Implicit Coscheduling:
Coordinated Scheduling with Implicit Information in

Distributed Systems

Andrea Carol Apraci-Dusseau

Report No. UCB/CSD-99-1052

/l December 1998

[

University of California

[

\

\

\

| Computer Science Division (EECS)
\

\ Berkeley, California 94720

\

Implicit Coscheduling:
Coordinated Scheduling with Implicit Information in
Distributed Systems

by

Andrea Carol Arpaci-Dusseau

B.S. (Carnegie Mellon University) 1991
M.S. (University of California, Berkeley) 1994

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Computer Science

in the

GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor David Culler, Chair
Professor Katherine Yelick
Professor David Freedman

1998

The dissertation of Andrea Carol Arpaci-Dusseau is approved:

Chair Date

Date

Date

University of California at Berkeley

1998

Implicit Coscheduling:
Coordinated Scheduling with Implicit Information in
Distributed Systems

Copyright 1998
by

Andrea Carol Arpaci-Dusseau

Abstract

Implicit Coscheduling:
Coordinated Scheduling with Implicit Information in Distributed Systems

by

Andrea Carol Arpaci-Dusseau
Doctor of Philosophy in Computer Science

University of California at Berkeley
Professor David Culler, Chair

In this thesis, we formalize the concept of an implicitly-controlled system, also
referred to as an implicit system. In an implicit system, cooperating components do not
explicitly contact other components for control or state information; instead, components
infer remote state by observing naturally-occurring local events and their corresponding im-
plicit information, i.e., information available outside of a defined interface. Many systems,
particularly in distributed and networked environments, have leveraged implicit control to
simplify the implementation of services with autonomous components.

To concretely demonstrate the advantages of implicit control, we propose and im-
plement implicit coscheduling, an algorithm for dynamically coordinating the time-sharing
of communicating processes across distributed machines. Coordinated scheduling, required
for communicating processes to leverage the recent performance improvements of switch-
based networks and low overhead protocols, has traditionally been achieved with explicit
coscheduling. However, implementations of explicit coscheduling often suffer from multi-
ple failure points, high context-switch overheads, and poor interaction with client-server,
interactive, and 1/O-intensive jobs.

Implicit coscheduling supports not only traditional parallel applications on Net-
works of Workstations, but also general-purpose workloads. By observing and reacting
to implicit information (e.g., the round-trip time of request-response messages), processes
across the system make independent decisions that coordinate their scheduling in a fair and
efficient manner. The principle component of implicit coscheduling is conditional two-phase
waiting, a generalization of traditional two-phase waiting in which spin-time is only partially
determined before the process begins waiting and may be conditionally increased depending
upon events that occur while the process spins. A second important component is a fair
and preemptive local operating system scheduler.

With simple models and analysis, we derive the appropriate baseline and condi-
tional spin amounts for the waiting algorithm as a function of system parameters. We
show through simulation and an implementation on a cluster of 32 workstations that im-
plicit coscheduling efficiently and fairly handles competing applications with a wide range
of communication characteristics. We predict that most well-behaved parallel applications
will perform within 15% of ideal explicit coscheduling.

Professor, David Culler)
Dissertation Committee Chair

To a nine-year-old girl

iii

Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2

1.3
1.4

1.5

Motivation L oL
Scheduling Requirements L o oL
1.2.1 Problem Statement oo o
Previous Approacheso
Implicit Coscheduling L
1.4.1 Local Scheduler oo
1.4.2 Conditional Two-Phase Waiting
Organization L e e

2 Implicit Systems

2.1

2.2

2.3

2.4

Constructing Traditional System Services
2.1.1 Control Structure L
2.1.2 Obtaining Information oL
Implicitly-Controlled Systems oL
2.2.1 Traditional Sources of Information
2.2.2 Implicit Information L
Examples e e e e
2.3.1 Single-Processor Systems L o oL
2.3.2 Multiprocessor Systemso oo
2.3.3 Networked Systems oo o
SUMMATY . . v v v e v e e e e e e e e e e e e e e e e e e e

3 Scheduling Background

3.1
3.2
3.3

Evolution of Clusters
Requirements L L
Cluster Scheduling
3.3.1 Local Scheduling
3.3.2 Explicit Coscheduling L.
3.3.3 Dynamic Coscheduling

iv

viii

=~ O O = W N == E.

© 0o

Nel

10
11
12
13
14
15
17

3.3.4 Fair Allocation across a Shared Cluster
3.4 Summary ... Lo e e e e e e

Implicit Coscheduling Framework

4.1 Components of Systemo e
4.1.1 Machine Architecture oL Lo
4.1.2 Message-Layer o e
4.1.3 User Processes o i it e
4.1.4 Application Workload oo oo
4.1.5 Operating System Scheduler 0oL,

4.2 Components of Implicit Coscheduling
4.2.1 Interaction between Processes and the Scheduler
4.2.2 Interaction between Communicating Processes

Local Scheduler

5.1 Requirements Lo e e e e e e e
5.1.1 Preemption e
5.1.2 Amortized Context-Switches
5.1.3 Fair Cost-Model o o

5.2 Multilevel Feedback Queue Schedulers
5.2.1 Overview of Solaris Time-Sharing Scheduler
5.2.2 Preemption L
5.2.3 Amortized Context-Switches oL
5.2.4 Fair Cost-Model oo

5.3 Proportional-Share Schedulers o oo
5.3.1 Overview of Stride Schedulers
5.3.2 Preemption L
5.3.3 Amortized Context-Switches oL
5.3.4 Fair Cost-Model o o
5.3.5 Scheduling in the Cluster

B4 Summary ... e e e e

Cost-Benefit Analysis of Waiting

6.1 Conditional Two-Phase Waiting
6.2 Maintaining Coordination with Destinations
6.2.1 Request-Response
6.2.2 One-Way Requests o s
6.2.3 All-to-all Synchronization
6.2.4 Discussion e e e
6.3 Maintaining Coordination with Senders
6.3.1 Incoming Request-Response
6.3.2 Incoming One-way Requests
6.3.3 Incoming Synchronization Messages
6.3.4 Discussion e

6.4 Optimizations for Long Waiting Times

35
35

37
37
37
38
38
39
40
40
42
43

46
46
47
47
48
48
48
49
49
49
52
52
53
53
53
57
61

6.5

6.4.1 Network Latency o
6.4.2 Load-Imbalance o o o
SUMMATY . . v v v e v e e e e e e e e e e e e e e e e e e e

Simulation Environment

7.1
7.2
7.3

7.4
7.5

8.1

8.2

8.3

8.4

8.5

8.6

9.1
9.2
9.3

Machine Architecture
Message Layer e
User Processes e e e e e e
7.3.1 Communication Primitives
7.3.2 Waiting Algorithm L oL
Application Workload oo oo o
Operating System Scheduler o0 o oo
7.5.1 Class Independent Functionality
7.5.2 Scheduling Classes
Simulation Results
Scheduling Coordination L oo
8.1.1 Sensitivity to Network Latency
8.1.2 Sensitivity to Workload Parameters
8.1.3 Discussion e e e e e e e
Baseline Spino
8.2.1 Bulk-Synchronous Communication
8.2.2 Continuous-Communication Workloads
8.2.3 Discussion o e e e e e e
Conditional Spin L
8.3.1 Bulk-Synchronous Workloads
8.3.2 Continuous-Communication Workloads
8.3.3 Discussion e e e e e
Load-Imbalance o
8.4.1 Bulk-Synchronous Workloads
8.4.2 Continuous-Communication Workloads
8.4.3 Approximating Load-Imbalanceo L.
8.4.4 Discussiono e e e e e e e e
Local Scheduler
8.5.1 Bulk-Synchronous Workloads
8.5.2 Continuous-Communication Workloads
8.5.3 Discussion e e e e e
SUMMATY . . v v v e v e e e e e e e e e e e e e e e e e e e
Prototype Implementation
System Architecture
Message Layer e
User Processes e e e e e e
9.3.1 Communication Primitives

9.3.2 Waiting Algorithm oL

vi

77
79
83

86
86
86
88
88
90
90
96
96
97

99

99

99
103
106
106
107
110
112
112
112
113
118
118
119
122
123
127
127
127
132
135
137

9.4 Application Workload

9.4.1 Synthetic Applications oo oo
9.4.2 Real Split-C Applications o oL
9.5 Operating System Scheduler o o Lo
9.5.1 Local Schedulers oo
9.5.2 Explicit Coscheduling L.
9.5.3 Job Placement o
10 Implementation Study
10.1 Verification of Simulations o oo oo
10.1.1 Baseline Spin Lo o

10.1.2 Conditional Spin

10.1.3

Local Scheduler

10.2 Range of Workloads .
10.2.1 Additional Communication Primitives
10.2.2 Real Applications oL L

10.2.3

Job Scalability

10.2.4 Workstation Scalability o000,

10.2.5

Job Placement

10.3 Summary
10.3.1 Implementation Performance
10.3.2 Comparison to Simulation Predictions
10.3.3 Advice for Programmers L o

11 Conclusions
11.1 Summary
11.1.1 Conditional Two-Phase Waiting
11.1.2 Local Operating System Scheduler

11.1.3

Performance .

11.2 Future Work

11.2.1
11.2.2
11.2.3
11.2.4
11.2.5
11.2.6

Bibliography

Implementation Issues,
Programming Model oo oL

Workloads . . .

Job Allocation and Placement
Theoretical Analysis

Implicit Systems

vii

147
147
152
152
152
154
154

155
155
156
160
164
168
168
172
173
177
179
181
181
182
183

184
184
184
185
185
187
187
188
189
190
191
192

193

List of Figures

2.1

3.1
3.2
3.3
3.4

4.1

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

7.1
7.2
7.3
7.4

8.1

Model of an Implicitly-Controlled System.

Local Scheduling. e
Simulated Performance of Local Scheduling versus Coscheduling.
Explicit Coscheduling Matrix. o L L.
Impact of Interactive Processes on Parallel Jobs.

Transfer of Information in Implicit Coscheduling.

Measured Fairness with Solaris Time-Sharing Scheduler.
Basic Stride Scheduling. Lo oL
Stride-Scheduling with System Credit Extension.
Stride-Scheduling with Loan & Borrow Extension.
Fairness in Cluster with Independent Stride Schedulers.
Fairness in Cluster with Cooperating Stride Schedulers.
Measured Fairness with Ticket Server and Stride Scheduler.

Time for Request-Response Message with Remote Process Scheduled.

Time for Request-Response Message with Triggering of Remote Process. . .
Time for All-to-all Synchronization with Processes Scheduled.
Time for All-to-all Synchronization with Triggering of Root Process.
Cost of Incoming Request-Response Messages if Local Process Spin-Waits. .
Cost of Incoming Request-Response Messages if Local Process Blocks.

Cost of Incoming One-Way Requests if Local Process Spin-Waits.
Cost of One-Way Requests if Local Process Blocks.
Cost with Network Latency when Processes are Uncoordinated and Block. .

Cost with Network Latency when Processes are Coordinated and Spin-Wait.

Model of Bulk-Synchronous Synthetic Parallel Applications.
Characteristics of Bulk-Synchronous Benchmarks.
Model of Continuous-Communication Synthetic Parallel Applications.

Characteristics of Continuous-Communication Benchmarks.

Impact of Latency and Context-Switch Time on Continuous-Communication

Workloads.

viii

52
54

66
66
69
70
73
73
75
75
78
79

8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

8.12

8.13

8.14

8.15

8.16

8.17
8.18
8.19
8.20
8.21

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

10.1
10.2
10.3
10.4

10.5
10.6
10.7
10.8

ix

Impact of Latency and Context-Switch Time on Bulk-Synchronous Workloads.102

Performance of Immediate Blocking for Bulk-Synchronous Programs. 104
Performance of Immediate Blocking for Continuous-Communication Programs.105
Sensitivity to Read Baseline Spin for Bulk-Synchronous Programs. 108
Sensitivity to Barrier Baseline Spin for Bulk-Synchronous Programs. 109
Sensitivity to Baseline Spin for Continuous-Communication Programs. . . . 111
Sensitivity to Conditional Spin for Continuous-Communication Programs. . 114
Closeups of Sensitivity to Conditional Spin Amount (W = 50us). 115
Closeups of Sensitivity to Conditional Spin Amount (W = 200us). 116
Sensitivity to Conditional Spin for Continuous-Communication Programs

with Frequent Barriers. oL o 117
Sensitivity to Baseline Spin for Bulk-Synchronous Programs with Load-Imbalance
(W =50ps). ..o 120
Sensitivity to Baseline Spin for Bulk-Synchronous Programs with Load-Imbalance
(W =20008). .« « oot e 121
Sensitivity to Baseline Spin for Continuous-Communication Programs with
Load-Imbalance (W =50us). o 124
Sensitivity to Baseline Spin for Bulk-Synchronous Programs with Load-Imbalance
(W =20008). .« « oot e 125
Performance with Global Approximation of Load-Imbalance for Bulk-Synchronous
Programs. e 126
Fairness for Bulk-Synchronous Programs with Identical Placement (3 Jobs). 129
Fairness for Bulk-Synchronous Programs with Identical Placement. 131
Fairness for Bulk-Synchronous Programs with Random Placement. 133
Fairness for Continuous-Communication Programs (¢ = 100ms). 134
Fairness for Continuous-Communication Programs (¢ = 1s). 136
Internals of Ultra 1 Workstation. 139
Network Topology for Cluster of 32 Workstations. 139
Microbenchmark Results for Read Baseline Spin. 145
Microbenchmark Results for Linear Barrier Baseline Spin. 146
Communication Characteristics of Radix. 149
Communication Characteristics of EM3D. 150
Communication Characteristics of Radix:Small. 151
Communication Characteristics of EM3D:Small. 151
Sensitivity to Baseline Spin for Bulk-Synchronous Programs. 157
Performance on Bulk-Synchronous Workloads. 159

Sensitivity to Waiting Algorithm for Continuous-Communication Programs. 161
Performance of Continuous-Communication Programs with Request-Response

Messages.o e e e e 162
Fairness with Bulk-Synchronous Programs. 165
Fairness with Continuous-Communication Programs. 167

Performance of Continuous-Communication Programs with One-Way Requests.169
Performance of Continuous-Communication with Bulk Messages. 171

10.9 Performance of Real Split-C Applications. 173
10.10Job Scalability with Bulk-Synchronous Programs. 174
10.11Job Scalability with Continuous-Communication Programs. 176
10.12Workstation Scalability.o oo oo 178

10.13Sensitivity to Job Placement. o000 180

xi

List of Tables

4.1
4.2

5.1

6.1

7.1
7.2
7.3
7.4

9.1
9.2
9.3

System Parameters.o e 41
Workload Parameters. o Lo o 41
Solaris 2.6 Time-Sharing Default Dispatch Table. 50
Conditional Two-Phase Waiting Parameters for Implicit Coscheduling. . . . 84
Measured Network Latency. o o 87
System Parameters in Simulations.o 0 Lo 87
Conditional Two-Phase Waiting Parameters for Simulation. 89
Measured Context-Switch Cost. 0. 97
System Parameters in Implementation.o L. 140
Conditional Two-Phase Waiting Parameters for Implementation. 144

Communication Characteristics of Benchmark Applications. 148

x1i

Acknowledgements

I would like to begin by thanking my advisor, Professor David Culler, whom I
greatly admire and respect. Receiving a complement from David is a reward in itself. David
is an inspiring person to work with — always enthusiastic and ready to look at another set
of graphs and hypothesize about what is happening. I appreciate that whenever I ask him
an ambiguous question, he assumes | am asking the deeper question (whether or not that
is the case).

Despite all of my previous complaints and gripes, I am grateful for the experience
of being a part of the Network of Workstations project. In addition to my advisor, I thank
Professors Tom Anderson and David Patterson for leading our large group. I could not have
implemented any of this work without the GLUnix and AM-II software provided by Doug
Ghormley and Alan Mainwaring, respectively. I thank them and all of the students for the
infrastructure they provided, as well as the general shared experience. I find it surprising
how much I already miss the meetings and the retreats.

I’d also like to thank my committee members for their feedback on this dissertation.
Professors Kathy Yelick, Tom Anderson, and David Freedman gave me valuable feedback
and great perspectives on this document, as well as previous related papers. Thanks to
Professor Joe Hellerstein for general advice and encouragement.

I thank the older graduate students in David’s group, Thorsten von Eicken, Klaus
Schauser, and Seth Goldstein for being inspiring in their accomplishments, if not a bit
intimidating. But, most of all, I thank them for acquiring the corner window office back in
Evans Hall. Thanks as well to Steve Lumetta, Alan Mainwaring, and Girija Narlikar, for
sharing office space, spare change, technical discussions, and occasional worries.

The students and faculty who participated in David Culler’s System of System
graduate class in the Fall of 1997 gave me interesting perspectives on implicit systems and
helped me to think about the general issues. In particular, I remember useful comments
made by Armando Fox, Steve Gribble, David Wagner, and Professor Joseph Hellerstein.

I still think very fondly back to my undergraduate days at Carnegie Mellon Uni-
versity. In those days, I spent a great deal of time and energy questioning whether or not
I wanted to remain in the Computer Engineering department. Bob Barker and Professors
Bill Birmingham, Daniel Siewiorek, John Shen, and Jim Hoburg all gave me encouragement
and /or research opportunities at key decision points. I doubt they know how much their
actions influenced the direction of my life.

Thanks to Vanessa Karubian for giving me the opportunity to volunteer at the
Computer Club at Hawthorne Elementary School. She has a gift for both making things
happen and sharing the credit with others. Thanks to the fourth and fifth graders for
reminding me of the importance of attitude and of how to find significant meaning in work.

I am grateful to my parents for the environment they raised me in. Ever since my
dad took me to his work and let me play Adventure while drinking hot chocolate, the path
has been set. I thank my parents for managing to simultaneously convey that they will
always love me no matter what I do and that they are so proud of my accomplishments. 1
will always remember how happy my mom sounded when I told her I had been accepted at
Berkeley and then seeing her seven years later wiping tears from her eyes at my graduation.

xiii

Finally, there are no sufficient words for me to express my indebtedness to my
husband, Remzi. How many years will it take me to understand? So slowly I realize how
profoundly lucky I am to be with you and to work with you. To borrow from Goethe, you
are my true measure of all that is good: support, faith, and, most of all, love.

Chapter 1

Introduction

Building system services in a distributed environment is a difficult task; the pri-
mary challenge is that the components implementing the service must know the current
state of the entire system in order to act in a cooperative manner. Since the distributed
components do not inherently have this global knowledge, they usually explicitly query a
set of remote components to gather this information. Unfortunately, adding more com-
munication to the distributed system can cause several problems: the transfer of control
information may be costly or consume critical resources, the information may be out-of-date
by the time it is received, the desired interface may not be available, or errors may occur
while the information is being transmitted.

The thesis of this work is that implicit control simplifies the construction of dis-
tributed system services; with implicit control, components neither query remote compo-
nents for information nor explicitly control remote components in their actions. Instead,
autonomous components infer remote state by observing naturally-occurring local events
and their corresponding implicit information, i.e., information available outside of a defined
interface. An example of a naturally-occurring event is the arrival of a data request from a
remote node; the corresponding implicit information is the arrival rate of the incoming re-
quests. Thus, an implicit system contains no additional communication beyond that which
is inherent in constructing the service.

This chapter presents a high-level synopsis of this thesis. The first section de-
scribes the requirements for services in a distributed system, in particular a scheduler for
communicating processes in a Network of Workstations. This is followed by a brief summary
of related work. The third section gives a description of the components and contributions
of implicit coscheduling. The chapter concludes with an overview of the organization of the
remainder of this thesis.

1.1 Motivation

The importance and the prevalence of distributed systems is continuing to grow.
One emerging platform of particular importance are Networks of Workstations (NOWs)
or clusters, which are tightly-coupled collections of commodity workstations (or personal
computers) connected with a switch-based, high-bandwidth network. NOWs represent a

cost-effective way of building high-performance, scalable servers [4, 19, 37, 61, 75, 143, 154,
175].

Unlike previous distributed systems which supported only long-running, sequential
applications [104, 178], modern clusters can efficiently support a variety of job classes.
First, due to the advent of low-latency, high-bandwidth, switch-based networks [12, 21]
and low-overhead message protocols [11, 110, 136, 165, 166], NOWs can execute fine-grain
parallel applications [36, 116]. Second, clusters can improve the client-server applications
of traditional distributed systems (e.g., naming, locking, and file services) by updating
these services to modern communication protocols [5]. Third, acting as a shared server
across many competing users, NOWs can time-share the interactive, developmental jobs
found in general-purpose workloads [7]. Finally, clusters constitute an excellent platform
for applications with large I/O demands [9, 43].

1.2 Scheduling Requirements

Due to the presence of this wide range of job classes, scheduling and resource
allocation is a much more difficult problem. In addition to achieving high throughput for
long-running applications, the operating system scheduler in the cluster must provide the
following criteria.

e Coordinated Scheduling: Communicating processes from the same parallel job
must be scheduled simultaneously across a set of workstations to achieve efficient
performance. Only if processes are coordinated can communication proceed at the
rate of the underlying hardware without incurring a context-switch.

e Dynamic Identification: Communicating processes must be identified at run-time
to support client-server applications and processes that communicate with a wide set
of processes over their life-time.

e Fast Response Time: Interactive jobs must receive quick response time, while
negligibly harming the throughput of long-running parallel jobs.

e Efficient Resource Usage: Jobs that are waiting for events (e.g., disk or user 1/0)
should relinquish the processor so that they do not waste resources.

e Fair Allocation: Since the clustered environment is shared across many competing
users each running jobs with different characteristics, the amount of resources allo-
cated to each user should be independent of the number of jobs each user runs and
the communication behavior of those jobs.

Further, all system services should have the following structural qualities.

e Autonomous: Each node should maintain control over its own actions, participating
in the system because it is in its best interest to do so, not by imposition; participating
in the cluster should not degrade the absolute performance of the single node.

e Reconfigurable: Workstations should be able to join and leave the cluster dynami-
cally without restarting the system service.

e Reliable: The service should tolerate the failure of any node of the system.

1.2.1 Problem Statement

In this thesis, we investigate the design and implementation of coordinated schedul-
ing as an implicitly-controlled distributed service. Traditionally, coordinated time-sharing of
cooperating processes across the nodes of a cluster has required explicit control; for example,
in explicit coscheduling [134], or gang-scheduling, a set of master components determines
a global schedule of processes over time, and explicitly communicates this schedule to the
participating local schedulers. With implicit coscheduling, cooperating processes achieve
coordinated scheduling without explicit control or additional communication.

The primary goal of implicit coscheduling and of this thesis is obtaining fair,
coordinated scheduling for communicating processes in traditional parallel applications.
We believe that this is the first and most difficult step in constructing a system that can
support more complete workloads. Therefore, while implicit coscheduling has been designed
to support the additional needs of a general-purpose workload with client-server, interactive,
and 1/O-bound applications, we have not yet evaluated such workloads.

We refer to a set of communicating processes as a job. This job may be a dynamic
collection of communicating processes (e.g., a server and multiple clients) or a predefined,
static collection (e.g., a traditional parallel application). The set of processes within a job
are cooperating processes, while the others in the system are competing processes.

The scheduling of parallel jobs in a multiprogrammed environment has long been
an active area of research. The problem is typically decomposed into two steps: allocation,
where individual processes are placed on processors, and dispatching, where those processes
are scheduled over time. The allocation step for parallel jobs has been investigated in
detail [31, 33, 66, 70, 101, 118, 119, 120, 126, 139, 149]. Given the popular single-program-
multiple-data (SPMD) parallel programming model, it has generally been found that the
response time and throughput of the workload are best when competing processes from
different jobs can share the same processor [35, 53, 82, 105, 144, 148, 173].

In this work, we focus on the second step of dispatching the communicating pro-
cesses over time. We consider the problem after the parallel jobs have been divided into a
fixed number of communicating processes and after those processes have been placed on a
set of processors. We evaluate allocations where only competing processes, and not coop-
erating processes, share the same processor. Further, we assume that the allocation step
has accounted for all memory considerations. Whether or not processes migrate between
processors over time is orthogonal to our work.

For our programming model, we assume that cooperating SPMD processes com-
municate with low-level messages, such as those defined by the Active Message model [165].
We assume that the receiving process must be scheduled to handle a message and to return
a response. We consider applications written with request-response and one-way communi-
cation operations and with barrier synchronization operations. Finally, we assume that we
have no control over the communication or synchronization performed by the applications.

1.3 Previous Approaches

Previous work in this area of time-sharing parallel workloads has examined two
distinct approaches: local scheduling and explicit coscheduling. Each has significant weak-
nesses that render it unfit for the NOW environment and workload.

The most straight-forward approach for time-sharing jobs is for the operating sys-
tem scheduler on each workstation to schedule its allocated processes independently. While
this simple approach of local scheduling has the desired structural qualities of a distributed
service (i.e., autonomy, reconfigurability, and reliability), it fails the most important criteria:
performance. Because communicating processes are not scheduled in a coordinated fashion,
each machine spends a significant portion of its time context-switching between processes;
the resulting performance for fine-grain parallel applications is not acceptable. Over the
years, numerous researchers have found that the slowdown of local scheduling may be orders
of magnitude worse than ideal for frequently communicating processes [7, 35, 55, 56, 70, 99].

To resolve the performance inefficiencies of local scheduling, coscheduling [134] or
gang scheduling, explicitly schedules the cooperating processes from a single job simultane-
ously across processors. A strict round-robin global schedule of processes is constructed,
and a global context-switch is performed across all schedulers at the same time. With
coscheduling, each job is given the impression that it is running on a dedicated machine.
We refer to this traditional form of coscheduling as explicit coscheduling.

However, explicit coscheduling also fails to meet many of the requirements of
our distributed system service. Straight-forward implementations are neither scalable nor
reliable; hierarchical constructions can remove single points-of-failure and scalability bot-
tlenecks, but only with increased implementation complexity [54]. In all cases, components
must act as slaves, rather than in an autonomous manner. Difficulties also occur when using
explicit coscheduling with a mixed, general-purpose workload: explicit coscheduling requires
that the schedule of communicating processes be precomputed and the strict round-robin
schedule performs poorly with interactive jobs and with jobs initiating 1/0 [7, 10, 49, 100].

1.4 Implicit Coscheduling

To meet the requirements of a time-shared scheduling approach for general-purpose
workloads on networks of workstations, we have developed implicit coscheduling. Implicit
coscheduling requires no additional communication between components, either to deter-
mine remote state or to direct other components in their actions. Instead, each process
determines for itself when it is beneficial to be scheduled with implicit information and
shares this decision with the local operating system scheduler.

With implicit coscheduling, it is advantageous for a process to remain scheduled
when it is coordinated with remote, cooperating processes. A process determines whether
scheduling is coordinated with two pieces of locally-visible implicit information. The first
piece of implicit information is the observed round-trip time of request-response messages
naturally occurring within the application; in general, receiving a fast response to a request
message implies that the remote destination process is scheduled, whereas receiving a slow
response implies that the remote process is not scheduled. The second piece of implicit

information is the arrival rate of incoming messages; a message arrival implies that the
remote sending process is scheduled.

After a process has determined whether scheduling is coordinated and whether it
should remain scheduled, it informs the local operating system scheduler. If it is beneficial
to the job as a whole for the process to be scheduled, then the process simply remains
runnable. If it is not beneficial, then the process voluntarily relinquishes the processor and
sleeps until it is so. Thus, no changes are required to the interface of the local scheduler.
The local scheduler can thus remain tuned for sequential workloads containing interactive
and 1/O-bound jobs.

By construction, implicit coscheduling has the three structural properties desired
for any distributed system service: autonomy, reconfigurability, and reliability. Because
the components running on each workstation in the cluster act autonomously and rely on
only implicit information, nodes can enter and exit the system at any time (whether due to
choice or to failure), without impacting the service on other nodes.

Achieving distributed coordination with implicit coscheduling requires two key
components. First, the operating system scheduler running on each machine in the cluster
must provide a fair cost-model to user processes; this cost-model allows each process to
calculate whether it should compete for the CPU at the current time. Second, each process
must use conditional two-phase waiting when dependent on an event from a remote process
(e.g., when the process must wait until it receives a response to a previous request before
it can continue computing). We now describe this two components in more detail.

1.4.1 Local Scheduler

The first key to implicit coscheduling is the behavior of the local operating system
scheduler. To obtain good workload throughput, fair allocation across jobs communicating
at different rates, and fair allocation across users running different numbers of jobs, the
operating system scheduler must have the following three properties:

e Preemption. Due to the interdependencies of communicating processes across ma-
chines, the scheduler must be willing to preempt a process to prevent deadlock; a
simple round-robin scheduler is sufficient. Performance may be also improved if the
scheduler immediately dispatches processes when they become runnable due to mes-
sage arrivals.

e Amortized Context-Switch. To amortize the cost of obtaining coordination across
machines, the duration of a time-slice should be long relative to a context-switch.

e Fair Cost-Model. The local scheduler should export a well-defined cost-model so
that processes use the CPU only when it is beneficial for them to do so. This also
allows higher-level policies to provide fair allocations to competing users across the
cluster.

In this thesis, we describe and implement a local scheduler that achieves these three
properties. Qur approach is based on extensions to a stride scheduler, a proportional-share
scheduler introduced by Waldspurger [168], in which resources are allocated to a process

in proportion to its number of tickets. The primary difference in our scheduler is that
processes receive the same amount of resources regardless of their computational behavior
(i.e., when they run versus when they sleep). This is accomplished by giving exhaustible
tickets [171] to processes that relinquished the processor in the past and did not receive their
proportional-share. With more tickets, these processes are then scheduled more frequently
in the future; thus, processes that communicate (and subsequently sleep) at different rates
are scheduled fairly.

1.4.2 Conditional Two-Phase Waiting

The second key to implicit coscheduling is the behavior of processes that are wait-
ing for communication and synchronization to complete. Processes can achieve coordinated
scheduling by simply deciding to spin or to block when waiting for an operation; To deter-
mine the correct action, each process applies its knowledge of the current scheduling state
of the cluster to the scheduler’s cost model. Conditional two-phase waiting incorporates
this knowledge.

In this dissertation, we introduce conditional two-phase waiting as a generalization
of two-phase waiting [134]. In the first phase of two-phase waiting, the process spins for
some baseline amount of time while waiting for the desired event; if the event does not
occur, then, in the second phase, the process voluntarily relinquishes the processor and
blocks. Unlike traditional two-phase waiting where the spin-time is determined before the
process begins waiting, with conditional waiting the process may dynamically increase its
waiting time, depending upon observed events.

