Proposition 5.23 results in the same control

system (or better, differential inclusion)
y = v

The fact that the coarser system may have control inputs, even though the original one did
not, is clearly undesirable. However, as will be shown, this will be taken care of by the

notion of consistency.

From linear systems theory we know that for the linear system
(21) = Az + Bu
the reachable space from any zo € R" is given by

Reach(zg,X;) = U Tz + Reach(0,%;) = U eTzy + R(A, B) (5.18)
T>0 T>0

where
R(A,B) = Im[B AB ... A"1B]

is the reachable space from the origin. In particular, system X; is controllable if and only
if R(A, B) = R". As a corollary of Theorem 5.13 we obtain the following result.

Theorem 5.24 (Controllability Propagation for Linear Abstractions). Consider the

linear systems 4
(81) i = Az + Bu

(Z2) y=Fy+Gv
which are C-related which respect to the surjectz:ve map y = Cz. Then
CR(A,B) C R(F,G)
In particular, if £, is controllable then 2 is controllable.
Proof. Simple application of Theorem 5.13. O

In order to propagate controllability from the linear system X3 to X;, the notions

of implementability and consistency where defined in Section 5.3.

100

Proposition 5.25 (Implementability Characterization for Linear Systems). Consider

two linear systems
(Z1) % = Az + Bu

(X2) y=Fy+Gv

and surjective map y = Cz. Then T is implementable by X, if and only if for all y we

have
UeTv+RrREGCY | Ce*’z+CR(A B) (5.19)
T>0 T>0zeC-(y)

Proof. Follows from Proposition 5.15 and Equation (5.18). O

The following theorem gives a simple characterization of consistency for linear

systems in terms of subspace invariance.

Theorem 5.26 (Consistency Characterization for Linear Systems). The linear sys-

tem
(21) Z = Az + Bu

is consistent with respect to the map y = Cz if and only if
AKer(C) C Ker(C) + R(A, B) (5.20)

Proof. First notice that for any set V C R® we have C~!(CV) =V + Ker(C).

Assume (5.20) holds. We must show consistency condition (5.15), which for lin-
ear systems requires, for all z that 'C(Reach(a: + Ker(C),X;)) = C(Reach(z,%,)), or,
equivalently

T>0 T>0

c (U e*(z + Ker(C)) + R(A, B)) = C (U Tz + R(A, B)) . (5.21)

Clearly, CReach(z,Z;) C C(Reach(z + Ker(C),Z;). Condition (5.20) and A-invariance of
R(A, B) imply that for all T > 0 we have

e‘TKer(C) C Ker(C)+R(A,B) and therefore
Ce’TKer(C) C CR(A,B).

This gives the other inclusion, proving consistency.

101

Conversely, assume that X; is consistent. Let zo € Ker(C). From (5.21) with
z = 0 we get for any T > 0 there exists r € R(A, B) such that CeATzy = Cr. Therefore,
e'Tzy = z{) + r for some zf) € Ker(C).

We have therefore shown that for all T > 0, 7429 € Ker(C)+R(A4, B). By using
de’” — Ae'# and taking limits as T — 0 we conclude that Azo € Ker(C) + R(4,B). O

Note that condition (5.20) is clearly weaker than the well known condition
AKer(C) C Ker(C) + R(B)
for Ker(C) to be a controlled-invariant (or (A,B)-invariant) subspace.

Theorem 5.27 (Strong Consistency Characterization for Linear Systems). The lin-

ear system
(=1) Z = Az + Bu

is strongly consistent with respect to the map y = Cz if and only if
Ker(C) C R(A,B) (5.22)
Proof. Assume X, is strongly consistent. Condition 5.16 for linear systems becomes

U e'Tz + R(A,B) = U eAT(z + Ker(C)) + R(4, B) + Ker(C). (5.23)
T>0 T>0

Using (5.23) with z = 0 gives R(A4, B) 2 Ker(C).
Conversely, assume (5.22) holds. By A-invariance of R(A, B) we get, for all T > 0,
eATKer(C) C R(A, B).
This gives the inclusion
U e*Tz + R(4,B) 2 | e"(z + Ker(C)) + R(4, B) + Ker(C).
T>0 T>0
The other inclusion always holds. a
Note that by the A-invariance of R(A, B), condition (5.22) is indeed stronger than
condition (5.20). Consistency conditions (5.20) and (5.22) are rather intuitive. Condi-

tion (5.20) essentially says that whatever piece of Ker(C) is not A-invariant can be com-

pensated by controls and their Lie brackets. On the other hand, condition (5.22) is a form

102

of controllability within the equivalence classes. The trajectories of the system which con-
nect two points of the same equivalence class (as defined by C) are not, however, restricted
to remain within the equivalence class. The following example illustrates the notions of

implementability and consistency.

Example 20. Consider the linear system (without controls) & = Az, where
01
A= [0] c=[1 0

and the C-related (one-dimensional) system § = Fy+ Gv, where F =0 G = 1. We also

have
Ker(C) =span{[0 1]} AKer(C)=span{[l 0]T} € Ker(C)

Therefore, the system X, is not consistent. To show it is implementable we simply solve
the system explicitly. Notice that since § = v, any two points (of R) can be connected by

a trajectory of s in arbitrary positive time. Let yo,ys € R The curve

z1(t) = yf—;ﬂtﬂ/o

Ysr— Y%
T

is a trajectory of £; from [yo 2|7 to [y; UZP]T at time T. Therefore, X is imple-
mentable by Z;. Notice, that if y; # yo there is not trajectory of £; connecting [vo 0]T to
any point z with Cz = ys. The reason is that all the points [z} 0)T are equilibria of Z;.

za(t) =

In order to propagate some form of controllability from X2 to ¥;, we need to
check two properties, namely implementability and (strong) consistency. Unfortunately,
Condition (5.19) is not easy to check since it involves the explicit integration of the differ-
ential equation. However, condition (5.19) in conjunction with consistency conditions (5.20)
or (5.22) results in checkable characterizations of implementations which are also (strongly)

consistent. To achieve this, we will need the following lemma.

Lemma 5.28. Let A (n xn), C (m x m), F (m x m) and G (m x l) be matrices with
I < m and G of full rank. If for all z € R* (CA — FC)z € R(F,G), then for allt >0,

(Cett — etF C)z € R(F,G) .

In particular, the conclusion holds if A, F, are G are the corresponding matrices for the

C-related systems X; and ;.

103

Proof. We have the following identity for all ¢ > 0

o .
. . J

Ceth —etFC = 3 (CAT - FIC) ;—, . (5.24)
j=0)

We prove by induction the statement
(P;) VzeR" (CA’ - FiC)z e R(F,G)

It is clearly true for j = 0 and by hypothesis it is also true for j = 1. Assume P;

holds for 7 < j. We can write,
(CAIT — Fit1C)g = (CA’ — FiC)Az + FI(CA- FC)z .

By the inductive hypothesis applied to z and Az, (CA’ — FIC)Az € R(F,G) and (CA -
FC)z € R(F,G). But then F/(CA—FC)z € R(F,G) for all j since R(F, G) is F-invariant.
Therefore,

(CA’ - FIC)Az + FI(CA - FC)z € R(F,G) .

