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Abstract

Multigrid is a popular solution method for the set of linear algebraic equations that arise from PDEs
discretized with the �nite element method. The application of multigrid to unstructured grid problems,
however, is not well developed. We discuss a method that uses many of the same techniques as the �nite
element method itself, to apply standard multigrid algorithms to unstructured �nite element problems.
We use maximal independent sets (MISs), like many \algebraic" multigrid methods, as a heuristic to
automatically coarsen unstructured grids. The inherent 
exibility in the selection of an MIS allows for
the use of heuristics to improve their e�ectiveness for a multigrid solver. We present heuristics and
algorithms to optimize the quality of MISs, and the meshes constructed from them, for use in multigrid
solvers for unstructured problems in solid mechanics. We also discuss parallel issues of our algorithms,
and multigrid solvers in general, and describe a parallel �nite element architecture that we have developed
to parallelize a state-of-the-art research �nite element code in a natural way for the common computer
architectures of today. We show that our solver, and parallel �nite element architecture, does indeed
scale well, with test problems in 3D large deformation elasticity and plasticity, with over 26 million
degrees of freedom on a 640 processor Cray T3E (with 55% parallel e�ciency), and on 84 IBM 4-way
SMP PowerPC nodes.
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1 Introduction

This work is motivated by the success of the �nite element method in simulating complex physical systems
in science and engineering, coupled with the wide spread availability of ever more powerful computers, which
has lead to the need for e�cient equation solvers for implicit �nite element applications. Finite element
matrices are often poorly conditioned - this fact has made the use of direct solvers popular as they are
relatively una�ected by the condition number of the matrix. As the scale of the problems increase, direct
methods, however, possess sub-optimal time and space complexity when compared to iterative methods.
Also, as larger and faster computers are becoming more widely available, to a larger number of research
institutions and industries, the use of iterative methods will become increasingly more necessary. Thus,
given the computational resources available today, and those that are continually being introduced, direct
methods are ine�cient in solving large problems - resulting in the need to resort to iterative methods.

Many iterative methods are notoriously unreliable on �nite element problems of interest. Multigrid is
one of a family of highly optimal multilevel domain decomposition methods [27], and is known to be a
highly e�ective method to solve �nite element matrices [15, 19, 30, 8, 11, 23]. The application of multigrid
techniques to unstructured meshes, that are the hallmark of the �nite element method, has not been well
developed, and is currently an active area of research. In particular, the development of practical multigrid
methods for unstructured �nite element problems, of arbitrary geometric complexity and size, is an open
problem. This paper discusses methods for the e�ective application of classical multigrid methods in the
solution of the large sparse system of equations that arise from unstructured �nite element problems in 3D
large deformation elasticity and plasticity.

This paper proceeds as follows: Section x2 brie
y introduces multigrid; and section x3 describes our basic
algorithm; section x4 describes the methods to optimize the algorithm for 3D solid mechanics problems.
Parallel algorithmic issues are discussed in section x5; our parallel �nite element architecture is described
in section x6. Numerical results on 3D problems in large deformation elasticity and plasticity, with incom-
pressible materials and large jumps in material coe�cients, are presented in section x7 with over 26 million
degrees of freedom on 640 processors of a Cray T3E (with 55% parallel e�ciency) and 84 4-way SMP IBM
PowerPC nodes. We conclude in section x8 with potential directions for future work.

2 Multigrid

Multigrid is known to be the optimal solution method for the �nite di�erence Poisson equation in serial; in
parallel, the FFT is competitive with multigrid [10]. However, unlike the FFT, multigrid has been applied
to unstructured second order �nite element problems in elasticity [24, 9] and plasticity [15, 19, 23], as well
as fourth order problems [14, 30].
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Multigrid has been an active area of research for almost 30 years and much literature can found on the
subject - a quick introduction is, however, warranted [7]. Multigrid is motivated by the observation that
simple (and inexpensive) iterative methods like Gauss-Seidel, Jacobi, and block Jacobi [10], are e�ective at
reducing the high frequency error e�ectively, but are ine�ectual in reducing the low frequency content of
the error. These simple solvers are called smoothers as they render the error smooth by reducing the high
frequency content of the error (actually they reduce high energy components of the error, leaving the low
energy components which are smooth in, for example, Poisson's equation with constant coe�cients). The
ine�ectiveness of simple iterative methods can be ameliorated by projecting the solution onto a smaller space,
that can resolve the low frequency content of the solution, in exactly the same manner as the �nite element
method projects the continuous solution onto a �nite dimensional subspace to compute an approximation to
the solution. This \coarse grid correction" does not eliminate the low frequency error exactly, though it can
\de
ate" low frequency error to high frequency error (which can then be eliminated cheaply), by removing
an approximation to the low frequency components from the error. Thus, the goal of a multigrid method
is to construct, and compose, a series of function spaces in which iterative solves or small direct solves,
working together, can economically reduce the entire spectrum of the error. Many multigrid algorithms
have been developed - we use the \full" multigrid algorithm (FMG), in our numerical experiments. V-cycle
multigrid, which is closely related to FMG (see [7]), is shown in Figure 1. Figure 1 uses a provided smoother
x S(A; b), and restriction operator R that maps residuals from the �ne grid space to the coarse grid space.

functionMGV (Ai; ri)
if there is a coarser grid

xi  S(Ai; ri)
ri  ri � Axi
ri+1  Ri+1(ri)
xi+1  MGV (Ri+1AiR

T
i+1; ri+1)

xi  xi + RT
i+1(xi+1)

ri  ri � Aixi
xi  xi + S(Ai; ri)

else

xi  A�1i ri
return xi

Figure 1: Multigrid V-cycle Algorithm

3 Our method

We build on an algorithm �rst proposed by Guillard [16] and independently by Chan and Smith [9]. The
purpose, of this algorithm, is to automatically construct a coarse grid, from a �ner grid, for use in standard
multigrid algorithms. This method is applied recursively to produce a series of coarse grids, and their
attendant operators, from a \�ne" (application provided) grid. A high level view of the algorithm is as
follows:

� The vertex set at the current level (the \�ne" mesh) is evenly coarsened, using an maximal independent
set (MIS) algorithm to produce a much smaller subset of vertices.

