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Abstract

Designing and tuning accessmethods (AMs) has alwaysbeen more
of a black art than a rigorous discipline, with performance assess-
ments being mostly reduced to presenting bottom-line runtime or
1/0 numbers. This paper presents an analysis framework for AMs
that defines performance metrics which are more meaningful than
bottom-line numbers and thereby allow the AM designer to detect
andisolatedeficienciesinan AM design. Theanalysisprocesstakes
aworkload—atree and a set of queries—asinput and provides met-
rics that characterize the performance of each query as well asthat
of the tree structure and the structure-shaping aspects of the AM
implementation. Central to the framework is the use of the optimal
behavior—which can be approximated relatively efficiently—as a
point of reference against which the actual observed performance
is measured. The performance metrics themselves reflect the fun-
damental performance-relevant properties of the input tree. The
framework applies to most balanced tree-structured AMs and is
not restricted to particular types of of data or queries. It isimple-
mented in andb, a comprehensive graphical design tool for AMs
that are constructed on top of the Generalized Search Tree abstrac-
tion. Andb complementstheanalysisframework with visualization
and debugging functionality, allowing the AM designer to investi-
gate the source of those deficienciesthat were brought to light with
the help of the analysis framework.

1 Introduction

Despitethelarge and growing number of access methods (AMs) that
have been produced by the research community—and also despite
their increasing importance, considering the explosion of data users
find worth querying—the design and tuning of AMs has always
been more of a black art than a rigorous discipline. Traditionaly,
performance analyses are presented in terms of aggregate runtime
or pageaccessnumbers. The drawback isthat these numbersdo not
allow the contributions of individual design ideas to be quantified.
As aresult, it is hard to explain performance differences between
competing AM designs, if those deviate in more than one design
aspect. Also, aggregate runtime or access numbers do not allow
AMs to be assessed on their own, because competing AM designs
are needed to put the numbersinto perspective.
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In this paper we present an analysis framework for tree-struc-
tured, height-balanced AMsthat provides more meaningful perfor-
mance metrics than just aggregate numbers and can be applied to
any workload, regardless of the type of dataor nature of the queries
involved. Its salient features are:

¢ Theworkload—atree and aset of queries—isaninput param-
eter of the analysis and the metrics characterize the perfor-
mance of an AM specifically in the context of that workload.
This allows the framework to be used to tune an AM for a
specificworkload and to compareworkloadsby running them
against the same AM.

¢ The performance metrics directly characterize the observed
performance of the workload execution, namely the page ac-
cesses. They are not stated in terms of data or query seman-
tics, and thus reflect performance objectively. On the other
hand, metrics that express performance in terms of semantic
properties require the designer to understand their correlation
with page accesses. Since such an understanding is a goal
of the analysis process, any apriori assumptions are often
incorrect and misleading.

e Central to the analysis is the comparison of observed per-
formance with optimal performance, i. e., performance that
would have been obtained with a tree that is optimal for the
input workload. The performance metrics are derived from
this comparison and express performance loss. With such a
point of reference, the observed performance can be put into
perspective without having to comparewith acompeting AM
design. Moreover, this particular point of reference shows
the potential for performance improvement, which cannot
necessarily be discovered by comparing two alternative AM
designs.

e The framework defines performance loss metrics for each
query of the workload, for the nodes of the input tree and
for the structure-shaping aspects of the AM implementation.
Furthermore, those metrics are broken down to reflect thefun-
damental performance-relevant properties of tree-structured
AMs. Such abreakdown is more useful than aggregate num-
bers, becauseit facilitates assessing the performance effects
of AM design aspectsindividually.

The analysis framework is implemented in andb, a compre-
hensive visual design tool for AMs built on top of the Generalized
Search Tree (GiST) abstraction ([HNP95]). Its features include:
interactive execution of search, insert and delete operations; sup-
port for breakpoints and single-stepping through operations; visu-
alization of the tree structure and node contents (the latter being



user-extensible); execution of query workloads, gathering of trac-
ing information and visual presentation of performance metricsand
tracing information. In order to compute performance loss met-
rics, amdb approximates part of the workload-optimal tree, namely
the optimally clustered leaf level. Thisis achieved by modelling
the input workload as a hypergraph and approximating the optimal
clustering viaa heuristic hypergraph partitioning algorithm.

The rest of the paper is structured as follows. Section 2 gives
an overview of amdb and describes the integration of the analysis
framework into a graphical development environment. Section 3
briefly introduces GiST. Section 4 contains a discussion of the
analysis framework, along with illustrative examples, among them
a test for unindexability. Section 5 discusses related work and
Section 6 containsthe conclusion and an outline of future work.

2 Andb: A Design Tool for Access Methods

The goal of the development of andb® wasto provide the AM de-
signer with acomprehensivetool that would cover the entire design
process, ranging from debugging the initial implementation to fine-
tuning of an AM for a specific workload. At the core of andb is
the analysisframework that isthe topic of this paper; it isintegrated
with a collection of modules in an interactive, easy-to-use graph-
ical environment. Those modules are: a visualization component
for the tree structure and its contents (the latter user-extensible);
afacility for interactive execution of tree searches and updates as
well as breakpoints and single-stepping through those commands,
similar to functionality found in programming language debuggers;
browsers for viewing performance numbers derived from the anal-
ysis framework.

Andb supports access methods devel oped using the public do-
main | i bgi st package which implements the GiST abstraction.
Andb and | i bgi st arewritten in Javaand C++ and are portable
across many versions of UNIX aswell as Microsoft Windows NT.
Thepackagescanbedownloadedfromht t p: / / gi st . cs. ber -
kel ey. edu/ .

This section describesthe visualization and debugging features
and gives an overview of how the analysis framework is presented
to the user.

2.1 Visualization Functionality

Understanding flaws in an AM design requires inspecting the cor-
responding tree; thus, andb provides interactive graphical views
of the entire tree, paths and subtrees within the tree, and contents
of nodeswithin the tree. These are the global view, tree view, and
nodeview, respectively (Fig 1). Theseviewsnot only help visualize
the tree structure and its contents, but also help visualize profiling
data and performance metrics by associating them with nodes in
the tree (discussed in detail in Section 2.3). Finally, they provide
navigation features, which enables designers to drill down to the
source of a deficiency.

Thehighest-level, global view providesamanageableaggregate
view of the entire index (Fig 1: 1). This representation factors out
much of the tree structure by mapping it onto a triangle with an
adjustable baseline and height. The purpose of this view is to
project a user-selected tree statistic or performance metric onto this
abstract display and depict the variation of the statistics across the
total tree. Theuser canchooseboth acolor map (or palette, Fig 1: 2)
and a statistic; the global view assigns colorsto the statistical values
and rendersthe nodesaccordingly. Nodesare visually concatenated
and merged if necessary with other nodes on the samelevel. Thus,
the pixel density of nodes increases geometrically with the level.
Theuser can also perform an approximatedrill-down into an areaof

*Aninitial implementation s briefly described in [K SHO8].

interest by clicking on it. Subsequently, a path from the root node
to a nodein the neighborhood of the specified point will be shown
in the tree view, alower-level view which shows more detail.

The tree view shows the structure of the search tree (Fig 1: 3).
It offers an intuitive point-and-click interface for browsing the tree
while improving on conventional tree navigation interfaces which
become cumbersome for high fanout trees. In this view, the tree's
nodes are represented by boxes and labeled with a unique number
for reference. Each nodeis enclosedin ascrollable and stretchable
container which displaysitsdirect siblings. Thiscontainer (Fig 1: 4)
allowsusersto focus on nodes of interest while bounding theamount
of detail displayed. Any node can be expanded or contracted by
clicking on it. When a node is expanded, the container holding
its children is displayed below it with a line linking the two; when
contracted, the entire subtree below the node is removed. Like the
global view, the tree view represents a user-selected tree statistic
or performance metric by coloring the nodes. With these features,
a user can simultaneously focus on several paths and subtrees of
interest without being overwhelmed by the width of the search tree.

