
LEARNING MIXTURES OF GAUSSIANS

Part I: Theory

SANJOY DASGUPTA

Report No. UCB/CSD-99-1047

May 1999

Computer Science Division (EECS)
University of California
Berkeley, California 94720



1 Introduction

The mixture of Gaussians is among the most enduring, well-weathered models of applied statistics. A
widespread belief in its fundamental importance has made it the object of close theoretical and experimental
study for over a century. In a typical application, sample data are thought of as originating from various pos-
sible sources, and the data from each particular source is modelled by a Gaussian. This choice of distribution
is common in the physical sciences and finds theoretical corroboration in the central limit theorem. Given
mixed and unlabelled data from a weighted combination of sources, the goal is to identify the generating
mixture of Gaussians, that is, the nature of each Gaussian source – its mean and covariance – and also the
ratio in which each source is present, known as its ‘mixing weight’.

A brief history of the many uses of mixtures of Gaussians, ranging over fields as varied as psychology,
geology, and astrophysics, has been compiled by Titterington, Smith, and Makov (1985). Their book outlines
some of the fascinating and idiosyncratic techniques that have been applied to the problem, harking back
to days of sharpened pencils and slide rules. Modern methods delegate the bulk of the work to computers,
and in their ranks the most popular seems to be the expectation-maximization (EM) algorithm formalized by
Dempster, Laird, and Rubin (1977). An explanation of this algorithm, along with helpful remarks about its
performance in learning mixtures of univariate Gaussians, can be found in the book of Duda and Hart (1973),
in an excellent survey article by Redner and Walker (1984), and in a recent monograph by Lindsay (1995).

The EM algorithm has much to recommend it, but even its most ardent supporters concede a drastic
deterioration in performance as the dimension of the data rises, especially if the different clusters overlap.
This degradation has been experimentally documented in many places and tends to be regarded as yet another
example of ‘the curse of dimensionality’.

This paper describes a very simple algorithm for learning an unknown mixture of Gaussians with an
arbitrary common covariance matrix and arbitrary mixing weights, in time which scales only linearly with
dimension and polynomially with the number of Gaussians. We show that with high probability, it will learn
the true centers of the Gaussians to within the precision specified by the user. Previous heuristics have been
unable to offer any such performance guarantee, even for highly restricted subcases like mixtures of two
spherical Gaussians.

The new algorithm works in three phases. First we prove that it is possible to project the data into a very
small subspace without significantly increasing the overlap of the clusters. The dimension of this subspace
is independent of the number of data points and of the original dimension of the data. We show, moreover,
that after projection general ellipsoidal Gaussians become almost spherical and thereby more manageable. In
the second phase, the modes of the low-dimensional distribution are found using a simple algorithm whose
performance we rigorously analyze. Finally, the low-dimensional modes are used to reconstruct the original
Gaussian centers.

2 Overview

2.1 Background

An n-dimensional Gaussian N(�; �) has density function

p(x) =
1

(2�)n=2j�j1=2 exp
�
�1

2
(x� �)T��1(x� �)

�
:

Although the density is highest at �, it turns out that for large n the bulk of the probability mass lies far
away from this center. This is the first of many surprises that high-dimensional space will spring upon us. A
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pointx 2 Rn chosen randomly from a spherical GaussianN(0; �2In) has expected squared Euclidean norm
E(kx � �k2) = n�2. The law of large numbers forces the distribution of this squared length to be tightly
concentrated around its expected value for big enough n. That is to say, almost the entire distribution lies in
a thin shell at distance �

p
n from the center of the Gaussian! Thus the natural scale of this Gaussian is in

units of �
p
n.

It is reasonable to imagine, and is borne out by experience with techniques like EM (Duda & Hart; Redner
& Walker), that a mixture of Gaussians is easiest to learn when the Gaussians do not overlap too much. Taking
cue from our discussion of N(�; �2In), we adopt the following

Definition Two GaussiansN(�1; �
2In) andN(�2; �

2In) are considered c-separated if k�1��2k � c�
p
n.

More generally, GaussiansN(�1;�1) and N(�2;�2) inRn are c-separated if

k�1 � �2k � c
p
nmax(�max(�1); �max(�2));

where �max(�) is shorthand for the largest eigenvalue of �. A mixture of Gaussians is c-separated if its
component Gaussians are pairwise c-separated.

A 2-separated mixture corresponds roughly to almost completely separated Gaussians, whereas a mix-
ture that is 1- or 1=2-separated contains Gaussians which overlap significantly. We will be able to deal with
Gaussians that are arbitrarily close together; the running time will, however, inevitably depend upon their
radius of separation.

2.2 The problem of dimension

What makes this learning problem difficult? In low dimension, for instance in the case of univariate Gaus-
sians, it is often possible to simply plot the data and visually estimate a solution, provided the Gaussians
maintain a respectable distance from one another. This is because a reasonable amount of data conveys a
fairly accurate idea of the overall probability density. The high points of this density correspond to centers
of Gaussians and to regions of overlap between neighbouring clusters. If the Gaussians are far apart, these
modes themselves provide good estimates of the centers.

Easy algorithms of this kind fail dismally in higher dimension. Consider again the GaussianN(�; �2In).
We must pick 2O(n) random points from this distribution in order to get just a few which are at distance
� 1=2�

p
n from the center! The data in any sample of plausible size, if plotted somehow, would resemble a

few scattered specks of dust in an enormous void. What can we possibly glean from such a sample? Such
gloomy reflections have prompted researchers to try mapping data into spaces of low dimension.

2.3 Dimensionality reduction

The naive algorithm we just considered requires at least about 2d data points to learn a mixture of Gaussians
inRd, and this holds true of many other simple algorithms that one might be tempted to concoct. Is it possible
to reduce the dimension of the data so dramatically that this requirement actually becomes reasonable?

One popular technique for reducing dimension is principal component analysis (PCA for regulars). It
is quite easy to symmetrically arrange a group of k spherical Gaussians so that a PCA projection to any di-
mension d < 
(k) will collapse many of the Gaussians together, and thereby decisively derail any hope of
learning. For instance, place the centers of the (2j � 1)st and 2jth Gaussians along the jth coordinate axis,
at positions j and �j. The eigenvectors found by PCA will roughly be coordinate axes, and the discarding
of any eigenvector will collapse together the corresponding pair of Gaussians. Thus PCA cannot in gen-
eral be expected to reduce the dimension of a mixture of k Gaussians to below 
(k). Moreover, computing
eigenvectors in high dimension is a very time-consuming process, fraught with numerical concerns.
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A much faster technique for dimensionality reduction, which has received a warm welcome in the the-
oretical community, is expressed in the Johnson-Lindenstrauss (1984) lemma. The gist is that any M data
points in high dimension can be mapped down to d = 4 logM

�2 dimensions without distorting their pairwise
distances by more than (1 + �). However, for our purposes this reduced dimension is still far too high! Ac-
cording to our rough heuristic, we need 2d data points, and this exceeds M by many orders of magnitude.

