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1 Introduction

The mixture of Gaussians is among the most enduring, well-weathered models of applied statistics. A
widespread belief initsfundamental importance has made it the object of close theoretical and experimental
study for over acentury. In atypical application, sample data are thought of as originating from various pos-
sible sources, and the datafrom each particular sourceismodelled by aGaussian. Thischoice of distribution
is common in the physical sciences and finds theoretical corroboration in the central limit theorem. Given
mixed and unlabelled data from a weighted combination of sources, the god is to identify the generating
mixture of Gaussians, that is, the nature of each Gaussian source — its mean and covariance — and a so the
ratio in which each sourceis present, known asits ‘ mixing weight’.

A brief history of the many uses of mixtures of Gaussians, ranging over fields as varied as psychology,
geol ogy, and astrophysics, has been compiled by Titterington, Smith, and Makov (1985). Their book outlines
some of the fascinating and idiosyncratic techniques that have been applied to the problem, harking back
to days of sharpened pencils and slide rules. Modern methods delegate the bulk of the work to computers,
and in their ranksthe most popular seems to be the expectati on-maximization (EM) agorithm formalized by
Dempster, Laird, and Rubin (1977). An explanation of this agorithm, along with helpful remarks about its
performance inlearning mixtures of univariate Gaussians, can befoundin thebook of Dudaand Hart (1973),
in an excellent survey article by Redner and Walker (1984), and in arecent monograph by Lindsay (1995).

The EM algorithm has much to recommend it, but even its most ardent supporters concede a drastic
deterioration in performance as the dimension of the data rises, especialy if the different clusters overlap.
Thisdegradation has been experimentally documented in many places and tendsto beregarded as yet another
example of ‘the curse of dimensionality’.

This paper describes a very simple agorithm for learning an unknown mixture of Gaussians with an
arbitrary common covariance matrix and arbitrary mixing weights, in time which scales only linearly with
dimension and polynomially with the number of Gaussians. We show that with high probability, it will learn
the true centers of the Gaussiansto within the precision specified by the user. Previous heuristics have been
unable to offer any such performance guarantee, even for highly restricted subcases like mixtures of two
spherical Gaussians.

The new agorithm worksin three phases. First we provethat it is possibleto project the datainto avery
small subspace without significantly increasing the overlap of the clusters. The dimension of this subspace
isindependent of the number of data pointsand of the origina dimension of the data. We show, moreover,
that after projection general ellipsoidal Gaussiansbecome almost spherical and thereby more manageable. In
the second phase, the modes of the low-dimensional distribution are found using a simple a gorithm whose
performance we rigorously analyze. Finally, the low-dimensiona modes are used to reconstruct the original
Gaussian centers.

2 Overview

2.1 Background

An n-dimensional Gaussian N (y; X2) has density function

) = G oo (50— TS - )

Although the density is highest at 1, it turns out that for large » the bulk of the probability mass lies far
away from thiscenter. Thisisthefirst of many surprisesthat high-dimensional spacewill spring upon us. A



pointx € R" chosen randomly from aspherical Gaussian IV (0; o%1,,) has expected squared Euclidean norm
E(||x — pl|?) = no?. Thelaw of large numbers forces the distribution of this squared length to be tightly
concentrated around its expected value for big enough . That isto say, dmost the entire distributionliesin
athin shell at distance o+/n from the center of the Gaussian! Thus the natural scale of this Gaussianisin
unitsof o/n.

It isreasonabletoimagine, and isborneout by experiencewith techniqueslikeEM (Duda& Hart; Redner
& Walker), that amixture of Gaussiansiseasiest to |earn when the Gaussiansdo not overl ap too much. Taking
cue from our discussion of N (p; 021,,), we adopt the following

Definition Two Gaussians N (y1, 01,,) and N (u2, o1,,) are considered c-separatedif |1 — pz|| > co/n.
More generally, Gaussians N (1, 1) and N (uz2, ¥3) inR” are c-separated if

H:ul - H?H Z C\/n maX(Amal’(El)7 Amaw(z}?))v

where A, (2) is shorthand for the largest eigenvalue of 3. A mixture of Gaussians is c-separated if its
component Gaussians are pairwise c-separated.

A 2-separated mixture corresponds roughly to amost completely separated Gaussians, whereas a mix-
ture that is 1- or 1/,-separated contains Gaussians which overlap significantly. We will be able to deal with
Gaussians that are arbitrarily close together; the running time will, however, inevitably depend upon their
radius of separation.

2.2 Theproblem of dimension

What makes this |earning problem difficult? In low dimension, for instancein the case of univariate Gaus-
sians, it is often possible to simply plot the data and visualy estimate a solution, provided the Gaussians
maintain a respectable distance from one another. This is because a reasonable amount of data conveys a
fairly accurate idea of the overall probability density. The high points of this density correspond to centers
of Gaussians and to regions of overlap between neighbouring clusters. If the Gaussians are far apart, these
modes themselves provide good estimates of the centers.

Easy agorithmsof thiskind fail dismally in higher dimension. Consider againthe Gaussian N (i1, 0%1,,).
We must pick 2°(") random points from this distribution in order to get just a few which are at distance
< 1404/n from the center! The datain any sample of plausiblesize, if plotted somehow, would resemble a
few scattered specks of dust in an enormous void. What can we possibly glean from such a sample? Such
gloomy reflections have prompted researchers to try mapping datainto spaces of low dimension.

2.3 Dimensionality reduction

The naive algorithm wejust considered requires at least about 2¢ data pointsto learn amixture of Gaussians
inR?, and thisholdstrue of many other simple algorithmsthat one might be tempted to concoct. Isit possible
to reduce the dimension of the data so dramatically that this requirement actually becomes reasonabl e?

One popular technique for reducing dimension is principal component analysis (PCA for regulars). It
is quite easy to symmetrically arrange agroup of & spherical Gaussians so that a PCA projection to any di-
mension d < (k) will collapse many of the Gaussians together, and thereby decisively derail any hope of
learning. For instance, place the centers of the (25 — 1)** and 2" Gaussians along the j** coordinate axis,
at positions ;7 and —j. The eigenvectors found by PCA will roughly be coordinate axes, and the discarding
of any eigenvector will collapse together the corresponding pair of Gaussians. Thus PCA cannot in gen-
eral be expected to reduce the dimension of amixture of & Gaussiansto below €2(k). Moreover, computing
eigenvectorsin high dimension isa very time-consuming process, fraught with numerical concerns.



A much faster technique for dimensionality reduction, which has received a warm welcome in the the-
oretical community, is expressed in the Johnson-Lindenstrauss (1984) lemma. The gist isthat any A data
pointsin high dimension can be mapped down to d = Hlog M i mensions without distorting their pairwise
distances by more than (1 + ¢). However, for our purposes this reduced dimensionis till far too high! Ac-
cording to our rough heuristic, we need 2¢ data points, and this exceeds M by many orders of magnitude.