After drilling down from the global view and tree view, the user
can investigate the contents of specific nodes using andb’s node
view (Fig 1. 5). Since tree nodes contain arbitrary user-defined
keys? the access method designer must provide a module which
displays the node given its contents. Currently, amdb contains a
suite of modules which visualize two-dimensional projections of
spatial data. One convenient feature of the node view is that it
highlights the current path in the tree view. The node view also
allows the user to simulate a split® and visualize the results by
separating the items with contrasting colors. In addition to user-
defined data visualization, andb provides a textual description of
the keys, their sizes, and associated pointers.

2.2 Debugging Functionality

The behavior of an AM can be difficult to understand without be-
ing able to observe its mechanics. Previously, only standard pro-
gramming language debugging tools were available for examining
I'i bgi st AMs. Because these tools are designed for analyzing
low level actions, such as a single line of source code, they are
too cumbersome for gaining an understanding of how search and
update operations behave and interact with the tree.

Andb allows a designer to single-step through tree search and
update commands. Those commands generate events for various
node-oriented actions, such asnodesplit, nodetraversal, etc., which
permits users to step from event to event. Since manual stepping
can becometedious, it also supports breakpoints. Breakpoints can
be defined on generic events, e.g., hode update, or can be tied to
a specific tree node, e.g., update of node 227. When a breakpoint
event is encountered, execution is suspended, and the user has an
optionto single-step through events or continueuntil the next break-
point. Additionally, andb allows batch execution of commandsvia
scripts so users can conveniently restore state.

2.3 Overview of the Analysis Process

Theanalysisframework describedin Section 4 defines performance
metrics for each query of the owrkload, node of the input tree and
for the structure-relevant split and insertion strategies of the AM
design. These metrics point out deficiencies in the AM and tell
the designer which parts of the input tree or which of the queriesto
focuson. Thevisualization and debugging featurescomplement the

2The GiST abstraction, described in more detail in Section 3, factorsout structural
and algorithmic aspects that are common to most balanced tree-structured AM.

3Thisisachieved by calling the pickSplit() extension function, which will be intro-
duced in Section 3.
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Figure 1: Amdb User Interface

performance metrics by giving the designer the meansto investigate
and understand the source of the deficiencies.

The per-query metrics show the performancelossfor each query
and pinpoint badly performing queries. These metrics are comple-
mented with tracing datagathered during query execution,including
traversal paths, CPU execution time, the amount and specific loca-
tion of data retrieved, etc. Thistracing data gives the developer a
very detailed view of the behavior of each query andisinstrumental
in understanding poorly performing queries.

Per-node metrics show which nodes in the tree contribute to
performance loss; they are computed for each query and for the
aggregate workload. The performance numbers are visualized via
coloring of nodes in the global and tree view, so that ill-behaved
parts of the tree can be identified easily. The navigation and data
visualization features of theseviewslet the devel oper examinethose
parts of the tree structure and thedatacontained therein. Asidefrom
performance numbers, these views also visualize per-query tracing
data; for example, traversal paths and per-node CPU execution times
can be visualized very effectively through node coloring.

AM implementation metrics show how workload performance
is affected by splits and insertions. This gives the developer direct
feedback about the quality of the AM design and points out cases
where the design fails. The actual splits and insertion paths that
deteriorate workload performance can be visualized with the node
and tree view, respectively.

Performing an analysis of an existing tree requires very little
user interaction. Essentially, the developer only needsto prepare a
script containing the queriesof theworkload (and afilewith keysfor
the insertion strategy analysis). Andb executes this script against
the input tree, collects the required tracing data, and computes
the performance numbers, which are then shown in dialog boxes
for easy browsing. The tracing data and performance numbers
are stored in a file to avoid recomputation for subsequent andb
sessions.

3 Generalized Search Trees

A GIST is a balanced tree which provides “template” algorithms
for navigating the tree structure and modifying the tree structure

through node splits and deletes. Like all other (secondary) index
trees, the GiST stores (key, RID) pairs in the leaves; the RIDs
(record identifiers) point to the corresponding records on the data
pages. Internal nodes contain (predicate, child page pointer) pairs;
the predicate evaluates to true for any of the keys contained in
or reachable from the associated child page. This captures the
essence of a tree-based index structure: a hierarchy of predicates,
in which each predicate holds true for all keys stored under it in
the hierarchy. A BT -tree ([Com79]) is a well known example
with those properties: the entriesin internal nodesrepresent ranges
which bound values of keysin the leaves of the respective subtrees.
Another exampleis the R-tree ([Gut84]), which contains bounding
rectangles as predicatesin the internal nodes. The predicatesin the
internal nodes of a search tree will subsequently be referred to as
subtree predicates (SPs).

Apart from these structural requirements, a GiST does not im-
pose any restrictionson thekey datastored withinthetreeor their or-
ganization within and acrossnodes. In particular, thekey spaceneed
not be ordered, thereby allowing multidimensional data. Moreover,
thenodesof asinglelevel need not partition or even cover theentire
key space, meaning that (a) overlapping SPs of entries at the same
tree level are alowed and (b) the union of al SPs can have “holes’
when compared to the entire key space. The leaves, however, par-
tition the set of stored RIDs, so that exactly oneleaf entry pointsto
agiven datarecord.*

A GiST supportsthe standardindex operations: SEARCH, which
takesapredicateand returnsall leaf entries satisfying that predicate;
INSERT, which adds a (key, RID) pair to the tree; and DELETE,
which removes such a pair from the tree. It implements these
operations with the help of a set of extension methods supplied
by the access method developer. The GiST can be specialized to
one of anumber of particular access methods by providing a set of
extension methods specific to that access method. These extension
methods encapsul ate the exact behavior of the search operation as
well asthe organization of keyswithin the tree.

We now provide asketch of theimplementation of the operations
and how they use the extension methods. For a more detailed

4This structural requirement excludes Rt -trees ([SRF87]) from conformingto the
GiST structure.



description, together with examples of B-tree and R-tree extension
methods, see the original paper ((HNP95]).

SEARCH In order to find all leaf entries satisfying the search predi-
cate, werecursively descend all subtreesfor which the parent
entry’s predicate is consistent with the search predicate (em-
ploying the user-supplied extension method consistent()).

INSERT Given a new (key, RID) pair, we must find a leaf to insert
it on. Note that because GiSTs allow overlapping SPs, there
may be more than one leaf where the key could be inserted.
A user-supplied extension method penalty() compares a key
and predicate and computes a domain-specific penalty for
inserting the key within the subtree whose bounds are given
by the predicate. Using this extension method, we traverse
a single path from root to leaf, following branches with the
lowest insertion penalty.

If the leaf overflows and must be split, a extension method,
pickSplit(), isinvokedto determine how to distribute the keys
betweentwo leaves. If, asaresult, the parent also overflows,
the splitting is carried out bottom-up.

If the leaf’s ancestors’ predicates do not include the new key,
they must be expanded, so that the path from the root to
the leaf reflects the new key. The expansion is done with a
extension method union(), which takes two predicates, one
of which is the new key, and returns their union. Like node
splitting, expansion of predicates in parent entries is carried
out bottom-up until we find an ancestor node whosepredicate
does not require expansion.

