
Symbolic Layout Evaluator for Floor Plans

Amy Shih-Chun Hsu

Master's Project

under the direction of Carlo H. S�equin

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley

March 30, 1999

Abstract

The design of an institutional building may have to satisfy a large number of requirements

given by the client. Some of these constraints include the type, number, and area of the rooms

that the building should contain, and the proximity relationships among those rooms. Although

it is important to maintain consistency between the building speci�cations and layout design,

it can be a tedious and di�cult task for the architect to verify these constraints by hand

repeatedly. We have developed an architectural CAD tool that can perform various evaluations

to make certain that the user requirements are preserved during design evolution. We have

also developed a new representation for describing proximity relationships between pairs of

room types concisely and unambiguously. This new representation provides more exibility and

expressibility in de�ning the di�erent ways that spaces should be grouped together than the

traditional adjacency matrix.

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Background . 1
1.3 Overview . 2

2 Proximity Relationships 3

2.1 Adjacency Matrix . 3
2.2 A Richer Representation . 5

2.2.1 Semantics and Syntax . 5
2.2.2 Consistency Issue . 7

2.3 Veri�cation Metric . 7

3 Internal Representations 9

3.1 SYLIF Building Program . 9
3.2 Symbolic Floor Plan Layout . 11

4 Building Speci�cation Entry Form 12

4.1 Functionalities . 13
4.2 Implementation . 14

5 Building Speci�cation Evaluator 15

5.1 Functionalities . 15
5.1.1 File Loading . 15
5.1.2 Floor Plan Display . 15
5.1.3 Parameter Settings . 16
5.1.4 Speci�cation Veri�cations . 17

5.2 Implementation . 18
5.2.1 Room Instances Checking . 18
5.2.2 Room Area Calculation . 18
5.2.3 Path and Distance Calculation . 19
5.2.4 Proximity Relationship Veri�cation . 21

6 Example: Soda Hall 24

7 Discussion and Future Work 26

8 Conclusion 28

References 28

1 Introduction

1.1 Motivation

The design of an institutional building can be a complicated and tedious process. Typically, such
a building has to satisfy many requirements and constraints. Some of these requirements concern
the type, number, and area of the rooms that the building should contain, and the proximity
relationships between the di�erent types of rooms. Room type, number, and area speci�cations
give a general outline of how the building space should be divided and organized. For example, an
educational building might need several di�erent types of rooms, e.g. classrooms, labs, and o�ces.
Each room type requires a certain number of instances, and a particular room type has certain
requirements on area, aspect ratio, location, and accessibility to best serve the intended usages and
occupancies. Proximity constraints characterize the desired distances between pairs of room types
and are important where proximities are necessary for accessibility and work e�ciency, or where
separations are desirable to avoid noise transmission. For example, proper proximity between rooms
in a hospital may enhance the ability of medical sta� to move around the building quickly and save
lives.

Although it is important to maintain consistency between the speci�cations and emerging oor
plan designs, it can be a tedious and di�cult task for the architect to constantly verify these
constraints by hand. Computers, on the other hand, can detect these kinds of discrepancies with
little computational e�ort. Our goal is to develop a symbolic oor plan evaluator that can perform
various analyses to make certain that the user requirements are preserved in the evolving design. If
some constraints are violated, the architect can try to modify the proposed design or come up with
a new design as he/she attempts to converge on a design solution. If some constraints are impossible
to maintain, the architect can then communicate with the client to try to reach a compromise on
the speci�ed requirements. It is our hope that this evaluation tool will help to take away the burden
of speci�cation analysis from the architect while at the same time, remain unobtrusive during the
design process. We do not want this tool to stie the architects' creativity, which is his/her unique
and most valuable contribution. Thus the tool could run in the background or could get invoked
periodically, when the design process has reached a phase for review.

1.2 Background

The idea of proximity relationships between spaces within a building in not new; it has existed
for decades under several di�erent terms such as adjacencies, interactions, and associations. While
many works have concentrated on the notion of \direct" connection, i.e. two rooms share a common
portal, there is also work that looked at a more general notion of the desirability for some rooms to
be close to one and another. Many publications used the word \adjacency" to mean two spaces are
right next to each other. In this report, however, we use the word \adjacency" and \proximity" in
a looser sense to mean two spaces are nearby each other in term of walking distance.

Many researches have focused on using computers to generate building layouts or spatial con�gu-
rations given some constraints such as adjacency requirements. MDS (multi-dimensional scaling),
for example, is a technique for converting numerical information in an adjacency matrix into a spa-
tial con�guration that shows the clustering of di�erent elements [11]. The Whitehead and Eldars
program creates an \optimum" layout for a single story building from an association matrix by
minimizing the cost of journeys between every pair of elements in the building [19]. Hashimshony,

1

Shaviv, and Wachman presented a method for transforming an adjacency matrix into a planar
graph from which a schematic can then be generated [8]. The model of Shaviv and Gali generates a
quasi-optimal layout by minimizing an objective function based on the circulation between building
elements [17].

But instead of a generative approach, which is the approach taken by all the work mentioned above,
we chose an evaluative approach for our computer-aided architectural design tool. The use of the
computer in helping the evaluation process has been less controversial; many people believe that
the role of the computer lies more appropriately in analysis and appraisal [4, 14], rather than layout
generation.

The evaluative approach has also been taken by many researchers. PHASE (Package for Hospital
Architecture Simulation and Evaluation) appraises hospital designs against an association matrix
and capital and energy costs requirements [12]. SPACES is a suite of three programs that aids the
design of school buildings [18]. SPACES 3, in particular, provides evaluations such as association
performance, environmental performance, and capital and costs estimation. A method for evaluating
interactions between elements based on mutual spatial relationships in a dwelling unit was developed
by Kalay and Shaviv [10]. All of these three systems aim to provide evaluations for a speci�c design.

We are going to present an architectural CAD tool which takes on the evaluative approach. Instead
of automatically generating a oor plan based on the given speci�cations, which can be di�cult
when the building design must contain large number of rooms, the tool will verify whether or not
the oor plan, created by the architect, has satis�ed the speci�cations given by the client. One of
the evaluations the tool is capable of doing is proximity veri�cation. Proximity relationships are
hard to visualize by human when given only the building layout, and therefore it is even harder to
detect any violations manually. Because the main application of this tool will be for the design of
large institutional building, the proximity criterion we are focusing is based on the weighted walking
distance between the two entities. For large buildings where many rooms are separated by large
distance, walking distance is an applicable metric. However, walking distance would not be a suitable
metric for small private house where rooms are located closely together within a small perimeter.
The weighted walking distance is an estimate of the distance a typical occupant would have to travel
from one space to another, taking into consideration the penalty factors and path preferences.

1.3 Overview

The aim of this project is to design and implement an architectural CAD tool that will help to verify
a tentative oor plan design against a set of building speci�cations. Before such an evaluation tool
can be developed, the issue of how to express the building speci�cations concisely and unambiguously
has to be addressed. In particular, we have to be able to describe proximity relationships between
di�erent types of room within the building. A representation with clear semantics to express the
speci�cations is critical for capturing the original design intents and also for accurate communication
between client and architect.

A suitable proximity relationships representation is introduced. Our representation divides proximity
relationships into di�erent grouping types to allow adequate descriptions of the di�erent situations
that need to be covered. All proximity types include a \strength" parameter that speci�es the degree
to which the stated proximity is desired. Furthermore, we de�ne a proximity veri�cation metric that
is used in the evaluation program for checking proximity constraints on building layouts.

The proximity representation is to be captured in an ASCII �le format called SYLIF [6], which
stands for SYmbolic Layout Interchange Format. Although the �le is human-readable, humans are
not expected to type this language into the computer by hand. An entry form is implemented to
assist the client in the task of formulating building speci�cations and producing a corresponding

2

SYLIF �le. The entry form will remove the burden of learning the SYLIF syntax and writing an
error free text �le from the client.

An architectural CAD tool has been built to compare a proposed building layout against a set
of building speci�cations. The tool is capable of evaluating the existence of the required rooms,
their areas, and the proximity relationships between them. This evaluation program will help the
architect and the client to detect problems on the oor plan that are not easily identi�able by casual
inspector.

The remainder of this report is organized as follows. Section 2 presents the semantics and repre-
sentation of proximity relationships. Section 3 describes the internal formats used for capturing
building speci�cations and layout. The entry form for inputing building speci�cations is described
in Section 4, and the evaluation tool for verifying building speci�cations is discussed in Section 5.
Section 6 provides the results from running this framework on a complete building design. Section
7 discusses possible extensions and other issues, and Section 8, concludes this report.

2 Proximity Relationships

One of the design speci�cations that a building layout may have to satisfy is the proximity rela-
tionships between di�erent types of rooms. Proximity relationships characterize the desired optimal
distances between pairs of spaces. We de�ne the \optimal distances" as the walking distances be-
tween the pairs. It is especially important for large institutional building where appropriate walking
distances between the spaces are necessary for accessibility and work e�ciency. In order to verify
building layouts against proximity speci�cations, we need a representation with unambiguous se-
mantics for capturing and describing the proximity relationships precisely, as well as a proper metric
of evaluation.

