
Online Dynamic Reordering for Interactive Data Processing
Vijayshankar Raman Bhaskaran Raman Joseph M. Hellerstein

University of California, Berkeley

frshankar,bhaskar,jmhg@cs.berkeley.edu

Abstract

We present a pipelining, dynamically user-controllable reorder operator, for use in data-intensive

applications. Allowing the user to reorder the data delivery on the
y increases the interactivity in

several contexts such as online aggregation and large-scale spreadsheets; it allows the user to control the

processing of data by dynamically specifying preferences for di�erent data items based on prior feedback,

so that data of interest is prioritized for early processing.

In this paper we describe an e�cient, non-blocking mechanism for reordering, which can be used over

arbitrary data streams from �les, indexes, and continuous data feeds. We also investigate several policies

for the reordering based on the performance goals of various typical applications. We present results

from an implementation used in Online Aggregation in the Informix Dynamic Server with Universal

Data Option, and in sorting and scrolling in a large-scale spreadsheet. Our experiments demonstrate

that for a variety of data distributions and applications, reordering is responsive to dynamic preference

changes, imposes minimal overheads in overall completion time, and provides dramatic improvements

in the quality of the feedback over time. Surprisingly, preliminary experiments indicate that online

reordering can also be useful in traditional batch query processing, because it can serve as a form of

pipelined, approximate sorting.

1 Introduction

It has often been noted that information analysis tools should be interactive [7, 5, 6], since the data explo-

ration tasks they enable are often only loosely speci�ed. Information seekers work in an iterative fashion,

starting with broad queries and continually re�ning them based on feedback and domain knowledge (see [21]

for a user study in a business data processing environment). Unfortunately, current data processing appli-

cations such as decision-support querying [9] and scienti�c data visualization [2, 20] typically run in batch

mode: the user enters a request, the system runs for a long time without any feedback, and then returns an

answer. These queries typically scan large amounts of data, and the resulting long delays disrupt the user's

concentration and hamper interactive exploration. Precomputed summaries such as data cubes [14, 28] can

speed up the system in some scenarios, but are not a panacea; in particular, they provide little bene�t for

the ad-hoc analyses that often arise in these environments.

The performance concern of the user during data analysis is not the time to get a complete answer to

each query, but instead the time to get a reasonably accurate answer. Therefore, an alternative to batch

behavior is to use techniques such as Online Aggregation [18, 4] that provide continuous feedback to the

user as data is being processed. A key aspect of such systems is that users perceive data being processed

over time. Hence an important goal for these systems is to process interesting data early on, so users can get

satisfactory results quickly for interesting regions, halt processing early, and move on to their next request.

In this paper, we present a technique for reordering data on the
y based on user preferences | we

attempt to ensure that interesting items get processed �rst. We allow users to dynamically change their

de�nition of \interesting" during the course of an operation. Such online reordering is useful not only in

online aggregation systems, but also in any scenario where users have to deal with long-running operations

involving lots of data. We demonstrate the bene�ts of online reordering for online aggregation, and for large-

scale interactive applications like spreadsheets. Our experiments on sorting in spreadsheets show decreases

1

in response times by several orders of magnitude with online reordering as compared to traditional sorting.

Incidentally, preliminary experiments suggest that such reordering is also useful in traditional, batch-oriented

query plans where multiple operators interact in a pipeline.

The Meaning of Reordering

To provide intra-query user control, a data processing system must accept user preferences for di�erent items

and use them to guide the processing. These preferences are speci�ed in a value-based, application-speci�c

manner: data items contain values that map to user preferences. Given a statement of preferences, the

reorder operator should permute the data items at the source so as to make an application-speci�c quality of

feedback function rise as fast as possible. We defer detailed discussion of preference modeling until Section 3

where we present a formal model of reordering, and reordering policies for di�erent applications.

1.1 Motivating Applications

Online Aggregation

Online Aggregation [18, 4] seeks to make decision-support query processing interactive by providing

approximate, progressively re�ning estimates of the �nal answers to SQL aggregation queries as they are

being processed. Reordering can be used to give users control over the rates at which items from di�erent

groups in a group by query are processed, so that estimates for groups of interest can be re�ned quickly.1

Consider a person analyzing a company's sales using the interface in Figure 1. Soon after issuing the query,

the user can see from the estimates that the company is doing relatively badly in Vietnam, and surprisingly

well in China, although the con�dence intervals at that stage of processing are quite wide, suggesting that

the Revenue estimates may be inaccurate. With online reordering, the user can indicate an interest in these

two groups using the Preference \up" and \down" buttons of the interface, thereby processing these groups

faster than others. This provides better estimates for these groups early on, allowing the user to stop this

query and drill down further into these groups without waiting for the query to complete.

Another useful feature in online aggregation is fairness | it may be desirable that con�dence intervals

for the di�erent groups should all tighten at same rate, irrespective of their cardinalities. Reordering can

provide such fairness even when there is skew in the distribution of tuples across di�erent groups.

Scalable Spreadsheets

DBMSs are often criticized as being hard to use, and many people prefer to work with spreadsheets.

However, spreadsheets do not scale well; large data sets lead to inordinate delays with \point-and-click"

operations such as sorting by a �eld, scrolling, pivoting, or jumping to particular cell values or row num-

bers. MS Excel 97 permits only 65536 rows in a table [11], sidestepping these issues without solving them.

Spreadsheet users typically want to get some information by browsing through the data, and often don't use

complex queries. Hence usability and interactivity are the main goals, and delays are especially annoying.

This is unlike a DBMS scenario, where users expect to wait for a while for a query to return.

We are building [25] a scalable spreadsheet where sorting, scrolling, and jumping are all instantaneous

from the user's point of view. We lower the response time as perceived by the user by processing/retrieving

items faster in the region around the scrollbar { the range to which an item belongs is inferred via a histogram

(this could be stored as a precomputed statistic or be built on the
y [12, 10]). For instance, when the user

presses a column heading to re-sort on that column, he almost immediately sees a sorted table with the

items read so far, and more items are added as they are scanned. While the rest of the table is sorted at a

slow rate, items from the range being displayed are retrieved and displayed as they arrive.

1User preferences can be passed from the interface to the DBMS by calling UDFs in auxiliary queries. See [18] for details.

2

SELECT AVG(revenue), nation
FROM sales, branches

WHERE sales.id = branches.id
GROUP BY nation

Revenue

China

India

Japan

Vietnam 10019.78

49315.90

35010.24

80005.28

Stop Preference Nation

1

1

3

2

Interval

4000.45

3892.76

700.52

1567.88

2% doneConfidence: 95%

Figure 1: Relative speed control in online aggregation

Imprecise Querying: With online reordering behind it, the scrollbar becomes a tool for fuzzy, imprecise

querying. Suppose that a user trying to analyze student grades asks for the records sorted by GPA. With

sorting being done online as described above, the scrollbar position acts as a fuzzy range query on GPA,

since the range around it is �lled in �rst. By moving the scrollbar, she can examine several regions without

explicitly giving di�erent queries. If there is no index on GPA, this will save several sequential scans. More

importantly, she need not pre-specify a range | the range is implicitly speci�ed by panning over a region.