We will show that for the particular case of mixtures of Gaussians, by using projection to a randomly
chosen subspace asin the Johnson-Lindenstrausslemma, we can map the dataintojust d = O(log k) dimen-
sions. Therefore the amount of datawe will need is only polynomial in k.

This might puzzle readers who are familiar with random projection, because the usual motive behind
such projectionsisto approximately preserve rel ative distances between data points. However, in our situa-
tion we expressly do not want this. We want most of the pairwise distancesto contract significantly, so that
the fraction of pointswithin distance Av/d of any Gaussian center in the reduced space R¢ is exponentially
greater than the fraction of pointswithin distance A/n of the same center in the original space R". At the
same time, we do not want the distances between different Gaussians to contract; we must make sure that
Gaussians which are initialy well-separated remain so when they are projected. These conflicting require-
ments are accommodated admirably by a projection to just O(log k) dimensions.

24 Thealgorithm

We are now in a position to present the algorithm. The user thoughtfully supplies: ¢, the accuracy within
which the centers are to be learned; &, a confidence parameter; and w,,;,,, the smallest mixing weight that
will be considered. Thesevaueswill be discussedin full detail inthenext section. The parameters M, d, I, p,
and ¢ depend upon the inputs, and will be determined later.

Sample S consistsof M datapointsin R”.

1. Select arandom d-dimensional subspace of the original space R, and project the datainto this space.
Thistakestimeonly O(Mdn).

2. Inthe projected space:
e For each datapoint = € S, let r,. be the smallest radius such that there are > p points within
distancer,, of z.
e Statwith S’ = S.
e Fori=1...k:

— Let estimate i bethe point 2 € S’ with the lowest r,.
— Find the ¢ closest pointsto this estimated center, and remove them from S”.

e For each i, let S; refer to the! pointsin .S which are closest to 7.
3. Let the (high-dimensional) estimate fi; be the mean of S; inR".
Thisalgorithmis very simple to implement.

25 Low-dimensional clustering

The data get projected from R™ to R¢ viaalinear map. Since any linear transformation of a Gaussian con-
veniently remains a Gaussian, we can pretend that the projected data themselves come from a mixture of
low-dimensional Gaussians.



The second step of the agorithm is concerned with estimating the means of these projected Gaussians.
Regions of higher density will tend to contain more points, and we can roughly imagine the density around
any datapoint z to be inversely related to radius ... In particular, the data point with lowest r,. will be near
the center of some (projected) Gaussian. If the Gaussians all share the same covariance, then this data point
will be close to the center of that Gaussian which has the highest mixing weight.

Once we have a good estimate for the center of one Gaussian, how do we handle the rest of them? The
problemis that one Gaussian may be responsible for the bulk of the data if it has a particularly high mixing
weight. All the data pointswith low r,, might come from thisone over-represented Gaussian, and need to be
eliminated from consideration somehow.

Thisisdone by growing awideregion around the estimated center, and removing from contention all the
pointsinit. Theregion should be large enough to remove al high-density pointsin that particular Gaussian,
but should at the same time |eave intact the high-density points of other Gaussians. The reader may wonder,
how can we possibly know how large thisregion should beif we have no idea of either the covariance or the
mixing weights? First, we pick the ¢ points closest to the estimated center rather than using a preset radius,
this accomplishes a natural scaling. Second, the probability of encountering a data point at a distance < r
from the center of the Gaussian grows exponentially with r, and this rapid growth tends to eclipse discrep-
ancies of mixing weight and directional variance.

Both the techniques described — choosing the point with next lowest r,. as a center estimate, and then
“subtracting” the pointsclosetoit—rely heavily onthe accuracy of spherical density estimates. They assume
that for any sphere in R¢, the number of data points which fall within that sphere is close to its expected
value under the mixture distribution. That thisisin fact the case follows from the happy circumstance that
the concept class of spheresin R? has VC-dimensiononly d + 1.

Finally, we mention that this low dimensional part of the algorithm works best on spherical Gaussians.
But here our method of projection helps us again, tremendously: even if we start with highly skewed dllip-
soidal Gaussians, the random proj ection will make them almost spherical!

2.6 Mappingback totheoriginal space

At this stage, projected centersin hand, we recall that our actual task was to find the Gaussian means in the
origina high-dimensional space. Well, thisisnot too difficult, at |east conceptually. For each low-dimensional
estimated center 7i¥, we pick the [ data pointsclosest to it in R?, call them S;, and then average these same
pointsin R™. We expect .S; to be relatively uncontaminated with points from other Gaussians (although we
cannot of course avoid the odd straggler), and thus its mean should closely approximate ;.

We completeour overview with onelast clarification. How exactly did the projection help us? It enabled
ustofind, for each Gaussian, a set of data points drawn mostly from that Gaussian.

2.7 Themain results

In the next section we will prove adimensionality reduction lemmaand then demonstrate the correctness of
the algorithm in the following simple but instructive case.

Theorem 1 If datais drawn from a mixture of & Gaussiansin R™ which is c-separated, for ¢ > 1/, and if
the smallest mixing weight is (1), and if the Gaussians are all spherical with unknown covariance matrix
o1, then with probability > 1 — 4, all the center estimates returned by the above algorithm are accurate
within L, distance eo/n. The reduced dimensionisd = O(log £) and the amount of data required is
M = OUog®1/(e5))

By building upon this proof, we will in the subsequent section arrive at the more general

4



Theorem 2 Suppose now that the Gaussians are no longer restricted to being spherical but instead have an
unknown common covariance matrix X2 with maximum and minimum eigenvalueso?,, ., o2 . respectively,

maz’ Y min

and eccentricity € = 0,,4:/0min. Then with probability > 1 — 4, the center estimates returned by the al-

gorithm are accurate within L, distance eo,,,q,+/n. If the eccentricity ¢ < O(%), then the reduced

dimensionisd = O(log £) and the number of data points needed is M = kO (og” 1/(<9)).

Our agorithm can in fact handle Gaussians which are arbitrarily close together. It isonly to curtail the
proliferation of symbols that we insist upon 1/,-separation in these theorems. The mixing weights and ec-
centricity are similarly unrestricted.

Finally, aword about the inputs: in addition to the usua ¢ (accuracy) and & (confidence) parameters, the
user is expected to supply alower bound w,,,;,, on the mixing weights which will be considered.