We will show that for the particular case of mixtures of Gaussians, by using projection to a randomly
chosen subspace as in the Johnson-Lindenstrauss lemma, we can map the data into just d = O(log k) dimen-
sions. Therefore the amount of data we will need is only polynomial in k.

This might puzzle readers who are familiar with random projection, because the usual motive behind
such projections is to approximately preserve relative distances between data points. However, in our situa-
tion we expressly do not want this. We want most of the pairwise distances to contract significantly, so that
the fraction of points within distance �

p
d of any Gaussian center in the reduced space Rd is exponentially

greater than the fraction of points within distance �
p
n of the same center in the original space Rn. At the

same time, we do not want the distances between different Gaussians to contract; we must make sure that
Gaussians which are initially well-separated remain so when they are projected. These conflicting require-
ments are accommodated admirably by a projection to just O(log k) dimensions.

2.4 The algorithm

We are now in a position to present the algorithm. The user thoughtfully supplies: �, the accuracy within
which the centers are to be learned; �, a confidence parameter; and wmin, the smallest mixing weight that
will be considered. These values will be discussed in full detail in the next section. The parametersM; d; l; p,
and q depend upon the inputs, and will be determined later.

Sample S consists of M data points inRn.

1. Select a random d-dimensional subspace of the original spaceRn, and project the data into this space.
This takes time only O(Mdn).

2. In the projected space:

� For each data point x 2 S, let rx be the smallest radius such that there are � p points within
distance rx of x.

� Start with S 0 = S.

� For i = 1 : : :k:

– Let estimate b��i be the point x 2 S 0 with the lowest rx.

– Find the q closest points to this estimated center, and remove them from S 0.

� For each i, let Si refer to the l points in S which are closest to b��i .

3. Let the (high-dimensional) estimate b�i be the mean of Si inRn.

This algorithm is very simple to implement.

2.5 Low-dimensional clustering

The data get projected from Rn toRd via a linear map. Since any linear transformation of a Gaussian con-
veniently remains a Gaussian, we can pretend that the projected data themselves come from a mixture of
low-dimensional Gaussians.
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The second step of the algorithm is concerned with estimating the means of these projected Gaussians.
Regions of higher density will tend to contain more points, and we can roughly imagine the density around
any data point x to be inversely related to radius rx. In particular, the data point with lowest rx will be near
the center of some (projected) Gaussian. If the Gaussians all share the same covariance, then this data point
will be close to the center of that Gaussian which has the highest mixing weight.

Once we have a good estimate for the center of one Gaussian, how do we handle the rest of them? The
problem is that one Gaussian may be responsible for the bulk of the data if it has a particularly high mixing
weight. All the data points with low rx might come from this one over-represented Gaussian, and need to be
eliminated from consideration somehow.

This is done by growing a wide region around the estimated center, and removing from contention all the
points in it. The region should be large enough to remove all high-density points in that particular Gaussian,
but should at the same time leave intact the high-density points of other Gaussians. The reader may wonder,
how can we possibly know how large this region should be if we have no idea of either the covariance or the
mixing weights? First, we pick the q points closest to the estimated center rather than using a preset radius;
this accomplishes a natural scaling. Second, the probability of encountering a data point at a distance � r
from the center of the Gaussian grows exponentially with r, and this rapid growth tends to eclipse discrep-
ancies of mixing weight and directional variance.

Both the techniques described – choosing the point with next lowest rx as a center estimate, and then
“subtracting” the points close to it – rely heavily on the accuracy of spherical density estimates. They assume
that for any sphere in Rd, the number of data points which fall within that sphere is close to its expected
value under the mixture distribution. That this is in fact the case follows from the happy circumstance that
the concept class of spheres inRd has VC-dimension only d+ 1.

Finally, we mention that this low dimensional part of the algorithm works best on spherical Gaussians.
But here our method of projection helps us again, tremendously: even if we start with highly skewed ellip-
soidal Gaussians, the random projection will make them almost spherical!

2.6 Mapping back to the original space

At this stage, projected centers in hand, we recall that our actual task was to find the Gaussian means in the
original high-dimensional space. Well, this is not too difficult, at least conceptually. For each low-dimensional
estimated center b��i , we pick the l data points closest to it in Rd, call them Si, and then average these same
points inRn. We expect Si to be relatively uncontaminated with points from other Gaussians (although we
cannot of course avoid the odd straggler), and thus its mean should closely approximate �i.

We complete our overview with one last clarification. How exactly did the projection help us? It enabled
us to find, for each Gaussian, a set of data points drawn mostly from that Gaussian.

2.7 The main results

In the next section we will prove a dimensionality reduction lemma and then demonstrate the correctness of
the algorithm in the following simple but instructive case.

Theorem 1 If data is drawn from a mixture of k Gaussians in Rn which is c-separated, for c > 1=2, and if
the smallest mixing weight is 
( 1k), and if the Gaussians are all spherical with unknown covariance matrix
�2In, then with probability > 1 � �, all the center estimates returned by the above algorithm are accurate
within L2 distance ��

p
n. The reduced dimension is d = O(log k

�� ) and the amount of data required is

M = kO(log2 1=(��)).

By building upon this proof, we will in the subsequent section arrive at the more general
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Theorem 2 Suppose now that the Gaussians are no longer restricted to being spherical but instead have an
unknown common covariance matrix � with maximum and minimum eigenvalues �2max; �

2
min respectively,

and eccentricity " = �max=�min. Then with probability > 1 � �, the center estimates returned by the al-
gorithm are accurate within L2 distance ��max

p
n. If the eccentricity " � O( n1=2

log k=�� ), then the reduced

dimension is d = O(log k
�� ) and the number of data points needed is M = kO(log2 1=(��)).

Our algorithm can in fact handle Gaussians which are arbitrarily close together. It is only to curtail the
proliferation of symbols that we insist upon 1=2-separation in these theorems. The mixing weights and ec-
centricity are similarly unrestricted.

Finally, a word about the inputs: in addition to the usual � (accuracy) and � (confidence) parameters, the
user is expected to supply a lower bound wmin on the mixing weights which will be considered.

3 Spherical Gaussians

3.1 Notation

The following notation will be used consistently through the remainder of the paper.

� Desired accuracy, supplied by user
� Desired confidence, supplied by user
�0 Accuracy of spherical density estimates
M Overall number of data points
n Original dimension of data
d Reduced dimension
k Number of Gaussians
N(�i; �i) The ith Gaussian inRn

wi Mixing weight of the ith Gaussian
wmin Lower bound on the wi, supplied by user
c; c� Lower bound on the separation of Gaussians in the original and reduced spaces, respectively
N(��i ;�

�
i ) Projection of ith Gaussian into the reduced space Rd

��(�) Density of the projected mixture of Gaussians
� Some standard deviation radius
��(�) Density of N(0; �2Id) inRd.
B(x; r) Sphere of radius r centered at x
B(r0; r) B(x; r) for some x at distance r0 from the origin
l; p; q Integer parameters needed by algorithm
� Parameter needed for analysis, related to �

In this section, we will prove the correctness of our algorithm assuming that the Gaussians are spherical with
identical covariance matrices �1 = � � �= �k = �2In.

