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Abstract

Communication technology is currently seeing rapid growth, characterized by new
access networks, end-devices and an ever growing user-community. However, there
is a lack of integration between the different services: a user may have a cell-phone,
a pager, a regular phone, a laptop, an e-mail account, and so on. But she has little
control over managing communication services in a personalized, unified, and clean
fashion across these devices.

The Iceberg Project ([10, 23]) proposes an Internet-Core based approach for integra-
tion of telephony and data services across heterogeneous access networks. Personal
mobility and personalized communication management as defined by Iceberg are much
richer than the corresponding concepts in traditional telephony.

In this report, we present the design of the architectural components that provide
personal mobility in the Iceberg integrated communication network. We present our
model for a clean, extensible integration of end-devices and networks. We also dis-
cuss our mechanism for providing a high degree of personalization of communication.
We have a prototype implementation of the integration components in a testbed con-
sisting of four different communication services: GSM cell-phones, Voice-over-IP
end-points, Voice-mail, and E-mail.

1 Introduction and Motivation

In today’s communication world, there is a wide-range of end-devices (Personal Digi-
tal Assistants - PDAs, cell-phones, analog-phones, laptops), access networks (PSTN,
GSM cellular network, Pager Networks, the Internet), and services (two-way tele-
phony, multiparty conference, paging, short-message service on cell-phones, voice-
mail, e-mail). This list is growing fast: satellite networks, two-way pagers, integrated
cell-phone PDAs, instant messaging systems, personal information access services.



In this context, consider the scenario depicted in Figure 1. A user has several com-
munication devices and services: cell-phone, pager, email account, voice-mail service,
and PSTN phone at home and office. She wishes to manage communication as fol-
lows: she wishes to receive all day-time calls at her office phone and all evening-calls
at her home phone. If she is neither in her office nor at home, calls should come
through on her cell-phone. However, only certain callers are allowed to call her on
the cell-phone; others are redirected to voice-mail.

Further, she wishes to receive headers of emails from people important to her as
paging messages. She also should be able to have any email read out to her on her
cell-phone by placing a call.
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Figure 1: A scenario showing personalized, integration communication

It is clear that the current communication revolution is far from providing such a
personalized solution for integrated communication management. While the under-
lying technology is present, there is a lack of support for complete and meaningful
integration of services across end-devices and networks. Even the limited integration
present has little or no customizability.

The strong desirability of service integration is proved by the growing number of
commercial efforts like email-to-fax, voice-mail-email integration, email-access via
cell-phone, etc. (e.g., [15, 19]). While being a step in the right direction, these efforts
do not have a model for complete cross-service or any-to-any service integration.
They also do not have a good model for scaling to a large user base or to the wide-
area.

Efforts in the telephony world for providing integrated communication have been in



the form of Personal Communication Services [28]. Several efforts to this end are in
the process of standardization. However, since it is built on the Intelligent Network
service model [7], these do not provide a flexible service creation environment.

The Internet service model [21] has shown the potential for rapid creation and deploy-
ment of innovative services. The Iceberg (Internet-based CorE BEyond the thiRd
Generation) project leverages this characteristic to go beyond the service model of
traditional telephony. The Iceberg model is shown in Figure 1. The Internet is used
as the glue to tie the diverse networks together. This enables two crucial features:
(a) a flexible service creation environment in the Internet-Core and (b) a model for
cross-network integration of these services.
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Figure 2: The Iceberg Model: The Internet-core glues the different networks

1.1 Personal Mobility and Customized Services in Iceberg

Personal mobility is one of the important goals of the Iceberg project. The term
“personal mobility” is loosely defined and is used to mean different things in different
contexts in the telecommunication world. In Iceberg (and in this report), we use the
term to mean the ability to have seamless access to services in a network and device
independent manner (any service access using any device via any network).

Personal mobility across devices and services is of little use if there’s no customizabil-
ity. The current telecommunication networks provide no customizability or provide
it at a very coarse granularity. Personal preferences play an important role especially
when we talk about service integration (e.g., which email to convert to pager mes-
sages, which incoming calls to redirect to voice-mail and so on). It is personalization
that provides the complete solution to meaningful communication management.

A mis-feature of the current communication network is that the caller decides how
to reach the callee (except in very restricted scenarios). Personalization goes hand-



in-hand with pushing control to the callee. Not only does this rid the caller of the
difficulty of reaching a person with multiple end-devices, but also, it enables person-
alized handling of incoming calls by the person being called.

In this report, we describe the design of the architectural components in Iceberg
that enable personal mobility. We build the components on top of the Ninja [12]
service framework. Ninja provides a service execution environment for building in-
crementally scalable and highly available services. We leverage these properties for
our components.

We describe our mechanism for achieving a high degree of personalization and cross-
device integration. We have a prototype implementation of the components in a
testbed setting. The main piece of our testbed is the interface between the GSM
cellular network and the Internet through a GSM base-station. We present our
experience in building this testbed, as well as how it is used as a part of the prototype
implementation.

1.2 Overview

The rest of this report is organized as follows. In the next section, we present
the goals and overall architecture of Iceberg. We also present personal mobility in
the context of Iceberg. Section 3 details the design of the main components that
are crucial to personal mobility and personalization. In Section 4, we describe our
implementation. We present the architecture of the main piece of our testbed — a
GSM base-station interfaced to Iceberg. This is followed by a design evaluation and
a preliminary performance evaluation in Section 5. Section 6 presents related work.
We summarize our work and outline our future plans in Section 7.

2 ICEBERG Goals and Overall Architecture

2.1 Iceberg Goals

The goals of the Iceberg project are as follows.
e Potentially Any Network Service (PANS): This goal refers to the ability to
access services in a network and device independent manner.

o Fuxtensibility: Our architecture should be able to support the easy integration
of any new network or service that may emerge in the future.

e Personal Mobility: By this, we mean treating the person as the communication
end-point rather than a specific device belonging to the user!. The mapping

I The original idea comes from Personal Communication Services [28]. The Mobile People Archi-
tecture [2] also identified this goal.



between a user’s multiple end-points is handled crudely and manually in the
current communication network. We wish to push this mapping to the com-
munication service layer.