DeLETE In order to find the leaf containing the key we want to
delete, we again traverse multiple subtrees as in SEARCH.
Oncethe leaf islocated and the key isfound on it, we remove
the (key, RID) pair and, if possible, shrink the ancestors’ SPs.

Although the GiST abstraction prescribes algorithm for search-
ing and inserting, the AM designer still has full control over the
performance-relevant structural characteristics of the AM. These
structural characteristics are:

Clustering The clustering of the indexed data at the |eaf level and
of the SPs at the internal levels determines the amount of
extra data that a query needsto accessin order to retrieve its
result set. An AM design controls the clustering through the
pickSplit() and penalty() extension methods.

Page Utilization The page utilization determines the number of
pagesthat the indexed data and the SPs occupy and therefore
alsoinfluencesthe number of pagesthat aquery needsto visit.
Similar to the clustering, the page utilization is controlled by
the pickSplit() and penalty() extension methods.

Subtree Predicates While the size and shapeof theindexed datais
part of theinput (if the datacan be compressed, this should be
donein any case), the sizeand shapeof the SPsare parameters
of the design and considerably influence performance. A
SP'stask is to describe, or cover, that part of the data space
which is present at the leaf level of its associated subtree
(i.e., the perfect SP would simply enumerate all the data
items contained in the leaves of its subtree; of course, thisis
problematic with regard to the size of the SPs). We speak of
SP excess coverage if the SP covers more of the data space
than is needed in order to represent the data contained in the
subtree. If aSP exhibitsexcess coverage, it may cause queries
to visit more than the minimum number of pagesdetermined
by the clustering and page utilization.

4 Analysis Framework

The goal of the analysis framework is to explain the observed per-
formance of an AM running a user-supplied workload. The single
ultimate performance number is the total execution time of the en-
tire workload. This total depends on the number and nature of
page accesses, the buffering policy and the CPU time spent exam-
ining pages. We will for now concentrate on explaining observed
page accessesand ignore the other components of the performance
equation. Section 4.5 addressesthese issues.

Instead of simply measuring the number of page accesses, a
more meaningful performance metric is the difference between the
number of page accessesin the actual tree and the optimal tree; we
call this difference the the performanceloss. The optimal tree is
defined as minimizing the total number of page accesses over the
entire workload. Having knowledge of the execution profile of the
workload, in particular the result sets of the queries, allows us to
approximate the optimal tree relatively accurately.

The analysis framework defines performance metrics that are
based on the performance loss and fall into three groups:

Query Metrics A query will experience a performance loss if the
actual tree has inferior clustering, page utilization, or SPs
relative to the optimal tree. In order to understand the nature
of the loss, we break down the total loss to reflect each of
these shortcomings. The breakdown reveals how much of
a query’s performance loss is due to suboptimal clustering,
page utilization and SPs.

NodeMetrics Similar to the query metrics, the framework defines
node metrics that expressan individual node'scontribution to
aggregate workload performanceloss, broken downto reflect
the losses cause by the node’s clustering, utilization and SP.
Such metrics are valuable becausethey help the AM designer
identify anomaliesin the tree structure.

Implementation Metrics The extension methods pickSplit() and
penalty() directly control the tree structure and their perfor-
mance metrics should expressto what extent they are respon-
sible for the structural deterioration that causes performance
loss. Unlike query and node metrics, theimplementation met-
rics cannot be derived from the tracing information gathered
during workload execution. Instead, we execute additional
splits and insertions and observe how workload performance
changes. Like query and node metrics, the implementation
metrics reflect a comparison to an optimum, in this case the
optimal split and insertion.

The following subsection discusses the optimal tree and how
to construct it. Section 4.2 derives the query performance metrics,
first for theleaf level, thenfor internal levels, and presents examples
of analyses conducted with these metrics. Section 4.3 derives node
metrics based on the query metrics. Section 4.4 discusses the
optimal split andinsertion and derivesmetrics for the pickSplit() and
penalty() extension methods; an example illustrates these metrics
and completes one of the analysesbegun in Section 4.2.

The presentation of the metrics in this section is purposely in-
formal and relies mainly on examples; we felt this would improve
readability. Theinput variablesand metrics aredefined and summa-
rized in Table 1 and Table 2, respectively.> Variableswith subscript
q arequery-specificand variableswith subscript p are page-specific.

4.1 Construction of the Optimal Tree
The optimal tree is defined by the following characteristics:

5We leave out the definition of the split and penalty metrics, because these are
cumbersomeand can be derived from the descriptionsin Section 4.4.
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Table 2: Performance Metrics
Q set of queriesq in workload optimal clustering, which minimizes the total number of “rele-
L set of leaf nodesin tree vant” page accesses (at the leaf level, those are accesses to
I set of internal nodesin tree pagescontaining items of theresult set of aquery, see Table1)
C [bytes] page capacity for the entire workload.
R, [bytes] size of result set
Ly set of accessed pagesin optimal clustering A tree with these properties will execute the investigated work-
Lq set of accessed leavesin actual tree load with the minimal number of page accesses. This tree is only
L, set of relevant leavesin actual tree (leaves that a theoretical construct, since it is generally impossible to create
contain items of ¢'s result set) reasonably-sized SPs with no excess coverage. Nevertheless, it is
up [%0] utilization possibleto approximate this tree well enoughto be ableto infer the
ugq [%] average Utilization seen by query, u, = page access pattern of the workload queries.

ZpeL’q UP/|L:1|

Iq set of accessedinternal nodesin tree

I, set of accessed internal nodes on pathsto L,

I, internal “leaves’ of traversal paths, I} =
{P|P S PN le A _‘(Child(P) €1V Lq)}

Qp set of queriesthat accessp

. set of queriesfor which p is relevant leaf

rq optimal ratio of accessedtoretrieved data, r, =
|Lg| + C *us[Rq

Ry, [bytes]  size of fraction of ¢’s result set found on p

Q;., [oytes]  optimal amount of accessed data, QY , = rq *
Rqu

Q; [bytes] optimal amount of accessed data aggregated
over workload, Q5 = qu% re* Rpg

Tablel: Input Variables (Profiling Data, Tree Statistics and Derived
Variables)

no excess cover age, which eliminates page accessesdue to overly
general SPs;

target page utilization, which would ideally be 100%, but thisis
unattainable in practice. For that reason, the AM designer
can specify adesired target page utilization, which servesasa
point of comparison for nodes within the tree structure. The
value we often used in practice was the average workload
page utilization. We will see that the absolute level of the
target page utilization does not affect the significance of the
performance metrics.

To construct the optimal leaf level, we partition the indexed data
items so that the total number of leaf accessesis minimized over the
workload® and the partition sizeis equal to the target page capacity.
This task can be converted into a hypergraph partitioning prob-
lem by modelling the workload as a hypergraph (each indexed data
item is a node with aweight that is equal to its size in bytes; each
query, identified by its result set, is a hyperedge). Hypergraph par-
titioning is provably NP-hard ([GJ79]), but existing approximation
algorithms work reasonably well in practice (Section 4.6 discusses
the implementation, in particular the hypergraph partitioning, in
more detail).

To construct the optimal internal levels, we need to create
reasonably-sized SPs with no excess coverage, which is generally
not possible. Nevertheless, it is still possible to report utilization
and excess coverage loss metrics for those.

Figure 2 serves as arunning example throughout the rest of this
section. It shows the traversal tree of a query (its traversal paths
in the index, which form a subtree of the index) that retrieves five
data items, for which it needs to access four leaves in the actual
tree and two leaves in the optimal tree. The page capacity is four
items (to keep the example simple, dataitems and SPs are assumed
to have the same size) and the target utilization is 75%. Occupied
slots are shaded, and the pagesin the actual tree are enumerated for
reference.

