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Abstract

Efficientscheduling of concurrent specifications is a key problem in embedded system design.
Static scheduling algorithms decidethe schedule at compile time, dynamicscheduling algorithms
make some or all decisions at run-time. The choice of the scheduling policy mainly depends on
the specification of the system. For specifications containing data-dependent control structures,
like the if-then-else or while-do constructs, the dynamic behaviour cannot be fully predicted
at compile time and some scheduling decisions are to be made at run-time. The quasi-static
scheduling approach for Data Flow networks proposed in [7] makes most of the scheduling
decisions at compile time, thus maximizing the predictability and run-time efficiency of the
schedule. However, the problem of finding a schedule with bovmded memory is undecidable for
DF networks, and thus Ccm be solved only in specisil cases. In oxu* approach, we abstract Data
Flow networks as Petri Nets (PNs), a model for which most properties are decidable, and define
the quasi-static scheduling (QSS) problem for PNs. We solve QSS for a sub-class of PNs known
as free-choice nets (FCPNs) [8, 1], by reducing it to a decomposition of the net into statically
schedulable components. The proposed algorithm is complete, in that it can solve QSS for any
FCPN that is statically schedulable. It also allows one to explore different schedulings, in terms
of schedule and buffer size (trading off code and data size) .

1 Introduction

Efficient scheduling of concurrent specifications is a key problem in embedded system design. The
problem has been historically tackled for two different classes of applications, and related specifica
tion models:

1. Data Flow (DF) specifications, in which little or no runtime decisions are required and I/O
timing is regular and known in advance. For such specifications, quasi-static scheduling [7]
makes most of the scheduling decisions at compile time, leaving at run-time only choices that
depend on the value of data (and not on their timing). This maximizes the predictability and
run-time efficiency of the schedule, and allows one to optimize and trade off smoothly code
size and data memory size. However, the problem of quasi-static scheduling is decidable only
for DF networks that make no run-time decisions (Static Data Flow, SDF), while real complex
systems rarely fall entirely into this class.

2. Real Time (RT) specifications, in which the run-time behavior heavily depends on the relative
time of occurrence of internal and external events. For such specification, the most commonly
used models [6] ignore or abstract inter-process dependence, and may thus yield grossly pes
simistic schedules. In this case, run-time choice between alternative behaviors is modeled only
as independent tasks, thus forbidding partially static schedules.



In this paper we focus our attention on the scheduling problem for non-static Data Flow specifica
tions, that include data-dependent control structures and therefore require some run-time scheduling
decisions. In particular we address the scheduling problem for Petri Nets (PN) [11], a well-known
model of computation widely used to model distributed Discrete Event Dynamic Systems. PNs are
able to model concurrency, choice, synchronization and causality, and hence seem to be appropriate
for embedded systems with non-static Data Flow specifications. The most significant diflference
between DF networks and PNs is that the former model also the values that are communicated by
tokens between computational units (also called actors), while the latter describe only the causal
ity, concurrency and choice relations between those units (also called transitions). Moreover, the
semantics of communication in DF is FIFO, while PNs do not impose any order on tokens. In this
paper we show that a scheduling algorithm for PNs can find a larger class of applications then the
well-behaved nets [5] that are handled successfully by the algorithm for DF networks proposed in
[7]-

We restrict our analysis to a sub-class of PNs called Free-Choice (FCPNs), because they do not
exhibit any confusion between the notions ofconcurrency and choice. Hence they seem appropriate
to model computations in which the outcome ofa choice depends on the value ofa token (and hence
is abstracted as non-deterministic in PNs), rather than on the time of arrival of a token. However,
we hope that the techniques that we develop can be extended to PN classes that include modeling
exceptions, such as [9].

In the following Sections we provide a definition of quasi-static schedulability for FCPNs and
propose an algorithm that finds a schedule with bounded memory, if the net is schedulable.

The problem ofquasi-static scheduling FCPNs, simultaneously determining tight upper bounds
on code and data memory requirements, can be solved by finding a finite set of finite firing se
quences that allow, when repeated one after the other, to execute a PN forever without unbounded
accumulation of tokens. A Free Choice Petri Net has a valid schedule if there exists a valid firing
sequence, that is a sequence returning the PN to its initial state, for every possible way to solve the
non-deterministic choices.