This is important because she does not know in advance what regions may contain valuable information.

Contrast this with the order by clause of SQL and extensions for \top N" �lters, which require a priori

speci�cation of a desired range, often followed by extensive batch-mode query execution [8].

Batch Query Processing

Interestingly, we have found that a pipelining reorder operator is useful in batch (non-online) query

processing too. Consider a key/foreign-key join of two tables R and S, with the foreign key of R referencing

the key of S. If there is a clustered index on the key column of S, a good plan would be to use an index-nested-

loops join algorithm. Taking advantage of the clustered index, the DBMS might insert a sort operator on R

before the join, so that each leaf of the index is fetched at most once. Unfortunately, since sort is a blocking

operator, this plan forfeits the pipelined parallelism that is available in index-nested-loops join. Note that

sorting is used as a performance enhancement to batch up index lookups; total ordering is not needed for

correctness. Hence we can use a pipelining, best-e�ort reorder operator instead to gain most of the bene�t

of sorting, without introducing a blocking operation into the query pipeline. Not only is the resulting query

non-blocking (and hence potentially interactive), but the overall completion time may be faster than if we

had sorted, since (a) we need not do a complete sort, and (b) opportunities exist for pipelined parallelism

(e.g. if the index for S is on a separate disk from R). We have started experimenting with this idea by

inserting reorder operators into traditional query plans, and present preliminary results in Section 5.3.

Organization of the Paper

We present our technique for reordering in Section 2. In Section 3 we describe several policies for

reordering, and corresponding quality of feedback functions that are suited for di�erent applications. We

then discuss disk management issues for the reordering algorithm in Section 4. We present performance

results for di�erent applications in Section 5. We discuss related work in Section 6, and conclude with some

avenues for future work in Section 7.

3

Consume

User

Join /
Transfer /
Render on
screen

Network

Process

Reorder

put

buffer

get

network
feed

index

Produce
di

sk

Figure 2: Data
ow model for the reordering

S

reorder

consume

i
n
d
e
x

process

scan

Figure 3: Reorder operators in plan

trees for online aggregation

2 Best E�ort Online Reordering

Since our goal is interactivity, the reordering must not involve pre-processing or other overheads that will

increase runtime. Instead, we want a \best e�ort" reordering that runs concurrently with the processing,

with negligible overhead. Figure 2 depicts our scheme of inserting a reorder operator into a data
ow. We

divide the data
ow into four stages as described below.

Produce { this may be a disk scan, an index scan, or a data feed from a network or sensor.

Reorder { this reorders the items according to the dynamically changing preferences of the consumer.

Process { this is the set of operations done by the application, and it could involve query plan operators in

a DBMS, sending data across a slow network, rendering data onto the screen in data visualization, etc.

Consume { this captures the user think-time, if any | it is important mainly for interactive applications

such as spreadsheets or data visualization.

Since all these operations can go on concurrently, we exploit the di�erence in throughput between the

produce stage and the process or consume stages to permute the items: while the items taken out so far

are being processed/consumed, reorder can take more items from produce and permute them.

Figure 3 shows a sample data
ow in a DBMS query plan. Reorder is inserted just above a scan operator

on the table to be reordered, and the processing cost is the cost of the operators above it in the plan tree.

2.1 The Prefetch and Spool (P&S) technique

Reorder tries to put as many interesting items as possible onto a main-memory bu�er, and process issues

requests to get an item from the bu�er. When Process issues a get operation, Reorder decides which item

to give it based on the performance goal of the application; this is a function of the preferences, and will be

formally derived for some typical applications in Section 3.1.

The user preferences that indicate interest may be at the granularity of either an individual item or a

group of items, depending on the application. Even in the former case, we can divide the items into groups

based on a histogram, and reorder at the granularity of a group | process continually gets the best item

from the best group on bu�er2. Reorder strives to maintain items from di�erent groups at di�erent ratios

on the bu�er based on the preferences and the reordering policy. We derive these ratios in Section 3.2.

2When process issues a get operation, it is reorder that chooses the item to give out. The decision of which item to give

out is made by reorder and is transparent to process

4

get get
application

enrich

application

Input

spool

sidedisksidedisk

Buffer Buffer

Phase 1 Phase 2

enrichread

put

Figure 4: Reordering by Prefetch & Spool

i index of a tuple
j index of a group
g number of groups
n number of items processed so far
N total number of items
DP delivery priority
UP normalized user preference
F feedback function

Figure 5: Notation used in the
reordering model

The P&S algorithm for reordering uses the time gap between successive gets from the bu�er (which may

arise due to processing or consumption time) to maintain the correct ratios of di�erent groups on the bu�er.

It has two phases, as shown in Figure 4. In Phase 1 it continually scans the input, trying to maintain the

appropriate ratio of items in the bu�er by spooling uninteresting items to an auxiliary side-disk. It spools

out items from the group that has the highest di�erence between the ratio of items actually on the bu�er

and the ratio desired. In the common case where produce is reading data from a disk, reorder performs

sequential I/Os, and so can often go much faster than the stages down the data
ow. If reorder �nds that

it has spooled some interesting items to the side-disk (as will happen if the user changes their de�nition of

\interesting" midway), it may have to read them back from the side-disk to enrich the bu�er. Again, it

reads items from the group that has the highest di�erence between the ratio of items desired, and what is

actually on the bu�er. Phase 1 completes when the input is fully consumed. In Phase 2, it directly reads

items from the side-disk to �ll the bu�er with needed items.

When produce is a continuous network feed, Phase 1 never �nishes. Reorder in this situation will still have

to spool out uninteresting items to the side-disk, assuming that the feed rate is faster than the process rate.

2.2 Index Stride

We have so far assumed that the order of data provided by produce is not under the control of reorder.

However, if there is an index on the columns that are used to decide the user's preference for a tuple (the

group-by columns in the case of online aggregation), we can use the index to retrieve items at di�erent rates

based on the ratio we want in the bu�er. We open one cursor for each group and keep �lling the bu�er

with items from that group whose ratio is less than what is needed. This approach | Index Stride | was

described in [18]. However even if such an index exists, it is may not be clustered. We will see later that

despite doing perfect reordering, Index Stride often does worse than regular P&S because of random I/Os

into the index of produce.

As Figure 4 shows, P&S is a fairly simple algorithm. The details lie in choosing a reordering policy based

on the performance goals, and in managing data in memory and on side-disk so as to optimize the enrich

and spool operations. We tackle these issues in the next two sections.

3 Policies for online reordering

What exactly do we want to achieve by reordering a data set? Given an input stream t1; t2; : : : tN , we want

to output a \good" permuted stream t�1 ; t�2 ; : : : ; t�N . Consider the following example. If the user divides

5

data items into groups and is twice as interested in group A as in group B, one good output permutation

will be \AABAABAAB...". This sequence corresponds to several possible permutations of the actual tuples,

since many tuples fall into each group. Similarly, the permutation \BAABAABAA..." is also just as good.