By taking the limit in (5.24) we conclude the proof. a

Theorem 5.29 (Implementability and Consistexicy Characterization). Consider the

linear systems
(21) z = Az + Bu

(22) y=Fy+Gv

which are C -related which respect to the surjective map y = Cz. Then T is implementable

by 1 and T, is consistent if and only if
CR(A,B) =R(F,G) (5.25)
In addition, T, is implementable by £, and X, is strongly consistent if and only if
R(A,B) = C"Y(R(F,G)) (5.26)

Proof. Assume CR(A, B) = R(F,G) and thus R(F,G) C CR(A, B). Now let z € Ker(C).
By C-relatedness, there exists v € R such that CAz = FCz + Gv = Gv (using u = 0
and since Cz = 0). So, CAz € R(F,G) and by assumption, there is 2, € R(A, B) such
that Cz; = CAz. Therefore, Az — z; € Ker(C) and Az = Az — z; + z1 € Ker(C) +

104

. R(A,B). Thus AKer(C) C Ker(C) + R(A, B) and I is consistent. We must now show
that condition (5.19) holds. Consider any

yr = efTyo + rk € Reach(yo,Z2) = U efTyo + R(F,G)
T>0
with rl. € R(F,G). By Lemma 5.28, we have that e yp = CeTzy + CrZ for some
r2 € R(A, B), and for any zo with yo = Czo. But then

yr = Ce'Tzo+rk+1r% = Ce’Tzy+Cry € U U Ce’Tz + CR(A, B)
T20zeC~1(yo)

= C(Reach(C~(y0),Z1))

for some 4 € R(A, B) since R(F,G) C CR(A, B). Therefore T, is implementable by Z;.

For the converse notice that, since the systems are C-related, Proposition 5.24
implies R(F,G) 2 CR(A, B). Moreover, the implementability condition (5.19) with y =0
gives

R(F,G) € | J Ce*TKer(C)+ CR(4,B).
T>0

And the consistency condition (5.21) with z = 0 gives

| Ce?TKer(C) C CR(4, B).

T>0
These two combined give R(F,G) C CR(A,B). This concludes the proof of the first
equivalence.

Now assume that R(4,B) = C~Y(R(F,G)). Then CR(A4,B) = R(F,G) and
therefore &, implements X. Since 0 € R(F, G) we also have Ker(C) C R(A, B). Therefore
3, is strongly consistent.

If T, is strongly consistent and implements X then X, is also consistent and there-
fore must satisfy CR(A, B) = R(F,G). Therefore, R(4,B) C C~}(R(F,G)) = R(4,B) +
Ker(C). By strong consistency Ker(C) C R(4,B), and thus C~1(R(F,G)) C R(A4, B).
Therefore C~}(R(F,G)) = R(A, B). O

We now have the main ingredients for propagating controllability from the coarser

to the more complex model.

105

Theorem 5.30 (Consistency and Implementability imply Controllability). Consider

the linear systems
(1) %= Az + Bu

(Z2) y=Fy+Gv

which are C-related system with respect to the surjection y = Cz. Assume that I, im-
plements Ty, and I, is consistent, that is CR(A, B) = R(F,G). Then X3 is controllable
if and only if £, is macrocontrollable. If in addition I, is strongly consistent, that is

R(A, B) = C"Y(R(F,G)), then T, is controllable if and only if T2 is controllable.
Proof. Same as the proof of Propositions 5.19 and 5.22. O

Thus, in order to propagate controllability between two linear systems, we have to
ensure that the systems are C-related and check either condition (5.25) or (5.26) depending
on the notion of controllability that is needed. It is desirable to have a methodology for
constructing C related systems with the desirable properties. Fortunately, for the C-related
system constructed in Proposition 5.23, (strong) consistency implies implementability. In

order to show this, we will need the following lemma.

Lemma 5.31. Let A € R**"® B € R*** and full rank C € R™*", be such that
AKer(C) C Ker(C) + R(A, B)
and let F = CAC*. Then CR(A, B) is F-invariant, that is
FCR(A, B) C CR(A, B)
Proof. Let y = Cx for z € R(A, B) and consider
Fy=CAC*y = CAC*Cz
Decompose z = z° + z" where z° € Ker(C) and z" € Ker(C)*. Then
Fy=CAC*C(z° + z") = CAz" = CA(z — z°)

Since z € R(A, B) and R(A, B) is A-invariant, we get that CAz € CR(A, B). By consis-
tency, there exist 2¢ € Ker(C) and 2" € R(A, B) such that

CAz* =C(2°+2")=C2" (5.27)

Thus C Az° also belongs in CR(A, B) resulting in Fy € CR(A4, B). O

106

Theorem 5.32 (Consistency implies Implementability). Consider the linear system
(1) & = Az + Bu
which is consistent with respect to the surjective map y = Czx. Let
(22) y=Fy+Gv
be the system where
F = CAC*
G = [CB CAv ... CAv]

with Ct a left pseudoinverse of C and vy,...,v, spanning Ker(C). Then g is imple-

mentable by ;.

Proof. By Theorem 5.24 we have that R(F,G) 2 CR(A, B) and thus we only need to show
that R(F,G) C CR(A, B). Let yy € R(F,G). Then

yr=[GFG ... F*'G|z (5.28)
for some € R™. By an appropriate partition of £ = [z] 2 ... Tm)T we get
yr =Gr1+ FGra+--- + F™1Gzp, (5.29)

It suffices to show that R(G) C CR(A, B) since then, by Lemma 5.31, we get that R(FG) C
CR(A, B),..., R(F™ 'G) C CR(A, B). Now consider

1

y1 =Gz = [CB CAv; ... CA’Uk] [:L‘; J = CB:B{ + [CA’U] cee CAvk] (L'% (530)
:Bl ’

Clearly, CBz} € CR(A, B). By consistency we have
AKer(C) C Ker(C) + R(A, B) (5.31)
and therefore for i =1,...,k
Av; = v§ + v (5.32)
for some v§ € Ker(C) and v € R(A, B). Thus

CAv; = C(v§+v])=Cv]
= C[BAB ... A"'Blg (5.33)

107

for some vectors ¢; of appropriate dimension. But then

[CAv; ... CAvy)z? C[BAB ... A" 'Blq1 ... a2}

C[BAB ... A'B] X} (5.34)

and thus R(G) € CR(4, B). : |

As a result of the above theorem, if we use Proposition 5.23 to construct our
abstracted models, then consistency (or strong consistency) is the only condition on the

aggregation map that is needed to propagate controllability.
Theorem 5.33 (Consistency Implies Controllability). Consider the linear system
(21) z = Az + Bu
and surjective map y = Cz. Let
(Z2) 9y=Fy+Gv
be the C-related system where
F = CAC?
G = [CB CAv; ... CAvy]
with Ct the pseudoinverse of C and vy,...,v, spanning Ker(C). If
AKer(C) C Ker(C) + R(A, B)
then o is macrocontrollable if and only if) is controllable. In particular, if
Ker(C) CR(A,B)
then I, is controllable if and only if Lo is controllable.
Proof. Follows from Theorems 5.30 and 5.32. O

It is interesting to notice what happens to conditions (5.22) and (5.20) when the

linear system is a linear vector field and thus B = 0. In that case, condition (5.20) reduces

to
AKer(C) C Ker(C)

108

which, recall from Section 2.1, is the necessary and sufficient condition to obtain a well
defined quotient vector field. Therefore a consistent abstraction of a linear vector field
cannot have any control inputs (or cannot be a differential inclusion). Condition (5.22)
reduces to
Ker(C) = {0}

and thus y = Cz must be an invertible linear transformation (since it is already surjective).
We will be typically interested in consistent abstractions which are nontrivial, in the sense
that some state space reduction is performed (thus Ker(C) # {0}), but the abstracted
system is also nontrivial (Ker(C) # R").