Customizability: The network should provide the mechanisms for enabling end-
users to customize their services. Note that this goal is different from one of
usability. The latter has to deal with the user-interface issue associated with
allowing the user to specify a preference profile. In this report, usability is our
concern only to the extent that it feeds into the design of the mechanism for
achieving the goal of customizability.

Ease of Service Creation: The Iceberg communication network should sup-
port a flexible service creation framework. Service creation should not just be
restricted to a few network operators as in the telephony world.

Incremental Deployment and Scaling: Iceberg services and the network itself
should be incrementally deployable. It should be easy to grow the Iceberg
network or increase the capacity of a portion of the network to handle a larger
user-community.

High availability and Fault tolerance. Communication plays a very important
(and sometimes critical) role in users’ lives. The components of the network
should be available 24 hours a day and 7 days a week. Iceberg strives for the
five nines availability found in traditional telecommunication networks (i.e.,
99.999% availability). As such, the architecture should be able to tolerate
failures gracefully and hide them from end-users.

Operation in the wide-area: To achieve true global mobility, our architecture
should not be restricted to a local area. It should be able to span a large
geographic region (across countries or continents).

Security and Privacy: Security, authentication and privacy should go hand-in-
hand with personalized communication management. The architecture should
support a good mechanism for implementing several security policies.

In this report, we focus on the design of the Iceberg architectural components that are
relevant to the goals of personal mobility and customizability. However, throughout
this report, the design principles to achieve all of the above goals of Iceberg serve as
driving factors. We discuss these principles next.

2.2 Design Principles

e Network and Device Independence: This means that our architecture should

not be tied to the capabilities of any particular access network or end-device.
This is necessary to achieve the goals of PANS and extensibility.



Giving control to the callee: In existing communication networks, the caller
decides how to reach the other person. Moving this control to the person
being called is crucial for achieving the goal of customizability. This is because
customizability ultimately means that a user can manage her communication
according to her preference.

Well defined service interfaces and composability: This principle is inherited
from the Ninja project (described in detail later). Well defined service inter-
faces enable easy service composition to add new functionalities. This adds
to the ease of service creation. This principle also helps achieve the goal of
extensibility — addition of new devices just requires composition with existing
interfaces.

Multiple administrative domains that inter-operate: Designing for the model
of multiple administrative domains running independent, but co-operating ser-
vices goes a long way towards achieving the goal of incremental deployment.
This principle also helps in wide-area operation. This is best substantiated by
the Domain Name Service [26] in the Internet.

Hierarchy: This is a well known principle for distributing a system in the wide-
area. We use this principle in the design of the Iceberg components that have
to be distributed in order to provide location independence.

2.3 Overview of The Iceberg Architecture

We now present the overall architecture of Iceberg, with special attention to the
components that are relevant to personal mobility and personalization.

As suggested by the (expansion of the) name of the project, a fundamental design
decision in Iceberg is the use of the Internet as the glue for integrating the various
networks. The components that exist in the core IP network are as follows (see
Figure 3 for the overall architecture).
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Figure 3: Iceberg Architecture.



Iceberg Access Points (IAPs): The first crucial component in Iceberg is the
interface between an access network and the Internet-core network. This com-
ponent acts as the service transformation agent by providing the impedance

matching between device specific functionality and Iceberg services in the Internet-

core. It enables the access of services across networks (an important step to-
wards the goal of PANS). These components are called Iceberg Access Points
(IAPs).

Preference Registry: To achieve the goal of customizability, we need to have a
mechanism for storing and processing user “preference profiles”. The Prefer-
ence Registry component of our architecture provides this functionality. The
preference registry can be queried to get the user’s current preferences (e.g.,
the current preferred end-point at which to receive calls).

Personal Activity Tracker (PAT): The PAT is a component that inter-operates
with the user’s preference registry. It tracks dynamic information such as the
user’s current location information or the call state at a particular end-point
(e.g., phone is busy, the user is out of GSM cell-phone coverage, etc.). These
are used by the preference registry as additional inputs in processing the user
preference profile.

Naming Service: A naming service in a system is used for lookups based on
names from a particular name space (e.g., DNS [26]). The result of the lookup
could be anything: it could be another name, it could be some information
associated with the lookup name, etc. In Iceberg, there are different kinds of
end-devices we have to deal with: cell-phones, pagers, telephones and so on.
Each of these devices have names in different name spaces (e.g., cell-phone
numbers, pager numbers, email addresses etc.). In addition to these, we define
the notion of a person’s unique identity which maps across all the devices the
person may own. This mapping serves as the first step towards achieving the
goal of personal mobility. The unique-ids comprise yet another name space.

We can have different kinds of lookups based on these names. For instance, we
may wish to lookup a person’s unique-identity based on her cell-phone number;
or, we may wish to find the location of a person’s preference registry based on
her unique-identity. We capture such lookups based on names in the Naming
Service component.

Data-Path Creation: To integrate services across heterogeneous end-devices,
we need to have a mechanism for performing any-to-any data transformation
and transport (e.g., converting from GSM encoded audio to ASCII text). We
use the concept of Paths and Automatic Path Creation (APC) from the Ninja
project [12]. The APC Service component of our architecture creates paths to
handle the data flow and conversion between any two end-points. We elaborate
more on this in the following Subsection.



2.3.1 Ninja: Iceberg’s Execution Environment

The Ninja project [12] aims to provide a software infrastructure for easy, reliable, and
scalable distributed service creation and execution in the Internet. Ninja provides
a model for making these services fault-tolerant, highly available, and incrementally
scalable?. In this section, we briefly present the relevant concepts from the Ninja
project and describe how they fit in with the goals of Iceberg.

