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Abstract

HYBRID SYSTEMS : COMPUTATION AND ABSTRACTION

by

George James Pappas

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Shankar Sastry, Chair

Recent advances in computation and communication have enabled the control of large scale,

multi-agent, distributed, and hierarchical systems such as automated highway and air traffic

management systems. Improving the performance, safety, and reliability of such systems is

extremely challenging as it requiresnew modeling formalisms accompanied by novel analysis

and design techniques.

Hybrid systems combine discrete event and continuous time dynamics in a manner

that can capture decision logic, agent dynamics, and inter-agent communication in a unified

modeling framework. The expressive power of hybrid systems has been successfully applied

in both automated highway and air traffic management systems. Given the safety criticality

of such systems, one of the most important problems in the area of hybrid systems is the

computation of the reachable space of a hybrid system in order to verify that no undesirable

states are feasible.

The first part of this dissertation focuses on algorithmic methods for exactly com

puting the reachable states of hybrid systems. State of the art methods from theoretical

computer science perform reachability computation for timed, multirate, and rectamgu-

lar automata before reaching undecidability barriers. Using the very recent notion of o-

minimality from mathematical logic, the first classof hybrid systems with linear differential

equations having a decidable reachability problem is obtained. This result is important

given the wide applicability of linear systems in control theory and applications.

The second part of this dissertation focuses on reducing the complexity of reacha

bility calculations for continuous systems. In particular, a notion of abstraction for control



systems is introduced. In addition to complexity reduction, the notion of control system

abstraction is useful in hierarchical system design. Conditions are derived under which one

control system is a consistent abstraction of another, in the sense that checking reachability

on the abstracted model is equivalent to the detailed model. For linear systems, this leads

to a hierarchical controllability algorithm, whose computational advantages are verified by

recovering the best known controllability algorithm from numerical linear algebra.

\.
Professor Shankar Sastry
Dissertation Committee Chair
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Chapter 1

Introduction

In the past few decades, advances in computation and communication have enabled

the development and control of large scale, highly complex systems. Air traffic management

systems, automated highway systems, flight management systems, communication networks,

and power distribution networks are a few examples that are important not only from an

engineering perspective but also from their prevalence in our everyday lives and the well

being of the economy.

The nature of the above systems is distributed as various subsystems or agents

either compete or cooperate to satisfy individual or common objectives. As the computa

tional ability of individual agents and the communication between agents increase rapidly,

next generation systems attempt to balance centralized and decentralized designs by allow

ing individual agents to self optimize their own objectives but coordinate with other agents

when conflicts arise. This naturally leads to multi-agent, multi-objective systems which are

also multi-modal in the sense that the system functions in various modes of operation.

In addition, large scale systems such as air traffic management systems and au

tomated highway systems, are systems of very high complexity. Complexity is typically

reduced by imposing a hierarchical structure on the system architecture, where systems at

higher levels utilize coarser system models than lower levels. Hierarchical structures also

arise as a reflection of a hierarchy of system objectives.

In order to improve the performance, safety, and reliability of such systems, en

gineers are currently faced with the challenge of developing appropriate models, analysis,

and design methods. The candidate modeling frameworks must have the expressive power

to describe both agent dynamics, typically described by differential equations, as well as



decision logic and communication protocols, usually modeled by discrete event systems. In

addition, they must be equipped with composition and abstraction operators in order to

capture the distributed and hierarchical nature of such systems. Composition operators

perform the proper interconnection and synchronization of subsystems whereas abstraction

operators allow macromodeling, or the ability to hide unnecessary details at the higher level.

A solution to this modeling challenge is offered by hybrid systems. Hybrid systems

are discrete event systems with possibly different differential equations in each discrete loca

tion. One modeling approach is to extend the formalisms and tools of finite state machines

to incorporate continuous dynamics. This approach has been pursued by theoretical com

puter science, and has been applied in modeling real time hardware and software systems.

In the control community, a variety of hybrid system models extend differential equations

and control systems to capture discrete decision logic, and switching behavior. Naturally,

computer science models focus hybrid systems with sophisticated discrete dynamics but

simple continuous dynamics, whereas control theory models include complicated continu

ous dynamics but relatively rudimentary discrete behavior. It is becoming apparent from

applications that a synergy of techniques from these fields is needed in order to analyze

hybrid systems with complicated continuous dynamics and sophisticated discrete behavior.

1.1 Research Areas and State of the Art

The new modeling paradigm of hybrid systems has generated numerous issues

that need to be resolved from both a theoretical and applied perspective. We list a few

of them below while reviewing state of the art techniques in each axea of hybrid systems

research. More thorough and detailed starting points in the area of hybrid systems include

[4, 6, 7, 41, 44, 74].

Modeling

Various hybrid system models have been proposed in the literature. Computer

scientists consider hybrid automata which extend finite state machines to include simple

continuous dynamics. This has resulted in timed automata [3], where clock dynamics of the

form X = 1 where inserted within each state. The automaton would instantaneously jump

from one discrete location to another depending on the comparison of the clock value with

integer constants. An example of a timed automaton is shown in Figure 1.1. Timed au-
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Figure 1.1: Example of a timed automaton

tomata are useful for modeling and analyzing properties of real time hardware and software

systems, such as real time communication protocols. Timed automata have been extended

to fixed slope and multirate automata [2] which capture dynamics of the form x = c, and

rectangular automata [48, 91], where continuous dynamics are modeled by differential inclu

sions of the form x e [a,6]. Finally, the most expressive but still computable class of hybrid

systems is linearhybridautomata [46], which capture dynamics of the form Ax < b. Hybrid

input/output automata extend the input/output framework of [72], which has been used

to analyze distributed algorithms and protocols. All the above models are equipped with

composition operators which allow the parallel composition of various subsystems. This is

an important modeling feature for the so called concurrent systems where different system

components interact and synchronize with their environment across well defined boundaries.

On the other side, the control community starts with complicateddifferentialequa

tions and control systems, and starts adding discrete behavior [13, 23, 99, 108, 112]. Nat

urally, switched systems [80], and systems with discontinuous dynamics [40] are hybrid
systems with special structure. Another way in which hybrid systems arise in control the

ory is the framework of supervisory control of continuous systems, shown in Figure 1.2. In

this framework, a purely continuous plant is interconnected with a discrete event controller

by generalized analog to digital and digital to analog converters. The outputs of the plant

are quantized by the analog to digital converter, which generates discrete events as inputs

to a discrete event supervisor. The supervisor encodes some computer program or decision

logic, and outputs its control decision to the generalized digital to analog converter which

parses the discrete command to a continuous control law. This framework is a special type

ofhybrid system that has been considered in [8, 26, 32, 50, 81, 93]. More unified modeling
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Figure 1.2: Supervisory control of continuous systems

approaiches which captiure general continuous and discrete dynamics include [18, 67]. The

fundamental modeling components of these formalisms is truly hybrid, as state, inputs,

and outputs can have both a discrete and continuous component. In addition, modeling

formalisms accompanied by the first simulationtools for hybrid systems include SHIFT [37],

Omola/Omsim [5], and Hybrid CC [27].

With a few exceptions [99, 108], most of the above models lack qualitative results

which guarantee their well posedness. As a result, there are very few results on existence,

uniqueness, or robustness of system trajectories. Even though it is becoming apparent that

hybrid systems, in general, are not robust, theorists are searching for the correct notion

of continuity for hybrid systems [33]. Another manifestation of the complicated nature

of hybrid system models is the zeno property. A hybrid system is zeno when there exist

system trajectories with infinite switching in finite time. Zeno hybrid systems are not valid

mathematical abstractions of physical processes. Much more work is needed in this area in

order to understand the complex behavior that hybrid systems are capable of generating.

Analysis and Verification

Since hybrid models are used to describe safety critical systems^ like air traffic

management systems, it is important to have guarantees of safe operation. This is the

goal of formal verification methods which, given a mathematical abstraction of the system,

attempt to prove that the actual system satisfies the desired properties. Computational

approaches to system verification is typically a three step methodology:



1. Modeling : The system is modeled in some hybrid system formalism

2. Specification : Desired properties are expressed as temporal logic formulas

3. Analysis : The system is analyzed using algorithmic or deductive methods

In the computer science community there are essentially two approaches to hybrid system

verification. Model checking approaches essentially completely explore the whole state space

to check whether the system satisfies the desired specification. The advantage of model

checking approaches is that they can be completely automated, resulting in meaningful

computer aided verification tools. In addition, the lack of structure of purely discrete

systems makes computational approaches to model checking inevitable. Even though model

checking methods are very successful in verifying properties of discrete systems with finite

state spaces, their application to hybrid systems with infinite state spaces makes the issue

of decidability extremely important.

The main tool for obtaining decidable classes of hybrid systems is given by the

concept of bisimulation [79]. Bisimulations are simply quotient systems which preserve the

properties of the original system. For purely discrete systems, bisimulations are used in

order to reduce the complexity of verifying properties of very large scale systems. If an

infinite state hybrid system has a finite state bisimulation, then checking properties for the

hybrid system can be equivalently performed on the finite, discrete, quotient graph. Since

the quotient graph is finite, the algorithm will terminate. If in addition, each step of the

algorithm can be encoded and implemented by a computer program, then the problem is

decidable.

The first decidability result of this kind for hybrid systems was obtained in [3] for

timed automata, which are finite state machines with clock dynamics. This was extended

to multirateautomata [2], as well as initialized rectangular automata [48, 91] which at each

discrete location contain constant rectangular diffierential inclusions of the form x € [a,6].

Based on these results, computational tools have been developed for automatic verification

of timed (Kronos [34] and Uppaal [15]) and linear hybrid automata (HyTech [47]). In

[48], various relaxations of these models were shown to be undecidable.

The use of deductive methods is the second approach in the computer science

for hybrid system verification. Deductive methods try to prove properties using formal

deduction based on a set of inference rules [72, 76]. Even though deductive methods are



not constrained by any decidability frontiers, their application requires significant human

intervention. This makes their application to large scale systems difficult. However, semi-

automated tools like Step [17], automate part of the verification procedure, thus reducing

the human workload.

The response of the control community to hybrid system verification uses game

theoretic methods [67]. Instead of verifying all systemtrajectories, a gameis solved resulting

in the worst possible system trajectory. If the worst trajectory satisfies the specification

then so does every other system trajectory. The difficulty with this approach is in solving

the game and obtaining the worst system trajectories. Other analysis results have focused

on the stability of various classes of switched and hybrid systems. The first extension

of Lyapunov type theorems to hybrid systems used multiple Lyapunov functions [18, 19].

Other Lyapunov tjrpe results include [117] as well as more constructive stability results for

switched linear systems [52]. A hierarchicalstabilization method for systems with changing

dynamics can be found in [118].

Controller Synthesis

Whereas verification ensures properties of completed designs, controller synthesis

attempts to design systems so that they are guaranteed to satisfy the desired specifications.

For hybrid systems, however, the notion of control is much broader than the classical open

loop or feedback control found in continuous control theory. Controlled variables exist not

only in the continuousdomain, but also in the discrete domain. Therefore the controllersyn

thesis problem ask us to design not only continuous control laws but also discrete strategies

in order to satisfy the system specification.

In the computer science community, one approach to controller synthesis is the

parametric verification problem. As long as one has a decidable class of models, then

model checking algorithms can determine ranges of pairameter values for which the system

will satisfy the specification. A more standard method synthesizes a control automaton

which, when composed with the plant automaton, results in the system meeting the desired

specification. This has been explored in [11, 75] for timed systems, and [115] for linear

hybrid automata.

The control community has naturally generated a variety of control methodologies

for hybrid systems, as various frameworks that apply to purely continuous systems have



been extended to capture hybrid systems. Optimal control approaches have been used in

[20, 18, 71] to formulate and solve an optimal control problemfor a classof hybrid systems,

while providing existence of optimal and near -optimal control policies. Relaxed optimal

control problems is also the fundamental machinery in the control framework advocated

in [54, 81]. There is considerable research effort in the direction of supervisory control

of continuous systems [8, 26, 32, 50, 81, 93], which is trying to formalize the control of

continuous systems by computer programs. Control methods in the spirit of viability theory

[12] havebeen used by [36, 55]. Control of hybrid systems with integrator dynamics in each

location is considered in [101]. Game theoretic approaches were first proposed in [70, 67],

and have been applied in automated highway systems [68], and air traffic msmagement

systems [102]. Games are very common in the synthesis problem of purely discrete systems

[29, 100], but they also have very natural applications in continuous systems [14]. As a
result, the game theoretic approach is a imiform controller synthesis platform for purely

continuous, purely discrete, and true hybrid systems [69, 103].

Computational Complexity

The above analysis and control techniques face serious challenges in the near fu

ture. With the exception of simulation tools, control theoretic approaches are not currently

accompanied by meaningful computational tools. Computer scientists do provide compu

tational tools, but it has been recognized, mainly in the control community that uses more

sophisticated dynamical models, that the expressive power offered by decidable hybrid sys

tems is limited. However, the main obstacle that significantly limits the application of both

computer science and control theoretic approaches is computational complexity.

There are two main techniques to deal with complexity: compositional methods

and abstraction. As the main cause of state space explosion is peurallel composition, com

positional methods attempt to decompose the analysis of a large scale system into a set

of smaller problems for individual system components. Very often, however, compositional

verification of hybrid systems is difficult due to the strong coupling of system components.

On the other hand, abstraction techniques tackle the complexity involved in ver

ifying that a given large scale system satisfies certain properties, by extracting a simpler

but qualitatively equivalent abstracted system, shown in Figure 1.3. Checking the desired

property on the abstracted system should be equivalent or sufficient to checking the prop-
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Figure 1.3: System analysis using abstractions

erty on the original system. Abstraction techniques have been rather successful in facing
problems ofexponential complexity for purely discrete systems [31, 66]. Depending on the

property, special graph quotients which preserve the property of interest are constructed.

In addition to complexity reduction, abstraction techniques have been the main

tool in expanding the applicability ofcurrent decidability results. In particular, [43, 49, 83,
92] have abstracted hybrid systems with complicated dynamics by overapproximating their
trajectories by decidable hybrid models. In [90], the reachable set of Lipschitz differen

tial inclusions is overapproximated using rectangular hybrid automata. Such conservative

overapproximations are sufficient abstractions, in the sense that verifying the abstraction

is a sufficient but not necessary condition. If the abstracted system satisfies the property,

then so does the original system. If, however, the abstracted system does not satisfy the

required specification, then this may be attributed to the redundant trajectories feasible in

the abstracted system but not by the original system.

In addition to the analysis of large scale systems, abstractions are also extremely

useful in hierarchical system design. The main classes of hierarchical structures are nicely

described and classified in [78]. Figure 1.4shows a typical two-layer controlhierarchy which

is frequently used in the quite common planning and control hierarchical systems. In this

layered control paradigm, each layer has different objectives. In performing their tasks,

the higher level uses an abstracted model of the lower level. One of the main challenges in

hierarchical systems is the extraction of a hierarchy of models at various levels of abstraction

which are compatible with the functionality and objectives of each layer. A theory of

abstraction would be critical in designing valid hierarchies.

Hierarchical systems for discrete event systems have been formally considered in

[25, 113, 114, 119]. The supervisory control framework of Figure 1.2 is another example
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Figure 1.4: Two layer control hierarchy

of a hierarchical system consisting of discrete abstractions of continuous systems. This has

been considered in [24, 26] as well as [8, 32, 93]. For purely continuous systems, the only

existing notions ofaggregation are in the spiritofmodel reduction [9, 57, 58, 59, 60]. These

methods perform only state aggregation as opposed to both state and input aggregation.

The above approaches, however, are quite a distance away from being applicable to truly

large scale, hierarchical systems, like Automated Highway Systems [109], and Air Traffic
Management Systems [88, 95].

1.2 Issues Addressed and Dissertation Outline

Despite the initial progress in developing a theoretical basis for modeling, analyz

ing, and designing hybrid systems, the majority of the successful developments have been

either too discrete or too continuous. The main reason is that there are fundamental limita

tions to the techniques of both theoretical computerscience and control theory. Theoretical

computer science techniques are usually of a combinatorial nature due to the lack of struc

ture on the discretedynamics, and rely on powerful computational tools. However, they are

not well suited to handling complicated continuous dynamics. The structure of differential

equations naturally suggests the use of deductive techniques for their analysis by control



10

theorists. Deductive techniques, even if they are conceptually appealing and insightful, will

require algorithmic methods in order to be applicable to complex hybrid systems with large

numbers of discrete states. It is becoming clear that in order to successfully handle true

hybrid systems with many discrete states and complicated dynamics, a synergy ofconcepts

and methods from computer science and control theory is needed.

In Chapter 2, we present the necessary mathematical tools from differential ge

ometry and mathematical logic that will be used in this dissertation. Differential geometry

is the natural framework for studying differential equations and control systems, whereas

mathematical logic is the heart of theoretical computer science. Even though these two

mathematical areas seem disconnected, an amazing bridge between them has been recently

built by geometric model theory. This connection is fully exploited in subsequent chapters.

Chapter 3 describes the first attempt to enlarge the modeling frontier of decidable

hybrid automata, namely rectangular hybrid automata. In rectangular hybrid automata,

continuous variables must satisfy constant, decoupled, rectangular differential inclusions

of the form i G [a,6], A natural problem is the characterization of general rectangular

differential inclusions which can transformed to constant, decoupled inclusions by state

transformation. The resulting conditionsare quite restrictive and presented a seriousbarrier

to extending the decidable classes of hybrid systems. The results of this chapter can also

be found in [87].

The goal of Chapter 4 is to extend the known decidable classes of hybrid sys

tems. The main tool for obtaining decidability results for hybrid systems is the concept

of bisimulation. If a hybrid system has a finite bisimulation, then reachability properties

of the original hybrid system can be equivalently checked on a finite, discrete graph. In

the search of new classes of hybrid systems with finite bisimulations, the very recent notion

of o-minimal theories from geometric model theory is used. 0-minimal theories connect

the seemingly disjoint worlds of geometry and logic presented in Chapter 2. Using this

powerful mathematical machinery, the notionof o-minimal hybridsystems is introduced as

hybridsystems with all relevant sets and flows definable in an o-minimal theory. It is shown

that all o-minimal hybrid systems admit finite bisimulations. This is followed by a list of

o-minimal hybrid systems which captures versions of most hybrid systems known to admit

finite bisimulations. Furthermore, it includes new classes of hybrid systems with linear

dynamics in each discrete location. This result is the evolution of previous attempts which

were more geometric in nature [61, 65], but were restricted to planar dynamics. Showing
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that o-minimal hybrid systems admit finite bisimulations, must be followed by methods to

construct them, in order to obtain new classes of hybrid systems with a decidable reach

ability problem. The constructive methods that are used come fi:om mathematical logic.

Sets are symbolically represented as formulas in first order logic, and reachability calcu

lations are performed using quantifier elimination techniques. Since quantifier elimination

is possible for the theory of reals with addition, we either find or transform subclasses of

o-minimal hybrid systems which are definable in this theory. This procedure results in the

first class of hybrid system with linear dynamics in each discrete location with a decidable

reachability problem. Chapter 4 is a review of the results in [62, 63].

Whereas Chapter 4 is concerned with extracting discrete abstractions firom hybrid

systems. Chapter 5 focuses on continuous abstractions of continuous control systems. In

particular. Chapter 5 introduces a notion of control system abstraction. Given a control

system, and a map which performs state aggregation, an abstracted system is any control

system which overapproximates the abstracted trajectories of the original system. This

notion of abstraction is formalized by generalizing the classical notion of ^-related vector

fields to control systems. Furthermore, this notion mathematically formalizes the concept of

virtual inputs used in backstepping designs. In hierarchical systems, however, aggregation

is not independent of the functionality of the layer at which the abstracted system will be

used. Our goal is to not only extract abstractions of control systems, but to also ensure

that certain properties propagate from the abstracted to the original model. Properties of

interest include reachability, controllability, stabilizability, and trajectory tracking. Reach

ability preserving abstractions are defined as consistent^ in the sense that controllability

requests from the abstracted systems are implementable by the detailed original model.

We focus on controllability of linear control systems and characterize consistent linear ab

stractions. In this spirit, a hierarchical controllability criterion is obtained for large scale,

linear systems. Intuitively, instead of checking controllability of a large scale system, we

construct a sequence of consistent abstractions and then check the controllability of a sys

tem which is much smaller in size. Consistency will then propagate controllability along

this sequence of abstractions from the simpler quotient system to the original complex sys

tem. The computational advantages of this approach are verified by recovering the best

known controllability algorithms from numerical linear algebra [39], as a special case of the

hierarchical controllability criterion. Chapter 5 reviews most of the material in [86] and

[85, 89].
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Finally, Chapter 6 presents many directions for future research. As the field of

hybrid systems is young, there are many more questions than answers...
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Chapter 2

Mathematical Background

In this chapter, we review some facts from differential geometry, subanalytic geom

etry, and mathematical logic. Differential geometry is the natural mathematical framework

for nonlinear control systems and geometric control theory. Subanalytic sets is the richest

class of sets that is closed under unions, intersections, complements, forward, and inverse

maps. These operations of subanalytic sets are the main ingredients of first order logic,

which is reviewed along with some elementary model theory. In Chapter 4, the above no

tions will be directly linked, as first order predicate logic will be used to captme subanalytic

sets.

2.1 Differential Geometry

Our treatment of differential geometry follows that of [51]. For a more thorough

introduction to geometry, the reader may wish to consult numerous books on the subject

such as [1, 96].

2.1.1 Differentiable Manifolds

Recall that a function h: B is a. homeomorphism iff h is a bijection and both

h and h~^ are continuous. In this case, topological spaces A and B are called homeomorphic.

A function / : E" E is called smooth or C°° if all derivatives of any order exist and are

continuous. Function / is real analytic or C"^, if it is C°° and for each x € E" there exists a

neighborhood U of x, such that the Taylor series expansion of / at x converges to / (x) for



14

all x G C/. A mapping f :W —¥ is a collection (/i, •.., fm) of functions /t : R" —R

The mapping / is smooth (analytic) if all functions /» are smooth (analytic).

Definition 2.1 (Manifolds). A manifold Mof dimension n is a metric space ^ which is
locally homeomorphic to R".

Amanifold, which isofgreat interest to us, isR" itself. Asubset iV ofa manifold M

which is itself a manifold is called a submanifold of M. Any open subset N of a. manifold

M is clearly a submanifold, since if M is locally homeomorphic to R" then so is iV. In

particular, an open interval 7 C R is also a manifold.

A coordinate chart on a manifold M is a pair {U,(f>) where 17 is an open set of

M and </> is a homeomorphism of U on an open set of R". The function (f> is ailso called a

coordinate function and can also be written as (<^i,... ,</>n) where <f>i : M —> R If p G 17

then <f>{p) = (<^i(p),... ,<^n(p)) is called the set of local coordinates in the chart {U,(f)).
When doingoperations on a manifold, wemust ensure that our results are consis

tent regardless of the particular chart we use. We must therefore impose some conditions.

Two charts (C/,0) and (V,ip) with n V 9^ 0, are called C°° (C^) compatible if the map

: <f>(U n K) c R" —> il}{U n F) c R"

is a C°° (C^) function. A C°° (C^) atlas on a manifold M is a collection of charts (C/q, <^o)

with a e A which are C°° (C^) compatible and such that the open sets Uq cover the

manifold M, so M = UaeA^o- called maximal if it is not contained in any

other atlas.

Definition 2.2 (Differentiable Manifolds). A differentiable (analytic) manifold is a man

ifold with a maximal, (C^) atlas.

Now that we have imposed this differential structure on our manifold M we can

perform calculus on M. In particular let / : M —¥ R be a map. If {U, <l>) is a chart on M

then the function

/ = / o : (f>{U) C R" —> R

is called the local representative of / in the chart (U,<f>). We therefore define the map /

to be smooth (analytic) if its local representative / is smooth (analytic). Notice if / is

' More generally, we may replace metric space with Hausdorif and second countable topological space
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smooth (analytic) in one chart, then it is smooth (analytic) in every chart since we required

our charts to be (C^) compatible and our atlas to be maximal. Hence our results are

intrinsic to the manifold and do not depend on the particular chart we use. Similarly, if we

have a map / : M —¥ iV, where M,N are diiferentiable manifolds, the local representation

of / given a chart (C/, <p) of M and (V, V*) of N is

f = ipof O<f)~^

which makes sense only if f(U) n K 7^ 0. Again / is smooth (analytic) if / is a smooth

(analytic) map.

Let / : M —> N he a. map between two manifolds. The map / is called a

diffeomorphism if both / and f~^ are smooth. In this case, manifolds M and N are called

diffeomorphic.

The rank of a smooth map / : M —¥ N aX p € M is defined to be the rank of

the Jacobian matrix of / expressed in local coordinates. The rank is independent of the

particular choice of coordinate charts used. If the rank of / is equal to the dimension of M

for all p e Mj then / is called an immersion. If the rank of / is equal to the dimension of

N for all pe M, then / is called an submersion. If / : M —¥ N is an injective immersion,

then f{M) is called an immersed submanifold of N. If, in addition, the topology induced

on f(M) from M coincides with the topology of f{M) as a subset of N, then f{M) is an

embedded submanifold of N.

