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Abstract
RtR Control in Semiconductor Manufacturing

by
John Musacchio

Electrical Engineering and Computer Sciences
University of California at Berkeley

Professor Costas J. Spanos, Advisor

Run to Run (RtR) control uses data from past process runs to adjust settings for the
next run. By making better use of existing in-line metrology and actuation capabilities, RtR
control offers the potential of reducing variability in semiconductor manufacturing with

minimal capital cost.

This thesis reviews the basic techniques of RtR control, and connects these tech-
niques to concepts in estimation theory. New RtR control techniques are developed, and
the advantages of both the new and existing techniques is discussed. The thesis concludes
with a case study of RtR control for DUV lithography. In this study, a RtR control archi-
tecture is developed using novel metrology, and its performance is evaluated via simula-

tion.
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Chapter 1

Chapter 1 Introduction

1.1. Background and Motivation
As integrated circuit producers are driven toward finer linewidths and feature sizes,
there is a compelling need for the reduction of variability in semiconductor manufacturing

processes.

Almost always, this need has been met by expending considerable effort in the
design of processes that are very stable, by isolating environmental effects and designing
processes that are insensitive to drifts in equipment performance and incoming wafer char-
acteristics. Processes are then run with fixed recipes, and only occasionally are retuned by

processing wafers with test patterns.

An alternative approach, and one that is receiving increasing attention in academia
as well as industry, is the use of feedback control to reduce product variability. Various pro-
cesses have been studied in this context. See for example Rapid Thermal Processing (RTP)

[1], Reactive Ion Etching [2], and I-line lithography [3].

Feedback control uses measurements during processing to adjust recipe settings to
counteract process drift. This requires a rudimentary process model, metrology, and actua-
tion capability. In RtR control, recipe settings are adjusted for a given wafer based on the
measurements taken from previous wafers. This approach does not require real time actu-
ation, is minimally intrusive to the process, and can use existing in-line metrology; though

some processes may require additional in-line metrology for the use of RtR control.

One of the most compelling studies of RTR control was performed at a Motorola
microprocessor manufacturing facility [4). The facility implemented RTR control in the
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lithography sequence and significantly reduced CD variability. The reduction allowed

Motorola to target a smaller CD without jeopardizing yield. As a result of the performance
improvement from smaller linewidths, more circuits tested into the more lucrative, high
speed bins.The enhanced revenue from producing faster processors offset the $600 thou-

sand initial cost of control implementation in just a few days of operation.

Other encouraging studies of the utility of RtR control have been performed for
chemical mechanical polishing (CMP) [5], and silicon epitaxy [6].

1.2. Report Objective
| There are many ways one can design a RtR controller, and indeed many different
| types of RtR control algorithms have been developed and implemented both in industry and
academia. The algorithms can be divided into three broad classes, those rooted in Estima-
tion theory, Statistics, and Artificial Intelligence. In this work, we focus on methods based
in estimation theory, partly because these methods are most amenable to a general analysis

whereas methods of the other broad classes must usually be studied on a case by case basis.

In this work, we attempt to understand the theory underlying estimation theory
based algorithms, explore the similarities and differences between methods, and conclude
‘with some insights on how one might design and analyze a RtR control method for a par-
ticular problem. Our study is conducted using analysis based in estimation theory, simula-

tion, and experiment.

1.3. Organization

We begin by reviewing the types of process models often used for RtR control, and
also develop models for how the behavior of processes drift over time. Next, in Chapter 3,
we survey the principles of estimating random process, as this theory is essential in under-
standing the connections and differences of RtR control methods. In Chapter 4, a survey of
existing RtR control methods is presented, focusing on how each method is rooted in basic
estimation theory. In chapter 5 we study RtR control in the context of a specific example,
DUV Lithography. We examine previous work in controllers implemented on a lot to lot

time scale, and then develop, using experimental results, a strategy for RtR control at a
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wafer to wafer time scale. Via simulation we analyze our design. Finally Chapter 6 sum-

marizes our findings from our simulation and experimental study, makes some rermarks

about the design of a RtR control strategy, and outlines directions for future research.
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Chapter 2

Chapter 2 Models

RtR control requires a model of how the output of process is related to inputs, which
can include process settings and incoming wafer characteristics. Often it is not necessary
to have an extremely accurate or detailed model. Control stratégies involve making modest
adjustments to input settings to counteract drifts in process behavior. Consequently, first-

order sensitivies are all that is required for control.

In this section, we outline the basic form of process model that will be used in our
_ study of RtR control. A DUV lithography model will serve as a running example to illus-
trate our development. Just as important as process models in RtR control, drift models are
developed, and again DUV lithography will serve as an example. As will be demonstrated
later in this report, the behavior of the process drift is the key factor determining the appli-
cability of a RtR control method to a process. A schematic illustrating the structure of our

process and drift models is shown in Figure 2.1

2.1. Inputs

There are two types of inputs that we will refer to in the context of RtR control. The
first type of input, a control input, is an equipment setting that we plan to adjust either on
a wafer to wafer or lot to lot basis. In DUV lithography RtR control, one might consider the
exposure dose as a control input. The second type of input includes environmental factors
or incoming wafer characteristics that are both measured either on a wafer to wafer or lot
to lot basis, and whose effect we wish to cancel by adjustments in other inputs. For exam-
ple, the reflectance of an incoming wafer may be considered as an input in DUV lithogra-

phy, and its value used to adjust the exposure dose. Inputs of this second type we will refer
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to as feed-forward inputs. The input vector containing both types of inputs refer to as

simply “the input.”

Parameter Drift Offset Drift Measurement

RtR Control
Generate uy., ; using yp,yi.p» -

Figure 2.1. Conceptual Schematic of RtR control.

2.2. Outputs

The output of a process is the wafer characteristic(s) that we wish to regulate with
RtR control. In DUV lithography, the output might be critical dimension (CD). Sometimes
we will make the distinction between the frue output -- the actual value of the wafer char-
acteristic, anq the measured output -- the value measured which may include some amount

of measurement error.

2.3. Process Model

The process model is the relationship between the input and the output. For the pur-
poses of RtR control, The process model for should be relatively simple and should only
consider a modest number of input and outputs. For example a complicated FEM model for
simulating photoresist profiles would be too complicated to use in RtR control, but perhaps
could be used to help build a simpler relationship between CD and a few selected control

inputs like exposure dose and focus offset.

10
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Ideally, the form of the process model should be based on a physical understanding

of the process, and the parameters of the model obtained by fitting it to experimental data.
In almost all cases, the model one arrives at is affine, and can be put into the following

form.

Ye =Agu+ by (2.1)
Here k is the wafer index, u; the process input (both adjustable and feed-forward), and y;
the true output. Throughout this report, lower case letters will denote vectors and uppercase
letters matrices. As is the case in nonlinear regression models, u; may contain nonlinear
functions of the original inputs. When the nonlinearities are invertible, no generality is lost

in using form (2.1).

The input - output relationship can vary over time. For example, the ageing of a
stepper’s light source may change the required exposure setting for achieving a certain lin-
ewidth. One can account for this drift in behavior by making the model parameters A; and
b, functions of k. When the term A, varies with k, we say the process undergoes parameter
drift. If the by term varies in time, the process is undergoing offset drift. It is important to

note that a process undergoing offset drift alone maintains a constant sensitivity to its input.

Measurement noise is an important issue in the study of RtR control. We model the

noise encountered in measuring y; as

Y= Y; te 2.2)
where e, is arandom variable. Usually we will assume e, is white noise (independent from
one wafer to the next, has a Gaussian distribution, and has zero mean.)

&

2.4. Drift Models

As is discussed in Section 2.3, the input-output relationship of a semiconductor
manufacturing process can drift over time, and the drift can be modeled by allowing A; and
b, of Equation (2.1) to vary as a function of the time. Recall that drift in A; is called param-
eter drift, while drift in by is called offset drift. A model for this drift should capture both
the variance, as well as the amount of autocorrelation in each drifting term. The most con-

venient method for modeling the drift is to use a discrete stochastic process.

11
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Obtaining a good drift model can be challenging. One can not measure every term

of A; and by at every run, making it difficult to compute the drift statistics. However, by
performing multiple modeling experiments, and applying some physical understanding of
the sources of process variability, one often can approximate the variance and autocorrela-
tion of the drift.

2.4.1. An Example of Drift Modeling
Suppose we are modeling the drift of a DUV lithography process. There are two
inputs: exposure dose, uy;, and reflectance of the incoming wafer, uy;, and one output, y,,

pre-etch CD. Suppose our beginning model is [7]

[AOI bo] = [-0.0395% 0.16pm| 0.553 um] 2.3)

We will assume that the values of the A, and b; coefficients drift randomly, with
mean equal to the their initial values defined in (2.3). From historical data, we expect the
sensitivity to exposure dose, and the sensitivity to reflectance to vary with a standard devi-
ation of 0.0002 % .and 0.002 um respectively. The offset term, b; we anticipate will vary
with a standard deviation of 0.0005 pwm. Finally, we anticipate the drift in each of these

three terms to not have any cross correlations. We define a random vector of deviations,

T T
= [4,] 5] - [4o] &g 2.4
which has a desired covariance of,
2
0.0002 0 0
Ke=| 0 0002 0 (2.5)
0 0 0.0005

Now suppose we believe that the sensitivity to exposure dose and the offset term
will vary slowly -- with the correlation coefficient between successive runs being about
0.98 for each term. The autocorrelation of the sensitivity to reflectance we expect to be less,

say 0.90. Using this data, we define the discrete stochastic process
q)k'l' 1= F(pk + ka (2.6)

12



Chapter 2
where wy is a random vector of dimension 3 with identity covariance, and F is defined to be:

098 0 0
F=10 09 0 2.7
0 0 098

Equation (2.6) says that each drift term is 0.98 or 0.90 times the previous drift term plus a
random innovation. G determines the size of the innovation at each time step. As long as F
is a stable matrix (all eigenvalues inside the unit circle), The covariance of @, will assymp-
totically approach a fixed covariance matrix. We can force this limiting covariance matrix

to be our “desired” covariance Kg,, by choosing G to be:

G = JKo-FK F* (2.8)

Finally, If we initialize the recursion (2.6) by defining @, to be a random vector

with covariance Kg,, @, will have the covariance matrix K, independent of £.