3.2 Reducing dimension

Definition For a positive definite matrix �, let �max(�) and �min(�) refer to its largest and smallest eigen-
values, respectively, and denote by "(�) the eccentricity of the matrix, that is,

p
�max(�)=�min(�).

The following dimensionality reduction lemma applies to arbitrary mixtures of Gaussians. Its statement
refers to the notion of separation introduced in the overview.
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Lemma 1 (Dimensionality Reduction) For any c > 0, let f(wi; �i;�i)g denote a c-separated mixture of
k Gaussians inRn, and let �1 > 0 and �1 > 0 designate confidence and accuracy parameters, respectively.
With probability> 1��1, the projection of this mixture of Gaussians onto a random d-dimensional subspace
yields a (c

p
1� �1)-separated mixture of Gaussians f(wi; �

�
i ;�

�
i )g inRd, provided

d � 4

�21
ln
k2

�1
:

Moreover, �max(�
�
i ) � �max(�i) and �min(�

�
i ) � �min(�i). In particular therefore, "(��

i ) � "(�i).

Proof. Consider a single line segment in Rn, of squared length L. If the original space is projected onto
a random d-dimensional subspace, the squared length of this line segment becomes some L�, of expected
value EL� = Ld=n. It was shown by Johnson and Lindenstrauss (1984) that P(L� < (1 � �)Ld=n) �
e�d�2=4. Their proof has been simplified by Frankl and Maehara (1988) and most recently by the author and
Gupta (1998).

We shall apply this to the line segments joining pairs of Gaussian centers in the original space. There are
less than k2 such segments. By the above discussion, using the value of d specified in the theorem, we find
that with probability> 1� �1, in the projected space each new pair of centers ��i and ��j will satisfy

k��i � ��jk2 � (1� �1)k�i � �jk2d=n
� (1� �1)(c

2nmax(�max(�i); �max(�j)))d=n

� c2(1� �1)dmax(�max(�i); �max(�j));

where the second line uses the fact that the original Gaussians are c-separated. It follows that the projected
mixture is (c

p
1� �1)-separated, if we can show that �max(�i) � �max(��

i ).
This is straightforward. Write the projection, say PT , as a d�n matrix with orthogonal rows. PT sends

Gaussian (�;�) inRn to (PT�; PT�P ) inRd, whereby

�max(P
T�P ) = max

u2Rd
uT (PT�P )u

uTu
= max

v2Rn
(PT v)T (PT�P )(PT v)

(PTv)T (PT v)

= max
v2Rn

(PPT v)T�(PPT v)

(PPT v)T (PPT v)

� max
v2Rn

vT�v

vTv
= �max(�):

(The denominator in the second line uses PTP = Id.) In similar fashion we can show that �min(��
i ) �

�min(�i), completing the proof.

Remarks (1) If two of the Gaussians in the original mixture are particularly far apart, say cf -separated for
some f � 1, then in the projected space they will be (cf

p
1� �1)-separated. This will be useful to us later.

(2) A projection onto a random lower-dimensional subspace will in fact dramatically reduce the eccentricity
of Gaussians, as demonstrated in the last lemma of this paper.

Corollary In order to ensure that the projected mixture is at least 1=2-separated (that is, c� � 1=2) with prob-
ability > 1� �=4, it is enough to choose

d � 4c4

(c2 � 1=4)2
ln

4k2

�
:
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3.3 Crude density bounds

We need to ensure that every spherical region in the projected space gets approximately its fair share of data
points. This is accomplished effortlessly by VC dimension arguments.

Lemma 2 (Accuracy of density estimates) Let �(�) denote any density on Rd. If the number of data points
seen satisfies

M � O

�
1

�20

�
d log

1

�0
+ log

1

�

��
then with probability> 1 � �=4, for every sphere B � Rd, the empirical probability of that sphere differs
from �(B) by at most �0; that is, the number of points that fall in B is in the range M�(B) �M�0.

Proof. For any sphere B � Rd, let 1B(x) = 1(x 2 B) denote the indicator function for B. The concept
class f1B : B 2 Rd is a sphereg has VC-dimension d+1 (Dudley, 1979). The rest follows from well-known
results about sample complexity; details can be found, for instance, in the book by Pach and Agarwal (1995).

We will henceforth assume that M meets the conditions of this lemma and that all spherical density es-
timates are accurate within �0. Since all the Gaussians inRn have covariance matrix �2In, their projections
have covariance exactly �2Id. Let ��(�) denote the density of a single Gaussian N(0; �2Id) and let ��(�)
denote the density of the entire projected mixture. We now examine a few technical properties of ��. Our
first goal is to obtain probability lower bounds which will be used to show that there are many data points
near the center of each Gaussian.

Lemma 3 (Crude density lower bounds) If � � 1=3 and d � 10,
(a) ��(B(0; ��

p
d)) � �d; and

(b) ��(B(��
p
d; ��

p
d)) � �d.

Proof. Let Vd denote the volume of the unit ball in d dimensions. We will use the lower bound

Vd =
�d=2

�(1 + d=2)
� (2�)d=2

2(d=2)d=2

which follows from the observation �(1 + k) � kk2�(k�1) for k � 1. Now center a sphere at the mean of
the Gaussian. A crude bound on its probability mass is

��(B(0; ��
p
d)) �

 
e�(��

p
d)2=2�2

(2�)d=2�d

!
(Vd(��

p
d)d) � �d

2
(2e��

2

)d=2 � �d;

Continuing in the same vein, this time for a displaced sphere,

��(B(��
p
d; ��

p
d)) �

 
e�4(��

p
d)2=2�2

(2�)d=2�d

!
(Vd(��

p
d)d) � �d

2
(2e�4�

2

)d=2 � �d

provided the stated conditions on � and d are met.

Next we would like an idea of how fast the probability mass of a sphere decreases as it moves away from
the center of a Gaussian, and of how this mass increases as the sphere grows.

Lemma 4 (Relative densities of different spheres)
(a) If z; z0 are points for which kzk � ��

p
d and kz0k = kzk+ �, then
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��(B(z; ��
p
d)) � ��(B(z0; ��

p
d))e�

2=2�2 :

(b) If r + s � 1
2�
p
d then

��(B(0; r+ s))

��(B(0; r))
�
�
r+ s

r

�d=2

:

Proof. For the first bound, assume without loss of generality that the centers of the two spheres of equal
radius lie along the same direction bu. Pair each pointx inB(z; ��

p
d) with x+�bu inB(z0; ��

p
d). Writing

x = (xu; y), we find that the density of the former point divided by that of the latter is

e�(x2u+kyk2)=2�2

e�((xu+�)2+kyk2)=2�2 = exp

�
�2 + 2xu�

2�2

�
� e�

2=2�2

since xu � 0 by our lower bound on kzk.