2.1.2 Tangent Spaces

Let p be a point on a manifold M and let C°°(p) denote the vector space of all

smooth functions in a neighborhood of p. A tangent vector ATp at p G M is an operator

from C°°{p) to E which satisfies for f,g e C°°(p) and a,6 GE , the following properties,

1. Linearity Xp{a •f -\-b- g) = a •Xp{f) + b•Xp(g)

2. Derivation Xp{f •g) = f {p) •Xp(g) + Xp{f) •g{p)

The set of all tangent vectors at p GM is called the tangent space of M at p and is denoted

by TpM. The tangent space TpM becomes a vector space over E if for tangent vectors

Xp,Yp and real numbers ci,C2 we define

(ci 'Xp + C2- Yp){f) = ci. Xp{f) + C2 •Ypif)
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for any smooth function / in the neighborhood of p. The collection of all tangent spaces of

the manifold,

TM=[j TpM
peM

is called the tangent bundle. The tangent bundle has a naturally associated projection map

TT: TM —> M taking a tangent vector Xp GTpM C TM to the point p € M. The tangent

space TpM can then be thought ofas 7r~^(p).
The tangent space can be thought of as a special case of a more general mathe

matical object called a fiber bundle. Loosely speaking, a fiber bundle can be thought of as

gluing sets at each point of the manifold in a smooth way.

Definition 2.3 (Fiber Bundles [82]). Afiberbundle is a tuple (B, M, tt, U, {Ot},^/) where

B, M, U are smooth manifolds allied the total space, the base space, and the standard fiber

respectively. The map tt : B —y M is a surjective submersion and {Oi}tg/ is an open cover

of M such that for every i £ I there exists a diffeomorphism : 7r~^(Oj) —> Oi x U

satisfying

TTo O$ = TT

where i^o is the projection from Oi xU to Oi. The submanifold 7r~^(p) is called the fiber

at p E M. If all the fibers are vector spaces of constant dimension, then the fiber bundle is

called a vector bundle.

The tangent bundle is a vector bundle and the fiber at each point p £ M is the

tangent space TpM. Prom Definition 2.3 it is clear that fiber bundles are locally difieomor-

phic to Oi X U. Therefore, fiber bundles are manifolds of dimension nm -1- ny where um

and ny are the dimensions of M and U respectively. In particular, the tangent bundle TM

has dimension 2n.

Now let M be a manifold and let {U, <(>) be a chart containing the point p. In this

chart we can associate the following tangent vectors

d d

defined by

— (f\ =
d<f)i dxi
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for any smooth function / G C°°{jp). The tangent space TpM is an n-dimensional vector

space and if (C/, </>) is a local chart around p then the tangent vectors

d d

' d(l>n

form a basis for TpM. Therefore if Xp is a tangent vector at p then

Y —̂
t=l

where oi,.,a„ are real numbers. Prom the above formula we can see that Xp(f) is an

operator which simply takes the directional derivative of / in the direction of [ai,..., a„].

Now let M and N be smooth manifolds and / : M —v iV be a smooth map. Let

p £ M and let q = f{p) £ N. We wish to push forward tangent vectors from TpM to TqN

using the map /. The natural way to do this is by defining a map /* : TpM —> TqN by

{MXp)){9) = Xp(gof)

for smooth functions g in the neighborhood of q. One can easily check that f*{Xp) is a

linear operator and a derivation and thus a tangent vector. The map /♦ : TpM —y

is called the push forward map of /. The push forward map : TpM —y T^(p)-^ is a linear

map, and furthermore if / : M —y N and g : N —y K then

{g o /)♦ =g*°f*

which is essentially the chain rule.

2.1.3 Vector Fields

A vector field on a manifold M is a smooth map X which places at each point p

of M a tangent vector from TpM. Therefore since a vector field, X, places at each point p

a tangent vector X{p) we have that in the chart (17,^) the local expression for the vector

field X is

ftr 9<i>i

The vector field is smooth (analytic) if and only if aj(p) is C°° (C^).
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Let / C R be an open interval containing the origin. An integral curve of a vector

field is a curve c : I —> M whose tangent at each point is identically equal to the vector

field at that point. Therefore an integral curve satisfies for all t € /,

c' = c.(l) = X(c)

A vector field is called complete if the integral curve passing through every p € M can be

extended for all time, that is we can choose / = R Integral ciurves of smooth (analytic)

vector fields are smooth (analytic).

Now let $ : M —v N he a, smooth map between two manifolds and let X be a

vector field on M. At every pointp E M we can use to push forward X{p) of the vector

field to If $ is a diflfeomorphism, then this procedmeresults in a well defined vector

field on N denoted ^*{X). If $ is surjective, then ^♦(X) is a well defined vector field only

when $ andX aresuch that ^*{Xp,) = ^*{Xp^) whenever $(pi) = ^(p2). This iscaptured

by the following definition.

Definition 2.4 (<&-related Vector Fields). Let X and Y be vector fields on manifolds

M and N respectively and $ : M —> N be a smooth map. Then X and Y are ^-related iff

the following diagram commutes

M —N

x[ y[ (2-1)
TM —^ TN

or in other words iff X = Y o

If $ is not surjective, then X may be ^-related to many vector fields on N. If,

however, $ is surjective, then X can only be ^-related to a unique vector field on N.

Given two vector fields X and Y on manifold M, we define their Lie bracket,

denoted [X^Y], by the following rule

[X, YUf) = Xp(y(/)) - Yf{XU)) (2.2)

for functions / € C°°{p). It can be easily verified that [X, Vjp € TpM, and thus [X,Y] is

indeed a vector field. If X and Y are given in local coordinates as vectors /(x), p(x), then

the expression for their Lie bracket [/, p] in local coordinates is simply
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Finally, there is an interesting relation between Lie brackets and <>-related vector fields.

Let $ : M —> N hea. surjection, let Xi and X2 be two smooth vector fields on M, and let

and $*(A"2) be ^-related to Xi and X2 respectively. Then

$.([.?,, JfJ) = [$.(X,),$.(X2)] (2.4)

The above fact is, of course, also true when $ is a diffeomorphism.

2.2 Subanalytic Geometry

In much of the subsequent analysis, we shall be dealing with sets and operations

on sets. In general, if one starts with a general class of sets, and performs on them unions,

complements, closures, intersections, and projections, then either the class of sets is closed

under these operations, or new, more complicated sets emerge. In this section, we present

classes of sets which axe closed under unions, complements as well as forward and inverse

maps.

Definition 2.5 (Boolean Algebras of Sets). A boolean algebra of a set X is a nonempty

collection C ofsubsets ofX, C C 2^ , such that if A^B £ C, then AU B and X \ A belong

to C.

It is immediate firom the above definition that 0, A" 6 C, and if A,B € C then

An B € C. Given a family of sets A = (Ai)i€/c, with K = {l,...,n}, we denote by

B{A) the boolean algebra of sets generated by (Ai)igic, that is the smallest boolean algebra

containing It can be shown that the elements of B{A) are exactly the finite unions

of sets of the form

(2.5)
\i€J / \i^J )

with J C K. Consider now sets of the form

{x e IK"|/i(a:) = 0,.. .Jp(x) = 0,^i(x) > 0,... ,gq{x) > 0}

where functions /i,..., /p,pi,. •., P9 : IR" —R are of the form o„a;„ + 1- oirci + oq• Such

sets are called basic semilinear sets. A semilinear set is a finite union of basic semilinear

sets. If functions /i, •.., /p, pi,. ••, Pg are allowed to be polynomials in a^i,..., a;„, then
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we obtain the analogous notions of basic semialgebraic and semialgebraic sets. Clearly,

semilinear sets are a special case of semialgebraic sets. The boolean algebra generated by

semilinear (semialgebraic) sets is well known to be a closed family of sets with respect to

linear (polynomial) maps.

2.2.1 Semianalytic and Subanalytic Sets

In our search for a rich family of wellbehaved sets, sets defined by smooth functions

appear as the next obvious candidate. Unfortunately, given any closed set Z of the real

line (for example the Cantor set), there exists a smooth function / : M —K such that

Z = {a: e K I/(x) = 0}. Fortunately, real analytic functions are free from such pathologies.

The following classical result illustrates this point.

Proposition 2.6. Let I CM. be an open interval and j : I M be an analytic function.

Let Z = {x e I \ f{x) = 0]. Then, either Z = I or Z has no accumulation point in I.

Also, if f is not identically zero, then every compact subset K of I contains at most a finite

number of zeros of f.

The above proposition has motivated the use of analytic functions for describing

subsets of R". Given open neighborhood U C R", let C"*'(C/,R) denote the set of analytic

functions firom U to R. Denote by B(C7'̂ (C/,R)) the boolean algebra generated by sets of

the form

{x e U\fi(x) = 0,..., fp{x) = 0,PI(x) > 0,. -.,gg{x) > 0} (2.6)

where /i,. ••,/p,Pi,. •. C C"^(U,R).

Definition 2.7 (Semianalytic Sets). A subset A o/R" is semianalytic if for every x 6

R", there is an open neighborhood U of x such that AnU € B{C'̂ {U,M)).

Semianalytic sets can therefore be locally described by a finite number of equalities

and inequalitiesofanalytic functions. It is clear firom the definitionthat semianalyticsets are

closed under complementation, and locally finite unions and intersections. Unfortunately,

images of semianalytic sets under analytic maps are not in general semianalytic. However,

semianalytic sets can be enlarged to a larger class which has this desirable property.

Definition 2.8 (Subanalytic Sets). A subset A o/R" is subanalytic if for every x 6 R"

there is an open neighborhood U ofx, and a bounded semianalytic set Y C R""*"*", such that

Ar\U is the projection of Y into U.
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Therefore, subanalytic sets are projections of semianalytic sets. Even though this

construction forces closure with respect to analytic maps, it endangers closure with respect

to complementation. Fortunately, the following proposition summarizes the nice properties

of subanalytic sets. Recall that a map / is called proper if f~^{K) is compact whenever K

is.

Proposition 2.9 (Properties of Subanalytic Sets [16]). The class of subanalytic sets

has the following properties

1. Subanalytic sets are closed under locally finite unions and intersections.

2. If A is subanalytic, then R" \ i4 is subanalytic.

3. Let f : W —> be an analytic map. IfA is subanalytic, then f~^{A) is subanalytic.

4. Let f : R*^ —> R" be an analytic, proper map. If A is subanalytic, then f(A) is

subanalytic

Example 1. Points are subanalytic, and so is any locally finite union of points, for example

Z" as subset of R". Clearly 0 and R" are also subanalytic. Let a, 6 G R, a < 6, then [a,6],

[a,6), (a, 6] and (a,b) are subanalytic in R Let B(p,r) be the open ball centered at p of

radius r in R". Then B(p,r) is subanalytic. In general, as is clear from the definition,

semianalytic sets are subanalytic. In particular, any semialgebraic or semilinear subset of

R" is subanalytic.

The following example shows an undesirable set that is not subanalytic.

Example 2. Consider the set Z = {^ : n G N}. The set Z is not subanalytic. To see
why simply consider any open neighborhood U of the origin. But then, by Proposition 2.6,

U n Z cannot be expressed as the zero set of a analytic function.

The above example suggests that graphs of analytic functions can only have locally

finite intersections with subanalytic sets. Such good intersection properties may be useful

in avoiding zeno hybrid systems, which exhibit infinite switching in finite time. In the next

section, we describe well known results about subanalytic sets, that may be useful in such

areas of research. However, the results of the next section will not be used in the next

chapters.
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Figure 2.1: Example of a partition but not a stratification

2.2.2 Subanalytic Stratifications

Stratifications are special partitionsofsets that have a very nice hierarchical struc

ture. Roughly, the boundary of each set is a set of lower dimension. To give a formal
definition, denote by S the closure of a set 5, and consider.

Definition 2.10 (Stratifications). An analytic (C^) stratification ofW is a partition S
of M" with the following properties:

1. each S E S is a connected analytic embedded submanifold ofW,

2. S is locally finite,

3. given two sets S,PeS, P^S, such that SOP then S cP and dim 5 < dimP

The sets in a stratification are called strata.

Example 3. Consider the partition of the plane into the four embedded submanifolds
according to Figure 2.1. The two 2-dimensional strata are the complement of the closed
unit disk, and the complement of the spiral in the open unit disk. The two 1-dimensional
strata are the unit circle and the spiral. Notice that the unit circle is contained in the

closure of the spiral and yet it has the same dimension. Therefore, this partition is not a

stratification.

The following theorem is a powerful property of subanalytic sets.

Theorem 2.11 (Subanalytic Stratification [42]). Let A be a locally finite collection of
subanalytic sets of K". Then there is a stratification S of K" such that:
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P2 X

1. All strata in S are subanalytic,

2. S is compatible with A. That is, every set in A is a union of strata from S.

In fact, one one can stratify R" in a manner that is compatible not only with a

collection of subanalytic sets, but also with a finite number of analytic vector fields.

Theorem 2.12 (Subanalytic Stratifications with Vector Fields [97]). Let A be a lo

cally finite family of nonempty subanalytic subsets of R". For each A £ A, let F{A) be a

finite set of real analytic vector fields on R". Then there exists a subanalytic stratification

S o/R", compatible with A, and having the property that, whenever S £ S, S C A, A £ A,

X £ F{A), then either (i) X is everywhere tangent to S or (ii) X is everywhere transversal

to S.

The above theorem is illustrated by the following example.

Example 4. Let F be the following analytic vector field on R^

X = + y'̂

if = 0

which has an isolated equilibrium at the origin and points in the positive x-direction oth

erwise. Consider the following two subanalytic sets

-^1 = {(^>2/) Iy > 0 and (a: - 1)^ -\-y^ = 1}

S2 = {(a;,t/) GR^ 12/=0 and 0 < x < 2}
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Figure 2.3: Infinite crossings on a bounded interval

shown in Figure 2.2. A subanalytic stratification of which is compatible with the sets

Si, S2 and the vector field F is also shown in Figure 2.2. It consists of

• 0-dimensional strata

- Pi = (0,0), P2 = (2,0), and P3 = (1,1)

• 1-dimensional strata

- Ci = {(a:, y) G 12/ = 0 0 < x < 2}

- C2 = {(x,y) G 12/ > 0 and 1< x < 2 and (x - 1)^ + y^ = 1}

- Ca = {(x, y) G 12/ > 0 and 0 < x < 1 and (x - 1)^ + y^ = 1}

• 2-dimensional strata

- Di = {(x, y) GE^ 12/ > 0 and (x - 1)^ + y^ < 1}

- £>2 = \ {Pi, P2,P3,Ci, C2, C3, A}

Notice that the vectorfield is tangent to Pi since it is an equifibrium as well as to Ci, Z^i and

D2- The vector field is transverse to all the other strata. Moreover, ^i = P1UP2UP3UC72UC3

and 1S2 = Pi U P2 U Ci.

The following propositionillustrates some of the good intersection properties that

analytic curves have with subanalytic sets. The finiteness property indicated in the propo

sition makes it possible to define transitions between strata in a natural way.

Proposition 2.13. Let I be an open interval, M a real analytic manifold and j : I M

a real analytic function. Let S be an analytic stratification of M by subanalytic sets. If
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[a, 5] C I then there exists a finite partition {xi,... ,Xn} of [a, 6] with the property that for

each z = 1,... ,n - 1 there exists a stratum Si e S such that 7((a;t,Xt+i)) C Si.

Such good finiteness properties are useful in having well defined discrete abstrac

tions of continuous systems. The following example shows that the assumption of subana-

lyticity in the proposition above can not be dropped.

Example 5. Consider the stratification of by the following five sets (see Figure 2.3).

51 = {(0,0)}

52 =I(x, 2/) :x>0A2/ =Xsin iI
Sz =|(x,2/) :X<0Ay=xsin^j
^4 =|(a^,y) :X7^0 A2/> xsin i| (J{(0,2/) :y>0}
S5 =|(a:,y) :x#0 A2/<a:sini||J{(0,y) :y<0}

Each set is an embedded analytic submanifold of and they clearly satisfy the condition

on the dimension of the strata in the closure of other strata. Finally, consider the constant

vector field X = Then the integral curve 7 of X through (0,0) is the x-axis (parame

terized by X itself). Therefore, the image by 7 of any interval containing 0 intersects both

54 and S5 an infinite number of times.

For other important results on subanalytic sets as well as their relevance to control

theory, the reader is referred to [16], [42], and [97].

2.3 Mathematical Logic

In this section we give a brief introduction to mathematical logic and model theory.

Logic will serve as the main computational tool for symbolically representing sets as wellas

performing boolean operations on them. The reader is referred to [104] for a more detailed

introduction.
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2.3.1 Languages and Formulas

A language is a set of s)rmbols separated into three groups: relations, functions

and constants. More formally, a language is jC = i-Rnj/ij •••>/m?co,...,cj, where

i?i,..., are the relation symbols, /i, •. •,/m are the function symbols, and cq, ...,ci are

symbols for constants. For example, the setsV = {<, +, —, 0,1}, % = {<, +, —, ♦, 0,1}, and
T^jjp = {<,+, —,exp, 0,1} are examples oflanguages where < (less than) is the relation,

+ (plus), —(minus), • (product), and exp (exponentiation) are the functions, and 0 (zero)
and 1 (one) are the constants.

Let C = be a language, and xq.xu... be a

countable set of variables. We define the following two syntactical categories.

Definition 2.14 (Terms). The set of terms ofC are defined inductively as follows

1. Constants and variables are terms

2. If ti,... .ftm are terms, and f is a function, then /(ti,. ••, tm) a term.

For instance, x —2y 3 and x + yz^ —1 are terms of "P and "R., respectively. In

other words, terms ofV are linear expressions, and termsof IZ aure polynomials with integer

coefficients. Notice that integers are the only numbers allowed in expressions (they can be

obtained by adding up the constant 1).

Definition 2.15 (Atomic Formulas). The atomic formulas ofa language are ofthe form
<1 = t2, or R{ti,... ,<n), where i = 1,... ,n ore terms and R is an n-ary relation.

For example, xy > 0 and + 1 = 0 are atomic formulas of Tl. Note that the

equality symbol = is part of our language even though it was not explicit is the set of
language symbols. In general, we will assume that every language contains the equality
symbol.

Definition 2.16 (First-order Formulas). The set offirst-order formulas of language L

is recursively defined as follows:

1. Atomic formulas are formulas

2. If are formulas, then 0 A <p\/ ip, and -y<f> are formulas

3. If (j> is a formula, then Vxt: (f> and Ba;,: <l> are formulas
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Formulas defined in a language C are called Z^-formulas. Examples of 7^-formulas

are:

Vx Vy : xy > 0 (2.7)

3x : x2 - 2 = 0 (2.8)

3w : xxu^ + 1/iy + z = 0 (2.9)

The occurrence of a variable in a formula is free if it is not inside the scope of

a quantifier; otherwise, it is bound. For example, x, j/, and z are free and w is bound in

(2.9). We often write ^(xi,... ,x„) to indicate that xi,... ,x„ are the free variables of the

formula (f>. A sentence of 7^ is a formula with no free veu-iables. Formulas (2.7) and (2.8)

are sentences.

2.3.2 Model Theory

Syntax would not be interesting without semantics. A model appropriate to a

language consists of a non-empty set S and a semantic interpretation of the relations,

functions and constants. For example, (E, <,+,—, •,0,1) and (Q, <, +, —, •,0,1), are models

assigning the usual meaning to symbols of "R.

Every sentence of a language will be either true or false in a given model. For

instance, formula (2.8) is true over IR, but false over Q. Formulas that are not sentences

may hold for some assignments of values to the firee variables but not for others. For

instance, formula (2.9) holds in R for the assignment (1,1,0) of (x, y, z), but not for (1,0,1)

(there is no real number w such that + 1 = 0).

We say that a set V C 5" is C-definable or simply definable in a language £, if

there exists a formula ^(xi,... ,x„) such that

y = {(ai,... ,o„) G5" I0(ai,... ,a„)} (2.10)

For example, over IR, the formula x2-2 = 0 defines the set {y/2,—y/2}. Two formulas

0(xi,... ,x„) and ^(xi,... ,Xn) axe equivalent in a model, denoted by ^ if for every

assignment (oi,... , a„) of (xi,... , x„), 0(ai,... , a„) is true if and only if ip{ai,... , a„) is

true. Equivalent formulas define the same set.
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Example 6. As an interesting example consider the vector field defined by the differential

equation

^ (2.11)
X2 = —1

Let Y = {(1/1,2/2) € I<^(2/1,2/2)} be a 7^-definable set. Let Pre{Y) be the set ofall points

(xi,X2) € R^ that can reach a point (2/1,2/2) € Y following a trajectory satisfying (2.11).

Then Pre{Y) is also 7^-definable since Pre(Y) = {(a;i,a;2) GR^ | where

V'(xi,X2) = 32/1 32/2 3< : ^(2/1,2/2) A<> 0 A2/1 = ici + 2< A2/2 = 2:2 - L

Example 7. Consider now the linear vector field defined by

^ (2.12)
X2 = —3:2

The set of points {xi,X2) € R^ that can reach a point (2/1,2/2) 72,-definable set Y

following a trajectory solution of (2.12) is definable in P^xp- That is Pre{Y) = {{xi^X2) €
R^ I i/>(a:i,a;2)} where

^>(3^1,2^2) = 32/1 32/2 3t: <^(2/1,2/2) At > OA2/1 = 2;ie '̂A2/2 = 2:26 '

2.3.3 Decidability and Quantifier Elimination

Every model defines a theory as the set ofall sentences which hold in the model. We

denote by Lin(R) the theory defined as the formulas ofVthat aretrueover (R, <,+,—,0,1).
In other words, Lin(R) is the theory oflinear constraints (polyhedra). We denote by OF(R)
the theory obtained by interpreting 7^ over (R, -,0,1). In other words, OF(R) is

the set of all true assertions about the set of real numbers when viewed as an ordered

field. The theory OFexp(R) is the extension of the ordered field of real numbers with the
exponentiation.

Given a theory, it is important to determine the sentences of the language that

belong to the theory. Tarski [98] showed the remarkable fact that OF(R) is decidable^ that is

a computational procedure that will decide whether any 72.-sentence (f> is true in the model

(R, 0,1). The decision procedure is a two step procedure:

1. Every formula ^(ii,... ,a:„) is converted to an equivalent quantifier free formula

2^(a;i,...,x„).
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2. There is an algorithm for deciding the truth of quantifier free sentences.

For example, formula (2.9) is equivalent to the quantifier free formula 4xz —y^<0. Then,
given assignments for x,y,z^ one can easily decide whether the quantifier free formula is

true or false. Theories that admit quantifier elimination have the desirable property that

every 7^-definable set V C R" is definable without quantifiers. This immediately shows

that every definable set in OF(K) can be described by the boolean algebra generated by

polynomial functions. Therefore, the definable sets in OF(R) are exactly the semialgebraic

sets. A similar line of reasoning shows that the definable sets in Lin(IR), which also admits

quantifier elimination, are the semilinear sets.

Moreover, the decidability of a theory implies that there is a computational pro

cedure for checking whether Y is empty. In particular, for decidable theories that admit

quantifier elimination, a definable set V = {(i/i, •.. ,2/n) € I ••• »2/n)} = 0 if and

only if the sentence 3yi... 3?/„ : <f>{yi,... ,2/n) is equivalent to the (quantifier-free) formula

false. Furthermore, quantifier elimination allows to compute to compute Pre{Y) of Ex

ample 6. This reachability calculation is illustrated in the following example.

Example 8. Consider the vector field defined in Example 6 and let T = {(1/1,2/2) € |

yi = 4 A2/2 = 3}. Then Pre{Y) = {(a:i,a;2) € R^ | i/»(xi,a;2)}, where

i){xi,X2) = 3t/i 3i/2 : t > 0 A 2/1 = 4 A 2/2 = 3 A yi = xi -f- 2t A 2/2 = a;2 - i

= 3t :t>0 Axi3-2t = 4Ax2 —t = 3

= -(4-a:i) = 2(3-a;2)

= rci -h 2x2 —10 = 0 A X2 —3 > 0.

Tarski's result, even though spectacular, is far from being efiicient computation

ally. More recent approaches to quantifier elimination are based on cylindrical algebraic

decomposition techniques [10, 110]. This has resulted in meaningful computational tools

that perform quantifier elimination, like Redlog [38] and Qepcad [30].

Note that in Example 8, the set Pre{Y) is an 7^-definable set, and by the decid

ability of OF(R), the formula tj) is equivalent to a quantifier free formula. If we are to use the

same approach for Example 7, we immediately run into difficulty as the corresponding for

mula for Pre(y) is definable in OFexp(IR)- Tarski envisioned an extension of his decidability

result for OF(R) to the theory of reals with exponentiation OFexp(IR). Such an extension
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is of great interest to control theory, as the exponential function allows us to describe the

flows of linear vector flelds.

Though it is not known whether OFexp(K) is decidable, it hasbeen shown in [105]

that the following formula

y > 0 A3w{wy = x Az = ye^)

isnot equivalent to a quantifier-free 7?.exp-formula. In other words, OFexp(R) does notadmit
quantifier elimination. Even ifquantifiers could beeliminated, there isnoobvious algorithm

for deciding quantifier-free sentences in T^expi like

Deciding whether such sentences are true depends on whether there are no surprising ex
ponential algebraic relations holding over the integers. It is known, that if the famous
Schanuel's conjecture in number theory holds, then there are no unexpected exponential-

algebraic relationships over the integers. Infact, it has been shown in[73], that ifSchanuel's
conjecture is true, then the theory OFexp(K) is decidable!

Until this issueis resolved^, in Chapter 4, weidentify several subsets of 7?«xp where

quantifiers can be eliminated. This allows us to perform reachability calculation for classes
of linear vector fields.

^Hopefully this will take less than Fermat's Last Theorem!
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Computer aided verification is one of the main, formal approaches for the analysis

of hybrid systems. In the verification community, hybrid systems are modeled as hybrid

automata where differential equations or inclusions exist in each discrete state of a finite

state machine. Transitions from one discrete state to another are triggered by guards on

the variables of the system. An example of a hybrid automaton is shown in Figure 3.1.