The Ninja Service Ezxecution Model: The Ninja execution environment consists of
three kinds of components: Bases, Units and Active Proxies. A Base is an execution
environment on a cluster of commodity workstations located in the network infras-
tructure [8]. Bases are meant for running services that have to maintain persistent
state (state that has to be maintained across transient failures — e.g., users’ prefer-
ence profiles). At the other end of the spectrum are a large number of Units: the
clients of the services running on Bases (e.g., a laptop, a pager, a Personal Digital
Assistant, or a cell-phone is a Unit). In the case where a Unit does not have the
intelligence to talk directly with a service on a Base (e.g., a cell-phone which does
not know about Bases), an Active Prozy is used to reach the Base. In the Ninja
model, an Active Proxy has only session state (soft state) which can be restored in
the event of a failure. Persistent state exists only at the Bases.

The relation between Iceberg components and the Ninja execution environment is
shown in Figure 4. The Iceberg components run as services in the execution envi-
ronment provided by Ninja. We leverage the scalability and fault-tolerance provided
by Ninja’s execution environment for our components.
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Ninja Execution Environment

Figure 4: Mapping Between Iceberg Components and the Ninja Execution Environ-
ment.

In addition to the execution environment, Ninja strives to provide easy service com-
posability. We use this concept in the data-plane as shown in Figure 4. Operators
are units of computation that have well-defined interfaces. For example, software
that converts PCM encoded speech into ASCII text through a Java RMI interface is

2 Although Iceberg leverages a lot of crucial features from the Ninja service environment, its
control architecture is quite independent of Ninja. Any other service environment that provides
similar features could be used instead.



an operator. A Connector is an abstraction of the data-flow mechanism between two
operators. For instance, we can have Java RMI connectors or UDP/IP connectors.
A Path is a set of operators strung together using connectors — an abstraction of
a data flow. For instance, a series of codec operators followed by a speech-to-text
operator is a path.

We use the concept of Automatic Path Creation (APC) extensively in our data-path
to achieve the goal of any-to-any data transformation and transport. The well defined
operator and connector interfaces make it possible to compose paths easily. APC is
the process of doing this composition automatically by choosing the right subset of
operators and connectors to connect any two end-points.

In Figure 4, the Iceberg control components are instantiated on the Ninja execution
environments. The control components also instantiate the data-path components
on top of the appropriate execution environments.

3 Design of the Components

In this section, we present the design of the components. Subsection 3.1 briefly
presents the design of Iceberg Access Points. We then concentrate on the design of
the crucial components for personal mobility and personalization: (a) The Preference
Registry and the Personal Activity Tracker in Section 3.2 and (b) The Naming Service
in Section 3.3. Subsection 3.4 briefly presents the design of the the APC Service.

3.1 Iceberg Access Points

An Iceberg Access Point, as its name suggests, is the point of attachment of a service
or a network to the Iceberg-core. It is a protocol, data, and service transformation
agent that provides the network and device independence required for achieving the
goal of PANS. For instance, an IAP sitting in front of a text-messaging system like
the e-mail service or pager service would enable access to this service via any other
end-point: say, a cell-phone. Addition of a new service or a network involves the
addition of an TAP to do the appropriate transformations.

An TAP performs Iceberg-specific functions such as preference registry lookups, name
service lookups etc. on the Iceberg-core side. On the other side, it provides service-
or network-specific functionality. Although it is not present in our current design
or implementation, we believe that a clean separation of these two types of TAP
functionalities is possible.

In our design, an TAP performs a very lightweight function. This is in contrast to the
huge switches and components in the telecommunication network — a single switch
could serve hundreds of thousands of users. An TAP’s lightweight functionality allows
easy and independent deployment in multiple administrative domains in accordance
with our principle for achieving the goals of incremental deployment and scaling.



3.2 Preference Registry and the Personal Activity Tracker

The preference registry component is directly associated with the goal of providing
customizability. In this section, we describe the issues associated with the design of
the preference registry and our initial approach.

The preference registry stores and processes user preference profiles. It acts as a
communication management agent on behalf of the user being called — in accordance
with our principle of pushing control to the callee.

There are two separate but related issues with user-preference specification: (1)
the issue of how the system represents, stores and processes user preferences and
(2) the issue of building a reasonable user-interface for the user to specify personal
preferences which are then converted into the internal representation form used by
the preference registry.

In this report, we focus on the first issue and are concerned with the user-interface
issue only to the extent that the internal preference representation is related to the
ease of preference specification. However, we wish to stress that the user-interface
issue is a very important one, especially when we are talking about complicated

servicess.

Ezxamples of Preference Profiles

Before we present out mechanism for modeling user preferences, we give a few specific
examples of user preferences that are possible in the Iceberg setting (seamless access
to integrated services).

e User Alice has a cell-phone and an office-phone. She wishes to receive all phone
calls on her office phone during office hours (on working days) and all calls on
her cell-phone at other times. However, all business calls should always go to
the office phone or to the office’s voice-mail system if she’s not available — calls
from business clients are never received on the cell-phone.

e User Bob has an email account, a ParcTab device [33] that operates in his office
building, and a cell-phone. He wants the headers of e-mails from important
people to be read out to him in a push-fashion on his cell-phone. The cell-
phone should be used for receiving all incoming phone calls — except when he
is in a conference room in the office building (the location information comes
from the ParcTab) — in which case, a text message from the caller should
appear on his ParcTab.

These examples concentrate on personalized handling of incoming communication.
However, the preference registry could also be used for customized access to other
services. We use the examples to provide a context for the following discussion.

3This issue has been faced in the form of feature interactions (where users don’t understand the
implications of subscribing to multiple services) even in the limited service model of the Intelligent
Network (IN) [31]
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Classifying the Inputs to the Preference Registry

A User preference profile is essentially a function of several inputs such as caller-id,
time-of-day, or user location. The function’s output is the preferred endpoint (e.g.,
user’s cell-phone or email-id).

We classify the inputs to the preference registry into two main categories. The first
category is per-call information like caller-id, caller endpoint type, etc. The second
input category is more dynamic information, such as the user’s location or call state.
The user preference profile is processed in the context of these inputs.

