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Abstract

RtR Control inSemiconductor Manufacturing

by
John Musacchio

Electrical Engineering and Computer Sciences
University of California at Berkeley

Professor Costas J. Spanos, Advisor

Run to Run (RtR) control uses data from past process runs toadjust settings for the

next run. By making better use ofexisting in-line metrology and actuation capabilities, RtR

control offers the potential of reducing variability in semiconductor manufacturing with

minimal capital cost.

This thesis reviews the basic techniques of RtR control, and connects these tech

niques to concepts in estimation theoiy. New RtR control techniques are developed, and

theadvantages of both the new and existing techniques is discussed. Thethesis concludes

with a case study of RtR control for DUV lithography. In this study, a RtR control archi

tecture is developed using novel metrology, and its performance is evaluated via simula

tion.
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Chapter 1 Introduction

1.1. Background and Motivation

As integrated circuit producers are driven toward flner linewidths and feature sizes,

there is a compelling need for the reduction of variability in semiconductor manufacturing

processes.

Almost always, this need has been met by expending considerable effort in the

design of processes that are very stable, by isolating environmental effects and designing

processes that are insensitive to drifts in equipment performance and incoming wafer char

acteristics. Processes are then run with fixed recipes, and only occasionally are retuned by

processing wafers with test patterns.

An alternative approach, and one that is receiving increasing attention in academia

as well as industry, is theuseof feedback control to reduce product variability. Various pro

cesses have been studied in this context. See for exampleRapid ThermalProcessing (RTP)

[1], Reactive Ion Etching [2], and I-line lithography [3].

Feedback control uses measurements during processing to adjustrecipesettings to

counteract processdrift. This requiresa rudimentary process model, metrology, and actua

tion capability. In RtR control, recipe settings are adjusted for a given wafer based on the

measurementstaken from previous wafers. This approachdoes not require real time actu

ation, is minimally intrusive to theprocess, andcanuseexisting in-line metrology; though

some processes may require additional in-line metrology for the use of RtR control.

One of the most compelling studies of RTR control was performed at a Motorola

microprocessor manufacturing facility [4]. The facility implemented RTR control in the
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lithography sequence and significantly reduced CD variability. The reduction allowed

Motorola to targeta smaller CDwithout jeopardizing yield. As a result of theperformance

improvement from smaller linewidths, more circuits tested into the more lucrative, high

speed bins.The enhanced revenue from producing faster processors offset the $600 thou

sand initial cost of control implementation in just a few days of operation.

Other encouraging studies of the utility of RtR control have been performed for

chemical mechanical polishing (CMP) [5], and silicon epitaxy [6].

1.2. Report Objective

There are many ways one can design a RtR controller, and indeed many different

types of RtR control algorithms have been developed and implemented both in industry and

academia. The algorithms can be divided into three broad classes, those rooted in Estima

tion theory. Statistics, and Artificial Intelligence. In this work, we focus on methods based

in estimation theory, partly because these methods are most amenable to a general analysis

whereas methods of the other broad classes must usually be studied on a case by case basis.

In this work, we attempt to understand the theory underlying estimation theory

based algorithms, explore the similarities and differences between methods, and conclude

with some insights on how one might design and analyze a RtR control method for a par

ticular problem. Our study is conducted using analysis based in estimation theory, simula

tion, and experiment.

1.3. Organization

We begin by reviewing the types of process models often used for RtR control, and

also develop models for how the behavior of processes drift over time. Next, in Chapter 3,

we survey the principles of estimating random process, as this theory is essential in under

standing the connections and differences of RtR control methods. In Chapter 4, a survey of

existing RtR control methods is presented, focusing on how each method is rooted in basic

estimation theory. In chapter 5 we study RtR control in the context of a specific example,

DUV Lithography. We examine previous work in controllers implemented on a lot to lot

time scale, and then develop, using experimental results, a strategy for RtR control at a
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wafer to wafer time scale. Via simulation we analyze our design. Finally Chapter 6 sum

marizes our findings from our simulation and experimental study, makes some rermarks

about the design of a RtR control strategy, and outlinesdirections for future research.
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Chapter 2 Models

RtR control requires a model ofhow the output of process is related to inputs, which

can include process settings and incoming wafer characteristics. Often it is not necessary

to have an extremely accurate or detailed model. Control strategies involve making modest

adjustments to input settings to counteract drifts in process behavior. Consequently, first-

order sensitivies are all that is required for control.

In this section, we outline the basic form of process model that will be used in our

study of RtR control. A DUV lithography model will serve as a running example to illus

trate our development. Just as important as process models in RtR control, drift models are

developed, and again DUV lithography will serve as an example. As will be demonstrated

later in this report, the behavior of the process drift is the key factor determining the appli

cability of a RtR control method to a process. A schematic illustrating the structure of our

process and drift models is shown in Figure 2.1

2.1. Inputs

There are two types of inputs that we will refer to in the context of RtR control. The

first type of input, a control inputs is an equipment setting that we plan to adjust either on

a wafer to wafer or lot to lot basis. In DUV lithography RtR control, one might consider the

exposure dose as a control input. The second type of input includes environmental factors

or incoming wafer characteristics that are both measured either on a wafer to wafer or lot

to lot basis, and whose effect we wish to cancel by adjustments in other inputs. For exam

ple, the reflectance of an incoming wafer may be considered as an input in DUV lithogra

phy, and its value used to adjust the exposuredose. Inputs of this second type we will refer
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to as feed-forward inputs. The input vector containing both types of inputs refer to as

simply ''the inputs

Recipe

Parameter Drift Offset Drift Measurement

h Noise, ej^

RtR Control

Generate using ...

Figure 2.1. Conceptual Schematic of RtR control.

2.2. Outputs

The output of a process is the wafercharacteristic(s) that we wish to regulatewith

RtR control. In DUV lithography, the output might be critical dimension (CD). Sometimes

we will make the distinction between the true output ~ the actual value of the wafer char

acteristic, and the measured output —the value measured which may include some amount

of measurement error.

2.3. Process Model

The process model is the relationship betweenthe inputand the output.For the pur

poses of RtR control. The process model for should be relatively simple and should only

consider a modest number of input and outputs. For example a complicated FEM model for

simulatingphotoresistprofiles wouldbe too complicatedto use in RtR control,but perhaps

could be used to help build a simpler relationship between CD and a few selected control

inputs like exposure dose and focus offset.

10
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Ideally, the form of the process model should be based on a physical understanding

of the process, and the parameters of the model obtained by fitting it to experimental data.

In almost all cases, the model one arrives at is affine, and can be put into the following

form.

yk=^k'*k-^h (2.1)

Here k is the wafer index, Uf^ the process input (both adjustable and feed-forward), and

the true output. Throughout this report, lower case letters will denote vectors and uppercase

letters matrices. As is the case in nonlinear regression models, uj^ may contain nonlinear

functions of the original inputs. When the nonlinearities are invertible, no generality is lost

in using form (2.1).

The input - output relationship can vary over time. For example, the ageing of a

stepper*s light source may change the required exposure setting for achieving a certain lin-

ewidth. One can account for this drift in behavior by making the model parameters and

bf^ functions of k. When the term varies with k, we say the process undergoes parameter

drift. If the bf^ term varies in time, the process is undergoing offset drift. It is important to

note that a process undergoing offset drift alone maintains a constant sensitivity to its input.

Measurement noise is an important issue in the study of RtR control. We model the

noise encountered in measuring as

Vk = yk (2-2)

where e/^ is a random variable. Usually we will assume is white noise (independent from

one wafer to the next, has a Gaussian distribution, and has zero mean.)

4*

2.4. Drift Models

As is discussed in Section 2.3, the input-output relationship of a semiconductor

manufacturing processcan drift overtime, andthe driftcanbe modeledby allowingAj^ and

bf^ of Equation (2.1)to varyas a function of thetime.Recall thatdrift in is calledparam

eter drift, while drift in bi^ is called offset drift. A modelfor this drift should capture both

the variance, as well as the amount of autocorrelation in each drifting term. The most con

venientmethod for modeling the drift is to use a discrete stochastic process.

11
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Obtaining a good drift model canbechallenging. One can notmeasure every term

of and bj^ at every run, making it difficult to compute the drift statistics. However, by

performing multiple modeling experiments, and applying some physical understanding of

the sources of process variability, one often can approximate the variance and autocorrela

tion of the drift.

2.4.1. An Example of Drift Modeling

Suppose we are modeling the drift of a DUV lithography process. There are two

inputs: exposure dose, andreflectance of the incoming wafer, M2it» andoneoutput,

pre-etch CD. Suppose our beginning model is [7]

[Ao| fco] = 0.16^m| 0.553 (iml (2.3)
We will assume that the values of the Ajt and coefficients drift randomly, with

mean equal to the their initial values defined in (2.3). From historical data, we expect the

sensitivity to exposure dose, and the sensitivity to reflectance to vary with a standard devi

ationof 0.0002 . and0.002 pm respectively. The offsetterm,bj^ weanticipate will vary

with a standard deviation of 0.0005 pm. Finally, we anticipate the drift in each of these

three terms to not have any cross correlations. We define a random vector of deviations,

«•*= (2-4)

which has a desired covariance of.