Though it is impossible to create a stochastic model that perfectly describes the drift
in areal process, a stochastic drift model that captures at least the first order statistics of the
drift will prove to be extremely useful in RtR control design. Stochastic drift models will
also be vital in understanding the theory underlying RtR control methods, and for testing

designs in simulation.

2.4.2; Exclusively Offset Drift Models

As we saw in the previous example, developing a process drift model that includes
both offset and parameter drift can involve a lot of guess work. The problem of drift mod-
eling becomes significantly easier to base on historical data when one models all of the pro-
cess drift as a change in the offset term alone. Though the process drift may not truly be
restricted to the offset term, we will show in Chapter 4 that under certain conditions on the
process and controller, the RtR control performance is insensitive to whether one assigns

process drifts to the by, or A, terms.

Suppose we have a historical data record containing a series of process inputs {u;}
and process outputs {y;}. Then to build the drift model, simply compute the residuals b =
Yx - A u; where A is from our process model and is fixed. Now the problem is to model the

13 -
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signal by as coming from a linear system driven by white noise. This is a standard problem

in signal processing and system identification and there are a wide range of techniques [8]
[9]. One of the most straight forward methods of building the drift model would be to find
an nth order Auto Regressive (AR) model by regression on the by data.

14



Chapter 3

Chapter 3 Estimation Principles

Almost all RtR control algorithms recursively estimate parameters in a process
model, and then invert this model to find a recipe that should produce the desired output.
Therefore, estimation theory is essential for a complete understanding of RtR control. In

this chapter, we review the principles of estimation.

3.1. Linear Least Squares Estimation
To avoid confusion between a random variable and a particular sample value, we
denote random variables with bold face letters. This distinction is suspended in subsequent

chapters.

Suppose we have two correlated random vectors x and y. We observe a sample
value of y, denoted y, and with this information we would like to make an estimate of x,
which we will call X(y) . In linear least squares estimation, %(y) is restricted to be an affine

function of y, which has form:

(y) =Hy+g G.1)
The values of H and g are determined by first defining a cost function to be the

expected Euclidean distance between the estimate £(y) and x.

COST = E[|£(y) - ] (3.2)
Note that in (3.2) we regard the estimate itself to be a random variable, because it is a func-
tion of the random variable y. The values of H and g used are those that minimize the above
cost function, and can be found by differentiation of (3.2) [11]. After one carys out this pro-

cedure, the linear least squares estimate (LLSE) is found to be

15
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2= K K'\(y-m)+m, (3.3)

where K, is the covariance of y, m, & m, are the means of x and y, and K,y is the cross-

covariance of x and y, E[(x - my) - my)*].

It can be shown that when x and y are jointly gaussian, [3.3] is the best estimator in
terms of cost function (3.2) among all forms of estimators, affine or otherwise [12]. In this

case, the estimate £(y) is equal to the conditional expectation, E[x | y].

Whether x and y are jointly gaussian or not, the covariance of the estimation error,
E[|2(y) - x|*] has the value:

KK KK, (3.4)

When x, and y are jointly gaussian, the covariance of the estimation error condi-
tioned on a particular observed sample value, is the same as the unconditioned estimation
error covariance.

E[[Elx|y]-x’|y =y] = K-k, K,'K,, (3.5)

However, in the general case where when x and y are not jointly gaussian, the cova-
riance of the estimation error conditioned on sample value y will depend on which value of

y is observed.

3.2. Wiener Filtering

The problem formulation of the Wiener filter begins by assuming that we have two
jointly wide sense stationary random processes {y;} and {x;}. Recall that wide sense sta-
tionary processes have means that are independent of time, and autocorrelations that only
depend on the time lag. A pair of jointly wide sense stationary processes are individually
wide sense stationary and have a crosscorrelation function that depends only on the time

lag. The Wiener Filtering problem is to find an LTI filter with impulse response {#;}, that

|

minimizes the cost function

2
Xy ] (3'6)

g“hny; - n) -

16
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The solution is obtained by solving the Wiener-Hopf equations

o) = Y hr(i-k) a7

k= -oo

where ry is the autocorrelation of the process {y;} and ryy(m) is the crosscorrelation of {x;}
with {y}, defined as E[x(n) y(n-m)®]. (3.7) can be derived by taking complex gradients of
the cost function and setting them to zero. Obviously a filter used for on-line estimation
must be causal, so we must add the restriction that A, vanishes for & < 0. With this restric-

tion, the Wiener-Hopf equations become

re(i) = Y hyry(i-k) (3.8)
k=0

For many problems, (3.8) has no closed form solution. However for the problems we will

be applying (3.8) to, we will be able to find solutions using z-transform techniques.

3.2.1. Causal Wiener Filtering based on Power Spectra
Suppose the power spectrum of {y;} can be expressed as a rational z-transform
Sy(z). Then the Sy(z) can be factored into the following form [13];

5,() = 0%G(a6*(;) (3.9)
where G(z) is causal, stable, minimum phase (has all zeros in the unit circle) and monic (has
impulse response with g(0) = 1). G(z) has the interpretation of being a synthesis filter,
because the process {y} may be created by passing white noise with variance 0'2v through
G(z). The white noise used as the input to the synthesis filter is called the innovations pro-
cess, because each sample of the innovations process represents the new “information”
about the {y;} process that the synthesis filter could not infer from past information. Thus,

sz is called the power of the innovations process.

Now suppose we are given {y;} and wish to find the innovations process, which we

call {v;}. This may be accomplished simply by passing {y;} through the filter, G'l(z),

which we denote as Q(z). Though {vz} is white noise, {v¢} contains all of the information

in {y;} because we can always recover {y;} by applying a linear filter to {v;}. Suppose now
17
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that instead of building a Wiener filter to estimate {x;} given the process {yx}, we build a

filter to estimate {x;} using {v;}. To do this, we need to solve (3.8) but replacing y with v.
Since {v;} is white it has the autocorrelation function, 62v5[k] , which makes finding the
solution to (3.8) very easy.

Tl ) (3.10)

v

h(n) =

where u(n) is the unit step function. Taking the z transform of (3.10) cannot, in general, be
done in closed form, so we define the notation [va(z)]"‘ to denote the z transform of

r,,(n)u(n) . Thus, we obtain

[R.(2)]"

2
v

H(z) = (3.11)

(o)

With a few algebraic manipulations, we obtain the causal Wiener Filter in terms of the sta-

tistical properties of y,, .

H@) = 0005 )r @] e

O,

3.2.2. FIR Wiener Filtering
Finally, suppose we wish to restrict 4, to be a a M tap FIR filter. Then the Wiener-

Hopf equations can be written in terms of the correlation matrix and crosscorrelation matrix
of {x;} with {y;} [13]:

PO r(1) .. r(M-1) rey© |
R = | D (0 e Ty(M=2) R - ey
Y : : : xy .
r(1-M) r(2-M) ... r(0) - 1) .
k(0)
h(M-1)
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One case where we might want to use a FIR wiener filter is in one step ahead pre-

diction of the random process {y,}. In this case {x;}, the process we are trying to match, is

just {y;} advanced by one time unit. The Wiener filter reduces to:

i
- -1
Jier = [r(D) o 0O|R (3.15)
Ye-M+1
Note how similar (3.15) is to the basic formula for linear least squares estimation (3.3).In

fact, (3.15) can also be derived by applying (3.3).

3.3. Kalman Filtering

- Like Wiener Filtering, Kalman Filtering is an extension of Linear Least Squares
estimation applied to stochastic processes. In the development of Wiener Filtering, we
assumed the desired signal is wide sense stationary, and used spectral functions such as the
power spectral density to derive the optimal filter. In contrast, the Kalman Filter develop-
ment does not assume stationarity of the desired signal, but is developed from a state space
description of the desired and measured signals. A thorough treatment of the Kalman Filter

can be found in [10], which much of our development parallels.

The Kalman Filtering problem begins with the following signal model:

2 = Hix, +v, (3.17)

We assume v, w; are both zero mean, independent of each other, and have covariances
E[vyv*]1 =R 8[k-1], E[w,w;*] = Q,8[k - 1]. The initial state X, is random with mean
X, covariance P, and is independent of v, , w, . Let Z, denote the set of observations

{2¢, 2 ..., 2z } , and define the estimator error covariance matrix as

stk = BI(Xg 4 1= 2 1(Z)) (X 4 1 = %54 1(Z))*] (3.18)
where x; , y1x = £;,1(Z;) is our estimate of x;, , | based on the data Z,. The problem

is to find the function £, , 4(Z,) that minimizes X, , |k - Itis shown in [10] that the Kalman

Filter, which is affine function of Z; , achieves a estimator error covariance, Zp i Which

19



Chapter 3
is less than or equal to the estimator error covariance of any other affine estimator. Because

Z; .|k is a matrix, “less than” is meant in the standard linear algebra sense. The Kalman

Filter is defined by the recursion relations:

v = (Fe-KHE R 1 +Kizp, 2024 = X (3.19)

-1
Kk = szklk-lHk[H,l;fzklk—lHk-'-Rk] (3.20)
The estimation error covariance used in (3.20) to compute the Kalman gain, X, , is given

by a discrete time Riccati equation:

-1
e =FelZp 1 = Zpp o Hi(H% Zyy 1 Hy + Ry)  HY 2y 1F% + G0, G% (3.21)

Where ZOI-I = P0.