2.1 Adjacency Matrix

The adjacency matrix is a possible simple format for storing proximity information. Other names
such as interaction matrix, relationship matrix, and association matrix have also appeared in the
literature. The basic principle, however, is the same: a value in each matrix entry to indicate the
desire connectivity or proximity for a pair of spaces. To characterize direct adjacency, i.e. whether
two rooms are connected by a portal, only 0 and 1 entries are needed in the matrix to specify whether
or not two rooms are adjacent. A slight variant is to use more than one number to indicate the
desirability of such adjacency, where a higher number indicates a stronger requirement [4, 8, 9, 17, 18].
A more statistical model uses the entries of the matrix to reect the expected frequency of trips or
journeys between a pair of spaces over some time period, with the data gathered from observing and
monitoring an existing building of the same type that is being designed [12, 17, 19]. In particular, we
are going to look more closely at a format that uses multiple values to indicate the degree of desired
proximity. This format was employed in a set of collaborative courses: CS 294-5, Architectural CAD,
and Arch 101, Computer-Aided Design Methods, taught by Professor Carlo S�equin and Professor
Yehuda Kalay, respectively, in 1995, and again in 1996 [16].

As the name implies, the proximity relationships are captured in the form of a matrix in which
every column and row represents a di�erent room type. But instead of a full matrix, only the lower
triangular matrix is used because the symmetry of the path length is assumed and no asymmetrical
relationship is allowed. Each �eld inside the matrix is �lled with a number ranging from -3 to +3

to indicate the degree of proximity desired by the corresponding pair of room types. The measure
of proximity used in this case is the walking distance between the two entities. The diagonal entries

3

express the desired proximity relationship among rooms of the same type (Figure 1). A positive
number indicates that the rooms are to be located close together while a negative number means
that proximity is to be avoided. A 0 denotes that no explicit proximity relationship exists between
the pair. Furthermore, a larger absolute number indicates a stronger requirement and a smaller
number indicates a weaker requirement. Thus spaces having a +3 as the constraint between them
should have a smaller walking distance between them than spaces having a +1 constraint. Similar,
spaces having a -3 constraint should be farther away from each other as compared to spaces having
a -1 constraint.

Faculty Office

Room Type

Print/Copy Room

Auditorium

Fac. Print Aud.

 2

Seminar Room

Sem.

Research Lab

Res.

2

1

1

−2

0

0

0

1

1

−2

−1

0 0

−2

Figure 1: An example of adjacency matrix

Although the adjacency matrix is easy to understand and simple to specify, there are a few draw-
backs. When there is only one element for each room type, this simple adjacency matrix is certainly
adequate. But when there are multiple elements for each room types, practical clustering constraints
are more di�cult to express. For instance, a constraint of +2 between secretary o�ces and copier
rooms may be interpreted to imply that all secretary o�ces and all copier o�ces should be located
closely together. But in a more realistic situation, it is usually su�cient for each secretary o�ce to
have just one of the copier rooms nearby. In this case, each copier room can have a di�erent number
of secretary o�ces close to it, and some of the copier rooms may not even have any secretary o�ce
within the neighborhood. Hence, not all proximity relationships are entirely symmetrical, and there
must be more sophisticated and di�erentiated ways of specifying a proximity requirement between
room types besides being either \close" or \far".

Another problem is the di�culty of determining which of the two room types \cares" about the
proximity constraint that is being placed upon the pair in the matrix representation. For example,
although it is important for secretary o�ces to have copier rooms nearby, copier rooms need not
have secretary o�ces nearby. The copier rooms may have to serve other faculty or student o�ces.
The ordering of the relationship must be clari�ed for such asymmetrical relationships. It is also
desirable to capture the user's true intention in the representation in order to allow better future
references and understanding. A possible solution to this problem would be to use the entire matrix
(Figure 2) instead of just the lower triangular matrix entries, and then either the columns or the
rows can be designated as the room types that \care" about the proximity relationship. So only
one of the two entries would have the proximity value, while the other entry would have a 0. For
example, in Figure 2, room types on the rows are being designated as the ones that \care" about
the proximity relationship. The entry (faculty o�ce, seminar room) has a value 2 while the entry
(seminar room, faculty o�ce) has a value 0 because "faculty o�ce" is the entity who needs this
proximity relationship. On the other hand, because of noise and tra�c, the seminar room should be
kept away from any printer rooms, which is expressed by the entry -2 in the row of seminar room.
But even a full matrix cannot solve all semantic problems. There are more complicate proximity
relationships that need more than a simple number to specify. This will become clear in the following
section.

4

Faculty Office

Room Type

Print/Copy Room

Auditorium

Fac. Print Aud.

 2

Seminar Room

Sem.

Research Lab

Res.

0

0

0

0

1

−1

0 0

2 1 1 −2

0

0

0

0

0 0

1 −2

0

0

0

−2

Figure 2: Full adjacency matrix

2.2 A Richer Representation

To overcome the shortcomings of the simple adjacency matrix, a new representation with richer
semantics was developed to allow more sophisticated proximity speci�cations. This new proximity
representation is also part of the SYLIF building program speci�cation which will be described in
more detail in section 3.1.

A

A

A

A

A

A

B

B

A

A

A

A

A

A

B

B

A

A

A

A

B A

A

A

A

A

AB B

A
B

B

A

ba c d

Figure 3: Proximity grouping types: a) clustered b) separated c) at least one d) distributed

2.2.1 Semantics and Syntax

The new representation divides proximity relationships into four di�erent grouping types: clustered,
separated, at least one, and distributed. Clustered and separated have the equivalent meaning as in
the adjacency matrix; the clustered relationship is similar to a positive value in the matrix while
the separated relationship is similar to a negative entry. At least one and distributed, on the other
hand, are two additional relationships that give more exibility in characterizing the relationships
between spaces. The semantics of the four proximity grouping types are as follow:

� clustered

Under the clustered constraint, every room of type A requires all of the rooms of type B to be
nearby. In order to satisfy this relationship, all distances between every room of type A and
every room of type must be less than or equal to a certain threshold value. Basically, rooms
from both types are \clustered" together in some region within the building. For example, if
all the faculty o�ces A and all the visitor o�ces B want to be located near each other, then
there should be a clustered relationship between faculty and visitor o�ces. (Figure 3.a)

5

� separated

The separated relationship requires all rooms of type B to be distant from every room of type
A. Similar to the clustered relationship, all distances between the two types of rooms must be
greater than or equal to the speci�ed distance threshold. The two types of spaces would most
likely occupy two di�erent regions in the building that are some distance apart. An example
would be the desired separation between the noisy classrooms B and the faculty o�ces A.
(Figure 3.b)

� at least one

The at least one constraint is a variant of the clustered relationship except that the mandatory
closeness requirement is more selectively enforced. Instead of having all rooms of type B be
located closely to every room of type A, the constraint is satis�ed as long as each room of type
A has at least one of the rooms of type B nearby. An example would be to have a restroom
B easily accessible from each o�ce A. (Figure 3.c)

� distributed

The distributed relationship is an even more di�erentiated constraint than the at least one

constraint. Under this constraint, rooms of type A require rooms of type B to be roughly
evenly distributed among them. Not only must each room of type A have at least one room
of type B nearby, but rooms of type B would be placed in an arrangement such that every
room of type B would have approximately the same amount of usage. This constraint would
generally be used when type B is a contested resource. It is to prevent a situation where some
rooms would be highly congested while other rooms of the same type would be underutilized.
For example, it would be practical to have storage area B distributed evenly among rooms A
that need such an access. (Figure 3.d)

The new representation includes asymmetrical relationships as well as symmetrical relationships
between di�erent room types. Clustered and separated are symmetrical relationships, while at least
one and distributed are asymmetrical relationships. For symmetrical relationships, the constraint is
applied to the two spaces in both directions. For example, if o�ces want a separated relationship
with classrooms, this implies that classrooms should also have a separated relationship with o�ces.
While the user may not be inclined to express such relationships in a fully symmetrical manner, a
computer assisted entry form can help to enforce fully consistent speci�cations. This bidirectional
constraint does not apply to asymmetrical relationships. For example, if o�ces require a at least

one relationship with restrooms, the constraint is satis�ed as long as every o�ce has one or more
restrooms close to it, but there is no further constraint on how o�ces should be positioned according
to the locations of restrooms.

The strength of each type of proximity speci�cation can still be speci�ed by a number ranging from
1 to 3, and this strength of proximity is measured by distance in our case. But unlike the adjacency
matrix, only positive values are used, because the sign of the number is now implied by the type of
the relationship. For the clustered, at least one, and distributed, relationships that demand certain
closeness between the spaces, a lager number indicates a stronger requirement and therefore a shorter
allowable maximum distance between the spaces. A smaller number, on the other hand, indicates
a weaker constraint and thus longer allowable distances. For the separated relationship, a larger
number also indicates a stronger requirement, but it corresponds to a longer minimum distance
between the spaces in this case. Similarly, a smaller number permits shorter minimum distance
since it signi�es a weaker requirement. The actual distances associated with values 1, 2, and 3 can
be adjusted by the user, since the distances will vary according to the actual size and style of the
building.