3 Spherical Gaussians

3.1 Notation
The following notation will be used consistently through the remainder of the paper.

€ Desired accuracy, supplied by user
1] Desired confidence, supplied by user

€0 Accuracy of spherical density estimates
M Overall number of data points

n Origina dimension of data

d Reduced dimension

k Number of Gaussians

N(pi;;%;)  Theit® GaussaninR”

w; Mixing weight of the i"* Gaussian

Winin Lower bound on the w;, supplied by user

¢, c* Lower bound on the separation of Gaussiansin the original and reduced spaces, respectively
N (ur,Xr) Projection of i Gaussian into the reduced space R¢
() Density of the projected mixture of Gaussians

o Some standard deviation radius

Vo (+) Density of N (0;0%1,) inR.

B(z;r) Sphere of radius - centered at

B(r';r) B(a;r) for some z at distancer’ from the origin
N Integer parameters needed by algorithm

p Parameter needed for analysis, related to ¢

In this section, wewill provethe correctness of our algorithm assuming that the Gaussians are spherical with
identical covariance matrices ¥y = - - - = X, = 021,.
3.2 Reducing dimension

Definition For apositivedefinite matrix 3, let A, (X) and A,.;,, (X) refer toitslargest and smallest eigen-
values, respectively, and denote by =(3) the eccentricity of the matrix, that is, v/ Az (3)/ Amin (2).

Thefollowing dimensionality reduction lemma appliesto arbitrary mixtures of Gaussians. Its statement
refers to the notion of separation introduced in the overview.



Lemma 1 (Dimensionality Reduction) For any ¢ > 0, let {(w;, u;, ;) } denote a c-separated mixture of
k GaussiansinR™, and let §; > 0 and ¢; > 0 designate confidence and accuracy parameters, respectively.
With probability > 1— é;, the projection of thismixture of Gaussiansonto arandom d-dimensional subspace
yidldsa (ey/T — ¢;)-separated mixture of Gaussians { (w;, u7, X7) } inR<, provided
2
d> i In k—
61 1
Moreover, A un (7)) < Apar(2:) and Ay (X)) > Ayin (X)), In particular therefore, e (X7) < ().

Proof. Consider asingle line segment in R™, of squared length L. If the origina space is projected onto
a random d-dimensional subspace, the squared length of this line segment becomes some >, of expected
vaue EL* = Ld/n. It was shown by Johnson and Lindenstrauss (1984) that P(L* < (1 — €)Ld/n) <
e~/ Their proof has been simplified by Frankl and Maehara (1988) and most recently by the author and
Gupta (1998).

We shall apply thistothe line segmentsjoining pairs of Gaussian centersintheorigina space. Thereare
less than &2 such segments. By the above discussion, using the value of d specified in the theorem, we find
that with probability > 1 — 1, in the projected space each new pair of centers i} and n; will satisfy

> (= el = pl*d/n
> (1 —e)(nmax(Nnaz (), Adnax(35)))d/n
> 02(1 — ¢1)dmax(Apaz(X;), Amas (X)),

i —

where the second line uses the fact that the origina Gaussians are c-separated. It followsthat the projected
mixtureis (cy/1 — ¢, )-separated, if we can show that A4 (3:) > Aas (35).

Thisisstraightforward. Write the projection, say P”, asad x n matrix with orthogonal rows. P sends
Gaussian (1, X2) inR" to (PT u, PTYP) inR%, whereby

ul (PTSP)u (PTo)T(PTSP)(PTv)
Amaz(PTEP) = Sl Sl A
(FIEP) = max— T e T (PToT(PTo)
(PPTo)TS(PPTv)
= max
veRr (PPTo)T(PPTv)
v

5%%% oTo Amaz(%)-

IN

(The denominator in the second line uses PY' P = 1;.) In similar fashion we can show that Amin (XF) >
Amin (2:), completing the proof. 1

Remarks (1) If two of the Gaussiansin the original mixture are particularly far apart, say ¢ f-separated for
some f > 1, then in the projected space they will be (¢ /1 — ¢;)-separated. Thiswill be useful to uslater.

(2) A projection onto arandom lower-dimensional subspacewill in fact dramatically reduce the eccentricity
of Gaussians, as demonstrated in the last lemma of this paper.

Corollary In order to ensure that the projected mixtureisat least 1/>-separated (that is, ¢* > 1/5) with prob-
ability > 1 — ¢/4, itisenough to choose



3.3 Crudedensity bounds

We need to ensure that every spherical region in the projected space gets approximately itsfair share of data
points. Thisisaccomplished effortlessly by VC dimension arguments.

Lemma 2 (Accuracy of density estimates) Let v(-) denote any density on R If the number of data points

seen satisfies
1 1 1
M >0 (—2 (dlog——l—log —))
€ € )

then with probability > 1 — §/4, for every sphere B C R?, the empirical probability of that sphere differs
from v(B) by a most ¢; that is, the number of pointsthat fall in B isintherange Mv(B) £ M.

Proof. For any sphere B C RY, let 15(z) = 1(z € B) denote the indicator function for B. The concept
class{1p : B € R?isasphere} hasVC-dimensiond+1 (Dudley, 1979). Therest followsfrom well-known
resultsabout sample complexity; detailscan befound, for instance, in the book by Pach and Agarwal (1995).
|

We will henceforth assume that M meets the conditions of thislemma and that all spherical density es-
timates are accurate within ¢y. Since al the Gaussiansin R” have covariance matrix o21,,, their projections
have covariance exactly o*1,;. Let v, (-) denote the density of a single Gaussian N (0; 021,) and let 7*(-)
denote the density of the entire projected mixture. We now examine a few technical properties of v,. Our
first goal is to obtain probability lower bounds which will be used to show that there are many data points
near the center of each Gaussian.

Lemma 3 (Crude density lower bounds) If 7 < 13 andd > 10,
@ v, (B(0; Tov/d)) > 7% and
(b) v, (B(rovVd; TO'\/L_i)) > 7

Proof. Let V; denote the volume of the unit ball in d dimensions. We will use the lower bound
7d/2 (27T)d/2
D(1+d/2) = 2(d/2)4/2

which follows from the observation T'(1 + k) < k*2=(=1) for k > 1. Now center a sphere at the mean of
the Gaussian. A crude bound on its probability massis

Vi =

e—(Tcr\/E)2/2cr2 -4 s
vy (B(0; ToVd)) > (W) (Va(rovd)?) > ?( e )2 >

Continuing in the same vein, thistime for a displaced sphere,

6—4(7’0\/3)2/202
Ve (B(rovd; Tav/d)) > (

27T)d/2gd

d
) (ValrovVd)?) > %( 2~ 47) 42 > 7
provided the stated conditionson ~ and d are met. 1

Next wewould like an ideaof how fast the probability mass of a sphere decreases asit moves away from
the center of a Gaussian, and of how this mass increases as the sphere grows.