When v, , w, , and x,, are Gaussian, much more can be said about the Kalman Fil-
ter. X, , 1(Z;) is actually the conditional mean E[x; , ;|Z,],and X, | is the conditional
covariance E[(Xj 1= %g41)(Xg41~Fg41)*|Z;]). Thus the Kalman Filter equations

become a mechanism for updating the entire conditional probability density of x, [10].

3.3.1. Asymptotic Behavior of the Kalman Filter

Often the signal model that best represents our desired signal is time invariant, and
for computational reasons we would like to estimate the signal with a time invariant filter.
As we have seen, the Kalman filter is in general a time varying filter, but there are condi-
tions under which it asymptotically becomes time invariant, and is truly time invariant with

a proper choice of Py. Our signal model is now:

2, = H*x; +v, (3.23)
Again, we assume v, , w; are both zero mean, independent of each other, and have covari-
ances E[v,v;*] = R, 8[k-1], E[w,w*] = Q,8[k - ]. Then if the spectrum of F is con-
tained in the unit circle (|7L,.(F )| < 1Vi), then for any nonnegative symmetric initial matrix
Py, we have [10]:
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lim 2y, = Z (3.24)

k—eo

Where I satisfies the Ricatti equation:

T = FIE-SH(H*ZIH + R)"H*}‘:]F* +GOG* (3.25)

As a result, the Kalman gain approaches a limiting value of

K = FEH[H*SH +R]" (3.26)
It should also be clear that if Py is selected to be I, the Kalman Filter will be truly time

invariant, not just asymptotically time invariant.

These results still hold when the spectrum of F is not contained in the unit circle, but instead
the pair [H, F] is detectable and [F, GJQ] is stabilizable. For a review of the concepts of
stabilizability and detectability refer to [15].

Finally, when the spectrum ;)f F is contained in the unit circle, the signal model
(3.22) leads to a {x;} that is asymptotically wide sense stationary. Because of this one can
also build a Wiener filter to estimate x;, from Z;. One might expect that in this case, the
Kalman filter asymptotically approaches the Wiener filter estimator. This is indeed the

case, and is proved in detail in [10].
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Chapter 4 RtR Control Methods

In Chapter 2 we defined two classes of process drift, offset drift and parameter drift.
These two ways of modeling process drift lead to two distinct classes of RtR control: offset

drift cancellation and parameter adaptive approaches.

4.1. Offset Drift Cancellation Approaches

Here process variation is assumed to be entirely in the offset term (the parameter
drift is absent). Consequently, the input sensitivies are assumed to be fixed and known. The
idea is simply to estimate the current offset term by, and select an input setting to compen-

sate for the offset.

4.1.1. Exponentially-Weighted Moving Average
This is one of the most straightforward methods, and is studied extensively in [14].

Gradual mode EWMA, as it is termed in [14), assumes a process model of form

Yi=Au + by 4.1)

Y= Vi +e 4.2)
where y; is the true process output (assumed to be a scalar), e is the measurement noise,
and y is the measured process output. An estimate for the term by is computed recursively

as

brs1 = (1-@)bi+ &(y, - Auy) (4.3)
The estimator (4.3) is intuitively appealing. It says that our estimate of by is a weighted

average of the current residual and the value of our previous estimate. By carying out the
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recursion in (4.3) one sees that by is a weighted average of all of the past residuals with

form

k
beer = Y, o(1-0) (5~ Au) @4.4)

= =00
This relationship is precisely why this type of filtering is called Exponentially Weighted
Moving Average.

Having obtained an estimate of the drift, the input setting is selected by finding a u
that will meet the target output 7 by cancelling the estimated drift:

T = Auy,+bp sy (4.5)

When there are multiple inputs, the choice of u;,; that satisfy (4.3) is not unique.
Considerations such as which input requires the least effort to change, or which input has
a corresponding sensitivity in the process model with the least modeling error can be used
in determining which component of u;, ; to actuate the most. One method suggested in [14]
is to find the value of u, ; that satisfies (4.5) and has the least euclidean distance from the

previous input «;. This can be calculated easily as

Upey = U+ A*(AA%) (T - Auy_,-by) 4.6)
Equation (4.6) is not independent of the units used to measure the inputs. Because of this,
one may wish to use a different cost function in the minimization besides euclidean dis-
tance, such as (u, ; - u) W (ug4 ] - wy) where W is positive definite and hermetian. Then

u;, simply becomes

L _ -1
Uy = we+ WA AW AYY (T - Au,_-By) @.7)
Of course, when some components of i are feed-forward, (4.5) must be achieved by actu-

ating the control inputs.
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4.1.1.1. Conditions for Optimality of EWMA Filtering.

Using the estimation theory reviewed in chapter 2, we can show that the EWMA
filter used in obtaining the estimate b; is optimal for a class of drift models, provided that

@ is chosen properly, though in most practical situations the choice of  is usually ad-hoc.

Suppose that the process by, is governed by the following simple Autoregressive
(AR) model:

bryj=br+wy (4.8)
where wy, is a white random process (meaning it has zero mean and autocorrelation of
E{w,w*] = cj 8[k —1]. Similarly we assume the measurement noise is white, with vari-
ance 0'3. Then the Kalman filter recursions for estimating b, can be found by substitution
of (4.8), (4.1), and(4.2) into (3.19), (3.20), and (3.21):

b= (1- Ki)by + KO- Ax wp) 4.9)
2 2.-1
K, = °i|k-1[°'k|k-1 +0,] (4.10)
2 2 2 2 2,-1 2 2
Ok+1lk = Okjk-1~Ckjk-1{Ckjk-1+0,) Oy_1+0, 4.11)

Where O'il k-1 1s the estimator error variance (taking the place of zk| k—1) and (yx-Ag )
is the measured variable (taking the place of z).

In the signal model (4.8), the F matrix is simply 1. Because of this, b is not asymp-
totically wide sense stationary. However, we learned in the previous chapter that when the
pair [H, F] is detectable and [F, GJ/Q] is stabilizable, the Kalman filter asymptotically
approaches a time invariant filter, even when F is unstable. This is indeed the case in this
example because H = F = G@ =1. Using (3.24), (3.25), and (3.26) we find that the

Kalman filter gain converges to:

K = 6°[c +0.,] 4.12)
Where G satisfies:
1 1 1
= —+— 4.13)
"2—0,2‘, 62 of
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Thus as k — o, the Kalman Filter, which is the optimal linear time varying predictor of

by from { (- Aug) ... (Vg - Atggg)}, approaches a linear time invariant filter. Equivalently,
if we consider the case where the initial time, k, approaches —co , then the optimal predictor

at any finite time £, is the linear time invariant filter characterized by (4.12) and (4.13).

When the Kalman gain K}, is fixed to be K, (4.9) becomes the EWMA filtering rela-
tionship (4.3) whith the weight ® equal to K. Thus, EWMA is optimal when we have
exclusively offset drift, described by a simple random walk model of form (4.8), and the
weight o is selected to be the K . Finally, we must assume that the drifting and filtering pro-

cesses began in the infinite past.

This final point may seem a bit technical, but it can be justified quite intuitively by
a simple example. Suppose the offset drift begins at time k = 0, but at that time we know
the value of by with certainty. Then at time k = 1, we should expect that the optimal linear
estimate would rely greatly on the initial estimate by, and very little on the measurement
(v -Au;). Gradually as the process drifts and the uncertainty in by, grows, the optimal esti-
mator will depend more an more on the most recent measurement. Only after the process
has drifted for a fairly long time, will the optimal filter converge to fixed weightings on the
most recent measurement and the previous estimate. To demonstrate this, we can compute
the optimal estimator of b; using the basic linear least squares estimator result (3.3), we
find:

2 2

- O - o

Brop: = [1_ . sz0+ ——(y; — Auy) (4.14)
o, +0, c, + 0,

And indeed, one can show that oi,/ (0',2, + 03) is less than the value X of (4.12).

4.1.1.2. The Certainty Equivalence Assumption in EWMA Control.

In the EWMA scheme, we recursively estimate the parameter b, and select an input
as if our estimate were certain. Ho'wever, one cannot assume that in general the optimal
adaptive controller consists of two decoupled blocks, one that estimates the parameters and
the other that selects inputs as if the estimated parameters were known with certainty. The

optimal controller might be one that introduces noise into the input in order to achieve
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better parameter estimates, or perhaps scales down the input that a certainty equivalence

law would use because of low confidence in the estimated parameters. Fortunately, under
the assumption of having exclusively offset drift, the certainty equivalence rule is optimal
for EWMA control.