In general, there will be several equivalently good permutations, and our goal is to output some permutation

from a good equivalence class.

For each pre�x of length n of an output permutation t�1 t�2 : : : t�N , consider an application-speci�c quality

of feedback function (henceforth this will called the feedback function) F (UP (t�1); UP (t�2); : : : ; UP (t�n)).

This function captures the value of the items in the pre�x, and models their \interestingness" to the user.

UP (ti) is the user preference for item ti. Since the goal is to improve feedback in the early stages, the

goodness of the output permutation is given by the rate at which the feedback function rises as the number

of items processed n goes from 1 to N . We try (we can only try since the reordering is best-e�ort) for

an output permutation �, such that for any n; 1 � n � N , the pre�x t�1 ; t�2 ; : : : ; t�n of � maximizes

F (UP (tk1); UP (tk2); : : : ; UP (tkn)) over all n-element subsets fk1; : : :kng of f1; 2; : : :Ng
We describe in Section 3.1 how to set F for di�erent applications based on their performance goals. The

choice of F dictates the choice of the item that reorder gives out when process issues a get; it gives out

the item that will increase F the most.3 This in turn dictates the ratio of items from various groups that

reorder should try to maintain in the bu�er. We describe how this is derived in Section 3.2.

3.1 Performance Goals and Choice of Items to Remove from the Bu�er

Consider the data
ow model of Figure 2. When process issues a get, reorder decides which item to give

via a delivery priority mechanism. This priority for an item is computed dynamically based on how much

the feedback F will change if that item is processed. Reorder gives out the item in the bu�er with the

highest delivery priority (which may not be the highest priority item overall). Note that the delivery priority

is not the same as the user preference. The user preference depends on the user interest whereas the delivery

priority depends on the feedback function. In fact, for the �rst two metrics given below, in steady state,

assuming that the most interesting group will always be available on bu�er, the delivery priority for all the

groups will be equal. We proceed to outline some intuitive feedback functions for di�erent applications. The

notation we use is summarized in Figure 5.

Con�dence metric: Average weighted con�dence interval

In online aggregation, the goal is to make the con�dence intervals shrink as fast as possible. One

way to interpret user preferences for di�erent groups is as a weight on the con�dence interval. The feed-

back function is the negative of the average weighted con�dence interval (we take the negative since a

small con�dence-interval width corresponds to high feedback). Almost all the large-sample con�dence inter-

vals used in online aggregation (see [15] for formulas for various kinds of queries) are of the general form:

(Variance of the results seen so far)= (number of items seen so far)1=2. Hence 1=
p
nj is a good indicator of

the con�dence interval for a group j. After n items are processed, the feedback function we want to rise as

fast as possible is

F = �
gX

j=1

UPjp
nj

given that n1 + � � �+ ng = n

The application chooses items for processing such that F rises as fast as possible. If we process an item from

group j, �(nj) = 1 and so F increases by the �rst derivative UPj=nj
1:5. Hence, to process the group which

3We can do only a local optimization since we know neither the distribution of items across di�erent groups in the input to

be scanned, nor the future user preferences. Our aim is to maximize the feedback early on, and not the overall feedback.

6

will increase F the most, we set a delivery priority of DPj = UPj=nj
1:5. Each time we process an item

from a group, the group's delivery priority decreases. Also, we always process an item in the bu�er with the

highest priority. Hence this acts a negative feedback, and at steady state, assuming that the highest priority

item is always present on bu�er, all the delivery priorities will be equal.

Rate metric: Preference as rate of processing

A simple alternative is that items from each group be processed at a rate proportional to its preference.

This is primarily a functional goal in that it directly tells reorder what to do. However, it may be useful in

applications such as analysis of feeds from sensors, where we want to analyze packets from di�erent sources

at di�erent rates based on preferences; if the user �nds the packet stream from one sensor to be anomalous,

he may want to analyze those packets in more detail. We want the number of items processed for a group to

be proportional to its preference, and the feedback function to maximize is the negative of the net deviation

from these proportions:

F = �
gX

j=1

(nj � nUPj)
2 given that n1 + � � �+ ng = n

At any given time we want to process the group that will make this deviation decrease the most. If we

process an item from group t, �nt = �n = 1. Hence F increases by the �rst derivative,

��(Pg
j=1(nj � nUPj)2) = �Pg

j=1 2(nj � nUPj)(�nj ��nUPj)

= 2(nUPt � nt)(1� UPt) +
P

j 6=t 2(nUPj � nj)(0� UPj) = 2(nUPt � nt) � 2
Pg

j=1(nUPj � nj)UPj

For F to rise fastest, we must process a group t which will cause the above expression to be maximum.

Hence the delivery priority is set as DPj = nUPj � nj, since the second term of the previous expression is

the same for all groups. As in the previous metric, at steady state, assuming that the highest priority group

is always available in the bu�er, all the delivery priorities will be equal. For this metric, this also means that

all the priorities are 0 (this can be seen by summing the expressions for DPj). The deviation of the delivery

priorities from 0 is a measure of how bad the reordering is.

Strict metric: Enforcing a rigid order

When we use a reorder operator in a traditional query plan instead of a sort operator, the goal is a

sorted permutation. This can be achieved by assigning monotonically decreasing user preferences for each

item from the one that is desired to be the �rst until the last item. After n items have been processed, the

feedback function we want to maximize is

F =
nX

i=1

UPi

By processing an item ni, F increases by UPi. To make this rise fastest, we set the delivery priority to be

DPi = UPi. That is, we always process the item with the highest user preference on bu�er. We also use this

metric for the spreadsheets application, with the preference for a range of items decreasing with its distance

from the range being displayed (this is inferred from the scrollbar position).

3.2 Optimal Ratio on Bu�er

Since reorder always gives out to process the highest delivery priority item in bu�er, the delivery priority

functions derived above directly dictate the ratio of items from di�erent groups that reorder must maintain

in the bu�er. These ratios in turn determine the bu�er replacement policy for reorder.

Con�dence metric: At steady state, all the DPj 's are equal. Hence for any two groups j1 and j2,

UPj1=(nj1
p
nj1) = UPj2=(nj2

p
nj2), and the ratio of items from any group j must be UP 2=3

j =(
Pg

t=1 UP
2=3
t).

7

Rate metric: As explained before, at steady state all DPj 's are 0. Since DPj = nUPj � nj , the ratio of

items from group j is UPj. Indeed, the goal is to have the processing rate be proportional to preference.

Strict metric: If DPi is UPi, there is no speci�c ratio | the reorderer tries to have the highest preference

item, then the next highest, and so on.