Given a desired specification for a hybrid automaton, such as satisfying certain reachability

properties, verification algorithms check whether the system indeed satisfies the desired

specification by exactly computing the reachable states of the system. A very important

issue in computer aided verification is the decidability of the resulting algorithms.

The state of the art in the verification of hybrid systems is that the reachability

problem for initialized, rectangular hybrid automata is decidable [91]. Rectangular hybrid

automata are automata where in each discrete location the continuous dynamics are de

scribed by decoupled, constant, rectangular differential inclusions. Thus, the time derivative

of each continuous variable must belong to a constant interval of the form [a,6] C R, as

shown in Figure 3.1. Furthermore, checking properties on various relaxations of the above

hybrid automaton model have been shown to be undecidable [48]. Therefore, initialized,

rectangular hybrid automata lie on the boundary between decidability and undecidability.

However, it has been recognized, mainly in the control community which is used to more

sophisticated dynamical models, that the expressive power offered by a rectangular hybrid
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Figure 3.1: Rectangular hybrid automaton

automaton is limited.

In an effort to expand the applicability of the abovementioned decidability results,

it is natural to characterize more general hybrid systems that can be transformed to initial

ly^ ized rectangular automata. Such a characterization would be useful as it could capture the
modeling frontier of the known decidability frontier. Along this direction, in this chapter,

we focus on the following, continuous version of this problem.

Problem 3.1 (Straightening Out Rectangular Inclusions). Under what conditions can

a coupled, rectangular differential inclusion of the form,

Xi € [/l (2:1, •••, flJn) j (3:1 ?•••j®n)]

^ [fn{xi,.'. ,Xn)i9n{Xli ••' jXfi)^

where x = [xi,..., a;„]^ £U QW, /i,... ,/n,Pi, ••• smooth maps from U to R, and

for each 1 <i <n and for all x €U, gi{x) > fi{x), be converted by a smooth coordinate

change z = ^{x) to a decoupled, constant, rectangular inclusion of the form

zi G [oi,&i]

^ [®TH ^n]

where ai,bi are real constants for all 1 <i <n?

It should be noted that solving Problem 3.1 focuses only on the continuous part of

transforming a general hybrid automaton to a rectangular automaton. In general, one must
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Z=<D(X)

Figure 3.2: Straightening the flow of a vector field

also transform the maps associated with the discrete transitions as well. In addition, the

only parameters allowed in the description of a rectangular hybrid automaton are rational

numbers, as only rational numbers can be symbolically represented and manipulated by

computers. Therefore, in general, one must restrict the class of coordinate changes to

ensure that rational numbers are being mapped to rational numbers. Even though Problem

3.1 does not consider these issues, it will be shown that even this relaxed version of the

problem gives rise to quite restrictive conditions.

In order to derive necessary and sufficient conditions for the solution of Prob

lem 3.1, two versions of the welt known straightening out theorem for differential equations

are used. In the next section, these classic results are reviewed, and in Section 3.2 they are

used for solving Problem 3.1.

3.1 Straightening Out Differential Equations

Given any vector field on a manifold, then away from equilibria, there exists a

local change of coordinates which transforms the flow of the vector field to straight lines.

Theorem 3.2 (Straightening Out Theorem). Let X he a smooth vector field on man

ifold M with X{p) ^ 0 at some p £ M. Then there exists a coordinate chart (U,z) =

(C/, zi,..., 2r„) of p such that on U vector field X is expressed as

X =
dzi

(3.1)
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Therefore given a diiferential equation of the form

i = f(x)

where x G K", and / : R" —> R" is smooth, then away from equilibria, f{x) ^ 0, there

exists a local change of coordinates z = ^{x) such that in the z coordinates the diiferential

equation is expressed as

ii = 1 Z2 = 0 ... Zn = 0 (3.2)

An intuitive, planar explanation of this remarkable theorem is shown in Figure 3.2.

Assume without loss of generality that xq is at the origin of the (xi,X2) coordinate system.

Integrating vector field / in a neighborhood of xq results in foliating the state space by

integral curves. Each point x in a neighborhood of xq can be then uniquely characterized

by the unique leaf of the foliation to which it belongs, and the time it takes for the integral

curve to reach the point from the X2 axis. The derivative of the coordinate which describes

the leaf of the foliation is zero since the leaf is invariant under the fiow. The derivative of

the coordinate which measures time is simply one. Therefore the desired difieomorphism

is simply the time parameterization of the integral curves {z\) along with the leaves of the

resulting foliation (^2, ••• ,Zn) which is induced by integrating the system. Since obtaining

the desired diffeomorphism involves explicit integration of the differential equation, the

straightening out theorem is a local and non-constructive result. Constructive cases are

feasible if the vector field can be integrated analytically. A complete proof of this theorem

can be found in most differential geometry books like [1, 96].

In the case where many vector fields must be straightened out by the same change

of coordinates, then the following theorem is useful. It can be consideredas a generalization

of Theorem 3.2 for multiple vector fields.

Theorem 3.3 (Straightening Out Multiple Vector Fields). LetXi^... ^Xk hek smooth,

linearly independent vectorfields in a neighborhood of p £ M satisfying

[Xi,Xj] = 0 l<ij<k (3.3)

Then there exists a coordinate chart {U,z) = (U,zi,... tZn) such that on U we have for

l<i<k

Xi =f- (3.4)
dzi
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Therefore given n differential equations of the form

X = fi(x)

where 1 < i < n, x € R" and fi : R" —> R" are smooth, then at any xq 6 R" where

the vectors {/t(a:o)}"=i is a linearly independent set^, and the Lie bracket conditions hold,
there exists a local change of coordinates z = ^(x) such that in the z coordinates the i-th

differential equation is expressed as

ii = 0 it = 1 Zft — 0 (3.5)

Like the Flow Box Theorem, Theorem 3.3 is also local and non-constructive. The Lie bracket

condition, which simply says that the flows of the vector fields commute, is necessary in

order for the change of coordinates to be well defined. More important though, in the new

coordinates, the vector fields in addition to being strsiightened out are also decoupled.

3.2 Straightening Out Differential Inclusions

A differential inclusion on R" is defined as

X 6 F(a;) (3.6)

where F is a map which at each x G R" assigns a subset of TxR". Prom now on, we focus

on rectangular differential inclusions of the form

€ [/i(a:i,...,x„),^i(xi,...,x„)]

(3.7)

^ [/ti(®1 )•••>̂ n)j Pn(^l j•••)^n)]

where the derivative of each coordinate lies in an interval. A more convenient representation

of rectangular inclusion (3.7) is given by the following expression

xi

X = e F{x) = Fi(x) + F2(x) + 1- F„(x) (3.8)

Xfi

^Note that linear independence at xo requires that xo is not an equilibrium of any of the n vector fields.
By smoothness, the linear independence condition extends to a neighborhood of xo
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Fi{x) = CO <

f

1

o

'

..o

/tW > 9i(x)

1

•o
•

1

•o
•

. =co{/i(i)ei, 9i(x)ei}
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(3.9)

where co{pi,p2} stands for the convex hull of vectors pi and p2j and ei,...,en is the

standard orthonormal basis for K".

Given a smooth change of coordinates $ : K" —R" and differential inclusion

(3.6), we can naturally push forward the differential inclusion by pointwise assigning to each

z = $(a;), the push forward of all tangent vectors belonging in F{x). Thus

ze^.(F{x)) (3.10)

is the differential inclusion resulting from the change of coordinates. We can now proceed

to the main theorem.

Theorem 3.4 (Straightening Coupled Rectangular Inclusions). Consider the cou

pled, rectangular differential inclusion in R",

xi € [/i(a;i,...,a;„),pi(xi,...,a;„)]

Xfi G [/n(®l 1••• j®n)} •••>̂ n)]

(3.11)

where x = [rci,... ,x„]^ eU CW, /i, •. •,/n,pi, •••,Pn are smooth maps from U to R,

and for each i and for all x £ U we have gi(x) > fi(x). Then there exists a local change

of coordinates z = ^(x) on U such that in the new coordinates the differential inclusion is

expressed as

z\ £ [ai,6i]

^ [®Tu ^n]

if and only if for all x £U and for all 1 < i, j < n,

[fi{x)ei,gj{x)ejj=0

(3.12)

(3.13)



[fi{x)ei , fj(x)ej^ =0
and for alll <i<n andfor all x £U there exist ki GR, such that either

9i(x) = kifi(x) or fi(x) = kiQiix)
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(3.14)

(3.15)

Proof. Before we begin with the proof, we remark that conditions (3.13,3.14,3.15) contain

some redundancy. However, a minimal set of conditions would be notationally complicated.

(Necessity) Consider rectangular inclusion (3.7) along with it's useful representa

tion (3.8,3.9). Note that for i j, any vector in i^(a;) is linearly independent from any

vector in Fj{x). Performing the change of coordinates z = ^{x) results in

i G $,(F(x))

= $.(Fi(x)-i-F2(a:) + ... + F„(a:))

By the linearity of we have that

i e $.(Fi(rr)) + $,(F2(a;)) + ... + $.(F„(4)

(3.16)

(3.17)

Since is pointwise an isomorphism, we retain the property that any vector from $»(i^ (a;))

is linearly independent from any vector in $»(Fj(a:)) for i j.

Now, by assumption, the change of coordinates results in inclusion (3.12) which is

also expressed as

zi

z = E Z — .Zi -f ^2 + • •• + Zjfi

where Zi is the constant set

Zi = CO <

r

1 ..0

1 ..0
•

>

Oi j bi

1 0••
•

1 0"
•

j

>= CO {aiCi, hiCi]

(3.18)

(3.19)

Note again that for i ^ j, any vector from Zi is linearly independent from any vector in Zj.

By assumption we then have that

i G- ^.(Fi(x)) + ^^{F2{x)) + ... + <^»(F„(a;)) = Zi + Z2 + •••+ Z„ (3.20)
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Since for all i ^ j, vectors in $*(Fi(a;)) (also Zi) are linearly independent from vectors in

(respectively Zj) then (3.20) requires that for each i there exists some ji such

that <>«(F, (x)) = Zj^. Therefore, up to a permutation of the indices, the sets $«(Fi(a:)) are

equal to the sets Zi.

In general, for linear map A and vectors pi,p2 the following property of convex

hulls

Aco{pi , P2} = c,o{Api , i4p2} (3.21)

can be easily checked. By applying this property on (3.17,3.9) we obtain that

^^{Fi(x)) = {co {fi{x)ei , gi{x)ei})

= co{$* (/t(a:)ei) , $» (pi(a;)e,)} (3.22)

The above calculations essentially show that in order to push forward a rectangular differ

ential inclusion, one only needs to push forward the finite number of vector fields that are

needed to define the rectangular set of tangent vectors.

But since ^^{Fi{x)) = Zj^, condition (3.22) results in

co{^,(/i(a;)ei) , ^♦(Pi(r)ei)} = co{aj,.ej. , (3.23)

which means that either

and {9i{x)ei) = bj^ej. (3.24)

or

<^»(/i(a^)et) = and {9i(x)ei) = aj^ej, (3.25)

Assume without loss of generality that the first case holds (equations (3.24)). Then for all

0 < < n,

O, (^fi(x)ei ,9Mei\) = {fi{x)ei), (9i{x)ei) ]
= =0 (3.26)

which results in the necessary conditions

[/t(a^)ei , p/(ic)e/j =0 for all 0<ij<n (3.27)
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since is pointwise an isomorphism. In a similar manner one obtains

|̂ /i(x)et , =0 for all 0<ij <n (3.28)

In addition, since 9i{x) > fi{x), if fi{x) 0 we can express gi{x) as a nonlinear function of

fi{x) by pt(x) = ki(x)fi(x) (if fi{x) = 0 then express fi(x) as gj{x) multiplied by zero and

proceed in the same way). Then

{ki{x)fi(x)ei)

= ki{x)^^ (fi{x)ei) = ki(x)aj.eji (3.29)

must hold for all x G ?/. Thus ki{x) must be constant and gi{x) must be a constant multiple

of fi(x) for all X G C/. Note that for each i either /i(x) or px(x) can be zero (but not both

since gi{x) > fi{x)). However, if fi{x) or gi(x) is zero at some point xq, say gi{xo) = 0 and

/t(xo) 0, then smoothness and the fact that gi{x) must be a constant multiple of /,(x)

for all X G 17, force Pi(x) to be identically zero on U.

(Sufficiency) Consider conditions (3.13,3.14,3.15) amd assume without loss of gen

erality that for all«, /j(x) ^ 0. (if fi^ = 0 for some io, then pick gi^ which must be nonzero

and proceed in a similar way). Then, the set of vector fields

(3.30)

satisfies the conditions of Theorem 3.3. Thus, there exists a diffeomorphism ^ = $(x) such

that

{fi(x)ei) = a (3.31)

Now pushing forward the rectangular inclusion

X G Fi(x) + F2(x) + ...-|-Fn(x) (3.32)

by results in

i G ^*{F{x))

= $.{/'i{x) + F2(a:) + --- + Fn(a:))

= $.(F,(x)) + $.(F2{x)) + ---+ $.(/•„(!)) (3.33)
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But since for each i and for all x we have gi(x) = kifi(x) for some constant ki (positive,

negative or zero), we obtain

(co{/i(a;)ei, kifi(x)ei})

= co{^^{fi(x)ei) , ^*{kifi{x)ei)}

= co{ei,/:iei} (3.34)

and thus in the z coordinates we obtain the inclusion

zi e [l,A:i]

^ Note that some of the ki may be zero or even negative in which case the corresponding

intervals must be flipped. This completes the proof. •

Note that the necessarypart of the proofof Theorem 3.4, depends on the fact that

gi{x) is strictlygreater than fi{x) for all i. Therefore Theorem 3.4 is not a generalization of

the straightening out theorem for difierential equations. Even though straightening out a

differential equation is always possible away from an equilibrium, straightening out a rect-

anguleur difierential inclusion, requires straightening out many vector fields, while using the

same change ofcoordinates. Thisplaces restrictions on the types ofrectangular difierential

inclusions that can be straightened out. The following example shows how restrictive this

class is.

Example 9. Consider the coupled difierential inclusion

Xl e [fl(xi,X2),gi(xi,X2)]

X2 € lf2(xi^X2),g2{xi,X2)]

where we have fi{xi,X2) ^ 0 and f2{xi,X2) ^ 0 on some set Cf C . Then conditions

(3.15) require that gi(xuX2) is a constant multiple of /t(a;i,a;2)- Thus necessary conditions

(3.13,3.14) reduce to simply checking whether

[/i(a;i,a:2)ei , /2(a;i,2:2)62] =0 (3.35)



as all other Lie brackets are guaranteed to be zero if the above one is. But

[fi{^i,X2)ei , f2{xi,X2)e2] = 0

But since fij^O and /2 ^ 0 on i7, this requires

dfi
= 0

df2
dx2 " dx\

which means that it is necessary for the rectangular inclusion to be already decoupled!

The above example suggests that the conditions of Theorem 3.4 axe quite re

strictive. In the case that fi{x) and gi{x) depend on Xi alone, the Lie bracket conditions

(3.13,3.14) are trivially satisfied. As a corollary of Theorem 3.4, we obtain the following

straightening out theorem for decoupled, rectangular inclusions.

Corollary 3.5 (Straightening Out Decoupled Inclusions). Consider the scalar dif

ferential inclusion

= 0

i e [/(a:)>S(s)]

^/2
= 0
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(3.36)

(3.37)

(3.38)

with X £ U CR, f,g : U —V R smooth, and assume that for allx £U we have g{x) > f{x).

Then there exists a local change of coordinates z = ^{x) such that in the new coordinates

the differential inclusion is expressed as

z € [a, 6] (3.39)

if and only if for all x £ U either g{x) is a constant multiple of f{x) 5^ 0 or f(x) is a

constant multiple of g(x) 0.

As a corollary of Corollary 3.5 we obtain

Corollary 3.6. The following scalar inclusions can be locally transformed to constant rect

angular differential inclusions:

• Linear Differential Inclusions : x G [o,b]x, x ^0

• Nonlinear Differential Inclusions : x 6 [0,/(a;)], f(x) >0

• Nonlinear Differential Inclusions : x G [/(x),0], f{x) < 0
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• Nonlinear Differential Inclusions : x G [a,6]/(x), f{x)^0

Corollaries 3.5 and 3.6 show that scalar rectangular differential inclusions cannot

be straightened out unless one boundary vector field, g(x), is a constant multiple of the

other, f(x). This result is intuitively clear. By Theorem 3.2, any vector field, say /(r),

can be straightened out away from singularities. But if the same diffeomorphism must also

straighten the flows of the other vector field, p(a:), then p(x) must be a constant multiple

of f{x). But if g{x) is a constant multiple of /(a;), then after factorization, we obtain that

a differential inclusion of the form x € [a,6]/(a;) is the limiting case of an inclusion which

can be straightened out.

Example 10. Consider the following simpledifferential inclusion

X € [3,5]x

on t/ = {a; GM1X> 0}. Then z = Inx satisfies

5 In X . 1
z = XG —[3,5]x = [3,5]

dx X

and the inclusion is straightened out on U.

3.3 Conclusions

Thegoal of this chapter was to potentially expand the applicability ofthe known

decidability results, for computationally verifying properties of hybrid systems. However,

given the restrictive nature of the necessary conditions, Theorem 3.4 presents a serious
modeling barrier in the battle against decidability. This leaves control theorists unsatisfied
as the modeling power ofdecidable hybrid systems does not capture meaningful continuous
dynamics.

The next two chapters present an effort to computationally analyze hybrid sys

tems with more complicated dynamics. Even though the undecidability results in [48] in
conjunction with the results of this chapter, restrict hybrid systems to very simple continu

ous dynamics, we shall escape this undecidability frontier byrestricting the type ofdiscrete
transitions etllowed in our model. This will give us a lot of room to maneuver on the con

tinuous side, and will allow us to capture classes of linear vector fields in each discrete

location.
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Chapter 4

Computable Hybrid Systems

Verification algorithms perform reachability computations and check whether tra

jectories of the hybrid system can reach certain undesirable regions of the state space.

When such computational algorithms are applied to systems with infinite state spaces, they

are in danger of never terminating. This makes the issue of decidability^ which guarantees

termination of the algorithm, a very important one.

The main tool for obtaining classes of hybrid system for which the reachability

problem is decidable, is given by the concept of bisimulation [79]. Bisimulations are simply

reachability preserving quotient systems. If an infinite state hybrid system has a finite state

bisimulation, then checking reachability for the hybrid system can be equivalently performed

on the finite, discrete, quotient graph. Since the quotient graph is finite, the algorithm will

terminate. If in addition, each step of the algorithm can be encoded and implemented by

a computer program, then the problem is decidable. Therefore, in order to obtain classes

of hybrid systems with a decidable reachability problem, we must answer the following two

questions:

• Step 1 : When does a hybrid system admit a finite bisimulation?

• Step 2 : If a finite bisimulation exists, can we construct it?

Up to now, answering the above two questions has been done simultaneously by

explicitly constructing a partition which is checked to be a bisimulation. This approach has

resulted in timed automata [3], multirate automata [2], and initialized rectangular automata

(48, 91].
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In this chapter we shall deal with the above questions separately. In particular,

we first answer the question regarding the existence of finite bisimulations. To answer the

finiteness question, we need to identify classes of sets and fiows with globally, finite inter

section properties. This is provided by the concept of o-minimal theories in mathematical

logic [106]. Using this concept, we introduce the notion of o-minimal hybrid systems, and

prove that o-minimal hybrid systems always admit finite bisimulations. We then list var

ious o-minimal hybrid systems which capture versions of most hybrid systems known to

admit finite bisimulations. Moreover, we present hybrid systems with much more complex

dynamics which are definable in recently discovered o-minimal theories and thus alsoadmit

finite bisimulations.

In order to construct bisimulations, we need to symbolically represent, and ma

nipulate sets. The main computational tool for symbolic set manipulation in this context

is quantifier elimination. Since quantifier elimination is possible for the theory of reals

with addition and multiplication [98], we either find or transform subclasses of o-minimal

hybrid systems which are definable in this theory. This immediately leads to an extension

of the decidability firontier that captures classes of hybrid systems with linearvector fields

in each discrete location. The importance of this result is immediately clear given the wide

applicability of linear systems in control theory.

In order to get to this desired goal, in the next section we review the well known

notion of bisimulation of transition systems.

4.1 Bisimulations of Transition Systems

TVansition systems should be thought of as abstract graph models, which do not

necessarily consist of a finite number of states. In fact, transition systems are abstract

enough to include both finite state machines and differential equations can be thought of
as transition systems.

Definition 4.1 (TVansition Systems). A transition system T = (Q,S,-)^,QojQf) con

sists of:

• A set Q of states

• An alphabet E of events,



• A transition relation —>C Q x E x Q,

• A set Qo QQ of initial states,

• A set Qf C Q of final states.

It is customary to denote a transition (91, <7,92) as A 92- The transition

system is finite if the cardinality of Q is finite, and it is infinite otherwise. The transition

system T is deadlock free, if for any state q G Q, there exists a state 9' G Q and an event

a GE such that q A q'.

Example 11. To see the generality of transition systems, consider the simple differential

equation x = f{x) where re G R". The difierential equation defines a transition system

whose state space is R", has event alphabet t GE = R, and the transition relation rci A rc2
means that the solution of the differential equation from xi reaches rc2 in time t.

A region is a subset P C Q. Given cr G E we define two regions, Prea{P) and

Posta{P) of a region P as

Prec(P) = {q eQ \ 3p e P and g A p} (4.1)

Post(j(P) = {gGQ I3p GP andp A q} (4.2)

Thus Prea(P) is the set of states that can reach P with a single cr event. Similarly, Poster (P)

is the set of states that can be reached from states in P with a single a event. The set of

states that can reach P, or can be reached by P in one step for all a events is

Pre{P) = {gGQ I 3(7 GE 3p GP and g A p} (4.3)

Post(P) = {gGQ I 30- GE 3p GP andp A g} (4.4)

The set of states that are reachable from P in two steps is simply Post{Post{P)) and is

denoted PosP(P). In general, Post*{P) consists of states that are reachable from P in i

steps. Similar definitions hold for Pre^(P). Then

Pre*(P) = IJPre'(P) (4.5)
t€N

Post'iP) = IJ Post'(P) (4.6)
ieN

are simply the set of states that backward and forward reachable from P. A problem that

is of great interest for transition systems is the reachability problem.

45
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Problem 4.2 (Reachability Problem). Given a transition systemT, is a state qj GQf

reachable from a state Qo € Qo by a sequence of transitions?

In other words, we want to check whether Post*{Qo) HQf i=- 0 or, similarly,

whether Pre*{QF) HQo 7^ 0- The reachability problem is also referred to as the safety

verification problem. The set of final states encode an undesirable or unsafe region of the

state space. The reachability problem is tackled using either of the following reachability

algorithms.

Forward Reachability Algorithm

set R := Qo

while true do

if R n Qf 7^ 0 return unsafe ; stop

if Post{R) C R return safe ; stop

else R := jR U Post(R)

end while

Backward Reachability Algorithm

set R := Qf

while true do

if R n Qo ^ 0 return unsafe ; stop

if Pre(R) C R return safe ; stop

else R := R U Pre{R)

end while

If the state space of the transition system is finite, then both algorithms are guar

anteed to terminate, since in the worst case, both algorithms can only add a finite number

of states. If the state space is infinite, then there is, in general, no guarantee that the above

reachability computations will terminate after a finite munber of steps. In fact, it may be

the case that the forward reachability algorithm terminates and the backward reachability
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algorithm does not, and vice versa. One must therefore use both algorithms for transition
systems for which we have no termination guarantees. Our goal, however, is to find classes
of infinite state transition systems for which we can compute the reachable space in a finite

number of steps. This is accomplished by reducing the infinite state transition system to

a finite state quotient system with equivalent reachability properties. In order to achieve

this, the notion of a quotient transition system needs to be defined.

Given an equivalence relation ~C Q x Q on the state space, the definition of

quotient transition system T/ ~ is natural. Let Qf ^ denote the quotient space. For

a region P, we denote by P/ ~ the collection of all equivalence classes which intersect

P. Given an equivalence relation on Q, we call a set a ~-block if it is a union of

equivalence classes. The transition relation on the quotient space is defined as follows:

for QuQ2 ^ Qi Q2 iff there exist GQi and 92 ^ Q2 such that qi A 92- The
quotient transition system is then T/~= {Q/E, —Qo/~> QfI'^)-

Definition 4.3 (Bisimulation). Let T = (Q,S,Qo, Qf) be a transition system. The

equivalence relation is a bisimulation ofTiff.

• Qo^Qf are blocks

• For all o and all '^-blocks P, Prea{P) is a '^-block.

If ~ induces a bisimulation, then transition systems T and T/ ^ are called bisimilar. A

bisimulation is called finite if the quotient space is finite.

Therefore, the crucial property of bisimulations is that the intersection of Pre(f(P)

and Q, for equivalence classes P, Q, and cr 6 S, is either the empty set or all of Q.

Alternatively, if ~ is a bisimulation, it can be easily shown that q then

1. p G Qf iff 9 ^ Qf-> and p G Qo iff 9 € Qo

2. if p A p' then there exists q' such that qq' and p' ^ q'

The above characterization of bisimulations leads to the following theorem.