We show that a useful tool to solve the problem of finding a valid schedule is the Marked
Graph decomposition algorithm proposed by Hack [8] to check boundedness ofstrongly connected
ordinary nets. However, in the domain of embedded reactive systems most applications have lots
of interactions with the environment, that are naturally modelled as source and sink transitions.
As a result, nets modelling embedded systems are usually not strongly connected. Therefore, we
extend Hack's approach and use it to decompose non-strongly connected PNs into Conflict Free
(CF) components. Then, if the net is allocatable, i.e. decomposable into as many components as
the number ofpossible choices, we statically schedule each component separately andobtain a valid
schedule.

This paper is organized as follows. Section 2 gives a general description of the Petri Net model
and provides definitions of properties and subclasses. Section 3 relates Petri Nets to Dataflow
Networks. Section 4 presents our strategy to find a quasi-static schedule for Free-Choice Petri Nets.

2 Petri Nets

2.1 Definition

A Petri Net is a triple (P,T, F), where P is a non-empty finite set of places, T a non-empty finite
set of transitions and P : (T x P) U(P x T) IN the weighted flow relation between transitions and
places. IfP(x, y) > 0, there is a multiple arc ofweight F from xtoy. IfP : (TxP)U(P xT) -> {0,1}
the net is ordinary. [11]

Given a node x, either a place or a transition, we define its preset as 'x = {y|(y,x) GP} and
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Figure 1: A Petri Net

its postset as X* = {y|(a:, y) € P}- Pre[x, y] is equal to the weighted flow relation F{x,y) between
node Xand node y. Post[x, y] = F{y,x). A transition (place) whose preset is empty is called source
transition (place), a transition (place) whose postset is empty is called sink transition (place).
A place p such that |p*| > 1 is called choice or conflict. If |*pl > 1, p is called attribution or
merge. A marking p is an n-vector p = (pi,P2. A'n) where n = |P| and pi is the non-negative
number of tokens in place pj.

A transition whose input places have enough tokens is enabled and may fire. When it fires, it
removes tokens from the input places and produces tokens in the output places. The firing rules
are the following [11]:

1. A transition t is enabled if each input place p of / is marked with at least w{p, t) tokens, where
u;(p,<) is the weight of the arc from p to <.

2. An enabled transition may or may not fire.

3. A firing of an enabled transition t removes w{p,i) tokens from each input place p of t and
produces w{i,p) tokens to each output place p of i, where w{t,p) is the weight of the arc from
t to p.

In the Petri Net shown in figure 1 [10], only transition is is enabled. When is fires, the token
in place pa is removed and one token is produced in place p4 . Then, only transition <2 is enabled.
Transition firings can continue as long as there is at least one enabled transition.

2.2 Properties

The properties of Petri Nets can be distinguished in structural and behavioural [1]. Structural
properties are concerned only with the structure of the graph, behavioural properties depend also
on the initial marking and therefore are related to the dynamic occurrence of transitions.

The following PN properties are relevant in our discussion:

• Reachability. A marking p' is reachable from a marking p if there exists a firing sequence a
starting at state p and finishing at p'.

• Safeness. A place is safe if during any possible execution the number of tokens in that place
never exceeds one. A Petri Net is safe if all the places in the net are safe. It is possible to force
a Petri Net to be safe by audding acknowledgment arcs.



• Boundedness. A Petri Net is said to be fc-bounded if the number of tokens in every place of a
rechable marking does not exceed a finite number k. A safe Petri Net is said to be 1-bounded.
If places of Petri Nets are used to represent buffers, in a bounded net buffer overflow doesn't
occur whatever firing sequence is taken.

• Deaidlock-freedom. A Petri Net is deadlock-free if, no matter what marking has been reached,
it is possible to fire at least one transition of the net.

• Liveness. A Petri Net is live if for every reachable marking and every transition t it is possible
to reach a marking that enables t.