� The new vertex set is then automatically remeshed with tetrahedra.

� Standard �nite element shape functions for tetrahedra are used to produce the restriction operator
(R). The transpose of the restriction operator is used as the interpolation operator.

� The restriction operator is then used to construct the (Galerkin) coarse grid operator from the �ne
grid operator, i.e. Acoarse  RAfineR

T .
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Multigrid requires two types of operators: �rst, restriction and interpolation operators, which can be
implemented with a rectangular matrix (R and RT respectively); and second the PDE operator, a sparse
matrix, for each coarse mesh (the �ne grid matrix is provided by the �nite element application). The
coarse grid matrix can be formed in one of two ways - either algebraically to form Galerkin coarse grids
(Acoarse  RAfineR

T ), or by creating a new �nite element problem on each coarse grid, thereby letting
the �nite element implementation construct the matrix. There are advantages and disadvantages to each
approach.

The algebraic method has the advantage that it places less demand on the user by not requiring that a
problem be completely de�ned on the coarse mesh. The construction of good quality meshes is a challenging
and expensive part of using the �nite element method. Requiring good coarse meshes may be an onerous
responsibility for the solver to place on the user. Mesh generators, be they automatic or semi-automatic, are
not accustomed to approximating the domain automatically (i.e. not strictly maintaining the topology of
the domain) which is often required for e�ciency - especially on the coarsest grids of problems with complex
geometry. The explicit construction of a new �nite element problem on the coarse grid may however provide
better quality multigrid operators, but we are not aware of any direct comparison of the two methods. We
have opted for the algebraic approach - this requires that we construct only the restriction matrices; all of
the operators that multigrid requires can be transparently constructed from these restriction operators. Our
work thus centers on the construction of good quality restriction operators.

The next section discusses methods and heuristics useful in optimizing the quality of these restriction
operators. Our methods use coordinate data available in �nite element simulations, and element data that
is available when continuum elements are used. We show how to use this data to categorize topological
elements of the �nite element mesh (i.e. corners, edges2, surfaces, and interiors), and to use this information
in a logical way to modify the graph that is used in the MIS algorithm.

4 Automatic coarse grid creation with unstructured meshes

This section introduces the components that we use for the automatic construction of coarse grids on un-
structured meshes. First we state the general purpose of the coarse grids in multigrid algorithms: the goal
of the coarse grid function spaces is to approximate the low frequency part of the spectrum of the current
grid well. Each successive grid's function space should (with a drastically reduced vertex set) approximate,
as best as it can, the lowest frequencies (or eigen functions) of the previous grid. That is, with say 10%
of the vertices from the �ne grid, it is natural to expect that one could only represent the lowest 10% of
the �ne grid spectra well. It is not possible to satisfy this criterion directly (on unstructured grids), but a
natural heuristic is to represent the geometry as well as possible. With a good representation of the geometry
(implicitly assumed on structured grid problems) one can hope that the �nite element function spaces, of
the coarse grids, will approximate the lowest modes of the �ne grid well.

Thus, our basic approach is to construct a low order geometric representation of the \�ne", or current
grid, with a \coarse" grid; and recursively apply this process; use standard �nite element function spaces;
and use this series of function spaces in one of many standard multigrid algorithms. An alternative, and
promising approach, to construct these low order geometric representations, is to use computational geometry
techniques to characterize features and algorithms to maintain them on the coarser grids [28]; though the
most widely used method, to construct the coarse grids, is to use a maximal independent set as a heuristic
to evenly coarsen the vertex set. An MIS is not unique in general, and an arbitrary MIS is not likely to
perform well, thus we use heuristics to improve performance.

We motivate our geometric approach by �rst looking at a typical structured multigrid example in Figure
2. We can characterize the behavior of multigrid on structured meshes, as shown in a 2D example in Figure
2, as: \select every other vertex", in each dimension, for use in the coarse grid. The use of these grids on
structured problems is provably very e�ective for some problems [10].

To apply multigrid to unstructured meshes it is natural to try to imitate the behavior of the structured
algorithm in the hope of imitating its success. Consider that, in addition to evenly coarsening the vertex
set, the coarse grids in Figure 2 also emphasize the boundaries. The pioneers of our multigrid algorithm

2we use edges here to mean a topological feature and not a graph edge - the type of \edge" should be obvious from the

context in following discussions.
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Figure 2: Multigrid coarse vertex set selection on structured meshes

(Guillard [16] and Chan and Smith [9]) use some simple 2D heuristics to preserve boundaries and emphasis
corners as well.

One description of multigrid meshes on regular grids is: place each vertex v in a topological category of
dimension d - for instance, corners (d = 0), edges (d = 1), surfaces (d = 2), and interiors (d = 3). Given
these categories we have collections of features for each category (e.g. a set of 3D connected surface vertices
bounded by edge vertices would be one surface in the set of surfaces). Now the regular mesh in Figure 2
produces an MIS within each feature, and hence the number of vertices in features (with dimension d) is
reduced by a factor of about 1

2d
. This section discusses algorithms to implement these observations.