Theorem 4.4 (Reachability Equivalence). LetT = (Q,E, —>,Qo»Qf) andT/'^= (Qf^

Qf! ) be bisimilar transition systems. Then the reachability problems for

T and Tf ~ are equivalent.
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Proof. Let po ^ pi ^ ^ pn he a sequence of transitions of T with po G Qo and

Pn ^ Qf' Let h : Q —y Q/ be the natural map that takes each state to the equivalence
class it belongs. Then by the definition ofT/ h{po) ^ h{pi) ^ ^ h{pn) is a sequence
of transitions of T/ ~ from h{po) GQo/ to f^iPn) ^ Qf/

Conversely, let Pq ^ -Pi ^ ^ -Pn be a sequence of transitions ofT/ ^ where

PojPirPn are equivalence classes, and Po GQo/ Pn ^ Qf/ Since Pq ^ Pi, then
by the definition ofT/ there exist po GPq and pi GPi such that po -4 pi. Similarly,
since Pi ^ P2, then by the definition of T/ there exists ri G Pi and r2 G P2 such that

ri ^ r2. But since pi ri, ri ^ r2 and is a bisimulation, then there exists P2 7*2

such that Pi ^ P2. Therefore, po ^ pi ^ P2. By continuing the same process, there exist

Po € Po> Pi € Pi, ..., Pn GPn such that Po ^ Pi ^ ^ pn, and po GQo, Pn € Qf- •

Therefore, checking reachability propertieson the bisimilartransition systemT/ ~

is equivalent to checking properties of the original transition system T. This has two

immediate applications. If T has a finite state space, then reachability algorithm are always

guaranteed of terminating. For finite, transition systems, bisimulations are very useful in

reducing the complexity of reachability verification algorithms where the state space Q is

finite but very large.

If, however, T has an infinite state space, then reachability algorithms are not

guaranteed to terminate. For such systems, if we can find a bisimilar but finite transition

system r/~, thenchecking reachability ofT canbeequivalently done onT/ for which the

reachability algorithm is guaranteed to terminate. Therefore, bisimulations are the main

tool forobtainingclasses ofhybridsystems with a decidable reachability problem. Note that

even though for finite transition systems, a finite bisimulation always exists (equality), this

is not the case for infinite transition systems. This philosophy has successfully resulted in

various decidable classes of hybrid systems, like timed automata [3], initialized rectangular

automata [91], and linear hybrid automata [45].

A conceptual algorithm that computes a bisimilarity partition of the state space

starts with a given transition system T, and computes increasingly finer partitions of the

state space Q. If the algorithm terminates, then the resulting quotient transition system is

a finite bisimulation.

Bisimulation Algorithm for IVansition Systems
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set Q/~= {Qo, Qfj Q \ {Qo UQf)}

while 3 P,P' £ Q/^ and a 6 E such that 0 ^ P n Pre„{P') ^ P do

set Pi = P n Prea(P'), P2 = P \ Pre^iP')

refine Q/~= (Q/~ \{P}) U{Pi,P2}

end while

Therefore, givenan infinite transition system T, the bisimulation algorithm results,

if it terminates, in a finite, bisimilar transition system T/ We can then apply either the

forward or backward reachability algorithm on T/ which are guargmteed to terminate.

It is easy to show however, that if T has a finite bisimulation, then either forward or

backward reachability algorithms on T will terminate. Therefore, instead of constructing

the bisimulation partition, we can simply compute the reachable set of the original transition

system. Therefore, the above bisimulation algorithm is used mainly as a theoretical device

for obtaining classes of transition systems with a decidable reachability problem. The actual

reachability -calculation, in practice, is usually performed with the backward or forward

reachability algorithms.

In addition to showing that the bisimulation algorithm terminates, decidability

requires that each step of the algorithm is computable. This means that we must be able

to represent sets symbolically, perform boolean operations, check emptiness of a set, and

compute Prea{P) for any a G E. In the next sections, the above ideas will be applied for

a class of transition systems generated by hybrid systems.

4.2 Bisimulations of Hybrid Systems

We focus on transition systems generated by the following class of hybrid systems.

Even though the following model is rather abstract, we shall eventually introduce enough

structure on the model in order to mahe it amenable to analysis.

Definition 4.5 (Hybrid System). A hybrid system H = (X, A'o, A'F,P,P,i',G,P) con

sists of

• X = Xd Xc is the state space with Xd = {91, ••• i9n} Xc a manifold.

• Xq C X is the set of initial states
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• Xp QX is the set of final states

• F : X —> TXc assigns to each discrete location q € Xp a vector field F(q^ •)

• E C Xp x Xp is the set of discrete transitions

• I: Xp —> 2^^ assigns to each location a set I{q) C Xc called the invariant.

• G : E —> Xp X2^^ assigns to e = (91,92) ^ E a guard of the form {91} x U,

U C I(q,).

• R : E —> Xp X 2^^ assigns to e = (91,92) E E a reset of the form {92} x V,

V C 7(92).

Trajectories of the hybrid system H originate at any {q,x) € Xq and consist of

^ either continuous evolutions or discrete jumps. Continuous trajectories keep the discrete

part of the state constant, and the continuous part evolves according to the continuous

flow F{q, •) as long as the flow remains inside the invariant set 7(9). If the flow exits 7(9),

then a discrete transition is forced. If, during the continuous evolution, a state (9,2;) €

G{e) is reached for some e ^ E, then discrete transition e is enabled. The hybrid system

may then instantaneously jump from (9,x) to any {q',x') G 72(e) and the system then

evolves according to the flow ^(9', •)• Notice that even though the continuous evolution is

deterministic, the discrete evolution may be nondeterministic. Finally, we assume that our

hybrid system model is non-blocking, that is from every state either a continuous evolution

or a discrete transition is possible.

Example 12. A typical hybrid system is shown in Figure 4.1. The state space is {91,92} x

The initial states are of the form {91} x {(a;,j/) G R^ | 0 < x < 1,1 < y < 2}.

The discrete dynamics consists of two transitions ei = (91,92) and 62 = (92,91)- Within

location 91, the continuous variables x and y evolve according to a difierential equation

as long as (x,y) G 7(91) = {(x,y) G R^ | x < 5}. Once x > 5, discrete transition ei

is forced and x,y are nondeterministically reset to values in fixed sets. The system then

flows according to the flow associated with 92- The evolution from that point on is similar.

A typical reachability problem asks whether the system will reach the set of final states

{92} X{(x,y) GR2 IX< -5}.



0<X<1

1 <Y<2

X>5

Y<-10 ^ X=K) Y=1

Figure 4.1: A typical hybrid automaton
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Every hybrid system H = (X, Xq, Xp, F, E, /, G, R) generates a transition system

T = (Q,S,-)>,Qo>Qf) by setting Q = X, Qo = Xq, Qf - Xp, S = EU {r}, and

->= (UeeE where

Discrete Transitions (g,x) A (q\x') for e € £? iff (q-,x) GG(e) and (q'-,x') GR(e)

Continuous Transitions {qi^xi) (92>2:2) iff 91 = 92 and there exists 5 > 0 and a

curve a; : [0,<5] —> M with a:(0) = xi, x{6) = X2 and for all t G [0, J] it satisfies

x' = F{qi,x{t)) and a:(t) G /(91).

The continuous r transitions are time-abstract transitions, in the sense that the time it

takes to reach one state from another is ignored. Having defined the continuous and discrete

transitions A and A allows us to formally define PreriP) and Pree(P) for e GE and any

region PCX using (4.1).

Note that the discrete transitions allowed in our model are memoryless, constant,

but possibly set valued. Every time a discrete transition is taken, the whole state must be

reinitialized. The state is not allowed, for example, to remain the same after the discrete

transition is taken. In other words, identity (or other nonconstant) maps are not allowed as

reset maps. Because of this restriction. Definition 4.5 does not capture all possible discrete

dynamics allowed in timed and rectangular automata [2, 3, 91]. In general, in rectangular

automata, the continuous dynamics are decoupled and each component of the continuous

part of the state may be either reset nondeterministically to an interval or remain the same.

If, however, the dynamics of a particular component changes then the reset map cannot be

the identity map on that component. As will be shown, restricting the reset maps will allow

us to capture much more complex and coupled dynamics than [2, 3, 91] without violating
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the undecidability results of [48].

To show that the reachability problem for a class of hybrid systems defined in

Definition 4.5 is decidable, we must show that the bisimulation algorithm will terminate

after a finite number of steps. The memoryless structure of the discrete transitions allowed

in our hybrid system model results in

Pree(P) = ^
0 ifPnie(e) = 0

(4.7)
G{e) ifPnP(e)7^0

for all discrete transitions e G J? and regions P. Therefore, if the sets R{e) and G{e) are

blocks of any partition of the state space, then no partition refinement is necessary in the

bisimulation algorithm dueto anydiscrete transitions e E E. Thisfact, in a sense, decouples

the continuous and discrete components of the hybrid system. In turn, this implies that

the initial partition in the bisimulation algorithmshould contadn the invariants, guards and

reset sets, in addition to the initial and final sets. This allows us to carry out the algorithm

independently for each discrete location.

More precisely, given any region PCX, and q E Xp, define the set Pq = {x E

Xc '• {q, x) E P} as the continuous projection of the set. For each location q E Xb consider

the finite collection of sets

A, = {Hg), {Xo)„ (Xf),} U{G(e)„ R{e), : e € £} (4.8)

which describes the initial and final states, guards, invariants and resets associated with

location q. Let Sq be the coarsest partition ofXc compatible with the collection Aq, that
is each set in Aq is a union ofsets inSq. Thefinite partitions Sq can be easily computed by
successive intersections between each ofthe sets in Aq and their complements. Define {q, Sq)

to be the set {{q} x P \ P ESq}. The collections (q, Sq) will be the startingpartition of the

bisimulation algorithm. In addition, since by definition PrCriP) applies to regions PCX

but not to its continuous projection A. we define for Y C Xc and discrete state q the

operator Preq(Y) = (Prer({q} ^Y))q. The general bisimulation algorithm for transition

systems then takes the following form for the class of hybrid systems under examination.

Bisimulation Algorithm for Hybrid Systems

set X/^ =\JqiQ^^q)
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for q e Xd

while 3 P,P' 6 Sq such that 0 ^ P n Preq(P') ^ P do

set Pi = P DPreq{P'), P2 = P \ Preq(P')

refine Sq = {Sq \ {P}) U{Pi, P2}

end while

end for

It is clear from the structure of the bisimulation algorithm that, the iteration

is carried out independently for each discrete location. In order for the above algorithm

to terminate, the partition refinement process must terminate for each discrete location

q E Xd' It therefore suffices to look at one discrete state of the hybrid system at a time

and see whether we can construct a finite bisimulation that is consistent with ail relevant

sets of each location q as well as with the continuous fiows of the vector field P(9, •)•

As mentioned before, decidability requires that the above algorithm is computa

tional and the underlying transition must admit a finite bisimulation. We must therefore

resolve the following issues:

• Computability

- Represent sets symbolically,

- Perform set intersection and complementation,

- Check emptiness of sets,

- Compute PrCqiy) of a set Y.

• Finiteness

- Determine whether the algorithm terminates in a finite number of steps.

A natural platform for solving some of the computational issues is provided by mathematical

logic where sets would be represented as formulas of first-order logic. Boolean operation

are natural in logic, and, as noted in Section 2.3, emptiness of a set can be decided in a

decidable theory. Furthermore, Exeunples 6 and 7 hint at the possibility of using quantifier

elimination for computing Preq(P) for a definable set P. However, none of these concepts

allow us to tackle the finiteness issue. The heart of the finiteness problem is illustrated by
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the following example which shows a simple hybrid system which does not admit a finite

bisimulation.

Example 13. Consider the hybrid system with only one discrete location q and let F be

the linear vector field

= -X1+S2

X2 = —Xl — X2

on Assume the partition of R^ consists of the following three sets (see Figure 4.2):

•Pi = {(iCj 0) : 0 < a; < 4}

P2 = {(x,0) : —4 < a: < 0}

P3 = iie\(PiuP2)

The integral curves of F are spirals moving away from the origin. The first iteration of the

algorithm partitions F2 into P4 = P2r\Preq{Pi) = {(x,0) : a;i < x < 0} and P2\Preq{Pi).

Here xi < 0 is the x-coordinate of the first intersection point of the spiral through (4,0) with

P2. The second iteration subdivides Pi into P5 = Pi n Preq{P4) = {(x,0) : 0 < x < X2}

and Pi \ PrcqiPi) where X2 > 0 is the x-coordinate of the next point of intersection of the

spiral with Pi. This process continues indefinitely since the spiral intersects Pi in infinitely

many points, and therefore the algorithm does not terminate.

Prom the above example it is clear that the critical problem is the intersection

of the flow of F{q,') with the sets Sq for a single location q. For example, it is impor

tant that during the partition refinement process, the global intersection of the predecessor

of an equivalence class with any other equivalence class has a finite number of connected

components. Such finite interaction properties are reminiscent of the properties enjoyed by

the classes of sets reviewed in Section 2.2. In the past decade, very recent developments in

mathematics have captured these desirable geometric properties in the firamework of mathe

matical logic. This astonishing connection between geometry and logic is the mathematical

formalism that will allow us to tackle both computational and finiteness issues within a

unified framework.
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Figure 4.2: Bisimulation algorithm does not terminate
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4.3 O-Minimal Theories

Geometric model theory is a very recent and growing area of mathematical logic

that studies the relationship between theories of the reals and properties of their definable

sets. The search for desirable finiteness properties of definable sets has lead to the notion

of o-minimality or order-minimality. While this concept applies to any theory, we only

consider theories over the real numbers.

Definition 4.6 (O-Minimal Theories). A theory of the reals is o-minimal if every de

finable subset of M is a finite union of points and intervals (possibly unbounded).

For example, consider the ^4 = {x € K | p{x) < 0}, where p{x) is a polynomial.

Since any polynomial has a finite number of real roots, the set A can only consist of a finite

number of intervals. O-minimality requires that this property is true even if replace the

polynomial p{x) by any first order formula <^(1), including quantifiers!

The class of o-minimal theories is quite rich. Consider first, the theories Lin(E) and

OF(R), defined in Section 2.3. Since both of these theoriesadmit quantifier elimination [98],

every definable subset of E in Lin(E) is a semilinear set, whereas every definable set E in

OF(E) is a semiaJgebraic set. But then semilinear and semialgebraic sets on the real line can
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only have a finite number of connected components. This immediately shows that Lin(R)

and OF(R) are o-minimal.

The search for new o-minimal theories started by extending OF(R) by restricted

analytic functions. Given a real analytic / in a neighborhood of the cube [—1,1]" C R", let

/: R^ -)• R be the function defined by

fix) = <
f{x) ifx€[-l,l]"

0 otherwise

Function / is a restricted analytic function since it restricts / on a compact cube. The

resulting theory, denoted by OFa„(R) seems quite unnatural. Remarkably, definable sets

in OFan(K) capture the bounded subanalytic sets described in Section 2.2! Furthermore, it

was shown in [35] that OFon(R) is o-minimal.

Therefore, definable sets in o-minimal theories provide a uniform way of capturing

exactly the desirable properties enjoyed by semilinear, semialgebraic, and subanalytic sets.

However, for the purposes of the bisimulation algorithm, we also need well behaved flows

of vector fields. Even though o-minimal theories capture desirable classes of sets, flows of

vector fields require functions that are globally defined. As shown in Example 6, the flow

of the vector field a; = 1 is definable in Lin(R). In general, OF(R) gives us the modeling

power to describe vector fields with polynomial flows. Restricted analytic functions are,

by definition, restricted on a bounded time interval, and therefore do not capture any new

flows of vector fields.

Fortunately, a big breakthrough occurred in [111], whereit wasshownthat OFexp(lK)

is o-minimal. Recall firom Section 2.3 that OFexp(lK) extends OF(R) by the globally defined,

exponential function e®. Globally defined exponential functions allow us to capture flows

of linear vector fields within an o-minimal theory, as shown in Example 7. Furthermore,

in [107], it was shownthat OFexp,on(K), the modelthat extends both OFexp(R) and OFq„(R),

is o-minimal. Table 4.3 summarizes o-minimal theories, along with some examples of sets

and flows that are definable in these theories.

In addition to having desirable finiteness properties, definable sets in o-minimal

structures are free of topological pathologies. Many topological and geometric properties of

o-minimal theories can be found in [106]. In the remainder of this section, we present those

topological properties that are used in subsequent analysis.



Theory Model Definable Sets Definable Flows

Lin(R) (R,-!-, —,<,0,1) Semilinear sets Linear flows

OF(R) (R,-h, —, X, <,0,1) Semialgebraic sets Polynomial flows

(R, X,<, 0,1, {/}) Subanalytic sets Polynomial flows

OFexp(IK) (R,-F,-,x,<,0,l,e®) Semialgebraic sets Exponential flows

OFexp,an(^) (R,-!-,-, x,<,0,l,e®,{/}) Subanalytic sets Exponential fiows

Table 4.1: Definable sets and fiows in o-minimal theories
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Consider a fixed o-minimal theory of the reals, and let definability refer to this

theory. Let / : A —> J5 be a function. The graph of / is defined asT{f) = {{x,f{x)) | x G

A} C A XB. A function / is definable if its graph is a definable set. We can now define

cells as nonempty definable sets of a particularly simple form.

Definition 4.7 (Cells). Cells in IR" are inductively defined as follows:

1. The cells in K are points {c} with c € IR and open intervals (a, 5) with —oo < a <b <

-1-00.

2. Let C C IR" be a cell and let f,g : C —> R be definable continuous functions such

that f < g on C. Then the following are cells in IR""'"^

• (-00,/) = {(a;,r) G C x IR : r < f{x)},

• r(/) = {(xj{x)) I XG C},

• if,9) = {(a;.'') eCxR: f{x) <r< ^(x)} C W+\

• r(5) = {(x,5(x)) I XGC},

• (/,+oo) = {(a;,r) G C x IR : /(x) < r}

• C X R

A more geometric and useful view of cells is as fibers over their projections, as

shown in Figure 4.3. Now recall fi-om Section 2.2 that given a collectionof subanalytic sets,

there exists a stratification (partition) of R", compatible with the collection of the these

sets. The following theorem should be thought of as a generalization of Theorem 2.11 for

all o-minimal theories.

Theorem 4.8 (Cell Decomposition [53]). Given any finite family {Ai,... ,A/} of de

finable subsets ofR" there exists a finite partition ofR" into cells so that each Ai is a union

of such cells.
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Figure 4.3: Inductive definition of cells
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Note that o-minimality is a finiteness condition of definable sets on the real line.

However, o-minimality and the cell decomposition theorem constrain definable sets in IR"

to have an analogous finiteness property.

Theorem 4.9 (Uniform Finiteness). Any definable set has a finite number of connected

components, each of which is a definable set Moreover, if AC xR is definable then there

exists a positive integer N such that for each a: € K" the number of connected components

of Ax —{t £R: {x,t) GA} is less than N.

Therefore, even though each fiber Ax over x has a finite number of connected

components, o-minimalityand cell decomposition provide us with a globallyuniform bound

of connected components that Ax can be partitioned to, independent of x\

Finally, recall fi:om elementary topology that arcwise connected sets are connected.

The converse is not always true, and a classic counterexample is related to the construction

used in Example 5. Fortunately, sets definable in o-minimal theories are free from such

pathologies.

Theorem 4.10 (Connectedness). IfA is definable and connected, then it is arcwise con

nected.

Definable sets in o-minimal theories enjoy many more nice topological properties.

A very nice introduction to their topology can be found in [106].
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4.4 O-Minimal Hybrid Systems

As shown in Example 13, the termination of the bisimulation algorithm critically

depends on whether the intersection of trajectories and sets consists of a finite number of

connected components. If, however, all relevant sets and trajectories are definable in an

o-minimal theory, then such a possibility is avoided. This motivates the following definition.

Definition 4.11 (O-Minimal Hybrid Systems). A hybridsystem, defined in Definition

4.5 as a tuple H = {X,Xo,Xf,F,E,I,G,R), is said to be o-minimal if

• Ac = M"

• for each q € Xd the flow of F{q, •) is complete

• for each q^ Xjy the family of sets

Aq = {I{q)^ (Ao)^, (A/;')^} U{G{e)q, R{e)q : e € E}

and the flow of F{q, •) are definable in the same o-minimal theory of K.

Therefore a hybrid system is called o-minimal if for each discrete location, the

invariants, guards, resets, initial and final conditions, as well as the fiow of the difierential

equation are definable in the same o-minimal theory. Difierent o-minimal theories could be

used in different discrete locations. For example, in one discrete location one can use Lin(E)

to describe polyhedral sets and linear flows, whereas in another location of the same hybrid

system one can use OFexp(lR) to describe semialgebraic sets and flows of some linearvector

fields.

Theorem 4.12 (Finite Bisimulations). Every o-minimal hybrid system admits a finite

bisimulation. Equivalently, the bisimulation algorithm terminates for all o-minimal hybrid

systems.

Proof. We will assume that we are given a fixed o-minimal theory of the reals in which

all relevant objects are definable. Prom now on, definable will mean definable in this fixed

o-minimal theory. We start by applying the cell decomposition theorem on each family

Aq. As mentioned in Section 4.2, the special form of Pree{P) allows us to construct the
bisimulation quotient on each set {9} x Ac separately. Therefore, we assume given a finite



60

partitionV of K" into definable sets and a vector field F whose fiow is definable. Moreover,

we will simply write Pre for Preq.

The outline of the proof is as follows. We first perform an initial finite refinement

V of V which has the property that the intersection of any trajectory with each set has

one connected component. Because of this property we can use a slight variation of the

iterative step of the bisimulation algorithm to construct a finite partition B which is a

further refinement, and satisfies the bisimulation condition, namely, that for any B ^ B,

the set Pre{B) is a finite unionofset in B. This guarantees that the bisimulation algorithm

terminates.

We first notice that if f :R-¥W is continuous, periodic, and not constant, then /

is not definable. Indeed,for such / there is y € K" such that the set R = {x f(x) = y}

consists of an infinite number of isolated points. On the other hand, if / is definable, then

so is i?, but this contradicts o-minimality.

For each x € K", 7x(t) will denote the integral curve of F which passes through

Xat <= 0, That is, 7x(t) = F{jx{t)) and 7x(0) = x. Therefore, $(x,t) = 7x(t) denotes

the flow of F and is definable by hypothesis. Combining this with the comment above we

conclude that for each x € K", 7x(-) is either constant or injective.

We will need the following lemma.

Lemma 4.13. Let F and $(x,t) be as above, and let 7 be an integral curve of F. Define

r = 7m(7) = {7(t) : t € R}. Let S be a definable set and C a connected component of

rniS, Ifto,ti£R are such that 7(to),7(ti) € C, then jit) € C for all to <t<ti.

Proof Since C is definable and connected, it is also arcwise connected. Let /? : [0,1] C

be continuous and such that /0(O) = 7(^0) and /3(1) = 7(ti). If 7 is constant there is

nothing to prove. We can then assume 7 is injective and 7'(7(t)) 7^ 0 for any t. Therefore,

the restriction of 7 to any compact interval [o, 6] is a homeomorphism between [a,6] and

7([a, 6]), If^([0,1]) C 7([o, 6]) then 7"^ oy3 iscontinuous and so 7~^ o/3([0,1]) is an interval
containing to,ti. Therefore, for all t G[to,ti], 7(t) 6 /3([0,1]) C C as desired.

Assume then that /?([0,1]) is not contained in the image under 7 of any finite

interval. Hence there exist a sequence {t„} with |t„| -^00 and 7(tn) ^ "•

By takinga subsequence if necessary we may assume that 7(tn) ^ ^ !])• Therefore,

X = 7(<) for some t G R We will show that this is a contradiction. In a (definable)

neighborhood 5 of x we can make a definable change of coordinates centered at x, so that
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in these coordinates F = In fact, after a translation and rotation (which are definable^)

we can assume that x = 0 and F(0) = Then the desired change of coordinates is given

by

(2/1,..- ,2/n) —^^((0,2/2,... ,2/n),2/l)

Therefore, in that neighborhood all integral curves of F are of the form 7(t) =

(<,02,... ,fln) for some constant a2,,Un- By restricting the neighborhood further we

may assume it is of the form

B = ,Xn) 'Qii <Xi <0,}

The set r n J5 is a union of at most countably many sets of the form Ia2,...,an =

{(t,a2,... ,a„) : Oj < t < oi} and so each such set is a connected component. By o-

minimality, F n B is a union of finitely many such sets. By shrinking the set B, if necessary,

we may assume that

FnB = {(t,0,... ,0) : Oj < t < oi}.

For n large enough we must have 7(<n) € F n B. Therefore, for such an n there

exists t near i such that y{t) = 7(tn)j which contradicts the injectivity of 7. This concludes

the proof of the lemma. •

We now continue with the proof of the main theorem. Given a set 5, we define

H = {(a;,<) e €5}. If 5 is definable, then H is definable. Moreover,

by o-minimality there exists Ns G N such that the number of connected components of

Hx = {t: (x,t) G H} is less than N for all a; 6 M". This implies that if S is definable and

Fx denotes the trajectory of F passing through re, then the number of connected components

of Fx n B is bounded above by a constant independent of x. We choose N eN larger than

the corresponding Ns for all sets 5 G B.

We begin the construction of the partition B by subdividing each set 5 in P as

*Note that rotation requires multiplication which does not exist in Lin(lR). However, flows definable in
Lin(lR) are already complete and straightened.
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follows. Let

50 = {xeX:\/t>0 7x(<) € 3}

51 = {a:G5'\5o:Vt>0(7xW^5'\5o=»Vt'>t7x(0^'S'\5o)}

Si = {a;65\(5oU---U5i_i):

Vt>0 (7xW^5\(5oU--.U5i_i)=»V<'>t7x(0^5\(5oU---U5i_i))}

The set 5t is clearly definable for every i. For 2> 1 the set Si consists of those x

for which 7x leaves the set 5 \ (5o U•••U^j-i) but never returns to it.

Claim: 5^ = 0 for A; > N.

To prove the claim it suflSces to show that if a: G5t with 2> 1, then Fx D5 has at

least 2connected components. To prove this we will use a couple of lemmas.