The new representation is entered as a list of binary relationships rather than as a matrix form.
To specify a proximity constraint, the pair of the spaces has to be indicated along with the desired
grouping type and strength requirement, with the room type requiring the constraint being placed
�rst. By explicitly naming the room types in order, there is no longer any ambiguity as to which

6

of the two room types \cares" about the proximity relationship. Because each constraint has to be
de�ned speci�cally, only the pairs that require a certain proximity constraint will be included in the
representation, as opposed to requiring an entry in every �eld in the adjacency matrix regardless of
whether a proximity relationship exists between the pair.

2.2.2 Consistency Issue

When multiple proximity constraints are speci�ed, the issue of consistency arises. Conicting prox-
imity constraints could lead to a set of speci�cations that would be impossible to realize in a building
layout. Even constraints that do not produce explicit contradictions can be ambiguous in meaning
and may create confusion about what is really required in the building layout. For instance, a room
type could have an at least one or a distributed relationship with itself, but such a constraint is not
really meaningful even though it is not an impossible speci�cation.

Most of the time, asymmetric constraints should only be speci�ed in one direction for a pair of
spaces because it is often the case in which one of the room types \cares" about the requirement
while the other room type is a more passive resource which the �rst room type needs access to. Still,
there may be situations where two parties have opposite desires and thus introduce two conicting
constraints. For example, the secretaries might want to be far away from their supervisors while
the supervisors want to be close to the secretaries. With distance being the proximity criterion, this
contradictory constraints cannot be satis�ed. Therefore, we will not allow this kind of inconsistency
in our speci�cation. Whenever constraints are speci�ed for both directions for a pair of spaces, we
have to make sure that no contradictions have been generated.

Because walking distance is the measurement for the proximity veri�cation, no other type of rela-
tionship is allowed in the reverse direction once a separated relationship is speci�ed. This is due to
the fact that all other three grouping types are \positive" relationships while the separated grouping
type is a \negative" relationship. Furthermore separated relationship is a symmetrical relationship
according to our de�nition, and therefore will be implied in both directions.

Similarly, whenever a clustered, at least one, or distributed relationship is speci�ed, a separated

relationship in the reverse direction will lead to a conict. The clustered is also a symmetrical
relationship; thus the constraint is implied in both directions. If an at least one or distributed

relationship is speci�ed for one direction and a clustered relationship is speci�ed for the other, the
clustered relationship will become the dominant constraint since the clustered relationship has a
stronger closeness requirement.

2.3 Veri�cation Metric

Proximity speci�cations are added to other layout constraints to enable people within the building
to move around their environment more e�ciently. Since the main use of our evaluator will be for
the design of large institutional building where long distance travels may be common, it is practical
to verify proximity constraints based on the walking distance for a person to travel from one space to
another through some feasible paths. Travel time could also be another possible evaluating metric,
but, to �rst order, travel time is proportional to travel distance and will scale with the walking speed
of each individual.

The proximity metric we are using for verifying the proximity constraints is not solely based on
Euclidean distance. Instead, weighted distances are used to represent obstacles that one might
encounter along the path in order to give a more appropriate estimation of traveling distance. Some
of the possible obstacles include stairs, elevators, and doors. Obviously, if a stair is encountered,
the e�ort that is needed to get to the destination is greater than traveling an equivalent distance

7

on the same oor. Similarly, when closed doors or elevators are along the path, some extra delay
is incurred before the destination can be reached. So the weighted distance is the walking distance
from one space to another plus any \extra e�ort" that might be required to overcome the obstacles
along the path.

When stairs are involved, the traveling path seems longer than a path with equivalent distance on
a level corridor not only in physical sense but also in psychological sense. The physical e�ort stems
from the energy required to climb the stairs, and the psychological barrier results from the two
spaces lying on di�erent oors. Thus the psychological distance as well as the physical e�ort should
be taken into account for the calculation of the weighted metric distance, since most people have
the tendency to avoid a path that is psychologically farther. We generate a weighted distance for
stairs with a multiplication factor on the overall vertical distance traveled, ignoring the physical
property of the staircase such as whether or not they are spiral or diagonal. It is likely that the
actual property of the staircases may not yet be known during the early veri�cation phases, for
proximity checking should be done as early as possible, before more detailed oor plans are drawn.
Although climbing up stairs is more tiresome than going down, only one multiplication factor is
currently used for proximity checking. The meaning of proximity can become ambiguous if a pair of
rooms on di�erent oors have two di�erent weighted distances depending on which one of the two
is the starting point.

As in the case of stairs, using an elevator involves the psychological sense of oor separation as well
as some average waiting time. Although traveling by elevator takes less physical e�ort than traveling
by stairs, waiting for an elevator to arrive to the desired oor could take a considerable amount of
time. In our metric we add a �xed time delay cost to the weighted distance for having to wait for the
elevator. Since we are using traveling distance for verifying proximity constraints, this time delay
cost will be equivalent to a certain distance. A multiplication factor on the overall vertical distance
is also included. This multiplication factor will be smaller than the factor for stair penalty because
less e�ort is required for traveling by elevator. For an even more accurate measurement, this delay
cost might be adjusted to take into account the number of elevators in a given location, since the
time spent waiting for an elevator is generally shorter if more elevators are available. A travel time
proportional to the number of oors traveled takes into consideration the possibility of the elevator
stopping at other oors before reaching the destination level.

Delays also result from having one or more doors along the traveled path. Opening and closing
doors can delay people from getting to their destination, due to the physical e�ort and the time
delay involved in opening doors; unlocking locked doors can further increase this delay. The delay
cost can thus vary depending on the type of door. For example, a closed �re door is generally heavier
than a regular o�ce door and would require more e�ort to open it. Similarly, a locked door would
take more time to open than an unlocked door. If some locked doors are not accessible to the general
public, the path through these doors must be eliminated from the search tree.

The following table gives a summary of all the penalty factors discussed above.

obstacle weight

stair multiplication factor on vertical distance
elevator one time delay cost added to overall distance &

multiplication factor on vertical distance
closed door one time delay cost added to overall distance
open door no delay cost

Table 1: Penalty factors

8

3 Internal Representations

In order for our speci�cation checking program to perform all the necessary veri�cations on a pro-
posed oor plan, building speci�cations and layout must be captured in a format that provides
semantic clarity and can easily be processed by computers. This section describes the building spec-
i�cations representation and the oor plan representation that are currently under development in
our research group.

3.1 SYLIF Building Program

SYLIF, SYmbolic Layout Interchange Format, is a simple Lisp-like ASCII format for representing
both the general requirements of a large institutional building and symbolic layouts for possible oor
plans that might satisfy these requirements [6]. The language and its parser are currently under
development by Laura Downs under the supervision of professor Carlo S�equin.

Figure 4: A sample fragment from a SYLIF building program

In order to automatically verify with the help of a CAD tool that a given building layout satis�es the
user's requirements, we must be able to represent those requirements in an unambiguous computer-
readable format. The building program, one of the three sections of the SYLIF �le format, provides
the syntax and semantics for representing such information. It allows to specify the number of each
type of rooms that the building should contain and the desirable areas for each room type. It also
contains the syntax for specifying the proximity relationships between room types as described in
the previous section. Figure 4 shows an example of a SYLIF building program which corresponds to
the example of the adjacency matrix in Figure 1. In addition, a complete SYLIF building program
would also contain the number of rooms and area speci�cations.

9

In the SYLIF building program, room types are described in a class hierarchy in which the children
inherit basic requirements from their parents. This hierarchical representation allows the user to
de�ne one set of speci�cations for a group of similar room types while giving the user the exibility
to override speci�cations inherited from the parent class by de�ning more re�ned speci�cations in
the child class when necessary. The parent class can be seen as a generic type, while the child class
can represent a more speci�c room type. Consider the following statements:

(roomlist

(class O�ce
(info

(defvalue area 180)
(defvalue numberofrooms 50)

)
)
(class FacultyO�ce O�ce)

(info
(defvalue numberofrooms 30)

)
(class SecretaryO�ce O�ce

(info
(defvalue area 120)

)
)
(class Classroom)

)
(proxlist

(prox O�ce Classroom (sep 1))
(prox FacultyO�ce Classroom (sep 3))

)

In the above example, FacultyO�ce and SecretaryO�ce are children classes of O�ce, and therefore
they inherit all properties of O�ce. But due to the explicit de�nition of the area requirement 120 in
SecretaryO�ce, the default area of rooms of type SecretaryO�ce is overridden while rooms of type
FacultyO�ce assume the inherited area value of 180. Similarly, rooms of type FacultyO�ce have an
overriding separated 3 relationship with rooms of type Classroom while rooms of type SecretaryO�ce
have an inherited separated 1 relationship with rooms of type Classroom. The number of rooms �eld,
on the other hand, is one exception to the inheritance rule. The children do not inherit the value
from the parent class. Rather, the total number of rooms of the children and the parent combined
should be at least equal to the parent's speci�cation for the number of instances �eld. The instances
number in the parent allows the user to control the room number at a higher level, and the generic
rooms can be put to di�erent use later on. As in our example, the number 50 in the instances �eld
for O�ce indicates there should be at least 50 o�ces available in the entire building. Out of these
50 or more o�ces, at least 30 of them must be of type FacultyO�ce. Since there is no instances
speci�cation for SecretaryO�ce, there can be any number of rooms for SecretaryO�ce. If there are
30 FacultyO�ces and 10 SecretaryO�ces, then there must be at least 10 more O�ces. These 10
O�ces can be seen as generic o�ces and may be assigned as either FacultyO�ce or SecretaryO�ce
in the future, depending on the growth of faculty and secretary members. Having the number of

instances to be a lower bound puts less pressure on users and architects to come up with the exact
number, and the ultimate upper bound on the total number of rooms will be constrained by building
size and room area.