4.1 Maximal independent set algorithms

An independent set is a set of vertices I � V in a graph G = (V;E), in which no two members of I are
adjacent (i.e. 8v; w 2 I; (v; w) =2 E); a maximal independent set (MIS) is an independent set for which no
proper superset is also an independent set. Maximal independent sets are a popular device in selecting the
\points" for unstructured multigrid methods. The simple greedy MIS algorithm [22, 18], is show in Figure
3.

forall v 2 V
if v:state = undone then

v:state selected
forall v1 2 v:adjac

v1:state deleted
I  fv 2 V j v:state = selectedg

Figure 3: Greedy MIS algorithm for the serial construction of an MIS

There is a great deal of 
exibility in the order that vertices are chosen of the greedy algorithm. Herein lies
a simple opportunity to apply a heuristic, as the �rst vertex chosen is always selectable and the probability
is high that vertices which are chosen early are also selectable. Thus, if an application can identify vertices
that are \important" then those vertices can be ordered �rst and so that a less important vertex can not
delete a more important vertex. For example, Guillard order the boundary vertices �rst and ordered them
is ascending order of their interior angle in 2D examples [16]. We can now decide that corners are more
important than edges and edges are more important than surfaces and so on, and order all corner vertices
�rst, then edges, etc. With this heuristic in place and the basic MIS algorithm in Figure 3 we can guarantees

that the number of edge vertices on the coarse grid (in each edge segment) satis�es
���V coarse

edge

��� � jV
fine

edge j�2
3
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for 2D meshes, whereas a valid MIS could remove all edge and corner vertices from the graph, which can be
disastrous (see [1, 2] for numerical experiments).

4.2 Parallel maximal independent set algorithms

We use a partition based parallel MIS algorithm which requires that vertices v are given an immutable
data member v:proc, the processor number that each vertex is partitioned onto, and a list of adjacent
vertices v:adjac [3]. The order in which each processor traverses the local vertex list can be governed by our
heuristics although the global application of a heuristic requires an alteration to the MIS algorithm. We add
an immutable data member to each vertex v: v:topo, the topological weight of each vertex. Processor p, in
the parallel MIS algorithm, can select a vertex v only if f8v1 2 v:adjac j v1:state 6= deletedg:

v1:topo < v:topo or (v1:topo = v:topo and v1:proc � v:proc):

This test is added to the test in the second line of Figure 3, and results in a correct global implementation
of any heuristic that is based on vertex ranking, which can be implemented in the serial MIS by simply
ordering the vertices accordingly. To complete the parallel algorithm we simply embed the modi�ed greedy
in Figure 3 in an outer loop, see [3] for details and complexity bounds.

4.3 Topological classi�cation of vertices in �nite element meshes

Our methods are motivated by the intuition that the coarse grids, of multigrid methods, must represent the
geometry of the domain well in order to approximate the function space of the �ne mesh well. Note, we
de�ne domain in a slightly non-standard way to mean a contiguous region of the �nite element problem with
a particular material property. Thus, for our discussion, the boundary of the PDE proper is augmented with
boundaries between di�erent material types.

The �rst type of classi�cation of vertices is to �nd the exterior vertices - if continuum elements are used
then this classi�cation is trivial. For non-continuum elements like plates, shells and beams, heuristics such as
minimum degree could be used to �nd an approximation to the \exterior" vertices, or a combination of mesh
partitioners and convex hull algorithms could be used. For the rest of this section we assume that continuum
elements are used and so a boundary of the domains, represented by a list of facets or 2D polygons, can be
de�ned. The exterior vertices give us our �rst vertex classi�cation from the last section: interior vertices
are vertices that are not exterior vertices. Exterior vertices require further classi�cation, but �rst we need a
method to automatically identify faces in our �nite element problems.

4.4 A simple face identi�cation algorithm

We want to identify faces, or 
at regions, of the boundaries in the mesh. To describe our face identi�cation
algorithmwe assume that a list of facets facet list has been created with the boundaries of the �nite element
mesh. Assume that each facet f 2 facet list has calculated its unit normal vector f:norm, and that each
facet f has a list of facets f:adjac that are adjacent to it. With these data structures, and a list with AddTail
and RemoveHead functions with the obvious meaning, we can calculate a face ID for each facet with the
algorithm shown in Figure 4. All facets with the same face ID will de�ne one face in our algorithms.

This algorithm simply repeats a breadth �rst search, of trees rooted at an arbitrary \undone" facet,
which is pruned by the requirement that a minimum angle (arccos TOL) be maintained by all facets in the
tree relative to the root and its parent. This heuristic is a simple way to identify faces (or manifolds that
are somewhat \
at") of the boundaries in the mesh.

These faces are useful for two reasons:

� Topological categories for vertices, used in the heuristics of section x4.2, can be inferred from these
faces:

{ A vertex attached to only one face is in the interior of a surface.

{ A vertex attached to only two faces is in the interior of an edge.

{ A vertex attached to more than two faces is a corner.
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forall (f 2 facet list) f:face ID  0
Current ID  0
forall f 2 facet list

if f:face ID = 0
list  ffg
norm f:norm
Current ID  Current ID + 1
while list 6= ;

f  list:RemoveHead
f:face ID  Current ID
forall f1 2 f:adjac - - TOL is a user selected tolerance �1 < TOL � 1 (e.g. TOL = 0:5)

if normT � f1:norm > TOL and f:normT � f1:norm > TOL and f1:face ID = 0
list:AddTail(f1)

Figure 4: Face identi�cation algorithm

� Vertices, of the same feature class, though not associated with the same feature should not interact
with each other in the MIS algorithm.

This �rst item gives us the classi�cations that we have discussed above, the second item is discussed in
the next section.

4.5 Modi�ed maximal independent set algorithm

We now have all of the pieces that we need to describe the core of our method. First we classify vertices and
ensure that a vertex of lower rank does not suppress a vertex of higher rank. Second we want to maintain
the integrity of the \faces" in the original problem as best we can. The motivation for this second criterion
can be seen in Figure 5.

Fine Grid

Coarse Grid

Deleted Vertex

Selected Vertex

Figure 5: Poor MIS for multigrid of a \thin" body

If the �nite element mesh has a thin region then the MIS as described in x4.1 can easily fail to maintain
a cover of the vertices in the �ne mesh. This comes from the ability of the vertices on one face to decimate
the vertices on an opposing face as shown in Figure 5. This phenomenon could be mitigated by randomizing
the order that the vertices are added to the MIS, at least within a vertex type. But randomization is not
good enough as these skinny regions tend to lower the convergence rate of iterative solvers, and so we need
to pay special attention to these thin body features.