Corollary 5.34. Consider the assumptions of Theorem 5.88 and assume that 0 < rank(B) <

n. Then a nontrivial, strongly consistent abstraction always ezists.

Proof. If rank(B) > 0 then we can always find a linear map C such that Ker(C) =
Im|[B]. O

Theorem 5.33 and Corollary 5.34 are important as they show that a consistent
abstraction always exists as long as there are control inputs. In addition, the notions of
consistency are important from a hierarchical perspective as they provide good design prin-
ciples for constructing valid hierarchies. For example, the condition for strong consistency,
Ker(C) C R(A, B), suggests that in order to ignore dynamics at a higher level (captured
by Ker(C)) then one would have to ensure the ignored dynamics can be accommodated at
the lower level.

As one imposes more restrictions on the matrix C further properties can be prop-
agated from one system to the other. The following results show conditions under which

full trajectories can be implemented by the lower level system.

Theorem 5.35 (Trajectory Implementation). Consider two linear systems
(1) = Az + Bu

(Z2) y=Fy+Gv
and the surjective map y = Cz. Assume z € R*, y € R™ with m < n, and u € R* with
k < n. We assume B is of full rank. Let K = Ker(C), B = Im[B], G = Im[G), and let
P denote the orthogonal projection from R™ onto CAK + CB. We make the following two

assumptions:

109

1. CAz = FCxz for all z € K+ (the orthogonal complement of K).
2.CH((I-P)Y)CB

Then for every trajectory y(-) of L2 corresponding to a differentiable control there ezxists a

trajectory z(-) of X1 such that y(t) = Cz(t) for allt in the domain of y(-).

Proof. Let y(-) be a trajectory of X5 corresponding to the control v. First we define z,(t) =
C+y(t) where C* is the Moore-Penrose pseudo-inverse of C (C+ = CT(CCT)™!). Ifze K
then

2Tzo(t) = 2TCT(CCT) Yy(t) = (C2)T(CCT) y(t) = 0.

Therefore, z4(t) € KL for all t. Moreover, 4(t) = C*y(t) where g(t) = Fy(t) + Gu(t).
Let P denote the orthogonal projection from R™ onto CAK + CB. Let D be the
restriction of C on AK + B and let D* be its pseudoinverse. Define Z(t) = D*P(Gv(t)),
and therefore by construction we have that Cz(t) = P(Gv(t)) and Z(t) € AKX + B. Thus
there exist z3(t) € K and b(t) € B such that Z(t) = Azy(t) +b(t). Since Z(t) is differentiable
we may choose zy(t) and b(t) to be differentiable as well (using a suitable pseudoinverse).
Let z(t) = z4(t) + zp(t). Then Cz(t) = C(za(t) + zs(t)) = Cz4(t) = y(t) and in addition

Ci = C(iq + 2p) = Cio =9y = Fy+ Gv = FCz, + Gv = CAz, + Gv

where the last equality holds by Assumption 1. Set z(t) = £(t) — Aza(t) — Z(t). Then for all
t, Cz(t) = C(&a(t) + Z5(t)) — CAzq(t) — CZ(t) = CAz,o(t) + Gu(t) — CAzo(t) — P(Gu(t)) =
(I — P)Gu(t). By Assumption 2, for each ¢ there is u(t) € RF such that z(t) = Bu(t). In
fact, we can take u(t) = B*z(t) (here Bt = (BTB)~!BT since k < n). Then if we let
z(t) = z4(t) + z5(t) we get (t) = Az(t) + Bu(t) and Cx(t) = Cz4(t) = y(t) forallt. O

Corollary 5.36. Let T1, T3, and C be as in Proposition 5.23. If Ker(C) C Im[B], then for
every trajectory y(-) of T corresponding to a differentiable control there ezists a trajectory

z(-) of £, such that y(t) = Cz(t) for all t in the domain of y(-).

Proof. Set K = Ker(C), B = Im[B], and ¢ = Im[G]. Since C*Cz = z for z € K+,
Assumption 1 of Theorem 5.35 is satisfied. Now G = [CB CAv; ... CAv,), and since P
is the orthogonal projection onto CAK + CB, we get (I — P)G = 0. Then Assumption 2 of
-Theorem 5.35 reduces to C~1(0) = Ker(C) C I'm[B] which is our assumption. O

110

5.5 Hierarchical Controllability Algorithm

In this section, we will take advantage of the results of Section 5.4 in order to
analyze the controllability of large scale linear systems. Theorem 5.33 enables us to have
a hierarchical controllability criterion which decomposes the controllability problem into a
sequence of smaller problems. Such an approach is numerically more efficient and robust
than the standard Kalman rank and Popov-Belevitch-Hautus (PBH) eigenvalue tests.

Conceptually the algorithm, starts with the linear system in question, and deter-
mines the number of linearly independent input vector fields. If this number is zero, then the
system is uncontrollable and the algorithm terminates. If the number of linearly indepen-
dent inputs is equal to the number of states, then the system is trivially controllable and the
algorithm terminates as well. If the number of linearly independent vector fields is less than
the number of states but greater than zero, then by Corollary 5.34 we can always find an
aggregation matrix C satisfying the strong consistency condition K er(C) C R(A, B). Since
Im[B AB ... A¥B)C Im[B AB ... A" 1B]for any 0 < k < n — 1, from a computational
standpoint, we can actually choose any matrix C satisfying Ker(C) =1 m[B AB ... A*B]
for 0 < k < n— 1. If K =0, then the abstracted system essentially ignores the directions
spanned by the input vector fields (which are trivially controllable). As k goes up, we not
only ignore the directions of the input vector fields, but also their Lie brackets with the
drift dynamics. If k = n — 1 then the matrix C will ignore the whole reachable space.

After a consistent C' matrix is determined, the construction of Theorem 5.33 is
used in order to obtain a system of smaller dimension with equivalent controllability prop-
erties. We recursively apply the same procedure to this new abstracted system. Eventually,
by dimension count, either there will be no inputs left and the system will be trivially un-
controllable, or there should be as many linearly independent inputs as number of states
in which case controllability follows trivially. Since at each step, the abstractions that are
constructed are consistent, then by Theorem 5.33, the outcome of the algorithm at the

coarsest level will propagate along this sequence of consistent abstractions to the original

complex model.
Algorithm 5.37. (Hierarchical Controllability Algorithm)
1. Start with system £ = Az + Bu, A€eRY", 0<k<n~-1

2. If rank(B) is

111

e 0 : System is uncontrollable. Algorithm Terminates

e n : System is controllable. Algorithm Terminates

3. Find matriz C such that Ker(C) = Im[B AB ... A*B]
4. Obtain new system matrices A, B of the abstracted system using Theorem 5.33

5. Return to 2

The higher the order of the Lie brackets (the larger k is), the fewer steps the algo-
rithm will need to terminate. On the other hand, as k increases, the amount of computation
per step will be higher. Before we discuss computational and implementation aspects of the

above algorithm, we will demonstrate its application on various examples.

Example 21. Consider the linear system

] 0 01) 0
g= | [=]0 -1 0| |z |+ |1 |u=Aiz+Bu (5.35)
I3 1 10 T3 0

Since there is one linearly independent input field, we can find a consistent abstraction
satisfying
Ker(Cy) = Im[B,] C Im[B; A, B, AlB]

' 1
. 00
00 1

The construction of Theorem 5.33, then results in

01 0
A2=01A1C"i*' = |: ! O] By = [1] (5.36)

For example, we can choose

Since B, is nonzero and the number of linearly independent inputs is strictly less than the

number of states, we can obtain another consistent abstraction by choosing C; = [1 0.