3.3 Handling Preference Changes

In the discussion so far we have not considered dynamic changes in the preferences. When this happens, we

can do the subsequent reordering in one of two ways. We can either express the feedback F as a goal over the

items to be delivered subsequently, or as a goal that \remembers history", and is expressed over all the items

previously delivered as well. Correspondingly, we can compute delivery priorities either based only on items

processed since the last preference change, or on all the items that have been processed since the initiation

of the data
ow. For the Con�dence metric, we re-calculate the delivery priorities based on the new user

preferences taking into account all the items that have been processed. This will mean, in the con�dence

metric case, that if the user preference for a group is increased in the middle of processing, there will be a

spurt in the processing for that group | not only is the new preference high, but also we must compensate

for not having processed enough items from that group (commensurate with the new preferences) earlier.

However, in the Rate metric we calculate the delivery priorities based on the number of items processed

since the last preference change, and not on the total number of items processed (DPj = n0UPj � n0
j, where

n0 is the number of items processed since the last preference change). Hence the user preferences determine

the rate at which tuples from di�erent groups are processed between consecutive preference changes. We

chose not to do this for the Con�dence metric because, statistically, the large-sample con�dence interval for

a group is de�ned in terms of the total number of items processed for that group. This is not an issue with

the Strict metric; the priorities are independent of the number of items processed.

4 Disk Management During Reordering

The goal of reorder is to ensure that items from di�erent groups are maintained in the bu�er in the ratios

desired by the application, as derived in Section 3.2. There are four operations which alter the set of items

in the bu�er: scanning from the input, spooling to the side-disk, enrichment from the side-disk, and get's

by the application (Figure 4). The ratios in the bu�er are maintained by (a) evicting (spooling) items

from groups that have more items than needed, and (b) enrichment with items from the group that is most

lacking in the bu�er. In essence the bu�er serves as a preference-based cache over produce and the side-disk.

We always strive to maintain some items in the bu�er, even if they are not the most interesting ones; the

presence of uninteresting items in the bu�er may arise, for instance, if the user preferences during Phase 1

are very di�erent from the data distribution across di�erent groups. By guaranteeing the presence of items

in the bu�er, the process stage never has to wait for the reorder stage, and the overhead for introducing

reorder into a data
ow is minimized. In addition to the bu�er, some memory is required for bu�ering I/O

to and from the side-disk. Choosing the amount of memory for I/O bu�ers depends on the management of

the side-disk, so we defer this discussion until after discussing our treatment of the side-disk.

4.1 Management of Data on Side-Disk

Since we want to process interesting items and give good feedback to the user early on, we must make Phase

1 as fast as possible and postpone time-consuming operations as long as possible. Another reason to �nish

8

Phase 1 quickly is that during Phase 1 we cannot control the order of values appearing from produce if

preferences change; whereas in Phase 2 we know the layout of data on the side-disk and can enrich the bu�er

with items that best satisfy preferences at a given time. To speed up Phase 1, we want a data layout on

side-disk that makes spooling go fast even at the expense of enrichment, because we mainly do spooling in

Phase 1 and enrichment in Phase 2.

Graefe [13] notes a duality between sorting and hashing. Hashing initially does random I/Os to write

partitions, and later does sequential I/Os to read partitions. Sorting �rst writes out runs with sequential

I/Os, and later uses random I/Os to merge the runs. Unfortunately, neither scheme is appropriate for

reordering. Hashing into partitions is undesirable because the random I/Os in Phase 1 slow down spooling.

Writing out sorted runs to disk is infeasible for two reasons. First, enrichment of the bu�er with items from

a particular group would involve a small, random I/O from each run, especially when the cardinality of the

group is low. Second, dynamically-changing user preferences drive the decision of what we spool to or enrich

from side-disk, meaning that the distribution of values to di�erent spooled runs would be non-uniform4.

To achieve the best features of both sorting and hashing, we decided to lay out tuples on the side-disk

as �xed size chunks of items, where all the items in a chunk are from the same group. Spooling is done

with only a sequential write, by appending a chunk to a sequential �le of data on the side-disk. Enrichment

is done via a random read of a chunk of that group which is most lacking in the bu�er. Intuitively, this

approach can be viewed as building an approximately clustered index (with only sequential I/Os) on the

side-disk, concurrent with the other processing.

Returning to the main-memory layout described earlier, in Phase 1 we require an I/O bu�er for each

group to collect items into chunks. We also need a in-core index of pointers to chunks for each group to

quickly �nd chunks corresponding to a group.

4.2 Total Ordering

We have so far assumed that the reordering is done at the granularity of a group. However in some applica-

tions, such as the reorder operators in batch query processing, our goal is a total ordering on the individual

items. We tackle this by dividing the data into groups based on an approximate histogram. This histogram

need not be accurate since we only want a best e�ort reordering. We want the number of groups to be

as high as possible (this number is limited by the amount of memory we can allocate for the I/O bu�ers

storing the chunks), so that the size of a group is small, and we do a \�ne granularity" reordering that can

distinguish between the priorities of small batches of tuples. The reorderer ensures a good ratio of items

from di�erent groups in the bu�er, and the application removes for processing the best item in the bu�er.

Our experiments show that this technique is surprisingly successful, since these applications need only an

approximate ordering.

5 Experimental Results

We present results that show the usefulness of reordering in online aggregation and in scalable spreadsheets.

The aim is to study a) the responsiveness of the rate of processing to dynamic changes in preference, b) the

4We also tried out writing out items as packed runs on the side-disk, where the ratio of items in these runs is determined

by current user preferences. With this method, ideally, with no preference changes, we never have to do any random I/Os |

we keep appending runs to the side-disk in Phase 1, and keep reading runs in Phase 2. However we found that this method

leads to severe fragmentation of items from sparse groups, and that the packing of items into runs is useless if the preference

changes. This results in several small, random I/Os.

9

select o orderpriority, count(*) from order
where o orderdate >= '10/10/96' and

o orderdate < '10/10/96' + 90
and exists (select * from lineitem

where l orderkey = o orderkey and
l commitdate < l receiptdate)

group by o orderpriority

Figure 6: TPC-D Query 4

Group A B C D E

Preference at the start 1 1 1 1 1

Preference after 1000 1 1 1 5 3

tuples processed (T0)

Preference after 50000 1 1 3.5 0.5 1

tuples processed (T1)

Figure 7: Changes in User Preferences

0

10000

20000

30000

40000

50000

60000

70000

0 20 40 60 80 100 120

N
um

be
r

of
 I

te
m

s
Pr

oc
es

se
d

Time (in chronons)

A

B

C
D

E

Figure 8: Performance of sequential scan, with

Rate metric

0

10000

20000

30000

40000

50000

60000

70000

0 20 40 60 80 100 120 140

N
um

be
r

of
 I

te
m

s
Pr

oc
es

se
d

Time (in chronons)

A

B

C
D
E

T1

Figure 9: Performance of P&S, with Rate metric.

robustness of reordering to di�erent data distributions and processing costs, and c) the overhead in overall

completion time due to reordering. We also present promising initial results that show the advantage of using

reorder operators in traditional batch query plans. We scale up all results involving Informix systems by

an undisclosed factor to honor privacy commitments while still allowing comparative analysis of algorithms

(hence time is expressed in abstract \chronons").