5Note that clustering to minimize the number of leaf accesses over the entire
workload will generally not minimize the number of leaf accesses for each query
individually. The minimum number of leaf accesses for a single query is the size of
its result set divided by the page size. Thisusually cannot be achieved for the entire
workload, because the individual queries’ clustering requirementsare contradictory.
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Figure 2: Traversal Paths and Optimal Clustering for Example Query

4.2 Query Performance Metrics

The per-query performance metrics express performance loss due
to suboptimal clustering, page utilization and SPsin the index. At
the leaf level, these numbers are derived by comparing the page
access pattern in the actual tree with the corresponding pattern in
the optimal tree. At the internal level, the corresponding optimal
structure is not available for comparison, but we can still derive a
reduced set of the metrics, namely excess coverage and utilization
loss. Thenext two subsectionsin turn describe how the lossmetrics
are derived for the leaf level and the internal levels.

4.2.1 Leaf-Level Performance Metrics

For each query, the performance loss at the leaf level—actual mi-
nus optimal leaf accesses—is divided up into utilization, excess
coverage and clustering loss. More formally:

|Lol =Ll + EL, + UL, + CL,.

Inthe example, the query experiencesaperformanceloss of two
leaf accesses when compared against the optimal tree. We show
how to compute the losses for this example.

Excess coverage loss When accessing a leaf during query ex-
ecution that does not contain any items of the result set, the leaf
accessisdueto excesscoveragein theleaf’'s SP. Evenif those pages
are underutilized do they not count toward utilization loss, because
packing them more densely would not lower the total number of
leaf accesses (unless retrieved data were added, but then the ac-
cesss would not count as excess coverage to begin with). For the
same reason, the access cannot count as clustering loss, becausethe
feature of that node relevant to the query is its SP, not its page uti-
lization or clustering. Inthe examplein Figure 2, leaf 0 is accessed
but contains no matching items, and therefore the access counts as
excess coverage loss.

Utilization loss Deviation from the target utilization in the re-
maining leaves is summed up as utilization loss. In the example,
leaf 2 hasautilization of 50%, whichis 2/3 of the target utilization
of 75%, resultinginalossof 1 — 0.5/0.75 = 1/3. Theideabehind
this accounting is that if the pages had been packed more densely,
part of the accesses could have been avoided. Note that a page
utilization in excess of the target utilization counts as a negative
performanceloss, i.e., aperformance gain.

Clustering loss  Clusteringlossisthedifference betweenthecon-
ceptually “tightly packed” leavesin theindex and the corresponding
leavesin the optimal tree. The accessed leavesin the index become
“tightly packed” by subtracting the utilization loss. In the exam-
ple, the result set is spread over three leaves, or 8/3 tightly packed

leaves. The difference between that and the two |eaf accessesin the
optimal treeis 2/3, the clustering loss.

To summarize the |eaf-level metrics established for the example
query: excesscoveragelossis 1, utilization lossis 1/3 and cluster-
ingloss2/3. Thesumis 2 accesses, which isthe total performance
loss that the example query experiencesat the leaf level.

4.2.2 Internal-Level Performance

Althoughitisnot possibleto construct the optimal internal levelsfor
theworkload in amanner similar to theleaf level, the characteristics
of the accessed internal nodes in the actua tree still allow us to
derive two of the three metrics, namely excess coverage loss and
utilization loss. The remaining internal-node accesses cannot be
subdivided any further. More formally:

|l =1, + EL, + UL,

Excess coverage loss Similar to the leaf-level metric, accesses
tointernal nodeswithout any matching entries are counted as excess
coverageloss. In addition, we also count internal pagesthat do not
lead to any leaves containing retrieved data; these internal pages
are accessed due to excess coverage of SPsin the subtree. In the
example, page 6 does not carry any matching SPs and its accessis
fully counted as excess coverage loss. Page 4 has a matching SP,
but it only matchesbecause of excesscoveragein page0's SP, sowe
countitsutilization, 2/3 of thetarget utilization, asexcesscoverage.
The remaining 1/3 are counted as utilization loss, because, unlike
the leaves of the traversal tree, the property of relevance of these
nodes is not their SP but the SPs of their children, i.e, the data
contained in this node.

Utilization loss Similar to the corresponding leaf-level metric,
the sum of the deviationsfrom thetarget utilization is the utilization
loss, excluding from consideration leaf nodes of the traversal path
of the query. In the example, only page 4 causes the query to
experience utilization loss at the internal levels in the amount of
1/3.

To summarize the preceding observations: of the 4 page accesses
to internal nodes, 5/3 are caused by excess coverage and 1/3 by
underutilization. The remaining 2 accessesto nodes5 and 7 cannot
be subdivided any further.

4.3 Node Performance Metrics

The per-node loss numbers are derived from the per-query loss
numbersand show which parts of the tree contributeto performance
deterioration. More specifically, these metrics show how a node’s
utilization and clustering propertiesaswell asits SP affect workload



performance. Generally, we sum up the per-query loss metrics
acrossthe nodesto arrive at per-node metrics. Similar to per-query
metrics, we subdivide the accumulated performance loss of a leaf
page into excess coverage, utilization and clustering loss. More
formally:

|Qpl = Qo+ FL, + UL, + CLy,p € L.

At the internal levels, we can only identify excess coverage and
utilization loss; the remaining accesses cannot be subdivided any
further. More formally:

|Qpl = Q)+ EL, + UL, p€ .

Figure 2 will again be used as our running example.

Excess coverage loss A node's excess coverage loss is simply
thenumber of timesthe node was accessed but no matching datawas
found. This does not take into account accessesto internal nodes
that are caused solely by excesscoveragein thechildren’s SP, which
are also classified as excess coverage loss. In this particular case
it is the shared responsibility of the children, and it needs to be
apportioned to them in someway. It isnot clear how that should be
done, so thistype of excesscoveragelossis presently not accounted
for in the node metrics.”

In the example, we have pages 0 and 6 with excess coverage
loss of 1 each. The excess coverage loss of page O should also
include the data accessed in page 4, but apportitioning this excess
coverage lossto the children is not generally possible, as explained
in the preceding paragraph.

Utilization loss A node's utilization loss is the product of its
traversal count (minus those accesses caused by excess coverage)
and its deviation from target utilization. In the example, pages 2
and 4 both have a utilization of 50%, a deviation of 1/3 from the
75% target utilization.® |f each of these were traversed 100 times
acrossthe entireworkload, each onewould contribute 33% accesses
to the entire workload performance.

Clustering loss Each query’s clustering loss needs to be dis-
tributed according to how much each accessed, non-empty leaf
contributes to total clustering loss. We use as the guiding principle
the quality of the clustering in a node for the particular query in
question. The quality of clustering can be expressed as the ratio of
accessed to retrieved data, and the optimal clustering establishes a
benchmark ratio ag;ai nst which the accessed leavesin the actual tree
will be measured.” In the example, the query accesses?2 leaves in
the optimal tree to retrieve 5 data items, which fill up 5/3 pages,
resulting in abenchmark ratio of 1.2. At leaf 3, the example query
accesses 1 pageworth of datain order to retrieve 1/3rd of the page,
although according to the benchmark ratio it should only have ac-
cessed 1/3 x 1.2 = 40% of apage. The difference of 60% is the
clustering loss that the node contributes to this query. The corre-
sponding numbers for pages 1 and 2 are —0.2 and 4/15. The sum
across these leaves is 2/3, which is the total clustering loss for the

7In the experiments conducted so far, those accesses played an insignficant rolein
comparisonto theworkloadtotal. Notethat theterm Q; aso includesexcesscoverage
loss created by child nodes that cannot be apportionedto the child nodesthemselves.