Lemma 4 (Relative densities of different spheres)
(@ If z, 2" are pointsfor which ||z|| > rov/d and ||2']] = ||z]| + A, then



Vo (B(z;70Vd)) > vy (B(2; raV/d))e™ 127,
) Ifr4+s< %a\/ﬁthen

s ()

Proof. For the first bound, assume without loss of generality that the centers of the two spheres of equal
radiusliea ong the samedirection . Pair each pointz in B(z; ra+/d) withz +Awin B(z'; ra+/d). Writing
z = (x4, y), wefind that the density of the former point divided by that of the latter is

e~ 4wl /207 A’ 20 AY | srja
—(@at A HP) /22— P 202 =

since z,, > 0 by our lower bound on || z||.
For the second bound, notice that

d
r r
v, (B(0;r _—/ vy(z)dz _—( )/ I/U(- )d
( ( )) e B(0y) ( ) rLs VEB(0r+9) Y 1+ s Y

viathe changein variabley = x - “+£. Therefore

r

Ve (B(0;7 + s)) _ (r—l—s)d nyB(O;r-I—s) vy (y)dy
Jy

vo (B(0;7)) eB(r+s) Vo (U Ts) Ay

We will bound thisratio of integrals by considering a pointwiseratio. For any y € B(0;r + s),

vs(y) e—Ilvll? /202 N
= >
voly-72=) e (llP/20%)-(r/r+s)? = (r—l—s)

under the given conditionson r and s. I

3.4 Estimating the projected centers

We are now in aposition to provethat for an appropriate choice of the parameters p and ¢, the algorithmwill
find one data point close to each projected center. The value p used in the analysis that followswill turn out
to be proportional to €. To simplify calculations, wewill from the outset assumethat p < '/sandthatd > 10.

Lemma5If {7 +¢ < wominp?, thenfor each i, thereisadatapoint z € .S such that z isat distance at most
poy/d from p* and moreover, for any such point, > p data pointslie within distance pov/d of .

Proof. Inlight of the fact that al spherical density estimates are accurate within ¢,, we need only show that
WininVe (0; pax/a) > ¢g and W, Ve (,00\/3; pax/a) > 47 + co. Therest followsfrom Lemma 3. 1

Thislemma guarantees that in the projected space, there will be many points closeto each center, and in
fact, that for data points = within distance po+/d of any center, r,, < pov/d. We next need to show that 7,
will be significantly larger for points z which lie further from the center, at distance > 3pov/d.

Definition F = 1—e=20"d_ _1_¢=(1-40)%d/32 Settingd = O (log

Wmin

) guarantees F* > min{{, £p2d}.

02 Wmin



L emma 6 Suppose that for some radius r < po+/d, the sphere B(z; ) contains p data points, where = isa
point at distance > 3po+/d from wf and distance > ia\/ﬁ from the other projected Gaussian centers. Then
any point z within distance po+/d of ;¥ must have

T (B(z;r)) 2 2¢0 + 77 (B(w;7)),
provided ¢y < 1= 2.
Proof.
7~ (B(z; 7)) wivy (B(3paVd; 1)) + vy (B(YaoVd; 1))
wvy (B(povd; r))e_202d + v, (B(poVd; r))e_(i—/))%l/?

) —(1—4p)2d/32
wivy (B(z;71)) (6_20 44 67)

< 7 (B(zr)(1 - ),

IN A

IN

where the second and third lines are supplied by Lemma 4, and the last line uses the definition of F. The
stated condition on ¢, then yields

(B(zir) = 7 (Bleir) = 7 (Blrsr) o > (L~ o)

> 2
M Z «€0,

1-F
as promised. I

In order to satisfy the conditions of these last two lemmas, we adopt the following

Definitions p = Mwyip?(1 — L) and ¢ = £ 5.

The lemma above can be restated as follows: suppose data point = in the projected space is more than
3po+/d away from the closest center. Then any data point = within distance pov/d of that same center must
have r. < r,. Thisimpliesroughly that within any Gaussian, the lowest r,. values come from data points
which are within distance 3po+/d of the center.

A potentia problemisthat afew of the Gaussians might have much higher mixing weightsthan the rest

and consequently have a monopoly over small r, values. In order to handle this, after selecting a center
estimate we eliminate the ¢ points closest to it, where

Definition ¢ = w1, (B(0; %a\/ﬁ))M. Thisvaueisindependent of ¢ and can easily be computed from
d, using alookup table or some simple numerical technique.

It will turn out that the ¢ points closest to each center estimate must include al pointswithin aradius of
ia\/ﬁ of the actua projected center and no pointswhich are further than %a\/ﬁ from this center.

Lemma 7 For any point = within distance 3pa+/d of y7,

@ 7 (B(x; (2 +3p)oVd)) < & — €; and

(b) 7 (B(; (2 — 4p)avd)) > & + e,

provided that g < 5%+, p < g5, and d > 71n —2—. In other words, if T denotesthe ¢ points closest to z,

96" Wmin

B(u?;im@) C T C B(uf;(%—p)m@)-

Proof. In light of the condition on g, it is enough to show
205 (B(0; (£ +3p)0v/d)) < winvr (B(0; 20V/d)) and v, (B(0; (3= Tp)o/d)) > 3u,(B(0; 20/d)).



These bounds are immediate from lemma 4 and the stated conditionson p and d. 1
Remark Let us now assume d, p, and ¢, satisfy the various conditions of the above lemmas.

L emma 8 With probability > 1 — §/2, each center i chosen by the algorithm iswithin distance 3po+/d of
atrue projected center y..

Proof, by induction on the number of centers selected so far.

Referring back to the agorithm, the first center-estimate chosen is the point z € .S with lowest r,.. By
Lemma5, thisr,. < po+/d. Let u* bethe projected center closestto z. Sincethe Gaussiansare 1/,-separated,
x isat distanceat least ia\/ﬁ from al the other projected centers. By Lemma 6, we then seethat » must be
within distance 3pov/d of .

Say that at some stagein the algorithm, center-eﬁiAmaIesC“ have already been chosen, |C'| > 1, and that
these correspond to true centers C'. Select any y € C'; by the induction hypothesisthere isa j for which
lly — 13| < 3pav/d. S’ does not containthe ¢ pointsclosest toy. By Lemma7, thisremoves B(y*; 0+v/d)
from S’, yet no point outside B (u; (5 - p)a/d) isdiminated from S’ on account of .