• Coverability. A marking/i in a Petri Net is said to be coverable if there exists a marking/i' in
R(/io) such that fi'{p) > fi(p) for each p in the net.

All such properties are decidable for any Petri Net.

2.3 Analysis techniques

The most important analysis tools are the coverability tree and the incidence matrix [11]. In this
section we introduce the incidence matrix. We define two matrices £>+ and D~ as follows; D~[j, i] =
w{ij) contains the number of tokens that transition j consumes from place i and D+h', i] = w{j, i)
contains the number of tokens that transition j produces at place i. Every matrix has dimension
m Xn, where m is the number of transitions and n the number of places.

Thereforetransition j is enabled if fi> e[j]•D~, where e[j] = (0,0, ..0,1,0,....) is the unit vector,
where only the j-th component equal to 1. Firing transition tj from marking p we reach marking
p' = p - e[j] •D~ e\j] • = p + e[j] •D. The matrix D = - D~ is called incidence matrix.

The D matrices for the net shown in figure 1 are the following:

D- =

1110

0 0 0 1

0 0 10

=

10 0 0

0 2 10

0 0 0 1

D =

0-1-1 0
0 2 1-1

0 0-11

For a sequence of transition firings c = <i<2<3 the state equations are

p' = p^-f[<T) D

where f(o-) iscalled the firing vector whose j-th component is the number of times that transition
tj fires in sequence a.
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Figure 2: Concurrency (a), Synchronization (b) and Conflict (c)

2.4 Subclasses of Petri Nets

When modeling dynamic systems, it is often necessary to use a restricted class of Petri Nets, where
someconstraints are imposed on the graph. In this way the analysisof the system is simplified at the
expense of a reduction in the expressive power of the model. Some of the most common subclasses
of Petri Nets are:

• State Machine: a Petri Net such that each transition t has exactly one input place and exactly
one output place.

v<€r,r<| = |f| = i.

• MarkedGraph: a Petri Net such that each placep has exactly one input transition and exactly
one output transition.

Vp GP,rp| = !?•! = 1-

• Conflict Free Net: a Petri Net such that each place p has at most one output transition.

VpGP,tp'|<l.

• Free Choice Net: a Petri Net such that every arc from a place is either a unique outgoing arc
or a unique incoming arc to a transition.

Vpi,P2 G P,p\ np$ # 0 =» IpII = IP2I = 1.

• Extended Free Choice Net: a Petri Net such that any two transitions sharing some predecessor
places have exactly the same set of predecessor places.

p! np5 0 => IpJI = IP2I Vpi,p2 € P.

Marked Graphs can represent concurrency (fig. 2a) and synchronization (fig. 2b) but not conflict
(fig. 2c); on the contrary. State Machines can represent conflict but not synchronization. FreeChoice
Nets allow one to model both conflict and synchronization, under the condition that every transition
that is successor of a choice has exactly one predecessor place. This implies that whenever an output
transition of a place is enabled, all the output transitions of that place are enabled. Therefore the
choice is "local" and, since it does not depend on the rest of the system, is said to be free. The Petri
Net shown in figure 3b) is not a Free Choice Net, because transition <3 is enabled and transition
<2 is not. Extended Free-Choice Petri Nets (EFCPN) allow a more general structure: conflicting
transitions can have more than one predecessor places ais long as their preset is the same. An EFCPN
is shown in figure 3a).
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Figure 3: Extended Free Choice Net(a),not Free Choice Net(b)
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Figure 4: Cyclic schedule

Definition 2.4.1 Two transitions t and t' are said to be in Equal Conflict Relation if Pre[P, t] =
Pre[P,i'].

This is an equivalence relation that partitions the set of transitions of the net into a set of
equivalence classes called Equal Conflict Sets [4].