10

3.2 Symbolic Floor Plan Layout

Unlike an actual oor plan, symbolic oor plans don't contain all the building layout information such
as wall thickness and portal dimensions. Rather, a symbolic oor plan is a simpler representation
that captures the basic space layout with single-line walls and dimensionless portals (Figure 5). The
symbolic oor plan stores general room geometry and portal locations, but maintains very little
detail information. This representation corresponds to the early design phase and is intended for
quick manipulation of the rooms that will be placed within the building.

Figure 5: Symbolic oor plan of Soda Hall 4th oor

Although a symbolic oor plan lacks some of the details that an actual oor plan has, it reects
proximity and geometric information quite accurately and is su�cient for comparing the emerging
design against speci�ed building requirements. Because the symbolic oor plan is not clogged with
other unnecessary information, it is easier to process for veri�cation purposes. The proximity veri�-
cation process should con�rm that no signi�cant violations of the proximity relations are present in
the proposed building layout. It should take place as early as possible, before a large amount of time
has been spent on making detailed oor plans. The symbolic oor plan plays its most important
role in the early design phase where it provides an e�cient, computer-readable way to represent
initial sketches of various oor plans which can be checked against the building speci�cations. Once
a symbolic oor plan shows a satisfactory organization of the building, more time can be spent on
re�ning the symbolic layout into the more detailed traditional oor plans.

Currently, the Berkeley UniGra�x (UG) �le format [3] is used as the geometrical representation
of the symbolic oor plan. Spaces within the building layout are described as contiguous sets of
contours that are de�ned with shared vertices. The dimensions of the simpli�ed contours are close
matches to the the actual building structures. All key elements such as rooms, corridors, stairs, and
portals are labeled with symbolic identi�ers. Symbolic oor plans can be obtained by converting
the AutoCAD DXF �le format into UG �le format. A tool called Building Model Generator (BMG)
developed by Rick Lewis [13] is capable of performing such a task. However, most CAD �le formats,

11

including DXF, do not contain room usage information, i.e., which rooms are of which types. In
addition, UG �le format is not capable of supporting such information. Thus a separate roster �le
is used to specify the room type of each room.

SYLIF, currently under development, also has a speci�c symbolic building layout representation. Our
goal is to use the SYLIF symbolic layout as soon as it becomes available. In addition, a building
layout editor is being developed to provide the functionality of creating symbolic oor plans and
saving them in the SYLIF symbolic layout format. The SYLIF symbolic layout format will contain
the relevant room usage information, and therefore eliminate the need of a separate roster �le.

4 Building Speci�cation Entry Form

Even though the SYLIF building program is in a human-readable ASCII format, it still would be
a tedious and error prone process for the user to write the corresponding text �le that contains all
the required speci�cations for the building to be created. All syntactical details should be hidden
from the general users who should only need to know the semantics of the di�erent speci�cations.
Therefore, we have added an user interface that can handle the building speci�cations input for
the user without forcing him/her to learn any unnecessary details. This section describes such a
speci�cation entry form.

Figure 6: Room de�nition form

12

4.1 Functionalities

The building speci�cation entry forms provide a simple interface to input building requirements
such as the type, number, and area of the desired rooms, and the proximity relationships between
certain types of rooms. There are two basic forms: one for de�ning room types and their necessary
requirements and another one for specifying proximity relationships.

The form for de�ning room types allows the user to specify a new room type and to make modi-
�cations to any existing room types (Figure 6). The form contains entry boxes for specifying the
parent class, the number and desired area of the new room class, besides the entry box for de�ning
or choosing the room class itself. Selection boxes showing a listing of all existing room types in
alphabetical order make it easier to pick from already existing classes. To give the user some idea
of the hierarchical relationships between the room classes, ancestor classes are shown in parentheses
if de�ned. When the parent �eld is �lled out, any speci�cations inherited from the parent are im-
mediately shown in red, as oppose to black, to di�erentiate themselves from the explicitly de�ned
speci�cations. If no new values are speci�ed for any of the �elds, the room type would inherit its
requirements for all unspeci�ed �elds from the parent class. Erasing the inherited values from the
entry boxes does not prevent the room type from inheriting the requirements, unless new overriding
requirements are speci�ed for the room type.

a b

Figure 7: a) Proximity relationship form b) Window showing all existing relationships for the selected
room type

The proximity form lets the user de�ne and modify proximity relationships between any two room
types (Figure 7.a). As in the room de�nition form, there are also selection boxes that list all the
existing room types and their corresponding parents. Inherited proximity relationships, if they exist,
appear after a pair of room types has been entered into the entry boxes. Proximity grouping types
and strengths are listed as radio buttons for the user to click on the desired proximity relationship
for the pair of rooms. Understanding that most users will not be familiar with the semantics of

13

the various proximity relationships, a simple \Help" window can be opened, which describes the
di�erent grouping types and strengths that can be speci�ed. Another window showing all the
existing proximity relationships for the selected primary room type can also be opened to give
the user an overview of the existing relationships with other room types, and thus facilitating the
de�nition of new meaningful relationships (Figure 7.b). This \Show All Relationships" window is
updated interactively whenever a change is made in the proximity form. The program also checks
for inconsistencies between proximity constraints, as mentioned in section 2.2.2, and prohibits the
user from specifying conicting constraints.

Previously de�ned building speci�cations can be read into memory through SYLIF building pro-
grams, and the information entered through the entry form can be output as a new SYLIF �le.
This functionality allows the user to modify an existing SYLIF �le and save a, possibly only par-
tially �nished, building program. The purpose of the entry form is to help the user input building
requirements information with minimum e�ort and with no need to know the syntax of the SYLIF
language.

4.2 Implementation

The building speci�cation entry form is written in Tcl/Tk. Tcl/Tk has been chosen for its portability
to di�erent platforms and the simplicity of its commands for creating user interface widgets.

Several assumptions and implementation decisions were made to keep the entry form conceptually
simple and to ease the implementation task. One of the decision was to disallow forward referencing
when de�ning a new type of room. That is, a room type has to be de�ned before it can be referenced
as a parent class for a new room type. This decision not only simpli�es the implementation, but it
also simpli�es error checking for references to unde�ned parents. Allowing the user to reference an
undeclared room class is likely to cause confusion and error, since the user may easily forget to give
a de�nition for the undeclared reference later on.

All children classes inherit room requirements from their parents or ancestors, unless explicit values
are speci�ed at the children level to override the inherited values. When any �elds are left empty,
the child would inherit the associated values if one of the ancestors has default values speci�ed for
those �elds. When a value being entered into the entry is the same as the parent's, the program
would ask the user whether or not to decouple the child's �eld from its parent. If a child's �eld is
decoupled from its parent, any future changes made to parent's �eld no longer a�ect that particular
�eld of the child. This extra level of questioning to con�rm user's true intention has been added
so that there won't be any ambiguity. The children don't actually store the inherited values with
their own records. Instead, each child stores the associated parent index, and the inherited values
are retrieved by indexing into the parent's record. Because there may be many levels of ancestors,
this indexing process is performed until a value is retrieved, or until the top level is reached.

Retrieving an inherited proximity relationship is a little more complicated. In order to �nd the
inherited proximity relationship, the hierarchies above both sides of the pair have to be checked.
First the source room type would be checked bottom up against each ancestor of the destination
room type. Then each ancestor of the source type would again be checked against the destination
type and its ancestors. This process is repeated until an inherited proximity relationship is found
or the very top level is reached on both sides. Because of the symmetrical relationships such as
clustered and separated, the checking also has to be done on the inverse pair to determine whether
or not a proximity relationship has been de�ned for that pair of room types.

Each room class also keeps a counter of how many descendants it has. Whenever the user tries to
delete a room type, the program �rst checks to see if there are any children associated with this
room type and alerts the user if the number of descendants is greater than zero. If the user still

14

wants to delete the entry, all the descendants of the room type to be deleted will be linked to the
grandparent, i.e., the parent of the deleted parent. If the deleted room class has no parent, all the
descendants will now sit at the top level with no more inherited speci�cations other than the ones
de�ned explicitly in the current class. Since only the parent index, not the individual inherited
values, is stored within each child, only the parent index of each descendant of the deleted room
type needs to be updated to reect the change.

When a SYLIF building program is read in and processed by the program, the assumption is made
that the SYLIF �le loaded by the user has been generated previously by this speci�cation entry
program. This should ensure that the �les are consistent with all the assumptions and decisions
discussed above, i.e., that the de�nition of the parent class appears before all de�nitions of other
classes that reference this parent. Also it should guarantee that the �les are in an expected format.
We did not want to spend much time on writing the �le parsing code when a more complete
and \o�cial" SYLIF parser is nearing completion. The SYLIF parser, when it is ready, will be
incorporated into the program so that more general SYLIF �les can be loaded as well.