=

0.0002 0 0

0 0.002 0

0 0 0.0005

(2.5)

Now suppose we believe that the sensitivity to exposure dose and the offset term

will vary slowly ~ with the correlation coefficient between successive runs being about

0.98 for each term. The autocorrelationof the sensitivityto reflectancewe expect to be less,

say 0.90. Using this data, we define the discrete stochastic process

+l (2-6)

12
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where is a randomvectorof dimension 3 withidentity covariance, andF is definedto be:

F =

0.98 0 0

0 0.90 0

0 0 0.98

(2.7)

Equation (2.6) says that each drift term is 0.98 or0.90 times the previous drift term plus a

random innovation. Gdetermines the size ofthe innovation ateach time step. As long as F

isastable matrix (all eigenvalues inside the unit circle). The covariance of will assymp-

totically approach a fixed covariance matrix. Wecanforce thislimiting covariance matrix

to be our "desired" covariance by choosing G to be:

a = JK^-FK^* (2.8)

Finally, If we initialize the recursion (2.6) by defining Oq to be a random vector

with covariance will have the covariance matrix independent ofk.

Though it is impossible tocreate a stochastic model thatperfectly describes thedrift

in a realprocess, a stochastic driftmodel thatcaptures at leastthefirstorderstatistics of the

drift will prove to be extremely useful in RtR control design. Stochastic driftmodels will

also be vital in understanding the theory underlying RtR control methods, and for testing

designs in simulation.

2.4.2. Exclusively Offset Drift Models

As wesawin theprevious example, developing a process drift model thatincludes

both offset and parameter drift can involve a lot ofguess work. The problem ofdrift mod

eling becomes significantly easier to base on historical data when one models all ofthe pro
cess drift as a change in the offset term alone. Though the process drift may not truly be

restricted to theoffset term, wewill show in Chapter 4 thatunder certain conditions on the

process and controller, the RtR control performance is insensitive to whether one assigns
process drifts to the bi^ or terms.

Suppose we have ahistorical data record containing aseries ofprocess inputs {
and process outputs {y/.}. Then tobuild the drift model, simply compute the residuals =

yk'Aukwhere Aisfrom our process model and isfixed. Now the problem isto model the

13
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signal bj^ as coming from a linear system driven by white noise. This isa standard problem

in signal processing and system identification and there are a wide range oftechniques [8]

[9]. Oneof the most straight forward methods of building the driftmodel would be to find

annth order Auto Regressive (AR) model byregression onthe bj^ data.

14
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Chapter 3 Estimation Principles

Almost all RtR control algorithms recursively estimate parameters in a process

model, and then invert this model to find a recipe that should produce the desired output.

Therefore, estimation theory is essential for a complete understanding of RtR control. In

this chapter, we review the principles of estimation.

3.1. Linear Least Squares Estimation

To avoid confusion between a random variable and a particular sample value, we

denote random variables with bold face letters. This distinction is suspended in subsequent
chapters.

Suppose we have two correlated random vectors x and y. We observe a sample
value ofy, denoted y, and with this information we would like to make an estimate of;c,

which we will call x(y). In linear least squares estimation, jc(y) isrestricted tobean affine

function of y, which has form:

Hy)=Hy + 8 (3.1)
The values of and g are determined by first defining a cost function to be the

expected Euclidean distance between theestimate Jc(y) and x.

COST = E[|x(y)-*|̂ ] (3.2)
Note that in(3.2) we regard the estimate itself tobea random variable, because it isa func

tion ofthe random variabley. The values ofH and g used are those that minimize theabove

cost function, and can be found by differentiation of (3.2) [11]. After one caiys out this pro
cedure, the linear least squares estimate (LLSE) is found to be

15
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i(j')= K^y(y-my)-¥m^ (3.3)

where Ky is the covariance ofj", &m,, are the means ofx and and AT-, is the cross-

covariance ofxandj', E[(jc -rriy) (y -my)\

It can be shown that when x andy arejointlygaussian, [3.3] is thebestestimator in

terms ofcostfunction (3.2) among allforms ofestimators, affine or otherwise [12]. In this

case, theestimate Sc(y) is equal to theconditional expectation, E[xly].

Whether x andy arejointlygaussian or not, the covariance of the estimation error,

E[|̂ (y) - x\^] has the value:

(3.4)

When X, and y are jointly gaussian, the covariance of the estimation error condi

tioned on a particular observed sample value, is the same as the unconditioned estimation

error covariance.

ELIEExIji] -Arf Ij- =y] =K^-K^K'̂ Ky, (3.5)
However, in thegeneral casewhere when x andy are notjointlygaussian, the cova

rianceof the estimation errorconditioned on sample valuey willdepend on whichvalueof

y is observed.

3.2. Wiener Filtering

The problemformulation of the Wienerfilterbeginsby assuming that we have two

jointly wide sense stationary random processes {yj^} and {xj^}. Recall that wide sense sta

tionary processes have means that are independent of time, andautocorrelations that only

depend on the time lag. A pair of jointlywide sense stationary processes are individually

wide sense stationary and have a crosscorrelation function that depends only on the time

lag.The WienerFiltering problem is to find an LTI filterwith impulse response {hj^, that

minimizes the cost function

\

-^k
Vn = -oo J

16
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The solution is obtained by solving theWiener-Hopf equations

''xy(') = X f'k'-yi.'-k) (3.7)
Jk = -oo

where is the autocorrelation of the process {y^} and rxy(m) is the crosscorrelation of{jc^}
with defined as E[x(n) y(n-mf]. (3.7) can be derived by taking complex gradients of
the cost function and setting them to zero. Obviously a filter used for on-line estimation

mustbe causal, so we mustadd the restriction that vanishes for it< 0. With this restric

tion, the Wiener-Hopfequations become

'•x/O = X (3.8)
Jfc = 0

For many problems, (3.8) has no closed form solution. However for the problems we will

be applying (3.8) to, we will be able to find solutions using z-transform techniques.

3.2.1. Causal Wiener Filtering based on Power Spectra

Suppose the power spectrum of \yj^] can be expressed as a rational z-transform

Syiz). Then the Sy(z) can befactored into the following form [13]:

5/z) =a^G(^)G*[lj (3.9)
where G(z) is causal, stable, minimum phase (has all zeros in the unit circle) and monic (has
impulse response with g(0) = 1). G(z) has the interpretation of being a synthesis filter,
because the process {y^^} may be created by passing white noise with variance a^v through
G{z). The white noise used as the input to the synthesis filter is called the innovations pro
cess, because each sample of the innovations process represents the new "information"

about the {yj^} process that the synthesis filter could not infer from past information. Thus,
2 . . 'G VIS calledthepowerof the innovations process.

Now suppose we are given {yj^} and wish to fmd the innovations process, which we
call {vjj.}. This may be accomplished simply by passing {yj^} through the filter, G"'(z).
which we denote as Q(z). Though {v^} is white noise, {vjj} contains all ofthe information
in {yjt) because we can always recover {y^} by applying alinear filter to {v^}. Suppose now

17
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that instead of building a Wiener filter toestimate given the process we build a

filter toestimate {x;^} "sing Todo this, we need tosolve (3.8) but replacing with v.

Since {vj^} is white it has the autocorrelation function, a^v5[it], which makes finding the
solution to (3.8) very easy.

h(n) = -^u{n) (3.10)

where u(n) is theunit stepfunction. Taking thez transform of (3.10) cannot, in general, be

done in closed form, so we define the notation [i?;n,(z)]"*" to denote the z transform of

rj^^(n)u(n). Thus, we obtain

(3.11)

With a few algebraic manipulations, we obtain the causal Wiener Filter in terms of the sta

tistical properties of y„.

mz) =±QU)[Q*[iy^u)Y (3.12)

3.2.2. FIR Wiener Filtering

Finally, suppose we wish to restrict /i„ to be a a M tap FIR filter. Then the Wiener-

Hopf equations can be written in terms of the correlation matrix and crosscorrelation matrix

of {jcj) with {j>4} [13]:

r/O)

V-1)

r/l)
rj,(0) rym-2)

r^O-M) ry{2-M)

R.

hid)

A(l)

h{M-\\

r/0)

= R
xy

18
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One case where wemight want to use a FIRwiener filter is in onestep ahead pre

diction of therandom process {y^}. In this case theprocess wearetrying to match, is

just {y^^} advanced by one time unit. The Wiener filter reduces to:

h*! =[rj,(l) ... r/M)]/?,"' : (3.15)
yk-M + 1

Note how similar (3.15) is to the basic formula for linear least squares estimation (3.3). In

fact, (3.15) can also be derived by applying (3.3).

3.3. Kalman Filtering

Like Wiener Filtering, Kalman Filtering is an extension ofLinear Least Squares

estimation applied to stochastic processes. In the development of Wiener Filtering, we

assumed thedesired signal is wide sense stationary, andused spectral functions suchas the

power spectral density to derive the optimal filter. In contrast, the Kalman Filter develop

ment does not assume stationarity ofthe desired signal, but isdeveloped from astate space

description ofthe desired and measured signals. Athorough treatment ofthe Kalman Filter

can befound in [10], which much of ourdevelopment parallels.