3 Dataflow and Petri Net

3.1 Cyclic schedules and reachability

Given a Petri Net and an initial marking, a finite complete cycle is a sequence of transition firings
that returns the net to its initial state. Since both the transition firings in a finite complete cycle and
the tokensproduced by eachfiring are finite, the numberof tokens that can accumulatein any place
of the net during the execution is bounded. Therefore, if such a finite complete cycle exists, the net
can be executed forever with bounded memory by repeating infinitely many times this sequence of
transition firings (figure 4). [7]

The problem of finding a finite complete cycle for a net can be reduced to the well-known
reachability problem, that is known to be decidable [11]. In terms of reachability the goalis to find
a sequence of transitions tr that starting from the marking /i returns the net to the same marking
fi. In this case, where fi' = fJi, the state equations become /{a) 0 = 0 and the solution f{a) , when
it exists, is called T-invariant [1].

Definition 3.1.1 A Petri Net is consistent iff3T>0 s.t. T • D = 0.

The existence of a solution of the state equations is a necessary, but not sufficient condition for
fi' to be reachable from fi. In fact, even if there exists a solution of the state equations, the net may
deadlock during execution because there are not enough tokens to fire any transition. An example



f(o) = (3.2.1)

Figure 5: Simulation detects deadlock

f(0) = a(l . 1,0,1.0)+b( 1 .0.1.0,1)

a.b = 0.I,2 ...

a)

f{o) = (2.1.1.1) valid

f(o) =(2.2.0.l) unbounded

f(o)3(2,0,2,1) unbounded

b)

Figure 6: Schedulable (a) and not schedulable (b) EFCPNs

is given in figure 5 [12]. After the three tokens in place pi are consumed by transition <2, there
are not enough tokens to enable any transition. Therefore, once a firing vector f{cr) is obtained as
a solution of the state equations, it is necessary to verify by simulation that there exists a valid
firing sequence, i.e. a sequence that contains transition ij as many times as fj{<T) and such that
the net does not deadlock during execution.

3.2 SDF and Petri Nets

Synchronous Dataflow (SDF) graphs are a special case of Petri Nets. SDFs can be mapped into
Marked Graphs where actors become transitions and arcs places. The approach proposed by Lee
[2] to find a static schedule for a SDF graph is the following. The first step consists of solving the
state equations and obtaining, when the graph is consistent, the set of T-invariants, that in SDF
define a one-dimensional space. Lee showed that, to find a firing sequence that returns the net
to the initial state without occurrence of deadlock, it is sufficient to simulate the firing sequence
that corresponds to the minimal T-invariant. (A T-invariant is minimal when its set of non-zero
entries is not a strict superset of that of any other T-invariant and the greatest common divisor of
its elements is one [4].) This approach can be adopted for Marked Graphs, but is not adequate for
larger classes of Petri Nets that present not only concurrency but also conflict. In fact, if a Petri
Net contains non-deterministic choices, the basic assumption of the existance of only one linearly
independent T-invariant is no longer valid, as shown in the example in figure 6a. In general, when
the null space of the incidence matrix is not one-dimensional, it is not possible to identify a priori
what T-invariants are to be simulated to check if the net eventually deadlocks.
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Figure 7: Modified If-then-else

3.3 BDF and Petri Nets

Petri Nets and Boolean Dataflow (BDF) [7] are both non-static Data Flow models, but their
expressive power is different. One difference is in the semantics of the communication channels
among blocks. Channels in BDF are FIFO queues that preserve the order of the tokens. Instead,
Petri Nets do not have FIFO semantics because the tokens do not carry values [7]. This implies
that a specification where the order of tokens does not matter can be scheduled if modelled with
Petri Nets, but it is not schedulable in BDF. In this case BDF is simply an inappropriate model
because it overspecifies the system.

Another difference is that BDF is a determinate model, since all the valid executions of the
network produce the same streams regardless of the order in which the actors are executed [7],
while Petri Nets are not determinate because of the non-determinism of choice and merge structures.
However, it is possible to make a Petri Net determinate by imposing conditions to the schedule.

If we consider the modified if-then-else construct described in figure 7a, there exists no bounded
schedule [5] [7], although there is a solution ofthe state equations independent ofthe boolean values
(the network is strongly consistent). In fact, when actor 7 produces a single false token followed by
an infinite sequence of true tokens, the false token in the control arc blocks the select actor until
a second occurrence of a false token. Therefore, accumulation of tokens occurs at the input of the
select, precisely at the port labelled T.