Result: For a process undergoing offset drift alone, a controller consisting of:

* A linear least squares estimate of by, ; from data y, thru Vi, denoted I3k+ 1(Vps ++es yko)

* A certainty equivalence input selector that chooses u, , ; to satisfy the equation:

T = Aup, +byy (4.15)

results in an output mean squared error that is lower or as low as the mean squared error
achieved by any other linear controller. By “linear controller,” we mean any control that

computes the input 4. ; as an affine function of data: y, thru Yk,

Proof: Define by + 1(¥gs ++-» ¥x,) to be the linear least squares estimate of by, ; using the

measured data. And suppose it achieves an estimation mean squared error of:

62 = E[Ibk+l —5k+ l|2]

Then if we use the certainty equivalence control:
-1 A
U, 1 = -A*(AA*) (bk-l- ](yka ceey yko))
The output variance, E[|y, , l|2] . will be equal to the estimation error &°.

Now suppose there exists a different linear control &, , 1O +ees yko) which results in an

output variance, E[|y, , 1]2] equal to &”, where &7 is less than the variance achieved by

. . A2
the certainty equivalence control, §°.

Then we could build a new linear estimator of b, ;, Ek +1 defined as:

bar = T-Allg 10 or V)
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Where the estimation mean squared error achieved by this estimator is:

62 = E[Ibk+ 1- I;k-i- l|2]
Because 62 < 62, this estimator achieves a smaller error variance than the estimator
bryi( Vip ooos yko) , which was defined to be the linear least squares estimator. This is a con-
tradiction. Thus, no other linear control achieves a better mean squared ouput error than the

certainty equivalence control.

4.1.1.3. Practical issues in EWMA control

The attractiveness of the EWMA scheme lies in its simplicity, and intuitiye form.
However, even though we have showed conditions under which EWMA is optimal, these
conditions are almost never true. If the offset drift of a process did obey (4.8), its variance
would grow unbounded as time elapsed, which is unrealistic. In addition, choosing the
weight © can be difficult in most situations, and most often is chosen ad-hoc. Though we
computed the optimal weight ® in the preceding section, the result is of limited utility
because it only holds when the offset drift behaves according to (4.8).

EWMA control schemes have been successfully deployed in processes such as
Chemical Mechanical Polishing [5], and I line lithography [4] (on a lot to lot basis rather

than wafer to wafer).

4.1.2. Robust Drift Cancellation

We have seen that EWMA control is a simple, intuitive strategy but is optimal under
a very limited class of drift models. We present here a variation of FIR Wiener filtering
which we term Robust Drift Cancellation (RDC) that achieves optimality for a larger range

of problems because it is designed directly from historical data.

As in EWMA, we assume a process model of the form:

y§=Auy + by (4.16)

Yk = Yi ek (4.17)
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where yj is the true process output (assumed to be a scalar), ey is the measurement noise,

and y, is the measured process output. We assume by, drifts according to some unknown
random process, but with a known mean b. Suppose we have m data records, and within
each data record are process recipes and outputs for L wafers. Using residuals from the mth
data record, we can compute an estimate of the (n x n) correlation matrix of (by- b +ep),

which we denote z,,;, where the m in the subscript emphasizes that the value is from the

mth data record.
1 L
m
RZ = m 2 2mk2*mk (418)
k=n
Where,
T
2mk = [zmk: Zm(k..])v eeey Zm(k-n+ 1)] (4.19)

Similarly, the time average autocorrelation can be computed as:

L-1
1
C; = L-n m(k+l)2mk* (4'20)
k=n

Using these matrices, we may compute an n-tap FIR Wiener filter for estimating z; using
(3.15):

r y (yk—Auk—l-v)
Zhary = (Cz) (R'zn) ’ : 4.21

(yk-n+l —Auk—n+ l_z)
Finally if we assume that the process {e;} is white, then Zmik+ 1) = Em(k.,_ 1)- Thus, a FIR

Wiener filter based control law uses any u; satisfying:

- T, m-l (g~ Aug-b)
Auy ., = T-b—(C7) (RZ) ‘ (4.22)
kon+1= Aty 1-b)
The above control law will reduce the variance of the output from 0' to
-(Cz) (Rz) (C'" ) , assuming that the when this controller is in operation, the statis-
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tics of by and e are identical to how they were when the mth data record was recorded.

However, in any realistic process the statistics of b and e, are nonstationary. If the statistics
worsen too much, a controller designed using a single past data record maybe too aggres-
sive and have poor performance. This is the motivation for developing a design methodol-
ogy that uses “worst case” bounds on drift statistics obtained from analyzing all m data
records [17].

We begin by finding a positive definite, hermetian, matrix upper bound, Rz that

satisfies:

Rz>R, Vie [1,m] 4.23)

Next, find a vector, C, such that

cTR'C,< (€™ R ™ Vie [1m] (4.24)

Then, the robust drift cancellation law is to use the control «; satisfying:

(Y —Auy - E)

Okons1—Aly_p1-b)

1

Au, = T-b-C, Ry (4.25)

To study the performance of the above control law, we make two modest assumptions. One

is that the sample correlation matrix of z; for any set of L wafers in the future satisfies:

L

1 -

I—n+l 2 2.2* <Rz (4.26)
k=n

Similarly, the sample autocorrelation vector for any set of L wafers in the future satisfies:

L-1 T
1 o
(L 3 PIRTINT ) '( Ez(m,zk ]<(c’") R cr (4.27)

=n
In other words, we assume the statistical bounds we computed on the m data records are

still valid in the future, but we do not assume any sort of statistical model for the drift, nor
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do we assume the processes is wide sense stationary. Then the sample mean squared error

of the measured output using the RDC law can be computed as follows:

2
L- L-1 (¥, — Auy - b)
1 2 1 T5 -1
L_nZ(yk+l_T) =L——nz zk+1—Qz Ry s
k= k= -
" " (yk—n+l_Auk—n+l-b)
R SR T -1
= L_nz (Zk"'gz Rz 2k2kRZ QZ-ZQZRZ 2kzk+l)
k=n
L-1
1 2 T~ -1
<i=Xu-CRG 4.28)
k=n
Observe that the quantity:
1 5,
X% (4.29)
k=n

is what the sample output mean squared error would have been had control not been used.
Therefore, the sample mean squared output error is guaranteed to be reduced by
QZTRZ-]QZ across a set of L wafers. The RDC design procedure is summarized in

Figure 4.1.

The advantages of the RDC approach are clear. It can be easily designed from his-
torical data. It is robust to non-stationary in the drift statistics. And finally, one can easily

compute a conservative, a priori estimate of how much RDC will reduce process variance.
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( Select number of taps: n )

From m historical data records, compute sample
correlation matrix and autocoreelation vectors:

Rz, Cz

|

Compute Matrix upper bound
usnmgpnu?nerica] (? t?r%ization
kz>R; Vi

_

Compute lower bound vector satisfying: ]

= -1 T -1 .
CIR; C,<(C]Y Ry 'C" Vi

v
Build the Control Law:
N 1[ (yx— Au, - b)
Auk+1 = T—b-'gz RZ- :
)

Vkons1=Alg_pyy—b

—v
Using the Control Law, output mean
squared error reduced by:

c,'R'C,

Figure 4.1. Robuét Drift Cancellation (RDC) Design Procedure

4.1.2.1. Robust Drift Cancellation Design Issues

In the preceding discussion, it was not mentioned how to choose the number of taps
n. Computational limitations may dictate a maximum value for . The control designer may
wish to try many different values of » and find the n which is the best trade-off between
computational complexity and potential variance reduction as computed by erftz—l C,.
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The design of the RDC law required the computation of a matrix upper bound in

equation (4.23). Computation of this upper bound is nontrivial, because one would like to
find a least upper bound; an upper bound that is too large would lead to an overly conser-
vative controller with a low value for _C_‘ZTTQZ_I C, . Fortunately, the set of matrices that sat-
isfy (4.23) form a convex set, making this problem amenable to numerical optimization.

For a discussion of appropriate optimization techniques refer to [16].

4.2. Parameter Adaptive Approaches
Here we assume that the observed process drift is due to both parameter and offset
drift. The general strategy is to update the process parameters A; and by using the available

data. The recipe u; is generated using the latest estimates of A; and by and the target output
T.

4.2.1. Kalman Filter Methods
Kalman filtering RtR control is studied in [18] for the application of photoresist spin

coating. In this approach we assume a process model of form:

T

¥ = [u 1] Ak (4.30)
by

Yk = Yi e 4.31)

where y; is the true process output (assumed to be a scalar), e, is the measurement noise,
and yy is the measured process output. We assume ¢ to be a white random process with

variance 0'3 . Furthermore, we assume that the deviation vector of A; and b, defined as
T r— AT
% = [a &) -[4] 3] 4.32)
is a Gauss Markov process, obeying the stochastic difference equation:

Xpe1 = ka + ka (4.33)

where wy is a white random process with covariance matrix 1. Also, we assume x, is

A7
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The Kalman filter control approach is to use Kalman filtering equations outlined in Chapter

3 to estimate Ay and b;. Referring to (3.19) - (3.21), substituting [“k 1] for H¥%, and ¢, for

v, we have:
. . A
kel = (Fk—Kk[uk 1])xk|k-1 +Kk[yk- [uk 1] [I;D 4.34)
S r -1
u u 2
Kk = szklk-l lk [uk l]zklk—l[llg| +O'e] 4.35)
L 1dL
ul( 7 B
ik =Fk[zk[k-l_zk|k-l lk [uk 1] Zik-1 | +0, [uk l]zuk-l]F"ic
RAAN
+ G, G*% (4.36)

The input used is any u;, ; satisfying:

=T
T = [u, 1] [A]mkﬂlk (4.37)

where T is the target output.