The resulting abstraction is

A3 =C2A:Cf =0 Bz=1 (5.37)

112

At this point, the number of inputs is equal to the number of states and thus the pair
(As, B3) is trivially controllable. By consistency, the pairs (A2, B2) and (4, B)) are also
controllable.

There is a much more intuitive explanation of the sequence of steps taken above.
Note that the system started with the pair (A;, B1) and in the first iteration, we essentially
removed the dynamics of z, (second row) from equation (5.35) since they have direct con-
nection to the input u. This results in the pair (A2, B2) where 22 can now be thought of as
an input. We re-apply the above procedure by now removing the dynamics of z3 (second
row of (5.36)) since they can be directly controlled by the new controls. This results in the
pair (A3, B3) which is trivially controllable.

Example 22. Consider the linear system

j;=|:i:l:|=[1 O:I-[zl]+lllu=A1x+Blu (5.38)
To 10 x9 1

A consistent abstraction results by choosing the aggregation matrix
Ci= [-1 1]
resulting in
Ay =C1AICH=0 By=0 (5.39)
Therefore, by Theorem 5.33, the pairs (A2, B2) and (Al,Bli) are both uncontrollable.

In the case where we select k = 0 in Algorithm 5.37, then we choose matrices C
satisfying Ker(C) = Im/[B]. In this particular case CB = 0, and in addition the columns of
B span Ker(C). From a computational standpoint, it is advantageous to actually choose a
matrix C which not only satisfies Ker(C) = Im[B] but is also a projection to Im[B]L. This
reduces some of the computations of Theorem 5.33 and results in the following variation of
Algorithm 5.37.

Algorithm 5.38. (Hierarchical Controllability Algorithm)
1. Start with system & = Az + Bu, A € R**",

2. If rank(B) is

113

e 0 : System is uncontrollable. Algorithm Terminates

e n : System is controllable. Algorithm Terminates
3. Find matriz C such that Ker(C) = Im|(B]
4. Let A:=CAC*, B:=CAB

5. Return to 2

Intuitively, Algorithm 5.38 starts with the system in question and, since Im/[B] is
in the controllable region, it chooses an abstraction matrix C which essentially projects the
system in a direction which is orthogonal to the space spanned by B. Thus the macroinputs
of the first abstraction are spanned by CAB, which are the first order Lie brackets of the
original system, projected on the orthogonal complement of Im[B]. Similarly, the second
abstraction will have as input vector fields the second order Lie brackets projected on the
orthogonal complement of both Im[B] and Im[AB]. Because of this selection of inputs
at each abstraction layer, we simply have to add the dimension of the span of the input
vector fields at each abstraction layer in order to obtain the dimension of the controllability
subspace. From the above discussion, it is also clear that, if the system is uncontrollable,
then the algorithm computes the uncontrollable part of the system since at each iteration
we are projecting on the space orthogonal to parts of the controllable space. The sequence
of abstracting maps can then be used in a straightforward manner in order to decompose
the system into controllable and uncontrollable subsystems.

We now focus on the implementation issues of Algorithms 5.37 and 5.38. For
simplicity, we consider Algorithm 5.38 ; Algorithm 5.37 can be treated in a similar manner.
From a computational perspective, the two main problems for implementing Algorithm 5.38
are: first, the construction of a consistent aggregation matrix C satisfying Ker(C) = Im/[B],
and second, given such a matrix, to perform the computations required for the construction
of a consistent abstraction. In order to tackle the first problem, we perform a singular value

decomposition decomposition on the matrix B. The n x m (n > m) matrix B with rank r
is decomposed as
0 174

o o T =UZ, VT (5.40)
2

B=UzVT = U, Uy)

where I, is the r x r matrix of nonzero singular values. From the above decomposition

we immediately obtain that Ker(C) = Im[B] = Im[U;] and we can therefore choose

114

the abstracting map C = UJ. In addition, C* = U and therefore the singular value
decomposition gives us for free the pseudoinverse calculation. Similar constructions are
used in the implementation of Algorithm 5.37. Of course, singular value decompositions
are computationally expensive. If speed of computation is of great interest, then QR type
decompositions could be used instead of singular value decompositions in order to accelerate
the algorithm. However, as is typical in such cases, this may result in a less robust algorithm.
The Matlab code that implements Algorithms 5.37 and 5.38 can be found in Appendix A.

Various experimental, comparative studies were performed on a Matlab platform.
Given the dimension of the state and input space, random A, B matrices were generated,
and their controllability was checked using the Kalman rank condition, the PBH test and
Algorithm 5.38. Floating point operations were measured for each test, and the following

ratios
_ Floating Point Operations of Kalman or PBH Test

Ratio = Floating Point Operations of Algorithm 5.38

are plotted as a function on state and input dimension in Figures 5.2 and 5.3. The plane

with ratio equal to one is also plotted. Whenever the unreliable Kalman rank test fails to
recognize a controllable system, the ratio is set to zero. Note from Figure 5.2, that the
Kalman rank test is more efficient for very low dimensional systems but Algorithm 5.38
is up to 15 times faster for most systems. In addition, the Kalman condition fails to be
reliable for systems with more than approximately 15 states. Figure 5.3 compares the PBH
test with Algorithm 5.38. Even though the PBH test is more reliable than the Kalman rank
condition, it is significantly slower than Algorithm 5.38 (up to 150 times for some systems).
In addition, it is well known (see [84]) that the PBH test is very sensitive to parameter
perturbations due to eigenvalue calculations.

The computational and conceptual advantages of Algorithm 5.38 are verified by
the fact that Algorithm 5.38 is identical to the controllability algorithm of [39], derived from
a purely numerical analysis perspective. In [39], the above algorithm is shown to be numeri-
cally stable and is a stabilized version of the realization algorithm of [94] (Matlab command
CTRBF). Figure 5.4 compares Algorithm 5.38 with the more general Algorithm 5.37 with

= 1. Figure 5.4 clearly shows that it may be advantageous to use Algorithm 5.37 with

k =1 only in cases where the state dimension is much larger than the input dimension.

& 3
i /

Ratio of Floating Point Operations

115

)
S

RN
‘“\\\\‘ “‘\\\\\
G \"\‘&&»;3{3:‘::‘

TN
(SERINONY

Number of States Number of Inputs

Figure 5.2: Comparison of Algorithm 5.38 and the Kalman rank condition

Ratio of Floating Point Operations

Ll
L 80

p

U gy
Wl s
I f”f!f#}:{}:,”'?}:{;

Number of States Number of Inputs

Figure 5.3: Comparison of Algorithm 5.38 and the Popov-Belevitch-Hautus test

116

n
n
/

[

L

Ratio of Floating Point Operations
i o
L

Nurmber of States Number of Inputs

Figure 5.4: Comparison of Algorithm 5.38 and Algorithm 5.37 with k=1

5.6 Conclusions

In this chapter, we considered a notion of control system abstractions which are
typically used in hierarchical and multi-layered systems. This was achieved by generaliz-
ing the notion of ®-related vector fields to control systems. This notion mathematically
formalizes the concept of virtual inputs used in backstepping designs [56]. The notions of
implementability and consistency were then defined in order to propagate controllability
from the abstracted system to the more detailed one. These notions were completely char-
acterized for linear systems, and the easily checkable conditions allowed us to construct a
hierarchical controllability algorithm for linear systems.