Lemma 4.14. Let S and Si, i > 0 be as above. Let I be an interval and 7(-) an integral

curve of F such that 7(7) C S. Ifj(to) GSi for some to € I, then 7(7) C 5,-.

Proof, We proceed by induction. The statement is clearly true for 5b. Assume it holds for

2< k. Let 7(7) C S,to ^ I and7(^0) € Sk+i- Then 7(^0) ^ 5\(5oU.. .U5jt). For any t G7,
if 7(t) G5o U... U5/t then there is j < A: such that j(t) € Sj. By the inductive hypothesis,

7(7) C Sj, but this contradicts 7(^0) 0 Therefore we have 7(7) Q S \ {So U... USk).
Let t € I and t' > t be such that jit') ^ S \ (5o U... USk)- Then t' ^ I and so t' > to.

Since 7(^0) ^ Sk+i we conclude that for any t" > t' we get 7(^") ^ 5 \ (5o U... USk). This

shows that 7(t) GSk+i- ^

Lemma 4.15. If x e Si for 2 > 2 then there exist ti > si > t2 > -" > St-2 > >

5i_i > 0 such that ^x{sj) ^ S and 7x(^j) € Sj for j = I,... ,2 —1.

Proof. We proceed by induction. Let x GS2. Then x G5 \ (5o U5i) C 5 \ 5i. Therefore

there exist t > s > 0 such that yx{s) ^ S\So and 7i(<) G 5 \ 5o. We can not have

7x(s) G So because then we would also have 7x(t) G So. Therefore 7x(5) 0 5. We set

Si = s. If 7x(t) € 5i then we set ti = t. Otherwise, there exist t' > s' > t such that

7x(5') ^S\So and 7x(tO G5\5o. Since x GS2, 7x(«) ^5\ (^oU5i), and t'> s we must
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have 7x(^0 f? 5 \ (5o USi). Therefore 7z(i') € Si and we set ti = t'. This completes the

proof for the case i = 2.

Assume now the conclusion holds for i and let x € iS'i-j-i. In particular, x E S \ 5i,

and there are< > s > 0 such that 7i(s) 0 iS'\(5oU.. .U5,_i) and 7x(t) G5\(5oU.. .U^i-i).

If 7x(s) e Sj for some j <i-l and 7x(s) G5 for all s < s < <, then Lemma 4.14 would

imply that 7x(t) G Sj which is not true. Therefore there exists s, s < s < t such that

7x(5) 0 S. We set Si = s.

If .7x(^) ^ Si then we set ti = t. Otherwise, there exist t' > s' > t such that

7i(s') ^ 5 \ (5o U... U5i_i) and 7x(t') € 5 \ (5o U... USi-i). Since x G Si+i, 7x(s) ^

5\ (5o U... U5t), and t' > s we must have 7x(<') 0 5\ (So U... U5,). Therefore jxii') ^ Si

and we set ti = t'.

By the inductive hypothesis there exist ti > si > --• > ii-i > Si-i > 0 such that

77x(«.)(«j) ^ -Sj' 77x(i.)(<7) ^ "Sj' for j = 1,... - 1. Setting sj = sj + tu tj = ij + ti for
y = 1,... , 2—1 we get the desired conclusion. •

The last lemma together with Lemma 4.13 proves that if x G Si then Fx H 5 has

at least i connected components. This, in turn, proves the claim.

Notice that Lemma 4.13 also implies that if x G iSj then Fx n Si has exactly one

connected component.

By carrying out the subdivision into the sets Si for all 5 G P we obtain a new

finite partition V of with the property

(P) For each 5 GP, and each trajectory 7 of F such that 7(<o)) 7(^1) € 5 we have 7(<) G S

for all t with to <t <ti. In particular, for each rc G 5, the set Fx H 5 has exactly one

connected component.

We will denote by p = p{V) the number of sets in V and write V = {Si : i =

1,... ,p}.

We introduce two functions, I and C, acting on pairs of sets, defined by

7(A,B) = AnPre{B)

C{A,B) = A\Pre{B)

It is clear that if A and B are definable, then /(A, B) and C(A, B) are definable.

Notice also that for each A, B the sets /(A, B), C(A, B) form a partition of A.
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For each i-, 1 <i < p consider all the partitions of Si defined by

(4.10)

C(5i,Q(5,„Q(5j3,... ,Q(5j,_„5jJ...))) (4.11)

where Q is either I or C and 1 < j/ < p for / = 1,... , fc. This is a finite collection of

partitions. We let B denote the coarsest partition of K" compatible with all such partitions.

Claim: 5 is a bisimulation.

The intuitive basis for this proof is the fact that the partitions constructed so far

are done "along the flow of F." That is, two sets in B which are subsets of the same set in

V can not be connected by a trajectory of F.

To prove the claim first notice that the sets in B are (finite) intersections of sets

of the form (4.10) or (4.11). Notice also that by construction B is a refinement of V.

To check the bisimulation property lei B £ B^ B C S £ he written as

m

B=np<
1=1

where each Pi is of the form (4.10) or (4.11). We want to prove first that

m

Pre(B) = flPre(P,)- (412)
Z=1

The inclusion Pre(B) C r\^-^Pre(Pi) is straightforward. For the other one let

X6 nj^jPre(P/). For each I there exists > 0 such that 7x(<i) ^ P/« Each set P/ is ofthe.
form /(5i, Ai) or C(Su^t) for some A/'s. Hence, 7x(t/) € Si for all L We now want to show

that indeed jx{ti) ^ P for all ti. Consider the following property of a set i4.

(Q) for any trajectory 7 ofP, if7(so) e AC S eV, then for all s with 7(5) € 5, 7(5) 6 A.

We show that if a set A has Property (Q), then so do 7(5', A) and C(5', >1) for any 5' € P.

Let 7(so) GI{S',A) C 5". Then 7(50) G5" and there exists t > sq such that j{t) € A. If
7(t) € S', then we have S = S' since both belong to P. By (Q) 7(5) £ A C Pre{A) for

all s such that 7(5) £ S', Therefore 7(5) £ I{S',A) for all such s. On the other hand, if

7(t) ^ S', then An 5' C 5 n 5' - 0. Let 7(5) £ S'. By Property (P) applied to S' we get
that s<L But then 7(5) £ Pre(A) nS' as desired. The prooffor C(S'jA) is analogous.

Proceeding by induction it is easy to show that the sets Pi have Property (Q) and

this completes the proof of (4.12).
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Notice also, that Pre(A \JB) = Pre(A) UPre(B) for all sets i4, B.

To completethe proof that 5 is a bisimulationweonly need to show that for each /,

and each set S the set SnPre{Pi) is a union of sets in B. The set SnPre{Pi) = 7(5, Pi)

is of the form (4.10) with k < If/:<p + lwe already know that 7(5, Pi) is a union

of sets in B. We only need to consider the case fc = p + 1.

There are two possibilities for 7(5, P/):

1. there are two occurrences of C in 7(5, P/),

* ~

2. there are p + 1 occurrences of 7 in 7(5, P^), and therefore, at least one Si £ V is

repeated as an argument of 7.

In case 1 the following two formulas, and boolean algebra, show how to rewrite

7(5, P/) either with fewer terms or using only 7.

C(53,C7(52,5i)) = C(53,52) U7(53,7(52,5i)) (4.13)

C(53,7(52,5i)) = C(53,52)u7(53,C(52,5i)) (4.14)

Both formulas can be proved with arguments similar to the ones above, relying on Prop

erty (P).

Finally, in case 2 we can show, again using (P) that 7(5,^4) = 0. This concludes

the proof that 5 is a bisimulation. •

4.5 Classes of O-Minimal Hybrid Systems

In this section. Theorem 4.12 is applied to several classes of o-minimal hybrid

systems. For each o-minimal theory of Table 4.3, we provide examples of definable, o-

minimal hybrid systems. While it is clearly possible to identify other special cases, the ones

described below cover versions of most known results, and several natural extensions.

The theory Lin(E)

The definable sets in this theory capture semilinear sets whereas the definable

flows capture linear flows. Therefore, Theorem 4.12 applied to the o-minimal theory Lin(IR)

results in the following corollary.

Corollary 4.16. Consider hybrid system H where
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• all relevant sets are semilinear

• all flows are linear

Then H admits a finite bisimulation.

Furthermore, since Lin(IK) is not only o-minimal but also decidable, there is a com

putational procedure for computing Preq{P) of a definable set P. Therefore, the bisim

ulation algorithm is both finite and computable, which immediately leads to a decidable

class of o-minimal hybrid systems. As a result. Corollary 4.16 captures versions of timed

automata [3], multirate automata [2], and rectangular automata [48, 91]. In general, timed
automata also allow identity maps as reset maps, whereas rectangular automata allow for

identity reset maps as long as the dynamics fi*om one location to another remain the same.

This discrete behavior is not allowed in our hybrid model.

The theory OF(R)

The definable sets in OF(R) are the semialgebraic sets, whereas the definable flows

in this theory are polynomial. Therefore, the hybrid systems corresponding to this theory

are hybrid systems i/, where allsets allsemialgebraic and all flows allpolynomial. Moreover,
since OF(R) is a decidable theory, we immediately obtain a new class ofdecidable hybrid
systems.

Corollary 4.17. Consider hybrid system H where

• all relevant sets are semialgebraic,

• all flows are polynomial.

Then H admits a finite bisimulation.

The o-minimality of this structure can also be used to show the existence of finite

bisimulations in special cases when the flow is not definable. This was illustrated in [64]

for the case of planar hybrid systems whose vector fields admit definable (polynomial)

Hamiltonians. This captures the decidability result of [28].



The theory OF^

In addition to semialgebraic sets, the definable sets in this theory, include bounded

subanalytic sets. Even though polynomial fiows are definable in this theory, since the

restricted amalytic functions / are zero outside a compsict set, they cannot be used to define
complete fiows. However, the PrCq operator corresponding to some periodic flows may still

be definable. Consider for example, a hybrid system H whose vector fieldsare diagonalizable

linear vector fields with purely imaginary eigenvalues. Since the restriction ofsin on [—tt, tt]

is definable, the Prcq operator corresponding to this linear vector field is definable. This

leads to the following corollary.

Corollary 4.18. Consider hybrid system H where

• all relevant sets are semialgebraic or bounded subanalytic,

• all vector fields are diagonalizable, linear vector fields with purely imaginary eigenval

ues.

Then H admits a finite bisimulation.

Note however that since OFa„(R) is not known to be a decidable theory, the above

corollary is not a decidability result.

The theory OFexp*

The main difi'erence between OFexp(K) and the previous theories, besidesenriching

the class of definable sets, is the fact that the symbol e® represents a globally defined

function. This allows new classes of definable fiows. In particular, the flows of linear vector

fields with real eigenvalues are definable.

Corollary 4.19. Consider hybrid system H where

• all relevant sets are semialgebraic,

• all vector fields are diagonalizable, linear vector fields with real eigenvalues.

Then H admits a finite bisimulation.

Recall from Section 2.3 that it is not known whether OFexp(lR) is decidable. In

fact in [73] it was shownthat it would be a consequence of Schanuel'sconjecture in number

theory.
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The theory OFexp.e

This theory extends both OFan(lR) and OFexp(K)- Corollaries 4.18 and 4.19 can

be combined to obtain the following result.

Corollary 4.20. Consider hybrid system H where

• all relevant sets are semialgebraic or bounded subanalytic,

• all vector fields are

- either diagonalizable, linear vector fields with real eigenvalues,

- or diagonalizable, linear vector fields with purely imaginary eigenvalues.

Then H admits a finite bisimulation.

The above corollary extends the planar results in [64] to E". Note that relax

ations of Corollary 4.20 would allow spiraling, linear vector fields which are not definable

in OFexp,an(lJ^)- As was shown in Example 13, such systems, in general, do not admit fi

nite bisimulations. Therefore even though Theorem 4.12 provides sufficient conditions for

obtaining finite bisimulations, Corollaries 4.16 to 4.20 as well as Example 13 show that the

sufficient conditions of Theorem 4.12 are tight.

4.6 Linear Hybrid Systems

Whereas the goal of the previous two sections were to find conditions that guar

antee the termination of the bisimulation algorithm, the goal of this section is to make

the bisimulation algorithm constructive. This critically depends on being able to compute

Preqiy) for definable sets Y in each discrete location q. If the sets and flows are definable
in a theory which admits quantifier elimination, then this reachabihty computation can be

performed as shown in Examples 6 and 8. Since Lin(M) and OF(R) admit quantifier elimi

nation, Corollaries 4.16 and 4.17 are not only existential but also constructive, immediately

leading to decidability results. However, the theories associated with Corollaries 4.18 to

4.20 do not admit quantifier elimination. In order to be able to perform reachability com

putations in these theories, the strategy will be to transform formulas in these theories to

equivalent formulas in the decidable theory OF(R). Even though this forces us to use semi-

algebraic sets in the system description, it will allow us to compute reachable sets for hybrid
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systems with linear vector fields in each discrete location. This class of hybrid systems is

defined next.

Definition 4.21 (Linear Hybrid Systems). A hybrid system H = (X,A'c>,Xf,F,

is called linear if

• A'c = IK".

• for each q £ Xp the family of sets

A, = {/(g),{Xo)g, {Xf),} U{G{e),,R{e)g \eeE}

is definable in OF(R).

• for each q e Xd the vectorfield F{q,x) = AqX, where Ag e

Linear hybrid systems should be distinguished from the notion of linear hybrid

automata which are hybrid automata with linear flows, and not vector fields, in each discrete

location. As indicated previously, because of the structure of the bisimulation algorithm,

we only need to investigate a single location and a single linear vector field F{x) = Ax

where the subscript q is dropped for notational convenience.

Since the invariant I{q) associated with discrete state g is a definable set, there

brmula I{x) such that J(g) = {x €

definable set. Then we can write explicitly

exists a formula I{x) such that J(g) = {a; € K" | /(a;)}. Now let V = {2/ € E" | P(2/)} be a

Pre{Y) = {x € M" I3?/ : P(y) At > 0Ax = e'^^y

A => I(e~ '̂̂ y)}

In order to simplify the following presentation, we will assume that /(x) is true. In this

case, the above definition reduces to

Pre{Y) = {x GR" I3?/ 3t: P{y) Af > 0Ax = e~*''̂ y} (4.15)

= (x € R" Irjix)} (4.16)

It will be clear from the following results that more complicated invariant sets can be dealt

with by the same techniques.

Prom equation (4.15), we have that Pre(Y) is definable in theories which do not

admit quantifier elimination. Our goal in this section is to transform formula r}{x) to an

equivalent formula in OF(R), which is indeed decidable. Based on the eigenstructure of A,

we identify several classes of linear vector fields for which this transformation is feasible.
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4.6.1 Nilpotent matrices

We consider first the special case when the vector field is linear with a nilpotent

matrix that is, = 0. Recall that nilpotent matrices can only have zero as £in eigenvalue.

Another important property of nilpotent matrices is that we can express explicitly as

a finite sum

n—1 .te

(4.17)
*:=0

Thus, the formula 'q{x) can be rewritten as follows:

n—1

T,(x) = 3yBt:P{y)At>0Ax ='̂ (-l)''-j^A''y
k=0

= 3y : P{y) Afi{x,y)

Clearly, fi{x,y) is a formula in OF(R), and so is r}{x), which implies that the following

proposition holds.

Proposition 4.22. Let F{x) = Ax be a linear vector field and A € a nilpotent

matrix, and y C R" definable in OF{TZ). Then Pre{Y) is definable in 0F{7i).

Therefore, based on the computational procedure for eliminating quantifiers in

OF(R), we can compute Pre(Y) for linear vector fields with nilpotent matrices. Note that

nilpotent linear vector fields capture integrators which are an extremely importamt class of

linear systems.

Example 14. Consider the nilpotent linear vector field defined by

'010' Xi

dX7
dt

= 0 0 1 • X2

. dt .
0 0 0 . ^3 .

and consider the set T = {(2/1,2/2>2/3) ^ I^(l/ij 2/2,2/3)} where

-P(2/i,2/2,2/3) = 2/i=4A2/2>2A2/2<4A2/3 = 5

(4.18)
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Then Pre{Y) = {(a:i,a;2,a:3) G | r}{xi^X2,Xs)} where it can be easily checked that

tj{xi,X2,X3) = 3j/i 3y2 3^3 3t: P(yi,2/2,2/3) At > 0 A

xi=yi- ty2 + —ys A

X2 = y2- <2/3 A

xz = yz

Using Redlog to perform quantifier elimination we get that r}{x\^X2^xz) is equivalent to

the quantifier firee formula

'n{x\^X2',xz) = 2a;ia:3 —a;2 —8x3 + 16 > 0 A

2x1X3 —X2 —8x3 + 4 < 0 A

X3 —5 = 0 A

(X1X3 —4x3 < 0 V X2X3 < 0)

4.6.2 Diagonalizable matrices with rational eigenvalues

In this case we can write A = TDT~^ where jD is a diagonal matrix with the

eigenvalues of A along the diagonal and both T and T~^ have rational entries. Then

tAi

,-M _ ^-tTDT-^ _ J. r-' = [fiM (4.19)

j—fAri

where fij{t) = Y^k=i^ijk^ ^ Q for all A:, and {Ajk} are the eigenvalues of

A. Moreover, x = e~^^y can be written component-wise as follows

j=i \k=i J

k=i \j=i J

=^^ik{y)e
k=l



Therefore, rj{x) can be rewritten as follows

n n

7,(1) = 3y3t:P(y)At>0A/\xi =Y,My)e-'*'
t=l k=l

= By: P(y) A<p{x,y)
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Since the formula for Y, P(y), is alreadyin 0F(7^), we will concentrate on studying(p{x, y).

First wereparauneterize the time t to reduce the problem to integers in the exponent. More

precisely, for eaich k = 1,... ,n let denote the denominator of and let do = 11

assume that the Ajt are in reduced form, with positive denominators. Then do > 0 and for

each ,n we write rk = Ajtdo- Then we have that (p{x,y) = (pzi^^v) where

n n

= 3s :s >0Ay\ ajj = ^ '̂ ik{y) (4.20)
»=i k=l

Still, (pz contains exponentials. We considera second formula ^(a;, y) whichdoes not involve

the exponential function:

^ d2:U<2SiA
»=i k=l

The following lemma holds.

C(a:,y) = Bz :0< 2< 1A a:i = ^i^ikiv) (4.21)

Lemma 4.23. Formulas ^2(^5!/) C{x,y) are equivalent

Proof. If (pz(x,y) holds, then there exists s > 0 such that

n n

/\xi = Y^Ak{y) e"
1

Set z = e~®. Then 0 < 2 < 1 and

*yik\y; k*

t=l A;=l

i=l *:=!

so C(^)2/) holds.

.4=. Conversely, if Ci^^y) holds, then there exists 2, with 0 < 2 < 1 such that

n n

t=l Jb=l



73

By well known propertiesof the exponential function (continuity, monotonicity, and = 1,

e~°° = 0) there exists s > 0 such that z = e~®. Then

t=i Jfc=i

Hence, (a^, i/) = C 2/) • ^

The third step eliminates negative polynomial powers. It consists of grouping the

indices 1,... ,n according to the sign of the corresponding eigenvalue. Let = {k \ rk >

0}, I~ = {k \rk < 0}, and 7° = {A; | = 0}. Consider now the following formula:

i/(a;, y) = 3ioi 3w2 ' (4.22)

wi > 0 A u;2 > 0 A W1W2 —1
n

My) My) ^2
t=l k£l+ k€l- k£P

Clearly, vix^y) is a formula in Of{11). Furthermore, we have the following.

Lemma 4.24. The formulas C{^,y) and v{x,y) are equivalent.

Proof. The equivalence is immediate from the change of variables wi = z, W2 = l-jz. •

The combination of the above lemmas gives the following proposition.

Proposition 4.25. Lei F{x) = Ax he a linear vectorfield and A G o diagonalizable

matrix with rational eigenvalues, andY C M" definable in 0F{1Z). ThenPre{Y) is definable

in 0F{1Z.).

Proof. By the previous lemmas we have that 7}{x) = By : P(y)Ai/{x,y) and u{x, y) definable

in 0F(7Z). •

Proposition 4.25 implies that we have a computational procedure for computing

reachable sets for diagonalizable linear vector fields with rational eigenvalues. As an illus

tration of Proposition 4.25, consider the following example.
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Example 15. Consider again Example 7. Let V = {(2/1,2/2) € 12/1 = 4A2/2 = 3}. Recall

that Pre{Y) = {(a;i,a;2) € 12/'(a^i,a;2)}. Applying the previous lemmas we have that

X2) = 3j/i 3j/2 3t:yi = 4Aj/2 = 3At>0Aa;i = 2/1® A X2 —2/2^

= 3yi 3y2 3z: yi = 4Ay2 = 3AO < z < 1Axi = yiz ^AX2 = 2/2^

= 3yi 3i/2 3iyi 3102 - yi = 4Ay2 —^ Aw\ > 0 Aw2 > 0 AW\W2 = 1

Axi =y\w\ AX2 = 2/2^^2

= rcia;2 —36 = 0 Ax2 > 0

4.6.3 Diagonalizable matrices with imaginary eigenvalues

In this case the matrix A is similar to a matrix in a special block-diagonal form,

a real Jordan form. First, the number of rows (and columns) of A, is even. Second, there

exist D and T such that A = TDT~^, T invertible, and D is block diagonal with each block

of size 2x2 and of the form

''0 6
-b 0

where b is the imaginary part of an eigenvalue of A. Moreover, if each eigenvalue is of the

form ir with r € Q, then the entries of D, T, and T~^ are all rational.

We analyze the formula x = e~^^y in more detail. Assume D has diagonal blocks

••• ,L/m (w = 2Tn). We can write

-iDi

M _ ^—tTDT ^ ^ ijt

In fact, for a matrix D =

Therefore, we also get

0 b

-b 0
we have

e-"> =
cos(6t) —sin(6t)

sin(&t) cos(6t)

e-" = l/y(t)]

1-1

>~tDn
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with

^ cos(/?fc^) + bijk sm{/3kt)
k=l

with Oijk, bijk^Pk ^ Q- Theformula x = e can be written component-wise as follows

=XI (^(o-ijkCos(Pkt) +bijksm{/3kt) )yj
j=i \k=i /

=̂ I aijkVj ]cos(^jb<) + [53 )sin{M
k=i \j=i / k=i \j=i J

= 53^ikiy) cos{0kt) +ipik(y) siniPkt)
k=l

Therefore, 7}{x) can be rewritten as follows:
n n

r)(x) = 3y3t: P(y) ^t>0^ l\xi = ^ V'Sfc(y) cos(/?fct) + tp\k(y) sin(^jbt)
t=l k=l

= 3y.P{y)hip(x,y)

We now study the formula y). We start by reparameterizing t as before. That

is, for each k = 1,... ,n\ei dk denote the denominator of /?jt and let do = 11 assume

that the /3k are in reduced form, with positive denominators. Then do > 0 and for each

&= !,... , n we write = /3fcdo. Then we have that (p{x, y) = v?z where
n n

y) = 3s :s > 0A/\ rci = ^ ii)%(y) cos(rfcs) -I- il)\k(y) sin(rjks) (4.23)
i=l k=\

The equivalence is obtained by using the change of variable t = dos. The following result

will allow us to rewrite cos(rjfcs) and sm{rks) in terms of coss and sins.

Proposition 4.26. For each integer m > 1 there exist homogeneous polynomials fmi^^y)

and gm(^^y) of degree m such that

cos(ms) = /m(cos s, sin s)

sin(ms) = pm(coss,sins)

Proof. We give a recursive definition. For m = 1 we set fi{x,y) = x and pi(x,j/) = y. For

m > 1 the trigonometric identities

cos(ms) = cos(s) cos((m- l)s) - sin(s)sin((m - l)s)

sin(ms) = cos(s)sin((m —l)s) + sin(s)cos((m —l)s)
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lead to the following formulas for fm and Qm,

fm(x,y) = xfm-l(x,y) - y9m-\(x,y)

9m(x,y) = xgm-iixjy)+yfm-i{x,y)

It is immediate from the formulas that fm(x^y) will be homogeneous provided that both

fm-\{x^y) and 9m-\(x^y) are homogeneous of the satme degree. To conclude the proof we
need to check that the degree of fm(x^ y) and 9m(Xt y) is m. It is easy to show by induction

that one of the terms of fm{x-,y) is x^. Moreover, it is also clear that one of the terms of

9m(x,y)\smx^-'^y. D

It is now clear that:

(p{x^ y) = 3s : 5 > 0 A
n n

yyxi = 53'/'3k(f)/irtI(cos s, sign(rfc) sin s) + V'ifc(2/)5|rfc| (cos s, sign(r/k) sin s)
i=l /;=!

where /|r |̂ and are the polynomials given in the previous proposition. Due to the
periodicity of both sin and cos we have that

^(x,y) = ^z(x,y)

= 3s : 0 < s < 27r A
n n

f\xi =^^3fe(s/)/|r4|(cos«,sign{r/i)sin5) +V?*(!/)S|r»|(c0S4,sign(rt)sins)
t=l A:=l

Restricting s to a bounded interval (in this case [0,27r]) is extremely important as this

makes the above formula definable in the o-minimaJ theory OFan(K)- We define now a new

formula:

C(a;,2/) = 32:1 32:2 : 2? + 2:2 = 1 (4.24)
n n

A = $^^Jit(y)/|rjk|(^i,sign(rfc)z2) +
t=l k=l

Lemma 4.27. The formulas (p(x,y) and Ci^ty) o.re equivalent.