Good performance with implicit coscheduling requires picking the correct amount
of baseline and conditional spin-time in the first phase of the waiting algorithm. In previous
research, the desired spin-time for two-phase waiting has been calculated with competitive
analysis, assuming that waiting times are chosen by an adversary [85, 86, 102]. However, in
our environment, it is not appropriate to assume that waiting times are adversarial. Instead,
processes can influence future waiting times advantageously by acting in a cooperative
manner. We have found that there are three factors to consider in conditional waiting.

e Baseline Spin: Processes should wait for the expected worst-case completion time
of the operation that occurs when the arrival of a message triggers the scheduling
of a remote process. Spinning long enough to maintain coordination increases the
likelihood that future waiting times will also be low, which improves communication
and synchronization performance.

e Conditional Spin: Processes should spin longer when receiving messages. At some
threshold incoming message rate, it is beneficial for the waiting process to remain
scheduled, even though it is not making forward progress, because it is handling
incoming messages and allowing remote cooperating processes to make progress.

e Long Waiting Times: In some cases, by relinquishing the processor rather than
waiting for slow operations to complete, a process may achieve better performance
with implicit coscheduling than is possible with explicit coscheduling. These cases

occur when network latency or the internal load-imbalance of the application is high
relative to the cost of a context switch.

1.5 Organization

In the following two chapters, we cover the background material for this thesis.
Specifically, in Chapter 2 we describe the philosophy of implicit systems and give examples
of implicitly-controlled systems and implicit information in other areas. In Chapter 3,
we discuss previous research in scheduling communicating processes in multiprogrammed
distributed and parallel systems.

In the next three chapters, we discuss implicit coscheduling in detail. In Chapter 4
we describe our model of the system and the available implicit information. We discuss the
requirements of the local operating system scheduler in Chapter 5 and describe extensions
to an existing scheduler with the desired properties. In Chapter 6 we present the two-phase
waiting algorithm employed by processes when they communicate and derive the desired
amount of spin-time.

In the final set of chapters we cover the performance of implicit coscheduling for
a variety of workloads and environments. After describing our simulation environment in
Chapter 7, we present our simulation results in Chapter 8. In Chapter 9 we describe our
implementation on the U.C. Berkeley NOW cluster; we present measurements of our system
in Chapter 10. We discuss our conclusions and extensions for future research in Chapter 11.

Chapter 2

Implicit Systems

“Where there’s smoke, there’s fire.” — English Proverb

Most interesting systems contain multiple components that interact with one an-
other to implement a common service. To interact in a cooperative manner, each component
usually requires information about the state and behavior of other components. Construct-
ing such systems is often quite complicated, due to the components’ lack of perfect knowl-
edge of remote components.

The idea behind an implicitly-controlled system is that rather than explicitly con-
tacting other components to obtain information, components infer the state of other com-
ponents from local observations of naturally-occurring events. Rather than obey commands
from a component with complete control over the system, each component reacts indepen-
dently to the forces that are influencing it.

In this chapter, we describe the properties and utility of implicit information for
building complex services, especially services in distributed systems. We begin by defining
the collection of components in a system, their common structure, and the interfaces for ex-
changing information between components. We then describe implicitly-controlled systems
and implicit information. We conclude by citing examples of systems that are implicitly
controlled or leverage implicit information.

2.1 Constructing Traditional System Services

Hardware and software systems are collections of components, or modules, that
interact with one another to implement a common set of services. Complex systems are
divided into multiple, interacting components for a variety of reasons. First, modules can
hide unnecessary details, simplifying the conceptualization and maintenance of the overall
system [137]. Second, components encapsulate a particular implementation, allowing de-
signers to optimize for that implementation while preserving compatibility when underlying
assumptions change. Finally, physical limitations may restrict the size of an individual com-
ponent; for example, in hardware systems, only a certain number of transistors may fit on
a single chip.

Components exist at many different levels in both hardware and software systems.
For example, in a hardware system, each chip can be a considered an individual component.
Multiple chips can also be joined together to form higher-level components, such as the
CPU and memory subsystems within a workstation. Finally, each workstation can form a
component in a parallel or distributed system.

Likewise, in a software system, each procedure can be considered a component.
Multiple procedures can be joined together to form an application or a library. The user
application, run-time libraries, and operating system are all individual components on a
single workstation, yet the collection of software on each node can act as a single component
in a distributed system. In this dissertation, we focus on distributed software systems
containing large numbers of similar components.

2.1.1 Control Structure

Cooperating components implement a common service by communicating with
one another. Communication can be divided into data and control traffic [88, 164]. Data
traffic is that which is inherently required to implement the service, even if implemented by
a single component. Control traffic represents all additional traffic, such as that required
to obtain the internal state of another component or to direct another component in its
actions.

In general, the components that control the decisions of the system determine the
structure of the system. The control and communication structure of components can be
classified into two main groups: master-slave and peer-to-peer.

With the master-slave structure, components behaving as masters directly com-
mand the actions of other components, the slaves. The most straight-forward design is
centralized, where a single master controls all slaves. However, a centralized master can
have severe performance and reliability restrictions in a distributed system; therefore, a
number of variations exist. First, the design can be modified slightly such that there is a
parallel master, a group of components acting as a unified master. Second, in a hierarchical
design, a component may be both a slave to higher-level nodes and a master to lower-level
nodes. While these more complicated structures can improve performance and reliability,
they may still break down at some scale; for very large-scale systems, or when the state of
the system is changing at such a rapid pace that a master cannot determine quickly enough
what is best for the entire system, an alternative is needed.

In a peer-to-peer design, each autonomous component is responsible for optimiz-
ing its specific part of the problem. This design is inherently more scalable and reliable
than master-slave approaches. The primary challenge of a peer-to-peer design is for each
component to obtain an accurate view of the state of the global system. We now discuss
traditional ways in which components gather such information.

2.1.2 Obtaining Information

Regardless of the structure of the system, to gather information, components usu-
ally communicate through well-defined explicit interfaces. For example, a local component

10

sends a message to a remote component, querying it about a particular variable. However,
a number of drawbacks exist to this explicit approach.

First, not all relevant information may be obtainable from the interface. In soft-
ware systems, whether information is available depends primarily upon whether the com-
ponent designer anticipated this requirement and provided the interface. However, in hard-
ware systems, the amount of information that can be transferred between components has
physical limitations as well, related to the number of available data lines and pins.

Second, each interface must have an associated error model. Components must
be able to handle all possible errors when communicating with another component. While
this can be a difficult problem in sequential systems, it can be an unsolvable problem in
a distributed environment due to the potential failure of both remote components and the
communication mechanisms themselves in unexpected ways at unpredictable times. Thus,
dealing with errors adds a significant burden on the programmer.

Third, the cost of accessing the interface may be prohibitive. Obtaining local infor-
mation in a sequential software system may involve only a nominal cost, such as executing a
library function or calling into the operating system; however, in any physically distributed
system, there will be a latency associated with accessing remote components. The overhead
of obtaining the information in this case may exceed its benefit.

Fourth, obtaining the control information may consume resources that are required
for the data transfers of the service. This is primarily a factor in networked systems, where
the control messages consume available bandwidth. We desire an approach that does not
contend for the very resources that it is trying to control or allocate.

Finally, the information from the interface may be out-of-date by the time it is
received. Once again, this is primarily a consideration in distributed systems. If there is
a delay between the time that information is sent from a remote source and the time that
information is locally accessible, then the information may have changed in the interim.
Maintaining information consistency is especially difficult when clients must coordinate
information from multiple remote sites.

2.2 Implicitly-Controlled Systems

Due to the cost and complexity of explicitly contacting other components for con-
trol information, we propose that components should only communicate the necessary data
information and that control information should be exclusively inferred from naturally-
occurring local events. A system which infers all of its control in such a manner is an
wmplicitly-controlled system, or more succinctly, an implicit system. While the data commu-
nication may be structured in either a master-slave or a peer-to-peer fashion, we believe that
an implicit system is more naturally suited to a peer-to-peer design. We now discuss how
components can obtain control information without explicitly contacting other components.

2.2.1 Traditional Sources of Information

A large body of theoretical work has examined the problem of inferring information
and making decisions in complex systems. Some research has focused on systems where

11

Component]
Data ;, Local State » Data
Decision
/’?géé‘//‘ Procedure
[
Figure 2.1: Model of an Implicitly-Controlled System. Components that are

implicitly-controlled do not receive explicit control messages from other components in
the system. Instead, components infer control information from naturally-occurring data
transfers.

no communication occurs between components — an extreme example of an implicitly-
controlled system. For example, game theory focuses on predicting the actions of adversaries
in the absence of any communication [129]. Similarly, decision theory provides a model for
optimizing the utility of decisions based on uncertain information that has been quantified
with a probability measure [15]. Finally, team decision theory combines the previous two
approaches, stressing the distributed nature of the decision makers [114].

Components can also infer the state of remote components if they have common
knowledge [71]. Common knowledge is the strongest form of knowledge in a distributed
system and consists of those facts that all components know, and that all components
know that all components know, ad infinitum. Such knowledge can be practically obtained
in distributed systems only when the facts are static and predefined, for example, when
components are required to conform to a standard or are known to be identical to one
another.

Other research, most notably distributed problem solving (DPS) within artificial
intelligence, assumes multiple autonomous agents are solving a single problem in a coopera-
tive but decentralized fashion. Much of the work in this field is directly relevant to implicit
systems, such as modeling the levels of knowledge of distributed agents [71, 117, 159] and
understanding of the utility of information as it ages [13, 138].

2.2.2 Implicit Information

Implicit information is a powerful additional source of knowledge in implicitly-
controlled systems. A local component can infer the state of remote components from a
combination of arriving data traffic and implicit information. Implicit information is avail-
able from observing characteristics of local events that are outside of their defined interface.
The observed local events must occur naturally as part of the system; thus, implicit in-
formation from remote components cannot be requested on demand. An example of a
naturally-occurring local event is the arrival of a data request from a remote node. Exam-

12

ples of implicit information that can be observed about such an event are its completion
time and the rate of incoming requests. Figure 2.1 diagrams an implicit system leveraging
implicit information.

Implicit information may be interesting for its own sake, with no additional in-
formation. However, we believe implicit information is most useful when it is combined
with other knowledge; for example, knowledge of how the remote components behave. This
combination may allow a component to infer the state in which the remote component must
reside to have produced this event.

Implicit information differs from hints in that a hint can be incorrect [93]. Implicit
information itself is never wrong; the implicit information carried by the naturally-occurring
event is something directly observable. However, components may still derive incorrect
inferences from implicit information. Therefore, just as a hint must be correct the majority
of the time in order to be useful, so must the inference from the implicit information.
Implicit information also differs from piggy-backed information: it must occur naturally as
part of the data transfer.

Systems that react to implicit information are naturally adaptive to current condi-
tions. We note that if a component knows that other components react in a certain manner
to implicit information, the component may manipulate implicit information to produce a
desired response. For example, in Section 2.3.3, we examine a proposal for network routers
that drop packets to manipulate the congestion mechanisms within implicitly-controlled
TCP endpoints.

For a system to rely entirely on implicit information, the interesting state or be-
havior in remote components must be observable in local events. When it is not the case
that critical events can be inferred with implicit information, then explicit control messages
are required. Furthermore, to make conclusive inferences from only implicit information,
the local observations must occur simultaneously with the change in remote state and leave
no room for misinterpretation. Therefore, when implicit information is only correlated with
interesting remote events, but not an entirely reliable predictor, implicit information is more
successful in improving performance than in guaranteeing correctness.

To reiterate, in an implicit system, the only communication across components
is the data movement that is inherent to the service; an implicit system does not need to
leverage implicit information, it simply must not explicitly communicate control messages
across components. Alternatively, in an explicit system, some communication occurs strictly
to convey control information across components — either to inform or query components of
remote state or to direct components in their actions. An explicit system may be adaptive
or may leverage implicit information to improve performance, but, by definition, requires
explicit control messages.

2.3 Examples

Many systems exist in computer science that either are implicitly-controlled or
leverage implicit information; however, they have tended to do so in an ad hoc manner.
One of the goals of this thesis is to explore the common characteristics of such systems
and to develop a systematic methodology for building implicit systems. In this section, we

13

describe a few examples that occur in single-node, multiprocessor, and networked systems.

2.3.1 Single-Processor Systems
Memory Subsystem

Our first example considers the interactions between two components in a single
workstation: a user application running on the CPU and the memory subsystem (consist-
ing of the cache and main memory). Due primarily to the limited available bandwidth
between the CPU and the memory subsystem, the existing interfaces between the two com-
ponents are rather restricted. For example, the application can request that a memory
location be read by specifying the address of that location; the memory subsystem in turn
supplies the data from the specified address. No messages are sent between components
other than those inherently necessary to transfer data; thus, the two components act as an
implicitly-controlled system. Note that cache architectures that include explicit instructions
to prefetch data and to lock specified memory lines in or out of the cache are not strictly
implicit systems.

Due to the limited interface, the memory subsystem optimizes its performance by
inferring additional control information from the data requests it receives. Optimizing the
performance of the memory subsystem equates to caching those memory locations which
will likely be requested in the near future [150]. However, caching the correct data requires
knowledge of the future behavior of the application, for which there is no explicit interface.
To predict which data will be requested in the future, the cache controller assumes there
is temporal and spatial locality in the access stream and infers future requests from the
requests it has received in the past. As a result of this inference from a single explicit data
request, multiple words of data are prefetched into a single block of the cache.

Likewise, the application running on the CPU may obtain better performance if it
has knowledge of the underlying memory architecture (e.g., the amount of physical memory;
the line size, associativity, and number of lines in each cache; and the number of entries
and associativity in the translation-look-aside buffer (TLB)). However, most systems do
not contain interfaces that supply information about the cache or memory architecture.
Therefore, the application must infer this data by observing available implicit information.

We know of two benchmarks that leverage implicit information to infer the charac-
teristics of the memory subsystem. First, Saavedra-Barrera [145] measures the completion
time of memory accesses with different reference patterns to determine the characteristics
of the caches and the TLB. Second, the authors of NOW-Sort [9], measure CPU usage to
determine the amount of available physical memory. Technically, an application that must
run a benchmark to determine this information is not implicitly-controlled. To be truly
implicit, the application must not generate any new memory references simply to observe
them; instead, the application should measure only those references inherent to its correct
operation.

14

Covert Channels

Implicit information is well-known in the field of security, where information that
flows through a medium not intended for the transfer of information is said to flow through
covert channels [42, 92, 103]. Most covert channels encode information in a physical phe-
nomenon: a simple covert channel is the running time of a program; more complex channels
exploit other resource usage patterns, such as the amount of electric power consumed. For
example, a malicious user with knowledge of an application may be able to infer some secret
information from the running time of that application.

2.3.2 Multiprocessor Systems
Cache-Coherence Protocols

We next consider a shared-memory multiprocessor, where the relevant components
are each of the processors, their caches, and main memory. The only inherent data that may
be transferred between each processor, its cache, and main memory are the specification of
whether this operation is a read or write, the memory address, and the data that is read
or written. One of the advantages of caching data is that it reduces the amount of traffic
on the memory bus. However, the presence of multiple copies of a single memory location
introduces the problem of stale data, when different processors see different values for the
same memory address.

In early multiprocessor systems, data was kept consistent across caches with ex-
plicit methods by transmitting additional information. For example, an additional high-
speed bus could be used to broadcast all write addresses [30]. Alternatively, by removing
the abstraction of individual components in the system, the operating system could have
complete knowledge of the behavior of all caches and explicitly ensure that inconsistencies
do not occur [132]. Finally, by tagging memory locations, processors could explicitly ac-
quire ownership of a memory location before entering a critical section. However, all three
solutions introduce a significant amount of complexity beyond that which is required for
inherent data transfer and limit the scalability of the system.

In the solution proposed by Goodman [68], cache controllers snoop inherent traffic
on the memory bus to infer the state of other caches in the system. Each cache memory
block has an associated state, which is updated according to actions of the processor as
well as by traffic on the memory bus. The state of each block determines whether or not
a processor has exclusive ownership of a memory location, and thus relies on only implicit
control.

The design of the cache coherency algorithm in multiprocessors is a rare example
of an implicitly-controlled system performed for correct behavior, not only optimized per-
formance. However, an important assumption for the correct operation of this algorithm
is that each cache controller cooperates and behaves in this same manner. For example, if
one controller does not invalidate a block when another cache broadcasts data, then incon-
sistencies occur in the data. Further, special care is required in the implementation of the
bus protocol to ensure that all remote components have a chance to react before a local
action is performed.

15

Resource Allocation with Virtual Machine Monitors

Disco is a virtual machine monitor that enables multiple operating systems to
run on a multiprocessor [26]. Such an approach significantly reduces the implementation
complexity of operating system support for reliable and scalable operation. However, one of
the drawbacks is that information for efficient resource allocation is hidden from the virtual
machine monitor.

For example, the monitor has the responsibility of allocating one of the virtual
processors to each of the physical processors. However, the monitor lacks explicit infor-
mation about which instructions are executing on each virtual processor: for example, the
instructions for the idle loop of the operating system and for spin-waiting are indistinguish-
able from instructions for useful process computation. As a result, the monitor can not
make an informed decision about which virtual processor to schedule.

In this situation, the implementors found that additional information could be in-
ferred from naturally-occurring events. Specifically, the MIPS processor contains a reduced
power consumption mode; the commodity operating system, IRIX 5.3, enables this mode
whenever the system is idle. Since, the virtual machine monitor catches this call, it can
infer that no useful work is being performed on this virtual processor and schedules another
virtual processor.

Load-Balancing

A common problem in distributed systems is evenly balancing a workload of many
jobs across a set of nodes. One of the steps to solving this problem is to determine the
current load across the system. Typical approaches for gathering this information are to
periodically exchange load information or to query a fixed number of nodes on demand.
However, neither approach is ideal. First, both approaches incur overhead to determine
load, beyond that of simply placing the job. Second, both approaches may not have an
accurate view of the cluster: the first approach may leverage out-of-date information while
the second may not know the state of the entire system.

When a single front-end is responsible for placing the jobs across worker-nodes, an
alternative exists for obtaining load that uses only implicit information. As described for
a cluster-based web-page server [135], given that the front-end must hand-off the incoming
TCP connection to the responsible worker-node, the front-end can infer the load on the
worker-nodes from the number of active TCP connections. This is a simple and eflicient
approach: it leverages information that is already available locally, it accurately reflects the
load of the worker-nodes, and it involves no extra overhead.

2.3.3 Networked Systems

Ethernet

Perhaps the simplest example of a distributed system with implicit information
consists of nodes transmitting data over an Ethernet network [22, 122]. Ethernet is a Carrier
Sense, Multiple Access with Collision Detect (CSMA/CD) local area network. In such a

16

network, multiple nodes are plugged directly into a shared link; when one machine transmits
a message, the signal is broadcast over the entire network.

The challenge of managing this shared-medium network is that only one node can
transmit data at a time without corrupting the transmissions of all nodes. One approach to
guaranteeing mutual exclusion would be to require each node to explicitly gain control of
the link before transmitting, as in a token-ring based system [34]. Instead, nodes leverage
implicit information for a much simpler, decentralized implementation.

Whenever a node has data to send, it waits until the line is idle and then trans-
mits immediately. While the node sends its data, it also simultaneously watches the line to
observe if any collisions with other transmissions occur. Thus, implicit information exists
in the form of corrupted data, from which the sender can infer that another node is trans-
mitting simultaneously. If this is the case, the sender performs exponential back-off as it
tries to send the data again.

This algorithm uses implicit information to obtain the correct transmission of data
with a very easy implementation; however, a number of drawbacks must be noted. First,
fair operation depends upon each of the colliding senders performing the same back-off
algorithm; if some nodes retransmit with a smaller interval, they will obtain a greater share
of the resources. In the worst case, a single malicious node can prevent all others in the
system from communicating. Second, Ethernet works best in lightly-loaded conditions;
typically, if utilization exceeds 30%, much of the network capacity is wasted by collisions.

TCP Congestion Avoidance

The TCP/IP network protocol requires a different solution for congestion avoid-
ance in wide-area networks; that is, to operate in the regime of low delay and high through-
put. The challenges in such an environment are many. First, large-scale networks such as
the Internet clearly require a decentralized approach. Second, the resource demands across
senders are bursty, varying over time. Third, sending additional messages to describe the
state of the network is unacceptable since they consume a portion of the resource they
are supposed to allocate. Finally, there are no defined interfaces for transmitting feedback
between nodes.

In the well-known TCP congestion control algorithm by Van Jacobson [80], clients
leverage implicit information in the form of round-trip time and packet loss to infer the
state of the network. The round-trip time average and variation are estimated from past
measurements and help determine the expiration time of a local timer; if a given message
response does not return before the timer expires, the packet is labeled as dropped and
must be retransmitted. The key insight within the TCP algorithm is that packet loss in
wired systems is almost always due to network congestion; when the network is congested,
clients should reduce the amount of data that they are trying to send. As a result, when a
dropped packet is detected, the TCP algorithm multiplicatively reduces its current window
size. This congestion avoidance algorithm has prevented congestion collapse in the Internet
since its inception.

As noted by Jain [81], by observing only round-trip time and packet loss, the
network is treated as a black-boux:

17

“Black-box schemes have no explicit feedback and are therefore also called
implicit feedback schemes.” (emphasis in the original)

Jain notes further that implicit feedback increases the amount of available information, and
is therefore useful even in networks that already have explicit feedback.

However, due to the limit of control that can be accomplished from the edges
of the network, the TCP congestion avoidance mechanisms are not sufficient to provide
good service in all circumstances. Therefore, a complementary protocol has been recently
proposed for routers in the Internet. With Random Farly Detection (RED) [59], routers
manipulate implicit information in order to implicitly control the TCP congestion avoidance
algorithm. By randomly dropping packets as a function of the average queue length of
packets, routers can signal senders to reduce their sending rate. As long as packet flows
are responsive to the implicit information inherent in congestion, RED is expected to help
increase utilization of the Internet.

Deadlock Detection and Recovery

Deadlocks occur in networks when packets cannot advance toward their destina-
tions because resources held by other packets are requested in a cyclic pattern. Traditionally,
networks using worm-hole routing have relied upon deadlock avoidance strategies in the de-
sign of routing algorithms, which limits the routes that packets can travel. Alternatively,
deadlock recovery strategies can use fully adaptive routing and thus potentially outperform
techniques using deadlock avoidance.

To detect deadlock, the entire graph formed by the messages must be examined
for cycles. When a cycle is found, one of the messages must be killed to break the cycle. A
simple, implicitly-controlled, deadlock detection mechanism exists that uses a set of heuris-
tics and local information provided by the existing flow-control signals on each router [106].
To ensure that a small number of messages (ideally, one message) in the cycle are flagged
as deadlocked, the root message first must be identified, where the root is the last message
1 This algorithm identifies those messages that are blocked on the
root with only local information by marking messages that were initially waiting for busy,
but non-blocked channels, that later became blocked. To determine this state transition,
routers observe implicit information in the form of the rate of progress of each message. To
remove the cycle in the graph, the messages that are blocked on the root message are killed.

of the cycle to arrive.

2.4 Summary

Building services from multiple, interacting components is a complex task. To
interact with one another in a cooperative manner, components require information about
the state and behavior of other components; however, components do not inherently have
this perfect knowledge. Explicitly contacting other components to obtain this information
has a number of drawbacks: namely, the desired information may not be available, errors

'In the case of simultaneously arriving “root” messages, multiple messages in a single cycle can still be
marked for deadlock recovery.

18

may occur, the cost may be prohibitive, critical resources may be consumed, or the infor-
mation may be out-of-date by the time it is received. Thus, the construction of cooperative
systems can be greatly simplified if implicit information is employed.

Most work in distributed problem solving has focused on making effective decisions
given available information, not on the sources of that information. In fact, in the words of
Casavant and Kuhl [29]

“the components of a distributed computation must explicitly exchange mes-
sages to share information regarding total state” (emphasis in the original).

In this chapter, we have argued that implicit information, or information from
observing characteristics of local events outside of their defined interface, helps compo-
nents share information regarding the total state of the system. In an implicitly-controlled
system, rather than explicitly contacting other components to obtain information, compo-
nents infer remote state by observing naturally-occurring local events. Rather than obey
commands from a component with complete control over the system, each autonomous com-
ponent reacts dynamically and independently to the forces that are influencing it; often,
the components rely on some common knowledge to advance the system toward a shared
goal. Implicit information is particularly useful in such circumstances because it provides
additional information about the state of the system at little or no additional cost.

It is our belief that implicit information is particularly suited to peer-to-peer sys-
tems containing autonomous components. In such systems, no component knows the state
of the entire system; thus, each component is responsible for optimizing the problem from
its perspective. When components are completely autonomous, it is likely that some com-
ponents will only support the minimum interface required for implementing the service
(i.e., those parts of the service inherent in the transfer of data). Rather than degenerate
to the capabilities of the “least common denominator” of the system, smart components
can leverage implicit information that emanates even from components conforming only to
the minimum specification. Thus, we predict that implicit information will become more
prevalent and essential as distributed systems increase in scale and complexity.

In this chapter, we have described a number of systems that leverage implicit in-
formation or that are implicitly controlled. The most developed example is the congestion
avoidance algorithm in TCP/IP [80, 81]; a proposal even exists for having routers manip-
ulate the implicit information to which TCP reacts [59]. Many of the examples of implicit
information and implicit control occur in networked systems, but examples can be found in
many systems containing multiple components or modules.

19

Chapter 3

Scheduling Background

The work in this dissertation builds from research performed in a number of differ-
ent areas within distributed systems and multiprocessor scheduling. To set the context of
implicit coscheduling, we discuss some of these areas in this chapter. We begin by describing
the convergence of distributed and parallel systems into today’s networks of workstations
(NOWSs). In the next section, we describe the requirements that this new environment and
its evolving workloads place on the scheduling policy. We believe that a mixed approach
of space-sharing and coordinated time-sharing provides the best throughput and response-
time for general-purpose workloads. We discuss two popular approaches for time-sharing;:
local scheduling and explicit coscheduling. We analyze the drawbacks of both approaches
for networks of workstations and general-purpose workloads, as well as some of the current
proposals for reducing these weaknesses.

3.1 Evolution of Clusters

Networked computers have been a continually evolving platform since the early
1980s. In this section, we briefly describe how advances in communication technology have
instigated the convergence of loosely-coupled distributed systems and traditional massively
parallel processors (MPPs) into today’s tightly-coupled clusters.

The earliest collections of machines in the 1980s were usually loosely-coupled dis-
tributed systems with relatively poor network performance. The workloads in such envi-
ronments tended to consist of interactive jobs executing on a user’s desktop machine plus
computationally-intensive jobs allocated to idle, remote machines. Due to the expense of
finding available remote cycles and of migrating jobs if a workstation’s owner returned,
desktop systems usually performed only batch-processing of long-running sequential appli-
cations. A large proliferation of operating systems, run-time environments, and languages
were created to support such computation.

The specific scheduling problems that were solved in distributed systems included
providing transparent remote execution and load balancing with migration. Early research
efforts solved these problems by implementing a distributed operating system tailored for
a specific hardware platform; examples of such operating systems include V [162], Nest [2],
Butler [130], Sprite [44], Amoeba [123], Amber [32], Eden [14], and Clouds [41], Accent [142],

20

Charlotte [58], and Locus [140]. More recent research efforts have implemented specific
functionality on top of the vendor-supplied operating system running on each machine in
the distributed system. Many of these run-time environments are still in use today and
some systems have been incorporated into commercially available software; for example,
Condor [104] now forms the basis of IBM LoadLeveler, while Utopia [178] has become the
Load Sharing Facility (LSF) from Platform Computing.

Parallel programming in distributed systems did not become popular until the
1990s. Part of the reason for this slow evolution has been the focus on using idle cycles of
workstations located on user’s desks [1, 7, 10, 49, 100, 125, 163]. Furthermore, the shared-
medium Ethernet interconnections of the past and the high-overhead of standard messaging
protocols were prohibitive to all but the most coarse-grain parallel applications.

Recent advances in low-latency, high-bandwidth switches [20] and low-overhead
message-passing software [167, 110] have enabled communication performance to more
closely resemble that of massively parallel processors (MPPs). By connecting these switches
and commodity workstations (or personal computers), one can build incrementally-scalable,
cost-effective, and highly-available shared servers [4, 11, 19, 37, 75, 143, 154, 175]. We use
the term clusters to refer to these collections of more tightly-coupled machines.

Over the years, a number of parallel programming languages and run-time envi-
ronments have been developed for distributed systems. Some of the earliest programming
environments focus on coarse-grain parallel applications; for example, p4 [108], Data-parallel
C [127], PVM [63], PARFORM [28], and MPI [161]. Later systems use objects which can be
migrated between idle nodes and invoked regardless of location; for example, Emerald [84]
and CHARM [146]. Finally, the most sophisticated systems, developed more recently, ad-
just the level of parallelism in the application to dynamically match the number of available
machines, such as Piranha [64], Cilk [17, 18], and CARMI (Condor Application Resource
Management Interface) [141].

Clusters are capable not only of running fine-grain parallel applications written in
traditional parallel programming languages, but also of supporting multiple users running
workloads typically reserved for large shared-memory servers. These workloads are expected
to contain compute-bound, 1/0O-bound, interactive, and multimedia jobs that may be serial,
client/server, or parallel. Therefore, new techniques are required for clusters to fairly and
efficiently schedule this general-purpose, developmental workload. In the next section, we
present the requirements of the cluster operating system scheduler.

3.2 Requirements

For clusters to be attractive to a wide group of users, every service in the system
should have the following four characteristics:

e Autonomous: As the size of the cluster grows, different organizations are likely to
own different components of the cluster. Since organizations tend to want to main-
tain control over their resources, each component should determine its own actions,
participating in the system because it is in its best interest to do, not by imposition.

21

e Reconfigurable: Workstations should be able to join and leave the cluster dynami-
cally without restarting any system services.

e Reliable: The system must tolerate the failure of any node; while applications run-
ning on the failed node may not survive, the system as whole must continue.

e Scalable and Absolute Performance: Implementing a service in a distributed
environment should not degrade the absolute performance of the service on a single
node; further, the performance and the correct operation of the service should scale
through the size of the system.

After the basic functionality is supported, the service should be implemented such
that it provides fair and efficient performance across users and jobs. When the service is
the scheduling of long-running communicating processes, this criteria can be more precisely

defined.

e High Throughput: Achieving high throughput for frequently-communicating paral-
lel applications has been shown to require that communicating processes are scheduled
simultaneously across workstations.

e Fair Allocation: The amount of resources allocated to a job should be independent of
its communication behavior. Likewise, since the cluster is a shared environment with
many competing users, resources should be allocated across users fairly, independent
of the number of jobs each user runs.