The problem in Figure 5, is that vertices are allowed to suppress vertices in the same class - but in a
di�erent feature. This problem does not occur on logically square domains as when the grid is coarse enough,
for surface vertices to \punch through" the domain, the coarsening stops. On general domains one must
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continue coarsening, even when one dimension, of some parts of the problem, has coarsened-all-the-way-
through, because the problem may still be too large to solve cheaply with a direct solver.

We claim that by removing all edges between vertices that do not share a common face, we force the MIS
to be a more \logical" and economical representation of the �ne mesh (in terms of solver performance). This
simple modi�cation (once we have identi�ed faces) will prevent a corner from deleting an edge vertex with
which it does not share a face, and likewise and edge vertex from deleting another edge vertex, or a surface
vertex, with which it does not share a face. Also, we do not allow corners to be deleted at all; this can
be problematic on meshes that have many initial \corners" (as de�ned by our algorithm) - to mitigate this
problem by reclassify vertices on the coarser grids (we generally reclassify the grids above the �rst two or
three).

We are now free to run our MIS algorithm on this modi�ed graph, Figure 6 and 7 shows an example of
a possible MIS and remeshing.

Figure 6: Original and fully modi�ed graph

Fine Grid

Coarse Grid

Figure 7: MIS and coarse mesh

4.6 Vertex ordering in MIS algorithm on modi�ed �nite element graphs

An additional degree of freedom, in the MIS algorithm, is the order of the vertices within each category. Thus
far we have implicitly ordered the vertices by topological category - the ordering within each category can
also be speci�ed. Two simple heuristics can be used to order the vertices: random order, and a \natural"
order. Meshes may be initially ordered in a block regular order (i.e. an assemblage of logically regular
blocks), or ordered in a cache optimizing order like Cuthill-McKee [29]. Both of these ordering types are
what we call natural orders, and we assume that the \initial" order of our mesh is of this type (if not then
we can make it so). The MISs produced from natural orderings tend to be rather dense, random ordering
on the other hand tend to be more sparse. That is, the MISs with natural orderings tend to be larger than
those produced with random orders. For a uniform 3D hexahedral mesh, the asymptotics of the size of the
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MIS is bounded from above by 1=23, and from below by 1=33 as the largest MIS picks every second vertex
and the smallest MIS selects every third vertex, in each dimension - natural and random orderings are simple
heuristics to approach these bounds.

Small MISs are preferable as there is less work in the solver on the coarser mesh, also fewer levels are
required before the coarsest grid is small enough to solve directly, but care has to taken to not degrade the
convergence rate of the solver by compromising the quality if the coarse grid representation. In particular, as
the boundaries are important to the coarse grid representation it may be advisable to use natural ordering
for the exterior vertices and a random ordering for the interior vertices.

4.7 Meshing of the vertex set on the coarse grid

The vertex set for the coarse grid remains to be meshed - this is necessary in order to apply �nite element
shape functions to calculate the restriction operator. We use a standard Delaunay meshing algorithm to
give us these meshes [13]. This is done by putting the mesh inside of a bounding box, thus adding dummy
vertices to the coarse grid set, and then meshing this to produce a mesh that covers all �ne grid vertices.
The tetrahedra attached to the bounding box vertices are removed and the �ne grid vertices within these
deleted tetrahedra are added to a list of \lost" vertices (lost list).

We continue to remove tetrahedra, from the mesh, that connect vertices that were not \near" each other
on the �ne mesh (recall the vertex set are still nested), and that do not have any vertices that lie \uniquely"
within the tetrahedron. De�ne a vertex v to lie uniquely in a tetrahedron, if v lies completely within the
tetrahedron and not on its surface, or there is no adjacent tetrahedra to which v can be added. More
precisely if a vertex's shape function values are all larger than some small tolerance � (we use only linear
shape functions), or there is not an adjacent tetrahedra that can \accept" the vertex, then that tetrahedron
is deemed necessary and not removed. We also use a more aggressive phase in which we use a larger, though
still small, tolerance, to try to remove more tetrahedra - but the \orphaned" vertices are added to the
lost list. The resolution of the vertices in the lost list is discussed in section x4.8.

4.8 Coarse grid cover of �ne grid

The �nal optimization that we would like to employ is to improve the cover of the coarse mesh on the �ne
grid vertex set. With the coarse grids constructed, the interpolation operators are calculated by evaluating
standard �nite element element shape functions of the element to which the �ne grid vertex is associated.
Each �ne grid vertex is associated with an element on the coarse grid - the element that covers the �ne grid
vertex. In general however some �ne grid vertices (the lost list from the previous sections) fail to be covered
by the coarse grid as shown in Figure 7. This problem can be solved in one of two ways: �nd a nearby
element and use it (thus extrapolate), or move the vertices on the coarse grid so as to cover all �ne grid
vertices. We can use the extrapolation of an element that does not cover a �ne mesh point, the extrapolation
values are simply not all be between zero and one (we use only linear shape functions). Intuition tells us
however that interpolation will be of higher quality than extrapolation. Alternatively one can move the
coarse grid vertex positions to cover the �ne vertices in lost list.