5 Building Speci�cation Evaluator

Given a set of building requirements, a program is needed to help the architect and the client to
automatically compare a tentative building layout against these speci�cations. The following section
describes the appraisal program that performs the veri�cation of the symbolic oor plans against
the formal room speci�cations and proximity relationships.

5.1 Functionalities

5.1.1 File Loading

In order to perform any veri�cation, the user must �rst provide a oor plan and a �le with all
the building requirements. Currently, the oor plan is in the Berkeley UniGra�x (UG) �le format
and the building requirements should be in the SYLIF �le format, as discussed in section 3. The
oor plan and the SYLIF �le are being loaded independently and can be input in any order. The
program also allows the user to reload di�erent oor plans and/or SYLIF building program �les
multiple times without quitting the program. This is helpful when there are more than one building
layouts for the same set of building speci�cations, or when there are several versions of requirements
for a single building. With multiple designs for the same speci�cation, the user can load the SYLIF
�le just once and then load a di�erent oor plan for each veri�cation while leaving the speci�cations
unchanged. This also provides a convenient way for the user to compare a modi�ed building layout
against the previous version of the oor plan. Similar to the example of modi�ed oor plans, it often
can be the case that after seeing the results of the initial veri�cation process, the user realizes that
some constraints are impossible to satisfy and thus the building speci�cations have to be modi�ed.
In this case, the SYLIF �le can be reloaded without the need to also reload the oor plan.

5.1.2 Floor Plan Display

The program provides two views of the oor plan on two separate display windows: a 3D view and
a 2D view. The 3D window lets the user look at the building as a whole, with the oor plans for all
oors stacked above each other with some appropriate height o�set. The 3D window also provides a

15

crystal ball interface to allow the user to rotate the building and to look at it from di�erent angles.
But with oors stacked on top of one and another, it is hard to view one complete oor in detail
other than the one that is at the top of the building. Thus a 2D window is also included to give
a at view of the oor plan of a chosen single oor. The crystal ball interface is not added to the
2D display so that the oor plan remains at on the screen at all times. Instead, the user can cycle
through all the oors of the building, with oor levels being displayed one at a time. Both 2D and
3D windows provide a zoom function to allow the user to look at the oor plan in detail. With these
two display windows, the user can view the building as a whole as well as look at one of the oors
in more detail.

Floor plans can be displayed in either outline mode or color mode. The outline mode provides
the look of a traditional oor plan where each space is being drawn as a contour. The color mode
di�erentiates among the various types of space (e.g. corridor, room, stair, elevator, etc.) by coloring
the polygons in di�erent colors. It helps the user to identify the major space types on each oor.

Figure 8: Building speci�cation evaluator

16

5.1.3 Parameter Settings

Several di�erent parameters can be set during the building veri�cation process to allow di�erent
interpretations of what an easy to travel path is and to give user some exibility in carrying out the
analysis. The program allows the user to set the following parameters: path option, penalty option,

penalty factors, and distance metric.

Path option lets the user select whether or not a certain path should be allowed during the evaluation.
For example, the user might decide to exclude paths that use an elevator, or paths that travel through
some other rooms before reaching the �nal destination. The case of excluding the use of an elevator
can be particularly useful for the evaluation of egress patterns under emergency situations such as
�re, earthquake, or power outage. The three di�erent options that are currently in the program are
the use of elevators, stairs, and pass-through rooms. The default is to include all path options.

Penalty option allows the user to choose what penalties should be taking into consideration in the
distance calculation. Penalty weights can currently be assigned to elevators, stairs, and doors.
Some penalties might not be necessary under certain situations and thus should be excluded from
the calculation. This option can also be used for comparing results obtained with various sets of
penalties to see how much of a di�erence each option makes. As default, all the penalties are turned
on.

The user is also allowed to change the weights of the penalty factors that are used in the distance
calculation. The stair penalty has a multiplication factor that is applied to the traveled height. The
elevator and door penalties have delay costs that are added to the traveling distance whenever an
elevator or a door is encountered. The elevator penalty also have a multiplication factor on the
vertical traveled height in addition to the one time delay. Di�erent users might have a di�erent
notion as to which obstacle is easier to overcome and thus how much of a weighting factor should be
associated with each of the penalties. In addition, weighting factors might have to vary from one type
of building to another due to di�erent concerns and situations. Nevertheless, we still tried to provide
reasonable penalty factor settings at the startup of the program. The stair factor is initialized to
6. The elevator penalty is given an 1000 inches (25.4 m) delay cost and a multiplication factor
of 2. The door delay cost is initialized to 100 inches (2.54 m). Although it is possible to use the
weighting factors to control which penalties are to be taken into account in the distance calculation
(e.g. setting stair multiplication factor to 1 disables the stair penalty option and setting door delay
to 0 disables door penalty option), separate on-o� switches for each penalty are still provided for
convenience.

In addition, the distance metric can be adjusted. User can tune the distance thresholds associated
with each of the proximity strength values 1, 2, and 3 according to the size and style of the building,
to personal preferences, and/or to the results of previous evaluations. There are two distance metric
settings in the interface for each of the proximity strength: one for the separated relationship and
another for the clustered, at least one, and distributed relationships. Two separate metric tunings
are included to provide the exibility of allowing a di�erent set of threshold values for the separated
constraint, which is something the user might want.

5.1.4 Speci�cation Veri�cations

Given a oor plan and a SYLIF �le, the program can perform several di�erent evaluations to see
whether the oor plan conforms to the building speci�cations. The types of evaluation include
instances checking, area veri�cation, and proximity checking.

Instances checking con�rms that the correct number of room instances in the building for each
room type is in accordance with the building program. The user can choose to process the entire

17

speci�cation list, or just one speci�c room type. A list of all the de�ned room types is given to let
the user choose the one particular room type that needs to be evaluated.

Area veri�cation determines whether or not the room areas for each type agree with the default
areas speci�ed in the SYLIF �le. As in instance checking, the veri�cation can be performed either
on all the room types that have a default area value, or on one particular room type.

Proximity checking veri�es whether or not the oor plan satis�es the proximity relationship con-
straints speci�ed in the SYLIF �le. The evaluation can be performed on the complete list of prox-
imity de�nitions for all the room types in the SYLIF �le, or it can be done on a pair of room types
chosen by the user. If one of the room types is part of a more complex relationship involving several
types, the analysis will be done for all the participating rooms; see the distributed relationship de-
scription under section 5.2.4. All de�ned room types are listed in the interface so the user can easily
click on the two desired room types to perform the check. The user can also query the shortest
distance between two room instances by selecting two contours on either the 2D or the 3D display
window; the shortest path from door to door will then be drawn on top of the oor plan in a red
dashed line.

Results of veri�cations are displayed in a text window at the bottom of the display. If any violations
are found, the rooms that fail the veri�cation process are listed in this message. The violated spaces
are highlighted on the oor plan to give the user an idea of where in the building the problems occur.

5.2 Implementation

The building speci�cation evaluation program is written in C++ and Togl (a Tk widget for OpenGL
rendering). Togl provides an e�ortless way for implementing the user interface for the program.

5.2.1 Room Instances Checking

Room instances checking con�rms that the building layout has a su�cient number of rooms of a
particular type as required by the building speci�cation. For room types without any children,
i.e. room types at the bottom level of the hierarchy, the checking process is simply a comparison
between the actual number of rooms found on the oor plan against the given default value. For
room types with one or more child classes, the veri�cation process becomes a little more complicated,
since the default room number includes the room count of the parent plus the room counts of all
its descendants. To verify the instance requirements for a parent type, we sum up the actual room
counts for each descendant recursively and add this sum to the number of rooms found for the
parent, to see if the total equals the parent's default value. While counting the number of rooms
for each descendant, we also verify whether or not the room count corresponds to the default value
speci�ed for the child. Any violation found at the children level indicates that the ultimate constraint
is not satis�ed, even though the �nal room count might correspond to the parent's room number
requirement.

5.2.2 Room Area Calculation

To verify whether the layout is compatible with the area speci�cations in the SYLIF �le, we must
calculate the area of each room and compare the results to the default values. If a child does not
have a default area, it inherits its default value from the closest ancestor who has a non-empty area
�eld. If there is no default area for either the child or its ancestors, no room area veri�cation will be
done for that room type. In this implementation, we use the formula in Green's theorem [1] which

18

yields the area of simple (non-self-intersecting), planar polygons. For a polygon given by the vertices
(xi; yi); i = 0; :::; n, with x0 = xn and y0 = yn, the formula for calculating the area is as follow:

A =
1

2

n�1X

i=0

ai where ai = xiyi+1 � xi+1yi

Since rooms are described as contours de�ned by a sequence of vertices in the UG �le, the area of
the rooms can be calculated easily by feeding the vertices into the equation.

5.2.3 Path and Distance Calculation

In order to perform proximity constraints evaluation, we have to be able to �nd some shortest,
feasible path on the building layout between two spaces. The resulting path depends not only on
the structure of the building, but also on the parameter settings of path option, penalty option,
and penalty factors as speci�ed by the user, since all these settings will contribute to the computed
traveling distances. Because adjacencies existing in a oor plan can be described best in the form
of a graph, we �rst construct an adjacency graph that maintains all connectivity information from
the input building layout. Then Dijkstra's algorithm [2] is run on the adjacency graph to �nd the
shortest path and the weighted distance between any two spaces of interest.