5.1 Online Aggregation

We have implemented our algorithms for reordering in the context of Online Aggregation in InformixDynamic

Server with Universal Data Option (UDO)5. The goal of reordering is to shrink the con�dence intervals for

the interesting groups as quickly as possible. We test the responsiveness and robustness of the reordering by

varying a number of parameters:

Data distribution: To study the e�ect of skew in the data distribution across di�erent groups, we test with

Zipf and uniform distributions.

Processing Rate: We study a TPC-D query (Q4, see Figure 6), modifying it by adding and removing �lters

and tables to generate index-only joins (where we only need to look at the index of the inner table), index-

nested-loop joins, and single table queries. We do not present results for queries with multiple joins because

5We ran all experiments on a 200 MHz UltraSPARC machine running SunOS 5.5.1 with 256MB RAM. We used the Informix

Dynamic Server with Universal Data Option version 9.14 which we enhanced with online aggregation and reordering features.

We chose a chunk size of 200KB for all our experiments. This is reasonable because the number of groups is typically small,

and so the I/O bu�er (whose size is chunk size � number of groups) is not very big. We used a separate disk for the side-disk,

and the size of our bu�er was 2MB (including the I/O bu�er)

10

0

10000

20000

30000

40000

50000

60000

70000

0 100 200 300 400 500 600 700

N
um

be
r

of
 I

te
m

s
Pr

oc
es

se
d

Time (in chronons)

A
$$

##

B
Q

P

Index Stride gp A
Index Stride gp E

Seq Scan gp A
Seq Scan gp E

P&S gp A
P&S gp E

-
-

-
-

-
-

P
Q

A
B

$$
##

Figure 10: Comparison of di�erent algorithms for

processing groups A and E

0

50

100

150

200

250

0 20 40 60 80 100 120 140

C
on

fi
de

nc
e

In
te

rv
al

Time (in chronons)

T1

A
C
E

Figure 11: Con�dence intervals of di�erent groups

for P&S

we see experimentally that even one join su�ces for good reordering; more joins only make reordering easier

by reducing the processing rate. In [17] we present experiments involving reordering with other process

operators such as non-
attenable sub-queries and ripple joins6.

Preference Change Model: We look at preference changes in Phase 1 and Phase 2, under the Con�dence and

Rate performance metrics from Section 3.

Algorithm used: We compare P&S, Index Stride, and a simple sequential scan (no reordering).

Space constraints prevent us from presenting exhaustive results along all dimensions. We show only results

that illustrate salient features of the algorithms and indicate the trade-o�s involved. We use the TPC-D

dbgen program to generate data of di�erent distributions, with a scale factor of 0.1. For our experiments we

clustered the data in random order, so as to give statistically correct estimates for the aggregates [15].7.

Rate Metric, Index-Only Join, Zipf distribution

Our �rst experiment uses a low processing cost query: select avg(o totalprice), o orderpriority from order

where exists (select * from lineitem where l orderkey = o orderkey) group by o orderpriority. We have

removed �lters from TPC-D Q4 to make it an index-only join with Order as the outer relation. Order

has 150000 tuples. There are �ve groups which we will call A, B, C, D, and E for brevity, and we use

a Zipf distribution (parameter 1) of tuples, in the ratio 1:1
2
:1
3
:1
4
:1
5
respectively. Initially all groups have

equal preference of 1. After 1000 tuples are processed (time T0), the preference for D is increased to 5 and

that for E to 3 (the change at T0 is not seen in most graphs because it occurs too early). After 50000

tuples are processed (time T1), the preference for C is increased to 3.5, and that for D is reduced to 0.5.

Thus we separately test the e�ect of a preference change in Phase 1 and Phase 2 (Phase 1 ends at about

40000 tuples in most cases), and the ability to reorder when the interesting groups have low cardinalities.

Figure 7 summarizes these details. Tables 1 and 2 summarize the main results from the experiments, which

we proceed to explain below.

Figures 8 and 9 show the number of tuples processed for each group for sequential scan and P&S for the

Rate metric. Despite the low processing cost and the high-preference groups being rare, the reordering of

P&S is quite responsive, even in Phase 1. P&S has �nished almost all tuples from the interesting groups D

6Ripple joins are specialized join algorithms for online aggregation that are e�cient yet non-blocking [16]
7Note that the P&S reordering algorithm preserves the randomness properties of the data within a given group.

11

Distribution Metric Proc. Rate Algorithm Completion time Completion time Overhead
of interesting gp

Any Any Low Seq. Scan 119.8 119.8 0%
Zipf Rate Low P&S 122.5 44.2 2.2%
Zipf Rate Low Index Stride 627.1 253 423%
Zipf Con�dence Low P&S 135.3 47.0 12.9%
Zipf Con�dence Low Index Stride 615.5 425 413.7%
Uniform Rate Low P&S 122.7 106.8 2.4%
Any Any High Seq. Scan 1083.1 1083.1 0%
Zipf Con�dence High P&S 1094.8 684.4 1.1%
Any Any Very Low Seq. Scan 16.1 16.1 0%
Zipf Rate Very Low P&S 16.5 14.0 2.6%
Zipf Rate Very Low Index Stride 100.9 45.3 626.7%

Table 1: Completion times in di�erent cases

Dist.bn Proc. Rate Algorithm Deviation at 30000 tuples processed Deviation at 60000 tuples processed
A B C D E A B C D E

Zipf Low P&S �1098 �1097 �1097 27 3266 �0:18 �0:18 0:36 Fin Fin
Zipf Low Index Stride 0:09 0:09 0:09 0:27 �0:54 �0:27 �0:27 0:54 Fin Fin
Uniform Low P&S �0:64 0:36 0:36 �0:18 0:09 �0:88 0:55 0:33 Fin Fin
Zipf High P&S �0:64 0:36 0:36 �0:18 0:09 �0:65 0:35 0:23 0:05 Fin
Zipf Very Low P&S �5075 �4785 �2772 8507 4124 �2016 �1571 2170 �860 2278
Zipf Very Low Index Stride 0:64 �0:36 �0:36 0:18 �0:09 0 0 0 Fin Fin

Table 2: Deviation of number of tuples processed of groups A,B,C,D,E, from desired values, for P&S. A
value of Fin for a group means that it has been exhausted

and E by 44 chronons while sequential scan takes 120 chronons, almost 3 times longer. P&S imposes almost

no overhead in overall completion time (2%).

Figure 10 compares the number of tuples processed for the largest group (A) and the smallest group (E)

for di�erent algorithms. The tuples of interesting group E are processed much faster for P&S than for other

methods, while for the highest cardinality (and least interesting) group A, sequential scan produces items

faster than P&S. Index stride does very poorly because of many random I/Os (it has a 427% completion

time overhead).

To test the e�ect of reordering on groups with extremely small cardinalities, we added a new group F

with 70 tuples, and gave it a constant preference of 2. While Index Stride �nished all items from group F

in 0:9 chronons, P&S took 41:6 chronons and the sequential scan took 111:2 chronons. Index Stride easily

outperforms both P&S and sequential scan for this outlier group because P&S can only provide as many

tuples of F as it has scanned. This advantage of Index Stride is also reported in [18].