For the second bound, notice that

��(B(0; r)) =

Z
x2B(0;r)

��(x)dx =

�
r

r + s

�d Z
y2B(0;r+s)

��

�
y � r

r + s

�
dy

via the change in variable y = x � r+sr . Therefore

��(B(0; r+ s))

��(B(0; r))
=

�
r+ s

r

�d
R
y2B(0;r+s) ��(y)dyR

y2B(0;r+s) ��(y � r
r+s)dy

:

We will bound this ratio of integrals by considering a pointwise ratio. For any y 2 B(0; r+ s),

��(y)

��(y � r
r+s )

=
e�kyk2=2�2

e�(kyk2=2�2)�(r=r+s)2
�
�

r

r + s

�d=2

under the given conditions on r and s.

3.4 Estimating the projected centers

We are now in a position to prove that for an appropriate choice of the parameters p and q, the algorithm will
find one data point close to each projected center. The value � used in the analysis that follows will turn out
to be proportional to �. To simplify calculations, we will from the outset assume that � � 1=3 and that d � 10.

Lemma 5 If p
M + �0 � wmin�

d, then for each i, there is a data point x 2 S such that x is at distance at most
��
p
d from ��i and moreover, for any such point, � p data points lie within distance ��

p
d of x.

Proof. In light of the fact that all spherical density estimates are accurate within �0, we need only show that
wmin��(0; ��

p
d) � �0 and wmin��(��

p
d; ��

p
d) � p

M + �0. The rest follows from Lemma 3.

This lemma guarantees that in the projected space, there will be many points close to each center, and in
fact, that for data points x within distance ��

p
d of any center, rx � ��

p
d. We next need to show that rx

will be significantly larger for points x which lie further from the center, at distance � 3��
p
d.

DefinitionF = 1�e�2�2d� 1
wmin

e�(1�4�)2d=32. Setting d = O
�
log 1

�2wmin

�
guaranteesF � minf14 ; 12�2dg.

8



Lemma 6 Suppose that for some radius r � ��
p
d, the sphere B(x; r) contains p data points, where x is a

point at distance� 3��
p
d from ��i and distance� 1

4�
p
d from the other projected Gaussian centers. Then

any point z within distance ��
p
d of ��i must have

��(B(z; r)) � 2�0 + ��(B(x; r));

provided �0 � F
2�F

p
M .

Proof.

��(B(x; r)) � wi��(B(3��
p
d; r)) + ��(B(1=4�

p
d; r))

� wi��(B(��
p
d; r))e�2�

2d + ��(B(��
p
d; r))e�(

1

4
��)2d=2

� wi��(B(z; r))

 
e�2�

2d +
e�(1�4�)2d=32

wmin

!
� ��(B(z; r))(1� F );

where the second and third lines are supplied by Lemma 4, and the last line uses the definition of F . The
stated condition on �0 then yields

��(B(z; r))� ��(B(x; r)) � ��(B(x; r))
F

1� F
�
� p

M
� �0

� F

1� F
� 2�0;

as promised.

In order to satisfy the conditions of these last two lemmas, we adopt the following

Definitions p = Mwmin�
d(1� F

2 ) and �0 =
p
M

F
2�F .

The lemma above can be restated as follows: suppose data point x in the projected space is more than
3��

p
d away from the closest center. Then any data point z within distance ��

p
d of that same center must

have rz < rx. This implies roughly that within any Gaussian, the lowest rx values come from data points
which are within distance 3��

p
d of the center.

A potential problem is that a few of the Gaussians might have much higher mixing weights than the rest
and consequently have a monopoly over small rx values. In order to handle this, after selecting a center
estimate we eliminate the q points closest to it, where

Definition q = wmin��(B(0; 38�
p
d))M . This value is independent of � and can easily be computed from

d, using a lookup table or some simple numerical technique.

It will turn out that the q points closest to each center estimate must include all points within a radius of
1
4�
p
d of the actual projected center and no points which are further than 1

2�
p
d from this center.

Lemma 7 For any point x within distance 3��
p
d of ��i ,

(a) ��(B(x; (14 + 3�)�
p
d)) � q

M � �0; and
(b) ��(B(x; (12 � 4�)�

p
d)) � q

M + �0,
provided that �0 � q

2M , � � 1
96 , and d � 7 ln 2

wmin
. In other words, if T denotes the q points closest to x,

B(��i ;
1

4
�
p
d) � T � B(��i ; (

1

2
� �)�

p
d):

Proof. In light of the condition on �0, it is enough to show
2��(B(0; (14+3�)�

p
d)) � wmin��(B(0; 38�

p
d)) and ��(B(0; (12�7�)�

p
d)) � 3

2��(B(0; 38�
p
d)).
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These bounds are immediate from lemma 4 and the stated conditions on � and d.

Remark Let us now assume d; �; and �0 satisfy the various conditions of the above lemmas.

Lemma 8 With probability> 1� �=2, each center b��i chosen by the algorithm is within distance 3��
p
d of

a true projected center ��i .

Proof, by induction on the number of centers selected so far.
Referring back to the algorithm, the first center-estimate chosen is the point x 2 S with lowest rx. By

Lemma 5, this rx � ��
p
d. Let ��i be the projected center closest to x. Since the Gaussians are 1=2-separated,

x is at distance at least 1
4�
p
d from all the other projected centers. By Lemma 6, we then see that x must be

within distance 3��
p
d of ��i .

Say that at some stage in the algorithm, center-estimates bC have already been chosen, j bCj � 1, and that
these correspond to true centers C. Select any y 2 bC; by the induction hypothesis there is a j for which
ky���j k � 3��

p
d. S 0 does not contain the q points closest to y. By Lemma 7, this removes B(��j ;

1
4�
p
d)

from S 0, yet no point outside B(��j ; (
1
2 � �)�

p
d) is eliminated from S 0 on account of y.

Let z be the next point chosen, and let ��i be the center closest to it which is not in C. We have seen that
z must be at distance at least 1

4�
p
d from centers in C. Because of the separation of the mixture, z must be

at distance at least 1
4�
p
d from all centers but ��i . Again due to the separation of the Gaussians, all points

within distance��
p
d of��i remain inS 0, and therefore z is potentiallyone of these, whereupon, by Lemma 5,

rz � ��
p
d. By Lemma 6 then, kz � ��i k � 3��

p
d.