The Kalman Filtering problem begins with the following signal model:

= + (3.16)

Zk = ^1cXf^ + Vk (3.17)
We assume Vj^, w^^are both zero mean, independent of each other, and have covariances

E[Vf^Vi*] =Ri^b[k - /], E[Wf^Wi*] = Qj^b[k - /].The initial state Xq is random with mean
Xq , covariance Pq , and is independent of . Let Zf^ denote the set ofobservations

{^0' ^i» define the estimatorerror covariancematrix as

~ ^t(*ifc +l~'*ft +l(^ife))(*Jfc +l~-*jt+l(2jfc))*] (3.18)
where +i|ft = Xj^ +i(Zjt) is our estimate of Xj^ ^, based on the data . The problem
is to find the function x^ ^i(Zj^) that minimizes 2^^., . Itis shown in [10] that the Kalman
Filter, which is affine function ofZj^, achieves aestimator error covariance, which

19
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is less than orequal tothe estimator error covaiiance ofany other affine estimator. Because

is a matrix, "less than" is meant in the standard linear algebra sense. The Kalman

Filter is defined by the recursion relations:

^k'¥\\k " k~ k^^k\k-l ^0|-1 ~ "^0 (3.19)

^ + (3.20)

The estimation error covariance used in (3.20) tocompute the Kalman gain, Kj^, is given

by a discrete time Riccati equation:

^k+\\k ^^k^^k\k-\~^k\k-\^k(^1c^k\k-l^k'̂ ^k^ ^*k^k\k-0^*k'̂ ^kQk^*k(^-^^)

where 2o|-i = -^o-

When Gaussian, much more can be said about the Kalman Fil

ter. Xf^ +i(Zjt) is actually the conditional mean Eix^ +j[Zj^], and is the conditional
covariance +i-<*t+i)(Jfjfc +i-jf/t+i)*|2jfc]• Thus the Kalman Filter equations
become a mechanism for updating the entire conditional probability density of Xf^ [10].

3.3.1. Asymptotic Behavior of the Kahnan Filter

Often the signal model that best represents our desired signal is time invariant, and

for computational reasons we would like to estimate the signal with a time invariant filter.

As we have seen, the Kalman filter is in general a time varying filter, but there are condi

tions under which it asymptoticallybecomestime invariant,and is truly time invariant with

a proper choice of Pq. Our signal model is now:

*t+l = + (3.22)

Zt = + (3.23)

Again, we assume are both zero mean, independent of each other, and have covari-

ances F[v;^V/*] = Rffi[k -1], - /]. Then if the spectrum of F is con

tained in the unit circle (|A.f(F)| < 1Vz), then for any nonnegative symmetric initial matrix

Pq, we have [10]:

20
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lim = S (3.24)

Where Z satisfies the Ricatti equation:

X= +R)~^H*t\F* +GQG* (3.25)
As a result, theKalman gain approaches a limiting value of

K= FZH[H*lH +R]^ (3.26)
It should also be clear that if is selected to be Z, the Kalman Filter will be truly time

invariant, not just asymptotically time invariant.

These results still hold when the spectrum ofFis notcontained inthe unit circle, butinstead

the pair [//, F] is detectable and [F, gJq^ is stabilizable. For areview of the concepts of
stabilizabilityand detectability refer to [15].

Finally, when the spectrum ofF is contained in the unit circle, the signal model

(3.22) leads toa that is asymptotically wide sense stationary. Because of this one can

also build a Wiener filter to estimate from 2^^- One might expect that in this case, the

Kalman filter asymptotically approaches the Wiener filter estimator. This is indeed the

case, and is proved in detail in [10].
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Chapter 4 RtR Control Methods

InChapter 2 we defined two classes ofprocess drift, offset drift and parameter drift.

These two ways ofmodeling process drift lead to two distinct classes ofRtR control: offset

driftcancellation andparameteradaptive approaches.

4.1. Offset Drift Cancellation Approaches

Here process variation is assumed to beentirely in the offset term (the parameter

drift is absent). Consequently, the input sensitiviesare assumedto be fixed and known.The

idea is simply to estimate the current offset term and select an input setting to compen

sate for the offset.

4.1.1. Exponentially-Weighted Moving Average

This is one ofthe most straightforward methods, and is studied extensively in [14].

Gradual mode EWMA, as it is termed in [14], assumes a process model of form

yk=^k-^h (4.1)

yk-yi+^k (4.2)

where is thetrue process output (assumed to bea scalar), e;iis the measurement noise,

and yii is the measured process output. An estimate for the term bi^ iscomputed recursively

as

fejfc +1 = (1 - (sy)bk +©(yjt - Auj^j (4.3)

The estimator (4.3) is intuitively appealing. It says that our estimate of bj^ is a weighted

average of the current residual andthe value of our previous estimate. By carying out the
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recursion in (4.3) one sees that is a weighted average of all of the past residuals with

form

k

^ifc+1 = o)(l(4.4)
I = »oe

This relationship is precisely why this type offiltering is called Exponentially Weighted

Moving Average.

Having obtained an estimate ofthe drift, the input setting isselected by fmding a

that will meet the targetoutputTby cancelling the estimated drift:

T = (4.5)

When there are multiple inputs, the choice of that satisfy (4.3) is not unique.

Considerations such as which input requires the least effort to change, orwhich input has

a corresponding sensitivity in theprocess model with the least modeling error canbe used

in determining which component of toactuate the most. One method suggested in[14]

is to find the value of j that satisfies (4.5) and has the least euclideandistancefrom the

previous input Uf^. Thiscanbe calculated easily as

"k*i =u^ +A*(AA*)~\T-Au^_^-ht) (4.6)
Equation (4.6) isnot independent ofthe units used to measure the inputs. Because of this,

one may wish to use a different cost function in the minimization besides euclidean dis

tance, such as - u0 W - uj^ where Wis positive definite and hermetian. Then

Wjt simply becomes

"*+1 =u^ +W^A*(AW^A*) \T-Au^_^-hi,) (4.7)
Of course, when some components of are feed-forward, (4.5) must be achieved by actu
ating the control inputs.
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4.1.1.1. Conditions for Optimality ofEWMA Filtering.

Using the estimation theory reviewed in chapter 2, we can show that the EWMA

filter used in obtaining the estimate bk isoptimal for aclass ofdrift models, provided that

©ischosen properly, though inmost practical situations the choice of©isusually ad-hoc.

Suppose that the process is governed by the following simple Autoregressive

(AR) model:

+ (4.8)

where Wf^ is a white random process (meaning it has zero mean and autocorrelation of
2

E[Wf^Wi*] = G^d[k-1]. Similarly we assume themeasurement noise is white, with vari-
2ance . Then the Kalman filter recursions for estimating bj^ can be found by substitution

of (4.8), (4.1), and(4.2) into (3.19), (3.20), and (3.21):

= (1 - Kf^)bk + Kf^(yi^-AjtMjt) (4.9)

(4.10)

2 2 2 2 2 2 2
(4.11)

Where _] is the estimator error variance (taking the place of _j) and (y^^ ui^)

is the measuredvariable (takingthe place of z^)-

In thesignal model (4.8), theF matrix is simply 1.Because of this, is notasymp

toticallywide sense stationary. However, we learned in the previous chapterthat when the

pair [H, F] is detectable and [F, GJQ] is stabilizable, the Kalman filter asymptotically
approaches a time invariant filter, even when F is unstable. This is indeed the case in this

example because = F = gJq =1. Using (3.24), (3.25), and (3.26) we find that the

Kalman filter gain converges to:

Where c satisfies:

K=g^[5S a^r' (4.12)

I2^ = (4.13)
c -a„ a a,
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Thus as /: oo, the Kalman Filter, which is the optimal linear time varying predictor of

^k-¥l {CVik - —CVikO" }»approaches alinear time invariant filter. Equivalently,
ifwe consider the case where the initial time, kQ, approaches -«, then the optimal predictor

at any finite time k, is the linear time invariant filter characterized by (4.12) and (4.13).

When the Kalman gain Kj^ isfixed tobeK, (4.9) becomes the EWMA filtering rela

tionship (4.3) whith the weight ©equal to K. Thus, EWMA is optimal when we have

exclusively offset drift, described by a simple random walk model of form (4.8), and the

weight ©isselected to be the K. Finally, we must assume that the drifting and filtering pro

cesses began in the infinite past.

This final point may seem abit technical, but itcan be justified quite intuitively by

a simple example. Suppose the offsetdrift begins at time k = but at that time we know

the value ofbp with certainty. Then at time /: = 7, we should expect that the optimal linear

estimate would rely greatly on the initial estimate bo, and very little on the measurement

(yj -Auj). Gradually as the process drifts and the uncertainty in bj^ grows, the optimal esti

mator will depend more an more on the most recent measurement. Only after the process

has drifted for afairly long time, will the optimal filter converge to fixed weightings on the

most recent measurement and the previous estimate. Todemonstrate this, we can compute

the optimal estimator ofbj using the basic linear least squares estimator result (3.3), we

find:

'lopt

2 \

1-
2 2

a., + a.

.2

^0 + - ^^0 (4.14)2 2'

And indeed, one can show that g^/(g^ +g^) is less than the value Kof (4.12).

4.1.1.2. The Certainty Equivalence Assumption in EWMA Control.

In the EWMA scheme, we recursively estimate the parameter bj^ and select an input
as if our estimate were certain. However, one cannot assume that in general the optimal
adaptive controller consists oftwo decoupled blocks, one that estimates the parameters and
the other that selects inputs as ifthe estimated parameters were known with certainty. The
optimal controller might be one that introduces noise into the input in order to achieve
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better parameter estimates, or perhaps scales down the input that a certainty equivalence
law would use because of low confidence in the estimated parameters. Fortunately, under
the assumption of having exclusively offset drift, the certainty equivalence rule is optimal
for EWMA control.