Let 2 be the next point chosen, and let ;.7 be the center closest to it whichisnotin C'. We have seen that
= must be at distance at |east 2o/d from centersin C'. Because of the separation of the mixture, = must be
at distance at least ia\/ﬁ from all centers but 1. Again due to the separation of the Gaussians, al points
withindistance pov/d of wr remainin.S’, andtherefore = ispotentially one of these, whereupon, by Lemma,
r, < pov/d. By Lemma6 then, ||z — uf|| < 3povd. I

3.5 Mapping back into high dimension

We may now safely assume that in R9, each estimated center /i iswithin 3po+/d of the corresponding pro-
jected center 1. Theset S; consists of the [ data points closest to 1z in the reduced space. We will choose
I < psoasto congtrain S; to liewithin B(fit; pov/d) C B(u!;4pa+/d) (by the proof of Lemma 8, each
center-estimate has p data pointswithin a po+/d radius of it). Thefinal estimate fi; in R” is the mean of S;.

The random projection from R™ to R¢ can be thought of as a composition of two linear transformations:
arandom rotation in R™ followed by a projection onto the first d coordinates. Since rotations preserve 1o
distance, we can assume, for the purpose of bounding the ., accuracy of our final estimates, that our random
projection consists solely of a mapping onto the first d coordinates.

Think of the estimate fi; as consisting of two parts: itsfirst d coordinates, which constitute some low-
dimensiona vector closeto ¥, and itsremaining n — d coordinates. We have aready bounded the error on
thisfirst portion. How do we deal with the rest?

Let usfix attention on .S;. Wewouldlikeit to be the case that this set consists primarily of pointschosen
from the first Gaussian G = N (p1, 01,,). To thisend, we establish the following

Definitions 7; = pointsin S; drawn from the j** Gaussan GG;, and [; = |T}|. Let A; be the mean of the
pointsin7;. Andfor j > 11et f; = ||} — 15)|/(2o+/d) > 1. By theremark after Lemmal, ||pt; — i1 || <
cfio/n.

We will show that 5 isrelatively uncontaminated by pointsfrom other Gaussians, that is, lo + - - - + I,
issmall. Those pointswhich do come from 'y ought to average out to something near its mean ;.

Lemma 9 Randomly draw s points Yy, . .., Y, from Gaussian N (u1, 021,,). Then for any A > LS
—n/2
Y44 Y, sA7 -1
P it A s wl| > Aoy ) < € )
s sA2

10



Proof. Let X; = Y24 ~ N (0, 1,,). Themean (X, + - - -+ X,) hasdistribution N (0, 1 ,,), and its squared
L4 norm has moment-generating function ¢(¢) = (1 — %)‘”/2. By Markov’s inequality,

-nf2 sAZ—1 —n/2
o) <)) e ()
S S

where the last bound is obtained by choosing ¢t = £(1 — £-). 1

X4+ X,
P(H 1+ +
s

Now we can at last dispatch the proof of Theorem 1.
Lemma 10 With probability > 1 — ¢, forall 1 < i < k, ||t; — wi|| < eo/n, provided that

€ 4> 101 40ce and >l>128 1 ¢ | 82
= — — Max § — og —— ¢ .
P=3 - Ogewmn7 P=t=— € Whin 575
Proof. We will continue to focus upon p;. By Lemma 8, dl of .S, lies within distance 4po+/d of p% and
thusdistance at least (1 — 4p) f;0/d from any other projected center . Thisimpliesthat for agiven point
x € S,andj > 1,

wje~ (=40 1/

P (2 comesfromGy) < —2L¢ /5410, (1)

) <
P (2 comesfromG;) < wre P —

The mean of the pointsin S is

LA+ -+ LAy L l;
=—=A —I—E <A,
L4+ A

Assumewithout lossof generality that 1y = 0. We have aready seen that thefirst d coordinates of the points
in S liein B(0; 4po+v/d) and therefore contribute at most 4pov/d < Leo/n to ||mean(Ss)||. We now turn
to the remaining coordinates. Because the Gaussians are spherical, each point in Sy from &'; looks like a
random draw from N (u;; 0%1,,) asfar asitslast n — d coordinates are concerned; that is, the values at these
coordinates are not correlated with the first d coordinates. Thuswe may pretend for our purposes that each
pointin .S, isgenerated by the following process:
- Pick aGaussian G, 1 < 7 < k, according to the probability () above.
- Pick arandom point from this Gaussian.

The L, distance between 1. and the mean of .Sy, considering only thelast » — d coordinates, isthen at
most

l,
Error < | Ail|+ 3 (sl + 14, = wsl) 2.

J>1
We will bound these terms one at a time (bear in mind that we are still only talking about the last » — d
coordinates).
(@) For j > 1, weknow ||| < c¢fjo\/n. By Lemma9, usings = 1,
)
P(3j > 1:1; > 0and||4; — ui]| > 20v/n) < ke™? < e
(b) The probability that apointin .S; comesfrom G, j > 1,is(}) a most %e—ffd/lo < 47607];]2 A quick

Chernoff bound then tells us that

11



, [ $
P(EI]>1:7] 40f2(1—|-f])) <

(c) We have dready seenin (b) that that chance that arandom pointin Sy isnot from G isat most e;i/ ;0
=. Therefore, with the assistance once again of a Chernoff bound, /; isat least % with probability > 1 — %
Inwhich case, by Lemma, P(||A|| > eoy/n/4) < e—”/2 <.

(d) Putting all of these together, with probability > 1 — and smcec > 1,

2k’

eo/n
b

Error <
- 2

(fjcon/n+ 20+/n)

oo )<

as required. Repeating thisfor the remaining estimates i; then yieldsthe theorem. 1
Remark Assuming that ¢ > 1/ and w,,;, = (1/k), the final choices of reduced dimension and sample
complexity are

d=0 (108; ?) and M = 08" 32)
€

4 General Gaussians

4.1 Notation

The agorithmwhose performance on spherical Gaussianswe havejust settled al so workswell with arbitrary
covariance matrices. The proof of this generd case is more involved, but follows approximately the same
outline. We start with another battery of notation which builds upon thefirst.

by Common n x n covariance matrix
Omax Amaa&(z)

Ormin Amin (2)

e Eccentricity 6,42 /0 min

Yo s Oy € Similar, but in the projected space
v(-) N(0;14)

Vo (*) Asbefore, N (0; 0%1y)

vee () N(0; %)

T A useful linear transformation in R
|-l Mahalanobis distance, ||z||x = VaTX- 1z
E(z;r;Y) Ellipsoid{z : ||z — z||x < r}

We have already shownthet o, < 0z, 0% > Omin, ade™ < e, Infact, it will turn out that £*
isasmal constant even if ¢ is large (depending upon how much larger » is than d), and this will help us
tremendously.

4.2 Crudedensity bounds

The dimensionality reduction lemma of the previous section appliesto any mixture of Gaussians and hence
needs no revision. The next step is to get bounds on the probability mass assigned to different spherical
regionsin the projected space.