The optimal coarse grid vertex positions (or an approximation to them) could perhaps be constructed
with the use of interpolation theory to provide cost functions, and linear or nonlinear programming. We have
instead opted for a simple, greedy algorithm that iteratively traverses the exterior vertices of the coarse mesh
and applies a simple algorithm to try to cover the uncovered vertices that are near it. First we de�ne a list
ext neighc, for each coarse grid vertex c, that contains all of the vertices attached to all of the exterior facets
to which c is attached; de�ne A to be the cumulative area of these facets (

p
A is used as a characteristic area

of the patch being modi�ed during each vertex move). We de�ne a list lost listc for each coarse grid vertex
c, and put the vertices v in lost list into the list of the coarse grid vertex to which v is closest; lost listc is
then expanded to include the vertices in lost listi for each vertex i 2 ext neighc. Given a maximumnumber
of outer iterations M , a maximumdistance tolmax that a vertex can be move, and a larger tolerance toldelete
to prune the list of �ne grid vertices that a coarse grid vertex will try to cover. The algorithm is as follows.

� do M times: forall c on the exterior of the coarse grid
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{ Calculate a vector �: the weighted average of the outward normals of the facets connected to the
coarse grid vertex (c:facet list), weighted by the facet area.

{ The normal of each facet that does not have a positive inner product (with this � vector) is added
to � until ff 2 c:facet list j f:normT � � < 0g = ;, then � is normalized to unit length.

{ !  0

{ forall v 2 lost listc: forall f = (a; b; c) 2 c:facet list
� Solve for � in �������

a:x a:y a:z 1
b:x b:y b:z 1

c:x+ � � �:x c:y + � � �:y c:z + � � �:z 1
v:x v:y v:z 1

�������
= 0:0

� if � > toldelete �
p
A remove v from lost listc

� else if � > tolmax �
p
A: !  tolmax

� else if � > !: !  �

{ if ! > 0

� c:cood c:cood+ ! � �
� Recalculate the shape functions for all of �ne grid vertices that are associated with an element
in a list of elements connected to c (c:elems).

� For all e 2 c:elems, For all v 2 lost listc: calculate the shape function for v in element e

� If all shape values are greater than �� for some small number �, then

� Add v to e and remove v from lost listi for all i 2 ext neighc

Figure 8 shows an illustration of what our algorithm might do on our running example.

Fine Grid

Coarse Grid

Figure 8: Coarse grid after vertices have been moved to cover all �ne grid vertices

Figure 9 shows an example of our methods applied to a problem in 3D linear elasticity. The �ne (input)
mesh is shown with three coarse grids used in the solution.

See [1] for numerical experiments with (and without) our heuristics on a series of model problems in
linear elasticity.

5 Parallel issues

There are two basic issues in the parallelization of our multigrid algorithm: the setup or construction of the
restriction operators for our particular algorithm and issues of parallel multigrid methods in general. This
section �rst discusses issues of parallelizing our particular algorithms, and then discusses parallel issues of
multigrid solvers in general on todays parallel machines.

Recall the basic steps in our method from section x3:
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Figure 9: Fine (input) grid and coarse grids for problem in 3D elasticity

� Coarsen the vertex set at the current level (e.g. with an MIS algorithm).

� Mesh this vertex set.

� Use standard �nite element shape functions to produce the restriction operators Ri.

� Construct the coarse grid operator: Ai+1  RiAiR
T
i .

Parallel maximal independent set algorithms are well documented [3, 22, 18]; the parallel evaluation of the
�nite element shape functions is trivial; the sparse matrix triple product is di�cult to implement e�ciently
though is a straight forward algorithm [2]. E�cient 3D parallel Delaunay meshing is, however, an open
problem - though the 2D problem has been addressed [6]. We are, however, able to avoid computing a
complete 3D Delaunay mesh for the coarse grids, as each processor has copies of \ghost" vertices that
\surround" all vertices, that a processor is responsible for. We are able to mesh only the local subdomain
problem and thus construct the restriction operators locally, though interpolated with non-local (ghost)
vertices. Our experiments have, to date, shown little or no adverse e�ects (on the convergence rate) of
our approximate coarse grids. Thus, we are able to avoid the problem of constructing a global (valid �nite
element) mesh, and make due with locally constructed coarse grids on each processor.

The second class of parallel issues, for our algorithm, are those that relate to general multigrid algorithms.
We do not discuss the e�ective parallel implementation of the components of multigrids as they are all
standard linear algebraic operations with sparse matrices and dense vectors - e.g. matrix vector products,
matrix triple products, dot products, etc. We, however, do discuss some algorithmic issues that must be
addressed for the e�cient application of multigrid solvers on large scale problems on typical parallel machines
of today.

5.1 Processor subdomain agglomeration

Subdomain agglomeration refers to reducing the number of active processors before a coarse grid is parti-
tioned for the actual solves. Thus, subdomain agglomeration can be seen as a preprocessor to the optimization
process in a mesh partitioner; this is required as mesh partitioner are not now sophisticated enough to opti-
mize the \entire problem" and must be used as a tool to optimize communication and load balance - with a
given number of processors [21, 17]. Subdomain agglomeration is valuable for two di�erent reasons, �rst for
performance and second for algorithmic considerations. We partition many vertices (i.e. about 104) to each
processor - this allows all of the processors to do useful work in much, but not all, of the multigrid algorithm
- for the \large" problems of today (e.g. 107 - 108 vertices). The di�culty is that, as the number of vertices
per processor dwindles the ability to do work e�ciently decreases - this problems will also be come more
acute as the problem size increases (and more processors are used). At some point in the grid hierarchy it is
e�cient to let some processors remain idle and agglomerate the work to fewer processors - that is, the time
spent on a grid decreases if fewer processors are used.

A second reason for the use of processor agglomeration comes from the multigrid algorithm that we
use, both in terms of mathematics and practical implementation issues. Mathematically, when any multigrid
algorithm uses a block Jacobi preconditioner in the smoother you no longer have the \same solver" in parallel,
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as on one processor, since one can no longer maintain the same block sizes on the coarser grids (assuming
that a serial solver is used on the subdomains).