After the oor plan is loaded, the program constructs an adjacency graph from the geometric data
given in the UG �le. Before an adjacency graph can be built, the corridor contours, which are
speci�ed as one large, possibly concave, polygon, have to be broken up into convex polygons. At
every generated joint between the new pieces, an \open" portal is inserted to serve as the connection
between these pieces. After the corridors have been \recti�ed", straight paths can now be generated
from piece to piece without concerns of intersection with other spaces, as illustrated in �gure 9.
Convex rooms are also processed in this manner.

a b

Figure 9: a) Path intersects with room interiors b) Desired path after splitting up the corridor into
convex pieces

The structure of the adjacency graph is such that the nodes are portals and the links connecting
the two nodes represent straight path segments through the space that joins the two portals on
the oor plan. Portals are doors present in the oor plan as well as the \open" portals generated
during the recti�cation process. Spaces connecting the portals can be corridors, rooms, elevators,
or stairs. Portals on vertical connector spaces, such as elevators and stairs, are linked to all other
portals that are connected to the same elevator or stair, but on di�erent oors. Figure 10 illustrates
a simple example of a 3-story oor plan and its corresponding adjacency graph. The weights of the

19

links correspond to either the Euclidean distances between portals on the same level or the vertical
heights of portals on di�erent oors. Penalty factors are not being taken into account at this point
because the adjacency graph is built only once for each oor plan while penalty settings can change
many times for the same oor plan during the evaluation process. Instead, penalty factors will be
considered later during the search for \shortest" paths.

d_3d

d_3e

room

d_3c

d_3f

room

room

floor 3

d_2c

d_2d

room

room

floor 2

d_1c

d_1d

room

room

floor 1

corridor corridor corridor

corridor

corridor

corridor corridor corridor
corridorcorridorcorridor

corridor corridor

corridor

corridor

corridorcorridor

d_1c

d_1d

open1

d_1a

d_1b

d_2c

d_2d

open2

d_2a

d_2b

d_3c

d_3d

d_3e

d_3f

open3

d_3a

d_3b

room

room

room

stair stair

stair

open1

stair

open2

d_2b

d_2ad_1a

d_1b

open3

d_3b

d_3a

stair stair

elevator elevator elevator

elevator

elevator elevator

d_1e

corridor
d_1e

room

room

Figure 10: An example of an adjacency graph

Under the current implementation, the adjacency graph is bidirectional; i.e., if there exists some
path from point A to point B, the same path can be traveled from B to A. Although this assumption
might be true most of time, there could be cases where the direction of travel makes a di�erence.
For example, it is possible that some locked doors can be opened from one side but not from the
other. The adjacency graph could easily be changed into a directed graph that reects such special
cases, if such information is given with the oor plan.

After the adjacency graph is built, Dijkstra's algorithm [2] is used to determine shortest paths
between spaces. The shortest path found will be from door to door because of the way the adjacency
graph is built. Dijkstra's algorithm solves the single-source shortest paths problem on a weighted
graph that contains only edges with nonnegative weights, which are indeed the properties of our
adjacency graph. For a given source, the algorithm computes a shortest-path tree in which the
source is the root and all nodes in the tree are the portals reachable from the source by some shortest
path. For every node, a corresponding distance from the source to that node is also maintained.
Path and distance calculations under Dijkstra's algorithm take into account the penalty factors and
path options. Thus, no disallowed path elements are included in any of the resulting paths, and

20

appropriate penalty factors are weighted into the calculated distance for each path, as elevators,
stairs, and doors are encountered.

5.2.4 Proximity Relationship Veri�cation

Proximity veri�cation is performed by �nding shortest weighted paths and distances for room pairs
belonging to the two space types that are being evaluated and comparing the results to the constraint
speci�ed in the SYLIF �le. Since the adjacency graph used in Dijkstra's algorithm is built with
portals being the nodes, all doors that are attached to a particular room have to be determined �rst.
For every room, a list of all attached doors is maintained during the adjacency graph construction
step. Whenever a portal �nds a link in the adjacency graph that is of type room, the room adds that
portal to its list of doors. To �nd the shortest path and its distance between a pair of rooms, all paths
between two sets of doors have to be determined �rst, and then the path with minimum weighted
distance is returned. Because most rooms have only one attached door, this process can be done
in a short amount of time. Once the distances between room pairs have been determined, we can
verify the proximity constraint for every pair of room types. The four di�erent proximity grouping
types, clustered, separated, at least one, and distributed, are processed somewhat di�erently.

Clustered Relationship

The clustered relationship requires all rooms of type B to be close to every room of type A. In
order to verify whether or not this requirement is satis�ed, shortest paths from every room of type
A to all rooms of type B need to be determined. All distances of the paths found must be less
than or equal to the corresponding threshold set in the distance metric parameter for the speci�ed
proximity strength. Comparison to the threshold value is done for every distance to insure every
pair has satis�ed the relationship. Every time a distance exceeds the threshold limit, the clustered

constraint is violated. The violation and the excess amount is written to the message display window.
Alternatively, the veri�cation process for that particular pair of room types can be terminated, to
return other results to the user more quickly.

Separated Relationship

Under the separated constraint, every room of type A requires all rooms of type B to be distant
from it. As in the case of the clustered relationship, shortest paths between all rooms of type A and
all rooms of type B have to be determined. But instead of requiring all distances to be less than or
equal to some threshold, the distances now have to be greater than or equal to some value. Again,
violations encountered will be written to the message window along with the di�erence between the
actual distance and the threshold value. The checking process for this room type pair can also be
terminated after the �rst violation has been found.

At Least One Relationship

The at least one relationship is a variant of the clustered relationship. This requirement is satis�ed
as long as each room of type A has at least one room of type B nearby. The veri�cation process
of the at least one relationship is very similar to and even simpler than the clustered veri�cation.
Instead of �nding all shortest paths from a room of type A to all rooms of type B, the calculation
for a room of type A can stop once a room of type B is found to satisfy the threshold value. The
number of paths that need to be determined for the at least one evaluation is less than in the case
of clustered and separated veri�cations.

21

Distributed Relationship

Veri�cation of the distributed relationship is more complicate than for the other three proximity
relationships discussed above. Even the interpretation of the meaning of the distributed relationship
can be somewhat ambiguous. Intuitively, the distributed constraint means rooms of type A require
rooms of type B to be roughly evenly distributed among them. But what should the distribution look
like when there are two or more room types that require rooms of type B to be evenly distributed
among them? There are two possible interpretations. First, let's call rooms of type B the \resource"
rooms and rooms of type A the \consumer" rooms. It is common for one resource room type
to serve more than one consumer room type. One interpretation is to have the resource rooms
evenly distributed among the rooms of each of the consumer space types, as in �gure 11.a. Another
interpretation is to have the resource rooms evenly distributed among all rooms of all the consumer
space types that require a distributed relationship with the resource rooms, as in �gure 11.b. Figure
11.b shows a looser interpretation than the one shown in �gure 11.a, i.e., if �gure 11.b is chosen
as the interpretation, both con�gurations in �gure 11 satisfy the distributed relationship. On the
other hand, if �gure 11.a is chosen as the interpretation, the con�guration in �gure 11 would not be
acceptable. It is more likely that the di�erent consumer room types that need distributed constraint
with the resource rooms are in their own cluster. For example, both faculty o�ces and student
o�ces have a distributed relationship with printer rooms, but faculty o�ces are likely to be in one
cluster while student o�ces are in another cluster. Therefore, it is probably more logical to say the
constraint is satis�ed as long as the printer rooms are evenly distributed among all o�ces, not that
the printer rooms have to be evenly distributed among faculty o�ces AND among student o�ces.
Hence, we will be using the second interpretation, as illustrated by �gure 11.b, for our distributed
constraint evaluation. The actual number of rooms of each consumer type that a resource room
would serve depends greatly on the location of all rooms having a distributed relationship with the
resource rooms.

R R R

R R R

X X

X

X

X

X

Y Y

X

X

X

X

X

X

Y

a

b

Z ZZZ Z Z

ZZZ

Z

Y Y

Y Y Y

Y Y

YY Z Z

Figure 11: Two interpretations of the distributed relationship

From the interpretation we have chosen above, the distributed relationship veri�cation cannot be
performed on a pair of room types as in the other three proximity relationship cases. Rather,
the evaluation has to be performed on a resource type against all other room types who have
a distributed relationship with that particular resource type together. If there is only one resource

22

room, the distributed relationship degenerates into clustered relationships between the resource room
and each of the consumer rooms. If there are r resource rooms and n consumer rooms, another way
of looking at \distributed evenly" is that each resource room would have to serve approximately
dn
r
e rooms. We can then address the distribution problem by trying to assign each consumer room

to one of the resource rooms in a way such that each resource room would serve no more than dn
r
e

consumer rooms, and the distance between each pair of resource room and consumer room is within
the threshold. Thus \distributed evenly" is similar to an assignment and matching problem.

Although the distributed problem can be viewed as bipartite matching problem, the regular bipar-
tite weighted matching algorithms cannot be used in this case, because those algorithms cannot
solve the matching problem when upper and lower bounds are imposed on the number of assign-
ments. Dondeti and Emmons [5] presented a method for solving weighted matching problem with
bounded assignments. The basic idea of the method, referred to as the \node-splitting" method, is to
transform the given problem into an assignment problem solvable by the regular weighted matching
algorithm.