The primary goal of implicit coscheduling and of this thesis is to obtain fair, coordi-
nated scheduling for communicating processes in traditional parallel applications. However,
scheduling a general-purpose workload with client-server, I/O-bound, and interactive pro-
cesses has a number of additional requirements.

e Dynamic Identification: Communicating processes must be identified at run-time
to support client-server applications and processes that communicate with a wide set
of processes over their life-time. Static identification is suitable only for traditional
parallel applications.

e Fast Response Time: Interactive jobs should receive quick response time, while
negligibly harming the throughput of long-running parallel jobs.

e Efficient Resource Usage: Jobs that are waiting for events (e.g., disk or user 1/0)
should relinquish the processor in order to not waste resources.

In the next section, we describe in detail the ability of various scheduling ap-
proaches to meet this collection of design and performance goals.

22

3.3 Cluster Scheduling

The scheduling of parallel jobs in a multiprogrammed environment has long been
an active area of research. The scheduling of multiprogrammed, parallel workloads is a chal-
lenging problem because performance is highly dependent upon many factors: the workload,
the parallel programming language, the algorithm processes use when waiting for commu-
nication or synchronization to complete, the local scheduler, and the machine and network
architecture. For the interested reader, Feitelson has written a comprehensive summary of
research in this area [52].

Parallel scheduling is usually decomposed into two interdependent steps. The first
step determines the number of processors to allocate to a parallel job and the placements
of processes on those processors. The second step dispatches those allocated processes over
time.

A hybrid approach combining space-sharing and coordinated time-sharing of com-
peting processes has a number of advantages over pure space-sharing with one job per
processor. The most significant advantage of time-sharing is that no changes to the pro-
gramming model are required for good performance; in particular, the popular Single-
Program-Multiple-Data (SPMD) programming style with message-passing can be used.
Pure space-sharing techniques that achieve good response time and throughput require that
applications are malleable to the number of available processors, a non-trivial programming
task.

A large number of studies have focused on the allocation step of parallel job
scheduling [31, 33, 66, 70, 101, 118, 119, 120, 126, 139, 149]. In this dissertation, we focus on
the second step of time-sharing processes over time. Two popular methods exist for time-
sharing competing processes: local scheduling and explicit coscheduling. When processes are
locally scheduled by the operating system on each workstation, frequently communicating
processes exhibit unacceptably poor performance. Explicit coscheduling improves the per-
formance of communicating processes by coordinating scheduling across workstations. We
discuss these two previous approaches in detail, as well as a recent third proposal, dynamic
coscheduling.

Numerous studies have compared the performance of explicit coscheduling to a
variety of space-sharing techniques along several different metrics. In general, coschedul-
ing gives better response time than space-sharing, especially for jobs with large resource
requirements [53, 173] or performing 1/O [144]. Studies have also shown that coscheduling
is a relatively good policy for system throughput [31, 35, 70, 101, 105]. Performance of
coscheduling can be further improved if processes can be migrated between nodes to better
fill available time slots [148, 173]. Finally, anecdotal evidence suggests that system uti-
lization can be improved with coscheduling: when the scheduler on the LLNL Cray T3D
was changed from variable partitioning to gang-scheduling, the average utilization nearly
doubled from 33% to 61%; additional tuning led to weekly utilizations above 96% [82].

3.3.1 Local Scheduling

With local scheduling, the operating system scheduler running on each workstation
in the cluster independently schedules the processes that have been allocated to it; a process

23

Response
Request arrives muc
is sent later

Excessive spin-tim¢
due to uncoordinatd
local scheduling

Time

Figure 3.1: Local Scheduling. Four communicating jobs (A, B, C, and D) are allocated
to four workstations. If the processes composing those jobs are scheduled by independent
operating system schedulers on each workstation, then the communicating processes are not
scheduled simultaneously across workstations. As a result, if a process spin-waits after
sending a reply message until the reply arrives, CPU time will not be used effectively.

24

that communicates with other processes in the system is scheduled as if it were completely
independent. The problem with local scheduling is that fine-grain applications experience
poor performance because their scheduling is not coordinated across workstations. We
loosely define a fine-grain application as an application that communicates frequently (i.e.,
on the order of once every 100us) and uses small messages. An example of local scheduling
is shown in Figure 3.1, where one process sends a request message to a process on a remote
node that is not currently scheduled. If the request requires a response, then the sending
process must wait (a potentially long time) until the destination process is scheduled for
the response to be returned.

A process waiting for a response from a remote node has three options for waiting.
First, the process can spin-wait until the response arrives, handling incoming messages
while it waits. Second, a process can block immediately, relinquishing the processor so that
a competing process can be scheduled until the response arrives. Third, the process can
use two-phase waiting [134]: in the first phase, the process spin-waits some amount of time,
S, for the desired response; if the response does not arrive, then the process blocks in the
second phase.

To determine the optimal waiting algorithm, the system is typically modeled as
follows. While the process spin-waits, it pays a cost in wasted processor cycles equal to the
time that it spin-waits. If the process blocks, it pays the fixed cost of a context-switch to
be scheduled again when the event completes. Under this model, the optimal behavior is
for the process to spin-wait if the completion time of the operation is less than the time
for a context-switch; otherwise, the process should block. Since waiting times are typically
large with uncoordinated local scheduling, previous researchers have found that blocking
immediately has the best performance. We discuss these performance results for the three
waiting algorithms in more detail.

Spin-Waiting

To measure the performance of local scheduling with spin-waiting on parallel ap-
plications, we use a technique called direct simulation on a 64-node Thinking Machines’
CM-5 [98]. Direct simulation measures the run time of a parallel program executing under
artificial conditions that emulate a multiprogrammed environment. In our experiments, the
processes of a single parallel program are periodically interrupted and forced to execute an
idle loop; the interruptions occur independently across the processes. To the parallel pro-
gram, these disturbances appear as competing processes using a time-slice. Messages which
arrive in this interval are buffered in a small, fixed-size buffer until the parallel process is
resumed. By measuring the execution time of the parallel application, we can observe the
slowdown induced by the simulated competing processes.

We composed a suite of five parallel applications, written in Split-C [39] for direct
simulation. The first, cholesky, performs LU factorization on symmetric, positive-definite
matrices. Column is an implementation of the column-sort algorithm [48, 97]. The pro-
gram em3d simulates the propagation of electro-magnetic waves through objects in three
dimensions on an unstructured mesh [39]. Another sorting algorithm is implemented in
sample sort [16, 48]. Finally, connect uses a randomized algorithm to find the connected

25

Local Scheduling
[cholesky Eg column] connect em3d [] sample 100

e <
s
pisdse]
fssiel
s =}
iegae! —
st °
s ot =
posasdt 2ot
%% [egetsl
st feees o
riresel et —
053] el
ety 3] (9]
peed s
Foe%) [
pese] (aS0%s:
Boc psosd]
el o
ety [55]
[es] [
ifetety [l
pese] (%ot
25501 isegels|
pisdse] o
%% [s5ed]
iegate! 7 tose]
[osted] 7 (5408
iegee!
iegate! (R =
g st =
sl B 10
Rex B =
] skl =
(23] iosets =
55 o L0 A =0

> S gz e > £ 5 = ©

2 £ 3 3 =3 = £ 8 @ =

K El £ g E K 3 € g £

S g s 8§ =&]

2 2 8 8§ H

5 5 5

1 Competing Job 2 Competing Jobs 3 Competing Jobs

Figure 3.2: Simulated Performance of Local Scheduling versus Coscheduling.
One real parallel application and one to three simulated parallel jobs are scheduled in a
round-robin fashion with a 100ms time quantum on a 64-node CM-5. Slowdown is the ratio
of the measured locally-scheduled execution time to the ideal coscheduled time.

components of a graph [107].

Figure 3.2 shows the slowdown of scheduling each application in a round-robin
fashion while varying the number of simulated competing jobs between one and three. The
reported slowdown is relative to the execution time of the applications when ideally cosched-
uled. Our results show that the performance of locally-scheduled parallel applications is
incredibly poor with spin-waiting. When resources are shared between two parallel appli-
cations, each application is slowed down by at least a factor of eight. Even the applications
that communicate infrequently, such as cholesky and column, exhibit poor performance
with local scheduling and spin-waiting. The application that synchronizes the most fre-
quently, em3d, is slowed down the most significantly, i.e., by nearly 50 times.

As the number of competing parallel applications is increased from two to four, the
execution times increase for two reasons. First, when communicating with a destination
process, the likelihood that the destination process is not scheduled increases with more
competing processes. Second, if a destination process is not scheduled, then the time
remaining before that process is scheduled increases.

In summary, spin-waiting interacts very poorly with processes that are locally
scheduled [7, 35, 55, 99, 109]. When the scheduling of processes is not coordinated, processes
often do not receive the response from the remote node until their next time-slice. As a
result, the process spins idly for the remainder of its time-slice without making progress.
With spin-waiting, communication often completes in the same amount of time as the
duration of a time-slice, rather than in the inherent round-trip time of the network.

26

Block Immediately

When processes are locally scheduled and block-immediately when waiting for a
response to a communication request, communication tends to progress at the rate of a
context-switch, instead of a time-slice. Thus, the performance of local scheduling can be
improved significantly when processes block immediately rather than spin-wait for commu-
nication [35, 55].

For frequently communicating and synchronizing applications, the performance of
local scheduling with immediate blocking is still much worse than with coscheduling and
spin-waiting. However, for applications that communicate infrequently, immediate blocking
with local scheduling may actually be superior to coscheduling, depending upon the amount
of time communication operations require to complete. In general, when the waiting time for
an event is high relative to the cost of relinquishing the processor, better system throughput
is achieved if processes block immediately.

Previous research has investigated the trade-off of blocking-immediately and spin-
waiting on applications performing only barriers [55, 56]. In their analysis, the waiting
time of the barrier is strictly the amount of load-imbalance in the application, where load-
imbalance is the time between the arrival of the first and last process to reach a barrier
synchronization; the cost of relinquishing the processor is equal to the time for a context-
switch. With these assumptions, when the load-imbalance is less than the context-switch
cost, processes should be coordinated (e.g., with explicit coscheduling) and spin-wait; oth-
erwise, processes should be scheduled independently and block immediately.

Nevertheless, in most well-tuned applications on modern networks, the waiting
time at a communication operation is significantly less than the context-switch cost of the
local operating system. Subsequently, processes that communicate frequently should be
scheduled in a coordinated manner and should stay scheduled while waiting for communi-
cation operations to complete.

Two-Phase Waiting

Since the waiting time with local scheduling is not known until after the operation
completes, determining how a process should wait for an event to complete is an on-line
problem. Competitive analysis is an attractive technique for bounding the worst-case per-
formance because it requires no knowledge of the input distribution. Theoretical results that
have applied competitive analysis to two-phase waiting have found that when the spin-time
in the first phase equals the penalty of blocking then the worst-case performance is within
a factor of two of the optimal off-line algorithm given the same input distribution [86]; that
is, the algorithm is competitive with a factor of two.

The reasoning for this is simple. If the waiting time, C', is less than B, then the
cost of the on-line strategy and the optimal off-line strategy are equivalent: each idly spins
for C', wasting processor resources. If the completion time is greater than B, then the on-
line algorithm pays a cost of 2B while the off-line algorithm blocks immediately and pays
only B.!

'This result holds regardless of the power of the adversary that picks the observed waiting times: whether
against an oblivious adversary (one who constructs the sequence of events based on a description of the be-

27

However, we observe that competitive analysis is not an appropriate technique
for cooperating processes because the input distribution of waiting times is not fixed: the
waiting times can be impacted by the behavior of the waiting process. Since two different
waiting algorithms may produce different distributions of input values, the performance of
the two algorithms cannot be compared competitively. Specifically, a waiting algorithm that
spin-waits for the penalty of blocking before relinquishing the processor is not guaranteed
to perform within a factor of two of the optimal algorithm.

However, because experimental results have not clearly contradicted the theory,
one may be misled into thinking that the adversarial assumptions of a fixed distribution hold.
A common application of two-phase waiting is when processes compete for shared locks in
a multiprocessor [70, 85, 102]; however, even this mundane scenario violates the adversarial
assumptions of competitive analysis. Since different behavior by the waiting process can
cause processes to be scheduled in different orders, the relative timing of critical sections
and thus waiting time for future locks may be altered.

Measurements performed by Karlin et. al. [85] verify that different waiting algo-
rithms produce different lock-waiting times; this is shown in two ways. First, their analytic
results on a fixed distribution of waiting times do not match their experimental results in
which the waiting algorithm can alter the future inputs. For example, in their work, given
a fixed input distribution, the Hanoi application performs better with a spin-time of half
the context-switch cost than with a spin-time equal to the context-switch cost; in the real
environment with feedback, the performance is reversed. Second, spinning for the context-
switch cost does not always perform within a factor of two of the optimal algorithm. Our
interpretation of their experimental data indicates that with the optimal algorithm, only
10 seconds are spent in synchronization, but with a spin-time equal to the context-switch
cost, 52.7 seconds are spent.

One of their hypotheses for these discrepancies matches ours: the waiting strategy
changes the relative timing of events across threads and subsequently the lock-waiting times.
However, in this environment, it is unlikely that the waiting process can systematically bias
or even predict the impact of its behavior on future waiting times.

Little attention has been paid to the use of two-phase waiting for processes com-
municating with one another in a distributed environment such as ours. In one study [56],
Feitelson and Rudolph find that local scheduling and two-phase waiting with a spin-time
equal to the local context-switch cost performs poorly relative both to local scheduling with
immediate blocking and to explicit coscheduling with spin-waiting; performance is nearly
two times worse than with immediate-blocking and ten times worse than with coscheduling.

In this environment, two-phase waiting was not found to substantially affect the
distribution of waiting times. Due to their assumptions about the local operating system
scheduler, the application workload, and the amount of spin-time, scheduling is always
uncoordinated and waiting times remain high. Thus, few of the communication operations
complete while the process is spinning in the first phase; as a result, for each communication
operation, the sending process first spins for a time equal to the context-switch and then

havior of the algorithm), an adaptive on-line adversary (one who generates an event based on the algorithm’s
reaction to previous events), or an adaptive off-line adversary (one who generates events based on the algo-
rithm’s reactions to all events).

28

relinquishes the processor, paying another context-switch. The performance of two-phase
waiting is competitive within a factor of two of blocking immediately, which is the optimal
algorithm given this distribution of high waiting times.

However, Feitelson and Rudolph find that two-phase waiting with local scheduling
performs almost ten times worse than with coscheduling and spin-waiting for many fine-
grain applications. Two-phase waiting does not have competitive performance relative to
coscheduling because the distribution of waiting times is not the same for the two algorithms.
Therefore, the performance of two-phase waiting with uncoordinated scheduling cannot be
compared to that of spin-waiting with coordinated scheduling.

As we discuss in Chapter 4, the key to good performance with local scheduling
and two-phase waiting is to achieve coordinated scheduling. With coordinated scheduling,
the waiting algorithm will react to smaller waiting times [176, 177]. With smaller waiting
times, spinning for some amount of time before blocking improves performance relative to
blocking immediately.

3.3.2 Explicit Coscheduling

To improve the performance of fine-grain parallel applications, coschedulingensures
that communicating processes are scheduled simultaneously across different processors [134].
Performance of fine-grain applications is improved relative to local scheduling, because
when one process communicates with another, the destination process is scheduled and
can promptly reply. Since the parallel job is given the impression that it is running in a
dedicated environment, processes usually spin-wait for responses.

Implementations of explicit coscheduling require that a global context-switch is
performed simultaneously across processors; this ensures that communicating processes are
scheduled simultaneously across workstations. Ousterhout suggested three algorithms for
grouping communicating processes: a matrix algorithm, on which most implementations
are based, and two algorithms based on a sliding window. The matrix algorithm is shown
in Figure 3.3 for four parallel jobs (A, B, C, and D) allocated on four workstations. Within
the matrix, each row designates a different workstation and each column a new time-slice.
When allocating a parallel job with P processes, a column with P empty slots must be
found. In the remainder of our discussion, we assume that the matrix algorithm is used.

If the communication layer of the system cannot support the case where a mes-
sage destined for one process arrives when another process is scheduled, then a variant of
coscheduling is required: gang-scheduling. With coscheduling, the operating system may
schedule any subset of processes at any given time; with gang-scheduling, the scheduling
requirements are more strict in that only complete sets of communicating processes are
scheduled at all times. In this dissertation, we assume that the communication layer can
handle multiple communicating processes, and therefore consider forms of coscheduling.

Coscheduling Implementations

Coscheduling has a number of practical, attractive qualities, as reflected by the
large number of implementations on MPP systems, shared-memory multiprocessors, and
networks of workstations. Some of the implementations of coscheduling were supplied by

29

(empty slot)

H
@

H
&

\
- Global context switch / / ,//

Time

Figure 3.3: Explicit Coscheduling Matrix. Four parallel jobs (A, B, C, and D) are
allocated to four workstations. With explicit coscheduling, or gang scheduling, the system
guarantees that communicating processes are scheduled simultaneously across workstations.
As a result, when network latency and load-imbalance are low, processes can spin-wait for
message replies without wasting significant amounts of CPU. However, to scheduled pro-
cesses under such constraints, empty slots may exist in the global schedule where no process
can run simultaneously with the other processes in its job. Further, processes must spin-wait
when they perform 1/0, not allowing another process to perform useful computation.

30

the commercial vendors responsible for the operating systems, while others were added
later by researchers desiring better performance. For example, MPP systems with gang
scheduling include: the Concentrix Alliant FX/8 [160], the Connection Machine CM-5 from
Thinking Machines [98], the Cray T3D at Lawrence Livermore National Laboratory [82],
the Political Scheduler for the Cray T3E [91], the Meiko CS-2, OSF /1 on the Intel Paragon,
and SHARE on the IBM SP-2 [62]. Shared-memory systems with coscheduling support
include Medusa on CM* from Carnegie Mellon University [134], the BBN Butterfly at
the University of Rochester [35], MAXI on the Makbilan multiprocessor at the Hebrew
University of Jerusalem [55], the BBN TC2000 [82] at LLNL, and IRIX on the family
of Silicon Graphics multiprocessor systems. Finally, a number of research projects have
implemented coscheduling on clusters: SCore-D (or DQT) from Real World Computing on
clusters of SparcStation 20s and Pentium PCs connected with Myrinet [76, 77, 78]; GLUnix
from U.C. Berkeley on UltraSPARCs with Myrinet [65]; and as part of the SHRIMP project
from Princeton on Pentium PCs [133].

The overhead for a global context-switch in each system depends upon a number
of factors. On small-scale shared-memory machines, global context-switch overheads are
comparable to those on a single processor. For example, the global context-switch requires
only 500us on the 16 processor BBN Butterfly [35] and 200us on the 15 processor Makbilan
multiprocessor [55]; as a result, time-slices near 100ms can be used effectively. However,
even implementations on shared-memory machines are not always scalable: a global context-
switch on the 126 processor BBN TC2000 at LLNL requires on the order of milliseconds;
therefore, the system uses a ten second time-slice [82].

The global context-switch time on MPPs tends to be much larger than a context-
switch on a single processor due to the complexities of the distributed environment, the
larger scale of processors, and (in some cases) the need to flush the network of messages for
strict gang-scheduling. For example, on the CM-5, between 5 and 10ms were required to
switch between processes [27]; as a result, time-slices near one second were used. To amortize
context-switch costs on the Intel Paragon, time-slices could be up to 24 hours long [79].
Machines which do not support virtual memory paging have even higher overheads; for
example, the LLNL implementation on the T3D must swap the entire resident process on
every context-switch, requiring about one second per preempted processor, or about one
minute for a 64-processor job.

The implementations of coscheduling on networks of workstations often rely upon
the operating system on each local node to perform the global context-switch. One common
technique is to use UNIX signals to stop and start the processes as desired. As a result, the
time for a context-switch is relatively large and increases with the number of workstations.
For example, in SCore-D, overheads of 3ms, 15ms, 30ms, and 45ms were measured on 1,
2, 4, and 8 processors, respectively, running Solaris with a 200ms time-slice [78]. A later
implementation reduced context-switch overhead to 45ms on 36 SparcStation 20s and 12ms
on 32 Pentium PCs [77]. A large portion of the global context-switch time is due to the cost
of preempting the network to ensure that no messages are in transit. Other implementations,
such as GLUnix [65], which rely upon the communication layer to separate messages across
processes, should have lower overheads.

Despite its popularity and its advantages, explicit coscheduling has a number of

31

disadvantages. Some of the drawbacks concern its construction: a master-slave implemen-
tation severely limits the ability of coscheduling to scale with more workstations, to adapt
to reconfigurations of the participating workstations, to tolerate faults, and to provide au-
tonomous operation. The more severe concern is its ability to handle general-purpose work-
loads, in particular, client-server applications, interactive processes, and jobs that page or
perform [/O. We now discuss each of these disadvantages in more detail.

Scalability, Reliability, Reconfiguration, and Autonomy

Many explicit coscheduling implementations are constructed such that a master
process running on a single processor controls the timing of the global context-switch across
the system. The control structure of a centralized master has a number of inter-related
drawbacks.

First, the master may form a performance bottleneck as the number of nodes in
the system grows. As the scale of the system increases, the time to propagate the global
context-switch across all processors is expected to increase. Also, since the master must
be aware of the state of the entire system, adding more jobs or more nodes may make
computing the optimal schedule more difficult.

Second, the master represents a single point-of-failure in the system. Such a design
may have been acceptable in a traditional supercomputer, where all components could be
placed in a controlled environment to minimize failures. However, the operation of an entire
cluster cannot be dependent on a single machine.

Third, current implementations of explicit coscheduling assume that the nodes in
the cluster remain static over the lifetime of the service. In a mature cluster, nodes must
be able to enter and exit the system while taking full advantage of system services. Finally,
the nodes in the coscheduling matrix must act as slaves to the master, running only the
designated parallel job.

Distributed Hierarchical Control (DHC) [54] is an implementation scheme that
improves the first two problems. In DHC, machines are grouped into a hierarchical tree
structure, where masters at higher levels control context-switches across larger groups of
machines. Scalability is improved, because no component requires full knowledge of the
system. Presumably, subtrees within the system are robust to failures in other portions of
the system.

However, even with DHC, machines cannot act on their own accord, but must
act as slaves to higher-level controllers. Therefore, nodes cannot enter and exit the system
without contacting the appropriate masters and potentially restructuring the hierarchy.
Nodes may also not act in their own best interest by running sequential applications. While
this approach may be acceptable in systems that are under the same administrative domain,
it is not feasible as clusters expand to multiple sites in the wide-area. Therefore, DHC does
not satisfy our goal of autonomy for each machine.

Static Identification of Processes

Explicit coscheduling requires that communicating processes be identified stati-
cally, i.e., prior to their execution. This requirement has three main drawbacks.

32

First, static identification requires that communicating processes be grouped pes-
simistically. That is, if two processes ever have a phase of joint communication, then they
must always be coscheduled. If the number of such processes is greater than the number
of processors, explicit coscheduling cannot be used, even though there may be sufficient
resources to support the processes actively communicating with one another at any given
time.

Second, client-server applications are not easily supported. When a client process
is started, it may not know a priori which server processes it will contact and engage in
communication. Furthermore, the collections of clients and servers may change dynamically
over time.

Third, applications that link with libraries performing communication cannot be
effectively coscheduled with traditional methods. For example, a traditional parallel appli-
cation that leverages a parallel file system may consist of two independent threads located
on each workstation in the cluster. The set of threads in the parallel file system may also be
performing communication, which should be coscheduled separately from the application.

Clearly, communicating jobs should be identified at run-time, an idea originally
proposed by Feitelson and Rudolf in 1992 and published in 1995 [56]. In their approach,
the communication rates between sets of processes are recorded and those that exceed a
threshold are marked as belonging to the same “activity working set” by a master process.
These sets are then placed into a matrix schedule and explicitly coscheduled. While run-
time identification fixes the problems of statically identifying processes, this approach is still
not ideal: communication between processes must be explicitly monitored, a global schedule
must be constructed for all processes by a master, and simultaneous context-switches must
be coordinated across workstations. Run-time identification has been simulated, but not
vet implemented.

Workloads with Interactive Jobs and I/0

For a network of workstations to act as a general-purpose compute server, a
scheduling approach that can effectively handle a mixed workload is required. To most
efficiently allocate the resources in the cluster, parallel applications should dynamically
share workstations with interactive, sequential processes [45, 128]. However, few studies
have examined the performance of explicit coscheduling with interactive applications or
with applications performing 1/0 [111, 144].

Interactive jobs typically perform a small amount of computation after waiting a
longer interval for input from the user. Similarly, I/O-bound jobs may perform minimal
computation between phases of transferring data from disk. Therefore, while neither class
needs to be scheduled often, both should be scheduled promptly when they have work to
do. Prompt scheduling of interactive and 1/O-bound jobs shortens response time and keeps
the disk subsystem utilized, as desired. Priority-based preemptive schedulers have been
specifically designed to handle such workloads [50, 67, 96].

Due to their disparate scheduling requirements, interactive and 1/O-bound jobs
do not mix well with parallel applications that are explicitly coscheduled. Clearly, an
interactive user will not be productive when allocated a long time-slice in a fixed round-robin

33

Impact of 50ms Sequential Process

24 ¥ column —— A
connect —+—-
L cholesky -&-- |
22 em3d -x
sample -&--
2 | 4
g 1.8 Poy 1
3
S
3 16 N]
[“\
14+ AN g
| S

08 1 1 1 1
5 10 15 20 25 30
Frequency (seconds)

Figure 3.4: TImpact of Interactive Processes on Parallel Jobs. Fach of the parallel
applications is periodically interrupted at an random time on one of 64 nodes of the C'M-5.
The 50ms interruption simulates a short-lived process arriving on one of the workstations
in the cluster. During this interruption, messages arriving for the parallel program are
buffered and the sending process must spin-wait for a longer interval. Along the z-axis, the
inter-arrival time of the interrupting processes on each workstation is varied between 5 and
30 seconds. The y-axis is the slowdown of the process with interruptions versus that in a
dedicated environment.

coscheduling matrix [73]. Studies have shown that coscheduling 1/O-intensive applications
can severely hurt performance, since the disk subsystem is not utilized in the time-slices
when CPU-bound parallel jobs are scheduled [95]. Due to the fact that page faults are not
correlated across processes of a parallel application [174], even parallel applications that
page memory to disk can exhibit slowdowns when coscheduled [27].

On the other hand, the alternative approach of scheduling interactive jobs when-
ever they have computation to perform harms the performance of fine-grain parallel appli-
cations. To measure this effect on parallel applications that are coscheduled and spin-wait
during communication, we again use direct simulation [7]. In these experiments on five
Split-C applications, we simulate a sequential, interactive job being scheduled on one of the
workstations by periodically interrupting one of the nodes for 50ms. Figure 3.4 shows that
most parallel applications measure a noticeable increase in execution time when another
process is randomly scheduled. One application, em3d, is slowed down by more than a
factor of two with only a 50ms interruption on each workstation every 5 seconds.

In summary, coscheduling does not mix well with interactive processes and appli-
cations performing 1/O. If jobs are forced to run only during a predefined time-slice in the
coscheduling matrix, the response time of interactive jobs and the throughput of I/O-bound
jobs suffers. On the other hand, if interactive jobs or paging activity interrupt coscheduled
applications, then the performance of fine-grain parallel applications suffers.

34

3.3.3 Dynamic Coscheduling

Due to the weaknesses of both local scheduling and explicit coscheduling, a new
approach is needed that not only coordinates communicating processes across worksta-
tions, but also dynamically identifies communicating processes and allows workstations to
autonomously react to the needs of a mixed workload. Dynamic coscheduling is a recent
proposal that shares this set of goals [153]. In dynamic coscheduling, coordinated schedul-
ing is achieved by scheduling the process for which an arriving message is destined, modulo
certain fairness criteria. The major drawback to dynamic coscheduling is that it requires
that the fairness criteria be selected by hand for each workload. It is also unknown whether
dynamic coscheduling works for more than one communicating process per workstation.

The first models and simulations of dynamic coscheduling were performed at a
coarse level of detail [153]. An analytical model of two competing jobs showed that if at least
several hundred messages are sent to random destinations per time-slice, then the steady-
state probability is that one of the two jobs is always coscheduled in its entirety. The major
simplification of their model is that jobs spontaneously context-switch independently across
workstations, representing both involuntary context-switches (e.g., expiration of time slices)
and voluntary context-switches (e.g., blocking due to waiting for communication). Further,
their model assumes that context-switches and communication events occur instantaneously.

An implementation of dynamic coscheduling with lllinois Fast Messages (FM) [136]
is described for WindowsN'T [25] and for Solaris 2.4 [152, 151] and coined FM-DCS. However,
due to the limitation that FM can only support one communicating job at a time, all
measurements examine a single parallel application in competition with multiple sequential
jobs. The priority of the destination process is raised if the following equation holds:

E
2 (TCurrent - TThreadLastScheduled +C) > Q- J,

where (Q is the length of a time-slice, J is the number of jobs on the workstation, and F
and C' are tuned by hand for each workload. This implementation of FM-DCS appears to
have required changes at multiple levels of the system: the device driver for the Myrinet
interface card, the program on the LCP (LANai Control Program), and the FM messaging
library.

The WindowsNT measurements are brief; the workload consists of a single ping-
pong latency benchmark between a pair of processors [25]. More measurements are per-
formed for the Solaris environment on seven SPARCstation-2 workstations: in addition to
the ping-pong latency test, a barrier microbenchmark and a Laplace equation solver are
examined. The authors find that FM-DCS performs better than local scheduling with two-
phase waiting and a fixed spin time of 1.6ms. However, their comparison to two-phase
waiting and a fixed spin-time is not equivalent to a comparison of implicit coscheduling.

Therefore, while dynamic coscheduling is very similar to implicit coscheduling in
its goals, the two approaches are somewhat different. Dynamic coscheduling focuses on
the receiving process, while we will see that implicit coscheduling focuses on the sending
process. With dynamic coscheduling, the remote process is forced to schedule processes
whenever a message arrives for it and it is fair to do so. With implicit coscheduling, the
sending process uses implicit information to infer the scheduling state of remote processes;

35

with this knowledge, it can optimize its own behavior as it waits for responses from remote
processes.

3.3.4 Fair Allocation across a Shared Cluster

Finally, we review previous research in allocating a fair proportion of resources to
competing users in a shared environment. Active users should not be able to obtain more
resources by running more jobs or by running jobs with certain communication character-
istics. While numerous researchers have investigated the problem of allocating a fair share
of resources on a single workstation [60, 69, 72, 74, 87, 155, 170], little work has been per-
formed for parallel jobs in clustered environments. For example, current run-time systems
for fair allocation within clusters only support the space-sharing of communicating pro-
cesses, with fairness enforced over relatively long intervals; in Condor, fairness is obtained
by allowing users who have executed fewer jobs in the past to preempt users who have run
more jobs [124].