8Conversely, if the target utilization is 45%, those pages would have recorded a
utilization gain. Since utilization metrics record deviation from a constant, changing
this constant does not affect performancedifference between any two nodes.

SMore formally: the pagesin L; cause alossof C'L , that needsto be distributed
accordingto how mucheach pageinL; contributes. GivenLg , wedefineabenchmark
overhead ratio vy = |Lg| * C * us/R,. Given that ratio, we expect to access
rq * Rq, p on each page p if clustering in the actual tree were as efficient as in the
optimal tree. The differenceu, * C — rq * Ry , iSp’s contribution to query ¢’'s
clustering loss.

query established in Section 4.2.1. The total per-node clustering
lossis simply the sum of the per-node losses over the queries.

4.3.1 Example 1: Comparison of R- and R*-Trees

This example illustrates how to make an initial performance as-
sessment with the help of the per-query and per-node metrics. We
compare R- and R*-trees for range queriesover 8-dimensional point
data; we purposely chose to compare two well-known data struc-
tures, because knowing how they work will make the results of the
analysis easier to follow.

The data set used in the experiment consists of 40000 8-dimen-
sional points, with each dimension limited to the interval [0, 100),
arranged into clusters of 100 points each. The clusters are box-
shaped and have a diameter of 10; the center points of the clusters
are distributed randomly. The trees were produced by bulk-loading
20000 randomly selected data items and individually inserting the
remaining 20000. Thisensuresthat the split and insertion strategies
arereflected in theresulting trees. Bulk-loading was doneusing the
STRtechnique ([LLE97]), which partitions the data pointsinto iso-
oriented tiles. We ran 20000 square range queries over the trees,
each with a side length of 12. The center points of the queries
were randomly selected items from the data set, so that every query
intersected with a cluster. On average, each query retrieved 20.6
items.

Theaggregateresultsof thisanalysisare summarizedin Table 3.
We only report leaf-level performance numbers, sincefor this type
of workload, R- and R*-trees are relatively short and the upper
levels can be buffered. Section 4.5 talks more about how to account
for buffering.

R*-tree R-tree
actual tree, total 72,044 97,414
optimal clustering 23,262 23,224
utilization loss 4,650 3,906
excesscoverage loss 16,895 30,171
clustering loss 27,237 40,113
sum 72,044 97,414

Table 3: Comparison of leaf-level performancein R- and R*-trees

The performance numbersindicate that R*-trees outperform R-
trees, which is what is expected, but that there's is still room for
improvement.

Low utilization losses indicate that underutilization is not a
problem. The target utilization was set to 80% and the average
workload utilizations are close to that number (74.28% for the R*-
tree and 75.75% for the R-tree).

Comparing clustering losseswith thosein theinitial bulk-loaded
tree confirms that the initial clustering is deteriorated by splits and
insertions, although only to a moderate extent in the case of R*-
trees. This can be deduced from the clustering overhead, which is
theratio of optimal accessesplusclustering lossto optimal accesses.
For the R*-tree, this ratio is (23262 + 27237) /23262 = 2.17 and
for theinitia bulk-loadedtreeit is (10412 + 8903)/10412 = 1.86.
A possiblereason for the relatively high clustering lossin the bulk-
loaded tree is that by creating equi-distant partitions along each
dimension, the STR algorithm cutsthrough clustersthat exist in the
data; sincethe queries are centered on the data points, breaking up
clusters will also cause more page accesses.

Using amdb, we can seethat in both casesthe clustering lossis
not spread evenly acrossthe entire leaf level, but mostly confinedto
afew hot spots (thisis shownin the global view, whichis described
in Section 2; we omit a screen shot of this particular scenario here
for brevity). The difference is that for the R-tree, these hot spots
are more frequent and more stretched out.



Looking at per-node excess coverage loss, we can see that this
is roughly co-located with clustering loss. This seems to suggest
that the SP design works well for the clustering requirements of
the workload, because we do not experience excess coverage 10ss
where clustering lossiis low. Intuitively, this is what we expect for
minimum-bounding rectangles, because good clusters are rectan-
gular, which resultsin tightly-fitting MBRs.

4.3.2 Example 2: Comparison of SPs for Nearest-Neighbor
Searches on Multidimensional Points

This exampleillustrates how to evaluate and compare different SP
designs independently of the remaining AM design aspects. We
compare three different SP designs for a popular type of workload,
nearest-neighbor querieson multidimensional point data. Thethree
types of SPs are: minimum bounding rectangles, as employed in
R*-trees ([BK SS90]); minimum bounding spheres, asemployedin
SS-trees ((WR96]); a combination of the two, whichisusedin SR-
trees ([KS97]). The latter two AMs were specifically designed for
the type of workload that underlies our comparison.

The data set used in the experiment consists of 40000 8-dim
points, with each dimension limited to theinterval [0, 100), arranged
into (uniformly distributed) clusters of 100 pointseach. Theclusters
are box-shaped and have a diameter of 10. The query set consists
of 20000 nearest-neighbor queries, each centered on a randomly
selected (without replacement) data point and retrieving 20 items.
In order to eliminate the effects of page utilization and clustering,
we built the R*-, SS- and SR-trees by bulk-loading the leaf level,
so that only their internal levels differ.

Leaves Internal Total
R* 15061 51486 66547
SR 15003 61699 76702
SS 134094 173350 307444

Table 4: Comparison of SPsof R*-, SS- and SR-trees

The measured excess coverage losses for the entire workload
areshownin Table 4. Essentialy, R*- and SR-tree SPs cause about
the same amount of excess coverage loss, whereas the spheres of
the SS-tree have about 10 times as much excesscoverageloss. The
reason is that the point setsin the leaves form clusters for which the
MBRs have an aspect ratio that significantly deviates from 1. The
corresponding spheres, which haveasimilar diameter asthe MBRS,
suffer from amuch higher volume. The higher excesscoverageloss
of the SR-tree in comparison to the R*-tree is due to the increased
storage requirements of their SPs, which decreases the fanout of
internal nodes. Reducing the fanout leads to an increase in the
number of nodes, which also increases the number of traversals
caused by excess coverage.

The bad performance of spherical SPsin this example may well
bean artifact of bulk-loading, which producesclustersthat are often
skinny along one or more dimensions. If the clusters would have
a spherical shape, the result of the comparison might even favor
spherical SPs. Intuitively, though, spherical SPs are less robust
regarding the shape of the clusters, because, unlike rectangles, they
have the same extent in all dimensions.

This example illustrates the value of the excess coverage met-
ric and the importance of separating individual aspects of an AM
design. Another performance study that compares sphere and rect-
angle SPs ([KS97]) comesto a conclusion contrary to ours, namely
that spheresresult in smaller-diameter SPs, because three separate
elements of AM designs were evaluated together: by comparing
insertion-loaded SR- and R*-trees, the insertion and split strategies
also come into play and mask the performance effects of the SP
design.

4.3.3 Example 3: Unindexability Test

As part of constructing the optimal leaf level, we can perform a
simple test that will tell usif aworkload is not indexable,° even if
it were possible to construct an optimal tree for it. This test is not
limited to GiST-compliant AMs, but appliesto all index structures
that store indexed data on fixed-size pages.