The Role of the Personal Activity Tracker

The collection of inputs of the second category — the dynamic inputs — is done by
the Personal Activity Tracker (PAT). Figure 5 illustrates the conceptual functionality
of the preference registry and the PAT. The PAT could use different techniques for
collecting the dynamic information. For instance, in the second example described
above, it would collect location information from the ParcTab network. In another
example, it could get state information pushed to it by an IAP of the Iceberg network.

The PAT simply collects the information present. Whether or not the information
is present or is allowed to be collected are separate issues. The set of personal
states that are present and are allowed to be collected (by the user) are user-specific.
Perhaps this information can also be stored as part of a user’s profile at the preference
registry. It is also necessary that any communication between the preference registry
and the PAT is authenticated both ways and is over a secure channel. We have not
yet completely thought through this portion of the interface between the preference
registry and the PAT.

Personal
Activity
Tracker

Wther personal state

Callee location

Callee state (e.g., Who she’s talking to)

Preference Registry

Caller-id Per-Call State Callee's
K = User = .
Caller end-point type Preference preferred end-point

Time-of-day Profiles .~

Figure 5: Preference Registry and Personal Activity Tracker

Representing Preference Profiles

The preference profile is a user-specified function of several inputs. A natural way
to model it is using a (restricted) scripting language. Given our experience so far,
we believe that a rule-based or procedural scripting language can model a wide
range of user preferences in a straight-forward manner. Figure 6 shows a rather
simplistic example script where the user wishes to redirect communication to her
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office-phone (9am-5pm), home-phone (5pm-12midnight), or her voice-mail (sleeping
time) based upon the time of day. Preference scripts for representing more realistic
(and complicated) user preferences such as the examples discussed previously are
given in Appendix A.

IF (9AM < hour < 5PM) THEN Preferred-End-Point = Office-Phone;  // At Office
IF (5PM < hour < 11PM)  THEN Preferred-End-Point = Home-Phone; // At Home
IF (11PM < hour < 9AM) THEN Preferred-End-Point = Voice-Mail; // Sleeping

Figure 6: A Simplistic Example Preference Script

While a scripting mechanism is very powerful, we should be careful about two issues.
The first is that of safety. The language should have minimum possible functionality.
Techniques like those used in the Berkeley Packet Filter (BPF) [25] are essential to
prevent any unbounded execution or infinite loops in the script.

The second issue is a performance concern — having arbitrary code execution during
call-setup could mean a lot of additional latency. To address this, we could replace
scripting with fast table lookups on the inputs as much as possible. One can imagine
such table-lookups based on inputs like the caller-id.

Preference Registry Service on a Ninja Base

The service that implements the preference registry functionality is a crucial piece
of the service framework. It could be shared by multiple users in an administrative
domain. It needs to be highly available and fault tolerant. Further, it has persistent
state: the users’ preference profiles. As discussed in Section 2.3.1, a Ninja Base
is an ideal execution environment for services that have persistent state. Hence a
preference registry service would run on a Ninja Base.

Authentication Issues

During a lookup, the preference registry has to be authenticated to the client. Simi-
larly, the client should be authenticated to the preference registry since the caller-id is
an important input to the preference registry. Although we have not yet worked out
a complete solution, we believe that any authentication has to rely on a public-key
infrastructure since we require distributed, wide-area operation. The naming service
can possibly be used to distribute public keys as well — we discuss this briefly as
part of the next Subsection.

3.3 The Naming Service

Names in Iceberg: Service-Specific-Ids and Unique-Ids

The Naming Service in Iceberg is used for doing any lookup based on a name. We
define two kinds of names in Iceberg.

Each of the user’s service end-points (or devices) is associated with a service-
specific-id. For instance, a user could have a telephone number, a pager number

12



and an email-id?. To achieve the goal of personal mobility, we map all the service-
specific-ids of a user to a unique-id — which is used to uniquely identify the user in
the Iceberg network (this is similar to the Universal Personal Telecommunications -
UPT number assigned to a user in PCS).

Name Mapping

One of the important functions of the Naming Service is to map the Iceberg user’s®

multiple devices onto the same logical entity. This is the first step in achieving the
goal of personal mobility.

Name mapping is the lookup of the unique-id based on a given service-specific-id.
It refers to the mapping from the given service-specific-id to the user’s unique-id.
This is shown in Figure 7 (we have chosen to have an email-id like name space for
unique-ids in this example; however, this choice is not very crucial).

An important point to note is that name mapping is required only when dealing with
devices that do not know about Iceberg unique-ids (e.g., a scenario where a user uses
her cell-phone to dial another person’s telephone number). In such a case, the IAP
serving the caller would do the name mapping to get the callee’s unique-id. If the
calling device is capable of providing the callee’s unique-id directly, this mapping is
not required. Also note that in some cases, this mapping may result in more than
one unique-id (e.g., when the service-specific-id is a shared telephone in an office).

The mapping in the other direction: unique-id to service-specific-id for a particular
user, is done at the user’s preference registry. This is because the set of devices the
user owns and the corresponding service-specific-ids are ideally stored as part of the
user’s personal profile.

<Ofc Phone No>

+1-510-642-9076 \
<Unique-id>

<PagerNo> ___ ==

1234321 /bhaskar@cs.berkeley.edu

<Desktop IP Addr>
128.32.37.162

Figure 7: Examples of Name mappings

Using the Naming Service for Preference Registry Location

A second kind of lookup that the naming service currently provides is: the loca-
tion of the preference registry of a user based on his unique-id. This serves as a
bootstrap mechanism for learning any information about a user given his unique-id.
Further information can be learnt, or a call placed to the user by further querying
the preference registry of the user.

4We call these “service-specific-ids” and not “network-specific-ids” since a user could have mul-
tiple ids for different services in the same network. For instance: an e-mail-id, a Voice-over-IP
end-point and an ICQ ID in the Internet.

5The term “user” could refer to a human user or any abstract entity in real life — for example,
an airline company’s customer service number.
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Distributing the Naming Service

To satisfy our wide-area requirement, the naming service should be distributed. We
need to have a mechanism to locate and retrieve information given a name (service-
specific-id or unique-id) in a location independent manner (any lookup from any-
where).