Micro-economic systems can provide more precise allocation [57, 112]. In these
systems, a server sells its available resources to the client that offers the highest bid. A
major drawback to this approach is that, due to the high overhead of holding auctions,
clients must bid for the exclusive space-shared rights to resources for the life-time of their
processes. Thus, clients must estimate their run-time.

Due to the complexity of building micro-economic systems, very few systems have
been implemented. One implementation, Spawn [169], reveals the high overhead of allocat-
ing resources by bidding: in a system with nine nodes, an auction takes roughly 6.2 seconds,
forcing a 60-second time quantum to amortize the overhead. Furthermore, because the au-
thors only consider coarse-grain applications, such as Monte-Carlo simulations, they do not
provide a mechanism for allocating multiple nodes simultaneously to a single client. A more
recent simulation study supports fine-grain parallel applications by allowing applications to
purchase time on multiple nodes simultaneously [156].

3.4 Summary

In this section, we have discussed the requirements of the scheduling policy for
general-purpose workloads on clusters of workstations. The scheduling strategy should
be scalable, reconfigurable, reliable, and autonomous, as should any system service in a
cluster. The most important criteria when time-sharing communicating processes is that
cooperating processes are scheduled simultaneously across different workstations.

Without coordinated scheduling, processes that communicate at a frequent rate ex-
hibit poor performance. The precise performance that is seen with local scheduling depends
upon the waiting algorithm employed while the process waits for communication operations
to complete. For example, when processes spin-wait at communication events, commu-
nication tends to proceed at the rate of a time-slice; when processes block-immediately,
communication proceeds at the rate of a context-switch. Previous researchers who have
studied the performance of two-phase waiting, where processes spin for a context-switch
before relinquishing the processor, have found that performance is slightly worse than when

36

processes block immediately [56]. However, as we will show in Chapter 6, by choosing
spin-time correctly, processes remain scheduled in a coordinated fashion.

Explicit coscheduling ensures that communicating processes are scheduled simulta-
neously across different processors [134]. Performance of fine-grain applications is improved
relative to local scheduling, because when one process communicates with another, the des-
tination process is scheduled and can promptly reply. Since the parallel job is given the
impression that it is running in a dedicated environment, processes usually spin-wait for
responses. Implementations of explicit coscheduling require that a global context-switch
is performed simultaneously across processors; therefore, explicit coscheduling is difficult
to build in a scalable, reconfigurable, or reliable manner. More importantly, workstations
under the control of explicit coscheduling cannot act autonomously and cannot respond ad-
equately to general-purpose workloads containing client-server, interactive, or I/O-intensive
applications.

37

Chapter 4

Implicit Coscheduling Framework

Implicit coscheduling is an example of an implicitly-controlled system that lever-
ages implicit information. In this chapter, we begin by describing our model for the system
and its components. We then present the implicit information that implicit coscheduling
leverages: message round-trip time and message arrival rate. For each piece of implicit
information, we discuss the probable scheduling state on the remote nodes and the local
action that will coordinate communicating processes.

4.1 Components of System

Networks of workstations contain multiple levels of components, each optimized
to solve its own part of a task. Each workstation in the cluster behaves as an indepen-
dent component and each workstation itself contains multiple components: the hardware
itself, the communication software, the set of user processes and applications, and the local
operating system scheduler. We describe each of these components in turn. The relevant
parameters of our system are summarized in Table 4.1; the parameters for the workloads
are shown in Table 4.2.

4.1.1 Machine Architecture

The lowest-level component in the cluster is the physical hardware that composes a
node. Each node is a complete computer, consisting of a powerful microprocessor, cache, and
large DRAM memory. In recent systems, these machines may be commodity workstations [4,
11, 19, 37, 75], commodity PCs [143, 154, 175], or commodity processors with special-
purpose communication support [98, 90, 147].

Our current analysis of the performance of implicit coscheduling makes two as-
sumptions about the machine architecture that are not necessarily true for all clusters.
First, we assume a single processor per node (and, therefore, use the term node, processor,
and workstation interchangeably). Second, we assume that each machine in the cluster is
roughly identical in performance.

38

4.1.2 Message-Layer

Each workstation in the cluster is connected with a switched, high-bandwidth
network, the topology of which is not specified and not pertinent to our analysis. Processes
communicate with one another with a light-weight communication layer, such as Active
Messages [167]. We use the LogP model [40] to describe the performance of the message-
layer:

e [.: an upper bound on the latency, or delay, incurred in communicating a message
that contains a small, fixed number of words from the source node to the target.

e 0: the overhead, defined as the length of time that a processor is engaged in the
transmission or reception of each message; during this time, the processor cannot
perform other operations.

e g: the gap, defined as the minimum time interval between consecutive message trans-
missions or consecutive message receptions at a processor. The reciprocal of ¢ is the
available per-processor communication bandwidth.

e P: the number of processor/memory modules.

In all cases, a process must be scheduled to send, receive, or handle a message. If
a message arrives for an unscheduled process, the message is buffered until the process is
scheduled. In our analysis and simulations, we assume that receiving processes are informed
of message arrivals through asynchronous interrupts. Conversely, in our implementation,
processes must poll the network explicitly to determine if a message is waiting; an interface
does exist to wake a process waiting for a message arrival. We will see that this difference
does not noticeably impact our performance results.

4.1.3 User Processes

A set of communicating processes is called a job or application, interchangeably.
This job may be a dynamic collection of communicating processes (e.g., a server and multiple
clients) or a predefined, static collection (e.g., a traditional parallel application).

We refer to the set of processes within a job as cooperating processes, while the
others in the system are competing processes. We assume cooperating processes are placed
on different nodes in the system, but competing processes may time-share the same node.

User jobs are the most important components in our system. In the end, it is
the run-time of jobs that users care about, not the absolute performance of the machine
hardware, the operating system, or the communication layer. For implicit coscheduling,
the most important characteristics for determining performance are the communication
primitives a job employs and the collection of jobs in the current workload.

Communication Primitives

In our model, a job contains four types of communication operations. These
operations were chosen to closely match those operations found in programs with a global
address space, such as those written in Split-C [39].

39

¢ Request-response: a round-trip message between a pair of processes (e.g., a read
or write operation). The requesting process must wait until it receives the response
before it can proceed with its remaining computation. Note that, in the general case,
the sending process may perform work or initiate additional requests while waiting
for a response by separating the request from the later synchronization point, as in a
split-phase operation (e.g., separating the get and the sync in Split-C). Although our
analysis ignores this intervening work (under the assumption that the amount of work
is small), applications can still use split-phase operations with implicit coscheduling.

e One-way Requests: a one-way message sent to a destination process (e.g., a store
operation). The sending process can continue executing independent of the actions of
the receiving process.

e Synchronization: messages synchronizing a set of cooperating processes. A partici-
pating process cannot continue until it has been notified that all cooperating processes
have reached the synchronization point. In message-passing programs, such as those
using MPI [161] or PVM [63], synchronization occurs between pairs of processes per-
forming sends and receives. However, for simplicity in our analysis, we consider
only synchronization operations across all processes within a job (e.¢., a barrier).

As initially discussed in Section 3.3.1, when a communicating process must wait
for a remote condition before it can continue to make forward progress, it has three options.
First, the process can spin-wait until the condition is true. Second, the process can block
immediately, relinquishing the processor so that a competing process can be scheduled.
Third, the process can use two-phase waiting [134]: with two-phase waiting, a process
spins for some amount of time, S, and if the response arrives before the time expires,
it continues executing. If the response is not received within the interval, the process
voluntarily relinquishes the processor so a competing process can be scheduled. Thus, two-
phase waiting is a generalization of the spin-wait and the immediate-block algorithms, where
the spin times are S = oo and 5 = 0, respectively.

4.1.4 Application Workload

The set of J jobs running in the cluster compose the application workload. The
important parameters for characterizing a job 7 in that workload are the following:

e Processes: The number of processes, p;, in job j. The processes are numbered 0 to
p;— 1L

e Communication Interval: the average time, c;, between request operations on the
sending process.

e Synchronization Interval: The average time, g;, between barriers across all pro-
cesses.

e Load-Imbalance: the difference in arrival time across participating processes at
a synchronization operation. More precisely, v; ; is the load-imbalance observed by

40

process ¢ of job j at a given synchronization operation; i.e., v;; is the difference in
arrival time between the slowest process of job j and process . V; is the worst load-
imbalance observed across all processes, i.e., V; = max(vg;,v1,j, -+, Up,—1,;) Or the
difference in arrival time between the slowest and the fastest process.

When no possibility for confusion exists, the subscript j is dropped from each of
the parameters.

While not an essential requirement for implicit coscheduling, we assume that each
process contains a fixed amount of work irrespective of how the processes are scheduled.
Furthermore, the job is not expected to be malleable, or to adjust to the number of available
workstations. Thus, if a job consists of p processes, it is allocated a constant P = p work-
stations throughout its lifetime. We focus on two placements of processes to workstations:
tdentical placement, where process 0 of each job is placed on workstation 0, process 1 of
each job on workstation 1, and so forth through process p — 1 of each job on workstation
p — 1; and random placement, in which a randomly-selected process from each parallel job
is placed on each workstation.

4.1.5 Operating System Scheduler

Each workstation in the cluster runs its own copy of a local operating system. For
implicit coscheduling, the only relevant service of each operating system is the component
which schedules processes over time. We assume that the scheduler time-slices between
competing jobs after some interval,). The details of this allocation depend upon the
properties of the scheduler as described later in Chapter 5. Regardless of the policy, each
process transitions through three scheduling states:

e Scheduled: The process is currently scheduled on the processor. This process will
remain scheduled until one of three circumstances occurs: the process voluntarily
sleeps, it is preempted by a higher-priority process, or its time-slice expires.

e Runnable: The process is waiting to be run while a competing process is scheduled.
Runnable processes wait on the ready queue.

e Sleeping: The process cannot be scheduled because it is waiting on an event, such
as a message from a remote process or 1/O. Sleeping processes wait on a sleep queue.
A competing process may be currently scheduled, or the processor may be idle. We
also refer to this state as blocked.

The context-switch time is the cost of scheduling a new process. We denote the time
required to schedule a process after a message-arrival as W. To simplify our terminology, we
often use the phrase “context-switch” when we specifically mean the case where a process
is woken and scheduled after a message-arrival.

4.2 Components of Implicit Coscheduling

The components in our system that implement implicit coscheduling are the oper-
ating system schedulers on each workstation and the communicating processes themselves.

41

‘ Variable ‘ Description
L network latency
0 overhead
g gap
P number of processors
w wake-up from message arrival
Q duration of time-slice

Table 4.1: System Parameters. The table summarizes the relevant network, machine
architecture, and operating system parameters in our system.

Variable Description
J number of jobs in workload
Dj number of processes in job j
c; average interval between communication operations
q; average interval between synchronization operations
V; load-imbalance across processes in job
v; load-imbalance of process ¢

Table 4.2: Workload Parameters. The table summarizes the relevant parameters to

describe the workload running in the cluster.

42

Incoming request
from another procesd
gives the waiting logi

Round-trip time of

a returning reply gives
implicit information abou
state of remote proces

implicit information

Workstation via the message ratel

Process A

Process B Process C

\

N Repl > RequeS\ /!
KA ph gl
%, G
/70: ~. | \ ="t~ \-"" -~~~ -—~-~-—-"@\"" " - -------= . QQ"
f% S~doy Two-phase Two-phase d--" 64,»

0,')) Waiting Logic Waiting Logic, N

®

«->

4
1
1

v

P
38
FES
Lo
Sq
=

blqeuuny
/P3X00|9

P
38
RS
Lo
Sqo
=

beneficial for process
. to be scheduled
Operating System Scheduler

Figure 4.1: Transfer of Information in Implicit Coscheduling. Processes that are
part of a communicating job receive implicit control information from the processes they
are currently communicating with. This information is used as part of the two-phase wait-
ing logic within each communicating process. From the round-trip time of returning reply
message and from the arrival of incoming messages, the local process can infer whether the
remote process is likely to be currently scheduled. The local process informs the operating
system scheduler whether it is beneficial to be scheduled by either remaining runnable or by
blocking until a message arrives.

The internals of these two components are described in Chapters 5 and 6, respectively.
In this section, we briefly discuss the flow of information between these cooperating, but
independent, components; this transfer of information is summarized in Figure 4.1.

4.2.1 Interaction between Processes and the Scheduler

From the perspective of the communicating processes, the primary responsibility of
the local scheduler is to export a cost model. With this cost model, each process understands
how frequently (or when) it will be scheduled as a function of its CPU usage pattern; that
is, as a function of how frequently (or when) the process sleeps.

To determine if it is beneficial to be scheduled, each communicating process com-
bines its knowledge of the scheduling state of the parallel job with this cost model. If the
process determines that it is beneficial to run, then it places itself on the ready queue;
this is the default state. If the process determines that it is not beneficial, it places itself
on the sleep queue by sleeping on an event (e.g., a message arrival); once the state of the
system changes and the process determines that it is beneficial to run (e.g., cooperating
processes are scheduled on remote machines), the process wakes up and moves itself to the
ready queue. By relying on only this small, well-defined interface between the process and
the scheduler (i.e., sleeping and waking), each component can independently optimize its
performance in a modular fashion.

43

4.2.2 Interaction between Communicating Processes

This section presents the information available between sets of cooperating pro-
cesses for determining the scheduling state of the parallel job. We show that each commu-
nicating process can observe response time and message arrival rate to infer the probable
scheduling state of cooperating processes on remote nodes.

In our system, coordinated scheduling is not required for correctness, but is desired
for improved performance; therefore, the fact that the scheduled process has changed on a
remote node does not have to be immediately or definitively propagated across the cluster.
For improved performance, it is only required that an event that is correlated with the
remote scheduling state is propagated, from which other nodes can infer the likely remote
state.

Such a correlated event occurs when processes communicate: the arrival of a mes-
sage indicates that the remote process that sent this message was scheduled in the recent
past. Thus, a message arrival allows a local process to infer that the remote process is
likely to still be scheduled. By observing two pieces of implicit information associated with
communication (the response time of request messages and the arrival rate of incoming
requests), processes that communicate frequently can determine whether their scheduling is
currently coordinated and act accordingly. Processes that do not communicate will not be
able to determine whether their scheduling is coordinated, but these jobs do not required
coordinated scheduling for good performance.

We now describe these two pieces of implicit information in more detail. For each
piece of implicit information, we describe the implied scheduled state and the corresponding
action the local process should take for coordinated coscheduling.

Response Time

The first piece of implicit information available to a local process is the round-trip
time of a request-response message. This time provides feedback concerning the process
scheduled on a remote node, since a process must be scheduled to return a response. There-
fore, receiving a “fast” response indicates to the local node that the cooperating remote
process was recently scheduled, while a “slow” response (or, more precisely, not receiv-
ing the response in a designated interval) indicates that the destination is probably not
currently scheduled.

To maintain coordination with cooperating processes the local process should re-
main scheduled when it receives a “fast” response; when coordinated, the benefit of running
generally exceeds the cost charged by the operating system scheduler. However, the local
process should relinquish the processor when remote processes are not scheduled, as indi-
cated by “slow” responses; when not coordinated, the cost of holding onto the processor
generally exceeds the benefit. The mechanism which achieves both of these goals is two-
phase waiting with the “correct” spin-time. With the correct spin-time, processes spin for a
time that is approximately equal to that required for a “fast” response. The key is selecting
this correct spin-time, as described in Chapter 6.

When the inference of the scheduling state of a remote node is out-of-date or
simply incorrect, two-phase waiting still provides the correct behavior for the local process.

44

For example, when a process receives a fast response, the remote process may no longer be
scheduled (i.e., it was descheduled after sending the message);! when a process receives a
slow response, the remote process may be scheduled but ignoring the network. However,
in both situations, the decision of the local process still optimizes performance. If the
response was fast, it is inconsequential that the remote process is no longer scheduled — the
local process can continue to run productively until it communicates again, in which case
it rechecks the scheduling condition. If the response was slow, it is inconsequential that the
remote process is currently scheduled — the local progress should relinquish the processor
since it is unable to make forward progress.

The preceding discussion showed how spinning in the first phase of the two-phase
waiting maintains scheduling coordination when it already exists. Waking up again after
blocking in the second phase can also help instigate scheduling coordination. Coordination
develops under two scenarios, both of which involve multiple processes waiting for the same
process to return a response.

The first scenario occurs when multiple processes synchronize at an operation such
as a barrier. If scheduling is uncoordinated, then some of the processes arrive at the barrier
earlier than others; these early processes eventually sleep. When the last process reaches the
synchronization point, all participating processes are notified. These notification messages
are sent nearly simultaneously and thus received nearly simultaneously by the participating
processes. When this response arrives, each process is woken and placed on the ready
queue; each process is then scheduled, if it is fair to do so (which is a function of the local
scheduler and the other local competing processes). Thus, programs containing frequent
synchronization operations are likely to dynamically coordinate themselves.

The second scenario occurs when, over time, multiple processes send requests to
a destination process that is not scheduled; since the process is not scheduled, the requests
are temporarily buffered. FEach requesting processes eventually sleep. When the critical
process is scheduled, it will handle each of its buffered messages and send back responses.
The requesting processes are then likely to receive the responses, to be woken, and to be
scheduled in quick succession (once again, if fair to do so). Thus, programs in which all
processes are dependent upon the same set of processes are also likely to become dynamically
coordinated.

Request Arrival

With the implicit information conveyed by the response time for requests, each
process optimizes its local performance. However, for the best performance for the job
as a whole, processes must not only optimize their local performance, but also that of
cooperating processes. The second event, the receipt of a request from a remote node,
provides implicit information about the scheduling requirements of cooperating processes.

We described previously that processes that have chosen to sleep while waiting
for a message response should be returned to the ready queue when the response arrives.

'This scenario is more likely to occur if the network latency, L, is large relative to the time-slices, Q, used
by the local schedulers; in current systems, the time-slices (between 20ms and 200ms) dominate message
latencies (near 10us), so this is expected to occur infrequently.

45

However, it is also the case that these processes should be returned to the ready queue when
any request message arrives. In general, it is beneficial for a process to be scheduled if it is
handling incoming requests and enabling other cooperating processes to make progress.

The correct action of a process when a request arrives depends upon the current
state of the process. If the process is spin-waiting, then its spin-time is temporarily ex-
tended so that the process remains scheduled longer. We call this extension to two-phase
waiting, conditional two-phase waiting. Spinning longer keeps processes coordinated on the
expectation that more messages will arrive in the future. The desired amount of additional
spin-time is analyzed in more detail in Chapter 6.

If the process is sleeping when a request arrives, then it is woken, and placed on
the ready queue; when the process is scheduled, it will immediately handle the request, thus
improving the response time measured by the remote sender. The local process will then
also reset its spin time before sleeping again, with the expectation that the processes will
remain coordinated and more messages may arrive in the future.

The actions described above are taken regardless of whether the remote process
actually requires an immediate response to make forward progress. In fact, there are
numerous situations where a sending process can make forward progress without a re-
sponse [46, 95, 109]; for example, the request could be a one-way message storing data, or
the first segment of bulk transfer, or a notification that this process has reached a barrier
before other processes have done so. However, when a request message arrives, there is no
way for the local process to know whether it must send back a response without first being
scheduled and inspecting the message.

46

Chapter 5

Local Scheduler

Implicit coscheduling requires a local scheduler with a cost-model against which
user processes can optimize. In this chapter, we describe the needed functionality in the
local operating system scheduler running on each node of the cluster. We also describe
the strengths and weakness of two types of schedulers. The first type, based on multilevel
feedback queues, is often used in practice. The strength of these popular schedulers is that
they provide a compromise between several metrics: quick response time for interactive jobs,
high throughput for compute-intensive jobs, and fair allocations for all jobs. The second
type, a proportional-share scheduler, is more popular in the research community than in
practice. The strength of proportional-share schedulers is their ability to precisely control
the amount of resources allocated to each process. It is for these schedulers that we describe
simple extensions that meet the needs of implicit coscheduling.

5.1 Requirements

For implicit coscheduling to guarantee forward progress, ensure efficient utilization,
and provide fair allocation across different jobs and users, the operating system scheduler
must have the following three properties:

e Preemption. To guarantee that the set of communicating processes can all make
forward progress, it may be necessary to preempt a running process and dispatch a
competing process; a round-robin scheduler guarantees that processes will not dead-
lock. Performance may be improved if a running process can also be preempted by a
competing process with more urgent work to perform (e.g., handling a message).

¢ Amortized Context-Switches. The duration of a time-slice should be long relative
to the cost of a context-switch to amortize the cost of obtaining coordination.

e Fair Cost-Model. The local scheduler should export a well-defined cost-model so
that processes use the CPU only when it is beneficial. Further, with a well-defined
cost model, higher-level policies can be built that provide fair allocations to competing
users across the cluster.

47

These three qualities of the local scheduler are desirable not only for communi-
cating processes within implicit coscheduling, but also for general-purpose workloads on a
single machine. For example, preemptable schedulers improve the response time of interac-
tive processes. Minimizing context-switch costs is a consideration in sequential operating
systems as well. Finally, interactive processes waiting for user input or 1/O-intensive jobs
waiting for disk requests are often compensated for the time they do not use the CPU. We
now discuss these three requirements in more detail for implicit coscheduling.

5.1.1 Preemption

In certain circumstances, the local operating system scheduler must preempt the
currently scheduled process for both correctness and improved performance. To see why
preemption is required for correctness, consider the following simple scenario. There are
two competing jobs, A and B, each containing two processes; the processes are allocated
such that processes A; and Bj are placed on workstation 1 and processes A, and By are
on workstation 2. We assume that for a job to complete, each of its processes must have
completed, and that neither process voluntarily relinquishes the processor. If the processes
arrive at the workstations such that process Ay is scheduled first on workstation 1 and
process B is scheduled first on workstation 2, then the system is in a deadlock if neither
process can be preempted. The only way to break this deadlock is either for workstation 1
to schedule process B or for workstation 2 to schedule process A;. A preemptable scheduler
that eventually schedules each of its runnable processes (such as a round-robin scheduler)
guarantees that all jobs make forward progress, regardless of their interdependencies.

Preemption at one key moment can significantly improve the performance of im-
plicit coscheduling: when a process becomes runnable due to a message arrival. There
are two reasons for this meritorious effect. First, if the arriving message is a request that
requires a response, then prompt scheduling reduces the waiting time of the requesting re-
mote process. Second, if multiple processes are receiving messages from the same sending
process, then prompt scheduling increases the likelihood that dynamic coordination will be
achieved across all processes.

5.1.2 Amortized Context-Switches

A process must pay the cost of a context-switch every time that it is scheduled;
therefore, preemptions should not occur too rapidly. The implication is that the default
time-slice of the scheduler should be large relative to the context-switch cost. This is signifi-
cantly more critical within implicit coscheduling than in sequential systems; communicating
processes lose coordination whenever a time-slice expires and regaining this coordination
typically incurs multiple context-switches on all workstations. In practice, we have found
that a default time-slice of 100ms is sufficient to amortize a 200us context-switch.

However, when a message arrives for an unscheduled process, the time-slice may
be terminated prematurely. To ensure that message arrivals cannot incur an unbounded
number of context-switches, the scheduler should only preempt the running process in favor
of a newly runnable process when it is “fair” to do so; otherwise, the scheduler should wait
for the current time-slice to expire.

48

5.1.3 Fair Cost-Model

To increase the utilization of the system, the scheduler should dispatch those
processes that are able to use the CPU most effectively; i.e., it should not select processes
that are idly spin-waiting or frequently context-switching. This goal can be accomplished if
the scheduler exports a well-defined cost-model to user processes. One such model is that
all processes are given the same proportion of the CPU averaged over some time interval,
regardless of how they utilize the CPU; e.g., whether they use the CPU to spin-wait, to
context-switch, or to perform useful computation. We refer to this cost-model as fair.

Given this cost-model, each process can determine for itself when it is beneficial
to run. If each process is guaranteed the same amount of the CPU regardless of when
it executes and if each process has a constant amount of work independent of when it is
scheduled, then each process can minimize its execution time by running in two specific
cases. First, the process should run when it has useful local computation to perform and
thus is making forward progress. Second, under certain conditions, the process should run
when it is idly waiting for a remote event to complete: if the time the process wastes by
running and spin-waiting is less than the time the entire job wastes if the process blocks,
then it should continue to hold onto the processor.

A process notifies the local scheduler that it is beneficial to be scheduled by re-
maining runnable and spin-waiting; it notifies the scheduler that it is not beneficial to be
scheduled by blocking. The manner in which each process calculates when it should spin-
wait versus block is encoded in the conditional two-phase waiting algorithm and described
in Chapter 6. We now discuss the extent to which these qualities are present in existing
schedulers.

5.2 Multilevel Feedback Queue Schedulers

The objective of a multilevel feedback queue scheduler is to fairly and efficiently
schedule a mix of processes with a variety of execution characteristics. The queues in
the system are ranked according to priority. By controlling how a process moves between
queues, the scheduler can treat processes with different characteristics appropriately. Pro-
cesses waiting in higher priority queues are always scheduled over those in lower priority
queues; processes at the same priority are usually scheduled in a round-robin fashion. These
schedulers are also called dynamic priority-based schedulers.

In this section, we discuss the extent to which a prototypical priority-based sched-
uler, the Solaris Time-Sharing scheduler, meets the three requirements of implicit coschedul-
ing. We will see that while this scheduler is preemptable, it does not always amortize the
cost of context-switch over a sufficiently long time-slice and does not provide a precise
cost-model.

5.2.1 Overview of Solaris Time-Sharing Scheduler

The Time-Sharing (TS) scheduler in Solaris [51] is based on Unix System V Release
4 [67]. In the TS scheduler, the priority of a process is lowered after it consumes its time-slice;
its priority is raised if it has not consumed its time-slice before a starvation interval expires.

49

Thus, compute-bound jobs filter down to the lower priorities, where they are scheduled
less frequently (but for longer time-slices.) Alternatively, interactive jobs propagate to the
higher priorities where they are scheduled whenever they have work to perform, on the
assumption that they will soon relinquish the processor again.

The durations of the time-slices, the changes in priorities, and the starvation in-
terval are specified in a user-tunable dispatch table. In the default dispatch table, shown
in Table 5.1, the priority of jobs ranges from a high of 59 down to 0. In Solaris 2.6, time-
slices begin at 20ms at the highest priority and gradually increase to 200ms at the lowest
priorities. Generally, the priority of a process decreases by 10 levels after it consumes its
time-slice; the priority of a process is increased to 50 or above if the process sleeps for a
specified interval or is marked as starving. However, due to the configuration of the So-
laris 2.6 default dispatch table (i.e., the starvation interval is set to zero), the priority of
every process is raised once a second, regardless of whether it is actually starving.

5.2.2 Preemption

In general, multi-level feedback queue schedulers preempt processes in two circum-
stances. First, a process is preempted whenever its time-slice expires. Second, a process is
preempted if a higher-priority process exists, which occurs in two circumstances: either the
priority of a runnable process is raised above that of the currently scheduled process or a
higher priority process wakes and transition to the runnable state. As expected, the Solaris
time-sharing scheduler is preemptable under these circumstances, as desired.

5.2.3 Amortized Context-Switches

Since time-slices in the Solaris TS scheduler vary from) = 20ms at the high pri-
orities to () = 200ms at the low priorities, the more time a process spends at high priorities,
the shorter its time-slice and the more time it wastes achieving coordination. The average
time-slice given to a process depends not only on its own computation characteristics, but
also on the number of competing jobs in the system. Because the priority of very process is
raised once a second and lowered only when the process completes a time-slice, a process in
competition with more processes will complete fewer time-slices in the one second interval.
Therefore, with more jobs in the system, processes spend more time executing at high pri-
orities and receive shorter time-slices. Our experiments will show that the short time-slices
at high priorities negatively impact the performance of implicit coscheduling when there
are many competing jobs.

5.2.4 Fair Cost-Model

In general, multi-level feedback queue schedulers do not export a precise cost-
model to user-level processes. Thus, a process may receive more or less of the CPU over a
time interval depending upon how frequently the process blocks. Multi-level feedback queue
schedulers tend to provide a coarse level of fairness across jobs with different computation
characteristics. However, because these schedulers attempt to compromise between several

Current | Time-Slice Expire Sleep Starve Starve
Priority Q Priority | Priority | Priority | Interval
Level (ms) (s)

0 200 0 50 50 0

9 200 0 50 50 0

10 160 0 51 51 0

19 160 9 51 51 0

20 120 10 52 52 0

29 120 19 52 52 0

30 S0 20 53 53 0

34 S0 24 53 53 0

35 S0 25 54 54 0

39 S0 29 54 54 0

40 40 30 55 55 0

44 40 34 55 55 0

45 40 35 56 56 0

46 40 36 57 57 0

47 40 37 5% 5% 0

48 40 38 5% 5% 0

49 40 39 5% 59 0

50 40 40 5% 59 0

51 40 41 5% 59 0

5% 40 48 5% 59 0

59 20 49 59 59 32000

50

Table 5.1: Solaris 2.6 Time-Sharing Default Dispatch Table. Priorities in this class
range from a low of 0 to a high of 59. The time-slice is the length of time a process at this
priority level will be scheduled (assuming that the process does not voluntarily relinquish the

processor or that a higher-priority process does not preempt it). After a process consumes
its time-slice, its priority is degraded to that designated in the third column.

The fourth

and fifth columns show the priority the process is given if the process is sleeping or does
not consume its time-slice when the starvation interval expires, as designated in the final

column.

51

Priority of 3 Competing Jobs over Time: Default Scheduler Fairness with Default Time-sharing Scheduler
25 4
60 Coarse: 1 sec —
Medium: 10 ms ------
Fine: 100 us o
2 204 Coarse: 1 sec —
8 Medium: 10 ms - & o
. 8 Fine: 100 us ey Q&\},,v o
2 WS
5 g 159 €
. 2
5
s E 104
& k<
3
£
3
3 51
<
T T T T 0 T T T T T T
25 26 27 28 0 10 20 30 40 50 60
Elapsed Time (seconds) Elapsed Time (seconds)

(2) (b)

Figure 5.1: Measured Fairness with Solaris Time-Sharing Scheduler. Three bulk-
synchronous jobs communicating with the NEWS' pattern and no load-imbalance are time-
shared on 16 workstations. To capture this data, we ran the three parallel jobs with implicit
coscheduling in our system, while recording all changes to the priority of each process on a
single workstation.

desirable metrics (e.g., response time for interactive jobs and throughput for compute-
intensive jobs), they do not compensate jobs that voluntarily relinquish the processor in a
precise manner.