The test can be stated as follows: If in the optimal tree the ag-
gregate number of leaf accessfor the entire workload takes longer
than sequentially scanning the leaf level for each query, the work-
load should be considered unindexable. The aggregate number of
leaf accessesin the optimal tree is alower bound on the total num-
ber of page accesses for the entire workload, because minimally
each query needsto accessits result set. If this lower bound takes
longer to execute than a sequential scan of the leaf level for each
query, no actually constructed tree can be expected to outperform
sequential scans. Since index accesses usually result in random
accesses, a relatively small number of leaf accesses will take as
long as a sequential scan of the entire level. The exact ratio of se-
quential to random accessesdepends on the disk drives and the OS
overhead, and we will assumearatio of 14:1 as a conversion ratio
representative of current technology.> Note that this test cannot
be reversed: failing this criterion does not necessarily mean that a
workload isindexable, becauseit might not be possiblein practice
to come close enough to the optimal clustering and SPs to achieve
performance that will on average be better than a sequential scan.
Also notethat this test does not constitute a proof of unindexability,
since in practice we can only approximate the optimal leaf-level
clustering. Rather, the test should be seen as a strong hint, which
becomes particularly compelling if oneis unableto improve on the
generated clustering by hand.

To illustrate the usefulness of the test, we look at two different
kinds of workloads: nearest-neighbor queries on both uniform and
clustered synthetic point data of moderate dimensionality (16 and
32). Such datasets are very popular for performance studies of
access methods for high-dimensional data such as feature vectors
([BBK98] is one example). The datasets we use for the analysis
contain 10000 points each (experiments with 20000 and 40000
pointsgiveidentical resultsfor appropriately scaled result set sizes).
When applying the unindexability test, the average result set size of
theworkload queriesisimportant: if the average result set contains
fewer items than the number of leaf pagesdivided by the conversion
ratio, unindexability cannot be established. For the 16-dimensional
data set, with with a target page capacity of around 40 points and
250 leaves, the threshold result set sizeis 18 points, or 0.18% of the
data set. Thereis also a corresponding upper bound for the result
set size, beyond which unindexability is ensured: a result set size
in excess of the size of the data set divided by the conversion ratio.
For the preceding example, this upper threshold is at around 7% of
the data set.

Figure 3 plotsthe leaf accessesas afunction of theresult set size
for the example datasets. To establish unindexability, it issufficient
for aworkload to accessmorethan 7% of theleaves. For theuniform
16-dimensional workload, this threshold is reached when result set
sizes exceed about 0.3% of the data set size, a surprisingly small
number. For the uniform 32-dimensional workload, the situation
is a little better, because doubling the number of dimensions also
doublesthe storage size. Note, though, that the threshold result set
size does not double as well. In contrast to uniformly distributed

10This test assumesthat total executiontime of the workload under considerationis
dominated by page access cost.

1ysing Seagate Barracudaultra-wide SCSI-2 drives, [Rie98] measuresathroughput
of ca. 9MB/s under Windows NT. The average seek time and rotational delay for this
drive are 7.1ms and 4.17ms, respectively. For 8KB transfers, this resultsin aratio of
14 sequential 1/0s for each random 1/O. In the past years, raw drive throughput has
increased faster than seek times and rotational delay have decreased, so the conversion
ratio islikely to increase in thefuture.



data sets, unindexability cannot be established for corresponding
workloadsinvolving clustered data sets, even for much larger result
Set sizes.
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Figure 3: Unindexability Test: 16- and 32-dimensional uniformly
distributed and clustered data

Unindexability of uniformly-distributed high-dimensional point
data is confirmed by a recently published theoretical analysis of
nearest-neighbor queries([SBGR99]), which notesthat for thistype
of data, increasing the dimension decreases the distance between
the nearset and the farthest points. This implies that a given point
is more likely to be a “nearest neighbor” for any query point in
higher dimensions than in lower dimensions. As aresult, a given
point can be co-retrieved with a larger variety of points, making it
more difficult to co-locate with all co-retrieved points. Note that
our unindexability test is able to reach the same conclusion without
knowledge of the data domain or the particular indexing problem.
It can therefore be used as an automated first step in the AM design
process.

Evenif unindexability cannotbe established, it isstill instructive
to look at the ratio of the number of workload leaf accesses in
the optimal clustering to the number of pages needed to store the
result sets. This ratio, which we will call the workload-optimal
access overhead, is a measure of the inter-query “tension” in the
workload: the higher this overhead, the more extra data must be
accessed, even if the index achieves optimal clustering and is able
to construct SPswithout excesscoverage. For example, the optimal
access overhead of B-tree workloads is never worse than 2, and
that of 2-dimensional uniform point datais 1.5 on average for 20-
item result sets. On the other hand, that of 16-dimensional uniform
point data is 12.2 and for 32 dimensions the corresponding ratio
is 16.3. A correspondingly defined query-optimal access overhead
can be used to find “atypical” queriesin aworkload, for which the
overhead deviates noticeably from the average.

4.4 Implementation Performance Metrics

In addition to analysing existing tree structures, we also want to
assessthe performance of the structure-shaping extension methods,
pickSplit() and penalty(). Our goal is to measure how these func-
tions deteriorate the tree structure, expressed by the derioration of
theworkload performance caused by splitsandinsertions. Thiscan-
not be derived from the tracing information, because the workload
only contains queries, and the effects of structure changes cannot

beinferred indirectly. Instead, we simulate splitsand insertionsand
observe the changesin workload performance; the splits and inser-
tions are not carried to avoid actually deteriorating the tree during
the evaluation process. Similar to the query and structural metrics,
the implementation metrics should reflect the performance loss in
comparison to the optimum, which we obtain by comparing the
effects of asplit of aparticular node or insertion of aparticular data
item with the effects of an optimal split or insertion. The following
two subsectionsin turn derive the split and penalty metrics.

4.4.1 Split Performance Metrics

We evaluate a split of a particular leaf node by comparing the
actual split as produced by the pickSplit() extension method to the
optimal split. The optimal split minimizesthe total number of page
accesses to the two post-split nodes by (a) producing perfect SPs
with no excess coverage and (b) optimally partitioning the items
on the |leaf node so that non-empty accessesto the successor nodes
are also minimized. Like the optimal tree, the optimal split is a
theoretical construct, because partitioning the leaf items optimally
will generally not result in SPs that completely eliminate excess
coverageloss.

This definition of an optimal split actually ignores the effects
of page utilization or the balance of the page utilizations produced
by the split. The balance of a split clearly has an effect on the
performance of a dynamic tree structure, since a perfectly balanced
split is usually better at maintaining overall higher page utilization
(in an unbalanced split, the fuller node is more likely to be the
next nodeto be split agai n—assuming subsequentinsertionsare not
biased toward the less utilized node—whichwill resultin an overall
lowered pageutilization). Onthenegativeside, aperfectly balanced
split might have less desirable clustering properties. Unfortunately,
the effects of the degree of balance of asplit cannot be quantified, at
least not in the workload context we consider. For that reason, we
leave page utilization our of our split analysisand simply stipulate
that the optimal split should be at least as balanced as the actual
split. Thisway, both the utilization properties and the clustering of
the optimal split are at least as good as that of the actual split.

Excess coverage loss  Assuming that theoptimal split eliminates
excess coverage, the excess coverage loss of the actual split is the
combined excess coverage in the left and right post-split nodes.
A split is aso an opportunity to improve SPs: describing data
that previously resided on a single node with two SPs allows the
description to be more specific. The success metric is the ratio of
the decreasein excesscoveragelossto the pre-split excess coverage
loss, which constitutes the maximal improvement. Note that this
ratio can drop below 0, if the split produces SPs with more excess
coverage loss than the original SP.