3.5 Mapping back into high dimension

We may now safely assume that inRd, each estimated center b��i is within 3��
p
d of the corresponding pro-

jected center ��i . The set Si consists of the l data points closest to b��i in the reduced space. We will choose
l � p so as to constrain Si to lie within B(b��i ; ��pd) � B(��i ; 4��

p
d) (by the proof of Lemma 8, each

center-estimate has p data points within a ��
p
d radius of it). The final estimate b�i inRn is the mean of Si.

The random projection fromRn toRd can be thought of as a composition of two linear transformations:
a random rotation in Rn followed by a projection onto the first d coordinates. Since rotations preserve L2

distance, we can assume, for the purpose of bounding theL2 accuracy of our final estimates, that our random
projection consists solely of a mapping onto the first d coordinates.

Think of the estimate b�i as consisting of two parts: its first d coordinates, which constitute some low-
dimensional vector close to b��i , and its remaining n� d coordinates. We have already bounded the error on
this first portion. How do we deal with the rest?

Let us fix attention on S1. We would like it to be the case that this set consists primarily of points chosen
from the first Gaussian G1 = N(�1; �2In). To this end, we establish the following

Definitions Tj = points in S1 drawn from the jth Gaussian Gj , and lj = jTjj. Let Aj be the mean of the
points in Tj . And for j > 1 let fj = k��j � ��1k=(12�

p
d) � 1. By the remark after Lemma 1, k�j � �1k �

cfj�
p
n.

We will show that S1 is relatively uncontaminated by points from other Gaussians, that is, l2 + � � �+ lk
is small. Those points which do come from G1 ought to average out to something near its mean �1.

Lemma 9 Randomly draw s points Y1; : : : ; Ys from Gaussian N(�; �2In). Then for any � � 1p
s
,

P

�



Y1 + � � �+ Ys
s

� �





 � ��
p
n

�
�
 
es�

2�1

s�2

!�n=2
:
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Proof. Let Xi =
Yi��
� � N(0; In). The mean 1

s (X1+ � � �+Xs) has distributionN(0; 1sIn), and its squared
L2 norm has moment-generating function �(t) = (1� 2t

s )
�n=2. By Markov’s inequality,

P

�



X1 + � � �+Xs

s





 � �
p
n

�
�
��

1� 2t

s

�
e2t�

2

��n=2
�
 
es�

2�1

s�2

!�n=2
;

where the last bound is obtained by choosing t = s
2(1� 1

�2s
).

Now we can at last dispatch the proof of Theorem 1.

Lemma 10 With probability> 1� �, for all 1 � i � k, kb�i � �ik � ��
p
n, provided that

� =
�

8
; d � 10 log

40ce

�wmin
; and p � l � 128

�
max

�
1

�
;

c

wmin
log

8k2

�

�
:

Proof. We will continue to focus upon �1. By Lemma 8, all of S1 lies within distance 4��
p
d of ��1 and

thus distance at least (12 � 4�)fj�
p
d from any other projected center ��j . This implies that for a given point

x 2 S1, and j > 1,

P(x comes from Gj) � wje
�( 1

2
�4�)2f2j d=2

w1e�(4�)
2d=2

P(x comes from G1) � wj

wmin
e�f

2

j d=10: (y)

The mean of the points in S1 is

l1A1 + � � �+ lkAk

l1 + � � �+ lk
=

l1
l
A1 +

X
j>1

lj
l
Aj :

Assume without loss of generality that �1 = 0. We have already seen that the first d coordinates of the points
in S1 lie in B(0; 4��

p
d) and therefore contribute at most 4��

p
d � 1

2��
p
n to kmean(S1)k. We now turn

to the remaining coordinates. Because the Gaussians are spherical, each point in S1 from Gj looks like a
random draw from N(�j ; �

2In) as far as its last n� d coordinates are concerned; that is, the values at these
coordinates are not correlated with the first d coordinates. Thus we may pretend for our purposes that each
point in S1 is generated by the following process:

- Pick a Gaussian Gi, 1 � i � k, according to the probability (y) above.
- Pick a random point from this Gaussian.

The L2 distance between �1 and the mean of S1, considering only the last n � d coordinates, is then at
most

Error � kA1k+
X
j>1

(k�jk+ kAj � �jk) lj
l
:

We will bound these terms one at a time (bear in mind that we are still only talking about the last n � d

coordinates).
(a) For j > 1, we know k�jk � cfj�

p
n. By Lemma 9, using s = 1,

P(9j > 1 : lj > 0 and kAi � �ik > 2�
p
n) � ke�n=2 <

�

8k
:

(b) The probability that a point in S1 comes from Gj ; j > 1, is (y) at most wj
wmin

e�f
2

j d=10 <
wj�

40cf2j
. A quick

Chernoff bound then tells us that

11



P

 
9j > 1 :

lj
l
>

wj�

40cf2j
(1 + fj)

!
� �

8k
:

(c) We have already seen in (b) that that chance that a random point in S1 is not from G1 is at most e�d=10

wmin
�

1
50 . Therefore, with the assistance once again of a Chernoff bound, l1 is at least l

2 , with probability> 1� �
8k .

In which case, by Lemma 9, P(kA1k � ��
p
n=4) � e�n=2 � �

8k .
(d) Putting all of these together, with probability> 1� �

2k , and since c � 1=2,

Error � ��
p
n

4
+
X
j>1

(fjc�
p
n+ 2�

p
n)

wj�

40cf2j
(1 + fj) � ��

p
n

2
;

as required. Repeating this for the remaining estimates b�i then yields the theorem.

Remark Assuming that c > 1=2 and wmin = 
(1=k), the final choices of reduced dimension and sample
complexity are

d = O

�
log

k

��

�
and M = kO(log2 1

��
):

4 General Gaussians

4.1 Notation

The algorithm whose performance on spherical Gaussians we have just settled also works well with arbitrary
covariance matrices. The proof of this general case is more involved, but follows approximately the same
outline. We start with another battery of notation which builds upon the first.

� Common n� n covariance matrix
�max

p
�max(�)

�min

p
�min(�)

" Eccentricity �max=�min

��; ��max; �
�
min; "

� Similar, but in the projected space
�(�) N(0; Id)
��(�) As before, N(0; �2Id)
���(�) N(0; ��)
T A useful linear transformation inRd

k � k� Mahalanobis distance, kxk� =
p
xT��1x

E(z; r; �) Ellipsoid fx : kx� zk� � rg
We have already shown that ��max � �max; �

�
min � �min, and "� � ". In fact, it will turn out that "�

is a small constant even if " is large (depending upon how much larger n is than d), and this will help us
tremendously.

4.2 Crude density bounds

The dimensionality reduction lemma of the previous section applies to any mixture of Gaussians and hence
needs no revision. The next step is to get bounds on the probability mass assigned to different spherical
regions in the projected space.

12



Since the Gaussians we are now considering have ellipsoidal contours, it is not easy to get tight bounds
on the chance that a point will fall in a given sphere. We will content ourselves with rather loose bounds,
obtained via the mediation of a linear transformation T which converts ellipses into spheres.