The Solaris time-sharing scheduler approximates fair allocations by decreasing
the priority of a job the more that it is scheduled. Therefore, a job that is runnable
relatively infrequently remains at a higher priority and is scheduled over lower priority jobs.
However, because the allocation history of each process is erased every second, compute-
bound processes tend to acquire more than their fair share of the resources. The implication
for implicit coscheduling is that processes that communicate frequently (and thus block
frequently) are given less of the CPU than processes that rarely communicate.

This behavior is illustrated in Figure 5.1.a for three competing parallel jobs that
communicate at different rates. The figure shows a snapshot over a five second execution
interval. As a job executes and consumes its time-slice, its priority is lowered ten levels.
Note that the priority of the coarse-grain job drops more quickly since it consumes its time-
slices more rapidly. However, every second the priority of all three jobs is reset to level 50
or higher. The impact of this scheduling policy on the relative execution times of the three
applications is shown in Figure 5.1.b: because the coarse-grain application acquires more
CPU time, it finishes its work earlier than the other applications, even though all three jobs
require the same amount of time in a dedicated environment.

Finally, priority-based schedulers are not good building blocks for providing a fair
allocation of the shared resources in the cluster across competing users. Numerous studies
have shown that these schedulers are difficult to tune and to understand [131]. Since the
scheduler makes decisions with no notion of which processes belong to which users, users
running more processes naturally receive more resources. Although higher level policies
have been built on top of priority-based schedulers to allocate resources fairly [72, 74, 87],

52

Job A: 100 Tickets Job B: 200 Tickets Job C: 300 Tickets
Stride: 6 Stride: 3 Stride; 2

Time —
A|B B A | B B A|B B

Passs 6 3 2 4 6 6 12 9 8 10 12 12 18 15 14 16 18 18

Figure 5.2: Basic Stride Scheduling. Three jobs (A, B, and C) with different ticket
allocations are running on a single workstation. Fach job has a stride and a pass associ-
ated with it. The stride of a job is inversely proportional to the number of tickets in the
job. At each scheduling interval, the job with the minimum pass is scheduled and its pass
is incremented by its stride.

these fair-share schedulers remain difficult to tune and provide fairness only over relatively
long intervals.

5.3 Proportional-Share Schedulers

The idea behind a proportional-share scheduleris to allocate resources to processes
in proportion to their relative number of shares [60, 69, 83, 155, 158, 170]. Such schedulers
are useful for processes that require a fixed allocation of resources, such as multimedia ap-
plications. We focus on stride scheduling [168, 171] because it is easy to understand and
implement, has been well described and analyzed in the literature, and supports modular
resource management. We begin by the describing the basic system as introduced and
developed by Waldspurger and discussing the degree to which it fulfills the needs of im-
plicit coscheduling. Then, the bulk of this section presents our extensions to provide fair
allocations to processes that relinquish the CPU and fair allocations across the cluster.

5.3.1 Overview of Stride Schedulers

Stride scheduling is a deterministic allocation algorithm that encapsulates resource
rights with tickets. Like lottery scheduling [170], resources are allocated to competing clients
in proportion to the number of tickets they hold. For example, if a client has t tickets in a
system with T" total tickets, the client receives t/T of the resources. A client may be either
a user or a process, depending upon the context.

In stride scheduling, each process has a time interval, or stride, inversely propor-
tional to its ticket allocation that determines how frequently it is scheduled. For example,
a process with twice the tickets of another, has half the stride and is allocated twice as
frequently. As shown in Figure 5.2, a pass associated with each process is incremented
by the stride of the process each time it is scheduled for a fixed time-slice; the process
with the minimum pass is selected each quantum. A global stride and global pass for
the workstation are also tracked; when a process enters the system (either after being first
started or after waking from an event), its pass is set equal to the global pass.

53

5.3.2 Preemption

Proportional-share schedulers preempt a process after its time-slice has expired
and dispatch another process. However, since these schedulers have not been targeted for
general-purpose workloads, they do not have a general notion for preempting a process after
an event completes (e.g., a message arrival). Fortunately, modifying a stride scheduler to
switch to a process that has just woken is not difficult: the new process is scheduled if
its pass is lower than the pass of the currently scheduled process.! It also requires small
modifications to ensure that the preempted process is only charged for the amount of the
time-slice that it was able to consume.

5.3.3 Amortized Context-Switches

Due to the constant-length time-slices in stride-scheduling, it is trivial to select
a time-slice duration, (), to amortize the costs of obtaining coordination and context-
switching. In our simulations and implementation, we use a time-slice of () = 100ms.

5.3.4 Fair Cost-Model

While proportional-share schedulers do provide a very precise cost-model, they do
not provide a fair model guaranteeing that each process receives its share regardless of its
computational characteristics. The definition of proportional-share scheduling states that
only clients actively competing for resources receive resources in proportion to their shares.
When a process sleeps on an event, it no longer competes for resources and receives no
portion of the processor. When the process wakes, allocations are performed as if the process
never went to sleep and the process is given no additional resources in compensation for the
time that it was sleeping. Thus, with a proportional-share scheduler, processes are given no
incentive to relinquish the processor. Although the need for interactive jobs to receive time-
averaged fairness rather than instantaneous fairness was observed by Waldspurger in [172],
no proposal was presented for allowing temporarily inactive processes to catch up to their
desired allocation.

To ensure that jobs that voluntarily relinquish the processor receive their proportional-
share of resources, the basic stride scheduler must be extended to fairly allocate resources
over a longer time interval. We describe two extensions that compensate processes for the
time that they voluntarily relinquish the CPU. Both policies build upon ezhaustible tickets,
proposed by Waldspurger [172]; exhaustible tickets are tickets with an expiration time. In
general, the number of exhaustible tickets and the expiration time are chosen such that the
process has caught up to its desired proportional-share of resources when the exhaustible
tickets expire.

In our first approach, system credit, processes are given exhaustible tickets from
the system when they awake; this leads to a simple implementation, but processes relinquish
control over their precise allocation. In our second approach, loan & borrow, exhaustible

! As when a process exits the system before consuming its entire time-slice, this change implies that the
amount of time allocated to a process must be precisely tracked and that its pass value is incremented
accordingly.

54

C Sleeps C wakes Tickets Expire

Tickets: 100 100 100{100 100 100 100 100 100|300 100 100 300 300 300{100 100 100

sysem Credit: |A|B|c|a]s|a|s]|AlB|c|AalB|c|c|c|a]B]C]

Figure 5.3: Stride-Scheduling with System Credit Extension. Three jobs with equal
ticket allocations are competing for resources. Jobs A and B are compute-intensive and
do not relinquish the processor; job C' is an interactive job. Job C temporarily exits the
system, and sleeps for an interval S; in the time-interval C, job C catches up for the time
it missed. All jobs receive their proportional-share of 6 allocations over the entire interval
of 18 time-units

tickets are traded among competing clients; by keeping the number of tickets in the system
constant, precise service rates can be guaranteed to clients.

System Credit

The idea behind the system credit policy is that after a process sleeps and awakens,
the operating system scheduler calculates the number of exhaustible tickets for the process
to receive its proportional share over some longer interval.? This policy is easy to imple-
ment and does not add significant overhead to the scheduler on sleep and wakeup events.
Figure 5.3 shows an example.

Consider a workload with three competing jobs, A, B, and C', each with an equal
number of tickets, ¢, backed by independent currencies. In the beginning, each job is active
and therefore receives 1/3 of the CPU. When job (' sleeps for an interval S, jobs A and B
are temporarily given ¢/(T" —t) (i.e., 1/2) of the resources instead of t/T (i.e., 1/3). When
job €' awakens, we pick some number of exhaustible tickets, e, and an expiration interval,
C', such that over the interval S+, job C' receives its desired proportion of resources, t/T.
Obviously, it is also required that jobs A and B receive their proportion of resources over
this same S 4+ ' interval.

The implementation of the system credit approach is simple. When a process goes
to sleep, the current time is recorded and the total number of tickets in the system is
updated. When the process awakens, the time that it was asleep, 9, is calculated. For a
job to receive t/T - (S 4 C') units of service over the interval C', the job must have (¢4 ¢) of
the (T'+ e) tickets in the system, where the number of exhaustible tickets e is as follows:

(S+C)- % t+e

C - T+e

?Processes exiting the system for multiple time quanta are distinct from processes relinquishing the
processor before the end of their quantum. In basic stride scheduling, processes consuming only a fraction
of their quantum are charged for only the amount they used; they receive their full proportional share if and
only if they are active again at the time of their next allocation.

55

B 1T oy St
C T cor—(s+on! Tt

We now must choose a compensation period, C', over which to allocate the e
exhaustible tickets. A number of different constraints exist. First, if C' is longer than the
remaining execution time of the process, the job will not acquire its share of resources before
it terminates. Second, if the process continues to alternate between run and sleep intervals,
then C should be less than the average run time — otherwise the process will not be able to
use its exhaustible tickets at the same rate it accumulates them. More formally, a process
cannot receive its proportional-share if the ratio of its sleep time to its run time exceeds
the ratio of the number of competing tickets to its number of tickets, ¢.

S _ T-t

R i

Our current approach chooses C so as to simplify the calculation for the number
of exhaustible tickets. There are three possible cases, depending upon the relative value of
the number of client tickets, ¢, and system tickets T'. In the simplest case, when 2t < T, we
choose C' = 5, and simplify the equation for the number of exhaustible tickets as follows.

tr
e = T_Qt,lfC—S

When 2t > T and t # T, we select C' and e as follows.

_ ST+
¢ = ﬁ,t;&T
e =

Finally, when ¢t = T, the sleeping process is the only process in the system, in which case is
impossible for the process to receive its full share of resources and the process is not given
any exhaustible tickets.

If a process relinquishes the processor while it still has exhaustible tickets, the
ticket count along with the remaining interval before they expire are recorded. When the
process later receives additional exhaustible tickets, the two sets must be combined, which
requires that each has the same expiration interval. If the expiration interval of a set of
exhaustible tickets, ey, is modified from one expiration interval, C7, to a new interval, C,
the number of exhaustible tickets, e;, must also be changed.

€1 €2

Tra 7 i @
T'e1Cy
e pu—
2 TCy+ e1(Ca — C)
0 ~ 61017 if 7" =T and ¢, (Cy — C1) < TCy

56

C Sleeps C wakes Tickets Expire

- S——a—— C—»
Tickets: 100 100 100]100 200 200 100 200 200]100 200 200 100 200 200|100 100 100

L oan and Borrow: B|C A B|BB|B A C|CC|C A B|C‘

Figure 5.4: Stride-Scheduling with Loan & Borrow Extension. Three jobs with equal
ticket allocations are competing for resources. Job A desires a constant service rate, job B
is compute-intensive and willing to borrow tickets, and job C is an interactive job. Job C
temporarily exils the system, and sleeps for an interval S; in the time-interval C, job C
catches up for the time it missed. All jobs receive their proportional-share of 6 allocations
over the entire interval of 18 time-units; however, only this policy also supports jobs with
precise allocation requirements; job A is always scheduled at least 1 out of every 3 time units
regardless of the activity of other jobs.

In our implementation, we assume that the number of system tickets at the current
time, T”, is equal to the number of system tickets in the past, T, and that e; (Co—C}) < TCs.

An unstated assumption of the system credit extension is that there is only one
process sleeping and obtaining credit at a time. The problem when multiple processes re-
enter the system is that each process calculates its exhaustible tickets independently of the
simultaneous (or later) calculations of competing processes. Since processes do not account
for the increase in T due to other processes also introducing exhaustible tickets, jobs may ac-
quire too little of the resources. Correcting for these errors stretches the system credit policy
beyond its function as an algorithm that is simple to implement with little overhead. Thus,
this extension performs most accurately when few processes are simultaneously leaving and
joining the system.

Load & Borrow

In our second policy, loan & borrow, when a process temporarily exits the system,
other processes can borrow these otherwise inactive tickets. The borrowed tickets have an
unknown expiration time (i.e., when the process rejoins the system). When the sleeping
process wakes after S time units, it stops loaning tickets and is paid back in exhaustible
tickets by the borrowing processes. In general, the lifetime of the exhaustible tickets, C',
is equal to the length the original tickets were borrowed, .S. The newly awakened process
has positive exhaustible tickets in this interval, C', while the borrowing process has negative
exhaustible tickets. An example is presented in Figure 5.4.

The advantage of the loan & borrow approach relative to the system credit approach
is that the total number of tickets in the system is kept constant over time; thus, clients
can accurately determine the amount of resources they receive. For example, applications
that desire a constant service rate or interactive processes that want their full share when
active, may decline to borrow tickets. On the other hand, a compute-bound process which is
concerned only with throughput can choose to borrow all available tickets. The disadvantage

57

Independent Stride-Schedulers
Workstation 1 Workstation 2 Workstation 3 Workstation 4

A

A A 500 Rckets 500 ATickets

1000 Tickets |1000 Ticketp
i i 500 Tickets 500 Tickets

B D
500 Tickets C 500 Tickets E

B. 1000 Tickets D 1000 Tickets
500 Ticketg 500 Ticketg

User A Allocation: 4 * 1000/2000 = 2

Figure 5.5: Fairness in Cluster with Independent Stride Schedulers. With inde-
pendent proportional-share schedulers, users do not necessarily receive their expected share.
In this example, users A, B, C, D, and F each have 1000 tickets in the base currency; in
a cluster of four machines, each user should receive }/5 of the time on one workstation.
With the current placement of two users per workstation, if each scheduler independently
calculates tickets then each user receives half of a workstation. Therefore, user A receives
more resources by running on all of the workstations.

of loan & borrowis that the implementation introduces an excessive amount of computation
into the scheduler on every sleep and wake-up event.

When a process goes to sleep, it first saves its exhaustible tickets and expiration
date. Then, the process checks if there are active processes that are willing to borrow
exhaustible tickets; all active processes that have specified that they are willing are initially
placed on this list; processes are removed from the list when they sleep.? If a process is
unable to lend all of its tickets, the remaining tickets are temporarily dropped from the
system.

When the process awakens, it calculates the exhaustible tickets that it is owed
by each of the borrowers. The lending process may have exhaustible tickets saved from
a previous sleep/run cycle; therefore, the new and old tickets must be converted into one
collection with the same expiration date. Likewise, each borrower may have multiple sets
of exhaustible tickets that must be converted. Further, if a process goes to sleep while it is
borrowing tickets, the process must give back the borrowed tickets to the lender and record
the amount of time the tickets were used. Likewise, when a process wakes, it should check
if there are any sleeping processes who were unable to loan all of their tickets and borrow
from them accordingly.

5.3.5 Scheduling in the Cluster

Stride scheduling can provide an excellent building-block for higher-level policies.
Currencies allow clients to distribute tickets in a modular fashion [170]. By assigning one
currency per user, a proportional-share of resources on a workstation can be allocated to
each user; the user can in turn allocate a proportional-share of her resources to her processes.

®Processes also may not borrow as many exhaustible tickets as they have base tickets: otherwise, a process
could be left with negative tickets in the pay-back period.

58

Cooperating Stride-Schedulers
Workstation 1 Workstation 2 Workstation 3 Workstation 4

A | [A m| A Bl
B D
500 Ticketg C 500 Tickets E
B 1000 Tickets D 1000 Tickets
500 Tickets 500 Tickets

User A Allocation: 4 * 250/1250 = 4/5, as desired

Figure 5.6: Fairness in Cluster with Cooperating Stride Schedulers. If each
scheduler knows the number of tickets issued across the cluster, resources can be allocated
Sairly across users. If each scheduler knows that user A has 6 jobs, each with an equal number
of tickets, (or the total number of issued tickets), then the tickets can be appropriately
converted. As a result, user A receives 1/5 of the time on each of the four workstations, as
desired.

For example, if a user with 100 tickets in the base currency allocates 300 tickets in her user
currency to one job and 100 tickets in her user currency to another job, then the jobs have
75 and 25 tickets each, respectively, in the base currency. Different users can be allocated
different proportions of the CPU simply by issuing them different ticket amounts in the
base currency.

One might think that running a proportional-share scheduler on each workstation
in the cluster would give a proportional-share of the total resources to each user; however,
this is not sufficient for two reasons. First, each scheduler must know the number of tickets
that have been issued in each currency. Second, the number of base tickets allocated on
each machine must be equal.

Tracking Issued Tickets

If independent stride schedulers are run on every node, then the schedulers do not
know the total number of tickets issued in a user’s currency across the cluster and cannot
convert tickets in the user’s currency to the correct number in the base currency. Thus,
as shown in Figure 5.5, users running jobs on more workstations receive more of the total
resources. Fortunately, the solution is simple: each local scheduler should be periodically
informed of the number of tickets issued in each currency. With this information, each
scheduler can correctly calculate the base funding of each local job. The resulting allocations
are shown in Figure 5.6.

In our prototype, a parallel ticket server tracks the number of tickets issued by
each user across the cluster and informs each stride scheduler of the value of each currency.
The ticket server is a user-level, multi-threaded program run as root on every workstation.
Running the ticket server as a user-level program has a number of attractive features in the
presence of failures. First, if one of the nodes in the system crashes, the Active Message
layer simply returns messages directed to that node as undeliverable; the data stored on the

59

failed node can be then reconstructed.* Second, if the ticket server crashes, the behavior of
the stride schedulers degenerates to the case with no global information: jobs continue to
run, but clients are no longer guaranteed their proportional share of the shared cluster.

The parallel ticket server is implemented as a collection of local ticket server pro-
cesses located on each of the nodes in the cluster. The processes communicate with one
another using AM-II. To update and distribute the ticket counts of each client through-
out the cluster, each stride scheduler periodically contacts its local ticket server. When a
process enters or exits the scheduling class, the scheduler writes the user’s id and change
in allocated tickets, (uid, At), to a memory region that is shared with a pseudo-device
driver, SScomm. This driver shuttles information between the scheduler in the kernel and
the local user-level ticket server.

Since many processes are expected to be short-lived, unnecessary overhead is in-
curred if every process enter and exit causes the ticket server to recalculate and redistribute
the value of each currency. Therefore, the ticket server only periodically polls the SScomm
module to obtain the list of (uid, At) pairs. The drawback of only periodically updating
ticket counts is that users are not charged for tickets allocated to jobs which start and
complete within one of these intervals; thus, a user may cheat the system by running many
very short jobs. If this is found to cause fairness problems in practice, then the ticket server
must adjust for such past allocations.

The parallel ticket server communicates amongst itself to collect and update the
number of ticket issued in each currency across workstations. Each user that has ever run
a job in the cluster has a home node (calculated with a simple hash function on the uid),
which records the current number of allocated tickets. When the home node is updated,
the current ticket count is distributed to the local ticket servers and corresponding SScomm
modules across the cluster. Each SScomm module directly updates the data structures in
the local stride scheduler. Thus, when the stride scheduler allocates the next process, the
appropriate number of tickets in the base currency are used.

Balancing Tickets

Knowing the number of tickets issued in each currency is still not sufficient to
ensure that the correct share of resources is allocated to each client. After a job has been
placed, tickets compete only with other tickets on the same machine. The result is that
tickets on nodes with less competition are worth more than tickets on nodes with more
competition. This effect is very similar to that in load-balancing, where jobs on machines
with fewer competing jobs receive more processing time.

To guarantee that clients receive their proportional-share, not only must the system
track the number of tickets issued in each currency, but the number of tickets per machine
must also be balanced. It is simple to show that this condition is sufficient. Consider the
case where there are P machines and a total of T" base tickets, where user u has T, tickets.
If there are an equal number of tickets, 7, on each machine, then by definition T, = %. If
the T), tickets of user u are distributed across the nodes in the cluster such that T, , tickets
are on node p, then user u receives the desired allocation of P - %:

*The functionality to reconstruct data is not implemented in our prototype.

60

Fairness through Cooperating Stride-Schedulers

Cumulative CPU Time (seconds)

4 L
3 sers B, C,D,and E
2+ P -]
/""/‘/
b /*_,.»4"‘"""*
__»—*" Each of User A’s Four Jobs
el ‘ ‘ ‘
0 2 4 6 8 10 12

Real Time (seconds)

Figure 5.7: Measured Fairness with Ticket Server and Stride Scheduler. Five
competing users are running compute-bound sequential jobs on a cluster of four workstations.
User A is running one job on each of the four workstations, while the other users are running
only one job each. The parallel ticket server informs the stride scheduler running on each
workstation of the number of tickets user A has allocated across the cluster, so that user A
receives only 1/5 of each workstation, as desired.

Tu 1 Tu 2 Tu 3 Tu P Tu Tu Tu
1 1 1 . ? :_:_:P._
T, T, T, Y, T, T T T

Placing jobs to balance tickets is similar to placing jobs to balance load. For
example, processes may be placed in a fixed location once when they created, or they may
be migrated over their lifetime to improve performance. Likewise, ticket information can
be kept in a centralized location or may be distributed. We do not address these problems
in this dissertation, but leave them as future work. We now briefly discuss our approach to
informing each scheduler of the number of tickets issued to each user.

Performance

Figure 5.7 shows the results of running the ticket server with the SSC local sched-
uler in a very simple experiment. In the workload, five competing users are running collec-
tions of compute-bound jobs on a cluster of four workstations, where the number of tickets
per machine is balanced. As illustrated in Figures 5.5 and Figures 5.6, user A is running
jobs on all four workstations, while users B, C', D, and F are contained to a single worksta-
tion. With the parallel ticket server, each scheduler is notified of the number of tickets user
A has allocated throughout the cluster; as a result, user A only receives 1/5 of each of the
four workstations, while the other users receive 4/5 of one workstation. Thus, as desired,
each user receives their fair proportion of the shared resources, regardless of the number of
jobs the user runs.

61

5.4 Summary

In this chapter we have shown that the operating system scheduler running on
each workstation in the cluster must have three properties to efficiently support implicit
coscheduling. First, the scheduler must preempt processes both at the end of a time-slice
and also when a message arrives. Second, the default time-slice should be of a sufficient
duration to amortize the overhead of obtaining coordination across machines. Third, the
scheduler should provide a well-defined, fair cost-model to the user processes.

In our model, there is a strict separation of functionality between the processes and
the scheduler. This approach allows the local scheduler to optimize for its own performance
criteria (e.g., response-time or throughput). Due to this separation, the scheduler knows
nothing about parallel jobs or message arrivals.

Alternatively, the scheduler could be made more aware of events in user processes;
for example, a message arrival could automatically trigger the scheduling of the destination
process. This is the approach used in dynamic coscheduling [151], where a message arrival
increases the priority of a process if it is fair to do so. We do not believe that the local
scheduler should be given specific knowledge of communicating processes for the following
reasons.

e Fairness: Specific policies are required to ensure that processes that receive more
messages are not scheduled more frequently, thus receiving more than their fair share
of resources.

e Potential Thrashing: Multiple competing processes could be sending messages to
the same node, causing the scheduler to thrash between processes; specific policies are
required to ensure that this does not occur.

e Unnecessary Scheduling: In the case of one-way messages and bulk messages, it
may not be necessary for the destination process to be scheduled for the sending
process to make forward progress.

e Encapsulation Breaking: The local scheduler must be modified to understand
message arrivals.

In our approach, when a message arrives and the local process thinks it is benefi-
cial to be scheduled, it simply moves itself to the ready queue. However, a disadvantage of
this strategy is that a process may not always be scheduled immediately when an impor-
tant message arrives; instead, the local scheduler has complete responsibility for allocating
resources across competing processes. By keeping to this predefined interface, coordinated
scheduling can be achieved with almost any local scheduler. Thus, we believe that the
benefits of modularization outweigh the costs.

In practice, priority-based schedulers are often used for general-purpose workloads.
Unfortunately, the time-sharing scheduling within Solaris does not meet all of the require-
ments of implicit coscheduling. First, under high load, each process spends too much of its
execution time at high priorities, which have short time-slices. Second, the Solaris sched-
uler not provide a precise or fair cost-model to processes; therefore, jobs that frequently
relinquish the processor do not receive their fair share of resources.

62

Nevertheless, due to the popularity of priority-based schedulers, we show the per-
formance of implicit coscheduling with this scheduler for many of the experiments in this
dissertation. When the number of jobs is small and the scheduler is not required to enforce
fair allocation (i.e., when scheduling processes with the same communication characteris-
tics), the Solaris time-sharing scheduler provides respectable performance.

Proportional-share schedulers, such as a stride scheduler, are designed to allo-
cate resources to processes in proportion to their shares, or tickets. However, since these
schedulers have not been targeted to general-purpose workloads, they are generally neither
preemptable nor fair to jobs that frequently relinquish the processor. We have introduced
the system credit and the loan & borrow extensions which support time-averaged fairness
for jobs that relinquish the CPU. Due to its greater simplicity, we use the system credit
extension of stride-scheduling as our building-block in the remainder of this dissertation.

63

Chapter 6

Cost-Benefit Analysis of Waiting

In this chapter, we describe the cost-benefit analysis that each process performs
when waiting on a communication event. We show that communicating processes can
achieve coordinated scheduling by simply deciding to spin or to block when waiting for a
remote operation; the actions that minimize the costs to the parallel job also tend to lead
to coordinated scheduling.

To calculate the cost of spinning or blocking, each process applies its knowledge
of the current scheduling state of the cluster to the scheduler’s cost model. We begin by
showing that conditional two-phase waiting is a suitable mechanism for efficiently imple-
menting this analysis. We then derive the appropriate spin-times within the algorithm as a
function of system and application parameters.

6.1 Conditional Two-Phase Waiting

When a process is waiting for a communication or synchronization event to com-
plete, it must determine whether the benefit of spin-waiting and remaining scheduled meets
or exceed the cost of using the CPU. In general, the benefit of staying scheduled corresponds
directly to the extent to which the process is coordinated with the other processes in the
parallel job. Fortunately, the process can determine the extent to which it is coordinated
by observing two pieces of implicit information.

First, the waiting process can determine if it is coordinated with the other pro-
cesses participating in the current communication or synchronization operation (e.g., the
destination process in a request-response operation). This is accomplished by observing
how long the operation takes to complete; if the operation completes in the “expected”
time when all cooperating processes are scheduled, the process simply infers that the coop-
erating processes are running. Second, the waiting process can determine if it is coordinated
with the remaining processes in the job (e.g., all of the processes excluding the destination
of the request-response operation). This is accomplished by observing the incoming message
rate; if a message arrives from a sending process, the waiting process infers that the sender
is also running.

Conditional two-phase waiting, a generalization of two-phase waiting, allows the
process to leverage implicit information to dynamically calculate the cost of spinning versus

64

blocking. Unlike traditional two-phase waiting where the spin-time, S, is determined before
the process begins waiting, with conditional waiting the process may increase its spin-time
based on events that occur while the process is waiting. In our implementation, there
are two components of spin-time: baseline and conditional. The baseline mount, Spgse, is
the minimum time the process spins and is determined before the operation begins. The
conditional amount S¢,,4, is the additional spin-time based on spontaneous events.

These two components of spin-time correspond naturally to maintaining coordi-
nation with the two disjoint sets of processes in the parallel job. First, the baseline amount
allows the waiting process to maintain coordination with the processes participating in the
current operation; this amount is set to the expected time of the operation. Second, the
conditional amount enables the waiting process to maintain coordination with the other
processes in the job; this amount is set such that cost of spin-waiting between message
arrivals is less than the cost of blocking and losing coordination.

In many systems, two-phase waiting is viewed as a compromise between immediate-
blocking and spin-waiting; for a given operation, either immediate-blocking or spin-waiting
is optimal, depending on the waiting time, and two-phase waiting simply bounds the worst-
case performance. In implicit coscheduling, conditional two-phase waiting may actually be
superior to both immediate-blocking and spin-waiting. When a process is waiting, the cost
of spinning versus blocking depends upon the dynamic rate of arriving messages. The best
performance may be achieved when the local process spin-waits initially, but then blocks
when the incoming message rate declines.

Note that conditional two-phase waiting differs from adaptive two-phase wait-
ing [86] in which the spin-time varies from operation to operation, but is predetermined
before the current operation begins. With conditional waiting, the process gathers infor-
mation while it is spinning that helps it to evaluate the state of the system and to more
accurately choose how long to spin for the current operation. Thus, given an oracle of this
dynamic information, one could replace conditional waiting with adaptive waiting.

In the remainder of this Chapter, we describe the following three factors of spin-
time:

1. Baseline Spin: At communication and synchronization operations, the sending pro-
cess waits long enough to remain coordinated with the other processes participating
in the operation, if already in such a state. This minimum waiting time is the baseline
spin.

2. Conditional Spin: If a process waits the baseline amount and determines that
the participating processes are not currently scheduled, it may still be beneficial to
remain scheduled. If the local process is handling requests from other processes, then
the cost of keeping this process scheduled may be less than the cost of relinquishes the
processor. Conditional spin is the interval in which the waiting process must receive
a message to justify keeping the process scheduled.

3. Large Waiting Times: In general, each process assumes that coordinated scheduling
is beneficial. However, a process should wait less than the baseline spin if it expects
that an individual communication operation will require a long time to complete, due

65

to high network latency or load-imbalance. In such cases, the process predicts that
the cost of idly waiting for this particular response is greater than the cost of losing
coordination.

6.2 Maintaining Coordination with Destinations

The amount of time a process must wait for a communication event to complete
depends upon whether the cooperating remote processes are also scheduled. When the
scheduling of processes is coordinated, waiting times are much lower than when scheduling
is uncoordinated. While the process cannot directly control when it is scheduled, it can
influence whether scheduling remains coordinated when it is already in such a state. Our
analysis of spin-time begins by assuming that coordinated scheduling across communicating
processes is beneficial; we examine the conditions under which this assumption is true in
Section 6.4.

Processes remain coordinated for future communication events by spinning an ap-
propriate amount of time at the current communication event. Processes stay coordinated
by spinning for the expected worst-case time the operation requires when all involved pro-
cesses are scheduled; this is the baseline spin amount, denoted Sp,s.. For each operation,
there are two circumstances in which cooperating processes are coordinated: in the first,
the processes are coordinated before the request message arrives; in the second, the re-
quest message triggers the scheduling of the remote process. The worst-case completion
time occurs when the request message triggers the scheduling of the remote process. If the
operation does not complete in this time, the local process infers that the processes are
not coordinated and blocks, thus bounding the amount of time the process wastes with
spinning.

SBase differs for each type of communication operation, and can be either modeled
or measured with a simple microbenchmark running in a dedicated environment. In this
section, we describe models of Sp,,. using LogP for our three types of operations: request-
response messages, one-way messages, and barriers.