The samespecification can be modelled with the Petri Net in figure 7b. In this case there is no
unbounded accumulation of tokens: every token produced by the input transition i\ enters one of the
two branches and follows the path to the output transition <8- However, the net is not determinate
because of the presence of the non-deterministic merge: there is no guarantee on the order of the
tokens in the output stream if <6 and tj are concurrently enabled. To solve this problem, it is
necessary to impose some restrictions to the scheduler to ensure that the non-deterministic states
where two merging transitions are concurrently enabled are never reached. One solution could be



to allow tokens to enter the modified if-then-else structure (i.e. firing ii) only if no other transition
is enabled. Further investigation in this direction is necessary to formally define and prove the
conditions under which a PN is determinate.

4 Quasi-static Scheduling of FCPN

4.1 Definition of schedulability

Let E = {ai, (72...} be a non-empty finite set offinite firing sequen(:es such that V(7,- £ E,Mo[a'i>Mo
and let (t^ be the j-th transition in sequence cr,- = ((7/(7?...<7;-~^<7^<7^"'"^...(7f'). Every sequence (7,- € E
contains at least one occurrence of each source transition of the net. We define the operator 0 over
a pair of transitions t and t' E.T as follows:

©((,'') ={Jn/4 4'\ —J ^ Equal Conflict Relation,~ ' ) —1 Q otherwise.

Definition 4.1.1 The set E is a valid schedule i/V(7,- £ E,V(rj £ (7, s.t. <rj ^ erf V/i < j, Vt/c GT
s.t. tk ^ oj and £>{tk,(T{) = 1, 3(7/ £ E s.t.

(1) crj" = <7^, Vm < j - 1
(i) <7[" = ik, m=j
(3) (7[" (r\, Vm > i + 1

Definition 4.1.2 Given an EFCPN N and an initial marking Mq, the pair (N,Mq) is (quasi-
statically) schedulable ', if there exists a valid schedule.

This definition of schedulability extends to non-static Data Flow networks the concept of SDF
scheduling given in Section 3. If the net contains non-deterministic choices that model data depen
dent structures like if-then-else or while-do, a valid schedule is a set of firing sequences, one for every
combination of boolean values of the control tokens. A valid schedule must contain a valid firing
sequence for every possible outcome of a choice because the value of the control tokens is unknown
at compile time when the valid schedule is computed.

Schedulability implies the existence of at least a valid schedule that ensures that there is no
unbounded accumulation of tokens in any place. This property is different from k-boundedness,
that implies that for all the reachable states, the number of tokens in any place does not exceed a
certain number k. In most cases a schedulable PN is not k-bounded (see for example the Petri Net
shown in figure 4), while a live and bounded net (also called well-behaved) is alwaysschedulable.

Let us consider some examples. Given the net in figure 6a E = {(7i,(72}, where ai = {tit2U) and
C2 = {lihh), is a valid schedule because it contains a valid firing sequence for every value carried
by the token in choice pi and therefore, whichever conflicting transition fires, there is a sequence
that consumes all the tokens and returns the net to the initial state.

Instead, the net shown in figure 6b is not schedulable because it is impossible to find a schedule
set that satisfies all three conditions in Definition 4.1.1. For example a set containing sequences
ti<2fit3<4 and ii<3<if2f4 is not considered a valid schedule because it does not contain any firing
sequence beginning with i\t2tit2 (conditions (1) and (2)). This correspond to the fact that when
transition <2 (fs) is always fired, there exists no firing sequence that returns the net to the initial
state and therefore unbounded accumulation of tokens occurs in place p2 (ps)-

If we consider the net shown in figure 8, E = {(ti<2<if2t4)(ti<3t5)} is a valid schedule. The
presence of the arc of weight 2 requires that the conflicting transition <2 is fired twice before transition

^Here we consider only schedules that return the net to the initial state. It is also possible to provide a similar
definition for the case where the schedule has an initial acyclic sequence.
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Figure 8: Another example of schedulable net (with weighted arcs)
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Figure 9; Flow to check schedulability

<4 is enabled. However, there is not guarantee that this happens within a cycle. If transitions
fire in this order, one token remains in place p2 and the net does not return to the initial

marking. The net is considered schedulable because repeated executions of this sequence do not
result in unbounded accumulation of tokens (as soon as there are two tokens in place p2> transition
<4 is fired and they are consumed).