12



Since the Gaussians we are now considering have ellipsoidal contours, it is not easy to get tight bounds
on the chance that a point will fall in a given sphere. We will content ourselves with rather loose bounds,
obtained viathe mediation of alinear transformation 7" which converts ellipsesinto spheres.

Fix some d x d covariance matrix X*, and writeit as B D B, where B is orthogonal and D isdiagonal
with the eéigenvalues of ©* asentries. DefineT = BT D~1/2B; noticethat T isits own transpose. Thetable
below hints at the uses to which 7" will be put.

InR?before T is applied InR? after T is applied
Gaussian N (p*; %) Gaussian N (T'u*; 1)
Point 2 such that ||z||z« = r | Point7z suchthat ||Tz|| = r
Ellipse £/(z; r; %) Sphere B(1'z;r)

Our first step will betorelatetheellipsoidal density v+ tothemore manageable . Asusual, weareinterested
in the probability mass assigned to spherical regions. Pick aparticular B(z; ) and define s to be || z|| =+, the
Y *-Mahaanobis distance from z to the origin. Since the standard deviation of >2* in different directionsis
constrained to lieintherange [0 ., o7, ..], itisperfectly plausible that

min? Y maz

V(B(s;1/0500)) < vex(B(zir)) < v(B(sir/on,,))-

maxr

Thisis proved in the following lemma, in a slightly different but equivalent form.

Lemma 11 (Relating el lipsoida Gaussian density estimatesto spherical ones) Pick any point z and any radius
r. Writing s = ||z||x+,

(B(507,4537)) S vss(B(zi7)) < vox

man

(B(sali.ir)).

Vox min

max

Proof. Thisiseasy if T' is used appropriately. For instance, because E'(z;r /0, ,..: ) C B(z;r) wecan
write

v (B 0) 2 v (B (5 13) ) = v (Bl
g
where the final equality is aresult of applying the transformation o, ... 7. 1

Similarly we can bound the rel ative densities of displaced spheres. Consider two spheres of equal radius
r, one closeto the center of the Gaussian, at Mahalanobis distance s, and the other at some distance s + A.
By how much must the probability mass of the closer sphere exceed that of the farther one, given that they
may lie in different directionsfrom the center? Although the spheres have equal radius, it might be the case
that the closer sphereliesin adirection of higher variance than the farther sphere, in which caseitsradiusis
effectively scaled down. The following lemma gives a bound that will work for al spatial configurations of
the spheres.

Lemma 12 Pick any point z and set s = || z||x+. If ||2'||x* > s+ A forsome A > 0 andif radiusr < so,,.
then

v« (B(z;7)) o (A4 25)(A — 2se™)
vex (B(2';7)) - p{ 2 } ‘

Proof. We will use the fact that Mahalanobis distance satisfies the triangle inequality and that ||u||x= <
||| /o, For any point z in B(z;r),

13



r b
— < s+ s,
min

where the last inequality follows from our restriction on r. Similarly, for any point 2’ in B(z'; r),

[ellex < llzllss + [lo = zlls- < s+

-
Je'llse > 12 lse = 1 = #llse > s+ A = =— > A= s(=" — 1),

Since vy« (y) isproportional to exp(—||y||%./2) for any point y, the ratio of probabilitiesof the two spheres

must be at |east

e (UHem)?/2 (A = 255") (A 4 25)
—(A—s(er—1)2j2 ~ FP 9 ’

as anticipated. 1

Finally we need a bound on the rate at which the probability mass of the sphere B(0; r) grows asits
radiusincreases.

Lemma 13 If radii r and s satisfy r + s < Lo7, v/d then

vs«(B(0;7 4+ ) r+ s\ Y?
w2 ()

Proof. The proof for the spherica case can quite readily be adapted to this. Only one bound needs to be
changed: for any y € B(0;r 4 s), weknow ||y||x+ < (r 4+ s)/o%,;, adso

d
L )R, gl R N L B /2
e AN N A R R C O

giventhe conditiononr + s. 1

4.3 Estimating the projected means

The technical lemmas above alow us to approximately follow the outline of the spherical case. Denote by
w! the means of the projected Gaussians and by ~* their common covariance matrix. Let 7* be the density
of the projected mixture of Gaussians.

Lemma 14 1f £ + ¢y < w,inp? then for each 4, thereis at least one datapoint = in E(u}; pv/d; ¥*), and
for any such z, at least p datapointsliein B(z; pa , \/d).

Proof. Sinceall thedensity estimates are accurate within ¢y, weneed only Show w.,.,;,, vs:» (£(0; ,o\/c_l; ) >
€0 A Wy vz (B(23 p070 V) > & + €0 if [|2||n+ < pV/d. Transformation 7 and Lemma 11 convert
statements about vy« into statements about v; in particular,

v (E(0: pVd: X)) = v(B0: VD)) and  vse (Bl p0y 0, V) 2 v(B(pVd: pVd).
Therest followsfrom Lemma 3. 1

Next we make sure that in the projected space, each estimated center is within Mahalanobis distance
(32 4 1)pV/d of itstrue value. Thefirst step towards thisis showing that data pointswhich lie outside this
range, and which are far away from the other Gaussians, have low density spheres around them. We start by
defining a quantity which will be needed later.

14



2 Wmin 2e*2

d > 10e™ log —— weensure F' > min{y, g=*p*d}.

® ® L %2 1_ %2, 9_x3 .
Definition F = 1 — exp (—5 (32 +2)”2d) — 1 _exp (—(4+ PG p)d). By making sure that

L emma 15 Suppose the ball B(z;r) contains > p points, for some radiusr < po,,,+/d and some point z
such that (1) ||z — 7 ||s» > (32" + 1)pv/d; and (2) [l — 2| > o7,V forall j # i.

Pick any point z € E(u5; pv/d; ¥*); then

T(B(z:7)) > 260 + 7 (B(w; 1)),

provided ¢y < 5 F M

Proof. Theconditionsonz imply ||z — 7 ||s+ > 7= "”"\/_>

—46 ax.

foral j # i. Therefore, by Lemma 12,

4*2

T*(B($7T‘)) = wil/z*( x_lu“ ‘|’Zw]1/2* $—,u;7r))
J#
wivss (B(z — iy r))e G+ VD) /2

e (B(z — i r)) e (A2 00 VA ((1/4672) = p=22" ) /) /2

wivgs (B(z — pi5r)) (1 - F)
©(B(z;r)) (1 - F)

IN

IAN A

Therest follows aong the lines of Lemma 6. I

After estimating a center in the projected space, we must eliminate from S’ al the high-density pointsin
itsvicinity. We will simply pick the ¢ points closest to it, and guarantee that thisincludesat least the central
B(0; 7507,,,v/d) of the Gaussian and nothing outside the central B(0; 5507,,,v/d). Thistime round we
adopt the following
Definitions p = Mw,inp?(1 - £), 60 = £ 557, and ¢ = w,,:,v(B(0; 55 v/d)) M. Asbefore ¢ can easily
be computed, given d /2.