Fix some d� d covariance matrix ��, and write it as BTDB, where B is orthogonal and D is diagonal
with the eigenvalues of �� as entries. Define T = BTD�1=2B; notice that T is its own transpose. The table
below hints at the uses to which T will be put.

InRd before T is applied InRd after T is applied
Gaussian N(��; ��) Gaussian N(T��; Id)
Point x such that kxk�� = r Point Tx such that kTxk = r
EllipseE(z; r; ��) Sphere B(Tz; r)

Our first step will be to relate the ellipsoidaldensity��� to the more manageable �. As usual, we are interested
in the probability mass assigned to spherical regions. Pick a particularB(z; r) and define s to be kzk�� , the
��-Mahalanobis distance from z to the origin. Since the standard deviation of �� in different directions is
constrained to lie in the range [��min; �

�
max], it is perfectly plausible that

�(B(s; r=��max)) � ���(B(z; r)) � �(B(s; r=��min)):

This is proved in the following lemma, in a slightly different but equivalent form.

Lemma 11 (Relating ellipsoidal Gaussian density estimates to spherical ones) Pick any pointz and any radius
r. Writing s = kzk�� ,

���max
(B(s��max; r)) � ���(B(z; r)) � ���min

(B(s��min ; r)):

Proof. This is easy if T is used appropriately. For instance, because E(z; r=��max; �
�) � B(z; r) we can

write

���(B(z; r)) � ���

�
E
�
z;

r

��max

; ��
��

= ���max
(B(s��max; r));

where the final equality is a result of applying the transformation ��maxT .

Similarly we can bound the relative densities of displaced spheres. Consider two spheres of equal radius
r, one close to the center of the Gaussian, at Mahalanobis distance s, and the other at some distance s+ �.
By how much must the probability mass of the closer sphere exceed that of the farther one, given that they
may lie in different directions from the center? Although the spheres have equal radius, it might be the case
that the closer sphere lies in a direction of higher variance than the farther sphere, in which case its radius is
effectively scaled down. The following lemma gives a bound that will work for all spatial configurations of
the spheres.

Lemma 12 Pick any point z and set s = kzk�� . If kz0k�� � s+� for some � > 0 and if radius r � s��max

then

���(B(z; r))

���(B(z0; r))
� exp

�
(�+ 2s)(�� 2s"�)

2

�
:

Proof. We will use the fact that Mahalanobis distance satisfies the triangle inequality and that kuk�� �
kuk=��min. For any point x in B(z; r),

13



kxk�� � kzk�� + kx� zk�� � s+
r

��min

� s+ s"�;

where the last inequality follows from our restriction on r. Similarly, for any point x0 in B(z0; r),

kx0k�� � kz0k�� � kx0 � z0k�� � s +�� r

��min

� �� s("� � 1):

Since ���(y) is proportional to exp(�kyk2��=2) for any point y, the ratio of probabilities of the two spheres
must be at least

e�(s(1+"�))2=2

e�(��s("��1))2=2 = exp

�
(�� 2s"�)(�+ 2s)

2

�
;

as anticipated.

Finally we need a bound on the rate at which the probability mass of the sphere B(0; r) grows as its
radius increases.

Lemma 13 If radii r and s satisfy r + s � 1
2�

�
min

p
d then

���(B(0; r+ s))

���(B(0; r))
�
�
r+ s

r

�d=2

:

Proof. The proof for the spherical case can quite readily be adapted to this. Only one bound needs to be
changed: for any y 2 B(0; r+ s), we know kyk�� � (r+ s)=��min and so

���(y)

���(y � r
r+s )

= exp

�
�kyk

2
��

2

�
1� r2

(r + s)2

��
� exp

�
�(r + s)2 � r2

2��2min

�
�
�

r

r + s

�d=2

;

given the condition on r + s.

4.3 Estimating the projected means

The technical lemmas above allow us to approximately follow the outline of the spherical case. Denote by
��i the means of the projected Gaussians and by �� their common covariance matrix. Let �� be the density
of the projected mixture of Gaussians.

Lemma 14 If p
M + �0 � wmin�

d then for each i, there is at least one data point x in E(��i ; �
p
d; ��), and

for any such x, at least p data points lie in B(x; ���max

p
d).

Proof. Since all the density estimates are accurate within �0, we need only showwmin���(E(0; �
p
d; ��)) �

�0 and wmin���(B(x; ���max

p
d)) � p

M + �0 if kxk�� � �
p
d. Transformation T and Lemma 11 convert

statements about ��� into statements about �; in particular,

���(E(0; �
p
d; ��)) = �(B(0; �

p
d)) and ���(B(x; ���max

p
d)) � �(B(�

p
d; �

p
d)):

The rest follows from Lemma 3.

Next we make sure that in the projected space, each estimated center is within Mahalanobis distance
(3"� + 1)�

p
d of its true value. The first step towards this is showing that data points which lie outside this

range, and which are far away from the other Gaussians, have low density spheres around them. We start by
defining a quantity which will be needed later.
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Definition F = 1 � exp
�
� "�(3"�+2)�2d

2

�
� 1

wmin
exp

�
� ( 1

4
+"�2�)( 1

4
�"�2��2"�3�)d
2"�2

�
. By making sure that

d � 10"�2 log 3
wmin�2

we ensure F � minf14 ; 38"�2�2dg.

Lemma 15 Suppose the ball B(x; r) contains � p points, for some radius r � ���max

p
d and some point x

such that (1) kx� ��i k�� � (3"� + 1)�
p
d; and (2) kx� ��jk � 1

4"��
�
min

p
d for all j 6= i.

Pick any point z 2 E(��i ; �
p
d; ��); then

��(B(z; r)) � 2�0 + ��(B(x; r));

provided �0 � F
2�F

p
M .

Proof. The conditions on x imply kx���j k�� � 1
4"�

��min
��max

p
d �

p
d

4"�2 for all j 6= i. Therefore, by Lemma 12,

��(B(x; r)) = wi���(B(x� ��i ; r)) +
X
j 6=i

wj���(B(x� ��j ; r))

� wi���(B(z � ��i ; r))e
�((3"�+2)�

p
d)("��

p
d)=2

+ ���(B(z � ��i ; r))e
�(((1=4"�2)+�)

p
d)(((1=4"�2)���2"��)

p
d)=2

� wi���(B(z � ��i ; r))(1� F )

� ��(B(z; r))(1� F )

The rest follows along the lines of Lemma 6.

After estimating a center in the projected space, we must eliminate from S 0 all the high-density points in
its vicinity. We will simply pick the q points closest to it, and guarantee that this includes at least the central
B(0; 1

4"��
�
min

p
d) of the Gaussian and nothing outside the central B(0; 1

2"��
�
max

p
d). This time round we

adopt the following

Definitions p = Mwmin�
d(1� F

2 ); �0 =
p
M

F
2�F , and q = wmin�(B(0; 3

8"�

p
d))M . As before q can easily

be computed, given d="�2.