Con�dence Metric, Index-Only Join, Zipf distribution

We then removed group F and repeated the previous experiment with the Con�dence metric. Figure 11

shows the shrinking of the con�dence intervals for di�erent groups for P&S.8 We see that with P&S the

con�dence intervals shrink rapidly for the interesting groups (D,E, and later C), even when they have low

cardinalities. In contrast, with a sequential scan, the intervals for D and E shrink more slowly than those

for the other groups because D and E have low cardinality (we omit the graph to save space).

Interestingly, the overhead for P&S with the Con�dence metric is about 12%, whereas it is only 2% for

the Rate metric (see Table 1). To explain this, we plot the number of tuples processed from each group

8We do not plot the curve for the �rst few chronons since the large sample con�dence intervals have not stabilized by then

and plotting them will cause the rest of the graph to be scaled down too much. Also, we plot only groups A, C, and E to avoid

cluttering the graph. The curve for group B overlaps that of A, and the curve of D is very similar to that of E.

12

0

10000

20000

30000

40000

50000

60000

70000

0 20 40 60 80 100 120 140

N
um

be
r

of
 I

te
m

s
Pr

oc
es

se
d

Time (in chronons)

A

B

C
D

E

T1

Figure 12: Rate of processing with the Con�dence

metric for P&S

0

10000

20000

30000

40000

50000

60000

70000

0 2 4 6 8 10 12 14 16 18

N
um

be
r

of
 I

te
m

s
Pr

oc
es

se
d

Time (in chronons)

A

B

C
D

E

Figure 13: Rate of processing for Rate metric for

P&S, single table query

for the Con�dence metric for P&S in Figure 12. Comparing it with the performance under the Rate metric

in Figure 9 we notice that just after T1 when the preferences are changed, the overall rate of processing

in Figure 12 drops for a while. This arises because the Con�dence metric remembers, and compensates for

history as discussed in Section 3.3; after T1 there is a spurt in the processing of C because not only is its

preference high, but also until then very few Cs have been processed. In fact, for a while after T1 (up to

about 58 chronons), we are processing only group C. This results in random I/Os to get chunks of Cs from

the side-disk, and hence a lower rate of processing. This spurt does not happen with the Rate metric because

the priority depends only on the number of items processed since the last preference change.

Rate Metric, Index-Only Join, Uniform distribution

We now look at the e�ect of changing the distribution and the processing rates. We �rst repeat the previous

experiment with the Rate metric and a uniform data distribution across di�erent groups. To save space, we

do not plot graphs but instead give in Table 2 the delivery priorities of di�erent groups after 30000 tuples

are processed and after 60000 tuples are processed. Recall that for the rate metric these priorities capture

the deviation in the number of tuples processed from the number that should have been processed. After

30000 tuples are processed, the deviations are A = �0:64, B = 0:36, C = 0:36, D = �0:18, and E = 0:09

{ this is almost an exact reordering. In contrast the deviations after 30000 tuples are processed for the

Zipf distribution of the earlier experiment are much higher: A = �1098:64, B = �1097:64, C = �1097:64,
D = 27:09, and E = 3266:82. The uniform distribution is easier to reorder since the interesting groups are

available plentifully. The deviations after 60000 tuples have been processed are very small in both cases;

reordering is easy in Phase 2 since we can directly read the needed chunks o� the side-disk.

Rate Metric, Index Join, Zipf distribution

We next change the distribution back to Zipf and increase the processing cost: we reintroduce a �lter to force

an explicit join of Order and Lineitem. The new query is select o orderpriority, count(*) from order where

exists (select * from lineitem where l orderkey = o orderkey and l commitdate < l receiptdate) group by

o orderpriority. The reordering is much better even with the Zipf distribution: the deviations after 30000

tuples are processed are only �0:64,0:36,0:36, �0:18, and 0:09. The higher processing cost allows much

better reordering because there is more time to reorder between consecutive gets of the data by process.

The completion time overhead is also much lower (1% for the Con�dence metric as against 12% in the

13

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 I

te
m

s
Pr

oc
es

se
d

Time (in chronons)

A

B

C
E

D

T0

Figure 14: Rate of processing for Rate metric for

P&S, original TPC-D query:

Operation Number of tuples Time Taken
accumulated in range
being panned over

Sort started 500 2.1 secs
User Thinking 5 seconds
Short Jump 1000 25.5 msecs

1500 2.4 secs
User Thinking 10 seconds
Random Jump 2500 263 msecs

5000 21.9 secs
Phase 2 has begun

Short Jump 2500 6.9 msecs
5000 13.5 msecs

Random Jump 2500 139 msecs
5000 201 msecs

Figure 15: Scalable Spreadsheet: Latencies for

various user actions

index-only join) since it is overshadowed by the cost of the processing.

Rate Metric, Single Table Query, Zipf distribution

Next, to stress our reorderer, we form a minimal-process query by removing Lineitem: select o orderpriority,

count(*) from order group by o orderpriority. Figure 13 shows that the reordering is relatively ine�ective

in this case. Groups D and E are processed infrequently, since we can never spool to the side-disk and can

only reorder within the bu�er. This a�rms that we can reorder e�ectively only when the processing rate is

less than the produce rate (i.e. the processing cost is more than the produce cost). Here the only cost is

that of the input scan | there is no processing save the addition to the Count aggregate. As Table 2 shows,

Index Stride works very well, but it has a huge overhead of 626% | random I/Os have a high penalty since

the processing cost is low.

Rate Metric, Original TPC-D Query, Zipf distribution

Finally we add back all the �lters and tables, and run the complete TPC-D query given in Figure 6. Since

this query speci�es a low-selectivity �lter on the Order table, very few tuples (5669) are handled by the

reorderer. Figure 14 shows that P&S performs very well. The change at 1000 tuples processed is seen on

this graph (T0) since the total number of tuples processed is small. Interestingly, with the predicate applied

on Order, E becomes a more frequent group than D.

Discussion

Our experiments show that reordering by P&S is quite responsive to dramatic preference changes even

with skewed distributions and low processing-cost queries such as index-only joins; interesting groups are

processed much earlier than others even if they have low cardinalities. If the distribution is not too skewed,

or the processing cost is higher (even one join su�ces), or preferences are changed in Phase 2, we see

that the reordering is virtually perfect, with small overheads for completion time. Index Stride has a very

high overhead because of random I/Os, but works well for extremely low cardinality \outlier" groups. The

reordering in the case of single-table queries is not good because of the low processing cost. However, note

that joins are common in decision support queries | for example, 15 out of 17 TPC-D queries involve joins.

As the outlier group case shows, reordering is intrinsically di�cult when the preferred groups are ex-

tremely rare. We could use a non-clustered index to fetch tuples from the most preferred groups alone (this

14

is a hybrid of P&S and Index Stride), but this will involve several random I/Os. Alternatively, we can store

tuples from these rare groups in a separate table, and have a clustered index on the group-by column on

this table | this is similar to a partial index [24, 26], except that these tuples are now clustered separately

and therefore one avoids multiple random I/Os. The challenge lies in automatically deciding which values

of which column(s) to treat in this manner, taking into account the frequency of queries that will use this

table, as well as the cardinality of tuples in the di�erent groups. We intend to address this in future work.