In the next Sections we present an algorithm that finds a validschedule, if the net is schedulable.
In the example shown in figure 8 where the net contains weighted arcs, {ti<3<5><i^2'i^2'4} is a valid
schedule although it does not include all the possible cyclic firing sequences, even of infinite length,
that can occur ({<i<3<5,<i<2(<i<3<5)"<i<2<4," = 0,1,2...}). Therefore, a valid schedule should be
intended only as a set of cyclic firing sequences that ensure bounded memory execution of the net.
This set is complete in the sense that it is possible to derive with further manipulation a C-code
implementation of the scheduler.

4.2 How to find a valid schedule

The algorithm is based on the following strategy: the net is first decomposed into as many Conflict
Free (CF) components as the number of possible solutions for the non-deterministic choices of the
net. Then, each component is statically scheduled. If every component is schedulable, we take as
valid schedule of the net a set that contains one valid firing sequence for every CF component. If
any of the CF components is not schedulable, the net itself is said to be not schedulable (figure 9).

Previous work has already used a similar approach called MG decomposition. The fundamental

10
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Figure 10: Conflict Free net

theorem of Hack [8] on live and safe strongly connected FCPNs is based on the decomposition of the
net into as many MG reductions as the number of the possible allocations of the non-deterministic
choices. In [3] Best proposes an iterative algorithm to decompose a strongly connected ordinary
Petri Net into a set of strongly connected Marked Graphs. More recently, Teruel in [4] extends
to weighted nets known results for ordinary nets [1]. These works have their main application in
checking whether a given strongly connected net is bounded. However, in the domainof embedded
reactive systems most applications usually have lots of interactions with the environment, that are
naturally modelled as source and sink transitions. As a result, nets modelling embedded systems
are not strongly connected. Moreover, as we outlined in the previous Section, boundedness is a too
restrictive property for our objective. For this reason wemodify Hack's MG decomposition algorithm
and apply it to the class of FCPNs that have source and sink transitions. Note that source and sink
places correspond only to finite execution and therefore are not allowed in the PNs that we consider.

Definition 4.2.1 Let N = (T, P, F) and N' = {T',P',F') be two PNs. N' is a subnet of N if
r CT, P'CP and F'= F D {{T x P') U (P' x T')).

Definition 4.2.2 A subnet N' is a transition-generated subnet of N if P' is the set of all
predecessors and successors places in N of the transitions in T' (i.e. t E^T' C P'* t C P').

Definition 4.2.3 A T-component N' of a net N is a set of transition-generated subnets such that
each of them is a consistent Conflict Free net and \/ts E Ta (Tj C T is the set of source transitions
in N) there exists a T-invariant Ti s.t. ta E support{Ti).

The condition that every source transition of a subnet is in the support of a T-invariant ensures
that tokens produced by any source transition do not accumulate and that for a T-component there
exists a finite complete cycle that guarantees bounded execution. Consider the net in figure 10.
It is consistent because there exists a T-invariant {T = (0,0,1,1)), but unbounded accumulation
of tokens produced by source transition <i occurs in place pi. This example shows that simple
consistency is not enough to ensure bounded scheduling of a Conflict Free net.

Definition 4.2.4 A T-component is schedulable if there exists a firing sequence that returns it to
the initial state without any deadlock when its execution is simulated.

Definition 4.2.5 A set of T-components covers a FCPN if each transition of the net belongs to at
least one T-component.

Definition 4.2.6 A T-allocation over a FCPN is a function a : P
the various successors of each place (ip E Poc{p) E p*)-

11
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Figure 11: Not schedulable FCPN

A net with P places and n,- successors each has distiJ^ct T-allocations.