4.2.1.1. Certainty Equivalence in Kalman Filtering Control

In the Kalman filtering control scheme, we recursively estimate the parameter X
and subsequently select an input as if our estimate were certain. Though we showed this
approach is optimal in offset drift situations, it is not optimal for the parameter drift case.
Depending on the particular problem, the optimal control (in terms of mean squared output
error) might introduce extra excitation into the input at times to achieve better parameter
estimates -- improving control performance on future wafers at the cost of adding variance
to the current wafer. Finding a closed form solution for the optimal control law, when the
optimal control is so elaborate can be extremely difficult or impossible in many problems.
From a practical perspective, we may not want to use a controller that deliberately adds

unnecessary excitation to the inputs, possibly ruining a wafer to achieve slightly better per-
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formance on future wafers. Therefore, in Kalman filter RtR control, we do not bother to

find the true optimal controller, and instead use the certainty equivalence approach.

4.2.2. Practical Concerns in Parameter Adaptive Methods

The shortcoming of Kalman filter methods for RTR control in particular, and
parameter adaptive control methods in general, is as follows. If there are too many process
parameters x;, estimating them requires a lot of data. By the time we have enough data to
estimate the process parameters, they may have drifted considerably. As a result, the esti-
mated process model is poor and RtR control based on this model can in some situations

increase process variance. These problems are illustrated in [18].

4.3. Offset Drift Cancellation Applied to Processes with Parameter Drift
The purpose of this section is to demonstrate that under certain conditions, an offset
drift cancellation approach has the potential to perform as well as a parameter adaptive

approach, even when the process is undergoing parameter drift.

Suppose we have a single input singe output (SISO) process that when run with a
fixed input & has a measured output y; that is of form 8, +5 where §, is some random
deviation from the mean output. One way to model this behavior for control design is to

assume that the output deviation J, is being caused by offset drift:

Yo = Aup+(b+8,) +e, (4.38)

Another model would be to assume that the output deviation is caused by drift in A:

) -
Vi = (A + é‘)uk +b+e, (4.39)

Now, suppose that we build an estimator of the drift process 8, and call the estimate, & .
Then the control law corresponding to the offset drift model (4.38) is to choose 1 satisfying

A

_ 0
w = 1 (4.40)

The control law corresponding to parameter drift model (4.39) is to choose u; satisfying:
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- - & & 12
w=2b o 3B =‘—%+Eo(% ) “.41)
A+ = A(1+—’i) y
u Au

We see that the two control laws are nearly identical when the argument of the o( ),
lsk/ (Az‘4)|2 becomes small. Some intuition on this result can be gained by observing
Figure 4.2. The figure shows how an offset adaptation and parameter adaptation both
account for the same small change in observed oufput, assuming that Au is large. Note that
in the operating region, the two models look almost identical. Consequently, the use of

either model would lead to almost identical control input selections.

Figure 4.3 shows the case when Au is small. The geometry of the problem when Au
is small causes the Offset adaptation model to have a significantly different slope than the
parameter adaptation model. Which model is used will have a drastic effect on the control

decision.

Figure 4.2. Offset vs. Parameter Adaptation: Large A Product

In conclusion, when the Au product is small compared to the size of the process

output deviations, an offset drift cancellation strategy may work as well as a parameter
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adaptive approach. This is an extremely useful result because it is often the case that Au is

large, and it is much easier to build an offset drift model than a parameter drift model.

y
Offset Adaptation

>"-—' k\
" - \ -
- N -

% ating Regio
ominal perating Region

<|

arameter Adaptation

L
u u

Figure 4.3. Offset vs. Parameter Adaptation. Small Au Product.
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Chapter 5

Chapter 5 RtR Control for DUV
Lithography

In previous chapters, we have established a theoretical framework and created tools
for RtR control design. In this chapter, we apply these tools to the problem of controlling
Deep Ultra-Violet (DUV) lithography. Taking into account our knowledge of the process
and available in-line measurements, we develop a control architecture, and simulate the

controller’s operation in the presence of process drift.

5.1. Motivation for DUV Lithography Control

Deep Ultra Violet (DUV) lithography is anticipated to become the main lithography
technology for the next generation of ICs with sub-quarter-micron linewidths. DUV lithog-
raphy can achieve smaller linewidths than conventional I-line lithography for two impor-
tant reasons. One reason is that DUV lithography uses shorter wavelength illumination
which reduces the diffraction effects for a given grating size. The other reason for the
greater capability of DUV technology is the use of extremely sensitive Chemically Ampli-
fied (CA) photoresists, which are capable of generating sharp resist profiles, even when the

aerial image is blurred by diffraction effects.

Although lower wavelength light and CA resists have increased lithography capa-
bility, they have also increased the susceptibility of the lithography process to disturbances.
Lowe; wavelength light reduces the depth of focus, making critical dimensions (CD) more
sensitive to wafer topography. CA resist increases the sensitivity to exposure variations
from the stepper, and as we shall see later in the chapter, introduce ahother source of vari-

ance during the Post Exposure Bake (PEB) process.
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Companies developing DUV lithography processes have indeed observed unac-

ceptable levels of CD variability. For example, some manufacturers have observed a 36 CD

variation of 24 nm within each wafer, between different wafers, and between lots.

To improve the efficiency of DUV lithography, IC producers need to find ways to
reduce CD variability to ensure sufficient yields and consistent circuit performance.
Having already spent millions of dollars on steppers with ultra-high precision lenses and
mechanical components, robotic cluster tools for applying photoresist, and environmental
isolation, IC manufacturers trying to reduce CD variability are left with very few alterna-

tives for additional improvements.

RtR control is one of the most promising alternatives for CD variance reduction at
the wafer to wafer and lot to lot level. In this chapter, we develop a control architecture for

this extremely important problem using the framework developed in previous chapters.

S.2. The DUV Lithography Process

To develop a RtR controller for DUV lithography, it is necessary to understand how
DUV lithography works and what are the most likely sources of process drift.

5.2.1. Basic Process Flow

See Figure 5.1 for a flowchart of the DUV lithography sequence. Before the DUV
lithography sequence begins, the film to be patterned is deposited onto the wafer. Next the
wafer is coated with an antireflective coating, which helps to reduce standing waves of light
in the resist during the exposure step. The antireflective coating is baked dry, and then the
wafer is coated with a DUV chemically amplified photoresist. This too is baked dry, and
then the wafer is brought to the stepper.

The stepper exposes the wafer (die by die) to DUV light, passed through a patterned
reticle. Wherever the resist is exposed to light, photo-acid is formed. The two most impor-
tant process parameters that can be adjusted at the stepper are the exposure dose per unit

area, and the focus level.

Following exposure, the wafer is given a Post Exposure Bake (PEB). During the
PEB, three simultaneous processes occur [19]). In a chemical reaction called deprotection,
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photo-acid catalyzes a weakening of organic chemicals in the resist, making it soluble

wherever there was acid present from the exposure. At the same time, the photo acid is
gradually “quenched” or consumed by a second reaction. Finally, the acid diffuses through
the resist somewhat before it is “quenched,” which results in a widening of areas where the
resist is deprotected. Detailed studies of the reaction kinetics and mechanisms are presented
in [19] and [20]. It has been shown that all three effects, deprotection, quenching, and dif-

fusion are temperature dependent.

After PEB, the wafer is immersed in developer, causing the photoresist to dissolve
wherever it had been deprotected. The developer is extremely selective between resist that
has been deprotected and resist that is not deprotected [21]. Therefore, varying the develop
time usually does not effect CD greatly. A study of the relationship between deprotection

and develop dissolution rate can be found in [21].

SPIN COAT&
SOFT BAKE

b T
Nt

PEB DEVELOP

EXPOSE
Figure 5.1. DUV Lithography Process Flow
5.2.2. Likely Sources of Variability

As of yet, there have been no definitive studies as to what are the primary sources
of CD variability in DUV lithography, but by stepping through our picture of the lithogra-
phy sequence, we can determine likely sources of variability. Variations in the underlying

film thickness (both within wafer and between wafer) change wafer reflectance, which
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influences the amount of exposure energy that is coupled into the resist. Variations in the

photoresist thickness, can also effect reflectivity, leading to a similar effect.

The light source in the stepper is an excimer laser, and each exposure consists of a
discrete number of laser pulses, with each laser pulse having random variations in its
energy. Thus, variations between the exposure dose set by the operator, and that actually

given by the light source almost certainly play an important role in CD variability.

PEB may also have an important role in CD variance. Variations in bake plate tem-
perature (both spatially across a wafer and between wafers) effect deprotection and diffu-

sion, resulting in variation in CD.

Our picture of the DUV lithography drift is summarized by Figure 5.2.

Abnormal thickness of both resist and underlying films
effect reflectivity.

and light source behavior alter the effective dose
coupled to the resist.

l Drifts in wafer reflectivity, photoresist chemistry

PEB Temperature variations effect diffusion and deprotection.

Figure 5.2. DUV Lithography Drift
5.2.3. Available Metrology
Having outlined the possible sources of CD variation, we need to establish a means
of measuring drifts in the process in order to design a RtR control loop. Ideally, we would
like to measure the CD of every wafer before processing the next wafer. However, the only

reliable way to measure CD is to use a scanning electron microscope (CD-SEM), and
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unfortunately these measurements take too much time to be done between processing each
wafer. Instead, The CD-SEM is most effective and has its highest throughput when mea-
suring the CDs of a large batch of wafers. Therefore the CD-SEM cannot be used as the
primary feedback of a wafer to wafer RtR control scheme, but can be used to asses the con-
trol performance after having processed a lot of wafers. Also, the CD-SEM can be used as
the principle feedback of a RtR control scheme that makes adjustments at a lot to lot level

-- as was demonstrated by Hershey, et. al. in [4].