Proof. The equivalence is shown by setting up zi = coss, Z2 = sins. •

The combination of the above lemmas give the main proposition which shows the

desired decidability result.
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Proposition 4.28. Let F(x) = Ax be a linear vector field and A € a matrix with

pure imaginary eigenvalues of the form ir with r 6 Q, and y C K" definable in OF{TZ).

Then Pre(Y) is definable in 0F(7^).

Proof. By the previous lemmas we have that t){x) = 3y : P(2/) AC(a:, y) with ^{x, y) definable

in 0F(7e). •

Proposition 4.28 implies that we have a computational procedinre for the reacha

bility problem of linear vector fields with pure imaginary eigenvalues of the form ir with

r eQ.

Example 16. Consider the linear vector field defined by

dx\
dt

0 1 Xi

dig
dt

1

1

t—»

0
I

X2

(4.25)

and let y = {(yi,2/2) G | yi = 4 Ay2 = 3}. We have that:

r){xi^X2) = 3yi 3y2 : yi = 4 Ay2 = 3 A<> 0

A a:i = yi cost —y2sint A rc2 = y2cost + yi sint

= 3yi 3y2 Bzi 3z2 : yi = 4 Ay2 = 3Azj + 22 = 1

A xi = yi22 - 2/2^1 A 2:2 = y2Z2 + Vizi

= a;i -f- 272 —25 = 0

The above three classes of linear vector fields for which Pre{Y) can be computed,

immediately lead to the following constructive theorem.

Theorem 4.29 (Semidecidable Linear Hybrid Systems). Let H be a linear hybrid

system where for each discrete location q E Xd the vector field is of the form F(q,x) = Ax

where

• A 6 is nilpotent or

• A is diagonalizable with rational eigenvalues or

• A E has pure imaginary eigenvalues of the form ir, r GQ.

Then the reachability problem for H is semidecidable.
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Thus, the bisimulation algorithm could be implemented for the above class of

linear hybrid systems without guarantee that it would ever terminate. If it happens that the

algorithm terminates, then we can compute the reachable regions of the hybrid system. If

fact. Theorem 4.29 can be upgraded easily to include more complicated discrete transitions,

as long as there is a constructive method to compute Pree{Y) for any discrete transition e.

We can now combine the semidecision result of Theorem 4.29 and the termination

result of Theorem 4.12 in order to obtain the desired decidability result.

Theorem 4.30 (Decidable Linear Hybrid Systems). Let H be a linear hybrid system

where for each discrete location q £ Xd the vector field is of the form F(g,x) = Ax where

• A is nilpotent or

• A is diagonalizable with rational eigenvalues or

• A eQ^^^ has purely imaginary eigenvalues of the form ir, r eQ.

Then the reachability problem for H is decidable.

Proof. All relevant sets of linear hybrid systems are by definition definable in OF(R) and

the flows of linear vector fields are complete. Therefore, given the semidecision result of

Theorem 4.29, all we have to show is that the flow of the linear vector field Ax is definable in

an o-minimal theory. Then Theorem 4.12 would guarantee termination of the bisimulation

algorithm. If A is nilpotent then the flow is also definable in OF(R) which is o-minimal.

If A is diagonalizable then the flow is definable in OFexp(lR) which is also o-minimal. If A

has purely imaginary eigenvalues, then the flow contains the functions sin and cos which

are not definable in any of the o-minimal theories of Table I. However, o-minimality of the

flow is only used in the proof of Theorem 4.12 to show o-minimality of the Pre operator.

Even though the flow of this vector field is not definable, the Pre operator corresponding

to these periodic flows is still definable, as all we need is the restriction of sin and cos on

[0,27r]. These restrictions are indeed definable in 0Fan(11^) which is also o-minimal. •

Theorem 4.30 is the first decidability result in the area of hybrid systems that

provides the modeling expressiveness to capture relatively complex continuous dynamics.

The importance of these results is immediate given the wide application of (piecewise) linear

systems in control theory. In addition. Theorem 4.30 contains in it a purely continuous

version of reachability analysis for linear systems under state constraints, a problem which
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is known to be very difficult. As a result, its potential application to analyze various realistic

hybrid systems using computational methods is significant.

4.7 Conclusions

This chapter presented a unified framework for obtaining classes of hybrid systems

with a decidable reachability problem. Decidability requires both the termination and

computability of the well known bisimulation algorithm. Termination of the algorithm

was guaranteed for o-minimal hybrid systems which are initialized hybrid systems whose

relevant sets and flows are definable in an o-minimal theory. Various examples firom recently

discovered o-minimal theories were presented. The search for computable subclasses within

o-minimal theories leads to new decidable classes of hybrid systems. This resulted in classes

of hybrid systems with linear vector fields in each discrete location having a decidable

reachability problem.

Even though decidability may guarantee termination of an algorithm, the com

plexity of the algorithm may be extremely expensive. Useful algorithms must be applicable

to systems of large scale and complexity. One of the main tools in tackling complexity

is abstraction, or extracting simple models from complex ones while retaining all relevant

information of interest. The next chapter develops a theory of abstraction for reachability

properties of continuous systems. A theory of abstraction of continuous systems will also

extremely useful in understanding and designing large scale, hierarchical systems which

utilize a hierarchy of models at various levels of abstraction.
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Chapter 5

Abstractions of Control Systems

In order to tackle the complexity involved in verifying that a given large scale

system satisfies certain properties, one tries to extract a simpler but qualitatively equivalent

system, called an abstraction. Checking the desired property on the abstracted system

should be equivalent or sufficient to checking the property on the.original system. The

area of computer aided verification, which must be credited with this notion of abstraction,

typically faces problems of exponential complexity and abstractions are frequently used for

complexity reduction [31, 49, 66, 91]. Depending on the property, special graph quotients

which preserve the property of interest are constructed. Bisimulations, the topic of the

Chapter 4, is an example of such a special abstraction.

In addition to analysis, modeling abstractions are also useful in hierarchical control.

Large scale systems such as automated highway systems [109] and air traffic management

systems [88] are systems of very high complexity. Complexity is typically reduced by impos

ing a hierarchical structure on the system architecture. Figure 5.1 shows a typical two-layer

control hierarchy which is frequently used in the quite common planning and control hi

erarchical systems. Multi-layered versions of Figure 5.1 are used in both [88] and [109].

In this layered control paradigm, each layer has different objectives. In performing their

tasks, the higher level uses a coarser system model than the lower level. One of the main

challenges in hierarchical systems is the extraction of a hierarchy of models at various levels

of abstraction which are compatible with the functionality and objectives of each layer.

In the literature, the notions of abstraction or aggregation refer to grouping the

system states into equivalence classes. Depending on the cardinality of the resulting quotient

space we may have discrete or continuous abstractions. With this notion of abstraction, the
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Figure 5.1: Two layer control hierarchy

abstracted system will be defined as the induced quotient dynamics. Discrete abstractions

of continuous systems have been considered in [24, 26] as well as [8, 32, 93]. Discrete

abstractions of hybrid systems were the main topic of Chapter 4. Hierarchical systems for

discrete event systems have been formally considered in [25, 113, 114, 119]. In this chapter,

we focus on continuous abstractions of continuous systems. Therefore, our first priority is

to have a formal notion of quotient control systems. More precisely.

Problem 5.1. Given a control system

x = f{x,u) xeW ue (5.1)

and some map y = $(x), where $ : R" —> W, we would like to define a control system

y = 9iy^v) yeW ueM* (5.2)

which can produce as trajectories allfunctions of the form y{t) = $(a;(t)), where a;(t) is a

trajectory of system (5.1). That is, $ maps trajectories of system (5.1) to trajectories of

system (5.2).

The function $ is the "quotient map" which performs the state aggregation. Sys

tem (5.2) will be referred to as the abstraction [86] or macromodel of the finer micromodel
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(5.1). Note that the control input v of the coEurser model (5.2) is not the same input u of
system (5.1) and should be thought of as a macroinput. For example, v can be velocity

inputs ofa kinematic model whereas u may beforce and torque inputs ofa dynamic model.

This is therefore quite different from model reduction techniques which reduce or aggregate

dynamics while using the same control inputs [9, 57, 58, 59, 60].

We will solve Problem 5.1 by first generalizing the geometric notion of ^-related

vector fields to control systems. A notion of ^-related control systems would allow us to

pushforward control systems throughquotientmapsand obtadn well defined control systems

describing the aggregate dynamics. The notion of ^-related control systems introduced in

this paper is more general than the notion of projectable systems defined in [60] and [77]
as we will show that given any control system and any surjective map there always

exists another system that is ^-related to it. Our notion of ^-related control systems

mathematically formalizes the concept of virtual inputs used in backstepping designs [56].

The faet that the aggregation map sends trajectories of (5.1) to trajectories of (5.2) will

enable us to propagate controllability from the micromodel to the macromodel.

Aggregation, however, is not independent of the functionafity of the layer at which

the abstracted system will be used. Therefore, whenan abstracted model is extracted firom

a more detailed model, one wouldalso like to ensure that certain properties propagate from

the macromodel to the micromodel. The properties that are of interest at each layer may

include optimality, controllability, stabilizability, and trajectory tracking. If one considers

the property ofcontrollability, then onewould like to determine conditions underwhich con

trollability of the abstracted system (5.2) implies controllability of system (5.1). Obtaining

such conditions would ensure that the macromodel is a consistent abstraction of the micro-

model in the sense that controllability requests from the macromodel are implementable by

the micromodel. Such conditions willserve as good design principles for hierarchical control

systems. Different properties may require different conditions. For example, the notions of

consistency [78], dynamic consistency [25] and hierarchical consistency [119] have been de

fined in order to ensure feasible execution of high level objectives for discrete event systems.

In this chapter, we will focus on controllability of Hnear control systems and charsicterize

consistent linear abstractions. More precisely, we will solve the following problem:

Problem 5.2. Given the linear control system

X = Ax -I- Bu a; 6 K" u € R"* (5.3)
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characterize linear quotient maps y = Cx, so that the abstracted linear system

y = Fy + Gv y^W (5.4)

is controllable if and only if system (5.3) is controllable.

After having characterized consistent Unear abstractions, we obtain a hierarchi

cal controllability criterion which has computational and conceptual advantages over the

Kalman rank condition and the Popov-Belevitch-Hautus (PBH) tests for large scale sys

tems. Intuitively, instead of checking controllability of a large scale system, we construct

a sequence of consistent abstractions and then check the controllability of a system which

is much smaller in size. Consistency will then propagate controllability along this sequence

of abstractions from the simpler quotient system to the original complex system. The com

putational advantages of this approach are verified by recovering the best of the known

controllability algorithms from numerical linear algebra [39] as a special case of the hierar

chical controllability criterion.

5.1 Abstractions of Vector Fields

In this section, a notion of an abstraction for a dynamical system or vector field is

introduced. Consider a vector field A on a manifold M, the state space of the system. In

abstracting system dynamics, information about the state of the system whichis not useful

in the analysis process is usually ignored in order to produce a simplified model of reduced

complexity. For example, each state could be mapped to part of the state or to certain

outputs of interest. What state information is relevant usually depends on the properties

which need to be satisfied. Our goal is to try to obtain another dynamical system or vector

field which describe the evolution of the dynamics of interest.

The system state p G M is thus mapped to an abstracted state q £ N by some

aggregation or abstraction map $ : M —¥ N. This map, which we will assume from now

on to be surjective, groups the states in a very simple way: states pi and p2 on Af are

equivalent if $(pi) = ^(p2)- In order for the quotient space to have a manifold structure,

the equivalence relation must be regular [1].

Once a map has been given, then given a vector field X which governs the state

evolution on M, one is interested in obtaining the evolution of the abstracted dynamics.

The evolution of a dynamical system is characterized by its integral curves. Let c be any



84

integral curve ofX. Then ifwe push forward the curve c by the map $ we obtain that $(c)
describes the evolution of the abstracted dynamics on N. If we therefore want to abstract

the vector field X on M by a vector field Y on iV, then 0(c) should be an integral curve of

Y. This motivates the following definition.

Definition 5.3 (Abstractions of Dynamical Systems). Let X and Y be vector fields

on M and N respectively and let ^ : M —> N he a smooth surjective map. Then vector

field Y is an abstraction of vector field X with respect to 0 ifffor every integral curve c of

X, O o c is an integral curve of Y.

Therefore if the integral curve c satisfies

c' = c.(l) = X{c)

then it must also be true that

(0oc)' = (0oc).(l) = y(0oc)

Therefore, if Ex and Sy denote all integral curves of vector fields X and Y respectively,

then vector field Y overapproximates the collection of curves 0(Ex) and allows redundant

evolutions. Then, instead of checking reachability of vector field X, it is sufficient to check

it on y, which is of smaller dimension.

From Definition 5.3 it is clear that a vector field Y may be an abstraction of some

vector field X for some map but may not be for another map $2- In building hierarchical

models of large scale systems, the system may be modeled at many levels of abstraction.

The following proposition shows that abstracting dynamical systems is transitive.

Proposition 5.4 (Transitivity of Abstractions). Let Xi, X2, Xz be vector fields on

manifolds M\, M2 and M3 respectively. If X2 is an abstraction of Xi with respect to the

map : Ml -¥ M2 and Xz is an abstraction of X2 with respect to map ^2 - M2 Mz

then Xz is an abstraction of Xi with respect to map ^20^1-

Proof. Let c be any integral curve of Xi. Since X2 is an abstraction of Xi, then by definition

$i(c) is an integral curve of X2. But since ^3 is an abstraction of X2, $2(^1 (c)) =

($2 o $i)(c) is an integral curve of Xz. Thus for any integral curve c of Xi, (O2 o ^i)(c) is

an integral curve of Xz. Thus Xz is an abstraction of Xi with respect to abstracting map

$2 ® O
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Definition 5.3 is not an easily checkable condition since it involves integral curves

of vector fields. The following theorem shows that Definition 5.3 is equivalent to saying

that the two vector fields axe ^-related.

Theorem 5.5 (Abstracted Vector Fields are ^-Related). Vector field Y on N is an

abstraction of vector field X on M with respect to the map $ if and only if X and Y are

^-related.

Proof. Let vector field V on JV be an abstraction with respect to $ of vector field X on M.

Then by Definition 5.3, for any integral curve c of X, O oc is an integral curve of Y. Thus

($ o c)' = ($ oc)4l) = y($ o c) ^

o c»(i) = y o $ o c

Ox (c) = y O$ OC=>

$»oXoc = yo$oc=^

o X = y o $

But then, by Definition 2.4, X and Y are ^-related. Conversely, let X and y be $ related.

Then for any integral curve c of X,

^»oX = yo$=»

^♦oXoC=y0$0C=>-

o x(c) = y ($ o c) =>

oc,(i) = y(^oc) =>-

($oc).(i) = y(<>oc)

and thus $ o c is an integral curve of Y. Therefore y is an abstraction of vector field X

with respect to $. O

Theorem 5.5 allows us to check a condition on the vector fields rather than explic

itly computing integral curves and verifying Definition 5.3.

Example 17. Consider for example the linear vector field

X = Ax x G R" (5.5)
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and the linear, onto quotient map y = Cx. Then in order to obtain a well defined quotient

vector field,

y = Fy y^W (5.6)

by C-relatedness we must have CAx = FCx for all x GK". But for x GKer{C) = {x G
M" ICx = 0} we must have CAx = F(Cx) = 0 and thus Ax GA'er(C). Thus, a necessary
condition to obtain a well defined quotient vector field is

AKer(C) C Ker(C) (5.7)

It turns out that this is also sufficient for the existence of a unique quotient vector field

[116].

As can be seen from Theorem 5.5 and Example 17, ^-relatedness of two vector

fields is a very restrictive condition which Umits the cases where one dynamical system

is an exact abstraction of another. Even though $-relatedness of vector fields is a rather

restrictive condition, the above discussion provides the correct conceptual framework for

generalizing these concepts to control systems, where due to the freedom of control inputs

the equivalent conditions will not be as restrictive.

5.2 Control System Abstractions

In this section, the notions of Section 2.1 for vector fields axe extended to control

systems. We will develop such notions for rather general control systems. Generality will

ensure that the concepts of this section do not depend on the particular system structure.

We first present a global and coordinate-free description of control systems which is due

to Brockett [21, 22] and can also be found in [82]. This global description is based on the

notion of fiber bundles which were defined in Section 2.1.

Definition 5.6 (Control Systems). A control system S = (B,F) consists ofa fiber bun

dle TT : B —> M called the control bundle and a smooth map F : B —>• TM which is fiber

preserving, that is tt' o F = n where ir' :TM —> M is the tangent bundle projection.

Essentially, the base manifold M of the control bundle is the state spsu^e and the

fibers 7r~^(p) can be thought of as the state dependent control spaces. Given the state p

and the input, the map F selects a tangent vector from TpM. The notion of trajectories of

control systems is now defined.
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Definition 5.7 (Trajectories of Control Systems). A smooth curve c : I —> M is

called a trajectory of the control system S = {B^F) if there exists a curve c^ : I >B
satisfying

IT o c^ = c

c' = c.(l) = Foc^

In local (bundle) coordinates, Definition 5.7 simply says that a trajectory of a

control system is a curve x: I M for which there exists a function u: I -y U satisfying,
satisfying x = F(a:,u). Note that even though Definition 5.7 assumes c to be smooth,

the bundle curve is not necessarily smooth. The definition therefore allows nonsmooth

control inputs as long as the projection ttoc® = c is smooth.
Recall that for vector fields, the notion of abstraction was equivalent to the notion

of ^-related vector fields. We now define ^-related control systems in a manner similar to

Definition 2.4 for vector fields.

Definition 5.8 (^-Related Control Systems). LetSM = withiTM : Bm —>

M and Sn = {Bn,Fn) with ttn : Bn —> N be two control systems. Let ^ : M —> N be
a smooth map. Then control systems Sm and Sj^ are ^-related ifffor every pe M

$. oFm {Kjj (p)) CFf, (TTji' ($(p))) (5.8)

Control system Sjv will bereferred to asan abstraction ofcontrol system Sm ([86]).

Condition (5.8) states that for each p GM the left hand side of (5.8) first takes the input

space available at p, and pushes it through Fm to obtain all possible tangent directions of

the control system Sm at p. Thisset of tangent directions is pushed through to obtain

a set oftangent vectors in T^(p)N. In order for Sm and Sat to be <>-related, this set must
be contained in the image under Fjv of the input space available at $(p). Note that many

control systems Sjv may be ^-related to Sm as the set of tangent vectors on N that must

be captured, can be generated using many control parameterizations.
In a manner similar to Proposition 5.4, it is easy to show that $-relatedness is

transitive. Indeed, if : AIi —> M2, ^2' -^2 Smi Is $i-related to 5a/2> and Sm2 *s

$2-related to Smz, then Smi is ^2o^i-related to Smz- It therefore makes sense to consider

a sequence of^-related systems. In addition, given M, iV, a map $: M -> iV and a system

Sm, one can put a partial order on all possible ^-related systems Sn, where the partial
ordering arises from pointwise subset inclusion ofthe right hand side of (5.8) (see [86]).
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To see that Definition 5.8 is a generalization of Definition 2.1, consider vector fields

Xm on M and Xjsf on N. Then Xm and Xn can be thought of as trivial control systems on

M and N respectively by letting Bm = M, ttm = idM, and Fm = Xm^

Fn = Xn. Condition (5.8) becomes o Xnfip) = Xn o which is Definition 2.1 of

^-related vector fields.

The following proposition, which is an immediate consequence of Definition 5.8,

shows that every control or dynamical system is <^-related to some control system for any

map

Proposition 5.9 (Existence of Abstractions). Given any control system Sm = {Bm,Fm)

and any smooth map $ : M —> N, then there exists a control system Sn = (Bn^Fn) which

is ^-related to Sm- fh particular, every vector field X on M is ^-related to some control

system Sn.

Proof. Given 5m? construct Sn hy simply letting Bn = TN and Fn ' TN —y TN equal

the identity. Then condition (5.8) is trivially satisfied. Thus Sn = (Bn^Fn) is ^-related

to 5m*

In local coordinates. Proposition 5.9 simply states that the push forward of a

control system or a vector field is a difierential inclusion which can be thought of as another

control system. Even though Proposition 5.9 is a simple existential result, it is important

as it shows that given any control system and any aggregation map, then an abstracted

control system always exists.

The concept of ^-related control systems is a generalization of the notion of pro-

jectable control systems defined in [60, 77]. A control system is projectable, essentially,

when each vector field corresponding to a fixed input value is ^-related to some vector field.

Definition 5.8, instead of globally pushing a vector field for each fixed value of the control

input, takes a pointwise approach by pushing forward all possible tangent directions at a

state for all possible inputs available at that state. By Proposition 5.9, any projectable

system in the sense of [60, 77] is also ^-related in the sense of Definition 5.8. The following

example illustrates that ^-related control systems are not necessarily projectable.

Example 18. Consider the double integrator

Xi = X2

X2 = u
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with a;i,a;25W € R and the projection $(a;i,a;2) = Using Definition 5.8, we obtain that

Xi = X2

is a valid ^-related system. The double integrator, however, is not projectable in the sense

of [77, 60] with respect to this map as for any fixed value ofu, the vector field [x2 is
not ^-related to any vector field on K. For the nonlinear control system,

xi = Mxi,X2)

±2 = f2{xi^^2,u)

with states xi, X2-, input u, and the projection $(a;i,a;2) = a^i, a ^-related system is

= /i(ici,a;2)

with state xi but where X2 is now thought of as an input. This is the notion of virtual

inputs used in backstepping designs [56]. A more constructive methodology for generating

abstractions of linear systems will be presented in Section 5.4.

The following theorem should be thought of as a generalization of Theorem 5.5

for control systems. It establishes the connection between trajectories of ^-related control

systems.

Theorem 5.10 (Trajectories of ^-Related Control Systems). Let Sn = (Bn^Fn)

and Sm = (Bm^Fm) be two control systems and $ : M —> N be a smooth map. Then Sm

and Sn are ^-related if and only if for every trajectory cm of Sm, ^°cm is a trajectory of

Sn-

Proof. (Suificiency) Assume that Sm and Sn are ^-related and thus for allp € M we have

oFm i'J^Mip)) C (5.9)

Let Cm • I —> M be any trajectory of Sm- We must show that ^ o cm is a trajectory

of Sn- We must therefore find a curve cfj : I —> Bn such that for all t G / we have

ttn oc^(t) = $ oCM{t) and ($ oCMYit) = Fn oc^{t).
Since cm '- I —> M is a trajectory of Sm, by Definition 5.7 there exists a curve

cfj : I —> Bm such that for all <€ / we have tta/ ocj^(t) = cm(<) and c'j^{t) = FMOcff{t).
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By ^-relatedness of 5m and Sn we obtain that for all t € /,

$. oFm (fM(CMW)) S Fn (•^N^mcuit)))) =>

$.o^w°c&(<) € fn (5.10)

Condition (5.10) implies that for each t 6 / there must exist at least one element

7r;^^($(cM(0)) TT^r ocff(t) = ^ oCM{t)) such that

^*oFMOcff{t) = FNOC^{t)

= FNOC^it)

($ocm)'(<) = FNOcff(t)

Therefore ^ o cm is a trajectory of 5;v.

(Necessity) Assume that for every trajectory cm • I —^ M of 5mi ^ o cm is a

trajectory of 5^^. Now for any point p G M let

€ ^.{FM{n];}{p))) (5.11)

We must show that GFA^(7r]^^($(p))). We can write y$(p) = ^♦(.^Tp) for some (not
necessarily unique) tangent vector Xp G FMi'^'^ip))- Then there exists a trajectory cm :

I —y M such that at some t* G / we have

cm(F) = P (5.12)

c'm(F) = Xp (5.13)

Indeed, a cirrve cm satisfying (5.12,5.13) always exists by the existence theorems for differ

ential equations. To show that cm is a trajectory, we need to find c^: I —y Bm such that
TTocff = CM' Let O be a bimdle trivializing neighborhood ofp and ^: 7r~^(0) —y O xU
the trivializing map. There exists u € U such that Xp = Fm o ^~^(p,u). Restricting

I if necessary we may assume cm(I) C O. We can then define the desired ciu*ve by

CmW = ° ^"^(cm(^),w).
Since cm is a trajectory of 5m satisfying (5.12,5.13), then by assumption we have

that $ o Cm is a trajectory of 5;^. Therefore by Definition 5.7, there must exist a curve

c^ : I —y Bj\i such that for all t G7 we have npj oc^(t) = $ ocmW and ($ oCA/)'(t) =
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o particular, at e / we have

{$OCM)'(t*) = FNo4(t')

$.oci,(C) € fw K'($(cm(<'))))

Yp = 0.[Xp) e Fn (w^;i($(p)))

Therefore, at all points p &M we must have oF/n (p)) QFN{irpf^(^{p))) and thus

Sm and Sn are ^-related. This completes the proof. •

If Y^Sm ^Sn denote all trajectories of control systems Sm and Sn respectively, then

Theorem 5.10 simply states that Sm Sn are ^-related if and only if ^(Esm) C £5^.

The quotient system therefore overapproximates the abstracted trajectories of the original

system which may result in trajectories that the macrosystem Sn may generate but axe

infeasible in the micromodel Sm-

Theorem 5.10 does not guarantee that the curve c^{t) is a smooth curve. The

main obstacle for generating smooth c^(t) is whether the map Fn : Bn —TM is an

embedding. An example showing that Fn being only an immersion is not enough can

be found in [85]. The following theorem shows that Fn being an injective embedding is

sufficient to guarantee smoothness of the c^(<). Note that requiring Fn to be an injective
embedding implies that the dimension of the input space is less than the dimension of TN

and thus there are no redundant inputs (which covers the cases of interest). In particular,

if the control system Sn is affine in the controls then this is equivalent to saying that the

"controlled" vector fields are linearly independent at each point. That is, if we write the

system in local (bundle) coordinatesof Bn and local (vector bundle) coordinatesof TAT as

k

X= f{x) + Y^9i{x)ui
t=i

then for each x the vectors pi(a;),... ,9k{x) are linearly independent.