Definition 4.2.7 The T-reduction associated with a T-allocation is a set of subnets generated
from the image of the T-allocation using the following Reduction Algorithm.

Let Ci,C2, -Cm be the Equal Conflict Sets defined in Section 2.2 as the equivalence classes of
the Equal Conflict Relation and a,- = the i-th T-allocation where tk € Cj. The
T-reduction /?,• corresponding to T-allocation a,- is generated as follows (see figure 12).
Reduction Algorithm (modified from [8])

1. Ri = N {Rt, = T, Rp, = P, Rp, = F).

2. For all ik 6 Rt, and ik ^ Of

(a) Remove tk •

(b) Vs Gtk) remove place s unless one of the following conditions holds:
i. s has a predecessor transition different from tk (3f €* s s.t. t G Rt,)-

ii. the successor transition of s has a predecessor place that is different from s and is not
a source place {3t G* (*(s*)) s.t. t G Rt,)-

(c) If Si is a removed place, Vfj Gs*, remove tj if one of the following conditions holds:
i. tj has no predecessor place {\*tj \ = 0).

ii. all predecessors of tj are source places. In this case remove every s G* tj.
(d) Apply the previous two steps until they cannot be applied any longer.

Theorem 4.2.1 The T-reduction Ri obtained by applying the reduction algorithm is

1. a set of transition-generated Conflict Free nets. {Rj,/??,

2. a T-component ofN iffevery subnet R\ is consistent and every source transition ofN is in the
support of at least a T-invariant of R\.

Proof: 1. Each Ri is a Conflict Free net by construction because it contains at most one transition
for every Equal Conflict Set. Let's show that each subnet is transition-generated. Weneed to prove
that GRt, and Vs G *tk Utl, s e Rp,- For places s G it is easy to see that the algorithm
does not remove a place s if 3t G* s s.t. t G Rt, (condition (b)i). For places s e* tk, s is removed
only if all other predecessor places of tk are source places (condition (b)ii). In this case at the next
iteration step also tk is removed (condition (c)ii). Therefore, if t GRt, it follows that <• U* t C Rp,.

2. Both directions trivially follow from Theorem 4.2.1 and Definition 4.2.3 of T-component. •
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T-reductionRl is inconsistent.

Step 5) Remove t7. Stop.

Figure 12: How to obtain a T-reduction

Definition 4.2.8 A FCPN N is T-decomposable if there exists a set {Ti,T2...} of T-components
that covers the net.

Definition 4.2.9 A FCPN N is T-allocatable if every T-reduction generated from a T-allocation
is a T-component.

Lemma 4.2.1 If a FCPN is T-allocatable, it is T-decomposable; the converse is not always true. [8]

The following fundamental theorem states that T-allocatability is a necessary and sufficient
condition for schedulability. Intuitively, T-allocations can be interpreted as control functions that
choose which transition fires among several conflicting ones and at the same time which component
of the net is active at every cycle. A net is T-allocatable if all its components, each of them
corresponding to a sequence of choices, are T-components. Therefore, if every T-component is also
schedulable, a T-allocatable net can be executed forever with bounded memory, because for every
choice there is always the possibility to complete successfully a finite cycle of firings that returns the
net to the initial state.

Theorem 4.2.2 A FC-PN is schedulable iff

1. it is T-allocatable,

2. every T-component is schedulable,

Proof: (=>) Let's prove that if the net is not T-allocatable it is not schedulable. If the net is not
T-allocatable, there is at least one T-allocation a,- for which the generated T-reduction Ri is not a
T-component. This may occur in one of the following cases:
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Figure 13: Schedulable FCPN

• Case 1. There exists a source transition U that is not in the support of any T-invariant of
Ri. This implies that there is no finite complete cycle of Ri that contains Therefore
there exists no schedule set with a finite complete cycle containing transition U and all the
conflicting transitions allocated in a,-. This violates the hypothesis that every sequence of the
valid schedule set contains at least one occurrence of each source transition of the net.

• Case 2. Ri is a strongly connected net and it is inconsistent. Therefore, there is no firing
sequence that returns Ri to its initial state. This means also that there exists no schedule set
with a finite complete cycle containing all the conflicting transitions that are allocated in q,-.