Result: For aprocess undergoing offset drift alone, acontroller consisting of:

• Alinear least squares estimate of from data thru ,denoted +1 (y^^,..3'jk )

• Acertainty equivalence input selector that chooses ^ j tosatisfy the equation:

T = AUf^^^+bk^i (4.15)

results in an output mean squared error that is lower or as low as the mean squared error

achieved by any other linear controller. By "linear controller," we mean any control that

computes the input as an affine function ofdata: y^^ thru y^

A

Proof: Define bk^\{yj^ yk) to be the linear least squares estimate ofbk+j using the

measured data. And suppose it achieves anestimation mean squared errorof:

Then if we use the certainty equivalencecontrol:

"t+l =-A*(AA*)\hk^\(y^,
The output variance, E[\yk +1|̂ ], will be equal to the estimation error a^.

Now suppose there exists a different linear control jCy^^, •••, ) which results in an
2 ••2 2 ^output variance, £[|yjfc+1| ] equal to 6 , where a is less than the variance achieved by

the certainty equivalence control, a .

Then we could build anew linear estimator ofbk^2> ^it+1 defined as:

bk*\ = T-Auk^.\(yt, -,yi^
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Where the estimation mean squared error achieved by this estimator is:

-2 2
Because a < a , this estimator achieves a smaller error variance than the estimator

bk +1 {yk> •••> yk^ >which was defined tobe the linear least squares estimator. This isacon
tradiction. Thus, no other linear control achieves a better mean squared ouput error than the

certainty equivalence control.

4.1.1.3. Practical issues in EWMA control

The attractiveness of the EWMA scheme lies in its simplicity, and intuitive form.

However, even though we have showed conditions under which EWMA is optimal, these

conditions are almost never true. If the offset drift of a process did obey (4.8), its variance

would grow unbounded as time elapsed, which is unrealistic. In addition, choosing the

weight CD can be difficult in most situations, and most often is chosen ad-hoc. Though we

computed the optimal weight CD in the preceding section, the result is of limited utility

because it only holds when the offset drift behaves according to (4.8).

EWMA control schemes have been successfully deployed in processes such as

Chemical Mechanical Polishing [5], and I line lithography [4] (on a lot to lot basis rather

than wafer to wafer).

4.1.2. Robust Drift Cancellation

We haveseen thatEWMAcontrolis a simple, intuitivestrategybut is optimalunder

a very limited class of drift models. We present here a variation of FIR Wiener filtering

whichwe termRobust DriftCancellation (RDC) thatachieves optimality for a largerrange

of problems because it is designed directly from historical data.

As in EWMA, we assume a process model of the form:

yk=^i*k-*-h (4.16)

3't=yt+et (4.17)
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where is the true process output (assumed tobe a scalar), is the measurement noise,

and is the measured process output. We assume drifts according to some unknown

random process, but with a known mean b. Suppose wehave mdata records, and within

each data record are process recipes and outputs for Lwafers. Using residuals from the mth

data record, we can compute an estimate of the (n xn) correlation matrix of{bj^ - b +6^^),
which we denote »where the min the subscript emphasizes that thevalue is from the

mth data record.

(4.18)
ks: n

Where,

^mk 1)» •••* 1)^
Similarly, the time average autocorrelation can be computed as:

(4.19)

1

Z ^ 2mi ^^{.k +\)^mk
k = n

(4.20)

Using these matrices, we may compute an n-tap Wiener filter for estimating using

(3.15):

^(Jfe+l) - (^) (^z)
iyk-Aui^-b)

(4.21)

_(^Jt-«+l ^^k-n+l

Finally ifwe assume that the process {e^} is white, then ~ ^m(Jk +1) •Thus, aFIR

Wiener filter based control law uses any satisfying:

(4.22)

(^A-n+1 ^^k-n-¥l

The above control law will reduce the variance of the output from G to
2 in ^ in mT ^

<5 -(C2) {Rz) (^) .assuming that the when this controller isinoperation, thestatis-
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tics of b}^ and are identical to how they were when the mth data record was recorded.

However, in any realistic process the statisticsof and cj^are nonstationaiy. If the statistics

worsen too much, a controller designed using a single past data record maybe too aggres

sive and have poor performance. This is the motivation for developing a design methodol

ogy that uses "worst case" bounds on drift statistics obtained from analyzing all m data

records [17].

We begin by finding a positive definite, hermetian, matrix upper bound, Rz that

satisfies:

Rz>Rz Vi€[l,m] (4.23)

Next, find a vector, such that

z' ^z

Then, the robustdrift cancellation law is to use the control uj^ satisfying:

(4.24)

= T-b-Q^Ri^
(y^-Au^-b)

(4.25)

To study theperformance of the above control law,wemake twomodest assumptions. One

is that the sample correlation matrix of for any set of L wafers in the future satisfies:

L-«+l
(4.26)

k = n

Similarly, the sample autocorrelation vector for any set of L wafers in the future satisfies:

11 "V ^ ^

L-n ^(A:+l)^^
k-n

Rz

t-i

<(C^fRz'̂ C^ (4.27)
< k^n

In Other words, we assume the statistical bounds we computed on the m data records are

still valid in the future, but we do not assume anysortof statistical model for the drift, nor
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do we assume the processes is wide sense stationary. Then the sample mean squared error
ofthe measured output using the RDC law can becomputed as follows:

1 1

k-n

L-\

Observe that the quantity:

L-\

I
ksin

k-n

11 2

k^n

iyt-Auk-b)

_^yk-n +1~^^k-n+1

~ ^iXk^Z Qz~^^Z^Z
k^n

L-\

< -n^^^i'-^zRz'Qz (4.28)

(4.29)

is what the sample output mean squared errorwould havebeenhadcontrol not beenused.

Therefore, the sample mean squared output error is guaranteed to be reduced by
r— -1

Qz ^z Qz across a set of L wafers. The RDC design procedure is summarized in
Figure 4.1.

The advantages of the RDC approach are clear. It can beeasily designed from his

torical data. It is robust to non-stationary in the drift statistics. And finally, one can easily

compute aconservative, a priori estimate ofhow much RDC will reduce process variance.
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Select number of taps: n

From m. historical data records, compute Sflniple
correlation matnx and autocoreelation vectors:

Compute Matrix upper bound
using numencal optimization

Vj

Compute lowerbound vectorsatisfying:

C <(cr)%"' cT V/

build the control Law:

{y^-Au^-b)
= T-b-Q^Rz'̂

Using the Control Law, output mean
squared error reduced by:

V CzVCz ,
Figure 4.1. Robust Drift Cancellation (RDC) Design Procedure

4.1.2.1. Robust Drift CancellationDesign Issues

In the preceding discussion, it was not mentioned how to choose the number of taps
n. Computational limitations may dictate amaximum value for n. The control designer may
wish to try many different values ofn and find the n which is thebest trade-off between

computational complexity and potential variance reduction as computed by Qz^z^^Qz-
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The design of the RDC law required the computation of a matrix upper bound in

equation (4.23). Computation of this upper bound is nontrivial, because one would like to

find a least upper bound; anupper bound that is too large would lead to an overly conser-
r— -1vativecontroller with a lowvalue for Rz Qz•Fortunately, thesetofmatrices thatsat

isfy (4.23) form a convex set, making this problem amenable to numerical optimization.

For a discussion of appropriate optimization techniques refer to [16].

4.2. Parameter Adaptive Approaches

Here we assumethat the observedprocessdrift is due to both parameterand offset

drift. The general strategy is to update the process parameters and using the available

data. Therecipe uj^ isgenerated using thelatest estimates of and and the target output

r.

4.2.1. Kalman Filter Methods

Kalman filtering RtRcontrol is studied in [18] fortheapplication ofphotoresist spin

coating. In this approach we assume a process model of form:

yt = [uk i]
h

(4.30)

yk=yk+<^k (4.31)

where is the trueprocess output(assumed to be a scalar), e/i is the measurement noise,

and y/i is the measured process output. We assume to be a white random process with
2

variance . Furthermore, we assume that the deviation vectorofAj^ and defined as

''k=[Ak\bi^-[A\ '̂̂ (4.32)
is a Gauss Markov process, obeying the stochastic difference equation:

•*t+ l = + (4.33)

where is a white random process with covariance matrix 7. Also, we assume xq is
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The Kalman filter control approach istouse Kalman filtering equations outlined inChapter

3to estimate Ajt and b^. Referring to (3.19) -(3.21), substituting ij for H\ and e^^for
Vjt we have:

+i|fc - {^k-^k\uk l]

^k ~ ^k^k\k-l
U,

^k
Ui

ik|ik-l

The input used is any satisfying:

= [«t+i i]
f

tT
\

A
+ -*ik+l|ik

V y

where T is the target output.

-1

+ a.

+ a.

^-1

["k i]

(4.34)

(4.35)

F\

(4.36)

(4.37)

4.2.1.1. Certainty Equivalence in Kalman Filtering Control

In the Kalman filtering control scheme, we recursively estimate the parameter jc;^

and subsequently select an input as if ourestimate were certain. Though we showed this

approach is optimal in offset drift situations, it is notoptimal for theparameter drift case.

Depending on the particular problem, the optimal control (in terms ofmean squared output

error) might introduce extra excitation into the input at times to achieve better parameter

estimates ~ improving control performance on future wafers atthe cost ofadding variance

to thecurrent wafer. Finding a closed form solution for the optimal control law, when the

optimal control issoelaborate can be extremely difficult orimpossible inmany problems.

From a practical perspective, we may not want to use a controller that deliberately adds

unnecessary excitation to the inputs, possibly ruining awafer to achieve slightly better per-

33



Chapter 4

formance on future wafers. Therefore, in Kalman filter RtRcontrol, we do not bother to

find the true optimal controller, and instead use the certainty equivalence approach.