The fact that the hierarchical framework developed in this paper places a geo-
metric and conceptual framework on the best of the known controllability algorithms from
numerical linear algebra, is strong evidence that hierarchical decompositions of control prob-
lems are indeed reducing the complexity of control algorithms. It is therefore worthwhile
pursuing this direction of research for more general classes of systems (nonlinear) as well as

for other properties of interest (stabilizability, optimality).

117

Chapter 6

Conclusions

Next generation large scale systems have motivated us to think of a new control
paradigm. As a result, there is a clear need for new modeling frameworks accompanied
by powerful analysis and design tools. Hybrid systems, which combine discrete event and
continuous dynamics, offer a solution to the modeling challenges faced by system engineers.
This dissertation has focused on the modeling and analysis of hierarchical, hybrid systems.

One of the most important problems for safety critical, hybrid systems is the reach-
ability problem which asks whether some unsafe region is reachable from an initial region.
Computer aided verification is the main computational approach for formally checking that
the system avoids an undesired or unsafe region of the state space. Due to the infinite
cardinality of the state space, the decidability of these reachability algorithms is extremely
important. Even though state of the art hybrid automata with a decidable reachability
problem, rectangular hybrid automata, are expressive enough to capture and verify real
time software and hardware properties, their modeling power from a control perspective
was rather limited. Chapter 3 shows that the conditions for converting rectangular dif-
ferential inclusions to constant, decoupled differential inclusion are very restrictive. This
severely limits their applicability to systems with complex continuous behavior.

This negative result inspired the work presented in Chapter 4 in an effort to
expand the known decidability frontier to capture hybrid systems with more sophisticated
continuous dynamics. In this endeavor, very recent results in o-minimal theories from
mathematical logic, allowed us to show that all hybrid systems whose relevant sets and
continuous flows are definable in an o-minimal theory admit finite bisimulations. This

result was then immediately used in order to extend the decidability frontier by capturing

118

classes of hybrid systems with linear dynamics in each discrete location. The importance of
these results is immediately clear given the wide applicability of linear systems in control
theory.

Chapter 5 takes the next step for analyzing large scale systems by tackling com-
plexity. Complexity has usually been reduced by hierarchical structures, where higher levels
of the hierarchy utilize coarser models or abstractions of the system resulting by aggregating
the detailed lower level models. Even though the notion of system abstraction is mature in
the computer science community, no such notion exists for continuous systems. Chapter 5
presents the first formal approach to abstracting continuous control systems. Furthermore,
hierarchies of linear systems which are consistent with respect to controllability objectives
were characterized. This immediately resulted in a hierarchical controllability algorithm for
linear systems from which the best known controllability algorithm from numerical linear
algebra was recovered. This was strong evidence that hierarchical decompositions of control
problems are indeed reducing the complexity of large scale control problems.

As the field of hierarchical, hybrid systems is young there are many more questions
than answers. As a result, there are many fundamental and interesting issues for further

research.

e Modeling: We need to identify classes of hybrid systems which, in addition to being
expressive, must also have enough structure to be amenable to analysis. Notions of
existence, uniqueness, continuity of solutions, and robustness need be reconsidered in
a broader context. Furthermore, the issue of zenoness, systems with infinite switching
in finite time, must be resolved in order to have robust models. Also modeling frame-
works must be equipped with appropriate compositional and abstraction operators in

order to tackle complexity issues.

e Verification: The decidability results of Chapter 4 enable us to start building a
verification tool for reachability computation of linear hybrid systems. The heart of
this tool will be a quantifier elimination engine. This tool will the first one of its kind
that will have both the ability to handle a reasonable number of discrete states as
well as linear dynamics in each location. The abilities of this tool will be enhanced
as we discover more classes of decidable hybrid systems, in particular, hybrid systems
with more general switching behaviors and linear dynamics with control inputs and

disturbances.

119

e Controller Synthesis: As quantifier elimination with parameters is possible, the tool
will also have the ability to perform controller synthesis for linear hybrid systems. The
tool can determine ranges of parameter values for either control inputs or switching
surfaces for which the system is guaranteed to be safe. This will allow us to construct

hybrid systems which are safe by design, as opposed to verifying completed designs.

e Simulation: Even though verification is applied to high level mathematical abstrac-
tions of the original system, simulation is needed for model validation purposes. Even
though hybrid simulators are currently available, there are no theoretical guarantees
that the simulated trajectories are feasible in the original system. Results that deter-
mine optimal time steps so that switching surfaces are not missed but also minimize
integration time are needed to in order to gain confidence in simulation results. In the
presence of multiple time scales, this problem becomes even harder. The combination
of verification and simulation tools is also a very important issue as there limits to

both sides.

e Hierarchical Control: The results in Chapter 5 enable the development of an open
loop backstepping methodology which, given a sequence of consistent abstractions
would recursively generate the actual control input, by first generating a control in-
put for the abstracted system and then recursively refine it as one adds more modeling
detail. Nonlinear analogues of the results of Section 5.4, will provide a hierarchical
controllability algorithm for nonlinear systems which may be more efficient and robust
from a symbolic computation point of view. Many other properties are also of interest
and will be investigated both for linear and nonlinear control systems. For example,
obtaining consistent abstractions for nonlinear systems with respect to stabilizability
would essentially classify all backsteppable systems. Other properties of interest in-
clude trajectory tracking, optimality and the proper propagation of state and input

constraints.

Last but not least, the above research must be motivated by, and applied to
meaningful large scale systems, like automated highway systems, air traffic management

systems, flight management systems, communication and power networks.

120

Bibliography

(1] R. Abraham, J. Marsden, and T. Ratiu. Manifolds, Tensor Analysis and Applications.
Applied Mathematical Sciences. Springer-Verlag, 1988.

[2) R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.H. Ho, X. Nicolin, A. Oliv-
ero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical
Computer Science, 138:3-34, 1995.

[3] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

[4] R. Alur, T.A. Henzinger, and E.D. Sontag, editors. Hybrid Systems III, volume 1066
of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[5] M. Andersson. Object-Oriented Modeling and Simulation of Hybrid Systems. PhD
thesis, Lund Institute of Technology, Lund, Sweden, December 1994.

[6] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors. Hybrid Systems II, volume
999 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

[7] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors. Hybrid Systems IV, volume
1273 of Lecture Notes in Computer Science. Springer-Verlag, 1997.

[8] P.J. Antsaklis, J.A. Stiver, and M. Lemmon. Hybrid system modeling and autonomous
control systems. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors,
Hybrid Systems, volume 736 of Lecture Notes in Computer Science, pages 366-392.
Springer-Verlag, 1993.

[9] M. Aoki. Control of large scale dynamic systems by aggregation. IEEE Transactions
on Automatic Control, 13(3):246-253, June 1968.

121

[10] D. S. Arnon, G. E. Collins, and S. McCallum. Cylindrical algebraic decomposition I:
The basic algorithm. SIAM Journal on Computing, 13(4):865-877, November 1984.

[11] E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis for discrete and
timed systems. In P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid
Systems II, volume 999 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

[12] J.P. Aubin. Viability Theory. Systems and Control: Foundations and Applications.
Birkhauser, 1991.

[13] A. Back, J. Guckenheimer, and M. Myers. A dynamical simulation facility for hybrid
systems. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid
Systems, pages 255-267. Springer Verlag, New York, 1993.