One quantity that can realistically be measured in-line is wafer reflectance before
exposure, using a small reflectometer such as that manufactured by SC Technologies. This
measurement could capture reflectivity variation due to the spin coat process and the under-
lying film properties, but obviously cannot provide information about light source variation

and PEB variation.

Another useful quantity that can be measured in-line is the change in thickness, or
thickness loss, of the photoresist after PEB. In [7], Jakatdar shows by experiment that thick-
ness is highly correlated to deprotection. Obviously, a measure of deprotection is extremely
useful because it contains information about the cumulative effects of exposure and PEB
disturbances. The potential use of this measurement is discussed in some detail later in this

chapter.

5.3. Lot to Lot Control for DUV Lithography

RIR control on a lot to lot time scale has already been successfully implemented in
industry. In this section, we review the results of the control implementation, and also

extrapolate the lot to lot performance of EWMA and RDC control.

5.3.1. Industrial Results

Lot to lot RtR control was implemented at Motorola Semiconductor Corporation,
and the implementation and results are discussed in [24], however the details of the control
algorithm are unavailable. The controller worked by taking an average DICD (Developed
Image Critical Dimension) from a lot, and using this measurement to compute an exposure
dose for the subsequent lot -- trying to maintain the DICD as close as possible to a target

DICD. In turn, a second, more slowly acting control loop adjusted the DICD target in an
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attempt to account for changes in the etch bias, the difference between DICD and CD after

etching.

The results presented in [24] indicate that the standard deviation of DICD before
implementing the control was 9.4 nm, and after implementing control was reduced to 6.0

nm. The post-etch CD was reduced from 11.1 nm to 7.1 nm.

5.3.2. Results using EWMA and RDC

Because the details of the Motorola controller are unavailable, it is useful to try to
estimate how control techniques like EWMA and RDC would have performed if they were
used for lot to lot control on Motorola’s process. Motorola provided us with a set of lot to

lot data for this exercise.

The data set contained the exposure dose used for the lot and the DICD for the lot.
Our analysis was done as follows. From the data, we computed the sensitivity of DICD to
dose, A. By subtracting Auy, (Where u; is the exposure dose of the kth lot) from each DICD
data point we arrived at the sequence of offset terms by, Having a sequence of b; terms and
the sensitivity A, it is straightforward to reconstruct how any offset drift cancellation con-
trol would have performed on this lithography line. In our simulations, we add measure-

ment noise, normally distributed with 36 = 5 nm, to the DICD to generate the hypothetical

CD measurements, or y;.

0.29

.l il

Motorola CD data

.23 (-] 80 100 180 200 ?-50 300 aso 400 <80 800
ot

Figure 5.3. Motorola DICD Data
Figure 5.3 shows the DICD data supplied by Motorola. The target CD is 0.24, and the expo-

sure dose is being adjusted from lot to lot by a controller. The standard deviation of the CD
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here is 10.4 nm. It should be stressed that this data set is not the same data which was used

for the results presented in [24]. Figure 5.4 shows CD vs. lot number, calculated to reflect
what would have happened if the exposure dose were held fixed. The standard deviation of

this datais 11.3 nm."

Extrapotated CD using a fixed recipes
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Figure 5.4. Lot to lot DICD had no controller been used

Figure 5.5 plots DICD vs. lot index when EWMA control is used (w = 0.3). The
standard deviation has been reduced dramatically to 5.8 nm. Finally, the results of the RDC
technique (using a window size of three wafers) are shown in Figure 5.6. Here, the standard

deviation is 5.7 nm, nearly the same as for the EWMA control.

CD under EWMA Control
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Figure 5.5. CD under EWMA control
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CD with RDC control
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Figure 5.6. CD under RDC control

The results of both our analyses, and the Motorola results from [24] indicate that significant
lot to lot CD variability reductions can be achieved with RtR control. This is important
because according to [24] lot to lot variability accounts for 30% of overall CD variance.
Another 10% of the overall CD variance is due to variations between wafers. To reduce this
portion of the variance, we must build a controller that acts on a wafer to wafer time scale.

The development of such a controller is the topic of the remainder of this chapter.

5.4. Wafer to Wafer RtR Control Design Process

5.4.1. Lithography Modeling Experiment

To quantify the relationships between exposure dose, bake time, thickness loss, and
CD, a modeling experiment was performed at National Semiconductor Corporation in
Santa Clara, CA.

The experiment was carried out as follows. Four wafers were spun with 660 Ang-

stroms of AR2 antireflective coating, and approximately 6550 Angstroms of UVS5 deep
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ultra-violet photoresist. Then one set of die on each wafer was exposed to CD test patterns,

with the exposure dose varying across the wafer. To facilitate thickness loss measurements,
another set of die on each wafer were given blanket exposures, again with a varying expo-
sure dose. Figure 5.7 details how each die was exposed. To ensure that the blanket and adja-
cent patterned areas received comparable doses taking into account their different
diffraction efficiencies, the blanket area doses were scaled down relative to the patterned
area doses. Following exposure, the wafers were given a PEB, with each wafer receiving a
different bake time as summarized in Table 5.1. After PEB, the photoresist thickness was
measured in all blanket areas. These thicknesses were compared to thickness measurements
taken before exposure to compute the thickness loss for each blanket exposed die. Finally,
all of the wafers were developed and the CDs in each of the CD test pattern die was mea-
sured with a CD-SEM.

Wafer # Post Exposure Bake Time (s)

1 105
2 75
3 90
4 90

Table 5.1. Post Exposure Bake Times used in the Modeling Experiment
5.4.2. Empirical Lithography Models

Several regression models were built using the measured thickness losses, CDs, and
process input values. Square root terms were introduced into some of the models to

improve the fit to the experimental data.

The results are summarized in Table 5.2 [22]. The first and second models relate
thickness loss and CD (respectively) to the process: inputs bake time and exposure dose.
The last model relates CD, the output we wish to regulate, to thickness loss, the quantity
we can measure in-situ. The additional terms involving PEB time were added to the model

to improve the fit to the experimental data. A physical justification for these terms is that
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thickness loss does not capture the effects of acid diffusion during PEB, but these effects

are strongly related to PEB time.

Adjusted
Model R? | std. Eror
L JThloss = —23.4615 +2.5176Dose + 0.0334PEBtime 0.9802 0.22 A®S
II. | CD = -0.0160Dose + 0.0906 JPEBtime — 0.0052PEBtime | 0.9996 3.837 nm
III. | CD = -0.0029PEBtime + 0.0508 /PEBtime — 0.000255Thloss | 0.9995 4.216 nm

Table 5.2. Modeling Experiment Results
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Blanket Exposure
Exposure Dose: 4.6 - 5.4 mj/cm? in steps of 0.1 mj/cm?
(3 Replications)

CD Test Patterns
Exposure Dose: 12.2 - 13.8 mj/cm? in steps of 0.2 mj/cm2
(4 Replications)

Figure 5.7. Modeling Experiment 8” Wafer Layout
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5.4.3. DUV Lithography Drift Model

Having found static models relating the inputs and outputs of the DUV lithography
process, it is now necessary to develop a model of how the process drifts. As stated in
Section 5.1 the typical wafer-to-wafer 3¢ variation is about 24 nm. The issue addressed in

this section is where in our process model should we account for this variation.

In Section 5.2.2 we surveyed the likely sources of variability in DUV lithography.
Some likely sources were effects like incoming wafer reflectivity variation causing effec-

tive dose fluctuations, and PEB temperature drifts which affect diffusion and deprotection.

These sources of variability as well as the others we discussed in Section 5.2.2 can be mod-
eled (at least to first order) as additive noise on the process inputs -- exposure dose and PEB

time.

Dose g= Dose + Noisedose 5.1)

PEBtime = PEBtime + Noisepgp (5.2)

Here, we have introduced the terms Dose gand PEBtime gto denote the sum of each input
setting and noise term. Our final models for thickness loss and CD will be those summa-

rized in Table 5.2, but with Dose,gand PEBtime g substituted wherever dose and PEBtime

appeared.
NThloss = -23.4615 +2.5 17Dose g+ 0.0334PEBtimeeﬁ (5.3)
CD = -0.0160Dose,; + 0.0906,/PEBtime eff — 0.-0052PEBtime eff 54

Finally, we assume that some measurement noise is incurred in measuring thickness loss.

Thloss,,eqs = Thloss + noise

5.4.4. RtR Control Architecture
The control strategy is straightforward: measure the photoresist thickness loss after

PEB, estimate the post-develop CD, and use this estimate in conjunction with a standard ~

RtR control algorithm to prescribe a recipe for the subsequent wafer. A schematic of the
control architecture is shown in Figure 5.8, and a summary of notation we will use in our

controller development is presented in Table 5.3.
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Figuré 5.8. RtR Control Architecture for DUV lithography

CD ESTIMATOR
CD = h(Thloss, Time)

] . CD Estimate

Definition Explanation
T = CD Target =D«=:sire_dtCD
Y%= CD, True CD of wafer k
y¢=CD k CD estimate of wafer k
=Yk~ Y% CD Estimation error of wafer k

Dosek
uk = :
PEBtime,

Input vector for wafer k

Table 5.3. Control Architecture Notation

The CD Estimation block of Figure 5.8 takes a presumably noisy thickness loss

‘measurement and the wafer’s PEB time and applies Model II1. of Table 5.2 to arrive at an

estimate for CD.
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Ye=C D x = —0.0029PEBtime, +0.0508 /PEBtimek —0.000255Thloss, (5.5)

The target CD and CD estimate of the previous wafer are fed into the RtR Controller block
of Figure 5.8. In Section 5.4.3, we arrived at a drift model in which drift terms add to the
exposure dose and PEB time. Under this drift model, the sensitivies to the process inputs
are fixed to first order (If we were to write (5.5) as a taylor series about a nominal PEBtime
and nominal dose, the drift terms would multiply only with second order and higher terms
of PEBtime and dose.) Therefore the drift is primarily an gffset drift, and thus we use an
offset cancellation RtR control technique. In our first design, we choose the simplest in this
class of techniques, EWMA. Recall from Chapter4, an EWMA RtR control design

assumes a process model of the form.

y,?= Auk + bk (5.6)
Our process model will be a modification of the process model obtained from our modeling

experiment (Model II. from Table 5.2). We define the function A ( ) using our empirical

model:

D
A %% 1| = ~0.0160Dose + 00906, [FEBtime, - 0.0052PEBtime,  (5.7)
PEBtime,

We then add a drifting offset term to (5.7) to create the process model for our EWMA con-
trol design.