We use the principle of hierarchy to distribute the name-mapping functionality. We
take an approach similar to DNS: (a) a distributed hierarchical tree of the name space,
(b) multiple name servers controlling different portions (sub-trees) of the name tree,
and (c) a distributed tree traversal across name servers for name mapping.

Tel Numbers: A |P Addresses: B Pager Numbers: C
edu com /
1234567
ber kel ey 1122334
. 7654321
cs eecs ©
j ake ferm

(b)
Figure 8: The Hierarchical Name Tree

However, we cannot adopt a DNS-like solution directly since, unlike with DNS, we
have multiple name spaces: telephone number space, e-mail address space, pager
number space, etc. Furthermore, Iceberg must be capable of handling new name
spaces as new services are introduced (e.g., adding a service like ICQ [16] adds a new
name space of ICQ IDs).

If we could arrange all the name-spaces into a single tree and have a uniform tree-
traversal mechanism, the issue of multiple heterogeneous name spaces is effectively
solved. To do this, we first arrange each of the name spaces of the service-specific-
ids into a separate tree. How this hierarchical arrangement is done for each name
space is orthogonal to the rest of the solution. Examples are shown for three service-
specific-ids: Telephone numbers, IP Addresses and Pager numbers, in Figure 8(a),
(b) & (c) respectively.

After this first step, we still have the problem of heterogeneous name spaces: hierar-
chy of strings, hierarchy of numbers split in different ways. We define a schema on
each tree. The schema is essentially a definition of: (a) a tag associated with each
level of the tree and (b) the type of the value in that node. The trees in Figure 8 are
shown with their tags in Figure 9. As a specific example, the ccode tag in Figure 9
appears in the first level of the telephone-number tree and has values of type numeric.

Now, it is easy to get a uniform view of all trees: a tree’s structure is based on its
schema. A uniform tree traversal mechanism is possible.

Once we have a uniform view across the trees, it is easy to get a single tree from
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Figure 9: Tagging the Trees

the multiple trees: attach them at a common root (shown in Figure 9(d)). The
common root would also store the schema of each of the first level sub-trees. The
tree description at the root also allows easy addition of new name spaces by just an
addition to the set of entries in the root. The addition of a new name space is shown
by dotted lines in Figure 9(d).

The ideas of tags and schemas are originally from LDAP [32].

Given this structure, the rest is similar to DNS. A lookup based on any name can be
done by bootstrapping off a name server (configured statically or learnt dynamically
using mechanisms such as the one in [3]). After bootstrap, the lookup involves walk-
ing the tree (possibly through multiple name servers) to the leaf corresponding to the
service-specific-id or unique-id. The leaves (shown as small circles in Figure 9) store
the information to be returned in the lookup. The distributed tree enables the use
of a distributed and location-independent tree-traversal name mapping mechanism.

Name Server on a Ninja Base

A naming service is a critical component of any system. It needs to be available 24
hours a day, 7 days a week (anyone who has experienced a DNS server crash would
readily agree with this). The name server needs to maintain persistent state (across
failures). As with the preference registry server, these requirements make it ideal to
run a name server on a Ninja Base.

Using the Naming Service for Bootstrapping Authentication

The naming service can be used to distribute keys in a public key infrastructure
— a user’s public-key can be retrieved based on his unique-id. This would be yet
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another lookup done through the naming service. The naming service itself should
be authenticated. For this, a hierarchical authentication mechanism similar to DNS-
Security [5] can be used. Note that during a naming service lookup, there is only
one way authentication — the client need not be authenticated since we store only
public information in the name servers.

3.4 Automatic Path Creation Service

We borrow the design (and implementation) of the APC Service from the Ninja
project. Operators and connectors are strongly typed — in accordance with our
principle of well-defined interfaces — and can be composed dynamically. This sim-
plifies the addition of any new required data transformations. A new “operator” can
be composed with existing ones — only the conversion that is missing could be pro-
vided. For instance, suppose that we have the necessary operators and connectors to
convert, from PCM encoded voice to textin our system. Now, if we add a new service
that requires tezt in a particular grammar, the only operator we need to add to the
system is one that converts from text to that particular grammar (possibly using
some natural language recognition — if the original voice is from a human speaker).

4 Implementation

To gain first hand experience and to better refine our design, we have been building
the components in a testbed setting. The main piece of our testbed is a GSM
Base-Station integrated with the Internet-core. Although the GSM “network” in our
testbed consists of just two cells controlled by two different transceivers, and is not
connected to the GSM wide-area network currently, the testbed is intended to give
us insight into aspects of deployment, provisioning, latency and most importantly,
usability.

In the next subsection, we describe the GSM-Internet integration architecture and
how it fits into the rest of our testbed. We then present the first-cut implementation
of the main Iceberg components.

4.1 GSM-Internet Integration Architecture

Our GSM testbed consists of a Base-station Transceiver System (BTS) with two
transceivers (TRXs).

The overall architecture of the GSM-Internet integration is shown in Figure 10. The
GSM-IAP is the component that interfaces the GSM network with the Internet-core.
There are two main components that perform the bulk of GSM-specific functionality
to interface with the IAP. These are the UPSim (User Part Simulator) and the
IP-PAD (IP Packet Assembler & Disassembler) shown in the figure.
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Figure 10: An IAP interfaced to the GSM network

While the UPSim handles control signaling, the IP-PAD, as its name suggests, han-
dles the data-path by inter-converting between GSM frames and IP packets. To-
gether, the UPSim and the IP-PAD provide an Inter-Working Function (IWF) ca-
pability. Next, we describe each of these components after briefly describing the
base-station.

The Base-Station Transceiver System (BTS)

We have an RBS2202 model BTS with a capacity of six transceiver slots. Of these six
slots, two are filled: TRX0 and TRX2. Each TRX can potentially serve a separate
cell. Each TRX can handle eight air time-slots. In our configuration, one of the
eight time-slots for each TRX is used for control signaling on the air — the other
seven can be used for voice or data calls. Hence a maximum of fourteen simultaneous
phone-calls are possible in our testbed.