The �rst step of Dondeti and Emmons's algorithm is to construct a new bipartite graph from the
input. \Processor nodes", or resource room nodes in our case, will be placed on one side of the
bipartite graph, and \job nodes", or consumer room nodes, will be placed on the other side of the
graph. For each processor i, ai nodes are created where ai is the lower limit on the number of jobs
that must be assigned to processor i. In our distribution problem, ai is the same for all resource
rooms. Then gi � ai additional nodes are created for each processor i, where gi is the upper bound
on the number of jobs that can be assigned to processor i. Again, gi is the same for all resource
rooms. Thus there are a total of q = r�g processor nodes. Similarly, n nodes are created to represent
each job. If n < q, q � n additional nodes are created to represent dummy jobs. The strategy is to
construct a bipartite graph with equal number of nodes on both sides. Dummy processor nodes can
also be created if n > q. But we won't have to deal with this case because the distributed relationship
is already violated under this situation.

Next, weights have to be labeled for edges connecting the nodes in the new bipartite graph. Let
wkj denote the weight of the arc (k; j). If cij is the distance between consumer room j and resource
room i corresponding to node k, then

wkj = cij; for j = 1; :::; n

and

wkj =1; for j = n+ 1; :::; q (dummy nodes).

Now we can �nd an one-to-one assignment for the q � q bipartite graph constructed by using
the Hungarian method [15] with minimization objective. For our distribution problem, we try
to minimize the distances between assigned resource rooms and consumer rooms. The Hungarian
method solves the weighted bipartite matching problem with the following formulation:

Minimize

qX

k=1

qX

j=1

wkjykj;

such that

qX

j=1

ykj = 1 for k = 1; :::; q,

qX

k=1

ykj = 1 for j = 1; :::; q,

23

ykj � 0; for k = 1; :::; q and j = 1; :::; q.

The Hungarian method solves the matching problem by �rst �nding a set of \permissible" edges in
the bipartite graph with minimumweights and a matching from the permissible edges such that no
two edges share the same node. If the result is not a perfect matching, i.e. all nodes in the graph
are matched to one other node, the algorithm successively increases the set of permissible edges by
�nding the next set of minimum edges until a perfect matching can be assigned.

With the solution obtained from the Hungarian method, the �nal assignment of which job is assigned
to which processor can be found. If node k corresponds to processor i and node j is not a dummy
node,

set xij = 1, if ykj = 1.

Given this assignment, we can now verify the distributed constraint by checking whether or not
every consumer room is assigned to a resource room within the required distance. If one or more
consumer rooms are assigned to a resource room outside of the threshold limit, it means some
resource rooms have to serve more consumer rooms than they can accommodate, and thus the
\distributed evenly" requirement is violated. We can adjust how \evenly" the rooms need to be
distributed by giving a di�erent setting to the lower and upper bound. For a strict distribution
requirement, the lower bound can be set to bn

r
c and the upper bound can be set to dn

r
e. For a

looser distribution requirement, a tolerance can be subtracted and added to the strict version of
lower and upper bound, respectively. As for the other three relationship veri�cations, the distributed
evaluation process can be terminated earlier whenever a consumer room is found to not have at least
one resource room within the threshold limit if the user only wants some quick feedback.

6 Example: Soda Hall

We have applied the described evaluation program to the computer model of Soda Hall. In the
WALKTHRU project [7], the geometry of Soda Hall had been captured in the Berkeley UniGra�x
data format. We used simpli�ed slices through this building geometry to create symbolic building
layouts for all seven oors. A roster �le which identi�es the room type for each room was generated
manually. Also, parts of the original building speci�cations relevant to this study were captured in
a SYLIF building program by using the speci�cation entry form. Some key proximity relationships
were derived from an adjacency matrix used in the Architectural CAD classes in 1995 and 1996. The
simple numerical entities were enhanced to the new format that can express more adequately the
relationships between di�erent room types. In particular, the distributed relationship was applied to
several pairs of rooms. Some of these pairs are:

(all o�ces) to printer rooms,
(faculty o�ces & visitor o�ces & student o�ces) to secretary o�ces,
(faculty o�ces & visitor o�ces & student o�ces) to research labs.

The complete SYLIF building program of Soda Hall contains 28 di�erent room classes plus two
super-classes. These two parent classes are o�ce and instructional room. The class o�ce has
10 subclasses to di�erentiate between di�erent types of o�ces such as faculty o�ce, secretary
o�ce, student o�ce, and sta� o�ce. Class instructional room has 5 subclasses to describe
types of rooms that are used to provide instruction to the students. A couple of these examples
are large class room and instructional lab. Also, there are a total of 114 proximity constraints

24

de�ned in the SYLIF �le. But due to the inheritance property of SYLIF language, the real number
of proximity constraints is more than the total de�ned in the �le.

Most of the room count requirements were proven to be satisfactory in the Soda Hall building layout.
The main discrepancies were found for several o�ce types; for 7 out of the 10 o�ce types the actual
count fell short of the ideal number desired. Although about half of these o�ce types have a shortage
of only 1 or 2 rooms, secretary o�ce, student o�ce, visitor o�ce, and technical support
o�ce have a shortage of either 6 or 7 rooms, which sum up to a total shortage of 27 rooms. The
other violations occurred in the shortage of small class room, machine room, and student

consulting room, with di�erences of only 1 or 2 rooms for each of these room types.

For the room area veri�cation, the most glaring discrepancy was found in the requirement for the
receiving area. The actual receiving area is smaller than the speci�cation by almost 800 sq ft.
The areas of storage rooms are also smaller than the required area. But on the other hand, there
is a larger number of storage room than speci�ed. In addition to the room shortage violation, half
of the student o�ces also su�ered from an area de�ciency. Student o�ce is possibly one of the
sacri�ces made by the client and the architect during the design evolution in order to satisfy the
requirements of faculty o�ce.

In our proximity veri�cation, all three penalty factors (stairs, elevators, and doors) were included
in the distance calculation, and all three path options (stairs, elevators, and rooms) were allowed
in the path selection. We then made some a-priori assumptions about the distance thresholds. For
the clustered, at least one, and distributed relationships, rooms having a proximity strength of 3
should probably be separated by no more than 3 or 4 rooms in between them. For a strength of
2, the rooms should be on the same oor, and for a strength of 1, the rooms should be at most
one oor apart. For the separated relationship, rooms having an anti-proximity strength of 3 should
ideally be in separate buildings, since they want to be as far away as possible. For a separated 2

constraint, the rooms should not be located on the same oor. For a separated 1 constraint, the
rooms should be on the opposite ends if they are on the same oor. By looking at the building layout
and building dimensions of Soda Hall, we came up with a set of threshold values for the proximity
strength that we believed to be suitable and realizable. The interpretations and their associated
distance thresholds are shown in table 2 and table 3.

proximity strength interpretation distance

1 \adjacent oor" � 3400 in (86.4 m)
2 \on the same oor" � 2200 in (55.9 m)
3 \half of corridor" � 800 in (20.3 m)

Table 2: Strength interpretations for the clustered, at least one, and distributed relationships

proximity strength interpretation distance

1 \opposite side of the same oor" � 1400 in (35.6 m)
2 \di�erent oors" � 2600 in (66 m)
3 \ideally in separate buildings" � 6000 in (152.4 m)

Table 3: Strength interpretations for the separated relationships

In the total of 195 proximity veri�cations performed, 93 violations were found by the evaluator.
Out of these 93 violations, there were 22 clustered constraint violations, 61 separated constraint
violations, and 10 distributed constraint violations. In a real design process, the architect will try to
modify the building layout to minimize the amount of violations and/or consult with the client to
change some of the speci�cations that are too strict or impossible to maintain until a �nal design

25

solution is found. In the case of Soda Hall example, we only want to show that major violations can
be detected by the evaluator, since the building has already been built.

The majority of the violations found for the clustered relationships were due to the di�erent types of
o�ces that should have been close to one another, but are actually several oors apart. Examples
are faculty o�ce to chair o�ce and to division sta� o�ce. All faculty o�ces are on the 6th
and 7th oors, while the chair o�ce and the division sta� o�ces are on the 3rd oor, and thus are
too far away from each other to satisfy the original speci�cation. Many separated violations were
found because Soda Hall is a compact building, and therefore it's hard to place rooms far away from
each other within the building. Most of the separated relationship violations were due to some o�ces
and some instructional rooms being on the same oor, and thus are too close in proximity while the
speci�cation had them widely separated. Another separated constraint violation of interest is the one
placed between storage room and storage room. The idea was by separating the storage rooms
from one and another, the storage rooms would more likely to be distributed evenly among their
consumers. With this constraint being violated, the distributed constraint for storage room was
also violated because too many storage rooms lie on the 3rd oor and thus are too far away from the
o�ces on the 6th and 7th. One other distributed violation found is for faculty o�ce and secretary
o�ce to supervisor o�ce. With all supervisor o�ces on the 6th and 7th oors, it is no wonder
that secretary o�ces on the 3rd oor cannot be assigned to a supervisor o�ce within the speci�ed
limit. But this di�culty is also due to the fact that in the program there is no clear distinction
between the administration secretary o�ces and the research secretary o�ces. All administration
secretary o�ces are on the 3rd oor while all research secretary o�ces are on the 6th and 7th oors.
If the secretary o�ces were further classi�ed, di�erent constraints could be placed on the di�erent
secretary o�ces to reduce the violations found. No violation for the at least one constraint was
found, which is understandable since the at least one relationship is the easiest to satisfy out of the
four grouping proximity types.