Ye=A(u) +by (5.8)
The offset term by, used by the EWMA controller accounts for the cumulative effects of
PEB and exposure drifts on CD. We could modify (5.8) to be affine by defining the input
vector to have a ,[PEBtime, term, but it is more convenient to leave the equation in its

present form. The b, term is recursively estimated according to the equation:

bre1 = (1-0)bi+ (- A () (5.9)
where o is the EWMA weight and 5& is the estimate of b;. The input setting is selected by

finding a u; that will meet the target output T by cancelling the estimated drift:
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T = A(u,)+b; (5.10)

The choice of ¥ that saﬁsﬁes (5.10) is not unique, so two practical design consid-
erations are used to select a u;. First, we would like to stay within the region of the input
space which was used in the modeling experiment. Second, the exposure dose and PEB
time have a minimum step size of 0.1 mj/cm2 and 1 second respectively. By trial and error
using the simulator to be discussed in Section 5.5, we arrive at an input selector algorithm
that performs well with the above input limitations. The algorithm is outlined in Table 5.4.
Though this input selector is quite problem specific, it illustrates how one can incorporate

input limitations into a control design using ad-hoc rules.

1.Assume a nominal PEB time of 91 seconds and calculate an exposure dose, oy

that satisfies (5.10).
T=A ( O ) + by
91seconds

2. Scale oy according to its difference from the nominal dose of 13.2 mj/cm? to
form do?s‘ek .

~ mi mi
dose; = 0.85(ak— 13.2—']2) + 13.2—]2

cm cm
3. Round do;'ek to the nearest multiple of 0.1 mj/cm? and apply hard limits of 12

mj/cm2 and 14mj/cm2 to yield dosey.
4. Find an appropriate PEB time for the selected dose;.

dose, .
T=A - + by
PEBtime,

5. Round PEBtime x to the nearest second, and apply hard limits of 75 seconds
and 105 seconds to give PEBtime, .

Table 5.4. Input Selection Rules
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5.5. RtR Control Simulation
Having designed a RtR controller for DUV lithography, we would now like to simulate the
controller to assess its potential performance. In this section, we develop an architecture for
simulating the closed loop system, outline the parameter selections and outcome of a base-

line case, and then evaluate the change in performance when parameters are perturbed.

5.5.1. Simulator Architecture

ITHOGRAPHY PROCESS___ D,
CD=fi (Doseeﬁg PEBtimeeﬁ)
Thloss = g8(Dose 5 PEBtime ) |

White ‘
.—» -l
Noise 1-0.852

Noise 1-0.85z

Thloss

Noisenlos»é

v v

EWMA CONTROL BLOCK C%D ESTIMATOR
Offset = a(Offset, CD) = h(Thloss, Time)

Target = g(Dose, Time, Offset) [

Dose
PEBtime

Figure 5.9. Simulation Architecture

Figure 5.9 outlines the simulation architecture. The Simulator simulates three blocks: the
drifting lithography process, the CD estimator, and the EWMA controller. The CD estima-
tor and EWMA Control blocks are imﬁlemented with the equations given in Section 5.4.4.
Simulating the lithography process block also requires specifying a stochastic drift model,

which is the purpose of this section.

The lithography process block takes exposure dose and PEB time as inputs, and out-
puts CD and Thickness Loss. The model for the lithography process is that described by
Section 5.4.3. Thus, f{ ) and g( ) of Figure 5.9 are the models for CD and thickness loss
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found from the modeling experiment, with the substitution of a Doseyg and PEBtime 4 for

Dose and PEBtime.

We must assume that Noise,,,, and Noisepgp has some autocorrelation structure
between runs. Because we do not know the exact autocorrelation structure we will encoun-
ter in the real lithography process, by default we assume the simplest model possible, a first

order AR. The modeling technique is that illustrated in Section 2.3.1. We define

Noise
X, = INOse ose (5.11)

{NoisePEB}k

Now suppose we.expect the variance of Noisegy,,, to be O_zd‘m and the variance of
Noisepgp to be 0'21:53 . Also suppose we expect the autocorrelation coefficient between
successive runs to be P, ; and P 5 for Noisey,,, and Noisepgp respectively. With the fol-

lowing definitions:

2
K = G Dose O JF = [Pd'l 0 ],G = JK-FKF* (5.12)
0 o pes 0 Py

the stochastic process for x; is

X0 = Fx, +Gw, (5.13)

Where w, is a 2 dimensional gaussian random vector with identity covariance. As indicated
by Figure 5.9, the random process generated by (5.13) can be generated by passing white

noise through two filters, each with a pole at P;; and a zero at 0.

The thickness loss measurement error, Noisery,,,.. is assumed to be white and nor-

mally distributed with variance 6>Thioss .

- 5.5.2. Baseline Simulation

Section 5.5.1 described the basic architecture for our simulations, but left many
parameter values unspecified. In this section, we will pick a set of parameter values that, to
the best our knowledge, characterizes how the DUV sequence typically behaves. After

selecting baseline parameters, we simulate the baseline case and evaluate control perfor-
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mance. In Section 5.5.3 we explore what happens when the baseline parameters are per-
turbed.

5.5.2.1. Parameter Selection

The baseline parameter choices are summarized in Table 5.5. szose and 0'2p53
were selected to give a CD variation of 8 nm. Clearly, many combinations of these two vari-
ances would yield a CD variance of 8 nm. The values chosen as the baseline values are the
best guesses from a experienced lithography engineer [23]. His choices were primarily
based upon the typical variation in the optimal exposure dose, as periodically measured by
test wafers with focus/exposure matrices. czThIoss was selected to be two times the known
measurement error variance of the reflectometer used for the thickness loss measurements
(Two times the measurement error because two uncorrelated measurements are subtracted

to compute thickness loss.)

Parameter Parameter Description Baseline Value
O dose Effective Dose Variance 0.4 mj/cm?
Opcp Effective PEB Time Variance 7.1 seconds

CThioss Thickness Loss Measurement Error Variance | 13 Angstroms

Py, Drift Model Parameter from (5.12) & (5.13) 0.85
(The correlation coefficient between succes-
sive {Noisep,s,}; terms.)

Py Drift Model Parameter from (5.12) & (5.13) 0.85
(The correlation coefficient between succes-
sive {Noisepgg}; terms.)

® EWMA Weight 0.6

Table 5.5. Baseline Parameters
At the time of this writing, no wafer to wafer drift data is available from the

National DUV Pilot line to compute the wafer drift statistics. Thus, the values of the drift =

model parameters P, ; and P, ; are selected by analysis of CD data from a different source,
a DUV lithography line at Motorola in XXX, TX. A first order AR model was fit to the data

set, and the resulting pole was located at around 0.85. Thus, we concluded that 0.85 is a
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reasonable choice for P ; and P, ,. However, the CD data from Motorola was taken on a

lot to lot basis rather than wafer to wafer. So we are essentially assuming that the drift sta-
tistics on a wafer to wafer time scale at National Semiconductor are similar to the lot to lot
statistics at a different factory, of a different manufacturer, making a different product.
Clearly, this is a very bold assumption and must be revisited as soon as a large set of wafer

to wafer DUV data becomes available from National Semiconductor.

The EWMA is selected to be 0.6, because this value seemed to give relatively good
performance for both the baseline case, and cases where the baseline parameters are per-
turbed.

5.5.2.2. Baseline Simulation Results

CD, Without Control - Dashed, With Control - Solid
0.21 T T T T T L] 4 4 !

Figure 5.10. Baseline Simulation Performance and Inputs for 100 wafers.
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The baseline case was simulated for a sequence of 1000 wafers. Figure 5.10 illus-
trates the results of the simulation. In the first plot, the solid trace represents the CD of the
first 100 wafers using the EWMA controller, while the dashed trace shows what the CD
would have been had the input been held fixed. The variation in with-control trace varies
noticeable less than the open-loop trace. The other plots of Figure 5.10 show the inputs that
were used by the controller. Note that the inputs stay within the range of 80 - 100 seconds
and 12 - 14 mj / cm?.

Table 5.6 quantifies the relative performance of the EWMA control vs. no control.

The statistics -- RMS error and mean -- are evaluated using all 1000 wafers.