Lemma 16 Pick any point a for which ||z — s HE* < p(32* + 1)3/d. Then

(8 7 (B(#: (7 + p=* (3" + 1)) 07, V) < 7 — o and

(b)ﬂ- ( ( (25 (35 +2)) max\/a)) = M +€0’

prowdedthat 0 < 3379 < ggeem and d > 8log 2

As a consequence, the ¢ points closest to = includeal data pointswithin distance o7, v/d of x and no
data point whichis more than (X — p)o7,.,v/d away from ;.

Proof. We rewrite g as M w,;, v+ (E(0; 22V/d; ©*)) and notice that

WminlVy* (B(O 83* O-mzn\/g)) S

Statement (a) would follow from

v (B(O: (g + p=* (32" 4+ 1)o7, V) < 2% (B(0; e, V),

and for (b) it is enough to check that
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Swmin

Wiz (B0 (ke — p(62 4 3))0%0, VD)) 2 2o s (B(0; g 070 VD).

These are direct consequences of Lemma 13 and the stated conditions. I

Remark Assume henceforth that the various parameters (p, ¢, M, d, p) are set in accordance with the speci-
fications above.

The proof of Lemma 8 continuesto be valid in this more general case, and givesus

Lemma 17 With probability > 1 — §/2, for every i < k, ||fif — uf||s+ < (35 + 1)pVd.

4.4 Back in high-dimensional space

The random projection from R™ to R? can be thought of as a composition of two transformations: arandom
rotationinR" followed by a projection onto thefirst d coordinates. Sincerotationspreserve L, distance, and
our purposeis to bound the accuracy of our center estimatesin terms of 75 distance, we will assumefor the
next few lemmas that the random projection consists solely of selecting thefirst d coordinates. We will write
high-dimensional pointsin the form (z, y) € R? x R"~%, and will assume that each such point is projected
downto z.

The covariance matrix > can be written in the form

> >
- ( TT Ty ) 7
Eyl’ Eyy
with 3., = 3* being the covariance matrix of the projected Gaussians. What is the correlation between the
x and y components of pointsdrawn from Gaussians with covariance >.?

Fact If apoint drawn from N (0; X) has z asitsfirst d coordinates, thenitslast n — d coordinates have the
distribution N (Az; C'), where A = 3, % ' and C = &, — 3,, X715, . Thiswell-known result can be
found, for instance, in Lauritzen’s (1996) book on graphical models.

We will need to tackle the question: for apoint (z, y) drawn from N (0; ¥), what is the expected value
of ||y|| given ||z||? In order to answer this, we need to study A abit more carefully.

Lemma 18 ||Az|| < 0paz||z||sx/n/d for any = € RY.

Proof. A = %, %7} isa(n— d) x d matrix; divideitinto 5 — 1 squarematrices By, . . ., B,,/,_; by takingd
rowsat atime. Fix attention on one such B;. Therowsof B; correspond to some d consecutive coordinates
of y; call these coordinates ~. Then we can write B; — EZGEE;;. It is well-known — see, for instance, the
textbook by Horn and Johnson (1985), or consider the inverse of the 2d x 2d positive definite covariance
matrix of (z,z) —that (3., — ¥,.X2'3.,) is positive definite. Therefore, for any u € R,

uTEmu > uTExZEZ_ZIEZl,u.
For any v € R¢, chooseu = X7 !v so that

[Bioll*_  [IBiv]l?
/\max(zzz) - o2

maxr

2 Tv—1 -1 T T pTv—-1
|o]|$e = v X Y v =u" Yppu > v By X7 Bjv >

Therefore || B;v|| < 0umaz||v||s*. The pieces now come neatly together,

[Az]? = | Bix]|* + -+ [|Bujamazll* < 25000 0 ll23e,
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and thelemmais proved. 1

Define S;,G;,T;, A;, f; and [; asin the spherical case (for the definition of f; use o}, inlieuof o),
and focus attention upon 5. They coordinates of pointsin7; C .S ook roughly like random draws from
thedistribution N (A(zi7 — 7); C'). Can we bound their average?

Lemma 19 Assumep < 5 and! < p. Forany j > 1, A; — u; hasthe same distribution as (X, AX +
C'2E,), where X isarandom variablewith || X || < [|uf — || + 507, V/d, and E,, isthe mean of m
i.i.d. N(0;1,—_4) random variables.
Proof. Assumefor the sake of conveniencethat 1:; iszero. Inthelow-dimensional space, forcing ! < p guar-
anteesthat all of S; lieswithin po,,.v/d of ¥, and therefore within p(3c* 4 2) o7, . .V/d < 5e*pat, ../ d <
S V/d Of pif.

Recall that 7’; consists of those pointsin.S; which come from Gaussian (¢;. For our purposes, we can
pretend that each point (X, Y;) € T isgenerated in the following fashion:
- Pick X; € B(uy; £07,,,,V/'d) C R, according to an unknown distribution.
- Choose Y; ~ N(AX;; ().
In this manner we choose /; points { (.X;, Y;) }, with mean value some (X, Y'). The range of the X; coordi-
nates constrains || X || to be at most ||} — p}|| + § o* . +/d. To understand the distribution of Y, we notice

(Y; = AX;) ~ CY2N(0, I,,_q), and taking averages, Y ~ AX + C'/2E; .1
Armed with this result we can finally rework the last lemma of the spherical case.

Lemma 20 With probability > 1 — ¢, foral 1 < i < k, [|fti — pi]] < €0umazv/n, provided that

64c2e*?

€Wmin

d>121n

2
, and l>max{48 18 ——1n &}

€ Wmin )
Proof. \We observed in the previous lemmacthat in low dimension, all of S; lieswithin 5¢*po?, . .v/d of uf,
and therefore at distanceat least (3 — 5¢*p) f;07,,,.v/d fromany other projected center ;..