The UPSim

The UPSim is the component that controls the BTS. It handles the Abis signaling
interface with the BTS thus acting as a BSC (Base-Station Controller) (see [27]).
The UPSim also handles MSC (Mobile services Switching Centre) functionality by
providing Call-Management and Mobility-Management functions.

The UPSim connects to the BTS via an E1 line. Time slots 1 and 7 on the E1 line
are used for signaling to TRX0 and TRX2 respectively (see Figure 11(a)).

The UPSim is a SCO Unix machine with an Ericsson proprietary interface board to
the E1 line. It runs proprietary software to handle the signaling with the BTS and
the cell-phones through the interface board and the E1 line.

The IP-PAD

The BTS is configured via the UPSim to send and receive all data streams via another
E1l line — which connects to the IP-PAD on the other end. Figure 11(b) shows the
E1 time-slots used for the data channel. For each TRX, two E1 time slots are used.
The data stream rate on air for each air time-slot is 13kbps for voice connections and
12kbps for data connections. This is rate adapted to 16kbps at the BTS and 4 such
streams are multiplexed into a single 64kbps E1 time-slot (see Figure 10).
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Figure 11: E1 Time-Slots used for signaling and data

The IP-PAD is an off the shelf commodity PC running WindowsNT. It has an El
interface card®. A software module reads/writes frames from/to the E1 line through
the card via a driver interface.
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Figure 12: The Conversion of GSM frames to RTP Packets at the IP-PAD

The conceptual operation of the IP-PAD7 is shown in Figure 12. On reading each
of the appropriate E1 time-slots, the four 16 kbps air time-slot streams are de-
multiplexed as the first step. Then, in each 16kbps stream, the synchronization bits
are found and the stream is split into 320 bit frames (one in each 20 ms). Of these
bits in a frame, 260 constitute a speech frame in the case of a voice connection and
240 constitute a data frame in the case of a data connection. In the former case, the
260 bits are packed into an RTP [30] packet and sent to the Internet (to the other
end point of the voice connection).

In the reverse direction (RTP packets conversion to GSM frames), we need to mul-

6Thor-2 Dual T1/E1 Board from Odin TeleSystems Inc. http://www.odints.com/
7As of this writing, the IP-PAD handles only voice calls. Support for data calls is not complete.
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tiplex four streams belonging to different voice connections onto the same E1 time-
slot. In our implementation, we have found this operation to be quite tricky since
this involves multiplexing non-isochronous streams from the Internet side onto an
isochronous E1 stream. We need to do additional buffering at the IP-PAD in or-
der to collect packets from the four different non-isochronous streams and then send
them out as frames on the appropriate E1 slot.

In our testbed, we have used the Internet audio tool vat [22] as the other end-
point of phone calls to cell-phones. The vat tool has a GSM codec option which we
use. However, the 260 bits in the GSM frame from the cell-phone do not appear
in the same order in the frames used by the codec. We document this mismatch in
Appendix B.

The GSM IAP

The GSM IAP is the component that coordinates the UPSim and the IP-PAD. It
exports the Iceberg interface to the outside world (the Internet-core) for setting up
phone calls to cell-phones and to handle outgoing calls from cell-phones. It im-
plements Iceberg functions like Naming-Service lookup, Preference Registry lookup,
Data-path creation through the APC Service and so on.

In our implementation, the GSM TAP is a Java program running on a separate ma-
chine and talking to the UPSim via two TCP connections®. In our implementation,
we have made all the data-streams from the IP-PAD go through the GSM IAP —
which then redirects the data-streams via the data-path on the Internet-core side.
Of course, the data-streams could be made to bypass the GSM TAP entirely.

The signaling protocol exported by the GSM IAP (to other TAPs) is a simple request-
response protocol implemented on top of Java RMI (again for quick implementation).
We expect this to change in the future.

The Rest of The Testbed

In addition to the GSM network, the testbed also consists of a WaveLAN network.
As of this writing, we are still in the process of adding functionality to our testbed:
building IAPs to interface to the PSTN through a H.323 gateway [14] and to interface
to the paging network through a 2-way paging gateway. The overall picture of our
testbed is shown in Figure 13. The components that we are working on currently are
shown with dotted lines. Our immediate plans also include extending the testbed to
the wide-area (we are working on deploying Iceberg components at other academic
and industrial locations).

4.2 Implementation of The Components

Iceberg Access Points

We currently have IAPs interfaced to four different kinds of services/networks. As

8We use TCP connections to the UPSim due to the proprietary software at the UPSim side.
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Figure 13: Our Testbed

described in the previous subsection, one of these is the IAP to the GSM network of
our testbed. The others are:

e An IAP interfaced to the vat Internet audio tool [22]. This TAP is meant to
serve a Voice-over-IP end-point: a machine on the Internet. In our setting, this
TAP runs on laptops on a WaveLAN network and on desktops on the ethernet
— it serves only a single user, the owner of the laptop or desktop. Since the
WaveLAN network or the ethernet is just an extension of the Internet-core,
there are no special protocol or data transformations to be done for these
end-points (in contrast, we required the UPSim and the IP-PAD to do these
conversions in the case of cell-phone end-points).

e An TAP interfaced to a voice-mail service. The voice-mail service is also a
Voice-over-IP end-point — it is not the one in a traditional telephone system.
Thus, this IAP is quite similar to the previous one. No special protocol or data
transformation is required in this case as well.

e An IAP interfaced to the user’s e-mail inbox. This IAP has to invoke a text <>
voice conversion operator while creating a data path to the other end-point.

It is conceptually easy to add an TAP to the system. Most of the effort in building
an TAP goes in interfacing with the access network (i.e., the UPSim and the IP-PAD
in the case of our GSM network).

All the TAPs are implemented as Java programs. The main reason for this is that we
expect IAPs to run on the appropriate Ninja execution environment (the details of
this are being worked on currently). The Ninja execution environments make heavy
use of Java’s features like strong typing, dynamic class loading, etc. for providing
features such as service composition, fault tolerance, and so on.
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The Preference Registry

The preference registry is a service running on a Ninja Base. It is a Java program
that exports a Java RMI interface for preference lookups. In our prototype, we have
concentrated on functionality rather than on performance. We are using a subset
of an existing scripting language, perl [18], for the internal representation of user’s
preference scripts. The Java program invokes the perl interpreter to process the perl
script. The Java program and the perl interpreter communicate through the file
system.