[14] T. Basar and P. Bernhard. H*-Optimal Control and Related Minimaz Design Prob-

lems. Systems and Control: Foundations and Applications. Birkhauser, 1991.

[15] J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL - a
tool suite for automatic verification of real-time systems. In DIMACS Workshop on

Verification and Control of Hybrid Systems. Springer Verlag, 1995.

[16] E. Bierstone and P.D. Milman. Semianalytic and subanalytic sets. Inst. Hautes Etudes
Sci. Publ. Math., 67:5-42, 1988.

(17] N. Bjorner, A. Browne, E. Chang, M. Colon, A. Kapur, Z. Manna, H. Sipma, and
T. Uribe. STeP: Deductive-algorithmic verification of reactive and real-time systems.
In Computer Aided Verification, Lecture Notes in Computer Science. Springer-Verlag,

July 1996.

[18) M. Branicky. Studies in Hybrid Systems: Modeling, Analysis and Control. PhD thesis,
Massachusetts Institute of Technology, 1995.

[19] M. Branicky. Multiple Lyapunov functions and other analysis tools for switched and
hybrid systems. IEEE Transactions on Automatic Control, 43(4):475-482, April 1998.

[20] M. Branicky, V. Borkar, and S. Mitter. A unified framework for hybrid control: Model
. and optimal control theory. IEEE Transactions on Automatic Control, 43(1):31-45,
January 1998.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

122

R. W. Brockett. Control theory and analytical mechanics. In C. Martin and R. Her-
mann, editors, Geometric Control Theory, Lie Groups: History, Frontiers and Appli-
cations, pages 1-46. Math. Sci. Press, 1977.

R. W. Brockett. Global descriptions of nonlinear control problems; vector bundles

and nonlinear control theory. manuscript, 1980.

R.W. Brockett. Hybrid models for motion control systems. In H. Trentelman and J.C.
Willems, editors, Perspectives in Control, pages 29-54. Birkhauser, Boston, 1993.

P. E. Caines and Y.J. Wei. Hierarchical hybrid control systems. In S. Morse, editor,
Control Using Logic Based Switching, volume 222 of Lecture Notes in Control and
Information Sciences, pages 39-48. Springer Verlag, 1996.

P.E. Caines and Y.J. Wei. The hierarchical lattices of a finite state machine. Systems
and Control Letters, 25:257-263, 1995.

P.E. Caines and Y.J. Wei. Hierarchical hybrid control systems: A lattice theoretic
formulation. IEEE Transactions on Automatic Control : Special Issue on Hybrid
Systems, 43(4):501-508, April 1998.

B. Carlson and V. Gupta. Hybrid CC with interval constraints. In T. Henzinger and
S. Sastry, editors, Hybrid Systems : Computation and Control, volume 1386 of Lecture
Notes in Computer Science, pages 80-95. Springer Verlag, Berlin, 1998.

K. Cerans and J. Viksna. Deciding reachability for planar multi-polynomial systems.
In R. Alur, T. Henzinger, and E.D. Sontag, editors, Hybrid Systems III, volume 1066 of
Lecture Notes in Computer Science, pages 389-400. Springer Verlag, Berlin, Germany,
1996.

A. Church. Logic, arithmetic, and automata. In Proceedings of the International
Congress of Mathematics, pages 23-35, 1962.

G.E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quantifier

elimination. Journal of Symbolic Computation, 12:299-328, September 1991.

P. Cousot and R. Cousot. Systematic design of program analysis framework. In
Proceedings of the 6th ACM Symposium on Principles of Programming Languages,
1979.

123

[32] J.E.R. Cury, B.H. Krogh, and T. Niinomi. Synthesis of supervisory controllers for
hybrid systems based on approximating automata. IEEE Transactions on Automatic
Control : Special Issue on Hybrid Systems, 43(4):564-568, April 1998.

[33] J. Davoren. Topologies, continuity, and bisimulations. Technical report, Cornell
University, Ithaca, NY, 1998.

[34] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Hybrid Sys-
tems III, volume 1066 of Lecture Notes in Computer Science, pages 208-219. Springer-
Verlag, 1996.

[35] J. Denef and L. van den Dries. p-adic and real subanalytic sets. Annals of Mathe-
matics, 128:79-138, 1988.

[36] A. Deshpande. Control of Hybrid Systems. PhD thesis, University of California at
Berkeley, 1994.

[37] A. Deshpande, A. Gollu, and L. Semenzato. The SHIFT programming language for

dynamic networks of hybrid automata. IEEE Transactions on Automatic Control,
43(4):584-587, April 1998.

[38] A. Dolzman and T. Sturm. REDLOG : Computer algebra meets computer logic.
ACM SIGSAM Bulletin, 31(2):2-9, June 1997.

[39] P. M. Van Dooren. The generalized eigenstructure problem in linear system theory.
IEEE Transactions on Automatic Control, 26(1):111-129, 1981.

[40] A.F. Fillipov. Differential Equations with Discontinuous Right Hand Sides. Mathe-
matics and Its Applications. Kluwer Academic Press, 1988.

[41] R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors. Hybrid Systems,

volume 736 of Lecture Notes in Computer Science. Springer-Verlag, 1993.

[42) R.M. Hardt. Stratifications of real analytic mappings and images. Inventiones Math-
imaticae, 28:193-208, 1975.

[43] T. Henzinger, P. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear hybrid
systems. IEEE Transactions on Automatic Control, 43(4):540-554, April 1998.

(44]

[45]

(46])

[47]

[48]

[49]

[50]

[51]

[52]

' [53]

124

T. Henzinger and S. Sastry, editors. Hybrid Systems : Computation and Control,
volume 1386 of Lecture Notes in Computer Science. Springer-Verlag, 1998.

T.A. Henzinger. Hybrid automata with finite bisimulations. In Z. Fiilép and
F. Gécseg, editors, ICALP 95: Automata, Languages, and Programming, pages 324-
335. Springer-Verlag, 1995. '

T.A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th Annual
Symposium on Logic in Computer Science, pages 278-292. IEEE Computer Society
Press, 1996.

T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HYTECH. In E. Brinksma,
W.R. Cleaveland, K.G. Larsen, T. Margaria, and B. Steffen, editors, TACAS 95: Tools
and Algorithms for the Construction and Analysis of Systems, volume 1019 of Lecture

Notes in Computer Science 1019, pages 41-71. Springer-Verlag, 1995.

T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What's decidable about hybrid
automata? In Proceedings of the 27th Annual Symposium on Theory of Computing,
pages 373-382. ACM Press, 1995.

T.A. Henzinger and H. Wong-Toi. Linear phase-portrait approximations for nonlinear
hybrid systems. In R. Alur, T.A. Henzinger, and E.D. Sontag, editors, Hybrid Systems
III, volume 1066 of Lecture Notes in Computer Science, pages 377-388. Springer-
Verlag, 1996.

M. Heymann, F. Lin, and G. Meyer. Synthesis and viability of minimally interventive
legal controllers for hybrid systems. Discrete Event Dynamic Systems, 8(2):105-136,
June 1998.

A. Isidori. Nonlinear Control Systems. Springer-Verlag, second edition, 1989.

M. Johansson and A. Rantzer. Computation of piecewise quadratic Lyapunov func-
tions for hybrid systems. IEEE Transactions on Automatic Control, 43(4):555-559,
April 1998. ’

J.F. Knight, A. Pillay, and C. Steinhorn. Definable sets in ordered structures. II.
Transactions of the American Mathematical Society, 295(2):593-605, 1986.