Theorem 5.11 (Control Input Smoothness). LetSN = {Bn^Fn) andSM = (Bm^Fm)

be two ^-related control systems where Fn - Bn —> TN is an injective embeddin9. Let

Cm ' I —^ M be a trajectory of Sm and assume that the corresponding cff: I —> Bm
is smooth. Then there exists a smooth curve : I —> Bn such that for all t ^ I,

TTiv oc^(i) = ^ oCM(t) and Fn oc^(t) = ($ ocmY (<)•
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Proof. Since Sm and Sn are ^-related we have o Fm

for each t E I. Moreover, since by assumption Fn is an embedding, the space Bj^f is

diffeomorphic to its image under F^. We can then define

which is clearly smooth and satisfies the desired properties. •

5.3 Consistent Control Abstractions

In general, we are not simplyinterested in abstracting systemsbut alsopropagating

properties between the original and abstracted model. In particular, we shall focus on

various notions of controllability.

Definition 5.12 (Controllability). Let S = {BjF) be a control system on M. For p G

M, define Reach{p, S) to be the set of points q € M for which there exists a trajectory

c : I —> M ofS such that for some ti,t2 ^ I we have c(<i) =p and 0(^2) = 9* control

system S is called controllable ifffor all p € M, Reach{p^S) = M.

Theorem 5.10 allows us to always propagate the property of controllability from

the micromodel to the macromodel for any aggregation map.

Theorem 5.13 (Controllability Propagation). Let control systems Sm = (Bm.Fm)
and Sn = {Bpf'tPN) be ^-related with respect to some smooth surjection $ : M —¥ N.

Then for all p G M,

$ {Reach{p,SM)) Q i?eac/i($(p),5iv)

Thus, if Sm controllable then Sn is controllable.

Proof. Consider any p E M and let q G^{Reach{p,SM))- Then there exists pi E ^~^{q)
with Pi E Reach{p,SM)- Thus there exists a trajectory cm of Sm such that CM{ti) = P

and CA/(<2) = Pi- By $-relatedness, the curve $ ocm is a trajectory of Sn which connects

^(cM(ii)) = ^(p) and $(cm(^2)) = ^(Pi) = Q- Therefore q E Reach(^{p),SN)'
If Sm is controllable, then for all p G M we have Reach{p,SM) = But then

^{Reachip,Sm)) = ^(M) = iV = Reach{^{p), Sn)- Thus Sn is controllable. •

Note that Theorem 5.13 is true regardless of the structure of the aggregation map

$. Prom a hierarchical perspective, the reverse question is a lot more interesting since it
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would guarantee that controllability requests are implementable by the lower level system.

In order to arrive at this goal, we define the notions of implementability and consistency.

We also give descriptions of those concepts in terms of reachable sets.

Definition 5.14 (Controllability Implementation). Let Sm —(Bm.Fm) CLtid Sn =

be two control systems and $ : M —N be a smooth surjection. Then 5yv

is implementable^ by Sm iff whenever there is a trajectory of Sn connecting q\ E N and

q2 GN, then there exist pi G andp2 G^"^(92) and a trajectory ofSm connecting
Pi andp2.

Implementability is therefore an existential property. If one thinks of the map ^ as

a quotient map, then implementability requires that a reachability request is implementable

by at least one member of the equivalence class. It is clear firom Definition 5.14 that

implementability is transitive, that is if Smi is implementable by Sm2 with respect to

$1, and Sm2 is implementable by Smz with respect to $2, then Smi is implementable

by Smz with respect to o $2- This is important in hierarchical systems which should

consist of a sequence of implementable abstractions. It should be noted that the notion

of implementability defined above is related to the notion of between-block controllability,

defined in [25, 26].

Proposition 5.15 (Implementation Condition). Consider control systems Sm = {Bm,Fm)

and Sn = (Bn^Fn) and a smopth surjection $ : M —> N. Then Sn is implementable by

Sm if and only if for all q £ N,

Reach{q,SN) Q (5.14)

where Reach{^~^{q),SM) = Upg4,-i(g)I2eoch(p, Sa/)-

Proof. Let q' G Reach{q,Sn)- By implementability, there exists a trajectory of Sm con

necting some p G 1^0 some p' G ^iid thus p' G Reach{p^SM)- But then

q' = $(p') £ $(i2eac/i(p,5Af)) C ^(Reach(^~^(q)^SM))'

Conversely, let 92 ^ Reach(qi,SN) for some qi G N. By assumption,

92 G$(i?eac/i($~^(gi),5'M)) = <i>(Upjg$-i(,j)J?eac/i(pi,5A/))

= Up,g^-i(,j)^(i2each(pi,5A/))

^In this paper, we only consider implementation of controllability requests. Thus implementability will
refer to controllability implementation.
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But then there must exist at least one p'l € such that 92 ^ ^{Reach{pi,SM))

which in tiurn implies that thereexists P2 € Reachip'i^ Sm) with <&(p2) = 92 and thus Sn is

implementable by Sm- This completes the proof. •

We will mostly be interested in implementability of <&-related systems, in which

case the above inclusion becomes an equality, by Theorem 5.13.

Implementability may depend on the particular element chosen from the equiva

lence class $"^(9). In order to make the controllability request well defined, it would have

to be independent of the particular element chosen from the equivalence class. This leads

to the important notion of consistency.

Definition 5.16 (Controllability Consistency). Let Sm = (Bm.Fm) he a control sys

tem on M and let ^ : M —> N be a smooth surjection. Then Sm called (insistent with

respect to $ whenever the following holds: if there exists a trajectory of Sm connecting p

and q, then for allp' such that $(p) = there exists a trajectory ofSm connecting p'
to some q' with = $(90-

Note that while implementability is a condition between two systems Sm and

Sn, consistency is a condition on a single system with respect to some quotient map
Consistency requires that the ability to reach a particular equivalence class is independent

of the chosen element from the initial equivalence class. Notice that ^~^($(p)) is the

equivalence class of p with respect to

Proposition 5.17 (Consistency Condition). Consider a control system S = {B,F) on

M and a smooth surjection ^ : M —i N. Then S is consistent with respect to $ if and

only if for all p € M,

^{Reach(^~^{^{p))jS)) = ^{Reach{p,S)). (5.15)

Proof Clearly ^{Reach{p, S)) C $(i?eac/i($"^($(p)),5)) for any p e M. Let gf =

withp' € Reach{^~^(^{p)),S). There exists po e $~^($(p)) such that p' € Reach{po,S).

By consistency, since $(po) = ^(p)j there exists p" £ Reach{p^S) with $(p") = ^(pO* But

then q = ^{p") G ^(Reach{p, 5)).

Conversely, assume (5.15) holds. Let q G Reach{p^S) and $(p') = ^(p). Then

m ^

$(i?each($~^($(p)),5)) = ^{Reach{p', S)) and there exists q' GReach{p\S) with ^{q) =

^(9'). D
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Consistency does not place any conditions on which element of the final equivalence

class the system will be steered to. In some hierarchical systems, this may be acceptable as

the high level system Sff may be interested in its command having a feasible execution by

Sm without being interested about the particular state of Sm as long as it steers it to the

correct equivalence class. This form of generalized output controllability is now defined.

Definition 5.18 (Macrocontrollability). Let S = {B,F) be a control system on M and

let^ : M —> N be a smooth surjection. Then S is called macrocontrollable iffor allp G M

and any q £ N there exists an trajectory of S connecting p to somep' £ M with ^{p') = q.

By combining the notions of implementability and consistency, we can propagate

some controllability information from the coarser system Sn to the more detailed system

Sm-

Proposition 5.19 (Macrocontrollability Propagation). Consider control systems Sm •

(BmjFm) o.nd Sn = {BN,F]\f) which are ^-related with respect to the smooth surjection

$ : M —> N. Assume that Sm Is an implementation of Sn, and Sm is consistent. Then

Sm is macrocontrollable if and only if Sn is controllable.

Proof. Let p e M and q e N he any points. Let qo = ^(p). Since Sn is controllable,

there exists a trajectory of Sn connecting qo and q. Since 5m is an implementation of

Sn, there exists a trajectory of Sm connecting some pi G$~^(go) and some p2 €
Moreover, since Sm is also consistent, there is a trajectory of Sm connecting p to somep'

with = $(P2) = Q- Therefore, Sm is macrocontrollable. The other direction follows

easily from Theorem 5.13. •

In order to propagate full controllability firom 5m to Stv, we need a stronger notion

of consistency which would be independent from the elements chosen firom both the initial

and final equivalence class.

Definition 5.20 (Strong Controllability Consistency). Let5m = (Bm,Fm) be a con

trol system on M and $ : M —> N a smooth surjection. Then Sm is called strongly con

sistent with respect to $ whenever the following holds: if there exists a trajectory of Sm

connecting p and q, then for allp' andfor all q^ such that $(p) = ^(9) =

exists a trajectory connectingp' to q'.
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Definition 5.20 is weaker than the notion of in-block controllability of [25, 26] as

it does not restrict the system to remain within the equivalence class in order to steer fi*om

one element to another in the same class.

Proposition 5.21 (Strong Consistency Condition). Consider control system S = (5, F)

on M and the smooth surjection $ : M —¥ N. Then S is strongly consistent with respect

to $ if and only if for all p € M,

Reach{p,S) = $-i($(jReoc/i($-i(^(p)),5))). (5.16)

Proof. The inclusion Reach{p,S) C $"^($(Heoc/i($~^($(p)),5))) always holds. Let

q 6 $~^($(i?eac/i($~^($(p)),5))). Then there exists q' € i?eac/i($~^(^(p)), 5) with
= $(g). Let p' G ^~^(^(p)) be such that q' € Reach{p\S). Since ^{q) = ^(q')

and $(p) = strong consistency implies q GReach{p^ S).

Conversely, assume (5.16) holds. Let q G Reach{p,S) and p',q' be such that

^{p') = $(p), ^iq') = ^{q)' Then

q'G^-H^Q)) Q ^-HHReachip.S)))

C $-i($(i2eac/i($-H<&(p)),'5)))

= ^-H$(i2eac/i($-^($(p')),5)))

= Reach{p\ S)

Therefore, S is strongly consistent. •

Since strong consistency is a more restrictive notion, it is natural that condi

tion (5.16) is stronger than condition (5.15) for consistency.

Proposition 5.22 (Controllability Equivalence). ConsidercontrolsystemsSm = {Bm^Fm)

and Sn = (Bn^Fn) which are ^-related with respect to smooth surjection $ : M —¥ N.

Assume that Sm is an implementation of Sn, and Sm is strongly consistent. Then Sn is

controllable if and only if Sm is controllable.

Proof. Let pi,P2 ^ Af any points. Let qi = ^(pi) and q2 = ^(P2)* Since Sn is controllable,

there exists a trajectory of Sn connecting qi smd 92- Since 5m is an implementation of

Sni there exists a trajectory of Sm connecting some p'l G^~^{qi) and some p2 G$"^(92)-
Then, since Sm is strongly consistent, there is a trajectory of Sm connecting pi to p2- The

other direction is given by Theorem 5.13. •
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In this section we identified the relevant notions for the study of controllability

in ^-related systems. We also described them for arbitrary systems in terms of reachable

sets. In the following sections we give concrete characterizations of these concepts for linear

systems. Moreover, we show how to use them to construct explicit ^-related systems with

the desirable properties.

5.4 Consistent Linear Abstractions

The notion of ^-related control systems is now specialized for the case of linear,

time invariant systems with linear aggregation maps. Consider the linear control systems

(51) x = Ax-\-Bu

(52) y-Fy + Gv

with X ew,u eR^.y ^ W, v A e B e F € G 6

and the surjective, linear aggregation map y = Cx. Then by Definition 5.8, Si and S2 are

C-related if for all a; € R", and ueRl' there exists v € Rf such that

C{Ax + Bu) = FCx + Gv (5.17)

By Proposition 5.9, given any control system and any map there always exists another

control system which is ^-related to it. We axe interested, however, in a constructive

methodology for generating ^-related systems. The following proposition gives us a sys

tematic way to generate C-related linear abstractions of a linear system with respect to a

linear aggregation map y = Ox.

Proposition 5.23 (Construction of Linear Abstractions). Consider the linear system

(El) x = Ax-\-Bu

and a surjective map y = Gx. Let

(S2) y = Fy-\-Gv

be the system where

F = CAC+

G = [GB CAvi ... CAvr]
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with C"^ a left pseudoinverse of C and spanning Ker(C). Then Si and S2 are

C-related.

Proof. We need to show that for all a; € K" and n € , there exists v G such that

C{Ax + Bu) = Fy + Gv or equivalently

Gv = CBu + {CA-FC)x

Clearly, CBu belongs in the range of G for all u. Decompose K" = Ker(C) ©Ker{C)-^. If

XGKer{C)-^ then C^Cx —x and thus

{CA - FC)x = {OA - CAC-^C)x = 0

If a; G it'er(C7) then {OA —FC)x = CAx which also belongs in the range of G. •

It is immediate from Proposition 5.23 that an abstraction of a linear system with

respect to a linear aggregation map can also be a linear system. Proposition 5.23 is inter

esting as it constructively generates for linear systems the so called virtual inputs used in

backstepping designs [56]. In particular, if the aggregation map is a projection on some of

the states, then the states that are ignored appear as inputs at the abstracted system. As

another special case, suppose that Ker(C) = Im(B). Then we can t£ike as vi, ... , Vr the

columns of B. The input vectors for S2 are the images under C of the vectors Avj, which

correspond to the next r vectors in the controllability matrix of Ei. That is, the image

under C of the first order Lie brackets of Ei become the new input vectors for E2. The

following example illustrates the proposition.

Example 19. Consider again the double integrator

X\ = X2

X2 = u

and the projection y = xi. Then Ker{C) = span{[0 1]^} and the procedure of Proposi

tion 5.23 results in F = 0, G = 1, so

y = V.

Now consider the dynamics of the oscillating vector field

Xi = X2

X2 = —Xi
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with the same projection map y —x\. Then Proposition 5.23 results in the same control

system (or better, differential inclusion)

y = V

The fact that the coarser system may have control inputs, even though the original one did

not, is clearly undesirable. However, as will be shown, this will be taken care of by the

notion of consistency.

Prom linear systems theory we know that for the Unear system

(El) x = Ax + Bu

the reachable space from any xq € R" is given by

fieac/i(a:o,Si) = [J +-Reach(0,Ei) = + 72.(^4, H) (5.18)
T>0 T>0

where

n(A,B) = Im[B AB ... A'̂ '̂ B]

is the reachable space from the origin. In particular, system Ei is controllable if and only

if 72.(^4, jB) = E". As a corollary of Theorem 5.13 we obtain the following result.

Theorem 5.24 (Controllability Propagation for Linear Abstractions). Consider the

linear systems

(El) x = Ax-\-Bu

(E2) y-Fy + Gv

which are C-related which respect to the surjective map y = Cx. Then

Cn{A,B) cn{F,G)

In particular, t/ Ei is controllable then E2 is controllable.

Proof. Simple application of Theorem 5.13. •

In order to propagate controllability from the linear system E2 to Ei, the notions

of implementability and consistency where defined in Section 5.3.
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Proposition 5.25 (Implementability Characterization for Linear Systems). Consider

two linear systems

(El) x —Ax + Bu

(S2) y —Fy + G'v

and surjective map y = Cx. Then E2 is implementahle Ei if and only if for all y we

have

Ue"'s/ +7e(F,G)C U y Ce'*'̂ x +C1l{A,B) (5.19)
T>0 T>Ox€C-My)

Proof. Follows from Proposition 5.15 and Equation (5.18). •

The following theorem gives a simple characterization of consistency for linear

systems in terms of subspace invariance.

Theorem 5.26 (Consistency Characterization for Linear Systems). The linear sys

tem

(El) X = AxBu

is consistent with respect to the map y = Cx if and only if

AKer(C) C Ker{C) + 7^(i4, B) (5.20)

Proof. First notice that for any set V C K" we have C~^{CV) = V+ Ker(C).

Assume (5.20) holds. We must show consistency condition (5.15), which for lin

ear systems requires, for all x that C(Reach(x 4- iifer(C),Ei)) = C(Beoc/i(a;,Ei)), or,

equivalently

CIU +KeT(C)) +n(A, S) j = C( (J e '̂̂ x +11{A, B) j. (5.21)
\r>o / \t>o j

Clearly, CBeoc/i(x,Ei) C C(Beach(a; +A'er(C),Ei). Condition (5.20) and A-invariance of

TZ(Ay B) imply that for all T > 0 we have

e'̂ ^Ker{C) C Ker{C)+ 'R.(A^B) and therefore

Ce^'^Ker(C) C Cn{A,B).

This gives the other inclusion, proving consistency.



101

Conversely, assume that Ei is consistent. Let xq € Ker(C). From (5.21) with

a; = 0 we get for any T > 0 there exists r € B) such that Ce^^xo = Cr. Therefore,

e '̂̂ xo = a^o + r for some Xq GKer{C).

We have therefore shown that for all T > 0, e '̂̂ a;o 6 Ker(C) + 'R.{A^ B). By using

and taking limits as T -> 0 we conclude that Axq G Ker{C) + 7^(i4, B). •

Note that condition (5.20) is clearly weaker than the well known condition

AKer{C) C Ker(C) + 7^(B)

for Ker{C) to be a controlled-invariant (or (i4,B)-invariant) subspace.

Theorem 5.27 (Strong Consistency Characterization for Linear Systems). The lin

ear system

(El) x = Ax-\-Bu

is strongly consistent with respect to the map y = Cx if and only if

Ker{C) cn(A,B) (5.22)

Proof. Assume Ei is strongly consistent. Condition 5.16 for linear systems becomes

\Je '̂̂ x +Tl(A,B) = \Je '̂̂ (x +Ker(C)) +H(A,B) +Ker{C). (5.23)
T>0 T>0

Using (5.23) with a; = 0 gives TZ{A,B) D Ker(C).

Conversely, assume (5.22) holds. By A-invariance of 7^(A, B) we get, for all T > 0,

e'^'^Ker{C)cn{A,B).

This gives the inclusion

y +n{A, B) 2 U +Ker(C)) +H(A, B) +Ker{C).
T>0 T>0

The other inclusion always holds. •

Note that by the A-invariance of 7^(A, B), condition (5.22) is indeed stronger than

condition (5.20). Consistency conditions (5.20) and (5.22) are rather intuitive. Condi

tion (5.20) essentially says that whatever piece of Ker{C) is not A-invariant can be com

pensated by controls and their Lie brackets. On the other hand, condition (5.22) is a form
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of controllability within the equivalence classes. The trajectories of the system which con
nect two points ofthe same equivalence class (as defined by C) are not, however, restricted
to remain within the equivalence class. The following example illustrates the notions of
implementability and consistency.

Example 20. Consider the lineau: system (without controls) x = Ax^ where

0 1

0 0
a = [i 0]

and the C-related (one-dimensional) systemy = Fy + Gv^ where F = 0 G —1. We also

have

Ker{C) = span{[0 1]^} AKer{C) = span{[l 0]^} %Ker{C)

Therefore, the system Ei is not consistent. To show it is implementable we simply solve

the system explicitly. Notice that since y = v, any two points (of K) can be connected by

a trajectory of E2 in arbitrary positive time. Let 2/0? 2// ^ The curve

-2{t) =^
is a trajectory of Ei from [yo to [2// at time T. Therefore, E2 is imple

mentable by El. Notice, that ifyj ^yo there is not trajectory of Ei connecting [2/0 0]^ to
any point x with Cx = y/. The reason is that all the points [rci 0]^ are equilibria of Ei.

In order to propagate some form of controllability from S2 to Si, we need to

check two properties, namely implementability and (strong) consistency. Unfortunately,

Condition (5.19) is not easy to check since it involves the explicit integration of the differ

ential equation. However, condition (5.19) in conjunction withconsistency conditions (5.20)

or (5.22) results in checkable characterizations ofimplementations which are also (strongly)

consistent. To achieve this, we will need the following lemma.

Lemma 5.28. Let A (n x n), C (mxm), F (m x m) and G (m x I) be matrices with

I <m and G of full rank. If for all x {CA—FC)x G7?.(F, G), then for all t > 0,

(Ce^^ -e^^C)xen(F,G) .

In particular, the conclusion holds if A, F, are G are the corresponding matrices for the

C-related systems Ei and E2.
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Proof. We have the following identity for all <> 0

OO

Ce^A_gtFc = YJ,CAi-FiC)-^ . (5.24)
i=o

We prove by induction the statement

(Pj) VxeR" (CA^ -F^C)x€n{F,G)

It is clearly true for j = 0 and by hypothesis it is also true for j = 1. Assume Pj

holds for i <j. We can write,

- F^+^C)x = {CA^ - F^C)Ax + F^CA - FC)x .

By the inductive hypothesis applied to x and Ax^ {CA^ —F^C)Ax GTZ{F,G) and {CA —
FC)x G7^(F, G). But then F^GA-FC)x GHiF, G) for all j since 11{F, G) isF-invariant.

Therefore,

{CA^ - F^C)Ax + F^{CA - FC)x Gn{F,G) .

By taking the limit in (5.24) we conclude the proof. •

Theorem 5.29 (Implementability and Consistency Characterization). Consider the

linear systems

(El) x = Ax + Bu

(E2) if = Fy + Gv

which are C-related which respect to the surjective map y = Cx. Then E2 is implementable

by El and Ei is consistent if and only if

Cn{A,B) = n{F,G) (5.25)

In addition, E2 is implementable by Ei and Ei is strongly consistent if and only if

n{A,B) = C-\n{F,G)) (5.26)

Proof. Assume Cn(A, B) = 7^(F, G) and thus n{F, G) C Cn(A, B). Now let rc GKer{C).

By C-relatedness, there exists u G Kf such that CAx = FCx + Gv = Gv (using u = 0
and since C7x = 0). So, CAx G R(F,G) and by assumption, there is x\ G R(A,B) such

that Cxi = CAx. Therefore, Ax —xi G Ker{C) and Ax = Ax —x\ + x\ G Ker{C) +
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R(A,B). Thus AKer(C) C Ker(C) + 7Z(A, B) and Ei is consistent. We must now show
that condition (5.19) holds. Consider any

Pf = e^po + r}r GReach(po, S2) = (J e^po +R(F,G)
T>0

with r}r € 7l(F,G). By Lemma 5.28, we have that e^po = Ce '̂̂ XQ + Cr% for some
Tp G7^(i4, B), and for any xq with j/o = But then

Pf —Ce^^xo +r]r +rp —Ce^^xo + Cr^i G (J [J Ce^^x +C'R(A^ B)
r>Ox€C-Myo)

= C{Reach(C~^(po),'Zi))

for some 6 TZ{A^B) since TZ{F,G) C C1Z{A, B). Therefore S2 is implementable by Si.
For the converse notice that, since the systems are C-related, Proposition 5.24

implies 7^(F,G) D C1l(A,B). Moreover, the implementability condition (5.19) with y = 0
gives

n{F,G)c[jCe^'^Ker(C) + CH{A,B). '
T>0

And the consistency condition (5.21) with x = 0 gives

(J Ce '̂̂ Kerifl) CC'R.(A,B).
T>0

These two combined give 11{F,G) C C1l{A,B). This concludes the proof of the first

equivalence.

Now assume that IZiA^B) = C~^(72.(F, G)). Then CTZ(AjB) = R(F,G) and

therefore Si implements S2. Since 0 G72.(F, G) we also have Ker{C) C 7^(A, B). Therefore

Si is strongly consistent.

If Si is strongly consistent and implements S2 then Si is alsoconsistent and there

fore must satisfy G7^(A,B) = 7^(F, G). Therefore, R{A,B) C C~^{R{F,G)) = 72,(A,B) +

Ker{C). By strong consistency Ker(C) C 7i(A,B), and thus G~^(7?.(F,G)) C 7^(A,B).
Therefore C-^(n(F,G)) = n(A,B). •

We now have the main ingredients for propagating controllability fi:om the coarser

to the more complex model.
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Theorem 5.30 (Consistency and Implementability imply Controllability). Consider

the linear systems

(El) x = Ax-{-Bu

(E2) if = Fy-\-Gv

which are C-related system with respect to the surjection y = Ox. Assume that Ei im

plements E2, and El is consistent, that is CTl(A,B) = Tl(F,G). Then E2 is controllable

if and only if Ei is macrocontrollable. If in addition Ei is strongly consistent, that is

'R,(A,B) = C~^ifR{F,G)), then Ei is controllable if and only if 1^2 is controllable.

Proof. Same as the proofof Propositions 5.19 and 5.22. •

Thus, in order to propagate controllabilitybetween two linear systems, we have to

ensinre that the systems are C-related and check either condition (5.25) or (5.26) depending

on the notion of controllability that is needed. It is desirable to have a methodology for

constructing C related systems with the desirable properties. Fortunately, for the C-related

system constructed in Proposition 5.23, (strong) consistency implies implementability. In

order to show this, we will need the following lemma.