4.2.2. Practical Concerns in Parameter Adaptive Methods

The shortcoming of Kalman filter methods for RTR control in particular, and

parameter adaptive control methods ingeneral, isas follows. If there are too many process

parameters estimating them requires a lotof data. Bythe time we have enough data to

estimate the process parameters, they may have drifted considerably. As a result, the esti

mated process model is poor and RtR control based on this model can in some situations

increase process variance. These problems are illustrated in [18].

4.3. Offset Drift Cancellation Applied to Processes with Parameter Drift

The purposeof this section is to demonstrate thatundercertain conditions, an offset

drift cancellation approach has the potential to perform as well as a parameter adaptive

approach, even when the process is undergoing parameter drift.

Suppose we have a single input singe output(SISO) process that when run with a

fixed input whas a measured output that isofform 6^ +y where 6^^ is some random

deviation from the mean output. One way to model this behavior for control design is to

assume that the output deviation 8^^ is being caused byoffset drift:

y* =+ + + (4.38)

Another model would be to assume that theoutput deviation is caused by driftin A:

yk = + +^ + (4.39)

Now, suppose that we build an estimator ofthe drift process 8j^, and call the estimate, %k •
Then thecontrol lawcorresponding to theoffset driftmodel (4.38) is tochoose satisfying

- h
(4.40)

Thecontrol lawcorresponding to parameter driftmodel (4.39) is to choose satisfying:
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(4.41)

We see that the two control laws are nearly identical when the argument of the o{ ),
|5/./(Am)| becomes small. Some intuition on this result can be gained by observing
Figure 4.2. The figure shows how an offset adaptation and parameter adaptation both
account for the same small change in observed output, assuming that Am islarge. Note that
in the operating region, the two models look almost identical. Consequently, the use of
either model would lead toalmost identical control input selections.

Figure 4.3 shows the case when Am is small. The geometry ofthe problem when Am
is small causes the Offset adaptation model to have asignificantly different slope than the
parameter adaptation model. Which model is used will have a drastic effect onthecontrol

decision.

Operating Region

Offset Adaptation

4'^
Nominal

Parameter Adaptation

u u

Figure 4.2. Offset vs. Parameter Adaptation: Large Am Product

In conclusion, when the Am product is small compared to the size of the process
output deviations, an offset drift cancellation strategy may work as well as aparameter
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adaptive approach.This is an extremelyuseful result because it is often the case thati4M is

large, and it is much easier to build an offset drift model than a parameter drift model.

Offset Adaptation

Nominal
perating Region

Parameter Adaptation

u u

Figure 4.3. Offset vs. Parameter Adaptation. Small Au Product.
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Chapter 5 RtR Control for DUV
Lithography

Chapter 5

In previous chapters, we have established a theoretical framework and created tools

for RtR control design. In this chapter, we apply these tools tothe problem ofcontrolling

Deep Ultra-Violet (DUV) lithography. Taking into account our knowledge of the process

and available in-line measurements, we develop a control architecture, and simulate the

controller's operation in the presence of process drift.

5.1. Motivation for DUV Lithography Control

Deep Ultra Violet (DUV) lithography isanticipated tobecome the main lithography

technology for the next generation ofICs with sub-quarter-micron linewidths. DUV lithog

raphy can achieve smaller linewidths than conventional I-line lithography for two impor

tant reasons. One reason is that DUV lithography uses shorter wavelength illumination

which reduces the diffraction effects for a given grating size. The other reason for the

greater capability ofDUV technology isthe use ofextremely sensitive Chemically Ampli

fied (CA) photoresists, which are capable ofgenerating sharp resist profiles, even when the

aerial image is blurred by diffraction effects.

Although lower wavelength light and CA resists have increased lithography capa

bility, they have alsoincreased thesusceptibility ofthelithography process todisturbances.

Lowerwavelength lightreduces thedepth of focus, making critical dimensions (CD) more

sensitive to wafer topography. CA resist increases the sensitivity to exposure variations

from the stepper, and as we shall see later in the chapter, introduce another source of vari

ance during the Post Exposure Bake (PEB) process.
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Companies developing DUV lithography processes have indeed observed unac

ceptable levels ofCD variability. Forexample, some manufacturers have observed a3a CD

variation of24 nm within each wafer, between different wafers, and between lots.

To improve the efficiency of DUV lithography, IC producers need to find ways to
reduce CD variability to ensure sufficient yields and consistent circuit performance.
Having already spent millions of dollars on steppers with ultra-high precision lenses and
mechanical components, robotic cluster tools for applying photoresist, and environmental
isolation, IC manufacturers trying to reduce CD variability are left with veiy few alterna
tives for additional improvements.

RtR control is one of the most promising alternatives for CD variance reduction at

the wafer to wafer and lot to lot level. In this chapter, we develop acontrol architecture for
this extremely important problem using the framework developed in previous chapters.

5.2. The DUVLithography Process

To develop aRtR controller for DUV lithography, itis necessary to understand how
DUV lithography works and what are the most likely sources of process drift.

5.2.1. Basic Process Flow

See Figure 5.1 for aflowchart ofthe DUV lithography sequence. Before the DUV
lithography sequence begins, the film to be patterned is deposited onto the wafer. Next the
wafer is coated with an antireflective coating, which helps to reduce standing waves oflight
in the resist during the exposure step. The antireflective coating is baked dry, and then the
wafer is coated with aDUV chemically amplified photoresist. This too is baked dry, and
then the wafer is brought to the stepper.

The stepper exposes the wafer (die by die) to DUV light, passed through apatterned
reticle. Wherever the resist is exposed to light, photo-acid is formed. The two most impor
tant process parameters that can be adjusted at the stepper are the exposure dose per unit
area, and the focus level.

Following exposure, the wafer is given aPost Exposure Bake (FEE). During the
PEE, three simultaneous processes occur [19]. In achemical reaction called deprotection,
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photo-acid catalyzes a weakening of organic chemicals in the resist, making it soluble
wherever there was acid present from the exposure. At the same time, the photo acid is
gradually "quenched" or consumed by asecond reaction. Finally, the acid diffuses through
the resist somewhat before itis "quenched," which results in awidening ofareas where the

resist is deprotected. Detailed studies of the reaction kinetics and mechanisms are presented
in [19] and [20]. It has been shown that all three effects, deprotection. quenching, and dif
fusion are temperature dependent.

After PEB, the wafer is immersed in developer, causing the photoresist to dissolve

wherever it had been deprotected. The developer isextremely selective between resist that

has been deprotected and resist that is not deprotected [21]. Therefore, varying the develop
time usually does not effect CD greatly. Astudy of the relationship between deprotection
and develop dissolution rate can be found in [21].

FILM DEPOSITION

I / I

EXPOSE

SPIN COAT&
SOFT BAKE

DEVELOP

Figure 5.1. DUV LithographyProcess Flow

5.2.2. Likely Sources of Variability

As ofyet, there have been no definitive studies as to what are the primary sources

ofCD variability in DUV lithography, but by stepping through our picture ofthe lithogra

phy sequence, we can determine likely sources ofvariability. Variations in the underlying
film thickness (both within wafer and between wafer) change wafer reflectance, which
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influences the amount of exposure energy that is coupled into the resist. Variations in the

photoresist thickness, can also effect reflectivity, leading toa similar effect.

The light source inthe stepper is an excimer laser, and each exposure consists ofa

discrete number of laser pulses, with each laser pulse having random variations in its

energy. Thus, variations between the exposure dose set by the operator, and that actually

given by the light source almost certainly play an important role in CD variability.

PEB may also have an important role in CD variance. Variations inbake plate tem

perature (both spatially across a wafer and between wafers) effect deprotection and diffu

sion, resulting in variation in CD.

Our picture of the DUV lithography drift is summarized byFigure 5.2.

Abnormal thickness of both resist andunderlying films
effect reflectivity.

Drifts in wafer reflectivity, photoresist chemistry
and light source behavior alter the effective dose

coupled to the resist.

FEE Temperature variations effect diffusion and deprotection.

Figure 5.2. DUV Lithography Drift

5.2.3. Available Metrology

Having outlinedthe possible sources of CD variation, we needto establish a means

ofmeasuring drifts in the process in order to design aRtR control loop. Ideally, we would
like to measure the CD ofevery wafer before processing the next wafer. However, the only
reliable way to measure CD is to use a scanning electron microscope (CD-SEM), and
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unfortunately these measurements take too much time tobe done between processing each

wafer. Instead, The CD-SEM is mosteffective and has its highest throughput when mea

suring the CDs of a large batch of wafers. Therefore the CD-SEM cannot be used as the

primary feedback of a wafer to wafer RtR control scheme, but can be used to asses the con

trol performance after having processed a lot of wafers. Also, the CD-SEM can be used as

the principlefeedback of a RtR controlschemethat makesadjustments at a lot to lot level

—as was demonstrated by Hershey, et. al. in [4].

One quantity that can realistically be measured in-line is wafer reflectance before

exposure, using a small reflectometer suchas thatmanufactured by SCTechnologies. This

measurement couldcapturereflectivity variation due to the spincoatprocessand the under

lying filmproperties, butobviously cannot provide information about lightsource variation

and PEB variation.

Anotheruseful quantitythat can be measured in-line is the change in thickness, or

thickness loss, of thephotoresist afterPEB. In [7], Jakatdar shows byexperiment thatthick

ness ishighly correlated todeprotection. Obviously, ameasure ofdeprotection isextremely

useful because it contains information about the cumulative effects of exposure and PEB

disturbances. The potential use of this measurement is discussed in some detail later in this

chapter.