125

[54] W. Kohn, A. Nerode, J.B. Remmel, and X. Ge. Multiple agent hybrid control :
Carrier manifolds and chattering approximations to optimal control. In Proceedings
of the 33th IEEE Conference on Decision and Control, pages 4221-4227, Lake Buena
Vista, FL, December.1994.

[55] W. Kohn, A. Nerode, J.B. Remmel, and A. Yakhnis. Viability in hybrid systems.
Theoretical Computer Science, 138(1):141-168, February 1995.

[56] M. Kristic, I. Kanellakopoulos, and P. Kokotovic. Nonlinesr and Adaptive Control
Design. Adaptive and Learning systems for signal processing, communications and

control. John Wiley & Sons, New York, 1995.

[57) C.P. Kwong. Optimal chained aggregation for reduced order modeling. International
Journal of Control, 35(6):965-982, 1982.

[58] C.P. Kwong. Disaggregation, approximate disaggregation, and design of suboptimal
control. International Journal of Control, 37(4):843-854, 1983.

[59] C.P. Kwong and C.F. Chen. A quotient space analysis of aggregated models. IEEE
Transactions on Automatic Control, 27(1):203-205, February 1982.

[60] C.P. Kwong and Y.K. Zheng. Aggregation on manifolds. International Journal of
Systems Science, 17(4):581-589, 1986.

[61] G. Lafferriere, G. J. Pappas, and S. Sastry. Hybrid systems with finite bisimulations.
In P. Antsaklis, W. Kohn, M. Lemmon, A. Nerode, and S. Sastry, editors, Hybrid
Systems V, Lecture Notes in Computer Science. Springer Verlag, New York, 1998. To

appear.

[62] G. Lafferriere, G. J. Pappas, and S. Sastry. O-minimal hybrid systems. Technical
Report UCB/ERL M98/29, University of California at Berkeley, Berkeley, CA, April
1998.

[63] G. Lafferriere, G. J. Pappas, and S. Yovine. Decidable hybrid systems. Technical
Report UCB/ERL M98/39, University of California at Berkeley, Berkeley, CA, June
1998.

126

[64] G. Lafferriere, G.J. Pappas, and S. Sastry. Hybrid systems with finite bisimulations.
Technical Report UCB/ERL M98/15, University of California at Berkeley, Berkeley,
CA, April 1998. '

[65] G. Lafferriere, G.J. Pappas, and S. Sastry. Subanalytic stratifications and bisimu-
lations. In T. Henzinger and S. Sastry, editors, Hybrid Systems : Computation and
Control, volume 1386 of Lecture Notes in Computer Science, pages 205-220. Springer ’
Verlag, Berlin, 1998.

[66] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. In Formal Methods in Systems

Design, volume 6, pages 1-35. Kluwer Academic Publishers, Boston, 1995.

[67) J. Lygeros. Hierarchical, Hybrid Control of Large Scale Systems. PhD thesis, Univer-
sity of California at Berkeley, 1996.

[68] J. Lygeros, D.N. Godbole, and S. Sastry. Verified hybrid controllers for automated
vehicles. IEEE Transactions on Automatic Control, 43(4):522-539, April 1998.

[69] J. Lygeros, C. Tomlin, and S. Sastry. On controller synthesis for nonlinear hybrid
systems. In Proceedings of the 37th IEEE Conference on Decision and Control, Tampa,
FL, 1998.

[70] John Lygeros, Datta N. Godbole, and Shankar Sastry. A game theoretic approach to
hybrid system design. In Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag,
editors, Hybrid Systems III, number 1066 in LNCS, pages 1-12. Springer Verlag, 1996.

[71] John Lygeros, Datta N. Godbole, and Shankar Sastry. Optimal control approach to
multiagent, hierarchical system verification. In JFAC World Congress, pages 389-394,
San Fransisco, California, USA, June 30 - July 5 1996.

[72] N. Lynch, R. Segala, F. Vaandrager, and H.B. Weinberg. Hybrid I/O automata.
In Hybrid Systems III, volume 1066 of Lecture Notes in Computer Science, pages
496-510. Springer-Verlag, 1996.

[73] A. Macintyre and A.J. Wilkie. On the decidability of the real exponential field. In
Kreiseliana: About and around Georg Kreisel, pages 441-467. A.K. Peters, 1996.

127

[74] O. Maler, editor. Hybrid and Real-Time Systems, volume 1201 of Lecture Notes in
Computer Science. Sprin‘ger-Verlag, 1997.

[75] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed
systems. In E.W. Mayr and C. Puech, editors, STACS 95: Theoretical Aspects of
Computer Science, volume 900 of Lecture Notes in Computer Science, pages 229-242.

Springer-Verlag, 1995.

[76] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer
Verlag, New York, 1995.

[77) L.S. Martin and P.E. Crouch. Controllability on principal fibre bundles with compact
structure group. Systems & Control Letters, 5(1):35-40, 1984.

[78] M.D. Mesarovic. Theory of hierarchical, multilevel, systems, volume 68 of Mathematics

in Science and Engineering. Academic Press, New York, 1970.
[79] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[80] S. Morse, editor. Control Using Logic-Based Switching, volume 222 of Lecture Notes

in Control and information sciences. Springer-Verlag, 1997.

[81] A. Nerode and W. Kohn. Models for hybrid systems: Automata, topologies, control-
lability, observability. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel,
editors, Hybrid Systems, pages 317-356. Springer Verlag, New York, 1993.

[82] H. Nijmeijer and A.J. van der Schaft. Nonlinear Dynamical Control Systems. Springer-
Verlag, 1990. '

[83] A. Olivero, J. Sifakis, and S. Yovine. Using abstractions for the verification of linear
hybrid systems. In Computer Aided Verification, volume 818 of Lecture Notes in
Computer Science, pages 81-94. Springer-Verlag, July 1994.

[84] C. C. Paige. Properties of numerical algorithms related to computing controllability.
IEEE Transactions on Automatic Control, AC-26(1):111-129, 1981.

[85] G. J. Pappas, G. Lafferriere, and S. Sastry. Hierarchically consistent control systems.
Technical Report UCB/ERL M98/16, University of California at Berkeley, Berkeley,
CA, April 1998.

128

[86] G. J. Pappas and S. Sastry. Towards continuous abstractions of dynamical and control
systems. In P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid Sys-
tems IV, volume 1273 of Lecture Notes in Computer Science, pages 329-341. Springer
Verlag, Berlin, Germany, 1997.

[87] G. J. Pappas and S. Sastry. Straightening out rectangular differential inclusions.
Systems and Control Letters, 35(2):79-85, September 1998.

[88] G. J. Pappas, C. Tomlin, J. Lygeros, D. N. Godbole, and S. Sastry. A next generation
architecture for air traffic management systems. In Proceedings of the 36th IEEE
Conference on Decision and Control, pages 2405-2410, San Diego, CA, December
1997.

[89] G.J. Pappas, G. Lafferriere, and S. Sastry. Hierarchically consistent control systems.
In Proceedings of the 37th IEEE Conference in Decision and Control. Tampa, FL,
December 1998.

[90) A. Puri, V. Borkar, and P. Varaiya. e-approximation of differential inclusions. In
R. Alur, T.A. Henzinger, and E.D. Sontag, editors, Hybrid Systems III, volume 1066
of Lecture Notes in Computer Science, pages 362-376. Springer-Verlag, 1996.

[91] A. Puri and P. Varaiya. Decidability of hybrid systems with rectangular differential
inclusions. In Computer Aided Verification, pages 95-104, 1994.