Fix any point 2 € Sy, andany j > 1. Applying the general principle that U”L” < lullg < UL““ , we
(12 — 5¢*p) f;+/d and therefore

then know ||z — u¥||z+ < 5e*2pv/d and ||z — il >

L_5e*p)2f2d/2 f2d
2 J W
LT, (1)

o
P (z comesfrom (7;) < i

P(z comesfromGy) <
wye—(5s*2p)2d/2 ( 1) < Wonin

The difference between 111 and the mean of .Sy, which we hopeis closeto zero, is given by

mean(.5y) — (ZA ;)ul = Z(Aj—uj)lj“rzwj—m)ljj-

i=1 i=2

The previous two lemmas immediately bound the 7., norm of this expression by

k k
l]‘ " % € Omaz [T 1/2 ) l]
Error < ;7{(‘% il + o) (1 2222 ) Bl + 3 - il
1/2 6Umcwa’\/_ by
< CYER| A+ ———— 5 (2868 fi- l) O a1,

i>1
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where F is, as before, the mean of [ i.i.d. N (0; /,,_4) random variables. We'll bound these terms one at a
time.

(@ SinceC = ¥, — %, %13, and each of thesetwo right-hand termsi s positivesemidefinite, .. (C') <
Amae(Syy) < 02, and therefore ||[CYV2E)|| < 0,00 EY]|. Lemma 9 assures usthat if [ > 2% then
P((|Eill > §v/n) < e/t <

(b) The probability that a point in .S, comes from G is (i) at most %e‘fﬁd/” < 64;5:2@2- A simple
Chernoff bound guarantees that:

{: w;e )
P(3j>1:2 J < —
( R T 16cg*fj> =4k

given the condition on /.
The lemma follows by applying these two bounds to the error expression. I

Remark If w,,,;, = Q(%) then we need to use reduced dimension d = O(** log f—é) and samplesize M =
k0(5*210g2 1/ed).

4.5 Boundingtheeccentricity of projected elipsoids

Our algorithmworks best when the projected Gaussians have eccentricity closeto one. We will now see that
even if the original Gaussians are highly skewed, random projection will make them almost spherical.

Once again, think of the random projection as arandom rotationin R”, represented by some orthogonal
matrix U™, fol lowed by aprojection P ontothefirst d coordinates. Thehigh-dimensional covariancematrix
Y has positiveeigenvalues Ay < --- < A, with eccentricity ¢ = A, /Ay > 1 and average variance A =
L+ A,

Pick any unit vector = € R?, and let V(z) = 27 ¥*z be the variance of the projected Gaussiansin
direction z. We will show that ¥* is close to the spherical covariance matrix Al by proving V(z) ~ A for
all directions .

Lemma 21 For any unit vector = € RY, V(z) has the same distribution as "%, \;vZ, where v is chosen
uniformly at random from the surface of the unit spherein R”. Therefore EV (z) = A, over the choice of
random proj ection.

Proof. Letthed x n matrix P represent projection ontothefirst d coordinates. ThenX* = (UP)TS(U P),
and on account of U we may assume X is diagonal, specificaly ¥ = diag(Ay, ..., A,). For any direction
z € RLV(2) = 2T¥%e = (P2)T(UTSU) (Pz). Since Y isdiagona,

(UTSU)y; = Z MeUriUg;
k=1

whereby

n

V(z) = > (Pa)i(Pa);(UTSU);

7,75=1

d n n d 2
— Z i Z/\kUkiUkj = Z/\k (Z inlﬂ») .
k=1 k=1

7,75=1 =1
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We can without loss of generality assume that = lies along some coordinate axis, say the very first one, in
which case

Vie) =Y NUJ.
=1

Since UT isarandom orthogonal matrix, its first row (U1, ..., Uyr) isarandom unit vector. I

We now have a simple formulation of the distribution of V' (z). For any given z, this valueis likely
to be close to its expectation because it is the sum of n amost-independent bounded random variables. To
demonstrate V (z) ~ A simultaneously for al vectors = on the unit sphere in R¢, we will prove uniform
convergence for a carefully chosen finite cover of this sphere.

Lemma22Forany 0 < ¢ < 1,ifn > O(i—;(log L+dlog %)), then with probability > 1 — J, the eccentricity
¢* of the projected covariance matrix isat most 1 + ¢. In particular, if the high-dimensiona eccentricity < is
at most O(%) then with probability at least 1 — §, the projected Gaussians have eccentricity ¢* < 2.

Proof. By considering moment-generating functions of various gammadistributionsasin Lemma9, we can
show that for any particular z and any € € (0, 1),

P(|V(z) = Al > eX) <exp (=Q (né*/e?)) .

Moreover, V (y) cannot differ too much from V' (z) when y lies close to z: using the expression for V ()

found in the previouslemma, with «* as shorthand for (U1, . .., Uiq),
V(z) = V)l < D Xi|(uf-2)* = (uf - y)?|

=1

= Y Al @yl (- y)l
=1

< D oAl yll - lle =yl
=1

<

2 [lz —y] (Z /\iHusz) :
=1

The fina parenthesized quantity can be shown to be close to its expectation dA (perhaps we should point
out that E[ju}||> = £ since u? consistsof thefirst d coordinates of arandom unit vector in R™). Choosing
|z —y|| <O(5) will thenensure |V (z) — V (y)| < eA.

Bounding V' (z) effectively bounds V' (y) for y € B(x;0(5)). How many points z must be chosen to
cover the unit sphere in this way? A geometric argument — see, for instance, Gupta (1999) — shows that
(O(£))? pointswill do the trick, and completes the proof. I

5 Infuture
We have described an extremely simple and provably correct algorithm for learning the centers of an un-

known mixture of Gaussians with shared covariance matrix. This core combinatoria problem having been
solved, we will in a companion paper examine some practical issues that arise in the common use of such
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mixture models. Wewill show how to estimate the mixing weights and covariance matrix, so asto permit the
computation of likelihoods, and then discuss experimentswhich compare our algorithmto three aternatives:
EM by itself, EM with principal component analysis, and a promising new option, EM preceded by random
projection.

What important theoretical questionsremain?

1. Our agorithm will work when different clusters have differing covariances, provided these matrices
have approximately the same trace. Can this qualification be removed so that arbitrary mixtures of
Gaussians can be learned?

2. We are able to learn a mixture of & Gaussians within precision e using £°(°s1/<*) data points. Is it
possibleto improve this sample complexity to just (%)O (1), through the clever use of some heuristic
like"agglomerative clustering” (Duda& Hart)? A probabilisticanaysisof such clustering techniques
islong overdue.

3. What happens when the data do not come from a mixture of Gaussians? Our a gorithm has to accom-
modate sampling error and therefore it will perform well on clusters which are close to Gaussian. In
more general situations, the problem of finding the centersis of course no longer well-defined. How-
ever, Diaconis and Freedman (1984) have shown, roughly, that many natural distributionsin high di-
mension ook approxi mately Gaussian when projected onto arandom line. Thismight makeit possible
to use our algorithm to cluster datafrom quite generic non-Gaussian mixture distributions: randomly
project the data into a subspace, learn the resulting mixture of almost-Gaussians, and then apply this
clustering to the high-dimensional datal
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