We are in the process of building and evaluating a user interface for preference
specification.

Naming Service

We borrowed the idea of a tagged hierarchical tree from LDAP/X.500 [32, 34]. For
quick prototyping, we are using an existing LDAP implementation [17] for the name
server. The LDAP server implementation allows us to define the schema of the tree
via a configuration file.

LDAP functions, especially LDAPSearch which we use for the lookups, are too heavy-
weight for our purpose. This is amply indicated by our high latency measures in
Section 5.2. We plan to move to a Java-based implementation of the naming ser-
vice running on a Ninja Base thus leveraging the scaling and fault tolerance models
offered by the execution environment.

APC Service

We are using an implementation of the APC Service, operators and paths from the
Ninja project group. This implementation has the operators necessary to support
the conversions GSM 06.10 voice < text. However, these operators do not run in
real-time. Thus the implementation does not support “stream” connectors which are
required for real-time codec conversions.

Personal Activity Tracker

We are in the process of defining the interfaces in the next level of detail for this
component. Although not completely interfaced yet, we can currently capture reacha-
bility information of users’ cell-phones in our GSM testbed by capturing the Location
Update, IMSI-Attach, and IMSI-Detach messages from the cell-phones [29].

5 Evaluation

In this section, we present an evaluation of our design (Subsection 5.1) and perfor-
mance measures (Subsection 5.2). The performance numbers are very preliminary
and are not complete. They are meant only to give an indication of possible scaling
and latency bottlenecks.
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5.1 Design Evaluation

Iceberg is being designed to go beyond the service model of the third generation cellu-
lar® and PCS (Personal Communication Services) efforts [28, 35]. Its main strength:
ease of service creation and deployment comes from the fact that it is designed with
the Internet as the core. We now discuss the strengths of our personal mobility
model.

5.1.1 Personal Mobility

The concept, of personal mobility provided in Iceberg is much richer than the notion of
personal mobility provided by PCS. Iceberg provides a framework for cross-network
and cross-device mobility of services.

Ease of adding new services

Not only does our model allow for easy introduction of new services (due to the low
cost of entry in the Internet), but also it is easy integrate them with existing ones.
For instance, in our implementation, it was very easy to add a new voice-mail service
and an e-mail service. They required just an additional TAP to interface to the rest of
the Iceberg services. For the data-path, they required the addition of speech < text
conversion operators.

Similarly, it would be very easy to integrate other end-points such as PSTN phone,
Pagers or even other Internet messaging services, such as ICQ [16].

As an example of an innovative service, consider a “room-control” or smart-space
application such as the one described in [9]. Integrating such a service (dynamically)
with our system would be as simple as adding an AP to interface to this service.
Users would then be able to access this service via any end-device via any network
seamlessly (they could use their cell-phones or pagers to send commands to control
the smart devices in a room).

5.1.2 Flexibility in the Personalization Model

In our personalization model, it is trivial for users to have common IN and PCS
services. A few examples are:

e Call redirection — our system allows this feature to be based on a variety of
user-specified parameters.

e Personal numbering — this involves a simple preference registry lookup in our
system.

9That’s where the phrase “Beyond the Third Generation” in the expansion of “Iceberg” comes
from.
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e 800-number like redirection — this is just a specific case of call redirection based
on factors like caller-id and/or location.

Commercial service integration efforts such as voice-to-email, email-to-fax, etc. are
just specific instances of PANS. They are easy to build, deploy, and personalize in
Iceberg.

5.2 Preliminary Performance Evaluation

We have gone through this first-cut implementation of the components in the spirit
of the “Plan to throw one away” system design principle [24]. The performance
evaluation in this section is preliminary and is intended to throw light on what the
potential latency bottlenecks could be.

A natural result of the extra functionality we provide in terms of personal mobility
is the addition to the latency in call setup time. This is what we concentrate on in
our performance measurements below. We measure only the IAP-to-IAP call setup
latency in the Iceberg-core — not the end-to-end latency, which would also include
the latency on the access network side.

5.2.1 The Setup

The setup we use for our tests is shown in Figure 14. We use the same machine
(labeled S) as the preference registry server and as the local name server. In our
configuration, there are no name server referrals — all requests are served by the local
name server.

S
Preference Registry server
Naming Server
1
2 3
4
IAP ¢ 5 IAP_s

Client IAP 5 Server IAP

1, 2 - Naming service lookup
3, 4 - Preference registry lookup

5, 6 - Actual call setup between the two IAPs

Figure 14: The Setup for Latency Measurements

The IAP client (the caller end), labeled IAP,, and the IAP server (the called party),
labeled T AP;, are the other two machines in the configuration. A call setup involves
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Naming lookup latency 29ms (4)

Pref Reg lookup latency 96ms (11)

Latency of actual call setup
e RMI lookup for TAP call | 22ms (4)
e RMI call between IAPs | 46ms (3)

Table 1: Latencies of the Steps in Call Setup

Reading the preference script 2ms (0)
Perl interpreter execution 39ms (11)
Communication with perl interpreter | 11ms (0)

Table 2: Latencies of the Steps at the Preference Registry Server

the following steps: (a) naming service lookup by I AP, to do name mapping and to
get the location of the preference registry, (b) preference registry lookup to get the
preferred end-point, I AP, and (c) the actual call setup between I AP, and I AP;.

Both the client and server IAP serve voice-over-IP end-points: the vat tool on the
respective machines. In this simple case, the APC service is not used at all — there

is no data transformation and the data flow is just an RTP stream!°.