5.3. Lot to Lot Control for DUV Lithography

RtR control on a lot to lot time scalehas already beensuccessfully implemented in

industry. In this section, we review the results of the control implementation, and also

extrapolate the lot to lot performance of EWMA and RDC control.

5.3.1. Industrial Results

Lot to lot RtR control was implementedat Motorola SemiconductorCorporation,

and the implementation and results are discussed in [24], however the details of the control

algorithm are unavailable. The controller worked by taking an average DICD (Developed

Image Critical Dimension) from a lot, andusing thismeasurement to compute an exposure

dose for the subsequent lot —trying to maintain the DICD as close as possible to a target

DICD. In turn, a second, more slowly acting control loop adjusted the DICDtarget in an
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attempt to account for changes in theetchbias, thedifference between DICD andCDafter

etching.

The results presented in [24] indicate that the standard deviation of DICD before

implementing the control was 9.4 nm, and after implementing control was reduced to 6.0
nm. The post-etch CD was reduced from 11.1 nm to 7.1 nm.

5.3.2. Results using EWMA and RDC

Because the details ofthe Motorola controller are unavailable, it is useful to tiy to
estimate how control techniques like EWMA and RDC would have perfonned ifthey were
used for lot to lot control on Motorola's process. Motorola provided us with a set oflot to

lot data for this exercise.

Thedata setcontained theexposure dose used forthelotandtheDICD for the lot.

Our analysis was done as follows. From the data, we computed the sensitivity ofDICD to
dose, A. By subtracting Au^. (Where uj^ is the exposure dose ofthe kth lot) from each DICD

data point we arrived at the sequence ofoffset terms b^. Having asequence of terms and
the sensitivity A, it is straightforward to reconstruct how any offset drift cancellation con

trol would have performed on this lithography line. In our simulations, we add measure

ment noise, normally distributed with 3a=5nm, to the DICD to generate the hypothetical
CD measurements, ory;^.

Motorola CD data

Figure 5.3. Motorola DICD Data
Figure 5.3 shows the DICD data supplied by Motorola. The target CD is 0.24, and the expo
sure dose isbeing adjusted from lot to lot by acontroller. The standard deviation ofthe CD
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hereis 10.4 nni. It should bestressed that this dataset is not thesame datawhich was used

for the results presented in [24]. Figure 5.4 shows CD vs. lotnumber, calculated to reflect

whatwould havehappened if theexposure dosewereheldfixed. The standard deviation of

this data is 11.3 nm.-

Extr«potat«d CO uaino m flxad raolpa*

s

lOO ISO AOO 400 SOD

Figure 5.4. Lot to lot DICD had no controller been used

Figure 5.5 plots DICD vs. lot index when EWMA control is used (w = 0.3). The

standard deviation has been reduced dramatically to5.8 nm. Finally, the results ofthe RDC

technique (using a window size ofthree wafers) are shown inFigure 5.6. Here, the standard

deviation is 5.7 nm, nearly the same as for the EWMA control.

.S

8

CD undar EWMA Control

100

Figure 5.5. CD under EWMA control
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CD with RDC control
0.3

E 0.24

500

Figure 5.6. CD under RDC control

The results of both our analyses, and the Motorola results from [24] indicate that significant

lot to lot CD variability reductions can be achieved with RtR control. This is important

because according to [24] lot to lot variability accounts for 30% of overall CD variance.

Another 10% of the overall CD variance is due to variations between wafers. To reduce this

portion of the variance, we must build a controller that acts on a wafer to wafer time scale.

The development of such a controlleris the topic of the remainderof this chapter.

5.4. Wafer to Wafer RtR Control Design Process

5.4.1. Lithography Modeling Experiment

To quantify the relationships between exposure dose, bake time, thickness loss, and

CD, a modeling experiment was performed at National Semiconductor Corporation in

Santa Clara, CA.

The experiment was carriedout as follows. Four wafers were spun with 660 Ang

stroms of AR2 antireflective coating, and approximately 6550 Angstroms of UV5 deep
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ultra-violet photoresist. Then one set ofdie on each wafer was exposed toCD test patterns,

with the exposure dose varying across the wafer. To facilitate thickness loss measurements,

another set ofdie on each wafer were given blanket exposures, again with a vaiying expo

sure dose. Figure 5.7 details how each die was exposed. To ensure that the blanket and adja

cent patterned areas received comparable doses taking into account their different

diffraction efficiencies, the blanket area doses were scaled down relative tothe patterned

area doses. Following exposure, the wafers were given aPEB, with each wafer receiving a

different bake time as summarized in Table 5.1. After PEB, the photoresist thickness was

measured in allblanket areas. These thicknesses werecompared to thickness measurements

taken before exposure to compute the thickness loss for each blanket exposed die. Finally,

all of the wafers were developed and the CDs ineach ofthe CD test pattem die was mea

sured with a CD-SEM.

Wafer# Post Exposure Bake Time (s)

1 105

2 75

3 90

4 90

Table 5.1. PostExposure Bake Times used in theModeling Experiment

5.4.2. Empirical Lithography Models

Several regression models werebuiltusingthe measured thickness losses, CDs,and

process input values. STquare root terms were introduced into some of the models to

improve the fit to the experimentaldata.

The results are summarized in Table 5.2 [22]. The first and second models relate

thickness loss and CD (respectively) to the process: inputs bake time andexposure dose.

The last model relates CD, the output we wish to regulate, to thickness loss, the quantity

we can measure in-situ. The additional terms involving PEB time were added to the model

to improve the fit to the experimental data. A physical justification for these terms is that
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thickness loss does not capture the effects of acid diffusion during PEB, but these effects

are strongly related to PEB time.

Mode!

Adjusted

Std. Eror

jThloss = - 23.4615+ 2.5176Z>o^e + 0.0334P£Rrime 0.9802 0.22

CD = - 0.Ql60Dose + 0.0906jPEBtime-0.0052PEBtime 0.9996 3.837 nm

CD = -0.0029P£Rrime +0.0508 VP^5rime-0.000255r/i/oj^ 0.9995 4.216 run

\m

Table 5.2. Modeling Experiment Results

'4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.2

12.2 12.4 12,6 12.8 13.0 13.2 13.4 13.6 13.1

12.2 12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8

1.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4,

Blanket Exposure
Exposure Dose: 4.6 - 5.4 mj/cm^ in steps of0.1 mj/cm^
(3 Replications)

CD Test Patterns

Exposure Dose: 12.2 - 13.8 mj/cm^ in steps of0.2 mj/cm^
(4 Replications)

Figure5.7. Modeling Experiment 8" WaferLayout
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5.4.3. DUV Lithography Drift Model

Having found static models relatingthe inputsand outputsof the DUV lithography

process, it is now necessary to develop a model of how the process drifts. As stated in

Section 5.1 the typical wafer-to-wafer 3a variation is about 24 nm. The issue addressed in

this section is where in our process model should we account for this variation.

In Section 5.2.2 we surveyed the likely sources of variability in DUV lithography.

Some likely sources were effects like incoming wafer reflectivity variation causing effec

tive dose fluctuations, and PEB temperature drifts whichaffectdiffusionand deprotection.

These sources of variability as well as the others we discussed in Section 5.2.2 can be mod

eled (at least to first order) as additivenoise on the process inputs—exposure dose and FEE

time.

DosCgff- Dose +Noise(5.1)

PEBtime^ff-PEBtime + Noisep^g (5.2)

Here, we have introduced the terms Dose^ffand PEBtimedenote the sum ofeach input

setting and noise term. Our final models for thickness loss and CD will be those summa

rized inTable 5.2, but with Dose^gand PEBtime^gsvhsdtxxiod wherever dose and PEBtime

appeared.

*jThloss =-23.4615 +2.5\lDose^-¥ 0.0334PJE'Bftme^ (5.3)

CD = - 0.0160D<?JCgjy +OWQd^PEBtimegg - QSX^SlPEBtime^g (5.4)

Finally, we assume that some measurement noise is incurred in measuring thickness loss.