Agglomeration should take place when the value of the global 
oating point operations (
op) rate (e.g.
Figure 10 (left)), of the operator that one wishes to optimize, using the current number of active processors,
falls below that of a smaller integer number of processors. We need a method to pick the number of processors
to use, at each level of multigrid, automatically at run time.
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Figure 10: Matrix vector product: per processor, and total, M
op/sec on a Cray T3E

5.2 Subdomain agglomeration method

There are many approaches that one could take in constructing an algorithm, for picking the number of
processors to use at any given level, to optimize the time for each iteration [2]. The complexity of todays
parallel computers, and of the multigrid algorithm, relegates us to measuring test problems and curve �tting
this data to construct functions that can be evaluated at run time.

We currently work with empirical models, based on curve �tting, that use measurements from actual
solves, to decide on the number of processors to use on each grid. This method has the disadvantage that
model parameters have to be calculated for each machine that the code is to be run on, and may need to be
recalculated for di�erent problem types, but it has the advantage that it is reasonably accurate and simple
to construct. We can start by looking at the form of the function f that we want in Figure 11. The concave
shape of the curve, for f , is derived from the intuition that as more processors are in use the log(P ) term in
the dot products, and any other source of parallel ine�ciency, will push for the use of fewer processors. For
convenience we transpose this function to get the convex function n = g(P ).

P

n

P  = f(n) for machine X

P

n

n = g(P ) for machine X

Figure 11: Cartoon of cost function, and its transpose

Now it is natural to begin to approximate this function with a quadratic polynomial n = AP 2 +BP , or
alternatively

n

P
= A � P +B

11



where n
P

is the problem size per processor. A and B are machine and problem dependent parameters
that are determined by experimental observation on actual multigrid solves of typical problems, or from
experience with other problems on the target machine. We have selected A and B by starting with an initial
guess and using a large problem to \search" for the optimal solve time by perturbing A, measuring the total
performance (the only quantity that we can e�ectively measure), and \search" for an \optimal"A; we repeat
this process for B, and go back to A, and so on until we �nd the minimal solve time for the problem.

This method is rather ad hoc, though appropriate given the indeterminacy in our current solver im-
plementation. Collecting data, for this type of curve �tting procedure, required that we can either collect
reproducible (i.e. consistent) measurements or can collect data and construct statistical averages. Our solver
performance is not highly reproducible; we see 
uctuation in the total M
op rate of the solver in a range of
about 10%. This is due to, among other things perhaps, the fact that our mesh partitioner is not determin-
istic, the mesh partitioner does not enforce any particular layout on the machine, and we use machines that
are used by other users so that, although we have exclusive use of processors, the communication system
is shared and we have no control of the topology of our processor set. Thus, the function that we wish to
measure and model (solution times) can not be measured well for use in modeling.

In a production setting one could automate this process for selecting the coe�cients, e.g. A and B in
equation (1), by running parametric experiments with a large representative problem. One could then simply
select the A and B used in the experiment with the fastest solve time, or use curve �tting to construct a
function that can be minimized. The use of many more processors would likely require that a higher order
polynomial or a more complex function be used. Note, for more accuracy one should also use the number
of non-zeros in the matrix in addition to the number of equations n, as this is a more direct measure of the
matrix-vector multiply cost, and does not, in general, remain constant on all grids. With A and B we can
now, at run time, compute the \ideal" number of processors to use:

P̂ =
�B +

p
B2 � 4A n

P

2A
: (1)

After the number of vertices n on a grid has been determined at run time, A, B, and equation (1) are used
to compute P̂ , and then a nearby integer can be selected as the number of processors to use. Note, our
current implementation is limited in that each grid must use an integer divisor of number of processors used
on the previous (�ner) grid.

6 Parallel �nite element architecture

Iterative solver development requires constant testing on many types of problems as iterative equation solvers
are very sensitive to many features found in the accurate simulation of complex physical systems (e.g. large
jumps in material coe�cients, thin body domains, complex geometries, and challenging material constitution
such as incompressibility). Thus, the development of robust iterative solvers requires testing on challenging
problems at all stages of development. We have constructed a parallel �nite element system, ParFeap, that
is built on a serial research �nite element implementation: Finite Element Analysis Program (FEAP ) [12].
ParFeap provides us with a powerful computational substrate that is invaluable for this research; ParFeap
is composed of three basic components:

� Athena is a parallel �nite element partitioner that uses ParMetis [21] to partition the �nite element
graph, then constructs a fully valid \serial" �nite element problem - to provide a well speci�ed serial
�nite element problem on each processor.

� Epimetheus is an \algebraic" multigrid solver infrastructure that provides a solver to Athena, a driver
for Prometheus, an interface to PETSc [5], and numerical primitives not provided by PETSc (e.g. the
sparse matrix triple product).

� Prometheus is our restriction operator constructor and is the implantation of the coarse algorithms
discussed in this paper.

Athena, Epimetheus, and Prometheus are implemented with about 30,000 lines of C++ code, PETSc and
ParMetis are implemented in C, and FEAP is implemented in FORTRAN.
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6.1 Athena

We have developed a highly parallel �nite element code, built on an existing serial research \legacy" �nite
element implementation. Testing iterative solvers convergence rates requires that challenging test problems
be used - problems that test a wide range of �nite element techniques. We needed a full featured �nite
element code, but full featured �nite element codes are inherently large, complex, and not easily parallelized.
Thus, by necessity, we have developed a domain decomposition based parallel �nite element approach, in
which a complete �nite element problem is built on each processor. This abstraction allows for a very simple
interface which required only very simple modi�cations to FEAP (we will denote this modi�ed version of
FEAP as FEAPp).