5.2 Scalable Spreadsheets

In related work [25], we are building a GUI widget toolkit, and are using it to construct a spreadsheet that

will be as interactive as a regular spreadsheet, but will scale up to large data sizes. An integral component of

this spreadsheet is the online reordering library we have implemented, which provides immediate responses

for operations such as sorting and pivoting. We have completed the reordering facility for sorting and present

results which show that the system can respond almost instantaneously to operations such as scrolling and

\jumping" while concurrently sorting the contents of the spreadsheet.

For our experiment, we used a table of 2,500,000 records of 100 bytes each (250MB total). The sort

was issued on a 4 byte column, and we modeled a uniform distribution of values for this column in the

table. We assume that we have a pre-computed equidepth histogram on that column, though it could be

computed on the
y if we sample the data [10]. For reorder we chose a chunk size of 50KB in order to

amortize the costs of random I/Os to enrich in Phase 2, and have an I/O bu�er of 25MB. As explained

in Section 4.2, we divided the data into the maximum number of groups possible, which is 25MB=50KB

= 500 in this case; correspondingly, we divide the range of the key values into 500 groups based on the

histogram, and use this partitioning to decide which group any given tuple belongs to. Therefore, each range

has 2500000=500 = 5000 tuples. Since our goal is to sort, we reorder using the Strict metric of Section 3:

the preference for di�erent ranges decreases monotonically with their distances from the range the user is

currently looking at (the exact values of the preferences assigned do not matter for the Strict metric).

Note that this is an application where the data can be consumed multiple times since the user may view

the same portion of the spreadsheet many times. Hence the bu�er is really only a cache of what is stored

on the side-disk. Currently we have an additional in-memory display cache (1.5MB) to store the items that

were recently panned over by the user. If we were to do this in a client-server setting where the user is

seeing a spreadsheet on a client node and the data is on a separate server, then we believe that we could use

multi-level caching schemes to avoid repeatedly sending the same data to the client [1].

To place the timings in our experiment in perspective, we sorted a 250MB �le with 100 byte records

using the UNIX sort utility. This took 890.4 seconds (we used a separate disk for the temporary �les in

order to avoid giving reorder any unfair advantage). We studied the following scenario (the timings are

summarized in Figure 15): The user starts o� by issuing a command to sort by a �eld, and we immediately

start displaying the tuples of the topmost range { within 2.1 seconds, we have output 500 tuples, which is

already enough to �ll the screen. The user then analyzes the data in this range for 5 seconds, after which

he makes a short jump (we model scrolls as short jumps to adjacent ranges) to the next range. As we see in

the table, we are able to give 1000 tuples of this range almost at once (25 milliseconds), by enrichment from

the side-disk { we have exploited the time the user spent analyzing the previous range to sort more items

and so we can respond quickly. After this initial spurt of items in the desired range, we have exhausted all

that is available on side-disk, and settle down to fetch more items at the sequential read bandwidth | the

next 500 tuples in this range take around 2 seconds.

The user looks at this data for 10 seconds and then makes a random jump to a new location. Again we

15

see that reorder (in 263 milliseconds) immediately provides 2500 items by enrichment before settling down

to sequential read bandwidth (giving 5000 tuples, which is the total size of that range, takes 21.9 seconds).

By this time, reorder has scanned the entire input and moved into Phase 2. All subsequent latencies are in

milliseconds | a short jump (scroll) to a nearby range is about 20 times faster than jumping to a random

location because the nearby range has a higher preference.

The above scenario clearly illustrates the advantage of online reordering in a scalable spreadsheet | most

operations have millisecond latencies with reorder, whereas a blocking sort take 15 minutes, which is several

orders of magnitude higher.

5.3 Query Processing

With the Strict metric, one could view reorder as an approximate, pipelining sort operator. As sketched

in Section 1.1, best-e�ort reordering can be exploited in query plans involving \interesting orders" used for

performance enhancements.

Although our focus is on user-controlled reordering, we have performed initial experiments to validate

our intuitions, comparing the insertion of sort versus reorder operators into a few query plans in UDO. We

consider a key-foreign key join of two tables R and S, where the foreign key of S references the key of R. R

has 105 rows and S has 106 rows, each of size 200 bytes. S has a clustered index on the join column, but rows

of R are clustered randomly (the join column values are uniformly distributed). A direct index nested loops

join of R and S took 3209:6 chronons because it performed several random I/Os. Adding a sort operator

before the join reduced the total time taken for the query to 958:7 chronons, since the sort batches index

lookups into runs of similar values, resulting in at most one I/O per leaf page of the index.

We then replaced the sort operator with a reorder operator, using the Strict metric, with a chunk size of

25KB (we chose this so as to amortize the cost of a random I/O over a reasonably large chunk). We used a

I/O bu�er size of 2:5MB. This means that the number of groups we could support was 2:5MB/25KB = 100

(recall that we want the number of groups to be as high as possible so that we can do a �ne granularity

reordering). Hence, we divided the range of join column values into 100 groups for the reordering, and used a

pre-computed equidepth histogram on the join column values of table R to identify the group to which each

value belongs. The time required for the join with reorder is 899:5 chronons, which is even better than the

time required for the traditional join by sorting. The 6% improvement in completion time occurs because we

spool out fewer tuples to disk | the process stage directly gets 12.1% of the tuples from the bu�er. We are

able to do this because we only do a fuzzy, approximate reordering. This su�ces because the only purpose

of the sorting is to batch up tuples of R that match similar rows of S together. However, the biggest gain

by using reorder instead of sort is that the plan has become non-blocking. This can allow us to exploit

pipelined parallelism (if we have a parallel DBMS) and also allow interactive estimation techniques such as

online aggregation. If we consider the rate at which output tuples are delivered, a plain index-nested-loops

join delivers 311.6 tuples/chronon, and adding reorder increases the rate to 1111.7 tuples per chronon.

As future work, we want to study the e�ect of di�erent distributions, di�erent kinds of queries, and that

of dynamically estimating the histogram [10, 12] instead of assuming a pre-computed one.

6 Related Work

Algorithmically, our reorder operator is most similar to the unary sorting and hashing operators in traditional

query processing [13]. However our performance and usability goals are quite di�erent, which leads to a

16

di�erent implementation. Logically our operator does not correspond to any previous work in the relational

context, since it is logically super
uous { ordering is not \supposed" to matter in a strict relational model.

Our focus on ordering was anticipated by the large body of work on ranking in Information Retrieval [27].

In more closely related work, there have been a few recent papers on optimizing \top N" and \bottom N"

queries [8], and on \fast-�rst" query processing [3]. These propose enhancing SQL with a stopping condition

clause which the optimizer can use to produce optimal plans that process only those parts of the data that

are needed for output. However in these papers, the user is required to specify a priori what portions of

the data he is interested in, and does not have any dynamic control over the processing. Our work on

spreadsheets can be viewed as an extension of this, where the user can dynamically specify what portions of

the data interest him by moving a scrollbar, after seeing some partial results.