ThlosSff^gf^g = Thloss+ noise

5.4.4. RtR Control Architecture

The control strategy is straightforward: measure the photoresist thickness loss after

PEB, estimate the post-develop CD, and use this estimate in conjunction with a standard

RtR control algorithm to prescribe a recipe for the subsequent wafer. A schematic of the

control architecture is shown in Figure 5.8, and a summary of notation we will use in our

controller development is presented in Table 5.3.
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Dose,
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loss

.1

RtR CQOTROLLER

Proc^ Model

CD Target CD KRtimatft

Noi

CD ESTIMATOR

CD = h{Thloss, Hme)

Figure 5.8. RtR Control Architecture forDUV lithography

Definition Explanation

T = CD Target Desired CD

y\= CD, True CD of wafer k

yk=cb, CD estimate of wafer k

^k=yk'yl CD Estimation error of wafer k

Dosbk
Uk =

PEB time,
Input vector for wafer k

Table 5.3. Control Architecture Notation

The CD Estimation block of Figure 5.8 takes a presumably noisy thickness loss

measurement and the wafer's PEB time and appliesModel m. of Table 5.2 to arrive at an

estimate for CD.
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yk = = - 0.0029PEBtime^ +0,050SJPEBtlmT^ - 0.000255Thloss^ (5.5)

The target CD and CD estimate of the previous wafer are fed into the RtR Controller block

of Figure 5.8. In Section 5.4.3, we arrived at a drift model in which drift terms add to the

exposure dose and PEB time. Under this drift model, the sensitivies to the process inputs

are fixed to first order (If we wereto write(5.5)as a taylorseriesabouta nominal PEBtime

and nominal dose, thedrift terms would multiply only with second order and higher terms

of PEBtime and dose.) Therefore the drift is primarily an offset drift, and thus we use an

offset cancellation RtR control technique. Inourfirst design, we choose the simplest inthis

class of techniques, EWMA. Recall from Chapter 4, an EWMA RtR control design

assumes a process model of the form.

yk=^k + h (5.6)

Our process model will bea modification ofthe process model obtained from ourmodeling

experiment (Model H. from Table 5.2). Wedefine the function A( ) using ourempirical

model:

r

A
Dose^

y PEBtimej^

We then add a drifting offsettermto (5.7)to createtheprocess model for ourEWMAcon

trol design.

yk = ^(^k)+h (5.8)

The offset term used by the EWMA controller accounts for the cumulative effects of

PEB and exposure drifts on CD. We could modify (5.8) tobe affine bydefining theinput

vector to have a jPEBtimej^ term, but it is more convenient to leave the equation in its

present form. The term is recursively estimatedaccording to the equation:

hk+i = (I- <o)hk +OkiVk - ^ («i)) (5.9)

where ©is theEWMA weight and bj^ is the estimate ofbf^. Theinput setting is selected by

finding a that will meet the target output Tby cancelling the estimateddrift:
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r = A(ttjt) +^ik (5.10)

The choice of uj^ that satisfies (5.10) is not unique, so two practical design consid

erations are used to select a uj^. First, we would like to stay within the region of the input

space which was used in the modeling experiment. Second, the exposure dose and PEB

time have a minimum step size of0.1 mj/cm^ and 1second respectively. By trial and error

using the simulator to be discussed in Section 5.5, we arrive at an input selector algorithm

that performs well with the above input limitations. The algorithm is outlined in Table 5.4.

Though this input selector is quite problem speciEc, it illustrates how one can incorporate

input limitations into a control design using ad-hoc rules.

1.Assume a nominal PEB time of 91 seconds and calculate an exposure dose, a]^
that satisfies (5.10).

r

T = A
a.

91 seconds

2. Scale according to its difference from the nominal dose of 13.2 mj/cm^ to

form dosCf^.

do~sei, =0.85^0;^-13.2-2^1+13.2^
^ cm ^ cm

3. Round doscf^ to the nearest multiple of 0.1 mj/cm^ and apply hard limits of 12
mj/cm^ and 14mj/cm^ to yield dosej^.

4. Find an appropriate PEB time for the selected doscf^.

r = A
doSBi

PEBtimej^
VL

5. RoundPEBtimef^ to the nearestsecond,and applyhard limits of 75 seconds

and 105seconds to give PEBtimef^.

Table 5.4. Input Selection Rules
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5.5. RtR Control Simulation

Having designed a RtRcontroller forDUV lithography, we would now liketo simulate the

controller toassess itspotential performance. In thissection, wedevelop anarchitecture for

simulating the closed loop system,outline the parameterselectionsand outcome of a base

line case, and then evaluate the change inperformance when parameters are perturbed.

5.5.1. Simulator Architecture

White,
Noise

White.
Noise

1

-1
1-0.85Z

1

-1
1-0.85Z

Noisedoi
Doses£L

NoisepE^

Q

%

.S
cs
cc
ii:
a.

LITHOGRAPHY PROCESS ^
CD=f(Pose^^ PEBtimCgj^

Thloss=g(DosegpPEBtime^
Thloss

Noise-rhios,

EWMA CONTROL BLOCK

Offset= aipffset, CD)

Target = q^Dose^ Time, Offset)

CD ESTIMATOR
CD = h(Thloss, Time)

Figure 5.9. Simulation Architecture

Figure 5.9 outlines the simulation architecture. The Simulator simulates three blocks: the

drifting lithography process, the CD estimator, and the EWMA controller. The CD estima

tor and EWMAControl blocksare implemented with the equations given in Section 5.4.4.

Simulating the lithography process blockalsorequires specifying a stochastic drift model,

which is the purpose of this section.

The lithography process blocktakesexposure doseandPEB timeas inputs, andout

puts CD and Thickness Loss. The model for the lithography process is that described by

Section 5.4.3. Thus,/() and g() of Figure 5.9 are the models for CD and thickness loss
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found from the modeling experiment, with the substitution of aDoje^j^and PEBtime^ioi
Dose and PEBtime.

We must assume that Noise^gg and Noisep^^ has some autocorrelation structure

between runs. Because we do not know the exact autocorrelation structure we will encoun

ter in the reallithography process, bydefault weassume thesimplest model possible, a first

order AR. The modeling technique is that illustrated in Section 2.3.1. We define

Xk = (5.11)

Now suppose we .expect the variance of Noiseto be a dose and the variance of

Noisep£p to be a peb • Also suppose we expect the autocorrelation coefficient between

successive runs to be Pdj and P<i.2 for Noise^Q^g andNoisep£p respectively. With the fol

lowing definitions:

K =
G Dose 0

0 a PEB

the stochastic process for is

,F = PdA 0
0 P

,G = JK-FKF* (5.12)

**+1 = (5.13)

Where Wf^isdil dimensional gaussian random vector with identity covariance. As indicated

by Figure5.9, the random process generated by (5.13) can be generated by passingwhite

noise through two filters, each with a pole at P^ i and a zero at 0.

The thickness loss measurementerror, Noise-j^^^, is assumed to be white and nor-

mally distributed with variance c tmoss .

5.5.2. Baseline Simulation

Section 5.5.1 described the basic architecture for our simulations, but left many

parametervaluesunspecified. In this section,we will pick a set of parametervalues that, to

the best our knowledge, characterizes how the DUV sequence typically behaves. After

selecting baseline parameters, we simulate the baseline case and evaluate control perfor-
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mance. In Section 5.5.3 we explore what happens when the baseline parameters are per
turbed.

5.5.2.1. Parameter Selection

The baseline parameter choices are summarized in Table 5.5. <5^dose and
were selected to give aCD variation of8nm. Clearly, many combinations ofthese two vari

ances would yield a CD variance of8 nm. The values chosen as the baseline values are the

best guesses from aexperienced lithography engineer [23]. His choices were primarily
based upon the typical variation in the optimal exposure dose, as periodically measured by
test wafers with focus/exposure matrices. <P'Thioss was selected to be two times the known
measurement error variance of thereflectometer used forthethickness loss measurements

(Two times the measurement error because two uncorrelated measurements are subtracted
to compute thickness loss.)

Parameter Parameter Description Baseline Value

^dose Effective Dose Variance 0.4 mj/cm^

^PEB Effective PEE Time Variance 7.1 seconds

^Thloss Thickness Loss Measurement Error Variance 13 Angstroms

PdJ Drift Model Parameter from (5.12) &(5.13)
(The correlation coefficient between succes
sive {Noise

0.85

^d,2 Drift Model Parameter from (5.12) & (5.13)
(The correlation coefficient between succes
sive {NoisepEB]i^ terms.)

0.85

CO EWMA Weight 0.6

Table 5.5. Baseline Parameters

At the time of this writing, no wafer to wafer drift data is available from the

National DUV Pilot line tocompute the wafer drift statistics. Thus, the values of th^drift

model parameters and P^2 are selected by analysis ofCD data from adifferent source,
aDUV lithography line atMotorola inXXX, TX. Afirst order AR model was fit tothe data

set, and the resulting pole was located at around 0.85. Thus, we concluded that 0.85 is a
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reasonable choice forP^j andP^2- However, the CDdata from Motorola was taken on a

lot to lot basis rather than waferto wafer. So we are essentially assuming that the drift sta

tistics on a wafer to wafer time scale at National Semiconductor are similar to the lot to lot

statistics at a different factory, of a different manufacturer, making a different product.

Clearly, this is a very boldassumption andmust be revisited as soon as a largesetof wafer

to wafer DUV data becomes available from National Semiconductor.

The EWMA is selected to be 0.6,because thisvalue seemed to giverelatively good

performance for both the baseline case, and cases where the baseline parameters are per

turbed.

5.5.2.2. Baseline Simulation Results

0.21

0.2

0.19

i 0.18
s

0.17

CD, WtthoutCofitrol- Dashed, WithControl - Sofid
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Figure 5.10. Baseline Simulation Performance andInputs for 100wafers.
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The baseline case was simulated for a sequence of 1000 wafers. Figure 5.10 illus

trates the results of the simulation. In the first plot, the solid trace represents the CD of the

first 100 wafers using the EWMA controller, while the dashed trace shows what the CD

would have been had the input been held fixed. The variation in with-control trace varies

noticeable less thantheopen-loop trace. Theotherplotsof Figure 5.10showthe inputsthat

were used by the controller. Note that the inputs stay within the range of 80 - 100 seconds

and 12 -14 mj / cm^.

Table 5.6 quantifies the relative performance of the EWMA control vs. no control.

The statistics ~ RMS error and mean —are evaluated using all 1000 wafers.

Mean CD RMS Error

Without Control 0.1785 pm 0.0071 nm

With Control 0.1804 pm 0.0052 nm

Table 5.6. Control Performance Statistics

To obtain a more concrete picture of what the drift models in this simulation are

doing, the Noiseand Noisep£Q sample paths used in the baseline simulationfor the first

100 wafers are shown in Figure 5.11. The sample paths appear to be quite noisy but do

exhibit autocorrelation, which is indeed the type of drift we hoped to synthesize with our

drift model.