In both cases the net is not schedulable because there is no schedule set that contains one finite
complete cycle for every combination of boolean values.

(•«=) By construction. Thenet isT-allocatable, then there isa T-component for each T-allocation.
By hypothesis every T-component is a schedulable Conflict Free net. The set of all the valid firing
sequences, onefor each T-component, is a valid schedule of the net because it contains onesequence
for every solution of the non-deterministic choices. Therefore the net is schedulable. •

To check if a given net is T-allocatable, it is necessary to verify that every T-reduction obtained
from the Reduction Algorithm is a T-component. For this purpose it is necessary to solve the state
equations for every subnet of the T-reduction and check consistency; in the case any subnet of the
T-reduction contains merge places, it is also necessary to check for this subnet that every source
transition is in the support of at least one T-invariant. Then, the schedulability of a T-component
is detected by simulation of the T-invariants found in the previousstep.

Let us describe two examples. The FCPN presented in figure 11 is not schedulable. Figure 12
shows the steps of the Reduction Algorithm applied to T-allocation A\ = {<i,<2)^4i'5j^6>'̂ 7}- The
generated T-reduction Ri is not consistent because it contains a source place, therefore it is not a
T-component and the net is not schedulable. In fact, if the sequence a = (tit2t4<6) isfired infinitely
often, there is unbounded accumulation of tokens in place p^.

The FCPN shown in figure 13 is schedulable. The T-components for the corresponding T-
allocations are represented in figure 14. A valid schedule is given by the following firing sequences
{(^1^2i4f6i7f9^5))(^lf3f5^6^7^9'5))(^1^2'4^6^8^lo)>

The Reduction Algorithm, whose cost is linear in the number of nodes in the net, must be
applied in the worst case as many times as the number ofT-allocations. However, in most cases it
is not necessary to apply it exhaustively for all the T-allocations. Assume that, during application
of the Reduction Algorithm to T-allocation Ok, transition U e ock s.t. 3tj ^ U and = 1
is removed. Consider the T-allocation Qh where tj € Oh (and therefore U ^ ay,) and Vt € Q|c
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T-allocation A3={tl,t2,t4,t5,t6,t8,t9,tl0} T-allocation A4={tl,t3,t4,t5,t6,t8,t9,tl0}

Figure 14: T-components
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Figure 15: Optimization

s.t. t ^ ti,t 6 och- The T-reductions Rk and Rh are equal, because the Reduction Algorithm
removes both transition <,• and tj when applied to T-allocation o/, and Qk. By taking in account this
property, it is possible to apply the Reduction Algorithm only once for every different T-reduction.
The example shown in figure 15a presents one of these cases. The net has three Conflict Relation
Sets {<2>f3}i {^4i<5}> If we consider T-allocations oi = {iit2i4U} and 02 = {titztAti] and
apply the Reduction Algorithm, we obtain for both of them the same T-reduction that is shown in
figure 15b. This happens because, when <2 is allocated, both <6 and cannot be enabled (since <3
is not allocated) and therefore are removed in the reduction process.

5 Conclusions and future work

In this paper we have proposed an algorithm to find a quasi-static schedule for Extended Free Choice
Petri Nets whenever it exists. This result is important because it allows to reduce considerably the
amount of run-time scheduling overhead. We also explained, by showing the differences of the two
models, how this algorithm can find a larger domain of applications than the well-behaved graphs [5]
handled successfully in the BDF domain. So far, we restricted our scope of investigation to FCPNs,
because it allows one to perform analysis at relatively low cost. However, not every embedded
system specification can be modelled as a Free-Choice Petri Net. Future research will be done in the
direction of broadening the scope to a larger class of Petri Nets and defining an algorithm to find a
quasi-static schedule also for such class. In this case our decomposition-based approach is probably
no longer valid, because a generic PN may be schedulable even though it is not T-allocatable. We
hence believe that outside the Free-Choice domain it is necessary to take a different approach, that
may make use of more expensive analysis techniques, like Petri Net unfoldings.
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