Lemma 16 Pick any point x for which kx� ��i k�� � �(3"�+ 1)
p
d. Then

(a) ��(B(x; ( 1
4"� + �"�(3"� + 1))��min

p
d)) � q

M � �0; and
(b) ��(B(x; ( 1

2"� � �(3"� + 2))��max

p
d)) � q

M + �0,
provided that �0 � q

2M ; � � 1
96"�3 , and d � 8 log 2

wmin
.

As a consequence, the q points closest to x include all data points within distance 1
4"��

�
min

p
d of ��i and no

data point which is more than ( 1
2"� � �)��max

p
d away from ��i .

Proof. We rewrite q as Mwmin���(E(0; 3
8"�

p
d; ��)) and notice that

wmin���(B(0; 3
8"��

�
min

p
d)) � q

M
� wmin���(B(0; 3

8"��
�
max

p
d)):

Statement (a) would follow from

���(B(0; ( 1
4"� + �"�(3"� + 1))��min

p
d)) � wmin

2
���(B(0; 3

8"��
�
min

p
d));

and for (b) it is enough to check that
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wmin���(B(0; ( 1
2"� � �(6"� + 3))��max

p
d)) � 3wmin

2
���(B(0; 3

8"��
�
max

p
d)):

These are direct consequences of Lemma 13 and the stated conditions.

Remark Assume henceforth that the various parameters (p; q;M; d; �) are set in accordance with the speci-
fications above.

The proof of Lemma 8 continues to be valid in this more general case, and gives us

Lemma 17 With probability> 1� �=2, for every i � k, kb��i � ��i k�� � (3"� + 1)�
p
d.

4.4 Back in high-dimensional space

The random projection fromRn toRd can be thought of as a composition of two transformations: a random
rotation inRn followed by a projection onto the first d coordinates. Since rotations preserveL2 distance, and
our purpose is to bound the accuracy of our center estimates in terms of L2 distance, we will assume for the
next few lemmas that the random projection consists solely of selecting the first d coordinates. We will write
high-dimensional points in the form (x; y) 2 Rd�Rn�d, and will assume that each such point is projected
down to x.

The covariance matrix � can be written in the form

� =

�
�xx �xy

�yx �yy

�
;

with �xx = �� being the covariance matrix of the projected Gaussians. What is the correlation between the
x and y components of points drawn from Gaussians with covariance �?

Fact If a point drawn from N(0; �) has x as its first d coordinates, then its last n � d coordinates have the
distributionN(Ax;C), where A = �yx��1

xx and C = �yy � �yx��1
xx�xy. This well-known result can be

found, for instance, in Lauritzen’s (1996) book on graphical models.

We will need to tackle the question: for a point (x; y) drawn from N(0; �), what is the expected value
of kyk given kxk? In order to answer this, we need to study A a bit more carefully.

Lemma 18 kAxk � �maxkxk��
p
n=d for any x 2 Rd.

Proof. A = �yx��1
xx is a (n�d)�dmatrix; divide it into n

d �1 square matrices B1; : : : ; Bn=d�1 by taking d
rows at a time. Fix attention on one such Bi. The rows of Bi correspond to some d consecutive coordinates
of y; call these coordinates z. Then we can write Bi = �zx��1

xx . It is well-known – see, for instance, the
textbook by Horn and Johnson (1985), or consider the inverse of the 2d � 2d positive definite covariance
matrix of (z; x) – that (�xx � �xz��1

zz �zx) is positive definite. Therefore, for any u 2 Rd,

uT�xxu > uT�xz�
�1
zz �zxu:

For any v 2 Rd, choose u = ��1
xx v so that

kvk2�� = vT��1
xx�xx�

�1
xx v = uT�xxu > vTBT

i �
�1
zz Biv � kBivk2

�max(�zz)
� kBivk2

�2max

:

Therefore kBivk � �maxkvk��. The pieces now come neatly together,

kAxk2 = kB1xk2 + � � �+ kBn=d�1xk2 � n�d
d �2maxkxk2�� ;
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and the lemma is proved.

Define Si; Gj; Tj; Aj ; fj and lj as in the spherical case (for the definition of fj use ��max in lieu of �),
and focus attention upon S1. The y coordinates of points in Tj � S1 look roughly like random draws from
the distributionN(A(b��1 � ��j );C). Can we bound their average?

Lemma 19 Assume � � �
20"�2

and l � p. For any j � 1, Aj � �j has the same distribution as (X;AX +

C1=2Elj), where X is a random variable with kXk � k��1 � ��jk + �
4�

�
min

p
d, and Em is the mean of m

i.i.d. N(0; In�d) random variables.

Proof. Assume for the sake of convenience that�j is zero. In the low-dimensional space, forcing l � p guar-
antees that all of S1 lies within ���max

p
d of b��1, and therefore within �(3"�+2)��max

p
d � 5"����max

p
d �

�
4�

�
min

p
d of ��1.

Recall that Tj consists of those points in S1 which come from Gaussian Gj . For our purposes, we can
pretend that each point (Xi; Yi) 2 Tj is generated in the following fashion:
- Pick Xi 2 B(��1;

�
4�

�
min

p
d) � Rd, according to an unknown distribution.

- Choose Yi � N(AXi;C).
In this manner we choose lj points f(Xi; Yi)g, with mean value some (X; Y ). The range of the Xi coordi-
nates constrains kXk to be at most k��1 � ��j k+ �

4�
�
min

p
d. To understand the distribution of Y , we notice

(Yi � AXi) � C1=2N(0; In�d), and taking averages, Y � AX + C1=2Elj .

Armed with this result we can finally rework the last lemma of the spherical case.

Lemma 20 With probability> 1� �, for all 1 � i � k, kb�i � �ik � ��max
p
n, provided that

d � 12 ln
64c2"�2

�wmin
; and l � max

�
48

�2
;

48

�wmin
ln

4k2

�

�
:

Proof. We observed in the previous lemma that in low dimension, all of S1 lies within 5"����max

p
d of ��1,

and therefore at distance at least (12 � 5"��)fj��max

p
d from any other projected center ��j .