Athena uses ParMetis [21] to calculate a mesh partitioning, and then constructs a fully valid �nite
element problem for each processor. In addition to the \local" vertices for processor p, prescribed by
the vertex partitioning V L

p , duplicate vertices are added V G
p (i.e. \ghost" vertices that are required for

local computation of residuals and sti�ness matrices but are not in V L
p ), de�ne an extended vertex set

V E
p = V L

p [ V G
p . An extended element set EE

p for each processor is de�ned as all elements that touch any

vertex in V L
p (note, the set of vertices in EE

p is precisely the set V E
p ). Elements can be partitioned in the

same manner as vertices to form a set EL
p of elements to be computed on each processor. In general EL

p

need not be related to EE
p in any way, though in practice it is natural and most likely optimal to have

EL
p � EE

p and we assume that this is the case. The displacements or Dirichlet boundary conditions must
be applied redundantly (i.e. on ghosts) so that elements can compute correct and consistent residuals and
element sti�ness matrices, whereas the loads (Neumann boundary conditions) must be applied uniquely to
maintain the semantics of the problem (as residuals or forces are added into a global vector). We, however,
redundantly compute elements so as to avoid communication in the construction of the residual and sti�ness
matrix; thus, residuals for ghost vertices are ignored and all elements in EE

p are computed by processor p.
A slightly modi�ed serial �nite element code runs on each processor. Though the serial code is modi�ed

it does not have any parallel constructs or knowledge of the global problem - this is useful for debugging
and the continued independent development of FEAP (we will denote the serial stand-alone version of
FEAP as FEAPs). Parallelism is introduced by providing the �nite element code with a matrix and vector
assembly routine, solver setup routines, and a solve routine, (additional support functions are provided for
expressiveness and performance but are not strictly necessary for many classes of �nite element problems).
This simple interface could also be adequate for a simple explicit method, where the solver simply needs
to invert a diagonal mass matrix and do a component by component vector-vector product - and then
communicate the solution, on local vertices, to neighbor processor's ghost vertices. Any method that requires
other global operations can be added as needed - thus this interface provides the kernel for a parallel �nite
element implementation. The advantage of this method is that the serial �nite element code is completely
parallel - and has a very small interface with Epimetheus.

6.2 Epimetheus

Prometheus provides Epimetheus with restriction operators, and FEAPp uses Epimetheus to solve a series
of linear systems of equations. Epimetheus uses METIS [20] to determine the block Jacobi subdomains and
PETSc for the parallel numerical library and programming development environment.

6.3 Prometheus

FEAPp provides Prometheus with the local �nite element problem (that was originally constructed by
Athena) i.e. coordinates, element connectivities, material identi�ers, and the boundaries conditions. Prometheus
constructs the global restriction operators for each grid, and is the core of the algorithmic contribution of
this paper. Future work may include adding an interface to the parallel unstructured multilevel grids that
we use to construct our coarse grids as these are generally useful for anyone building a parallel \algebraic"
multigrid code, or in fact any parallel algorithm on unstructured multilevel grids, similar to how Kelp [4]
and Titanium [31] provide parallel multilevel structured grid primitives.

Figure 12 shows a graphic representation of the overall system architecture.
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7 Numerical results

The primary motivation for investigating iterative solvers is to solve challenging large scale problems e�ec-
tively, we test a problem in large deformation elasticity and plasticity with somewhat complex geometry and
material coe�cients. Our test problem is of a series if thin concentric spheres enclosed in \soft" material
(with symmetric boundary conditions so that only one octant need be modeled). The sphere is constructed
of seventeen alternating layers of \hard" and \soft" materials described below. The loading and boundary
conditions are an imposed uniform displacement (down), on the top surface. Table 7 shows a summary of
the constitution of our two material types.

The hard material is a J2 plasticity, small deformation material, with a mixed formulation and kinematic
hardening [26]. The soft material is a large deformation (Neo-Hookean) hyperelastic material with a mixed
formulation [32].

The mesh is parameterized so that we can construct several versions of the problem with di�erent scales
of discretization, Figure 7 shows the smallest (base) version of the problem with 80 k (k=1000 degrees of
freedom) . Each successive problem has one more layer of elements through each of the seventeen shell
layers, with an appropriate (i.e. similar) re�nement in the other two directions, and in the outer soft domain
- resulting in problems of size: 80 k, 621 k, 2,086 k, 4,924 k, 9,595 k, 16,554 k, and 26,257 k degrees of

14



Material Elastic mod. Poisson ratio deformation type yield stress hardening mod.
soft 10�4 0:49 large 1 NA
hard 1 0:3 small 0:002 0:002

Table 1: Nonlinear materials

                              

Figure 13: 79,679 dof concentric spheres problem

freedom.

7.1 Linear and nonlinear solver

We use a full Newton nonlinear solution method. Convergence is declared when the energy norm of the
correction is 10�16 that of the �rst correction. This means in Newton iteration m, we declare convergence
when

��xTm � (b�Axm)
�� < 10�16 �

��xT0 � (b�Ax0)
��. Our linear solver, within each Newton iteration, is conju-

gate gradient preconditioned by our multigrid solver, with a block Jacobi preconditioned conjugate gradient
smoother. We use 6 blocks for every 1,000 unknowns in the block Jacobi preconditioner.

FEAPp calls our linear solver at each Newton iteration, with the current residual rm = b�Axm, thus the
linear solve is for the increment �x � A�1rm. We use a dynamic convergence tolerance (rtol) for the linear
solve in each Newton iteration of: rtol1 = 10�4 in the �rst iteration, rtol2 = 10�3 in the second iteration,

and rtolm = min(10�3; krmk
krm�1k

� 10�1) on all subsequent iterations (m > 2). This heuristic is intended to

minimize the number of total iterations required in the Newton solve for each time step by only solving each
linear equation set to the degree that it \deserves". That is, if the true (nonlinear) residual is not converging
quickly then solving the linear system to an accuracy far in excess of the reduction in the residual, that is
expected in the outer Newton iteration, is not likely to be economical.

The reason for hardwiring the tolerance for the second Newton iteration, is that the residual for the �rst
iteration of this particular problem tends to drop by about three orders of magnitude. The second step of
this problem tends to have the residual reduced by about one order of magnitude or less and then continues
with super-linear, but not quadratic convergence rate (as we use a non-exact solver). Our dynamic tolerance

heuristic (min(10�3; krmk
krm�1k

�10�1)) speci�es too small of a tolerance, on the second iteration of this problem,

so we hardwired the tolerance for the sake of e�ciency.