The TAP client and server are Pentium 200MHz machines running FreeBSD-2.2.7.
The machine S is a 233MHz IBM Thinkpad 560X, running Linux-2.0.36. The Java
programs were compiled and run using the Java Development Kit 1.1.7. All the
machines were on the same 10Mbps ethernet subnet. We have not performed any
wide-area tests yet. The results are summarized in Table 1. The figures in parentheses
give the standard deviations. In all our measurements, we take the average of ten
runs — after ignoring the first measurement which is highly skewed due to dynamic
class loading in Java.

5.2.2 Naming lookup Latency

As mentioned earlier, we are using an existing LDAP implementation for the schema
based tagged trees. We are using Netscape’s directory SDK 3.0 for Java on the
client side. Our measurements show latencies of the order of about 30ms for the
Naming lookup. We believe that this huge latency is due to the LDAPSearch at
the LDAP server — which is a heavy weight operation. This is not really needed
and conceptually, our naming lookup should not be any costlier than a DNS lookup
which is of the order of a millisecond in a LAN.

107deally, the APC service would still be contacted to setup an empty path — but this is not the
case in the current implementation. The APC service did not have support for stream data flows
at the time of this implementation.
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5.2.3 Preference Registry lookup Latency

We are using naive mechanisms in our preference registry implementation currently.
Our measurements show on the order of 100ms latency for the lookup. The bulk
of this latency comes from invoking the perl interpreter from the preference registry
server — a process execution — and because of the use of files to communicate between
the two processes. A good amount of latency also comes from the Java RMI lookup
and the RMI call.

Table 2 shows the latencies of the steps at the preference registry server: (a) ac-
cessing the stored preference script from a file, (b) invoking the perl interpreter as a
subprocess, and (¢) communication with the perl interpreter through the file system.

5.2.4 Latency of the Actual Call setup

The actual call setup is just a simple request-response protocol. The latency of this
step involves a Java RMI lookup at TAP, and the RMI call to TAP;. Both of these
steps show on the order of tens of milliseconds latency (Table 1).

6 Related Work

A wide assortment of commercial products that attempt to provide integration across
services and communication devices are becoming available. A few examples are:
e-mail-to-fax services [11, 15], voice-e-mail-fax integration services [13, 19], and en-
hanced telephony services [20]. These commercial services show the strong desir-
ability of having personalized integrated communication. The TOPS architecture [1]
uses a “directory service” component for personalization. However, the commercial
efforts, as well as TOPS, are limited in terms of any-to-any service integration and
dynamic service composition. They also lack models for scaling to the wide-area or
to a large user base.

The Mobile People Architecture (MPA) [2] has some goals similar to Iceberg. Both
projects try to provide any-to-any integration and personalized call handling. How-
ever, there are many enhanced features of our design that are missing in MPA: seam-
less service integration and a model for scalable and incremental wide-area service
deployment (a feature that we leverage from Ninja).

The term personal mobility is used to mean different things in the telecommunica-
tion world. In the context of GSM, the SIM (Subscriber Identity Module) provides a
limited form of “personal mobility” by making the user’s identity (the SIM card) inde-
pendent of the end-device (cell-phone) in use. More recent Personal Communication
Services (PCS) efforts take this a step further by adding another level of mobility.
The user is identified by a unique number — called Universal Personal Telecommu-
nications (UPT) number (much like our unique-id) across multiple devices on fixed
as well as mobile networks [28].
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While there are similarities in the goals and motivation behind the PCS efforts, there
are crucial differences. Our model, since it centered around the Internet, presents a
flexible service creation and integration model — service creation is not restricted to
network operators (this is the same as the “Boost to Innovation” argument in [21]).
It is easy to incrementally deploy and scale our system in the wide-area.

7 Conclusions & Future Work

In this report, we have presented the architecture and design of the components
for personal mobility as defined by Iceberg. Our model allows seamless access to
communication services and thus provides true tether-less mobility. The ease of
introducing and integrating new and innovative services is unique to our design and
is missing in the personal mobility efforts in the telecommunication world.

We add a flexible customization model on top of personal mobility to enable person-
alized communication management. It is easy to enable PCS services and beyond in
this model.

We have an implementation of our model in a testbed setting. The testbed consists of
cell-phones in a GSM network. The main advantage of this testbed implementation
would be a real-life usability and performance study of our model.

We have plans to extend the testbed to a wide area setting to give us insight into
the performance and latency bottlenecks in the system. Another crucial aspect that
requires study is the usability of the system — especially user-centric aspects like
preference specification. As of this writing, we have not done any usability tests
or detailed performance measurements (beyond those presented in Section 5.2). We
expect to do these studies in the immediate future and refine our design based on
the experience.
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A Example Preference Scripts

Preference scripts for the example scenarios in Section 3.2 are shown below. The
first figure shows Alice’s preference profile and the second one shows Bob’s preference
profile.

IF (Caller-Id IN Set-of-business-clients)
THEN Preferred-End-Point = 0ffice-Phone;

IF (Day-0f-Week IN {Mon, Tue, Wed, Thu, Fril})
AND (9AM < Hour-0f-Day < 5PM)
THEN Preferred-End-Point = 0ffice-Phone;

DEFAULT Preferred-End-Point = Cell-Phone;

Figure 15: Alice’s Preference Profile

CASE (Incoming-Type == E-Mail)

IF (From-Header IN Set-0f-Important-People)
THEN Preferred-End-Point = Cell-Phone;

DEFAULT E-Mail;
CASE (Incoming-Type == Voice)

IF (Location IN Conference-Room)
THEN Preferred-End-Point = ParcTab;

DEFAULT Cell-Phone;

Figure 16: Bob’s Preference Profile
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B GSM Codec used by VAT

The GSM Codec is implemented in vat using the library from TU-Berlin, FB-
Informatik [4]. The bits in the speech frames from the cell-phone are not in the
same order expected by this codec. Specifically, each of the codec fields: LPC Filter,
LTP Filter & Excitation Signal (see [27] Section 3.3.2 and [6]) are reversed in bit
order. That is, when the 260 bits of a speech frame are ordered by, bs...b2go, each of
the fields have to be reversed before feeding into the GSM codec used by the library
(for example, the first six bits by — bg represent the first LPC filter parameter and
have to be reversed as bg...b).
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