Clustering loss Thequality of clusteringis expressed by theratio
of accessedto retrieved data: the higher the ratio, the more data a
query needsto accessin order to retrieve itsresult set and the poorer
theclustering fromthat query’s perspective. Theamount of datathat
is accessed but not retrieved expresses clustering-related overhead,
which the optimal split minimizes. The clustering loss of a split
thereforeis the difference in overhead data—limited to the left and
right nodesof asplit—betweentheactual andtheoptimal split. This
is the same as the difference in the total amount of accessed data,
because the volume of retrieved data remains unchanged by the
splits. Note that the total amount of accessed dataon a node cannot
go up after a split: even if each query in the workload that visits
the original node would have to visit both successor nodes. We
call the amount by which data access decreases clustering savings.
Theratio of actual clustering savingsto optimal clustering savings



servesasa' success metric of the split that expressesto what extent
the split realizes the potential for improvement of clustering.

4.4.2 Penalty Performance Metrics

We compare a penalty-guided insertion of a particular data item
with the corresponding optimal insertion. The optimal insertion is
defined as: (a) not adding to the excess coverage of the optimal
target leaf and (b) choosing as the target the leaf which causesthe
smallest number of additional accessesin the workload. Note that
the optimal target leaf doesnot correspondto the onethat, if thedata
item were inserted and the SP actually updated, would result in the
smallest number of total additional page accesses, including those
due to excess coverage. Rather, it represents the true theoretical
optimum, which optimizes each performance factor independently.

Performing atop-down, penalty-guided insertion hasthe disad-
vantage of accumulating the effects of multiple penalty computa-
tions. This could be avoided by scanning directly the level above
the leaves for the minimum penalty leaf. However, a top-down
traversal is more realistic and also reflects the quality of internal
SPs.

In our analysis of the penalty function, we will again ignorethe
effects on page utilization. In the GiST framework, the shape of
the SP cannot take the page utilization into account—the union()
method is not informed of it—so that penalty() cannot direct an
insertion based on the page utilization at the leaf level. For that
reason, we assume change in the page utilization in response to
insertions to be more or less random.

Excess coverage loss Thisis the number of additional excess
coverage accessesto the actual target leaf after theinsertion, assum-
ing that optimally no additional excess coveragewould be produced.
When determining pre-insertion excess coverage, those queriesthat
intersect with the new key need to be ignored, because they would
falsely show up as areduction in excess coverage.

Clustering loss The changein clustering quality in responseto
an insertion is reflected by the change in overhead data that the
workload queries need to access. By definition, the optimal inser-
tion minimizes additional overhead dataaccess. Theclustering loss
isthe difference in overhead data access between the actual and the
optimal split.

4.4.3 Example 4: Comparison of R-tree and R*-tree Split
and Insertion Strategies

This example continues the analysis begun in Section 4.3.1. We
compare the split and insertion strategies of R- and R*-trees on
a workload similar to that used in the previous example. For the
implementation analysis, we use the intial bulk-loaded tree con-
taining 20000 data items, and a correspondingly scaled back set
of only 10000 queries. Using identical input trees for both the
R-tree and R*-tree analysis simplifies the comparison, because the
metrics reflect changesin workload performance due to splits and
insertions.

Table 5 summarizes the split and insertion performance num-
bers. As expected, the R*-tree strategies are superior to those of
the R-tree. The R*-tree split produces a better clustering and is
also more effective at eliminating excess coverage than the R-tree
split; the R*-tree insertion strategy also creates better clusters and
marginally better SPs.

4.5 Other Performance Factors

In the analysis framework presented so far we completely ignored
a number of components of the performance equation (CPU time,

R*-tree R-tree

Splits
pre-split accesses 75.44
post-split accesses 40.04 44.62
pre-split exc. cov. loss 26.6
post-split exc. cov. loss 20.8 33.0
Insertions
clustering loss 1.28 1.88
excess coverage loss 8.74 8.8

Table5: Performancenumbersfor R- and R*-tree split and insertion
strategies

buffering, and comparison with approximations). We will now
address these components individually and also comment on the
usefulness of approximation numbers as the basis for our compar-
isons.

CPU Time Although CPU time can play animportant rolein the
overall performance of an AM, we excluded it from the analysis
framework. Since CPU time is not amenable to the same type of
analysis as page accesses, it is unclear how to construct a model
of optimal CPU time behavior. Thisis exacerbated by the fact that
the underlying GiST framework has no knowledge of the internals
of the stored data and the associated extension functions. Another
drawback of CPU time is that it depends on the quality of the
implementation and the particular hardware platform on which the
analysis is run. This implies that these metrics are less general
than page access-related metrics. Since CPU time can play an
important role in overall execution cost, we suggest that an AM
designer weigh it judiciously against the page access metrics of our
framework when deciding which aspectsof the AM implementation
need to be improved.

Buffering Buffering has been shown to reduce the number of
1/0s for AM queries ([LL98]) and its presence—astandard feature
in all commericial DBM S—uwiill therefore change observed work-
load performance. We will outline several ways of taking buffering
into account in the context of our analysis framework. A popular
buffering technique for tree-structured AMs is to pin the first few
levels of the tree ([LL98] mentions that in their experiments, this
technique never performed worse than LRU replacement). Modify-
ing the analysis metrics to take thisinto account is straightforward:
the observed page accessesto those upper levels can simply be sub-
tracted. For other buffering techniques, we can estimate an average
hit rate and reduce the performance metrics uniformly by that rate.
Either way, buffering can be dealt with separately and need not be
integrated into our framework. Note that in order to integrate a
realistic view of buffering into the framework; it is not sufficient to
simulate a buffer pool/replacement strategy against a serial execu-
tion of the queries. In real DBMSs, queries are typically executed
concurrently and index accessis most likely interleaved.

Comparison with Approximation Numbers Theperformance
metrics usethe optimal tree asapoint of reference. Unfortunately, in
practice we can only approximate the optimal tree, which questions
the usefulness of reported performance numbers. First, note that in
the optimal tree, only clustering is approximated. Page utilization
and SPsare stipulated to be perfect, and therefore the corresponding
numbers accurately reflect the true performance loss. However,
since no bounds on clustering quality are known for the heuristic
algorithm we usefor optimal clustering, the reported clustering loss
numbers are only with regard to a“good” clustering rather than the
optimum. Nevertheless, those numbers are still useful information
for the AM designer: if the reported clustering loss is positiv,



clustering in the actual tree cannot be optimal and should therefore
be a target for performance improvement. The number of cases
in which negative clustering loss will be reported depends on the
effective quality of the clustering algorithms. With the algorithm
currently in use, we have not seen a single workload for which
negative clustering loss was reported.

4.6 Implementation

During the execution of the workload, armrdb collects profiling data
for each query individually, consisting of query result sets (ref-
erences to retrieved items), visited pages, the number of bytes
retrieved per page, etc. The burden this puts on the workload
executionis proportional to the cost of the executionitself, i.e., pro-
filing a single page accessor item retrieval incurs a small, constant
cost, and is negligible. For example, 2500 nearest-neighbor queries
on 5000 2-dimensional points took 12.3 seconds without profiling
and 13.06 secondswith profiling on aDell Dimension Workstation
333MHz Intel Pentium |1 processor. The size of the stored profiling
dataand performance metrics depends on anumber of factors, such
as the size of the result sets, tree size and excess coverage present
in the tree, so it cannot be stated as a simple percentage of the tree
size. Informally speaking, the sizesare fairly moderate. For exam-
ple, the profile sizes for the workloads used in the unindexability
testsin Section 4.3.3 rangefrom 1.4MB (for 5000 queriesretrieving
21 of 10000 16-dimensional points) to 40MB (for 20000 queries
retrieving 120 of 40000 16-dimensional points).