[92] A. Puri and P. Varaiya. Verification of hybrid systems using abstractions. In
P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid Systems II, volume
999 of Lecture Notes in Computer Science, pages 359-369. Springer-Verlag, 1995.

[93] J. Raisch and S.D. O’Young. Discrete approximations and supervisory control of
continuous systems. IEEE Transactions on Automatic Control : Special Issue on
" Hybrid Systems, 43(4):569-573, April 1998.

[94] H.H. Rosenbrock. State Space and Multivariable Theory. Jon Wiley, New York, 1970.

[95] S. Sastry, G. Meyer, C. Tomlin, J. Lygeros, D. Godbole, and G. Pappas. Hybrid
control in air traffic management systems. In Proceedings of the 1995 IEEE Conference
in Decision and Control, pages 1478-1483, New Orleans, LA, December 1995.

129

[96] M. Spivak. A Comprehensive Introduction to Differential Geometry. Publish or Perish,
1979.

[97) H. J. Sussmann. Subanalytic sets and feedback control. Journal of Differential Equa-
tions, 31(1):31-52, January 1979.

[98] A. Tarski. A decision method for elementary algebra and geometry. University of

California Press, second edition, 1951.

[99] L. Tavernini. Differential automata and their discrete simulators. Nonlinear Analysis:
Theore, Methods, and Applications, 11(6):665-683, 1987.

[100] W. Thomas. Automata on infinite objects. In Formal Models and Semantics, volume

B of Handbook of Theoretical Computer Science. Elsevier Science, 1990.

[101] M. Tittus and B. Egardt. Control design for integrator hybrid systems. IEEE Trans-
actions on Automatic Control, 43(4):491-500, April 1998.

[102] C. Tomlin, G. J. Pappas, and S. Sastry. Conflict resolution for air traffic management
: A study in muti-agent hybrid systems. IEEE Transactions on Automatic Control,
43(4):509-521, April 1998.

[103] Claire Tomlin, John Lygeros, and Shankar Sastry. Synthesizing controllers for non-
linear hybrid systems. In S. Sastry and T.A. Henzinger, editors, Hybrid Systems:

Computation and Control, number 1386 in Lecture Notes in Computer Science, pages

360-373. Springer Verlag, 1998.
[104] D. van Dalen. Logic and Structure. Springer-Verlag, third edition, 1994.

[105] L. van den Dries. Remarks on Tarski’s problem concerning (R, +, -,exp). In G. Lolli,
G. Longo, and A. Marcja, editors, Logic Colloguium ’82, pages 97-121. Elsevier Sci-
ence Publishers B.V., 1984.

[106] L. van den Dries. Tame Topology and o-minimal structures. Cambridge University

Press, 1998.

[107) L. van den Dries and C. Miller. On the real exponential field with restricted analytic
functions. Israel Journal of Mathematics, 85:19-56, 1994.

130

[108] A.J. van der Schaft and J.M. Schumacher. Complementarity modeling of hybrid
systems. IEEE Transactions on Automatic Control, 43(4):483-490, April 1998.

[109] P. Varaiya. Smart cars on smart roads: problems of control. IEEE Transactions on
Automatic Control, 38(2):195-207, 1993.

[110] V. Weispfenning. A new approach to quantifier elimination for real algebra. Technical
Report MIP-9305, Universitit Passau, Germany, July 1993.

[111] A. J. Wilkie. Model completeness results for expansions of the ordered field of real
numbers by restricted pfaffian functions and the exponential function. Journal of the
American Mathematical Society, 9(4):1051-1094, Oct 1996.

[112] H.S. }Nitsenhausen. A class of hybrid-state continuous-time dynamics systems. IEEE
Transactions on Automatic Control, 11:161-167, February 1966.

[113) K.C. Wong and W.M. Wonham. Hierarchical control of discrete-event systems. Dis-
crete Bvent Dynamic Systems, 6:241-273, 1995.

[114] K.C. Wong and W.M. Wonham. Hierarchical control of timed discrete-event systems.
Discrete Event Dynamic Systems, 6:275-306, 1995.

[115) H. Wong-Toi. The synthesis of controllers for linear hybrid automata. In Proceedings
of the 36th IEEE Conference on Decision and Control, San Diego, CA, December
1997.

[116) W.M. Wonham. Linear Multivariable Control : A.Geometric Approach, volume 10 of
Applications of Mathematics. Springer-Verlag, New York, 1985.

[117] H. Ye, A.N. Michel, and L. Hou. Stability theory for hybrid dynamical systems. IEEE
Transactions on Automatic Control, 43(4):461-474, April 1998.

[118] M. Zefran and J. Burdick. Stabilization of systems with changing dynamics. In
T. Henzinger and S. Sastry, editors, Hybrid Systems : Computation and Conirol,
volume 1386 of Lecture Notes in Computer Science, pages 400-415. Springer Verlag,
Berlin, 1998.

131

[119] H. Zhong and W.M. Wonham. On the consistency of hierarchical supervision in
discrete-event systems. IEEE Transactions on Automatic Control, 35(10):1125-1134,
1990. :

132

Appendix A
Appendix

A.1 Implemetation of Algofithms 5.37 and 5.38

133

function [controllable]=HCA(A,B,k,tol)
%**

% Hierarchical Controllability Algorithm 5.37

h

% Required Inputs : System Matrices A,B,

o Integer 0<= k <= n-1 (k=0 is Algorithm 5.38)

% Optional Inputs : Tolerance threshold tol (used for rank computation)
%*********#**********************************#*****************

n=size(A,1);
if nargin ==
tol = n*norm(A,1)*eps;

end
r = rank(B,tol); %*x* Dimension of input space
while ((n>r) & (r>0)), %**x If inputs exist and are less than states
1 = min(k,n-1); %***x Ignore Lie brackets higher than n-1
W = B; %**x Compute [B AB ...A"kB]
for j=1:1,
W = [B A*W];
end
[U,S,V] = svd(W); %*** Obtain consistent matrix C
m = rank(S,tol);
Ul = U(:,1:m) ;
U2 = U(:,(m+1):n) ;
c =102’
B = CxAxUl; %**x Obtain consistent abstraction
A = CxAxC’;
n = size(A,1) %*** Dimension of abstracted system
r = rank(B,tol); %**x Dimension of macroinputs
end '
if (n==r) controllable=1;

elseif (r==0) controllable=0;
end

134

function [controllable]=HCA(A,B,tol)
%*******************#****t***********************

% Hierarchical Controllability Algorithm 5.38

%

% Function Call : HCA(A,B,tol)

% Required Inputs : System Matrices A,B

% Optional Input : Tolerance threshold tol
%t*****#************#*************************#**

n=size(A,1);
if nargin ==

tol = n*xnorm(A,1)*eps;
end

[U,s,V] = svd(B); %*%*x Dimension of input space
r = rank(S,tol);

while ((@>r) & (x>0)), %*** If inputs exist and are less than states
Ul = U(:,1:1) ; %*** Obtain consistent matrix C
U2 = U(:,(r+1):n) ; -
C =102;
B = C*xAxU1l; %*** Obtain consistent abstracted system
A = C*xAxC’;
n = size(A,1); %*** Dimension of abstracted system
[(U,s,V] = svd(B);
r = rank(S,tol); Y+** Dimension of macroinputs

end

if (n==r)
controllable=1;
elseif (r==0)
controllable=0;
end

	Copyright notice 1998
	ERL-98-78