Lemma 5.31. Let A e W^^,B € and full rank C G be such that

AKeriC) Q Ker{C) + n(A, B)

and let F = CAC^. Then CTl(A,B) is F-invariant, that is

FCn(A,B) C Cn(A,B)

Proof. Let y = Cx ioi x e Tl(A,B) and consider

Fy = CAC+2/ = CAC-^Cx

Decompose x = x^ + x'̂ where GKer(C) and x" GKer{C)^. Then

Fy = CAC-^C(x'' a;") = GAx"" = CA{x - x*")

Since x G1l(A, B) and 11{A, B) is i4-invariant, we get that GAx GC1l(A, B). By consis
tency, there exist GKer(C) and G'R.{A,B) such that

GAx' = C(z" -H z") = Gz'' (5.27)

Thus CAx'̂ also belongs in C1l{A, B) resulting in Fy GCTl(A, B). •
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Theorem 5.32 (Consistency implies Implementability). Consider the linear system

(El) x = Ax-\-Bu

which is consistent with respect to the surjective map y = Cx. Let

(S2) y = Fy-\-Gv

be the system where

F = CAC+

G = [CB CAvi ... CAvr]

with C"^ o left pseudoinverse of C and t;i,...,Vr spanning Ker{C). Then E2 is imple-

mentable by Hi.

Proof. By Theorem 5.24 we have that 1l{F,G) D CTl(A,B) and thus weonly need to show

that n(F,G) C CTl(A,B). Let yj Gn(F,G). Then

yf^[GFG ... x (5.28)

for some x GM"*'. By an appropriate p£irtition ofx = [xi X2 ... Xm!^ we get

yj = Gxi + FGx2 + •••+ F'" ^Gxm (5.29)

It suffices to show that Tl{G) C CH{A, B) sincethen, by Lemma 5.31, we get that 7^(FG) C

Cn{A, F),..., 7^(F"*-lG) C Cn{A, B). Now consider

2/1 = Gxi = [CB CAvi ... CAvk\
X

= CBx\ + [CAvi ... CAvk] x\ (5.30)
XI

Clearly, CBx\ G(77^(^4, F). By consistency we have

AKer{C) C Ker{C) + 7l(A, F)

and therefore for i = 1,..., ^

Avi = «(+«[

for some d' 6 Ker{C) and v' 6 'R,{A,B). Thus

CAvi = + Uj) = Cvi

= C[BAB ...

(5.31)

(5.32)

(5.33)
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for some vectors qi of appropriate dimension. But then

[CAvi ... CAvk]xl = C[BAB... A '̂̂ B] [gi ... qk]x\

= C[BAB... Xl (5.34)

and thus Tt(G) € C%(A^B). •

As a result of the above theorem, if we use Proposition 5.23 to construct our

abstracted models, then consistency (or strong consistency) is the only condition on the

aggregation map that is needed to propagate controllability.

Theorem 5.33 (Consistency Implies Controllability). Consider the linear system

(El) x = Ax-\-Bu

and surjective map y —Cx. Let

(S2) if = Fy + Gv

be the C-related system where

F = CAC+

G = [CB CAvi ... CAvr]

with the pseudoinverse of C and vi,..., spanning Ker{C). If

AKer(C) C Ker{C) + n{A, B)

then E2 is macrocontrollable if and only if Ei is controllable. In particular, if

Ker{C)cn(A,B)

then El is controllable if and only if E2 is controllable.

Proof. Follows from Theorems 5.30 and 5.32. •

It is interesting to notice what happens to conditions (5.22) and (5.20) when the

linearsystem is a linear vector field and thus B = 0. In that case, condition (5.20) reduces

to

AKer{C) C Ker{C)



108

which, recall from Section 2.1, is the necessary and sufficient condition to obtain a well

defined quotient vector field. Therefore a consistent abstraction of a linear vector field

cannot have any control inputs (or cannot be a diflFerential inclusion). Condition (5.22)

reduces to

Ker(C) = {0}

and thus y = Cx must be an invertible linear transformation (since it is already surjective).

We will be t)rpically interested in consistent abstractions which are nontrivial^ in the sense

that some state space reduction is performed (thus Ker{C) ^ {0}), but the abstracted

system is also nontrivial {Ker{C) / R").

Corollary 5.34. Consider the assumptions of Theorem 5.33 and assume that 0 < rank{B) <

n. Then a nontrivial, strongly consistent abstraction always exists.

Proof. If rank(B) > 0 then we can always find a linear map C such that Ker{C) =

Im[B]. •

Theorem 5.33 and Corollary 5.34 are important as they show that a consistent

abstraction always exists as long as there are control inputs. In addition, the notions of

consistency are important from a hierarchical perspective as they provide good design prin

ciples for constructing valid hierarchies. For example, the condition for strong consistency,

Ker{C) C 'R{A,B), suggests that in order to ignore dynamics at a higher level (captured

by Ker(C)) then one would have to ensure the ignored dynamics can be accommodated at

the lower level.

As one imposes more restrictions on the matrix C further properties can be prop

agated from one system to the other. The following results show conditions under which

full trajectories can be implemented by the lower level system.

Theorem 5.35 (Trajectory Implementation). Consider two linear systems

(El) x = Ax + Bu

(S2) y = Fy-\-Gv

and the surjective map y = Cx. Assume x € R", j/ 6 R"* with m < n, and u G R*^ with

k < n. We assume B is of full rank. Let K —Ker(C), B = Im[B], Q —Im[G], and let

P denote the orthogonal projection from R"* onto OAK + CB. We make the following two

assumptions:'
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1. CAx = FCx for all x G (the orthogonal complement of K).

2. C-^((I-P)Q)CB

Then for every trajectory ?/(•) o/ E2 corresponding to a differentiable control there exists a

trajectory x(-) o/Si such that y{t) = Cx{t) for all t in the domain of i/(-).

Proof. Let y(-) be a trajectory of S2 corresponding to the control v. First wedefine Xa{t) =

C'̂ y{t) where is the Moore-Penrose pseudo-inverse ofC (C"*" = If z G/C

then

= z'̂ C'̂ {CC'̂ )-^y{t) = {Czf{CC'^)-'y{t) = 0.

Therefore, Xa(t) 6 for all t. Moreover, io(t) = C^yit) where y{t) = Fy{t) + Gv(t).

Let P denote the orthogonal projection from R"* onto CAK Let D be the

restriction of C on AK -I- B and let be its pseudoinverse. Define x{t) = D'^P{Gv{t)),

and therefore by construction we have that Cx{t) = P{Gv{t)) and x(t) G AK 4- B. Thus

thereexist X6(t) GK, and b{t) GB such that x{t) = Axb{t)-\-b{t). Since x(t) is differentiable

we may choose Xb(t) and 6(<) to be differentiable as well (using a suitable pseudoinverse).

Let x{t) = Xa{t) + Xb(t). Then Cx{t) = C{xa{t) + Xb{t)) = Cxa{t) = y(t) and in addition

Ox —C{Xa + Xb) = CXa —y = PV•¥ Gv = FCXa + Gv = GAXa + Gv

where the last equality holds by Assumption 1. Set z{t) = x{t) —Axa(t) —x{t). Then for all

t, Cz{t) = C{xa{t) + Xb{t)) - CAxait) - Cx{t) = CAxa{t) + Gv{t) - CAxait) - P{Gv(t)) =
(/ —P)Gv{t). By Assumption 2, for each t there is u{t) GR*^ such that z(t) = Bu(t). In
fact, we can take u{t) = B'̂ z{t) (here B+ = since k < n). Then if we let

x(<) = Xa(t) + Xb{t) we get x{t) = Ax(t) + Bu{t) and Cx(t) = Cxa(t) = y{t) for all t. •

Corollary 5.36. Let Si, S2, andC be as in Proposition 5.23. IfKer(C) C Im[B]j then for

every trajectory i/(-) 0/ S2 corresponding to a differentiable control there exists a trajectory

x(-) o/Ei such that y{t) = Cx{t) for all t in the domain ofy{-).

Proof. Set JC = Ker{C), B = /m[B], and Q = Im[G]. Since C'̂ Cx = x for x G /C-^,
Assumption 1 ofTheorem 5.35 is satisfied. Now G —\CB CAvi ... CAv,.], and since P

is the orthogonal projection onto CAK + CB, we get (7- P)g = 0. Then Assumption 2 of

Theorem 5.35 reduces to C"^(0) = Ker(C) C Im[B] which is our assumption. •
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5.5 Hierarchical Controllability Algorithm

In this section, we will take advantage of the results of Section 5.4 in order to

analyze the controllability of large scale linear systems. Theorem 5.33 enables us to have
a hierarchical controllability criterion which decomposes the controllability problem into a

sequence of smaller problems. Such an approach is numerically more efficient and robust
than the standard Kalman rank and Popov-Belevitch-Hautus (PBH) eigenvalue tests.

Conceptually the algorithm, starts with the linear system in question, and deter

mines the number oflinearly independent input vector fields. If this number iszero, then the

system is uncontrollable and the algorithm terminates. If the number of linearly indepen
dent inputs isequal to the number ofstates, thenthe system is trivially controllable and the
algorithm terminates as well. If thenumber oflinearly independent vector fields isless than
the number of states but greater than zero, then by Corollary 5.34 we can always find an

aggregation matrix C satisfying thestrong consistency condition Ker(C) C 7^(i4, B). Since
l7n[B AB ... A^B] C /m[B AB ... for any 0 < A: < n- 1, from a computational
standpoint, we can actually choose any matrix Csatisfying Ker(C) = Im[B AB ... A^B]
for 0 < A: < n - 1. If A; = 0, then the abstracted system essentially ignores the directions

spanned by the input vector fields (which are trivially controllable). As k goes up, we not

only ignore the directions of the input vector fields, but also their Lie brackets with the
drift dynamics. If A; = n —1 then the matrix C will ignore the whole reachable space.

After a consistent C matrix is determined, the construction of Theorem 5.33 is

used in order to obtain a system of smaller dimension with equivalent controllability prop

erties. We recursively apply the same procedure to this new abstracted system. Eventually,

by dimension count, either there will be no inputs left and the system will be trivially un

controllable, or there should be as many linearly independent inputs as number of states

in which case controllability follows trivially. Since at each step, the abstractions that are

constructed are consistent, then by Theorem 5.33, the outcome of the adgorithm at the

coarsest level will propagate along this sequence of consistent abstractions to the original

complex model.

Algorithm 5.37. (Hierarchical Controllability Algorithm)

1. Start with system x = Ax + Bu, A G 0 < A; < n —1

2. If rank{B) is
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• 0 : System is uncontrollable. Algorithm Terminates

• n : System is controllable. Algorithm Terminates

3. Find matrix C such that Ker(C) = Im[B AB ... A'̂ B]

4. Obtain new system matrices A, B of the abstracted system using Theorem 5.33

5. Return to 2

The higher the order of the Lie brackets (the larger k is), the fewer steps the algo

rithm will need to terminate. On the other hand, as k increases, the amount of computation

per step will be higher. Before we discuss computational and implementation aspects of the

above algorithm, we will demonstrate its application on various examples.

Example 21. Consider the linear system

Xi

1

0

0

1

Xi " 0 "

X = X2 = 0-10 • + 1

. .

_ 1 1 0 _ . ^3 . 0

u = A\x-^ B\u (5.35)

Since there is one linearly independent input field, we can find a consistent abstraction

satisfying

Ker(Ci) = Im[Bi] C /m[Bi AiBi A\Bx]

For example, we can choose

'100
0 0 1

The construction of Theorem 5.33, then results in

Ci =

A2 = C\A\Ci =
0 1 0

B2 =
1 0 1

(5.36)

Since B2 is nonzero and the number of linearly independent inputs is strictly less than the

number of states, we can obtain another consistent abstraction by choosing C2 = [1 0].

The resulting abstraction is

As = C2i42C^ = 0 Bs = l (5.37)
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At this point, the number of inputs is equal to the number of states and thus the pair

is trivially controllable. By consistency, the pairs (A2,jB2) and (Ai^Bi) are also

controllable.

There is a much more intuitive explamation of the sequence of steps taken above.

Note that the system started with the pair (i4i,Bi) and in the first iteration, we essentially

removed the dynamics of X2 (second row) firom equation (5.35) since they have direct con

nection to the input u. This results in the pair (A2, B2) where X2 can now be thought of as

an input. We re-apply the above procedure by now removing the dynamics of 0:3 (second

row of (5.36)) since they can be directly controlled by the new controls. This results in the

pair (AziBz) which is trivially controllable.

Example 22. Consider the linear system

Xi

1

0

rH
1

Xi
+

1
X = = •

X2 1 0 X2 1
u = Aix + Biu (5.38)

A consistent abstraction results by choosing the aggregation matrix

c, =[-l 1]

resulting in

A2 = CiAiC^ = 0 B2 = 0 (5.39)

Therefore, by Theorem 5.33, the pairs (^2,^2) and (Ai,Bi) are both uncontrollable.

In the case where we select A: = 0 in Algorithm 5.37, then we choose matrices C

satisfying Ker(C) = Im[B]. In this particular case CB = 0, and in addition the columns of

B span Ker{C). Prom a computational standpoint, it is advantageous to actually choose a

matrixC which not only satisfies Ker{C) = Im[B] but isalso a projection to Im[B]-^. This

reduces some of the computations of Theorem 5.33 and results in the following variation of

Algorithm 5.37.

Algorithm 5.38. (Hierarchical Controllability Algorithm)

1. Start with system x —Ax -\- Bu, A G

2. Ifrank{B) is
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• 0 : System is uncontrollable. Algorithm Terminates

• n : System is controllable. Algorithm Terminates

3. Find matrix C such that Ker{C) = Im[B]

4. Let A := CAC+, B := CAB

5. Return to 2

Intuitively, Algorithm 5.38 starts with the system in question and, since Im[B] is

in the controllable region, it chooses an abstraction matrix C which essentially projects the

system in a direction which is orthogonal to the space spanned by B. Thus the macroinputs

of the first abstraction are spanned by CAB, which are the first order Lie brackets of the

original system, projected on the orthogonal complement of Im[B]. Similarly, the second

abstraction will have as input vector fields the second order Lie brackets projected on the

orthogonal complement of both Im[B] and Im[AB]. Because of this selection of inputs

at each abstraction layer, we simply have to add the dimension of the span of the input

vector fields at each abstraction layer in order to obtain the dimension of the controllability

subspace. Prom the above discussion, it is also clear that, if the system is uncontrollable,

then the algorithm computes the uncontrollable part of the system since at eaoh iteration

we are projecting on the space orthogonal to parts of the controllablespace. The sequence

of abstracting maps can then be used in a straightforward manner in order to decompose

the system into controllable and uncontrollable subsystems.

We now focus on the implementation issues of Algorithms 5.37 and 5.38. For

simplicity, we consider Algorithm 5.38 ; Algorithm 5.37can be treated in a similar manner.

Proma computationalperspective, the twomain problems for implementing Algorithm 5.38

are: first, the construction ofa consistent aggregation matrix C satisfying Ker(C) = Im[B],

and second, given such a matrix, to perform the computations required for the construction

of a consistent abstraction. In order to tackle the first problem, we perform a singular value

decomposition decomposition on the matrix B. The n x m (n > m) matrix B with rank r

is decomposed as

B = = [Ui U2]
Sr 0

1

0 0

•

= UiSrVf (5.40)

where Sr is the r x r matrix of nonzero singular values. FVom the above decomposition

we immediately obtain that Ker(C) = Im[B] = Imp\] and we can therefore choose
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the abstracting map C = f/J'. In addition, C" = U2 and therefore the singular value
decomposition gives us for free the pseudoinverse calculation. Similar constructions are

used in the implementation of Algorithm 5.37. Of course, singular value decompositions

are computationally expensive. If speed of computation is of great interest, then QR type

decompositions couldbe used instead of singular valuedecompositions in order to accelerate

the algorithm. However, as is typical in such cases, this mayresult in a lessrobust algorithm.

The Matlab code that implements Algorithms 5.37 smd 5.38 can be found in Appendix A.

Various experimental, comparative studies were performed on a Matlab platform.

Given the dimension of the state and input space, random A, B matrices were generated,

and their controllability was checked using the Kalman rank condition, the PBH test and

Algorithm 5.38. Floating point operations were measured for each test, and the following

ratios
Floating Point Operations of Kalman or PBH Test

Floating Point Operations of Algorithm 5.38

are plotted as a function on state and input dimension in Figures 5.2 and 5.3. The plane

with ratio equal to one is also plotted. Whenever the unreliable Kalman rank test fails to

recognize a controllable system, the ratio is set to zero. Note from Figure 5.2, that the

Kalman rank test is more efficient for very low dimensional systems but Algorithm 5.38

is up to 15 times faster for most systems. In addition, the Kalman condition fails to be

reliable for systems with more than approximately 15 states. Figure 5.3 compares the PBH

test with Algorithm 5.38. Even though the PBH test is more reliable than the Kalman rank

condition, it is significantly slower than Algorithm 5.38 (up to 150 times for some systems).

In addition, it is well known (see [84]) that the PBH test is very sensitive to parameter

perturbations due to eigenvalue calculations.

The computational and conceptual advantages of Algorithm 5.38 are verified by

the £Ew:t that Algorithm 5.38 is identical to the controllability algorithm of [39], derived from

a purely numerical analysis perspective. In [39], the above algorithm is shown to be numeri

cally stable and is a stabilized version of the realization algorithm of [94] (Matlab command

CTRBF). Figiure 5.4 compares Algorithm 5.38 with the more general Algorithm 5.37 with

k = 1. Figure 5.4 clearly shows that it may be advantageous to use Algorithm 5.37 with

A; = 1 only in cases where the state dimension is much larger than the input dimension.



Figure 5.2: Comparison of Algorithm 5.38 and the Kalman rank condition

Nuffit*r ot Inputs

Figure 5.3: Comparison of Algorithm 5.38 and the Popov-Belevitch-Hautus test



Figure 5.4: Comparison of Algorithm 5.38 and Algorithm 5.37 with k = \

5.6 Conclusions

In this chapter, we considered a notion of control system abstractions which axe

typically used in hierarchical and multi-layered systems. This was achieved by generaliz

ing the notion of 4>-related vector fields to control systems. This notion mathematically

formalizes the concept of virtual inputs used in backstepping designs [56]. The notions of

implementability and consistency were then defined in order to propagate controllability

from the abstreicted system to the more detailed one. These notions were completely char

acterized for linear systems, and the easily checkable conditions allowed us to construct a

hierarchical controllability algorithm for linear systems.

The fact that the hierarchical framework developed in this paper places a geo

metric and conceptual framework on the best of the known controllability algorithms from

numerical lineax algebra, is strong evidence that hierarchical decompositionsof control prob

lems are indeed reducing the complexity of control algorithms. It is therefore worthwhile

pursuing this direction of research for more general classes of systems (nonlinear) as well as

for other properties of interest (stabilizability, optimality).



117

Chapter 6

Conclusions

Next generation large scale systems have motivated us to think of a new control

paradigm. As a result, there is a clear need for new modeling frameworks accompanied

by powerful analysis and design tools. Hybrid systems, which combine discrete event and

continuous dynamics, offera solution to the modeling challengesfaced by system engineers.

This dissertation has focused on the modeling and analysis of hierarchical, hybrid systems.

One of the most important problems for safety critical, hybrid systems is the reach

ability problem which asks whether some imsafe region is reachable from an initial region.

Computer aided verification is the main computational approach for formally checking that

the system avoids an undesired or unsafe region of the state space. Due to the infinite

cardinality of the state space, the decidability of these reachability algorithms is extremely

important. Even though state of the art hybrid automata with a decidable reachability

problem, rectangular hybrid automata, are expressive enough to capture and verify real

time software and hardware properties, their modeling power from a control perspective

was rather limited. Chapter 3 shows that the conditions for converting rectangular dif

ferential inclusions to constant, decoupled differentiaJ inclusion are very restrictive. This

severely limits their applicability to systems with complex continuous behavior.

This negative result inspired the work presented in Chapter 4 in an effort to

expand the known decidability frontier to capture hybrid systems with more sophisticated

continuous dynamics. In this endeavor, very recent results in o-minimal theories from

mathematical logic, allowed us to show that all hybrid systems whose relevant sets and

continuous flows are definable in an o-minimal theory admit finite bisimulations. This

result was then immediately used in order to extend the decidability frontier by capturing
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classes of hybrid systems with lineax dynamics in each discrete location. The importance of

these results is immediately clear given the wide applicability of linear systems in control

theory.

Chapter 5 takes the next step for analyzing large scale systems by tackling com

plexity. Complexity has usually been reduced by hierarchical structures, where higher levels

of the hierarchy utilize coarser models or abstractions of the system resulting by aggregating

the detailed lower level models. Even though the notion of system abstraction is mature in

the computer science community, no such notion exists for continuous systems. Chapter 5

presents the first formal approach to abstracting continuous control systems. Furthermore,

hierarchies of linear systems which are consistent with respect to controllability objectives

were characterized. This immediately resulted in a hierarchical controllability algorithm for

linear systems from which the best known controllability algorithm from nximerical linear

algebra was recovered. This was strong evidence that hierarchical decompositions of control

problems are indeed reducing the complexity of large scale control problems.

As the field of hierarchical, hybrid systems is young there are many more questions

than answers. As a result, there are many fundamental and interesting issues for further

research.

• Modeling: We need to identify classes of hybrid systems which, in addition to being

expressive, must also have enough structure to be amenable to analysis. Notions of

existence, uniqueness, continuity of solutions, and robustness need be reconsidered in

a broader context. Furthermore, the issue of zenoness, systems with infinite switching

in finite time, must be resolved in order to have robust models. Also modeling frame

works must be equipped with appropriate compositional and abstraction operators in

order to tackle complexity issues.

• Verification: The decidability results of Chapter 4 enable us to start building a

verification tool for reachability computation of linear hybrid systems. The heart of

this tool will be a quantifier elimination engine. This tool will the first one of its kind

that will have both the ability to handle a reasonable number of discrete states as

well as linear dynamics in each location. The abilities of this tool will be enhanced

as we discover more classes of decidable hybrid systems, in particular, hybrid systems

with more general switching behaviors and linear dynamics with control inputs and

disturbances.
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• Controller Synthesis: Asquantifiereliminationwith parameters is possible, the tool

willalso have the ability to perform controllersynthesis for linear hybrid systems. The

tool can determine ranges of parameter values for either control inputs or switching

surfaces for which the system is guaranteed to be safe. This will allow us to construct

hybrid systems which are safe by design, as opposed to verifying completed designs.

• Simulation: Even though verification is applied to high level mathematical abstrac

tions of the original system, simulation is needed for model validation purposes. Even

though hybrid simulators are currently available, there are no theoretical guarantees

that the simulated trajectories are feasible in the original system. Results that deter

mine optimal time steps so that switching surfaces are not missed but also minimize

integration time are needed to in order to gain confidence in simulation results. In the

presence of multiple time scales, this problembecomes even harder. The combination

of verification and simulation tools is also a very important issue as there limits to

both sides.

• Hierarchical Control: The results in Chapter 5 enable the development of an open

loop backstepping methodology which, given a sequence of consistent abstractions

would recursively generate the actual control input, by first generating a control in

put for the abstracted system and then recursively refineit as one adds more modeling

detail. Nonlinear analogues of the results of Section 5.4, will provide a hierarchical

controllabilityalgorithm for nonlinear systems which may be moreefficient and robust

from a symboliccomputation point of view. Many other properties are also of interest

and will be investigated both for linear and nonlinear control systems. For example,

obtaining consistent abstractions for nonlinear systems with respect to stabilizability

would essentially classify all backsteppable systems. Other properties of interest in

clude trajectory tracking, optimality and the proper propagation of state and input

constraints.

Last but not least, the above research must be motivated by, and applied to

meaningful large scale systems, like automated highway systems, air traffic msmagement

systems, fiight management systems, communication and power networks.
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Appendix A

Appendix

A.l Implemetation of Algorithms 5.37 and 5.38



funct ion [controllable]=HCA(A,B,k,tol)
«:|t 4c* Itc 4c4c a|c Xt« )((4c« 4citE♦ 4t #

Hierarchical Controllability Algorithm 5.37

Required Inputs : System Matrices A,B*
Integer 0<= k <= n-1 (k=0 is Algorithm 5.38)

Optional Inputs : Tolerance threshold tol (used for rank coii5)utation)
4̂c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c

n=size(A,l);

if nargin == 3
tol = n*norm(A,l)*eps;

end

r = rank(B,tol); %*** Dimension of input space
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while ( (n>r) & (r>0) ),
1 = min(k,n-l);

W = B;

for j=l:l,
W = [B A»W] ;

end

[U,S,V] = svd(W);
m - rank(S,tol);

U1 = U(:,l:m) ;

*/,4c4c4c If inputs exist and are less than states

%*** Ignore Lie brackets higher than n-1
y,4c4c4c Compute [B AB ...A*kB]

end

if

7,4c4c4c Obtain consistent matrix C

y4c4c4c Obtain consistent abstraction

U2 = U(:,(m+l):n) ;

C U2';

B s C»A*U1; y4c4c4c

A = C*A*C';

n = size(A,l) %4c4c4c

r =S rank(B,tol); •^4c4c4c

(n==r)

elseif (r==0)

end

controllable=l;

controllable=0;



function [controllable]=HCA(A,B»tol)

Hierarchical Controllability Algorithm 5.38

Function Call : HCA(A,B,tol)

Required Inputs : System Matrices A,B
Optional Input : Tolerance threshold tol

n=size(A,l);

if nargin == 2
tol = n*norm(A,l)*eps;

end

y^*** Dimension of input space
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[U,S,V] = svd(B);
r = rank(S,tol);

while ( (n>r) k (r>0) ),
U1 = U(:,l:r) ;

U2 = U(:,(r+l):n) ;
C = U2';

B = C*A#U1;

A = C*k*C';

n = size(A,1);

[U,S,V] = svd(B);
r = rank(S,tol);

end

if (n==r)

controllable=l;

elseif (r==0)

controllable=0;

end

7,#** If inputs exist and are less than states
•/,♦*♦ Obtain consistent matrix C

%**♦ Obtain consistent abstracted system

Dimension of abstracted system

Dimension of macroinputs
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