Fix any point x 2 S1, and any j > 1. Applying the general principle that kuk
��max

� kuk�� � kuk
��min

, we

then know kx� ��1k�� � 5"�2�
p
d and kx� ��jk�� � (1=2� 5"��)fj

p
d and therefore

P(x comes from Gj) � wje
�( 1

2
�5"��)2f2j d=2

w1e�(5"
�2�)2d=2

P(x comes from G1) � wj

wmin
e�

f2j d

12 : (yy)

The difference between �1 and the mean of S1, which we hope is close to zero, is given by

mean(S1)� �1 =

0@ kX
j=1

Aj � lj
l

1A� �1 =
kX

j=1

(Aj � �j)
lj
l
+

kX
j=2

(�j � �1)
lj
l
:

The previous two lemmas immediately bound the L2 norm of this expression by

Error �
kX

j=1

lj
l

��
k��j � ��1k+

�

4
��min

p
d
��

1 +
�max

��min

r
n

d

��
+ kC1=2Elk+

kX
j=2

k�j � �1k lj
l

� kC1=2Elk+ ��max
p
n

2
+

0@X
j>1

8c"�fj � lj
l

1A�max

p
n;
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where El is, as before, the mean of l i.i.d. N(0; In�d) random variables. We’ll bound these terms one at a
time.
(a) SinceC = �yy��yx�

�1
xx�xy and each of these two right-hand terms is positivesemidefinite, �max(C) �

�max(�yy) � �2max and therefore kC1=2Elk � �maxkElk. Lemma 9 assures us that if l � 48
�2

then
P(kElk > �

4

p
n) � e�n=4 � �

4k .

(b) The probability that a point in S1 comes from Gj is (yy) at most wj
wmin

e�f
2

j d=12 <
wj�

64c2"�2f2j
. A simple

Chernoff bound guarantees that:

P

�
9j > 1 :

lj
l
>

wj�

16c"�fj

�
� �

4k
;

given the condition on l.

The lemma follows by applying these two bounds to the error expression.

Remark If wmin = 
( 1k ) then we need to use reduced dimension d = O("�2 log k
�� ) and sample size M =

kO("�2 log2 1=��).

4.5 Bounding the eccentricity of projected ellipsoids

Our algorithm works best when the projected Gaussians have eccentricity close to one. We will now see that
even if the original Gaussians are highly skewed, random projection will make them almost spherical.

Once again, think of the random projection as a random rotation inRn, represented by some orthogonal
matrixUT , followed by a projectionPT onto the first d coordinates. The high-dimensional covariance matrix
� has positive eigenvalues �1 � � � � � �n, with eccentricity " = �n=�1 � 1 and average variance � =
1
n(�1 + � � �+ �n).

Pick any unit vector x 2 Rd, and let V (x) = xT��x be the variance of the projected Gaussians in
direction x. We will show that �� is close to the spherical covariance matrix �Id by proving V (x) � � for
all directions x.

Lemma 21 For any unit vector x 2 Rd, V (x) has the same distribution as
Pn

i=1 �iv
2
i , where v is chosen

uniformly at random from the surface of the unit sphere in Rn. Therefore EV (x) = �, over the choice of
random projection.

Proof. Let the d�n matrix PT represent projection onto the first d coordinates. Then �� = (UP )T�(UP ),
and on account of U we may assume � is diagonal, specifically � = diag(�1; : : : ; �n). For any direction
x 2 Rd, V (x) = xT��x = (Px)T (UT�U)(Px). Since � is diagonal,

(UT�U)ij =
nX

k=1

�kUkiUkj

whereby

V (x) =
nX

i;j=1

(Px)i(Px)j(U
T�U)ij

=
dX

i;j=1

xixj

nX
k=1

�kUkiUkj =
nX

k=1

�k

 
dX

i=1

xiUki

!2

:
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We can without loss of generality assume that x lies along some coordinate axis, say the very first one, in
which case

V (x) =
nX
i=1

�iU
2
i1:

Since UT is a random orthogonal matrix, its first row (U11; : : : ; Un1) is a random unit vector.

We now have a simple formulation of the distribution of V (x). For any given x, this value is likely
to be close to its expectation because it is the sum of n almost-independent bounded random variables. To
demonstrate V (x) � � simultaneously for all vectors x on the unit sphere in Rd, we will prove uniform
convergence for a carefully chosen finite cover of this sphere.

Lemma 22 For any 0 < � � 1, if n > O( "
2

�2
(log 1

� +d log d
� )), then with probability> 1��, the eccentricity

"� of the projected covariance matrix is at most 1+ �. In particular, if the high-dimensional eccentricity " is
at most O( n1=2

logk=�� ) then with probability at least 1� �, the projected Gaussians have eccentricity "� � 2.

Proof. By considering moment-generating functions of various gamma distributions as in Lemma 9, we can
show that for any particular x and any � 2 (0; 1),

P(jV (x)� �j > ��) � exp
��
 �n�2="2�� :

Moreover, V (y) cannot differ too much from V (x) when y lies close to x: using the expression for V (x)
found in the previous lemma, with u�i as shorthand for (Ui1; : : : ; Uid),

jV (x)� V (y)j �
nX
i=1

�i
��(u�i � x)2 � (u�i � y)2

��
=

nX
i=1

�i ju�i � (x+ y)j � ju�i � (x� y)j

�
nX
i=1

�i ku�i k2 � kx+ yk � kx� yk

� 2 kx� yk
 

nX
i=1

�iku�i k2
!
:

The final parenthesized quantity can be shown to be close to its expectation d� (perhaps we should point
out that Eku�i k2 = d

n since u�i consists of the first d coordinates of a random unit vector in Rn). Choosing
kx� yk � O( �d) will then ensure jV (x)� V (y)j � ��.

Bounding V (x) effectively bounds V (y) for y 2 B(x;O( �d)). How many points x must be chosen to
cover the unit sphere in this way? A geometric argument – see, for instance, Gupta (1999) – shows that
(O(d� ))

d points will do the trick, and completes the proof.

5 In future

We have described an extremely simple and provably correct algorithm for learning the centers of an un-
known mixture of Gaussians with shared covariance matrix. This core combinatorial problem having been
solved, we will in a companion paper examine some practical issues that arise in the common use of such
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mixture models. We will show how to estimate the mixing weights and covariance matrix, so as to permit the
computation of likelihoods, and then discuss experiments which compare our algorithm to three alternatives:
EM by itself, EM with principal component analysis, and a promising new option, EM preceded by random
projection.

What important theoretical questions remain?

1. Our algorithm will work when different clusters have differing covariances, provided these matrices
have approximately the same trace. Can this qualification be removed so that arbitrary mixtures of
Gaussians can be learned?

2. We are able to learn a mixture of k Gaussians within precision � using kO(log1=�2) data points. Is it
possible to improve this sample complexity to just (k� )

O(1), through the clever use of some heuristic
like “agglomerative clustering” (Duda & Hart)? A probabilistic analysis of such clustering techniques
is long overdue.

3. What happens when the data do not come from a mixture of Gaussians? Our algorithm has to accom-
modate sampling error and therefore it will perform well on clusters which are close to Gaussian. In
more general situations, the problem of finding the centers is of course no longer well-defined. How-
ever, Diaconis and Freedman (1984) have shown, roughly, that many natural distributions in high di-
mension look approximately Gaussian when projected onto a random line. This might make it possible
to use our algorithm to cluster data from quite generic non-Gaussian mixture distributions: randomly
project the data into a subspace, learn the resulting mixture of almost-Gaussians, and then apply this
clustering to the high-dimensional data!
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