6.2.1 Request-Response

We first evaluate the baseline spin amount, Sgase, for request-response messages.
To begin, we examine the amount of time that passes between when the sending process
initiates the request and when it receives the response, given that the receiving process is
scheduled throughout the operation. Asillustrated in Figure 6.1, the time for this operation,
Sgase, can be modeled very simply with LogP [40]. The local sending process first spends
time o in overhead injecting the request into the network. The request travels through the
network for L time units, at which point it arrives at the receiving node. Assuming that
there is no contention with other messages, the request is handled by the receiver after
another o time units. The receiver spends time o returning the response, which arrives L
units later at the initial sending node; the sender handles the response in o units.

Thus, Té%ched is the minimum time for a short request-response message to complete
if all participating processes are scheduled and attentive to the network.

66

Remote Nod{

T 0 Olo
50 0Ollo

L |Spin time is sho
due to immedia

L response
o 0
=
SSSSSS
0 o
Local Node SRRl |
Job A ssssss
PkecssscP
40 + 2L

Time

Figure 6.1: Time for Request-Response Message with Remote Process Sched-
uled. The diagram illustrates Tﬁhed, the amount of time a local process must wait for a
reply if the remote destination process is scheduled when the request message arrives. If the
remote destination process is already scheduled, then it immediately handles the request and
promptly returns the reply to the waiting process.

Remote Nodg

[eJNe]

Local Node

[=]

40+ 2L +W

Time

Figure 6.2: Time for Request-Response Message with Triggering of Remote
Process. The diagram illustrates TIBriggew the amount of time a local process must wait
for a reply if the request message triggers the scheduling of the remote destination process.
In this case, the local process must spin-wait the additional time, W, while waiting for the
remote process to be scheduled by its local operating system scheduler.

67

T, s = o+ L+20+L+o
2L 4+ 4o

However, it is often the case that the remote process is not scheduled before the
request arrives, but that the request message triggers it to be scheduled. This scenario
is illustrated in Figure 6.2. This case occurs under the following condition. If the remote
process is blocked waiting on a response from another process, then any arriving message will
wake the process and place it on the ready queue; the remote process will then be scheduled
by the local scheduler if it is fair to do so (or, if the processor was idle). Therefore, if the
request triggers the scheduling of the remote process, then the expected round-trip time,
Tﬁngger, is longer than if the process were already running by the amount of a context-
switch, W, on the remote node.

Tfigger = 20+ L+W420+L40
= 2L+ 40+ W

Sgase is the time that the local process should spin at request-response operations
to ensure that it remains scheduled if the remote process is also scheduled. To be precise,
Sgase does not include the overhead, 20, paid on the local processor to send the request
and to handle the response:

Sgase = maX(TSBchew Tﬁrigger) — 20
2L+ 20+ W.

6.2.2 One-Way Requests

A process sending a one-way request does not require a response from the desti-
nation process before it continues its computation. Subsequently, there is no response for

which the sending process must wait and no corresponding baseline spin time.!

6.2.3 All-to-all Synchronization

We now analyze the baseline time which processes must spin-wait at a barrier to
ensure processes remain coordinated, Sgase. We analyze a barrier as a representative all-
to-all synchronization operation without loss of generality. For a barrier to complete, not

'Note that even though the performance of the sending process may be oblivious to whether scheduling is
coordinated, the destination process may be sensitive. For example, if the destination process was blocked on
a request-response message, then incoming one-way requests will waken it and place it on the ready queue.
The destination process may then be scheduled at a cost of W to handle this message, even though it was not
immediately required. With coordinated scheduling, the destination process would not pay a context-switch
for incoming requests and might receive better performance. The impact of arriving messages is analyzed
in Section 6.3.

68

only must all involved processes be scheduled, but each process must also have completed
the work that preceded the barrier. We consider both the case where processes have been
coordinated since the last barrier and the case where the arrival of the last process triggers
the scheduling of the participating processes.

If processes have been coordinated since the last barrier, then the time for the
barrier to complete on process pe0..P — 1 is the sum of the time for a barrier with no load-
imbalance, Tghedv and the load-imbalance, v,, observed by process p. We describe how to
model Tghed in this section; we discuss approaches for approximating load-imbalance in
Section 6.4.2.

The time for the base barrier with no load-imbalance depends on how the barrier
is constructed. In our simulations and prototype implementation, each of the processes
participating in the barrier sends a message to a root process; we assume the root is process
p = P — 1 of the P participating processes. When the root has received P’ such messages,
it broadcasts a barrier-completion message back to the waiting processes. Rather than
communicating in a hierarchical tree structure, all processes communicate directly with the
root, so that one unscheduled process does not affect the completion of the descendent
processes in its subtree.

The time for TZ, _, is illustrated in Figure 6.3. Assuming each of the P processes
arrives at the barrier simultaneously, then each spends time o in overhead injecting a message
to the root process; these messages all arrive at the root process L time units later.? Due
to contention, the root requires time (P — 1) max(o, g) + o to handle the P messages.

After the root has determined that all P processes have reached the barrier, it
notifies each in turn. For a given process, the time for the barrier to complete depends upon
the rank of that process in the order in which processes are notified. From the perspective
of process p, time pmax(o, ¢) is required to notify the previous processes; then, another o
time units are required for its notification to be injected into the network, L units for the
notification to propagate through the network, and o units to handle the notification.?

T2,.4(p) = (o4 L+ (P —1)max(o,g) +0) + (pmax(o,9) + 0+ L + 0)
= 2L+40+(P— 1) -max(07g)+p.max(07g)

Next, we consider the case where the scheduling of all processes has not been
precisely coordinated since the previous barrier. In such a case, it is possible that the
completion of the barrier will trigger the scheduling of the participating processes, in which
case, the processes arriving late at the barrier should remain scheduled by spin-waiting. The
required spin-time depends upon the number of processes that arrive late at the barrier,
PLate-

Figure 6.4 depicts the scenario where all but one of the processes have reached
the barrier and sleep while waiting for notification. When the last Pr,. < P processes
reach the barrier, each spends time o injecting its message into the network; after L time

2The equation could be trivially modified to account for the fact that the root process either does not
have to send a message, or at least that its message does not need to travel through the network; handling
this message 1s likely to be overlapped with the latency of the other P — 1 messages.

? Again, the root process does not have to wait L time units for the notification message to arrive.

Phase one:
All send to root

Phase two:
Root sends to 3

O SSSSSSSY§SSSSSS|y
S S SSSSSS SSSSSS
L
bf°SSS5S5SS5S5535555S
$ SSSSSSSYSSSS
L L
L
Process ojSSSSSSS. ssol
SIS | Messages arrivefl_S
simultaneously,b
must be handled
L individually L
—~
S
of lolg 9j9 99 9|fjofg 9@ 9jg 9; o
0O ol ol o A nla ala Ao
— — | — — _
o+(P-1)max,g) | o+(P-1)maxp,9)

69

Root knows that All processes notifie
barrier is complete that barrier is complet

Figure 6.3: Time for All-to-all Synchronization with Processes Scheduled. The

N
>

Time

diagram shows Tghed, the time for a barrier with no load-imbalance to complete if all
participating processes are scheduled in a coordinated fashion. The diagram illustrates Tﬁhed
from the perspective of the last process to be notified that the barrier has completed.

70

Phase one: Phase two:
Late processs

send to root Root sends to a

0 SSSSSSS§SSSSSS|,
SLEL S 6§ 8§ 8§ SSSSSS

Plate Processes
L reach barrier lat

NIRIREEEEREREEERE EREE

Procesg

0 0
SESESESESESESESES SRS ESESES
L
Other process L
are asleep Y
| | v v w o
L
~
v S
v'www pp of[o ol alo ol
(al la Bl al ol ol

_,—Y\J ——
0+(Pige1)maxp,g) | o+(P-1)maxp,g)

Root knows that All processes notifie

barrier is complete that barrier is complet
A
>

Figure 6.4: Time for All-to-all Synchronization with Triggering of Root Process.
The diagram illustrates TIBriggew the amount of time the last process notified must wait if

Time

the root process was not scheduled when the last set of Pr.ie notification messages arrived.

71

units the messages arrive at the root process. In the worst-case, the root process has
already blocked, requiring a context-switch to schedule it, at a cost of W; after the root is
scheduled, it handles the Prq:;. message sequentially. All participating processes are then
notified as before. Thus, from the perspective of the Pr .. processes, the operation requires
time Tﬁ,igger as derived below.?

Tﬁ,igger(p) = o+ L+ W+ (Prae — 1) max(o,g) + o+ pmax(o,9)+ o+ L+ o
= 2L+404+W + (p+ Prate — 1) - max(o, g)

Although the number of late processes, Prq¢., is not known in practice, Tﬁ,igger(p)
can be bounded since Pr,:. must be less than P.

TR (p) < 2L4+404+ W+ (p+ P —2)-max(o,9)

Trigger

Sgase(p) is the time that process p should spin-wait at a barrier before relinquishing
the processor. As with request-response messages, the waiting process does not spin for the
overhead of sending the request and receiving the response on the local processor.

Sgase(p) = maX(TSBched(p)? TIBrigger(p)) — 20
= 2L 4204 (p+ P —1) -max(o,9)+ W

The implementation may be simplified by having each of the processes wait for
SE .. (p) as if it were the last process to be notified, that is S . (p= P — 1).

Sgase(P_l) = 2L+20+2(P—1)max(07g)+W

A process should always spin the baseline amount, Sgase, at a barrier. Whether
or not the process should also spin for the amount of load-imbalance, v, predicted for this
barrier, is discussed in Section 6.4.2.

6.2.4 Discussion

In general, when estimating the baseline spin amount for a given communication
operation, it is better for a process to err on the side of waiting too long. If a process under-
estimates baseline spin, the process will relinquish the processor on every communication

“The time for the barrier from the perspective of the P — Ppq¢e processes that arrived early is not relevant,
since they have voluntarily relinquished the processor.

72

operation and scheduling will become uncoordinated. For fine-grain applications, the per-
formance will be significantly worse than with coscheduling and spin-waiting, and slightly
worse than if the process had blocked immediately. Alternatively, if a process overestimates
baseline spin, the effects are not too detrimental since the higher spin time is only paid when
processes are not currently coordinated, which should be rare. This intuition is verified in
our simulation results, shown in Section 8.2.

6.3 Maintaining Coordination with Senders

After spinning Sgase for request-response messages, a process can conclude that
the destination process is not currently scheduled. After spinning SE_ .. for barriers, a
process can determine that the cooperating processes have not been entirely coordinated
since the last barrier. If a process is unable to make forward progress because it is waiting
on an unscheduled remote process, then it should usually be descheduled. However, if the
process is handling incoming messages, then keeping the process scheduled can benefit both
itself and the processes communicating with it.

When an incoming message arrives, the waiting process may be in either the first
or second phase of the two-phase waiting algorithm. If the process is blocked in the second
phase, then the process is made runnable and placed on the ready queue. Once the process
is scheduled and handles the request message, it may be worthwhile for the process to
remain scheduled by continuing to spin. At this point, the process should not restart its
two-phase algorithm by spinning the baseline amount, Sp,s, because the process is not
waiting to learn if processes are coordinated. Instead, whether in the first or second phase
of waiting, the process should conditionally spin as long as a benefit exists for the job as a
whole. A process can predict the benefit by monitoring the information implicitly available
from the incoming message rate.

In this section, we examine the interval, T4, in which a waiting process must
receive a message for conditional spinning to be beneficial. The local process may be waiting
on any type of communication operation. Though the type of the operation on which the
local process is waiting is inconsequential, the type of the arriving message is not. We
consider three different types of message arrivals: requests that require responses, one-way
requests, and notifications that a process has reached a synchronization point.

6.3.1 Incoming Request-Response

We begin by calculating the interval Tgond when the arriving message is a request
that requires a response. In our discussion, we consider a pair of processes. First, there
is the local process that has previously communicated with a remote process that is not
currently scheduled; the local process is performing two-phase waiting while its communi-
cation operation completes, but has exceeded the baseline spin amount. Second, there is a
remote process that is sending a request to the local process; the remote process must wait
until the response is returned before it can proceed. To evaluate Tgond we compare the cost
to both processes when the local process spin-waits for its own operation versus when the
local process blocks.

Remote Nod{

Local Node

Time

73

Ais spinning
waiting for som

message respo Ie

(o] o [o] o
=]
OSSSSSSO OSSSSSSO
OSSSSSSO OSSSSSSO
B SSSSsSs B SSSSss
L L
L L
(]
SOOSSSSSSSSSSSSSSOOSSS
SOOSSSSSSSSSSSSSSOOSSS
S F SSSSSSSSSSsSSSs SESESY
QOOQQQQQQQQQQQQQQOOQQQ

_/—Y\/

Figure 6.5: Cost of Incoming Request-Response Messages if Local Process Spin-
Waits. 1o help calculate Tgond, this figure illustrates the cost to the local (receiving) process
and the remote (sending) process when the local process spin-waits between message arrivals.

We assume a constant time t between message arrivals.

Figure 6.6:

Remote Nod{

Local Node

Time

2L+20+W
—

A spins waiting for
response, then relinquish|
the processor

\

Job A

o
o
o]
0

SR R R e
I SSSSSSSSsS
I SSSSSSSSs

Switch

P SSSSsSssSsss

Message from A
not handled becau
B is scheduled

L A awakens,
handles messad

SO} o

Cost of Incoming Request-Response Messages if Local Process
Blocks. 7o help calculate Tgond, the figure illustrates the cost to the pair of processes
when the local process blocks while waiting for message arrivals.

74

We begin with the case where the local process spin-waits on its own communica-
tion operation and remains scheduled, as shown in Figure 6.5. After the local process begins
spinning (whether in the first or second phase), a request arrives ¢ units later; thus, the
local process spins idly for time ¢ to handle this one message. The remote process spends o
injecting the request, waits 2L + 20 for the response to be returned, and spends another o
handling the response. The combined cost to the pair of processes when the local process
spins is thus 2L + 40+ t.

In the second case, shown in Figure 6.6, the local process blocks before the request
arrives. The remote process spends o sending, and then unsuccessfully spins Sppese =
2L + 20 + W before blocking. Later, the local process pays a cost of W to be woken and
scheduled on the message arrival, o to handle the request, and o to send the response.’
Finally, the original sender pays another W to be scheduled and o to handle the reply.
Thus, the total cost to the system when the local process blocks is 2L + 6o + 3W.

Assuming that message arrivals are evenly spaced in time, a local process should
continue spinning rather than block as long as the interval between messages is less than or

equal to Tgond' 6
Cost of Spinning = Cost of Blocking
2L+ 40+t = 2L + 60+ 3W
t = 3W + 20
= TE o= 3W + 20

6.3.2 Incoming One-way Requests

We next determine the interval, TCOond7 in which a one-way request must arrive

for the local process to remain scheduled. Since the sending remote process can proceed in
its computation without waiting for a response, its performance is identical regardless of
whether the local process is scheduled. Therefore, our analysis considers only the impact
on the local process.

Figure 6.7 shows the case where the local process is spinning when the one-way
request arrives. The local process spins idly for time ¢ to handle this one message. In

5We ignore the fact that the cost W may be amortized over several messages that are handled in the
same scheduling interval.

5This comparison assumes that paying a cost on one workstation is equivalent to paying that cost on
another workstation. For this to be true, neither process must form the critical path for the system. For
example, if the sending process on a remote machine determines the performance of the job as a whole, then
the local receiving process should always spin to minimize the waiting time on the remote sender. However,
if the local process is the critical component, then only its costs should be examined when determining
whether to spin or block.

Cost of Local Process Spinning = Cost of Local Process Blocking
t = 204+ W
= TcRondLocalCrztzcal = 2o+ W

Due to the difficulty of determining which process is along the critical path and because we believe this
inaccuracy is small for our workloads, we ignore this adjustment in our analysis. However, for client-server
applications where the performance of the server is likely to be the critical factor, these adjustments may
need to be taken into account.

75

A sends message
continues computin

/

50 0llo
50 0llo

\\ \\

A is spinning L L
waiting for som
message resporfle

Local Node

Time >

Figure 6.7: Cost of Incoming One-Way Requests if Local Process Spin-Waits.
To help calculate Tgond, this figure illustrates the cost to the local (receiving) process when
it spin-wails between message arrivals. We assume a constant time t between message
arrivals.

A sends message
continues computin

/

o
——
o
0
0

Message from A

not handled becau A awakens,
B is scheduled handles messag
Local Node

R }O

Time >

Figure 6.8: Cost of One-Way Requests if Local Process Blocks. To help calculate
Tgond, the figure illustrates the cost to the local process when it blocks while waiting for
INCOMING MESSAJES.

76

the second case, shown in Figure 6.8, the local process blocks before the one-way request
arrives. Since, the local process must still be scheduled to handle the one-way request, it
pays a cost of W to be scheduled on the message arrival and o to handle the request. Thus,
the cost to the local process when it blocks is o+ W.

Comparing these two costs, we see that one-way messages must arrive more fre-
quently than request-response messages to justify keeping the local process scheduled when
it is unable to make forward progress.

Cost of Spinning = Cost of Blocking
t = W+o
— Tgond = W —I_]

6.3.3 Incoming Synchronization Messages

In our implementation of a barrier operation, only the root process receives mes-
sages signifying that a cooperating process has reached the barrier. Since scheduling is not
coordinated, the synchronization operation will not complete in the amount of time the
sending process expects, regardless of whether the root process spins or blocks (unless this
is the P-th process to arrive at the barrier): in either case, the sending process spins the
baseline amount, Sgase, and then blocks. As with one-way messages, only the local process
(in this case, the root process) is affected by whether it spins or blocks.

Cost of Spinning = Cost of Blocking
t = W+o
= TCBond = w +o

6.3.4 Discussion

The preceding analysis assumes that a local process can predict whether a message
will arrive in an interval T¢o,,g to determine if it should spin or block. Because this is
not possible in practice, future arrival rates are instead predicted from behavior in the
recent past. Since message arrivals are expected to be bursty (or steadily decline as more
processes reach barriers and complete their communication phase), the average rate over a
relatively short interval should be used. For example, if a message has arrived in the last
Tcong interval, the process should spin for another interval Scong = Toond, continuing until
no messages are received in an interval. At the next two-phase wait, the process should
reevaluate the benefits of spinning longer based on the current arrival interval.

We note that the arrival of synchronization messages at the root process cannot
be used to predict the future arrival of such messages: each process can have only one
such message outstanding at a time, and since scheduling is uncoordinated, there is no
correlation with arrival times across different processes. This suggests that the arrival of
synchronization messages should be ignored when calculating whether a waiting process
should spin longer. However, to simplify the implementation, processes can choose to treat
all arriving messages identically (e.g., as request-response messages), with little negative
impact expected.

77

6.4 Optimizations for Long Waiting Times

The preceding analysis of spin-time assumed that it is always desirable to keep
processes coordinated while waiting for communication operations to complete. In general,
coordinated scheduling is beneficial when processes communicate frequently and wait only
a short time for communication to complete. However, it may not be advantageous for
processes to wait the entire time for an operation when the expected waiting time is large.

First, as wait time increases, so does the amount of time a process must spin idly
before concluding that scheduling is uncoordinated. Second, as waiting time increases, the
probability that time-slices will expire before the operation completes increases, thus de-
creasing the potential for keeping processes coordinated. Finally, at some point, the penalty
for idly spinning while waiting is higher than the penalty for losing scheduling coordination
across cooperating processes; at that point, a competing job’s useful computation should
be overlapped with the waiting time.

Waiting time within a communication operation has two components. The first
component of waiting time is dependent upon the system architecture, in particular, the la-
tency of the network. In systems with high network latency relative to context-switch cost,
local scheduling with immediate blocking is superior to coscheduling with spin-waiting re-
gardless of the characteristics of the application. Since processes know a priori that waiting
time will always be high, processes should assume that scheduling is always uncoordinated
and use immediate blocking rather than two-phase waiting.

The second component of waiting time depends upon the characteristics of the
application: the amount of load-imbalance at a synchronization point. Applications with
load-imbalance may benefit from sometimes allowing processes to be scheduled indepen-
dently. However, in such applications, some communication operations still benefit from
coordinated scheduling (such as short request-response operations); in these cases, we must
estimate the cost of uncoordinated scheduling on those communication events that occur
before coordination is regained.

6.4.1 Network Latency

In this section, we evaluate the regime of systems where network latency is high
enough that independent scheduling of processes with immediate blocking is superior to
coordinated scheduling. This coordinated scheduling can be achieved with either explicit
coscheduling and spin-waiting or implicit coscheduling with two-phase waiting. We first
examine the cost of a communication operation that incurs no additional waiting beyond the
base cost of the system: a simple request-response message. We then show that most current
clusters of workstations operate in the regime where coordinated scheduling is desired for
fine-grain applications.

Our calculation compares the time for the request-response message in two scenar-
ios: first, when all processes block immediately and are not coordinated, and second, when
all processes spin-wait and are coordinated. Figure 6.9 shows the cost to the system for the
simple request-response message when processes block immediately after sending a message.
In this scenario, the sending process spends time o in overhead injecting the message into
the network, after which it immediately relinquishes the processor and a competing process

78

A blocks immediatel
0/ (o]
Pls o w w R
2 ww P
ww

handied becat L
not handled becaug handles messag
B is scheduled \

v

Time

Figure 6.9: Cost with Network Latency when Processes are Uncoordinated and
Block. To help derive Lok, this figure illustrates the cost of a request-reply when processes
are scheduled independently and block immediately rather than spin-wait for communication
to complete.

is potentially scheduled. The request travels through the network for L time units, but
this time is not charged to any process in the system. When the request arrives at the
remote workstation, the destination process is unlikely to be scheduled. If this process is
blocked on a request of its own, then it will be woken and placed on the ready queue; at
some point it will be scheduled, and pay a cost of W for the context-switch.” Once the
destination process is running, it handles the request in o time units and sends back the
response in another o units. When the response arrives at the original sender L time units
later, this process must also pay W to be scheduled and o to handle the message. The total
cost to the two processes with independent scheduling is the time spent in overhead and
context-switching: 4o+ 2W.

Figure 6.10 shows the cost when processes spin and remain coordinated while
sending messages. As before, the sending process first spends time o in overhead injecting
the request into the network; however, rather than relinquish the processor at this point,
the process waits for the response by idly spinning. The request travels through the network
for L time units, at which point it arrives at the receiving node. Since the receiving process
is currently scheduled, it immediately handles the request and returns the response in a
total of 20 units; the response then arrives L units later at the initial sending node. Since
the sending process is also currently scheduled, it immediately handles the response at a
cost of 0. Under these circumstances, the total cost to the two processes is the time spent
in overhead touching messages, 40, plus the time the sending process spent spin-waiting,
2L + 20, for a total of 2L + 6o.

Comparing the two costs allows us to determine the range of systems for which
coordinated scheduling with spin-waiting should be used. When network latency, L, is
less than L. then coordinated scheduling should be used; when L exceeds Lpj.ck, then

"In the case where the destination process is receiving messages from multiple senders, it is possible for
the cost of W to be amortized over multiple requests.

79

2L + 20

[e] o]
e
S
b b
IS SSSSS
L
L
L_O
b
0 10
o

Time

Figure 6.10: Cost with Network Latency when Processes are Coordinated and
Spin-Wait. To help derive Lpjocr, this figure illustrates the cost of a request-reply for the
sending and receiving processes when processes are coordinated and spin while waiting for
communication to complete.

immediate blocking should be used. Lpj,ck, is calculated as follows.

Cost of Spinning = Cost of Blocking

2L +60 = 4o+ 2W

L = W—o

= Lpiock = W —o

6.4.2 Load-Imbalance

We now evaluate the amount of load-imbalance within an application for which
processes should not remain coordinated. This analysis differs from that for network latency
in two primary ways. First, the amount of load-imbalance must be predicted and can
subsequently be incorrect; therefore, processes must be conservative in their choice of spin-
time. Second, some communication operations (e.g., short request-response operations)
still benefit from coordinated scheduling; therefore, processes must also predict the cost of
uncoordinated scheduling on those events that transpire before coordination is regained.

VBiock denotes the amount of load-imbalance for which it is advantageous for a pro-
cess to block before the barrier completes rather than spin-wait for the expected completion
time of the barrier. To calculate Vp,.; we compare the cost of spin-waiting for the expected
completion time of a barrier with load-imbalance v, versus the cost of spin-waiting only
Sgase and then blocking.® Note that we do not compare to the cost of blocking-immediately
at the barrier; since our prediction of load-imbalance may be incorrect, processes always
spin-wait for at least the minimum amount, SE . , so that they remain coordinated when
there is actually only a small amount of load-imbalance.

We begin by considering the cost to the root process and a process p with a load-
imbalance v, when all processes are coordinated and spin-wait through the barrier. When

8Processes waiting at a barrier will always conditionally spin Scong if the incoming message rate supports
its, regardless of the relative values of v, and Vaiock.

80

process p arrives at the barrier, it spends o injecting the message into the network. The
barrier message reaches the root process after L time units.? After time V has passed,
all processes have sent messages to the root. The root process then notifies each of the
participating processes, spending time o on the notification for process p. Process p receives
the notification in pmax(o,¢g) + o + L time units and handles it in another o. Thus, the
total cost to the two processes is 40 + 2L 4 v, + pmax(o,g).

We next consider the cost to these two processes when processes are not coor-
dinated and process p does not wait until the barrier is completed. The arriving process
p spends o sending the message to the root and then spins Sgase waiting for a potential
response. If the root process has already blocked, then the root pays W to be woken and
o to handle this message. After all of the uncoordinated processes have arrived at the bar-
rier, the root spends o injecting the notification message for process p. When the message
arrives, the local process pays W + o to be woken and to handle the message. At this point,
the total cost to the system is 4o+ 2W + SE__ ..

However, when a process blocks prematurely, the scheduling of cooperating pro-
cesses becomes uncoordinated, which adversely impacts future communication operations
and their waiting times. Therefore, there is some additional penalty to losing coordination,
ClUneoor, Which must be included in the cost of blocking.

Cost of Spinning for Load-Imbalance = Cost of Spinning Minimum

40+ 2L + v, + pmax(o,g) = 40+ 2W + SBBase + Ctncoor

vp = CUncoor +3W 4+ 20+ (P — 1) - max(o, g)

= VBlock = CUncoor +3W +20+ (P — 1) - max(o, g)

To summarize, if the predicted load-imbalance, v, is less than Vpj,k, then the
process spins for the expected completion time of the barrier, Sgase + v,. For higher values
of load-imbalance, the process spins only Sgase before relinquishing the processor.

Penalty for Losing Coordination

To calculate the cost of losing coordination, Cpryeo0r, We determine the additional
overhead, K, that is incurred on every communication operation involving an unscheduled
process and the number of such operations, M, that are expected to occur before all pro-
cesses regain coordination. Qur estimations for both K and M are approximations of what
we have observed in practice.

We begin by considering the state of each of the P processes when the barrier
completes; each of these processes had previously voluntarily relinquished the processor.
When the barrier notification messages are sent to the participating processes, each of the
processes is woken and placed on its local ready queue. Whether each process is scheduled
depends upon whether it is fair to schedule the process and the characteristics of the local
scheduler; therefore, only some fraction, 1/f, of the P runnable processes are initially

scheduled.

?We do not include the overhead of handling any of the messages in the cost to the root process, since this

overhead may be overlapped with spin-waiting if the root is not on the critical path; v.e., if vygot=p,— > Po.

81

To simplify our discussion, we assume that once one of the P cooperating processes
is scheduled instead of its competing processes, it remains fair for it to be scheduled. This
is a reasonable assumption as long as the process makes little progress relative to the length
of a time-slice and as long as competing processes that have acquired less of the resources
do not later become runnable. We refer to this process that will be scheduled when it
is runnable as the active process on that workstation; the competing processes on that
workstation are said to be inactive. After being scheduled, each of the P/f cooperating
processes is, by definition, the active process on that workstation.

Each of the P/f processes sends messages to destination processes as long it re-
mains scheduled. Some of the messages are sent to scheduled processes and others to
non-scheduled processes, which may be inactive or active. We discuss these three cases in
turn.

In the first case, the request is sent to a scheduled process. Since the destination
process is scheduled, it promptly handles the request and returns the response. The sending
process remains scheduled while waiting for the response and continues communicating with
other processes. Thus, for this case, there is no additional overhead to losing coordination
at the previous barrier.

In the second case, the request is sent to one of initial P — P/f inactive processes.
Since the inactive destination process already received the barrier-completion message and
was not scheduled, it must not be fair to schedule that process and the new request will
not schedule it either. Thus, sending a request to an inactive process causes the sender to
relinquish the processor: the sending process spins for the baseline spin amount (i.e., an
extra W beyond the minimum round-trip time) and then voluntarily relinquishes the pro-
cessor (if incoming messages are not arriving at an interval less than S¢,.q). However, the
sending process remains the active process on that workstation and is scheduled promptly
again when it receives requests.

At some point in the future, it becomes fair to schedule the inactive destination
process; i.e., the destination process becomes active. The destination process handles the
original barrier-completion message and all waiting requests, sending back the appropriate
replies. When the reply arrives at the original requester, it is scheduled promptly at a
cost of W, and continues sending more messages. Therefore, the cost to the system for
each request sent to an inactive process is K = 2W, paid entirely by the sending process.
Meanwhile, the destination process is now active and scheduled and begins sending its own
requests.

In the final case, the request is sent to a non-scheduled, but active processes. Since
the active process will always be scheduled when it has work to do, the arriving message
wakes the active process and triggers its scheduling at a cost of W for the context-switch.
The sending process spin-waits the additional W units for the response to be returned and
remains scheduled. Thus, every message sent to an unscheduled, active process incurs an
extra K = 2W.

In summary, all processes eventually become active and scheduled; however, each
request-response message sent to an unscheduled process incurs a cost of K = 2W. The
total cost to the system for losing coordination depends upon how many messages are sent to
unscheduled processes before coordination is regained. With our assumptions, coordination

82

is regained when it becomes fair to schedule the last cooperating process in the job. Since
processes continue to communicate as long as they eventually receive responses, a process
may incur this cost of K per message until it sends a message to this last, critical, inactive
process.

The number of messages, M, that a process sends before sending to this critical
process clearly depends upon the communication pattern of the application. If the process
has some knowledge of its communication pattern, then it can bound the number of mes-
sages that may be sent to unscheduled processes and thus calculate the penalty of losing
coordination. However, estimating the behavior of many communication patterns is not
understood at this time. For example, in communication patterns with locality, some pro-
cesses may communicate exclusively with a subgroup of active processes and thus never
send to the inactive process and never block; these processes may then pay the additional
cost of K = 2W for every communication operation until the next barrier.

Therefore, given no knowledge of the communication pattern, we assume that
processes send messages to random destinations. In this case, as with any all-to-all pattern,
each process is expected to send M = % messages to active processes before sending to
the critical process. If we assume that none of the active processes are scheduled when the
message arrives, then the penalty a process is expected to pay for losing coordination is:

CUncoor = K-M
= 2w&
= W-P.