7 Conclusions & Future Work

Interactive data analysis is an important computing task; providing interactive performance over large data

sets requires algorithms that are di�erent than those developed for relational query processing. We have

described the bene�ts of dynamically reordering data at delivery in diverse applications such as online

aggregation, traditional query processing, and spreadsheets. A main advantage of reordering is that the user

can dynamically indicate what areas of the data are interesting and speed up the processing in these areas at

the expense of others. This, when combined with continual feedback on the result of the processing, allows

the user to interactively control the processing so that he can extract the desired information faster.

This paper presents a framework for deriving the nature of the desired reordering based on the per-

formance goals of an application, and have used this to come up with reordering policies in some typical

scenarios. We have designed and implemented a reordering algorithm called Prefetch and Spool (P&S), which

implements these ideas in a responsive and low-overhead manner. P&S is relatively simple, leveraging the dif-

ference between processing rate and data production. We have integrated P&S with a commercial database

management system, and are using it as a core component in the development of a scalable spreadsheet. In

the case of online aggregation, a single join above the reorder operator is su�cient for good reordering. Our

simulation experiments with spreadsheet scrolling and sorting scenarios show that we can provide almost

immediate | on the order of milliseconds | responses to sort operators that would otherwise take several

minutes, by preferentially fetching items in the range under the scrollbar. Inserting reorder operators into

standard query plans in place of sort operators is promising; initial results show that we are able to convert

blocking plans into pipelines while actually reducing the completion time overhead.

This paper opens up a number of interesting avenues for further work that we intend to explore.

Other metrics for evaluating the feedback: Other feedback functions appear to be appropriate for

applications that process real-time data such as stock quotes, since recent items are more important than

earlier ones, and this must considered when calculating delivery priorities. We intend to study this and other

policies in the future. We also believe that the idea of reordering policies is related to the idea of scheduling

policies in the scheduling literature, and intend to investigate this further.

Supporting preferences from multiple users: We have only considered the problem of reordering data

delivery to meet the dynamic preferences of a single user. When online reordering is used in applications

such as broadcast disks, we need to consider the aggregate preferences from several users, and the reordering

policy needs to be chosen suitably.

Data Visualization: In graphical data visualization ([2, 20]), large volumes of information are presented

17

to the user as a picture or map over which he can pan and zoom. Fetching this data from the disk and

rendering it onto the screen typically takes a long time. It makes sense to fetch more data points from the

region the user is currently panning over and a small region around it, so that these portions can be rendered

in greater detail / higher resolution. Here the user interest is inferred based on mouse position, and this is

a two-dimensional version of the spreadsheet problem.

Other uses of reordering in query processing: A pipelining best-e�ort reorder operator appears to

be substitutable for regular sort operators at other places in query plans. For instance, it can replace a

sort operator that is designed to reuse memoized values of a correlated subquery or expensive user-de�ned

function [22, 19, 23]. Here, online reordering amounts to computing the set of variable bindings on the
y,

possibly with some duplication.

Acknowledgments
We would like to thank all the members of the CONTROL project at Berkeley for many useful discussions.

Mehul Shah helped clarifying the performance goals for the Rate metric. Paul Aoki gave several detailed

comments on a draft of the paper. The idea of using reordering in general query plans was suggested by

Surajit Chaudhuri. Discussions with Miron Livny were useful in understanding the limits of best-e�ort

reordering in meeting performance goals. We want to thank Informix Corporation for allowing us access

to their source code. Satheesh Bandaram and Kathey Marsden helped us with the programming on UDO.

Computing and network resources were provided through NSF RI grant CDA-9401156. This work was

supported by a grant from Informix Corporation, a California MICRO grant, NSF grant IIS-9802051, and a

Sloan Foundation Fellowship.

References

[1] S. Acharya, M. Franklin, and S. Zdonik. Balancing push & pull for data broadcast. In SIGMOD, 1997.

[2] A. Aiken et al. Tioga-2: A direct-manipulation database visualization environment. In ICDE, 1996.

[3] G. Antoshnekov and M. Ziauddin. Query processing and optimization in Rdb. VLDB Journal, 1996.

[4] R. Avnur, J. Hellerstein, et al. CONTROL: Continuous output and navigation technology with re�ne-
ment on-line. In SIGMOD, 1998. Demonstration Description.

[5] M. Bates. Information search tactics. Journal of the American Society for Information Science,
30(4):205{214, 1979.

[6] M. Bates. User Interface Design, chapter The Berry-Picking Search. Addison-Wesley, 1990.

[7] D. Blair and M. Maron. An evaluation of retrieval e�ectiveness for a full-text document retrieval system.
CACM, 28(3), 1985.

[8] M. Carey and D. Kossman. On saying "enough already" in SQL. In SIGMOD, 1997.

[9] S. Chaudhuri and U. Dayal. Data warehousing and olap for decision support. In SIGMOD, 1997.

[10] S. Chaudhuri et al. Random sampling for histogram construction. In SIGMOD, 1998.

[11] Microsoft Excel 1997 { Online Help.

[12] P. Gibbons et al. Incremental maintenance of approx. histograms. In VLDB, 1997.

[13] G. Graefe. Query evaluation techniques for large databases. ACM Computing Surveys, 1993.

[14] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-totals. In ICDE, 1996.

18

[15] P. Haas. Large-sample and deterministic con�dence intervals for online aggregation. In SSDBM, 1997.

[16] P. Haas and J. M. Hellerstein. Ripple joins for online aggregation. In SIGMOD, 1999.

[17] J. M. Hellerstein et al. Informix under Control: Online query processing. submitted for publication.

[18] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In SIGMOD, 1997.

[19] J. M. Hellerstein and J. Naughton. Query Execution Techniques for Caching Expensive Methods. In
SIGMOD, 1996.

[20] M. Livny et al. Devise: Intergrated querying and visualization of large data sets. In SIGMOD, 1997.

[21] V. O'day and R. Je�ries. Orienteering in an information landscape: how information seekers get from
here to there. In INTERCHI, 1993.

[22] P. Selinger et al. Access path selection in a relational database management system. In SIGMOD, 1979.

[23] P. Seshadri et al. Cost based optimization for magic. In SIGMOD, 1996.

[24] P. Seshadri and A. Swami. Generalized partial indexes. In ICDE, 1995.

[25] Scalable Spreadsheets for Interactive Data Analysis. http://control.cs.berkeley.edu/ssheet.

[26] M. Stonebraker. The case for partial indexes. In SIGMOD Record, volume 18, 1989.

[27] C. van Rijsbergen. Information Retrieval. Butterworths, 1975.

[28] Y. Zhao, P. Deshpande, and J. F. Naughton. An array-based algorithm for simultaneous multidimen-
tional aggregates. In SIGMOD, 1997.

19