56



Chapter 5
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Figure 5.11. Dose and Bake Noise Sample Paths for Baseline Simulation.
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Figure 5.12. CD Estimator Performance in Baseline Simulation. RMS error = 4.7 nm
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Figure 5.12 shows the performance of the CD Estimator block in the baseline sim

ulation. The first plot shows the actual CD and the estimated CD for the first 100 wafers,

while the second plot shows the difference between the two, the estimation error. If one

compares this second plot with the traces in Figure 5.11, one notices some correlation

between the estimation error and the PEB noise (For example Noisep^^ has a peak at 17

secondswhilethe estimation errorhas a trough,alsoat 17seconds.) Anexplanation for this

can be found by examining (5.5), the equation describing the CD estimator. In (5.5), the

CD estimate is coupled to the PEB time through all three terms, PEBtimej^y JPEBtlmTj^,
and also by the Thlossj^ term, which is a function of the effective bake time in the simula

tion. Changes in the effective bake time from {Noisep£b]i^ can be "seen" by the estimator

through the Thlossj^ term, but not through the other terms. So a large, positive, NoisepBp

will decrease theestimated CDbya smaller amount than itdecreases thetrue CD, resulting

in an increased CD estimation error.

5.5.3. Simulation of Perturbations in the Drift Model

Having established a baseline simulation, in this section we investigate the effects

of parameter perturbations on performance.

We first explore variations in and correlation coefficient between suc

cessive [Noisepo^g]i(aind [Noiseppg]/^ terms respectively. In the baseline case, we set both

Pd., and P^2 101^® 0-85, but recall we had very limited confidence in our choices in Pd.j
and Pd.2 because the choices were made by analyzing lot-to-lot data taken from a com

pletely different lithography setup. Here wewill explore anarray ofpossible values for ;

and P^2' thisfirst parameter exploration wevary both P^j and P^2between 0.5 and0.95

in steps of 0.05. For each (P^;, P^2) we run our simulator with a sequence of 1000

wafers, and set all other parameters to the baseline values.
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Bake Correlation

Dose Correlation

Figure 5.13. CD Variance with respect to j andP^2 parameters set to baseline.

Figure5.13 shows the results of the first simulation. The x and y axis show the

values of Fj j and P^2 while the CD variance is shown on the z axis. As expected, the

higher values ofP^ j andP^2' autocorrelation in theprocess drift,resultin reduced

CD variability. In this simulation, the CD variance is most strongly dependent on the Dose

correlation, PjThis is probably because the dose variance constitutes the largerportion

of the overallprocess variability. Thus underthe assumptions of this simulation, good con

trol performance requires strong autocorrelation in the Dose Noise.

The second parameter exploration is similar to the first. Again, we test an array of

different (P^;, P^_2) but now we change dose from 0.4mj/cm^ to 0.3 mj/cm^ and
2 22

a pEB from 7.16 s to 9.55 s. Like the original values for a dose and a peb , the new values

result in a open loop CD variation of 8.0 nm a. However in the situation described by the

new parameterchoices, the PEB Noiseconstitutes an increased portion of the overallvari

ability. All other parameters were set to the baseline values.
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Figure 5.14 shows the results of this second simulation.As before, higher values of

Pdj and P^ 2> or "^ore autocorrelation in the process drift, result in reduced CD variability.

However, in the first simulation CD variance was much more dependent on Pd.1, but in this

simulation CD variance is almost equally dependent on the values of Pd j and Pd.2- This

should be expected because we have increased the contribution of Bake Noise to overall

variability.

Our parameter exploration leads us to two conclusions. One isihat CD-variance-

reduction canbe achieved for a large range of parameters and notjust theones usec^in the

baseline case. The second point is that the potential performance of RtR control "ir

extremely dependent upon the autocorrelation of the process drift.
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5.5.4. Other Relevant Properties of the Process Drift

Though thedegree of autocorrelation in the process drift is extremely important in

determining the potential impact ofRtR control, other properties of theprocess drift have

a role as well. Oneproperty in particular is how long it takes theprocess driftto exhibit its

autocorrelation. Forexample, suppose we have aprocess that undergoes step changes (per

haps from maintenance cycles) in a scalar offset term, with some additional white noise.

A simple wide sense stationary model for this behavior is:

bk=fik'¥V) + wj, (5.14)

^I -1 kmod 1000e[0,499] ^,.n(0.0.1) (5.15)
1 1 k mod 1000 e [500,999]

where Vis a discrete random variable, uniformly distributed on [0,999]. Simple calcula

tions show that the autocorrelation coefficient between successive runs is:

1-A
500

, = z- = 0.90 (5.16)
E[b\\ 1+a^

From the valueof this autocorrelation, we mightexpectthat this processwouldbe an excel

lent candidate for RtR control. However, if we think more carefully about (5.15), we see

that the process is basically white noise on thescale of 10's or 100*s of runs, andperiodi

cally shifts means on a very long time scale. If we were to run a RtR controller over some

thing like50 runs, it is extremely likely that thecontroller would actually worsen process

variance becauseit would basically be operating on a process with whitenoise drift. If the

RtR controller ran for lOOO's of wafers,then we wouldsee a substantialvariancereduction,

butonly because theRtR controller would "re-center" theprocess every time a step change

occurred. Such basic changes could much more easily done by an equipment operator—

recallibrating the tool after each maintenance cycle for example.

What this example illustratesis that for a process to benefit from RtR control, it not

only must have high autocorrelation, and but also it must exhibit its autocorrelation on a

reasonable time scale.
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Chapter 6 Conclusions

6.1. The Need for RtR Control

The economic pressure to produce ICs with denser layouts and smaller feature sizes

will continue to drive manufacturers to reduce variability in critical processes such as

lithography and plasma etch for the forseeable future [25]. In this work, we have seen that

RtR control can be extremely effective at reducing variability, and because it requires much

fewer equipment changes than redesigning a process, it can achieve variability reduction at

a comparitively low cost.

6.2. On the Design of RtR Control

The proper design of a RtR control algorithm is a subtle, an interesting engineering

problem in itself. In this work we have emphasised one approach to solving these problems,

which is to formulate the problem in the context of random processes, and to build control

lers based upon standard filtering techniques. This approach ultimately leads to the tech

niques emphasisized in this work: EWMA, RDC, and Kalman Filtering. In the

development of all these techniques, we have seen that the design of an effective RtR Con

trol balances two objectives: the need to aggresively compensate for drifts in a process, and

the need to not introducemore variability into a processby misjudging how the process has

drifted. The advantage of designing a RtR controller in the context of random processes is

that it leads to mathematical formulas that tell us where the best balance between these two

objectives lies, in terms of first order statisticsof the process drift.

6.3. Practical Consideratioiis

In Chapter5, our studyof RtRcontrolfor DUVLithography, wesawthat nota clevermath

ematical technique for designing a RtR control was not enough. What we saw is that the
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key for developing an effective RtR control isto have ametrology that samples the process

as often as possible and which measures avariable that isorisclosely linked tothe param

eter we are trying tocontrol. However such a metrology does not yet exist inDUV lithog

raphy. If we want to regulate CD —we can measure it directly with a CD-SEM between

every lot, orwe can estimate it indirectly for each wafer using thickness loss. InChapter 5

we explored RtR controllers basedon both approaches, and saw that both controlon a lot

to lot and wafer to wafertimescaleled to modest variability reductions in CD.

6.4. Issues for Further Research

A RtR controller wich uses both metrologies might be the ideal control for DUV

lithography. Such a controller would have to blend multi-rate information: lot-to-lot CD-

SEM measurenmts and wafer-to-wafer thickness loss measurments. How tobest cope with

this multiple time-scale problem would bean interesting topic for future research. Multiple

time-scale RtR control isalmost certainly applicable toother semiconductor manufacturing

process where the wafer-to-wafer information is noisier than the lot-to-lot information.

Another important area offuture research isinthedevelopment ofnew metrologies.

For example in DUV lithography, measuremetnt of drifts in develop rate, de-focus, and

bake plate temperature could compliment thickness-loss information to yield a better CD

estimate [26]. Additional metrology, such asa de-focus measurment, may alsoallow a RtR

controller to focus as well as bake time and dose. This would be usefiill becuase a RtR con

trol that neglects focus may improve CD variability atthe expensive ofincreased variability

in other properties, such as side wall angle.

One extension ofbasic RtR control that isapplicaple toDUV is todevelop an end-

point controller for FEB. Because the thickness loss metrology we discussed in Chapter 5

iscapable ofestimating CD just after PEB, one possible control scheme would betostop

the PEB process as soon as the thickness loss metrology indicates the CD is on target. In

principle, this should ensure that CD variability is reduced to simply the metrology vari

ability.

Another extension to simple RtR control worth future work istodevelop controllers

which deal with spatial variability. CD variability within awafer isjust as significant as CD
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variability between wafers [24]. Dealing with this problem will require aspatially resoilved

actuation, perhaps by using a spatially resolved bake plate [27],orbyusing different expo

sure doses for different fields (though much variability isactually within field.) Controling

systems with so many inputs, andso much coupling between the inputs, would be a very

challenging control problem.

6.5. Closing Remarks

Clearly RtR control will be of crucial, and growing importance to the industry in

the coming years, and the development of better control techniques will continue to chal

lenge researchers for the forseeable future.
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