While this discussion made a number of simplifying assumptions, simulation results
in Section 8.4 show that it works reasonably well in practice for a variety of communication
patterns.

Predicting Load-Imbalance

The preceding analysis assumed that the load-imbalance, v,, was known for each
process p arriving at a barrier operation. While the actual amount of load-imbalance cannot
be known until after the barrier completes, a number of approaches exist for estimating
load-imbalance. For example, programmers could annotate the barriers in their application
with predictions for the expected load-imbalance per process. Alternatively, the application
could be executed once in a dedicated environment and each barrier could be automatically
annotated for future executions. However, automatically calculating load-imbalance for the
current run with no setup is clearly the best solution.

Our proposal for approximating load-imbalance at run-time is to measure past
waiting times at barriers and predict future load-imbalance from the distribution of sam-
ples. Depending upon the expected behavior of the application, each unique barrier in the
application can have its own history and predictions, or this information can be aggregated
over all barriers. Further, statistics and predictions can be made independently for each
process in the application, or as a collection. If the distribution of load-imbalances, v,,
differs for each process p, then the prediction for load-imbalance should be made indepen-
dently for each process. However, if the distribution of load-imbalance is similar for all

83

processes, then the root process can obtain a better estimation of V with fewer samples and
can reduce storage and computation costs.

The primary observation for our approach is that the root process of the barrier
can observe the arrival time of each process and calculate either each v, (or V) as the
difference in arrival time between process p (or the first process) and the last process. The
load-imbalance predicted for the next barrier can then be propagated to the other processes
as part of the barrier-completion message. With this approach, the root process can predict
a coherent set of load-imbalances for each process, such that either all processes block or all
processes spin. However, because processes are occasionally uncoordinated, the measured
load-imbalance may be higher than the inherent load-imbalance of the application; that is,
the load-imbalance measured in a dedicated environment. The correct method for adjusting
these waiting times depends upon whether the lack of coordination is transient or consistent.

A transient lack of coordination occurs as a natural side effect of implicit coschedul-
ing: when a time-slice expires on one node, communicating processes see a wave of unco-
ordinated scheduling. To deal with transient uncoordination, large waiting times that are
statistical outliers should be removed from the distribution of samples. A heuristic that
we have found to work well in practice is to remove the largest 10% of the samples. The
remaining wait times are used to predict future load-imbalance, as described below.

A consistent lack of coordination occurs when processes repeatedly block rather
than wait for communication operations to complete. In this case, the measured waiting
times are consistently inflated and are not correlated with the inherent load-imbalance. As
described previously, processes block rather than spin for the expected waiting time when
load-imbalance is high. Therefore, when consistent uncoordination exists, the actual load-
imbalance is generally irrelevant. However, if the application alternates between phases
with high load-imbalance and phases with low load-imbalance, then the low inherent load-
imbalance will be inflated when measured and the processes may never become coordinated.
If this is a concern, then processes must not block immediately at a barrier and must instead
spin for at least the minimum amount, Sgase + VBiock, which keeps processes coordinated
when there is a small amount of load-imbalance.

Our current method for predicting future load-imbalance from past history is sim-
plistic, but easy to implement. An application may use any prediction scheme that it
desires without impacting other applications that are using the default scheme provided by
the system. In the default scheme the root process approximates v, (or V') for the next
instantiation of this barrier as follows. The root disregards the top 10% of the collected
N = 100 samples and then uses the highest remaining sample as the next prediction. The
algorithm adapts to changes in load-imbalance over the lifetime of the application by ran-
domly replacing old measurements with new samples. Before the application has gathered
N samples, processes spin for Sgase + VBiock 10 keep jobs coordinated so that the inherent
load-imbalance can be measured.

6.5 Summary

By choosing whether to spin or block at a communication operation, each process
communicates with the local scheduler whether or not it is beneficial to be scheduled. In

84

‘ Variable ‘ Description Equation ‘
SBuse baseline spin Sgase or Sgase
SE . read baseline spin max(TE, Tﬁngger) — 20

=2L+ 20+ W

Té%ched request-response time 2L 4+ 4o
(remote process scheduled)

Tﬁngger request-response time 2L +40+ W
(remote process triggered)

SE .. barrier baseline spin max(T8, . Tﬁ,igger) - 20

~ 2L+ 20+ (2P — 2) - max(o,g9) + W

T2, .4 barrier time 2L + 40+ (2P — 2) - max(o, g)
(remote processes scheduled)

Tﬁ,igger barrier time 2L+ 40+ (2P — 3) - max(o,g9)+ W
(remote processes triggered)

Scond conditional spin Sgond or Sg(md or Sg(md

Sgond request-response conditional spin 3W 4 20

Sg(md one-way request conditional spin W+o

Sgond barrier conditional spin W+o

LBiock blocking latency W —o

VBiock blocking load-imbalance Ctrncoor +3W + 20+ (P — 1) max(o, g)

CUneoor penalty for lost coordination ~W.P

Table 6.1: Conditional Two-Phase Waiting Parameters for Implicit Coschedul-

ing. The table shows the variables and equations for the time a process should spin before

blocking.

85

general, processes spin when the scheduling of cooperating processes is coordinated across
workstations; under these circumstances, communication performance is determined by
the characteristics of the network. On the other hand, process block when scheduling is
uncoordinated; relinquishing the processor allows other competing processes to perform
useful work, but implies that communication performance is limited by the speed of a
context-switch.

Two-phase waiting allows processes to dynamically spin-wait for an operation to
complete when processes are coordinated and to block otherwise. Each component of spin-
time and its relationship with various system parameters is summarized in Figure 6.1. In this
chapter, we discussed three heuristics for determining the spin-time within the conditional
two-phase waiting algorithm.

First, a process waiting for a communication event to complete should spin long
enough to ensure that its scheduling stays coordinated with cooperating processes when
already in such a state. By maintaining coordination, the process not only optimizes the
performance of the current operation, but also increases the chances that future commu-
nication events will complete quickly. By spinning the baseline amount, the local process
ensures that it remains scheduled until the response is expected to return; in the worst-case,
when the arrival of the current message triggers the scheduling of the remote process, the
local process must wait for the context-switch of the remote process.

Second, a process that waits the baseline amount and determines that cooperating
processes are not scheduled should remain scheduled when receiving messages. If the interval
between arriving messages is less than the conditional interval, a greater cost would be
incurred if the waiting process blocked than if it stayed scheduled. Since the interval before
the next message arrives cannot be known, it is predicted from past arrival rates.

Finally, a process can optimize its performance beyond that achievable with ex-
plicit coscheduling by relinquishing the processor prematurely when waiting times are known
to be very high due to network latency or load-imbalance. When high waiting time is due to
network latency, processes block immediately at all communication events and are always
uncoordinated. However, when waiting time is high for only a particular communication op-
eration, coordinated scheduling may remain beneficial for the other communication events
within the application; therefore, before relinquishing the processor at a barrier, processes
must estimate the penalty of losing scheduling coordination on later operations.

86

Chapter 7

Simulation Environment

In this chapter, we describe our event-driven simulator, SIMplicity, which sim-
ulates the execution of communicating processes under a variety of scheduling approaches.
We describe how SIMplicity matches the model of our system initially described in Sec-
tion 4.1. In particular, we discuss the high-level machine architecture, the message-layer,
the user processes, the application workload, and the operating system schedulers.

Performing simulations in addition to measuring an implementation of implicit
coscheduling has a number of benefits. First, the simulator enables us to study the effect of
many parameters on implicit coscheduling performance, such as the local operating system
scheduler, the waiting algorithm, the communication layer, and the parallel workloads. Not
only are we able to explore a large parameter space in a short amount of time, but we
can also study the effect of system parameters that cannot be changed in the real world.
Second, it gives us control over all layers of the system. Third, with the simulator, we
can unobtrusively view statistics from all layers. Finally, it allows us to study implicit
coscheduling before the implementation of the Active Message layer supported multiple
communicating processes.

7.1 Machine Architecture

The system-level architecture within SIMplicity consists of a fixed number of
workstations that are dedicated to running the parallel jobs. Each workstation contains a
single processor and is identical to the others in the cluster. In our simulations, the number
of workstations has been fixed at 32. The workstations are connected together with a simple
high-performance network, whose characteristics are described in Section 7.2.

7.2 Message Layer

The message layer within SIMplicity incorporates the performance of the physical
interconnect, as well as the lowest level of software. The most important parameter that
can be varied in this layer is network latency (L), as defined by the LogP model [40]. We
assume that a messages arrives in exactly L time units (even when a process sends a message

87

System Latency | Source
(15)

Cray T3D 2 [6]
TMC CM-5 6 | [167]
Intel Paragon 6| [38]
FDDI 6 | [115]
Myrinet 11| [38]
Fore ATM 33 | [166]
Switched Ethernet 52 | [89]

Table 7.1: Measured Network Latency. The table shows the network latency of recent
MPPs and Networks of Workstations.

‘ Variable ‘ Description Value ‘

L network latency 10ps
0 overhead 0
g gap 0
P number of processors 32
w wake-up from message arrival 50us and 200us
Q duration of time-slice SSC : 100ms

TS : from 20ms to 200ms (Table 5.1)

Table 7.2: System Parameters in Simulations. The table summarizes the relevant
network, machine, and operating system parameters in our simulator.

to itself) and no congestion exists in the network or at endpoints. Finally, messages are
always transmitted reliably and received in-order.

To configure L in our simulator, we examined the latency of current networks.
Table 7.1 shows that network latency varies significantly in current systems. For most of
our experiments, we choose L = 10us to closely match our implementation.

We do not examine the effect of packet sizes, message buffering, flow control, or
network bandwidth (¢) in our measurements. Furthermore, we do not model processing
overhead (o) on either the sender or the receiver, due to the number of additional events
that would be generated for every simulated message. These LogP values are summarized in
Table 7.2. Overhead on the sending side can be modeled by simply increasing the amount of
the computation that each process performs before each communication event. We do not
expect that these effects will significantly impact the performance of implicit coscheduling.

Within SIMplicity, a process is notified of a message arrival through an interrupt.
If the process is already running when the message arrives, then the message is handled
immediately with no cost to the system. If the process is on the ready queue, then the

88

message is buffered until the process is scheduled. Finally, if the process is sleeping, it is
woken and placed on the ready queue; whether the process is scheduled depends upon the
characteristics of the local operating system scheduler.!

7.3 User Processes

At the highest level, SIMplicity is driven by the arrival of a parallel job at a
specified time and requiring a certain number of processes, where the number of processes
must be less than or equal to the number of workstations in the system. In our experi-
ments, all jobs arrive at the same time and request 32 processes, matching the number of
workstations.

Two types of operations exist within a parallel application: computation and
communication. Computation is modeled as a constant amount of work, regardless of how
the job is scheduled; no memory effects or I/O events are simulated. Since overhead, o, is
not simulated, a process can handle incoming message requests while computing without
increasing this fixed time.

7.3.1 Communication Primitives

Our model contains three communication primitives.

o Request-Response: A request-response message pair is denoted as a read operation.
When a read is initiated, a request is sent from the source process to the destination; at
this point, the source process begins the two-phase waiting algorithm. After L time
units, the request message arrives at the destination process; when the destination
process is scheduled, it handles the message and returns the response immediately.
When the response arrives, the requesting process continues with its computation.
Thus, a read requires exactly 2L units when all processes are scheduled.

e One-Way Requests: These operations are not employed in our simulated workloads.

e All-to-all Synchronization: The only synchronization operations in our simulated
workloads are barriers. When a process arrives at a barrier, it sends a message to
the root process. When the root has received P such messages, it calculates the load-
imbalance of the current barrier and predicts the load-imbalance for the next barrier,
as described in Section 6.4.2. This prediction, along with the barrier-completion
message, is broadcast in a linear-fashion to the waiting processes. A process at a
barrier waits until it has received this completion message before continuing.

'Note that the behavior of SIMplicity in the experiments presented in this dissertation differs in two
primary areas from those originally presented in [47]. First, in the previous simulations, a sleeping process
was given kernel priority (above 59) when a message arrived; thus, this process was almost always promptly
scheduled. Second, the process immediately slept again if the arriving message was not the event for which
the process was waiting.

89

Variable Description Equation Value

(when W = 50us)

SBuse baseline spin Sgase or Sgase

SE . read baseline spin max(TL, ., Tﬁngger)
=2L+W T0us
Té%ched request-response time 2L 20us

(remote process scheduled)
Tﬁngger request-response time 2L+ W T0us
(remote process triggered)

SE . barrier baseline spin max(T8, ., Tﬁ,igger)
=2L+W T0us
Tﬁhed barrier time 2L 20us

(remote processes scheduled)
Tﬁ,igger barrier time 20+ W T0us
(remote processes triggered)
o, . R B

Scond conditional spin St ond OF SCond
Sgond request-response conditional spin 3W 150us
Sg(md one-way request conditional spin — —
SE . barrier conditional spin 3w 150us
LBiock blocking latency w 50us
VBiock blocking load-imbalance ~20-W ~ 1lms

Table 7.3: Conditional Two-Phase Waiting Parameters for Simulation. The table
summarizes the variables and equations for the time a process should spin before blocking.

90

7.3.2 Waiting Algorithm

With SIMplicity we investigate three actions that a process can take when wait-
ing for a response from a remote process. The waiting process may block-immediately,
spin-wait, or perform a two-phase algorithm. In the majority of our experiments for im-
plicit coscheduling, we investigate variations of the two-phase waiting algorithm, where we
independently vary the amount of baseline spin and conditional spin for read and barrier
operations.

Table 7.3 summarizes the ideal spin-times within our simulation environment as
derived in Chapter 6. Since the simulator does not model overhead, o, or gap, g, most of
the equations are simplified significantly.

We note that SIMplicity does not model the best approach for predicting whether
a message will arrive in the conditional interval. The simulator does not record the arrival
time of messages; therefore, when a process waits at a communication event, it does not
know when the last message arrived and, thus, cannot readily predict if a message will arrive
in the next Sc,nq interval. As a result, when waiting, the process spins max(SgBase; Scond)s
while recording whether a message arrives. If a message arrives, the process determines
that it is beneficial to remain coordinated for another S¢,,q interval. Since Scong > SBase,
processes pay an additional cost of Scond — SBase When a message does not arrive and
scheduling is not coordinated. Thus, the simulator achieves slightly worse performance
than the ideal implementation of implicit coscheduling.

7.4 Application Workload

Because the space covering the parameters we have introduced is too large to
explore exhaustively, we fix a number of the workload and system characteristics as follows,
unless otherwise noted:

e Bach workload contains exactly three competing jobs.

e Each job is identical in its communication characteristics.

e Each job arrives at the same time.

e BEach job contains 32 processes, matching the number of workstations.

Our performance metric is usually the slowdown of the last job in the workload
to complete relative to an idealized model of explicit coscheduling. We compare to explicit
coscheduling because we want to show the ability of implicit coscheduling to achieve coor-
dinated scheduling. Thus, a slowdown greater than one indicates that implicit coscheduling
incurs an overhead for lack of coordination through additional context-switches and idle
time; a slowdown less than one indicates that implicit coscheduling achieves a benefit from
its flexibility in scheduling.

To explore the sensitivity of implicit coscheduling over a range of controlled com-
munication parameters, we simulate two styles of synthetic parallel jobs: bulk-synchronous

91

and continuous communication. The bulk-synchronous style is common in many applica-
tions with bursty communication. However, because the bulk-synchronous applications are
relatively easy to schedule, we also examine applications that communicate continuously.

Bulk-Synchronous Communication

A bulk-synchronous application alternates between phases of computation and
communication, as shown in Figure 7.1. The behavior of a job is defined by several pa-
rameters: the mean length of a computation phase phases (g), the load-imbalance across
processes within a computation phase (V'), the time between reads within a communication
phase (c¢), the number of communication phases to execute before termination, and the
communication pattern. The computation time for each process is chosen independently
from a uniform distribution, (¢ — V/2, g+ V/2). The time between communication opera-
tions, ¢, is fixed at 8us, while the number of phases is selected such that the execution of
one application in a dedicated environment requires approximately 10 seconds of simulated
time.

We investigate three different patterns of communication: Barrier, NEWS, and
Transpose. The Barrier pattern consists of only one barrier and thus contains no addi-
tional dependencies across processes; the other two patterns consist of a sequence of reads
surrounded by two barriers. In NEWS, a grid communication pattern is used; each process
reads from its four nearest neighbors. The communication phase of Transpose contains P
reads, where on the i-th read, process p reads data from process (p + ¢) mod P; therefore,
each process depends on all other processes.

Figure 7.2 shows the characteristics of our synthetic benchmark programs as a
function of the communication pattern, granularity, and load-imbalance. Each bar shows
the percentage of time spent computing, communicating, or synchronizing (averaged over
all processes) when the job is run in a dedicated environment. The communicating and
synchronizing costs are the time spent spinning while waiting for an event to complete.

Examining the breakdowns of each bar, we see several trends as the communication
characteristics of the programs are varied. First, as the load-imbalance in the programs
increases (i.e., moving to the right within a group of six bars), the time spent spinning
during synchronization increases. Second, for the NEWS and Transpose programs, as the
computation granularity decreases (i.e., moving to the right across groups of bars), the
communication-to-computation ratio of each program increases.

Continuous Communication

In the continuous communication synthetic benchmarks, there are no distinct
phases of computation and communication; instead, each process reads from a cooper-
ating process every ¢ time units. As with the bulk-synchronous workload, the average
time between barriers is represented by ¢ and the load-imbalance across processes by V;
processes compute and communicate for a period of time chosen independently from the
interval (¢ — V/2,¢+ V/2). This behavior is illustrated in Figure 7.3.

With the continuous-communication benchmarks, we examine two communication
patterns: NEWS and Random. With the NEWS pattern, processes continuously communicate

92

~ CngUt Computel Comm Comm

(begin) (end) M (begin) (end)

Proces§ . SESESES] : : :
o o o U U A U A

~
~
A
.
-
-

Process .

Compute
completes
when last

Barrier (begi

Process .

barrier

v AL T
Process . ssq ! !

t=t

=t +Q- =t.+g+
0 =ttg vi2 Fhtg vi2 ¢ Communication occur:

regularly, roughly ever

- ¢ time units
V | Load-imbalancg

9 [Granularity

»

Time

Figure 7.1: Model of Bulk-Synchronous Synthetic Parallel Applications. Fach
process of a parallel job executes on a separate processor and alternates between computation
and communication phases. Processes compute for a mean time g before executing the
opening barrier of the communication phase; the variation in computation across processes
is uniformly distributed in the interval (0, V). Within the communication phase, each
process computes for a small time, ¢, between reads; the communication phase ends with a
barrier.

[Compute

!

!

%
pises]
et

Comm

!

Barrier

W Sync
1

!

Switch] Idle

I

g=500ms

9=100ms

g=10ms

[Compute Comm

!

!

!

g=500ms

9=100ms

g=10ms

[Compute Comm

!

!

i

g=5ms g=1ms g=500us g=100us
NEWS
H Sync Switch] Idle
. =
il
g=5ms g=1ms g=500us g=100us
Transpose
W Sync Switch] Idle

]

2]
0]

RRR
s
T
o]

s

R,
200
X

£

s
R
o
00000
200
R

RERRRRRS
e,
O

o

e
TR
CO0C
D
T

5
e
e

jsied

XK

&l

il ::‘ K
i o e e
R
Kbk
¢ RIS
BRIk etbd
[sl
Bl es
o e

g=500ms

Figure 7.2:

show the breakdown of execution time for the three communication patterns.

9=100ms

g=10ms

g=5ms g=lms g=500us g=100us

o
©o

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Fraction of time

Fraction of time

Fraction of time

93

Characteristics of Bulk-Synchronous Benchmarks. The three graphs
Along the

X axis, the computation granularity, g, and the load-imbalance, V, are varied. Within a

group of six bars, each job has the same computation granularity. Groups on the left are
relatively coarse-grained; groups on the right are more fine-grained. Within each group,
the load-imbalance is increased as a function of the granularity: fromV=0to V =2.g4.

The fraction of execution time is divided into three components (computing, communicating,

and synchronizing). Note that the Barrier program performs no communication. This data
assumes a network latency of 10us.

94

regularly, roughly ever lteratio s
c time units

5 S SIS S SIS S

o)
=
o
o
3

n

U
=
o
Q
@
n
27
L
—
\ -
p
-
"4
(/)4
%)
%)
%)
%)
%)
%)
%)
|
)

SSSS

Barrier (end)f

Barrier (begi

Iteration

Procesg ' ' ' ' i Ksss

t=t t=t,+g-V/2 t=t,+g+V/2

\/ |Load-imbalanc{

g

Time >
Figure 7.3: Model of Continuous-Communication Synthetic Parallel Applica-
tions. Fach process continuously communicates with other cooperating processes running
on other processors. The average time between communication requests for a given process
is ¢ time units. Fach process also periodically performs a barrier; the mean time between
barriers is g, chosen uniformly from the interval (g —V/2, g+ V/2).

95

V=

0.259

H Sync

[Compute F& Comm

100us

g=

g=1ms

g=10ms

100ms

9=

1z

Benchmarks. The si

ion

t

1ca

Commun

ttern as the load-

on pa

cat

)

d

-graine

ly coarse

e

ided into

101

is d

ime

14

on

d. The fraction of execut

100us

g=

ted. Groups of bars on the left are relat

-graine

0g

H Sync

1ms

15 var

g

g=10ms

Characteristics of Continuous-

[Compute E& Comm

2
=]
2
£
5]
O
=

e s s
R
R E
S S
snos=o T T
5 5
ﬁ%%%bb%%&bb%%ﬁbb%&hkp----
B IR S5 SIS NOT=: noT=
EREEEe Rt smor=> snor=
e
] v "
Fee]
it snos=> & g snos=>
W] W
snosz=o 2 IS snosz=o
ﬁﬁﬁ&n%u&ﬂﬁ&%ﬂﬂﬁﬁ&&%ﬁﬂ&&&&w----- o o n”uun»
]
SRR ot — S NS
9 9
e ! | e ! |
3> 3>
[[
38 38
e
R
ey
SR
e
]
]
Risissesy 0 2 o i)
£ =1 E >
w o w o
g g
7 £ 7 £
° 8 ° &
o
|
|
L " i " e
T] e
] g] S R .
SR L RS o= 3 s I or=>
— g g
ooy
sy
ezl & &
TSy]]
PSR o= P]
friasiiais i snor=> oo asteaastaaasiesd frssais
P e
prre A prs] v
i prese]
R s 2 e E
3 [[
I Jsurs
B R PR ne P
B e] SR
Bttt o fississiesisd g S
e — o
_ Py %) P
|]
1 1 -
[L >
s e st PR
S = SR SRt
TS = s Ps
SRR [siiasiasiiansitsd fassisisiiens
e e
TR pr
pra Frsee]
e Jsien 2 e
[=} [=} e
S S
7 7
5 5

100ms

9=

7.4

F

igure

graphs show the breakdown of execution time for r NEWS commun

imbalance, V, is varied. Along the x azis, the average time between barriers, g, and time

between read operations, c,

groups on the right are more fine

three components (computing, communicating, and synchronizing). This data assumes a

network latency of 10us.

96

with each of their four nearest neighbors in a fixed rotation. In the Random pattern, processes
communicate with a destination process chosen at random from the P cooperating processes
(including itself).

Figure 7.4 illustrates the communication characteristics of the NEWS workloads;
measurements with the Random pattern look identical. We note the division of execution
time as the parameters are changed. First, as the amount of load-imbalance in the appli-
cation increases (i.e., as V increases across graphs), the time waiting for synchronization
increases. Second, the smaller the interval between communication events (i.e., as ¢ de-
creases), the more time is spent waiting for communication relative to time spent comput-
ing. Finally, as the amount of computation between barriers decreases (i.e., as g decreases),
the relative amount of time spent performing barriers increases slightly.

7.5 Operating System Scheduler

We constructed the local scheduling component of SIMplicity to closely match
that of the Solaris [67] scheduler in both functionality and structure; in fact, significant
portions of our code are adapted directly from Solaris 2.4 source. Scheduling in Solaris,
as in all SVR4-based schedulers, is performed at two levels: class-independent routines
and class-dependent routines. Class-independent routines are those that are responsible
for dispatching and preempting processes. Class-dependent routines are those that are
responsible for setting the priority of each of its processes.

In this section, we first describe the functionality of the operating system scheduler
that is independent of the scheduling class. We then describe the functionality that is
specific to each of our three scheduling classes (i.e., time-sharing, stride scheduling with
system credit, and explicit coscheduling).

7.5.1 Class Independent Functionality

The class independent routines have three basic responsibilities. First, the process
with the highest priority must be dispatched and the state of the preempted process must
be saved. Second, the class-dependent routines must be notified of the state of its processes.
Finally, processes must be moved between priorities as specified by the scheduling classes.

When dispatching processes, an important parameter of the operating system
scheduler is the time to context-switch to a new process. In the simulations, this is a
constant amount of time. We assume that waking a process on a message arrival, W, is
equal to the basic context-switch cost, incurring no additional cost at other layers of the
system. To configure W, we examined the context-switch costs for a variety of current
operating system schedulers. Table 7.4 shows that the cost of context-switching varies sig-
nificantly. Since the value of W has a large impact on scheduling performance, we chose
two values: a moderate cost of 50us to roughly match that of our implementation and a
higher cost of 200us to stress the performance of implicit coscheduling.

The scheduling classes should be informed whenever the state of one of its processes
changes: at creation, termination, and when a blocked process becomes runnable. The
scheduling class is also informed every 10ms if one of its processes is currently scheduled.

97

Machine 0OS Cost (us)
(0 KB) | (64 KB)
6600-990 AlIX 3.x 13 17
PowerPC AIX 4.x 16 119
K210 HP-UX B.10.01 17 31
MIPS R10K | IRIX64 6.2-no 21 25
P5-133 FreeBSD 2.2-C 27 55
P6 Linux 1.3.37 6 32
Alpha Linux 1.3.57 10 13
8400 OSF1 V3.2 14 18
Alpha OSF1 V3.0 53 96
UltraSPARC | SunOS 5.5 14 30
‘ Average ‘ 19.1 ‘ 56.0 ‘
Table 7.4: Measured Context-Switch Cost. This table shows the context switch

costs of various modern systems, based on data found in [121]. The left column shows the
cost of a context-switch when each of two null processes switch back and forth. The column
on the right displays the cost when each of the two processes have 64 KB of cache state that
they continuously access; in that case, the cost is noticeably higher.

We make several pessimistic assumptions about the synchronization of these notification
events across processors. First, all timer events occur independently across processors (e.g.,
the 10ms clock tick and the one second update timer in the Time-Sharing Class). Second, if
multiple parallel jobs arrive in the system at the same time, then the processes are randomly
ordered across the local scheduling queues.

A process is moved between runnable priorities as specified by its scheduling class.
When a process sleeps on any event (e.g., communication, synchronization, or disk 1/0), it
is placed on a list of blocked jobs and is not scheduled, regardless of its priority.

7.5.2 Scheduling Classes

Each process in the system belongs to exactly one scheduling class. By default,
SVR4 officially supports a time-sharing class and a real-time class; however, new scheduling
classes can be added as necessary. We briefly describe our implementation of the default
time-sharing class, as well as our extension of stride scheduling with system credit and
explicit coscheduling.

Time-Sharing

The time-sharing class is an important scheduler to consider because it is often used
in practice. In our experiments, we use the time-sharing scheduler (T'S) whenever the results
do not depend upon the ability of the local operating system scheduler to allocate resources

98

fairly; that is, whenever scheduling jobs with the same communication characteristics. Our
implementation of the TS class is strongly based on the time-sharing class within Solaris 2.4
and matches the description in Section 5.2.

Stride Scheduling with System Credit

To fairly schedule applications with different communication characteristics, we
simulate the extended stride scheduler described in Section 5.3. In this section, we describe
two interesting issues that occur due to interactions with the class independent functions.

The first issue occurs because the class independent functions are based on priori-
ties, whereas stride scheduling is not. The class independent functions dispatch the process
with the highest priority. However, the goal of stride scheduling is to dispatch the process
with the minimum pass value. To ensure that the class independent function schedules the
desired process, the stride scheduling class raises the priority of the process with the lowest
pass and lowers the priority of all other processes. Priority changes are required in three
circumstances: when the time-slice of the scheduled process expires (@ = 100ms), when a
process with a lower pass value than the scheduled process becomes runnable (e.g., due to
a message arrival), and when the running process voluntarily relinquishes the processor.

The second issue arises when accounting for the amount of CPU each process has
consumed and subsequently incrementing the pass of the process. The class independent
functions do not provide an interface for notifying a scheduling class when a process is
scheduled or descheduled; instead, the scheduling class is notified of the running process at
each 10ms clock tick. Within the clock tick routine, the stride scheduler increments the
pass of the scheduled process by its stride and decrements the remaining ticks within
the allocated time-slice. While this approach may lead to slight accounting inaccuracies if
a process relinquishes the processor before the clock tick occurs, it has been found to be
precise enough for implicit coscheduling.

Explicit Coscheduling

To compare the performance of implicit coscheduling, we have implemented a
version of explicit coscheduling as a scheduling class within SIMplicity. To build on the
class independent functions, the priority of the job to be coscheduled is raised to the highest
in the system, while the priorities of the other jobs remain low. Our implementation is based
on Ousterhout’s matrix algorithm [134]. When explicitly coscheduled, processes always
spin-wait for communication events to complete, as they would in a dedicated environment.

Our implementation of explicit coscheduling is optimistic in a number of areas.
First, there is no skew of time quanta across processors; that is, the global context-switch
occurs simultaneously across all machines. Second, the cost of the global context-switch is
identical to a local context-switch, W. Finally, to amortize the cost of the context-switch,
we assume a long time-slice () = 500ms) relative to the context-switch cost.

99

Chapter 8

Simulation Results

In this chapter, we evaluate variations of the conditional two-phase waiting algo-
rithm and the local operating system scheduler on synthetic workloads. With our simulator,
we confirm five main points presented in Chapter 6:

1. Coordinated Scheduling: Coordinated scheduling, such as that achieved with ex-
plicit or implicit coscheduling, is required for fine-grain jobs in current cluster systems.
However, when network latency is greater than the context-switch cost, performance
with implicit coscheduling can exceed that of explicit coscheduling.

2. Baseline Spinning: When processes spin for the expected completion time of com-
munication operations, the scheduling of processes stays coordinated across machines.

3. Conditional Spinning: Processes should spin longer when receiving messages from
remote processes to stay coordinated and to benefit the job as whole.

4. Load-Imbalance: The performance of applications with high load-imbalance can be
improved if applications approximate the amount of load-imbalance at run-time.