On a SGI O2 workstation with a 200 MHz processor, the whole proximity evaluation for Soda
Hall took approximately 65 seconds. The whole proximity evaluation consists of 195 proximity
constraints that were checked against the Soda Hall building layout, which contains approximately
250 rooms among its seven oors. Of the 65 seconds, the majority of the time was spent on room
assignments for the distributed relationship veri�cations, since the running time for the Hungarian
method, the main computation for the assignment problem, is O(n3). The major bottleneck was
found for the room assignments where there are many consumers but a relative small number of
resources. Examples are the printer room and kitchen distributed constraints. For printer room,
there are 147 consumers but only 5 resources, and for kitchen, there are also 147 consumers but only
4 resources. Time spent for these two room assignments were about 45 seconds, which accounted
for 70% of the total time. Veri�cation times for instances checking and area evaluation were less
than one second each, and thus were insigni�cant when compared to the time spent for proximity
evaluation.

7 Discussion and Future Work

Currently, the criterion of our proximity veri�cation is based solely on walking distance. This places
the limitation on the system that it can only verify relationships depending on the distances between
the rooms. Other possible criteria that are useful to include in the evaluator are acoustic and visual
connection. An example of the usage of acoustic evaluation would be a group of o�ces that need
to be close in distance to a discussion room, but at the same time, they want to be separated from
the discussion room acoustically. This relationship creates a contradiction when distance is the only
measure. The SYLIF building program provides syntax to specify visual and acoustic connection.
But in order to verify these two kinds of connections, additional informations such as the material

26

of the walls and doors must be included in the building layout.

Although the current proximity evaluation does not allow to specify or to verify direct adjacency,
i.e. two rooms must be connected by a portal, it is not di�cult to incorporate direct adjacency
checking into the program. The SYLIF building program already contains the syntax for specifying
when a pair of rooms are to be physically connected by a portal by using the keyword conn, which
stands for connected, instead of one of the three proximity strength. Then, to verify whether or not
the constraint is met, we simply check to see if the two rooms have a portal in common.

Under the current implementation, only one distance value is associated with each proximity strength
value that distance tests are done by strict greater than or less than comparisons. For example, a
clustered 3 relationship is veri�ed by making certain the minimal distance between the two parties
is strictly less than or equal to the corresponding threshold value in the distance metric. But it is
also possible to have a distance range associated with each proximity strength. An example where
this can be usefulness is the separated 1 situation, where the two spaces don't want to be close
together and yet they should not be too far apart either, as in the case of o�ce and restroom. If a
range is associated with each strength value, the separated relationship could be eliminated from the
representation since each proximity strength now represents the \proper" distance the two parties
should maintain. The use of range would create a stronger distinction between the di�erent level of
proximity strength.

The adjacency graph is built for the whole building, and hence the Dijkstra's algorithm has to
search the entire graph in order to determine shortest paths between spaces. This can become time
consuming if the building is large and contains thousands of rooms and portals. A solution to speed
up the computation would be to break up the adjacency graph into several di�erent subgraphs. For
a multiple-story building, a logical division would be to have an adjacency graph for each oor, and
then another adjacency graph for all the oors to describe the connectivities between di�erent oors
through stairs and elevators. So for spaces on the same oor, the shortest paths search can be done
much more quickly on the smaller adjacency graph. For even �ner granularity, an adjacency graph
can also be built for each zone on the same oor.

Coming up with a good distance metric default values can be a di�cult task if the client does not
have a basic idea of what are the appropriate threshold distances for the building to be designed.
A possible solution would be to use case studies from post-occupancy evaluation of similar types of
buildings. Those statistics would be helpful for generating a set of threshold values that could use
in the initial evaluation. For the shorter distance thresholds associated with the clustered 3, at least

one 3, distributed 3, and separated 1 relationships, the values should more or less the same for all
buildings. But for the larger distance thresholds, the values might be more related to the size and
the structure of the buildings.

Once the SYLIF parser is ready, this evaluation tool will incorporate the parser and use SYLIF's
building description to obtain the full power of the SYLIF language. Even though the Berkeley
UniGra�x �le format is adequate for capturing the geometric representation of a symbolic oor plan,
it does not provide some important building information such as oor, �re zone, vertical connection,
and identi�cation of room type. The SYLIF language, on the other hand, is designed to capture
all relevant information for a building design, and therefore is much more suitable for our purpose.
Furthermore, a symbolic oor plan editor for the SYLIF layout format is under development. An
even more ideal case would be to integrate the evaluation program with the oor plan editor, but the
evaluation would only be performed when the architect makes the request. The integration would
allow the architect to verify the current design without going back and forth between di�erent
programs, and thus would facilitate the design process.

27

8 Conclusion

We have developed an architectural CAD tool that performs the task of evaluating tentative oor
plans proposed by the architect against a set of building requirements given by the client. The types
of speci�cation that the tool is able to evaluate include type and number of instances, room areas,
and proximity relationships. A speci�cation entry form is being provided to allow the user to enter
these building speci�cations with minimal e�ort. In order to perform the evaluation of proximity
constraints reasonably and e�ciently, we have introduced a new representation to describe proximity
relationships between a pair of spaces by specifying one of the four possible groupings: clustered,

separated, at least one, and distributed. This new proximity representation allows more exibility in
de�ning the desirable spatial relationships between di�erent spaces than a simple adjacency matrix.
We have included penalty factors in the distance calculations of paths leading through closed doors
or up and down through staircases and elevators. The users are allowed to adjust these weights
according to their special needs or preferences.

Although the evaluation program can accept building layouts for any type of building, it is most
useful for the design of large institutional buildings with dozens of rooms of the same type, and with
hundreds of rooms overall spreading across a large region, and where many requirements have to be
satis�ed that are hard to keep track of by visual inspection. Our goal is to provide the architect
with means to verify e�ortlessly the client's speci�cations during design evolution, and thus have
more time and energy left to focus on aesthetic design issues.

References

[1] G. Bashein and P.R. Detmer. Centroid of a polygon. In Paul S. Heckbert, editor, Graphics
Gems IV, pages 3{6. AP PROFESSIONAL, 1994.

[2] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms, pages 514{531.
McGraw-Hill, 1990.

[3] G.S. Couch. Berkeley UNIGRAFIX 3.1- Data Structure and Language. Technical Report
UCB/CSD-94-830, University of California, Berkeley, September 1994.

[4] N. Cross. The Automated Architect. Pion, 1977.

[5] V.R. Dondeti and H. Emmons. Max-minmatching problems with multiple assignments. Journal
of Optimization Theory and Applications, 91(2):491{511, 1996.

[6] L. Downs. Interchange format for symbolic building design. Research in progress at University
of California, Berkeley.

[7] T.A. Funkhouser, S.J. Teller, C.H. S�equin, and D. Khorramabadi. UCB system for interactive
visualization of large architectural models. Presence: Special Issue on Teleoperators and Virtual

Environments, 5(1):13{44, Winter 1995.

[8] R. Hashimshony, E. Shaviv, and A. Wachman. Transforming an adjacency matrix into a planar
graph. Building and Environment, 15:205{217, 1980.

[9] J.C. Jones. Design Methods, pages 300{303. Van Nostrand Reinhold, 1992.

[10] Y. Kalay and E. Shaviv. A method for evaluating activities layout in dwelling units. Building
and Environment, 14(4):227{234, 1979.

[11] D. Kernohan, G. Rankin, G. Wallace, and R. Walters. Relationship models: analytical tech-
niques for design problem solving. Architectural Design, 43:275{278, May 1973.

28

[12] D. Kernohan, G.D. Rankin, G.D. Wallace, and R.J. Walters. PHASE: an interactive appraisal
package for whole hospital design. Computer Aided Design, 5(2):81{89, 1973.

[13] R. Lewis and C. S�equin. Generation of 3D building models from 2D architectural plans.
Computer-Aided Design, 30(10):765{779, 1998.

[14] T.W. Maver. A theory of architectural design in which the role of the computer is identi�ed.
Building Science, 4(4):199{207, 1970.

[15] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization : Algorithms and Complexity,
pages 248{255. Prentice Hall, 1982.

[16] C.H. S�equin and Y. Kalay. A suite of prototype CAD tools to support early phases of architec-
tural design. Automation in Construction, 7(6):449{464, 1998.

[17] E. Shaviv and D. Gali. A model for space allocation in complex buildings: A computer graphics
approach. Build International, 7(6):493{518, 1974.

[18] R. Th'ng andM. Davies. SPACES: an integrated suite of computer programs for accommodation
scheduling, layout generation and appraisal of schools. Computer Aided Design, 7(2):112{118,
1975.

[19] B. Whitehead and M.Z. Eldars. An approach to the optimum layout of single-storey buildings.
The Architects' Journal, 139(25):1373{1380, June 1964.

29