Mean CD | RMS Error
Without Control { 0.1785 um | 0.0071 nm
With Control 0.1804 um | 0.0052 nm

Table 5.6. Control Performance Statistics

To obtain a more concrete picture of what the drift models in this simulation are
doing, the Noisep,, and Noisepgp sample paths used in the baseline simulation for the first
100 wafers are shown in Figure 5.11. The sample paths appear to be quite noisy but do
exhibit autocorrelation, which is indeed the type of drift we hoped to synthesize with our
drift model.
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Figure 5.11. Dose and Bake Noise Sample Paths for Baseline Simulation.
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Figure 5.12. CD Estimator Performance in Baseline Simulation. RMS error = 4.7 nm

57



Chapter 5

Figure 5.12 shows the performance of the CD Estimator block in the baseline sim-
ulation. The first plot shows the actual CD and the estimated CD for the first 100 wafers,
while the second plot shows the difference between the two, the estimation error. If one
compares this second plot with the traces in Figure 5.11, one notices some correlation
between the estimation error and the PEB noise (For example Noisepgp has a peak at 17
seconds while the estimation error has a trough, also at 17 seconds.) An explanation for this
can be found by examining (5.5), the equation describing the CD estimator. In (5.5), the
CD estimate is coupled to the PEB time through all three terms, PEBtimey, ,[PEBtime,,
and also by the Thloss,, term, which is a function of the effective bake time in the simula-
tion. Changes in the effective bake time from {Noisepgg}; can be “seen” by the estimator
through the Thiloss term, but not through the other terms. So a large, positive, Noisepgg
will decrease the estimated CD by a smaller amount than it decreases the true CD, resulting

in an increased CD estimation error.

5.5.3. Simulation of Perturbations in the Drift Model
Having established a baseline simulation, in this section we investigate the effects

of parameter perturbations on performance.

We first explore variations in P4 ; and P, 5, the correlation coefficient between suc-
cessive {Noisep,;,}, and {Noisepgp}, terms respectively. In the baseline case, we set both
P4 and P, to be 0.85, but recall we had very limited confidence in our choices in P,
and P, , because the choices were made by analyzing lot-to-lot data taken from a com-
pletely different lithography setup. Here we will explore an array of possible values for P4 ;
and P 5. In this first parameter exploraiion we vary both P; ; and P,; ; between 0.5 and 0.95
in steps of 0.05. For each (P, ;, P4 ) pair, we run our simulator with a sequence of 1000

wafers, and set all other parameters to the baseline values.

58



Chapter 5

o o
. o 0 N
[ I I i

D Variance in Microns

Bake Correlation

Dose Correlation

Figure 5.13. CD Variance with respect to P, ; and P , other parameters set to baseline.

Figure 5.13 shows the results of the first simulation. The x and y axis show the
values of P4 ; and P, while the CD variance is shown on the z axis. As expected, the
higher values of P, ; and P, 5, or more autocorrelation in the process drift, result in reduced
CD variability. In this simulation, the CD variance is most strongly dependent on the Dose
correlation, Py ;. This is probably because the dose variance constitutes the larger portion
of the overall process variability. Thus under the assumptions of this simulation, good con-

trol performance requires strong autocorrelation in the Dose Noise.

The second parameter exploration is similar to the first. Again, we test an array of
different (P, ;, P, ) pairs, but now we change 6 dose from 0.4mj/cm? to 0.3 mj/cm? and
o pep from 7.16 10 9.55 s. Like the original values for 6 dose and G~ PEB , the new values
result in a open loop CD variation of 8.0 nm 6. However in the situation described by the
new parameter choices, the PEB Noise constitutes an increased portion of the overall vari-

ability. All other parameters were set to the baseline values.
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Figure 5.14. CD Variance with respect to (P ; , Py )

62 dose = 0.3 mj/em?, GzPEB =9.55s.

Figure 5.14 shows the results of this second simulation. As before, higher values of
P, ; and P, 5, or more autocorrelation in the process drift, result in reduced CD variability.
However, in the first simulation CD variance was much more dependent on P, 1, butin this
simulation CD variance is almost equally dependent on the values of P;; and P ;. This
should be expected because we have increased the contribution of Bake Noise to overall

variability.

Our parameter exploration leads us to two conclusions. One is that CD _variance

reduction can be achieved for a large range of parameters and not just the ones used in the
baseline case. The second point is that the potential performance of RtR control is

extremely dependent upon the autocorrelation of the process drift.
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5.5.4. Other Relevant Properties of the Process Drift

Though the degree of autocorrelation in the process drift is extremely important in
determining the potential impact of RtR control, other properties of the process drift have
a role as well. One property in particular is how long it takes the process drift to exhibit its
autocorrelation. For example, suppose we have a process that undergoes step changes (per-
haps from maintenance cycles) in a scalar offset term, b;, with some additional white noise.

A simple wide sense stationary model for this behavior is:

by = fk+V) +w (5.14)

) = { ~1 k& mod 1000 e [0,499] we- N©.O.D) 5.15)

1 k mod 1000 e [500, 999]

where V is a discrete random variable, uniformly distributed on [0,999]. Simple calcula-

tions show that the autocorrelation coefficient between successive runs is:

2
1— =
E[byb; 4] 500
> = 5 =0.90 (5.16)
E[b;] 1+0,

From the value of this autocorrelation, we might expect that this process would be an excel-
lent candidate for RtR control. However, if we think more carefully about (5.15), we see
that the process is basically white noise on the scale of 10’s or 100’s of runs, and periodi-
cally shifts means on a very long time scale. If we were to run a RtR controller over some-
thing like 50 runs, it is extremely likely that the cbntroller would actually worsen process
variance because it would basically be operating on a process with white noise drift. If the
RtR controller ran for 1000’s of wafers, then we would see a substantial variance reduction,
but only because the RtR controller would “re-center” the process every time a step change
occurred. Such basic changes could much more easily done by an equipment operator --

* recallibrating the tool after each maintenance cycle for example.

What this example illustrates is that for a process to benefit from RtR control, it not
only must have high autocorrelation, and but also it must exhibit its autocorrelation on a

reasonable time scale.
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Chapter 6 Conclusions

6.1. The Need for RtR Control

The economic pressure to produce ICs with denser layouts and smaller feature sizes
will continue to drive manufacturers to reduce variability in critical processes such as
lithography and plasma etch for the forseeable future [25]. In this work, we have seen that
RtR control can be extremely effective at reducing variability, and because it requires much
fewer equipment changes than redesigning a process, it can achieve variability reduction at

a comparitively low cost.

6.2. On the Design of RtR Control

The proper design of a RtR control algorithm is a subtle, an interesting engineering
problem in itself. In this work we have emphasised one approach to solving these problems,
which is to formulate the problem in the context of random processes, and to build control-
lers based upon standard filtering techniques. This approach ultimately leads to the tech-
niques emphasisized in this work: EWMA, RDC, and Kalman Filtering. In the
development of all these techniques, we have seen that the design of an effective RtR Con-
trol balances two objectives: the need to aggresively compensate for drifts in a process, and
the need to not introduce more variability into a process by misjudging how the process has
drifted. The advantage of designing a RtR controller in the context of random processes is
that it leads to mathematical formulas that tell us where the best balance between these two

objectives lies, in terms of first order statistics of the process drift.

6.3. Practical Considerations
In Chapter 5, our study of RtR control for DUV Lithography, we saw that not a clever math-

ematical technique for designing a RtR control was not enough. What we saw is that the
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key for developing an effective RtR control is to have a metrology that samples the process

as often as possible and which measures a variable that is or is closely linked to the param-
eter we are trying to control. However such a metrology does not yet exist in DUV lithog-
raphy. If we want to regulate CD -- we can measure it directly with a CD-SEM between
every lot, or we can estimate it indirectly for each wafer using thickness loss. In Chapter 5
we explored RtR controllers based on both approaches, and saw that both control on a lot

to lot and wafer to wafer time scale led to modest variability reductions in CD.

6.4. Issues for Further Research

A RtR controller wich uses both metrologies might be the ideal control for DUV
lithography. Such a controller would have to blend multi-rate information: lot-to-lot CD-
SEM measuremnts and wafer-to-wafer thickness loss measurments. How to best cope with
this multiple time-scale problem would be an interesting topic for future research. Multiple
time-scale RtR control is almost certainly applicable to other semiconductor manufacturing

process where the wafer-to-wafer information is noisier than the lot-to-lot information.

Another important area of future research is in the development of new metrologies.
For example in DUV lithography, measuremetnt of drifts in develop rate, de-focus, and
bake plate temperature could compliment thickness-loss information to yield a better CD
estimate [26]). Additional metrology, such as a de-focus measurment, may also allow a RtR
controller to focus as well as bake time and dose. This would be usefull becuase a RtR con-
trol tha; neglects focus may improve CD variability at the expensive of increased variability

in other properties, such as side wall angle.

One extension of basic RtR control that is applicaple to DUV is to develop an end-
point controller for PEB. Because the thickness loss metrology we discussed in Chapter 5
is capable of estimating CD just after PEB, one possible control scheme would be to stop
the PEB process as soon as the thickness loss metrology indicates the CD is on target. In
principle, this should ensure that CD variability is reduced to simply the metrology vari-
ability.

Another extension to simple RtR control worth future work is to develop controllers
which deal with spatial variability. CD variability within a wafer is just as significant as CD
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variability between wafers [24]. Dealing with this problem will require a spatially resoilved

actuation, perhaps by using a spatially resolved bake plate [27] , or by using different expo-
sure doses for different fields (though much variability is actually within field.) Controling
systems with so many inputs, and so much coupling between the inputs, would be a very

challenging control problem.

6.5. Closing Remarks
Clearly RtR control will be of crucial, and growing importance to the industry in
the coming years, and the development of better control techniques will continue to chal-

lenge researchers for the forseeable future.
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