Hypergraph partitioning is used to construct the optimal leaf
level used for the query and node analysis, the optimal tree used
for the implementation analysis and the optimal split used for the
pickSplit() analysis. This task is performed by the public domain
package hMet i s from the University of Minnesota ([KAKS97]).
HWet i s employs heuristics to approximate the optimal partition-
ing (which itself is NP-hard). Although designed primarily with
VLS| applications in mind, we nevertheless found it to produce
high-quality partitionings. As an example, we compared an R-
tree bulk-loaded with 2-dimensional, Hilbert-value-sorted points
with the equivalent hMet i s-partitioned leaf level. The latter even
slightly improved the clustering of the Hilbert-sorted leaf level (one
has to keep in mind that even a perfectly square grid partitioning
might be suboptimal for a given set of queries, becausethe queries
might prefer a different grid origin or a different aspect ratio). We
also found cases where the hMet i s-produced clustering was in-
ferior to space-partitioned ([LLE97]), bulk-loaded leaf levels, but
the performance difference was minuscule and the two clusterings
were practically identical. Using hypergraph partitioning to arrive
at a clustering of the data items requires that each data item be
covered by a sufficiently large number of queries, and furthermore
that the queriesthemselves are sufficiently diverse (where establish-
ing “sufficiently” is an area of future work). For the experimental
results presented earlier, we tried to be conservative and executed
half as many queries as there were data items. The queries them-
selves were centered on uniformly selected data items so that even
coverage was ensured.

5 Related Work

5.1 Index Performance

Pagel, et al. ([PSW95]) study index clustering in a manner very
similar to that of our analysis framework, also using an idealized
goal of an optimal clustering to establish lower bounds on page
accesses. They focus on window queries over multidimensional
datasets, and apply simulated annealing to find an approximation
to the optimal clustering. In their complexity analysis, they use a

graph model for clustering that is not unlike our use of hypergraph
partitioning.

The literature is rife with performance studies of various in-
dex structures, especially for multidimensional querying. Gaede
and Guinther survey over 50 different multidimensional index struc-
tures (|GG98]), most of which were introduced with a performance
study to demonstrate their efficacy. [GG98] also surveys a number
of comparative studiesof multidimensional indexes, and attemptsto
unify theresultsinto apartial ordering of quality; thisis complicated
by the variance in the workloads that the studies examine.

Most of the studiesin the literature do not analyze performance
results beyond comparing the number of page accesses on a given
workload. Some studies provide analyses or intuitions of vary-
ing complexity to justify the page access measurements, often
with domain- and workload-specific arguments. As an example,
[BKSS90] explains (and visualy illustrates) the efficacy of their
node split technique with arguments about the virtues of square
bounding boxes, which are not clearly translatable to other data
domains, or to workloads of queries with high aspect ratio.

Thereisalso abody of work on describing or predicting multidi-
mensional index performance using formal models ([FK 94, PSW95]
are two examples). These papers provide insight into the perfor-
mance of different indexing techniques on various synthetic work-
loads of queries and data. They often make rather strict assump-
tions about the workloadsthey model (e.g., many study only square
queries). Thesemodels shed light on the challenges of multidimen-
sional indexing in general, but are not necessarily helpful to a user
studying a particular workload of queries and data. Mapping from
auser'sworkload to one of these modelsis not generally possible.

5.2 Index Visualization and Animation

To our knowledge, andb is the first tool of its kind to allow index
developersto debug and analyze their implementations. Naturally,
its various visualization and debugging components have prece-
dents in the literature. Arrdb significantly extends many of these
approaches, and unifies them into a single framework for index
developers.

Thereareanumber of toolsfor visualizing and animating search
tree data structures and algorithms; a compendium of referencesis
maintained on the World-Wide Web. 2 Most of these tools focus
on displaying tree structures, typically in a “nodes and arrows’
visualization. Thisis useful only for pedagogical purposes, since
such diagrams do not scale to the size of database indexes.

Brabec and Samet provide a suite of Java applets for a variety
of 2-dimensional spatial database search trees, including R-trees
and a host of quad-tree variants [BS98]. The visualizations focus
on a geographic, 2-dimensional view of the data domain, akin to
andb’s “node view” but spanning all nodes of one or more levels.
Users may observe SPs and data items during insertion, deletion
and splitting, with a large but fixed set of split algorithms. Some
simple domain-specific statistics are displayed per level. Again,
the focus of these tools seems to be pedagogic; the authors note
that the visualizations do not scale to the fanouts typical in most
trees. DEVise [LRB* 97] is ageneral-purpose data exploration and
visualization system, which has been demonstrated to be effective
in helping R-tree development and debugging. Asin the work of
Brabec and Samet, DEVisewasused in thisscenario to visuaize a 2-
dimensional space containing data points and bounding rectangles.
DEVise itself provides no facility for animating index algorithms
or characterizing performance.

Lhttp://www.cs.hope.edu/ alganim/ccaalccaa html



6 Conclusion

This paper presents an analysis framework for tree-structured bal-
anced AMsthat can beused to eval uatethe page accessperformance
of user-defined query workloads. The framework is independent of
the particular type of data to index or the nature of the queries.
It only requires as input the data and tracing information gathered
during query execution. The performance metrics it produces re-
flect actual performance loss, obtained by comparing the observed
performance against that of an assumed optimal tree structure. The
loss numbers are further refined to reflect the three fundamental
structural performance factors: clustering, page utilization and the
subtree predicates.

In andb, the framework is combined with tree and data visual-
ization and animation functionality to create a powerful design tool
for accessmethods. Theanalysisprocessbeginswith theinspection
of performance metrics to locate sources of deficiencies. Unlike
data-dependent measures, these metrics objectively reflect access
method performance. The visualization and animation functional-
ity then enable users to investigate those sources of performance
loss and gain an understanding of how semantic properties affect
performance. Based on this understanding, the designer incorpo-
rates improvements into the design and repeats the analysisprocess
to evaluate their efficacy.

The AM design tool andb incorporatesthe analysisframework
aswell as other features that support the design of GiST-compliant
AMs. Amdb lets the user single-step through individual index op-
erations and set breakpointson eventsof interest. Thevisualization
features allow navigation and inspection of the tree structure and
the data contained in tree nodes. The latter is user-extensible, so
that the visualization is not tied to a fixed set of data types. To
facilitate the analysis process, andb gathers the required tracing
information during workload execution and displays the computed
performance metrics both visually and textually.

Thereare several questionswewant to investigatein more detail
inthefuture. Section 4 mentionsthat for the hypergraph partitioning
to produce “good” clusters—those that reflect semantic proximity
of the dataitems—the queriesin the workload must not only berep-
resentative, but also cover the entire data set to a sufficient degree.
What the required number and shape of queriesin aworkload should
be needsto be established more clearly. We also plan on extending
the analysisframework to other, more exotic tree-structured access
methods (such asnon-bal anced treesor key-transforming trees, such
as RT -trees) and hash-based access methods. The main challenge
will be the construction of optimal structures for these AMs. Fur-
thermore, we want to add functionality to andb that allows it to
computeuser-defined metricsfor queries, nodesandthesplit andin-
sertion strategies. The metrics would express properties of the data
and their organization within the tree that the designer believes to
affect performance (for example, “small minimum-bounding rect-
angle overlap in R-trees resultsin good performance”). Comparing
the user-defined metrics with those produced by our framework lets
the designer verify the accuracy of hisintuition and forces him to
reviseit, if necessary.
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