7.2 Cray T3E

We run each linear solve with about 41,000 degrees of freedom per processor, on 2 to 640 processors; thus,
the problems range in size from 80,000 to over 26 million degrees of freedom. For these experiments we use
a convergence tolerance of 10�4 (the �rst linear solve tolerance in the nonlinear solver), so as to investigate
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the e�ciency of one linear solve, in isolation of the issue of nonlinear performance discussed in section x7.3.
We want to show our solver in its best light by running with as many equations per processor as possible, as
parallel e�ciency will in general increase as the number of degrees of freedom per processor goes up. These
experiments are performed on a Cray T3E with 640 single 450 MHz. processors, 900 M
op/sec theoretical
peak, 256 MB memory per processor, and a peak M
op rate of 662 M
op/sec (1/2 of 2 processor Linpack
Rmax). Figure 14 (left) shows the times for the major subcomponents of the solver, and Figure 14 (right)
shows the e�ciency diagram of the same data.
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Figure 14: 41,000 dof per processor, included concentric sphere times (left), e�ciency (right), on a Cray T3E

Processors 2 15 50 120 240 405 640
Number of dof 79,679 622,815 2,085,599 4,924,223 9,594,879 16,553,759 26,257,055

Number of iterations 22 22 19 17 14 14 15

Table 2: Number of iterations for �rst linear solve in the nonlinear solve

We see super-linear e�ciency in the solve times, in Figures 14, for two reasons. First, we have super-linear
convergence rates, as shown in Table 7.2. Second, the vertices added in each successive scale problem have
a higher percentage of interior vertices than the base (two processor) problem, leading to higher rates of
vertex reduction in the coarse grids. This is because, as the number of unknowns n increases, the \surface
area" increases by n

2

3 whereas the interior increases by n; thus, the ratio of interior vertices to surface
vertices increases as the scale of discretization decreases (n increases) on the larger problems. Our heuristics
(section x4) try to articulate the surfaces (boundary and material interfaces) well, resulting in a higher ratio
of surface vertices being promoted to the coarse grid. Thus, the rate of vertex reduction is higher on the
larger problems as they have proportionally more interior vertices, hence proportionally larger reduction
rates leading to less work per processor per �ne grid vertex on the large problems, as can be seen in Figure
15 (left). For instance, the total reduction factor of the �rst coarse grid is about seven on the base case (80
k dof problem) and about thirteen on the larger problems. Therefore, there are in fact fewer 
ops in each
full multigrid iteration - per �ne grid vertex - on the coarse grids for the larger problems.

Figures 14 also show that \subdomain factorizations" perform poorly. On inspection of the PETSc
output we see that the copying of the subdomain data, from the grid sti�ness matrix, and the symbolic
factorizations of these submatrices are the cause of these large and increasing (with number of processors)
times. We are not able to explain the poor performance in this data, though data on problems with fewer
equations per processor, show much smaller times that are in line with our expectations. The Cray does
not have virtual memory and so paging is not an issue; thus, we suspect that this poor performance is due
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op e�ciency on a Cray T3E

to cache e�ects as there is no need for communication in the subdomain factorization phase, hence the 25%
parallel e�ciency in Figure 14 (right) is not well understood.

This data shows that the overall solution times are staying about constant. Additionally, the base case
(2 processor case) solve ran at 144 M
ops, and the 640 processor case ran at 24,792 M
ops (about 54%
e�ciency), in the actual solve.

7.3 IBM PowerPC cluster

The full nonlinear problem has run �ve time steps that result in a vertical displacement of 3.6 inches down;
the cube is 12.5 inches on a side, and the top \soft" section is 5 inches at the central (z) axis. We keep
about 80,000 degrees of freedom per processor, and run problems of size 80 k (on 1 processors) up to 26,257
k (on 336 processors, 84 nodes). Figure 16 show the number of multigrid iterations, stacked on one another
to show the total number of multigrid iterations to solve each problem.

From this data we can see that the total number of iterations is staying about constant as the scale of
the problem increases. Figure 14 (left) shows that the number of iterations, to reduce the residual by a �xed
amount, in the �rst solve of the �rst time step, decreases as the problem size increases. Thus, the data in
Figure 16 suggests that the nonlinear problem is getting harder to solve as the discretization is re�ned; this
is not a surprising result as there is likely more nonlinear behavior in the �ner discretizations, but more work
remains to investigate this issue further.

Figure 17 show the total \wall-clock" times. From this we can see that the overall time to solve a problem,
after the problem as been constructed, is scaling well, and that the parallel partitioning and multigrid setup
time is relatively modest when nonlinear problems are being solved (i.e. the setup costs are amortized by
the many linear solves in nonlinear time stepping problems)

8 Conclusion

We have developed a promising method for solving the linear set of equations arising from implicit �nite
element applications in solid mechanics. Our approach, a 3D and parallel extension to an existing serial 2D
algorithm, is to our knowledge unique in that it is a fully automatic (i.e. the user need only provide the
�ne grid, which is easily available in most �nite element codes) standard geometric multigrid method for
unstructured �nite element problems.

We have developed a fully parallel and portable prototype solver that shows promising results, both in
terms of convergence rates and parallel e�ciency, for some modestly complex geometries with challenging
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Figure 17: End to end times of nonlinear solve with 80,000 dof per processor on IBM

per vertex for p-adaptive methods and multi-physics problems. To extend the depth of problems that we can
address, such as, investigate non-CG Krylov subspace methods for inde�nite systems from large deformation
elasticity and plasticity, or regularization of these problems; and develop parallel and preconditioned Uzawa
solvers for inde�nite systems from constrained problems with Lagrange multipliers, or develop multigrid
methods to address these problems.
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