5. Local Scheduler with Fair Cost-Model: A local scheduler that allocates resources
fairly is required to handle jobs that communicate at different rates.

8.1 Scheduling Coordination

In Section 6.4, we argued that coordinated scheduling is superior to uncoordinated
scheduling when the cost of context-switching between processes exceeds the latency of the
network. In this section, we verify this result with our simulator for a range of workloads
and system parameters.

8.1.1 Sensitivity to Network Latency

To verify the conditions under which coordinated scheduling should be used, we
compare the performance of local scheduling with immediate blocking (i.e., uncoordinated

100

scheduling) to explicit coscheduling with spin-waiting (i.e., a form of coordinated schedul-
ing); we do not consider local scheduling with spin-waiting, since it was shown in Sec-
tion 3.3.1 to perform poorly for all workloads. We evaluate two different context-switch
costs, 50 and 200us, and a range of network latencies from 10 to 300us. For simplicity,
we use the Solaris Time-sharing scheduler as the local operating system scheduler. Our
performance metric, slowdown, is the ratio of the workload completion time under local
scheduling to the completion time under ideal explicit coscheduling.

Our initial workloads contain three applications running on 32 workstations. We
examine both applications in which the amount of communication is balanced across all
processes and applications in which it is not. To represent balanced communication, we
measure continuous-communication applications. To represent unbalanced communication,
we examine bulk-synchronous applications; bulk-synchronous applications perform many
barrier operations for which the root process becomes the bottleneck.

Balanced Workloads

Figure 8.1 shows the slowdown of the balanced communication workload. In each
of the applications, there are very few barriers (¢ = 100ms) and there is no load-imbalance
(V = 0). Each process communicates with the NEWS pattern. Five lines are shown in
each graph, each designating a different communication granularity, between ¢ = 10us and
¢ = 2ms. We make three observations from the figure.

First, as predicted for balanced workloads, coordinated scheduling should be used
when network latency is less than context-switch time; uncoordinated scheduling should be
used otherwise. The graphs verify that the slowdown of uncoordinated scheduling is greater
than 1 when I < W and less than 1 when L > W for all communication frequencies and
for both context-switch costs.

Second, because a context-switch is incurred for every communication operation
with uncoordinated scheduling, a higher context-switch cost results in worse performance for
a given network latency. For example, when L = 1us and W = 200us, immediate blocking
can result in slowdowns more than ten times worse than coscheduling; when W = 50pus, the
relative slowdown decreases to under four.

Third, the two graphs show that applications with frequent communication are
more sensitive to the scheduling policy than those with infrequent communication. However,
because the same scheduling policy (either local scheduling or coscheduling) must be used
for all jobs in the system, coordinated scheduling should be applied when the most sensitive
jobs require it.

Unbalanced Workloads

We next evaluate the performance of bulk-synchronous applications with unbal-
anced communication. With the bulk-synchronous applications, each process performs a
barrier every g units, communicates in a NEWS pattern after ¢ = 8us of intervening com-
putation, and then performs a second barrier; there is no load-imbalance across processes
between barriers (i.e., V' = 0). Three lines are shown in each graph, varying the time
between barriers, g.

101

Context-Switch = 50 us, Continuous Communication

4
c=10 —
€=50 ——

35 c=250 -
¢=1000
3 ¢=2000
2.5
c
H
E 2
2
o
n
1.5
1 F
0.5
0 T T T T
50 100 150 200 250 300
Network Latency (us)
Context-Switch = 200 us, Continous Communication
12 c=10 —
€=50 ——
c=250 -
¢=1000
¢=2000
c
]
o
=}
2
o
n
0 T T T T
50 100 150 200 250 300
Network Latency (us)
Figure 8.1: Impact of Latency and Context-Switch Time on Continuous-

Communication Workloads. Fach workload consists of three competing jobs each con-
taining 32 processes time-shared on a total of 32 workstations. Fach of the three jobs follows
the continuous communication model. The time between barriers, g, is 100ms, and there
is no load-imbalance (V = 0). Fach process communicates with its four nearest neighbors
in a reqular NEWS pattern. Fach line in the graph designates a different communication
granularity; the average time between reads, c, is set to 10, 50, 250, 1000, and 2000us. The
metric along the y-axis is the slowdown of the workload when scheduled independently with
immediate blocking versus explicit coscheduling with spin-waiting. In each graph, network
latency, L, is increased from 10us to 300us along the xz-axis. The vertical lines designate
the point where L = W. Note the change in scales in the y-axes across the two graphs.
Context-switch time is changed in the two graphs from W = 50us to W = 200us.

102

Context-Switch = 50 us, Bulk-Synchronous

g=100 —
| g=1000 -
35 g=100000 -

Slowdown
N

50 100 150 200 250 300
Network Latency (us)

Context-Switch = 200 us, Bulk-Synchronous

g=100 —
g=1000 -
g=100000 -

Slowdown

50 100 150 200 250 300
Network Latency (us)

Figure 8.2: Impact of Latency and Context-Switch Time on Bulk-Synchronous
Workloads. Fach workload consists of three competing jobs consisting of 32 processes
each time-shared on 32 workstations. Fach of the three jobs follows the bulk-synchronous
communication model. Fach line designates a different synchronization granularity; the
time between barriers, g, is set to 100us, Ims, and 100ms. There is no load-imbalance
(V- =0), and the time between reads to the four nearest-neighbors, is fized at ¢ = 8us. The
metric along the y-axis is the slowdown of the workload when scheduled independently with
immediate blocking versus explicit coscheduling with spin waiting. Network latency, L, is
increased from 10us to 300us along the z-axis. The vertical lines designate the point where
L =W. Note the change in scales in the y-azes across the two graphs. Context-switch time
is changed in the two graphs from W = 50us to W = 200us.

103

The two graphs in Figure 8.2 show that for the unbalanced workload, coordinated
scheduling should not only be applied when the latency, L, is less than W, but also when L is
slightly greater than W. The implication is that coordinated scheduling is more important
for unbalanced workloads because it helps the overloaded process avoid a costly context-
switch; such an imbalance is expected in client-server applications where the server is more
loaded than the clients.

With our synthetic workload, the process forming the root of the barrier sends and
receives more messages than other processes. When local scheduling is used, the root process
performs a context-switch on every arriving message, and thus becomes the bottleneck of
the job. Therefore, when network latency is slightly greater than the context-switch cost,
better performance is achieved when work is moved away from the root process; that is, it
is better for the leal processes to pay a cost of 2L to spin-wait than for the root to pay W
for each cooperating process.!

8.1.2 Sensitivity to Workload Parameters

For the remaining experiments in this section, we examine a richer set of bulk-
synchronous and continuous-communication workloads, but fix network latency at 10us,
which approximately matches the value in our implementation.

Bulk-Synchronous Communication

To better understand the scheduling requirements of the applications in our work-
load, we first compare the performance of local scheduling with immediate blocking to
explicit coscheduling with spin-waiting. The graphs in Figure 8.3 show slowdown for the
two context-switch costs as a function of the computation granularity and load-imbalance of
the application for three different communication patterns: Barrier, NEWS, and Transpose.
The breakdowns of each bar show the percentage of time spent in each of the five phases;
note that no time is spent waiting for either communication or synchronization when pro-
cesses block immediately.

As expected, coordinated scheduling is strictly superior for fine-grained jobs re-
gardless of the communication pattern or the internal load-imbalance of the jobs. For
example, the Transpose pattern synchronizing every 100us when scheduled locally exhibits
slowdowns nearly four times or 16 times worse than with explicit coscheduling, depending
upon the context-switch cost. Context-switch cost has a large impact on the slowdown of
local scheduling, since a context-switch is incurred on every communication and synchro-
nization event.

The less communication in the workload, the less sensitive is performance to the
scheduling algorithm. In fact, with infrequent synchronization (e.g., a barrier is performed
no more often than every 5ms) and high load-imbalance (e.g., one to two times the com-
putation granularity), local scheduling with immediate blocking performs slightly better
than coscheduling. These results are well understood: blocking immediately is beneficial

!This particular workload could be easily fixed to avoid the unbalanced contention at the root process;
for example, a two-way tree barrier could be used instead of the current barrier. However, other unbalanced
communication patterns will always exist.

104

200us

Barrier, W:

Il Sync

50us

Barrier, W:

Il Sync

UMOPMO|S

© < N o
— 4 «H <

[]1dle

77 Switch

[Compute Comm

UMOPMO|S
0 0
< o o ~N N

[]1dle

77 Switch

Comm

B

[Compute

100us

C FSlseo=
C TNSNIFooo=r

g

g=500us
=200us
77 Switch

1ms

g

5ms

g=!

NEWS, W

Il Sync
i

g=10ms

100ms

g

500ms

g

100us

|Iﬂfd| 050=n
[o seo=n
BN NNNNN E—— Y

g

g=500us

50us

g=1ms

5ms

NEWS, W

g

g=10ms

100ms

g

500ms

g

UMOPMO|S
©o < ~N o
— - - - [ee] © < N o

-

[]1dle
L
8

[— Y
—

I NN i R
BTl os0=n
I— e
— e R

= ooz=n

J Comm
i

HE
28

[Compute
[
E

UMOPMO|S
0 0 0
< o™ o N N -

[]1dle

7] Switch
H 7
8

W Sync

£ | - — wm_mu»
£ o
=] [
o

) o e Y
B I Y

[0 Compute B3
b

100us
100us

g

g

[]1dle

-500us
-500us

200us

g

g

/7 Switch

1ms
1ms

g
g

pose, W

5ms
Il Sync
5ms

g
g

Trans

10ms
10ms

g
g

100ms
100ms

g
g

[Compute Comm

500ms
500ms

g
g

4

100us
100us

g

g

[]1dle

-500us
-500us

50us

/7 Switch

g

g

1ms
1ms

g
g

Iﬁfﬂﬂfﬂﬂf’ﬁfél 000

pose, W

5ms
Il Sync
5ms

g
g

Trans

10ms
10ms

g
g

Performance of Immediate Blocking for Bulk-Synchronous Pro-

Comm

100ms
B
100ms

g
g

500ms

[Compute
500ms
2.9.

g
g

grams. The graphs show the slowdown of uncoordinated scheduling with immediate blocking

versus explicit coscheduling with spin-waiting for three communication patterns (Barrier,
NEWS, and Transpose) and two context-switch costs, W = 50us and 200us. Network latency
s set to L = 10pus. Along the x axis, the computation granularity, g, and the load-imbalance,
V', are varied. Fach group of six bars has the same computation granularity. Within each
group, the load-tmbalance is increased as a function of the granularity: from V = 0 to
v

Figure 8.3:

105

NEWS, V=0, W=50us NEWS, V=0, W=200us
[Compute g Comm |l Sync Switch [] Idle% 5 [Compute g3 Comm |l Sync Switch [] Idle% 16
. % 45 * é 14
£ N . e
o =35 ¢ = c
_ % 3 § a é 10 §
=253 =8 2
£2 0 P
=15 E
21 e
7 % 05 =2
[} = 0 ? = 0
9=100us g:100u5
NEWS, c=10us, W=50us NEWS, c=10us, W=200us
[Compute g Comm |l Sync Switch []Idle 5 [Compute g Comm |l Sync Switch] Idle — 16
_ 45 M é 14
o 4 _ - - Z12
— - 35 g - — o B g
I I M 23 3 | _ M-z % 3
7 E 7 7 Mo 7 =, 2
7 L 2252 P Z8 2
g% zg 7 I 777 2 777 7] 126 v
% . 7 =1 v 0
. 0 . . o
Gl aaddd =08 A
: 21 : ° T 0

v=2.00

v=150

v=2.00

w000 [

Figure 8.4: Performance of Immediate Blocking for Continuous-Communication
Programs. The graphs show the slowdown of uncoordinated scheduling with immediate
blocking versus explicit coscheduling for the NEWS communication pattern and two context-
switch costs, W = 50us and W = 200us. In the top two graphs, load-imbalance is fived at
V' = 0; along the x axis, the time between barriers, g, and the time between reads, ¢, are
both varied. In the bottom two graphs, c is fived 10us and g and V are varied. In all graphs,
network latency is set to L = 10us.

during load-imbalance because the processor can switch to and execute another process
instead of spinning uselessly. The impact of load-imbalance is investigated in more detail
in Section 8.4.

Continuous Communication

Figure 8.4 presents measurements for a workload containing three continuous-
communication applications. Each process in each job continuously reads from each of its
four nearest neighbors in a regular rotation?, performing a barrier every ¢ time units, which
varies between 100us and 100ms. The first set of graphs varies the amount of time between
reads, ¢, for jobs with no load-imbalance. The second set of graphs fixes ¢ at 10us and
varies the amount of load-imbalance.

?The Random communication pattern has almost identical performance.

106

The results are very similar to those for bulk-synchronous applications in two
respects. First, the higher the context-switch cost, the more sensitive is performance to the
scheduling policy. Second, as shown in the first set of graphs, applications that communicate
frequently (e.g., ¢ = 10us) exhibit larger slowdowns with local scheduling than applications
that rarely communicate (e.g., ¢ = 1ms).

However, unlike the bulk-synchronous workloads where the value of ¢ determined
the communication rate as well, performance is relatively insensitive to the value of ¢ in
the continuous-communication benchmarks; in these benchmarks, ¢ strictly determines the
communication rate. Furthermore, as shown in the second set of graphs, programs with
a large amount of load-imbalance still require coordinated scheduling if they communicate
continuously at a frequent rate.

8.1.3 Discussion

In this section, we have verified that coordinated scheduling (in the form of explicit
coscheduling) is superior to uncoordinated scheduling (in the form of local scheduling with
immediate blocking) for fine-grain applications on current clusters. Our simulation results
confirm our analysis in Section 6.4.1 showing that coordinated scheduling is beneficial when
network latency, L, is less than the context-switch cost, W.

This section has also helped to pinpoint the range of applications which are sen-
sitive to the scheduling approach. In the remainder of this dissertation, among the bulk-
synchronous jobs, we examine the NEWS pattern in more detail, focusing on more fine-grain
applications (i.e., ¢ = 100us and ¢ = 1ms). For the continuous-communication workload,
we examine the range of communication rates where ¢ < 2ms; to examine a workload that
differs radically from bulk-synchronous applications, we examine continuous-communication
jobs with relatively few barriers (¢ = 100ms). For simplicity, we begin with applications in
both workloads that contain no load-imbalance (i.e., V = 0).

8.2 Baseline Spin

The previous section showed that coordinated scheduling is important for fine-grain
applications; we now must show that coordinated scheduling can be achieved with implicit
coscheduling. In this section, we show that two-phase waiting with the correct baseline spin
significantly improves performance relative to blocking immediately. We also show while
spinning the baseline amount achieves performance similar to explicit coscheduling for bulk-
synchronous applications, it is not adequate for continuously-communicating applications.

Throughout our experiments, we will see that a good predictor of performance is
the percentage of communication and synchronization operations that complete successfully.
We say that an operation is successful if it completes while the initiating process is still
spinning in the first phase of the waiting algorithm. Thus, processes which are coordinated
will successfully complete their remote operations.

107

8.2.1 Bulk-Synchronous Communication

Our first experiments in this section measure the performance of three competing
bulk-synchronous jobs, while varying the baseline spin in the two-phase waiting algorithm.
No pairwise spinning is performed in any of the experiments in this section. The performance
metric, slowdown, is the ratio of the workload completion time with two-phase waiting and
local scheduling to explicit coscheduling with spin-waiting. Each of the processes perform
a barrier every ¢ = 100us or ¢ = lms, communicate with its four nearest neighbors after
¢ = 8us of intervening computation, and then perform a second barrier; there is no load-
imbalance (i.e., V = 0). We continue to evaluate two different context-switch costs, W =
200us and W = 50us and a single network latency, L = 10us.

Sensitivity to Read Baseline

To separately evaluate the impact of baseline spin on reads and barriers, we begin
by varying the baseline spin for read operations while keeping the baseline spin for barriers
fixed at its optimal point of Sgase. These results are shown in Figure 8.5 for the two
context-switch costs. As shown, when processes waiting for remote read operations spin for
only a short time (i.e., less than Tg;hed: 2L + 40= 20us), the performance of two-phase
waiting is very poor, matching the performance of immediate blocking shown previously in
Figure 8.2. As expected, as the baseline spin for reads is increased, performance improves
dramatically at two distinct baseline spin amounts.

The first improvement in performance occurs when processes spin at least the
round-trip time of the network at reads, Tﬁhed. For example, for an application syn-
chronizing every ¢ = 100us on a machine with a context-switch cost of W = 200us, the
performance with a baseline spin of 10us is 11 times worse than explicit coscheduling, but
is only 60% worse than explicit coscheduling with a baseline spin of 20us. Performance
improves significantly in this region because spinning TSBched keeps the initiating process
coordinated when the remote process is scheduled before the request message arrives; in
this region, the success rate of read operations increases to 97%.3

The second improvement in performance occurs when processes spin Tﬁngger:
2L + W. Spinning for an additional context-switch keeps processes coordinated when the
arrival of the read request triggers the scheduling of the destination process on the remote
machine. When processes spin this additional amount, the rate of successful reads increases
from 97% to 99.9%. Due to this increase in successful operations when processes spin
Tﬁngger, performance improves to within 2% or within 10% of ideal explicit coscheduling,
depending upon whether the context-switch cost is 50 or 200us.

Spinning for longer than Tﬁngger does not further increase the read success rate
and, therefore, is not beneficial. In general, spinning longer hurts the overall execution time
of the program, since the waiting process pays a higher penalty when the operation is not
successful. However, in this case, longer spin times do not noticeably degrade performance

When processes spin less than T, _;, 15% of reads complete successfully; a read can appear complete
in less time than the round-trip time of the network if the initiating process is involuntarily context-switched
out while still spinning and is then rescheduled after the message arrives.

108

W=50 us W=200 us
36 13
. g=1000 - 121 g=1000 -
3.2 o
N 10
281]
261
c : o]
2 24 5
E g 7]
3 224 E]
9] 5] &
181 5]
161]
141 7 P
1.2 5]
1 L e

a T
10 100 1000 1 10 100 1000
Read Base Spin (us) Read Base Spin (us)

(a) (b)

Figure 8.5: Sensitivity to Read Baseline Spin for Bulk-Synchronous Programs.
The workload consists of three bulk-synchronous jobs on 32 workstations. The two lines
designate different synchronization granularity; the time between barriers, g, is set to either
100pus or 1ms. The vertical line in each graph designates the desired read baseline spin,
SE _=2L+W. There is no load-imbalance (V = 0), and the time between reads after
the barrier is fixed at ¢ = 8us. The metric along the y-axis is the slowdown of the workload
when implicitly coscheduled with two-phase waiting versus explicit coscheduling with spin-
waiting. Along the x-axis, the baseline spin for reads is varied between lus and 1000us,
while the baseline spin for barriers is fixed at SE ... When a process wakes after a message
arrival other than the desired message, it spins for Sy = W. Network latency is fixed at
L = 10ps. In Figure a, the context-switch time is set to W = 50us; in Figure b, W = 200us.
Note the change in scale along the y-axes across the two graphs.

109

W=50 us W=200 us
3.6

3.4+
3.2

[N
w

w
B PR
o r N

R

PN WD OO N ®©
P T Y

2.8
2.6
2.4+
2.2+

Slowdown
Slowdown

1.84
164
1.44
1.24

10 100 10 100
Barrier Base Spin (us) Barrier Base Spin (us)

(2) (b)

Figure 8.6: Sensitivity to Barrier Baseline Spin for Bulk-Synchronous Programs.
The environment and workloads are identical to that in the previous figure. Along the z-axis,
the baseline spin for barriers is varied while the read spin time is kept constant at S§,..
The vertical line in each graph designates the desired barrier baseline spin, Sgase =2L+W
In Figure a, the context-switch time is set to W = 50us; in Figure b, W = 200us.

because most read operations complete successfully and, therefore, the larger spin penalty
is paid for very few (0.1%) of the read operations.

Sensitivity to Barrier Baseline

The graphs in Figure 8.6 illustrate performance as the barrier baseline spin is
varied while the read baseline spin is held constant at S&, ... Once again, two-phase waiting
improves performance significantly compared to blocking immediately; however, waiting for

TIBriggSTIQL + Wdoes not result in any benefits beyond waiting T2, ,=2L. If processes

spin Tghed, then 98% of the barriers complete successfully; as processes spin longer, the
percentage of successful operations does not increase further. As a result, performance
degrades slowly due to the extra spin time on the 2% of unsuccessful barriers.*

The slowdown when processes do not wait long enough for barriers to complete
is not as severe as when processes do not wait for reads to complete. For example, with
W = 200us, blocking immediately at barriers leads to performance four times worse than
explicit coscheduling, while blocking immediately at reads is 12 times worse. There are two
reasons for this difference. First, each process performs twice as many read operations as
barriers (i.e., each set of four reads in the NEWS pattern is contained between two barriers);
therefore, the context-switch cost when processes do not wait for a barrier to complete is
paid for fewer operations. Second, whether a process waits for a read has a large impact
on both the read and the barrier success rate, but whether a process waits for a barrier
impacts only the barrier success rate.

Whether a read is successful determines if subsequent barriers are successful for
the following reasons. If processes become uncoordinated at a read, then the processes will

*We do not fully understand the reason for the small area of poor performance in the region immediately
preceding Tfrigger.

110

not reach the next barrier simultaneously and will not spin successfully through the barrier
in the expected amount of time. This is indicated in our measurements by the fact that
when the read baseline spin is less than Tﬁhed, the barrier success rate is only 30% even
when processes spin Sgase at barriers. However, the barrier success rate increases to 95%
when the read baseline spin is increased past TSBched and to 98% when the read baseline spin
is greater than Tﬁngger. In summary, barrier success rates follow read success rates.

Conversely, read success rates are relatively independent of barrier spin times and
barrier success rates. First, reads have less strict completion requirements. For a read
to complete successfully, only the destination process must be scheduled and it does not
need to have been scheduled for a particular length of time. For a barrier to complete
successfully, not only must all the other P — 1 processes in the job be scheduled, but they
must have been coordinated since the last barrier. Second, an unsuccessful barrier can
trigger the coordinated scheduling of the participating processes, allowing subsequent reads
to complete successfully. Since all of the processes waiting at a barrier receive the barrier-
completion message simultaneously from the root process, the cooperating processes may
all then be woken and scheduled. Thus, regardless of the barrier baseline spin amount, read
operations are successful 99.9% of the time as long the process waits Sgase.

8.2.2 Continuous-Communication Workloads

Our previous measurements showed that bulk-synchronous workloads can achieve
performance within 2% or 10% of ideal, depending upon the context-switch cost, as long as
processes wait the baseline spin amount at communication and synchronization events. In
our next experiments, we show that no fixed baseline spin amount is adequate for applica-
tions that communicate continuously with infrequent barriers.

We examine a workload of three continuous-communication applications, each of
which has infrequent barriers (¢ = 100ms) and no load-imbalance (V' = 0). For both
the NEWS and Random patterns, we measure five different communication rates. As with the
previous simulations, we examine two different context-switch costs (W = 200ps and 50pus).
In these experiments, we change the base time of reads and barriers simultaneously, rather
than evaluating each in turn; since barriers are performed rarely, its baseline spin time has
negligible impact on performance.

As shown in Figure 8.7, no amount of baseline spin achieves acceptable perfor-
mance for fine-grain applications (i.e., ¢ = 10pus and ¢ = 50us); the performance exhibited
by some fine-grain applications remains 4.5 times worse than explicit coscheduling. As the
baseline spin amount is increased, the performance of the fine-grain applications falls into
three distinct regions.

In the first region, the baseline spin is less than Tﬁngger, and slowdown is very high
for all workloads. Unlike the bulk-synchronous workloads which exhibited a performance
improvement when the baseline spin exceeded Téihecl:2L7 the performance of continuous-
communication workloads does not improve until processes spin at least Tﬁngger:2L +W.
After fine-grain applications spin at least Tﬁngger, the percentage of successful read op-
erations increases from less than 10% to about 80%; in this region, performance roughly

doubles.

111

NEWS, W =50 us NEWS, W = 200 us

Slowdown
Slowdown

100 100
Fixed Spin Time (us) Fixed Spin Time (us)

(2) (b)

RAND, W =50 us RAND, W = 200 us

Slowdown
Slowdown

100 100
Fixed Spin Time (us) Fixed Spin Time (us)

(c) (d)

Figure 8.7: Sensitivity to Baseline Spin for Continuous-Communication Pro-
grams. Three continuously communicating applications are time-shared on 32 worksta-
tions. The time between barriers is set to g = 100ms with no load-imbalance (V = 0).
FEach line in the graphs designates a different communication granularity, ¢. The metric
along the y-axis is the slowdown of the workload when implicitly coscheduled with two-phase
waiting versus explicit coscheduling with spin-waiting. Along the x-axis, the baseline spin
amounts for both reads and barriers are changed simultaneously. In Figures a and ¢, the
context-switch cost is set to W = 50us; in Figures b and d, W = 200us; note the change in
scale along the y-axis between the two sets. In the top two graphs, processes communicate
in a repeated NEWS pattern; in the bottom two graphs, processes communicate with random

destinations.

112

In the second region, processes spin more than Tﬁngger, but less than some opti-
mal baseline spin amount. The graphs indicate that this optimal amount depends on the
frequency of communication within the application: longer baseline spin times are more
beneficial with more frequent communication. In this region, the percentage of successful
operations increases very little and performance remains relatively constant.

Finally, the third region occurs as processes increase their baseline spin time up
to and beyond the optimal baseline spin amount. At the optimal point, the success rates
of operations increase suddenly from 80% to approximately 90%. As processes spin longer
than the optimal amount, the percentage of successful operations may very gradually im-
prove; however, overall performance degrades due to the extra penalty paid for spinning at
unsuccessful operations.

8.2.3 Discussion

In conclusion, the effectiveness of baseline spin depends largely upon whether pro-
cesses communicate in a bulk-synchronous or a continuous manner. For bulk-synchronous
applications, when the read and barrier baseline spin amounts are set to Sgase and Sgase
as derived in Section 6.2, the performance of three parallel jobs on 32 workstations is near
to that of ideal explicit coscheduling. Even when applications are fine-grain (e.g., synchro-
nizing with barriers every 100us), and context-switch times are high relative to network
latency, (i.e., W = 200us and L = 10pus), implicit coscheduling performs within 10% of
explicit coscheduling. When context-switch costs are lower (i.e., W = 50us), more closely
matching the costs of current systems, slowdowns are within 2%.

On the other hand, workloads with frequent communication, yet few barriers,
are difficult to schedule effectively. These workloads require coordinated scheduling, yet
contain few barriers that force all of the processes to be scheduled simultaneously. For
these workloads, a process must remain scheduled even when only partial coordination
exists.

8.3 Conditional Spin

In this section we show that conditional spinning within the two-phase waiting
algorithm improves the performance of continuously-communicating applications to an ac-
ceptable level relative to explicit coscheduling. With conditional spinning, a waiting process
remains scheduled after unsuccessfully spinning the baseline amount, as long as the incom-
ing message arrival rate justifies the cost of holding onto the processor.

8.3.1 Bulk-Synchronous Workloads

Since performance with only baseline spinning is nearly ideal for bulk-synchronous
workloads, performance is not noticeably affected by conditional spin. In these workloads,
communication is performed only in short, intense phases immediately following a barrier.
Since the barrier tends to force all participating processes to be scheduled simultaneously,
when a process performs communication, the destination is usually already scheduled and
returns the response in the baseline spin amount. For this reason, conditional spinning is

113

rarely activated and does not impact performance; therefore, we do not show the perfor-
mance of bulk-synchronous workloads with conditional spinning.

8.3.2 Continuous-Communication Workloads

In communication-intensive workloads where barriers are performed infrequently,
it is often the case that only a subset of the cooperating processes are scheduled at a given
time. Under such conditions, processes should maintain partial coordination as it develops.
Thus, a process should stay scheduled when it is receiving messages, even if it is unable to
make forward progress itself.

Figure 8.8 shows the slowdown of the continuous-communication workload with
conditional spinning relative to explicit coscheduling. In these experiments, processes al-
ways wait the baseline amount at reads and barriers, as determined by Sgase and Sgase,
respectively. The minimum message arrival rate required to conditionally increase spin time
is increased along the z axis.

The graphs in Figure 8.8 show that conditional spinning dramatically improves
performance relative to that achieved with the best baseline spin time shown in Figure 8.7.
With the conditional spin time derived in Section 6.3 (and marked as a vertical line in
the graphs), performance of all workloads and context-switch costs is within 35% of ideal
explicit coscheduling (significantly better than the factor of 4.5 slowdown with the best
baseline spin time). To explain the behavior of conditional spinning, we discuss the three
performance regions exhibited as the conditional spin amount is increased in each graph.

In the first region, the conditional spin time is very small and messages do not
arrive at a fast enough rate to conditionally increase spin time. Therefore, processes
usually spin only the baseline amount. Subsequently, performance when the conditional
spin amount is 10us matches the performance in Figure 8.7 when the baseline spin is
SE =20+ W.

In our measurements, a second regime denoted by a dramatic improvement in per-
formance occurs when conditional spin time is greater than or equal to S§a56:2L + W. For
example, the slowdown of the Random pattern with ¢ = 10us on a system with W = 200us
decreases from 4 times worse than coscheduling to only 2 times worse.® As the conditional
spin time increases, messages can arrive less frequently for the process to conditionally spin
longer, improving performance for applications with frequent communication. For each ap-
plication, there is then a region between approximately W+ 21 and 6W where performance
is relatively flat.

Close-ups for these regions are presented in Figures 8.9 and 8.10. The derived
conditional spin amount, Sgond:3W is marked in each graph. Across all workloads and
context-switch costs, the performance with a conditional spin time of 3W is within 35% of

5Due to the implementation of conditional spinning in our simulator, this improvement occurs suddenly at
the point when conditional spin time equals SE, ._=2I + W, rather than improving gradually as conditional
spin time is increased. For all points where the conditional spin time is less than S&,.., the application
must receive at least two messages within the fixed interval where the application spins the baseline amount.
When the conditional spin time is greater than or equal to SE___, only one message must arrive in the first
interval for the process to conditionally spin longer. The ideal implementation which records the arrival
time of messages is expected to improve more gradually.

114

NEWS, W =50 us NEWS, W = 200 us
8
c=10 —
c=50 -
71 =250
¢=1000
€=2000
6
E s 5
(=} (=}
=] =]
3 3
7] 7] A
3
2
1 T T 1 ”””7””"”””””\7 77777 - T
10 100 1000 10 100 1000
Pair Spin Time (us) Pair Spin Time (us)

(2) (b)

Random Destinations, W = 50 us Random Destinations, W = 200 us

Slowdown
Slowdown

— — T
100 10 100 1000
Pair Spin Time (us) Pair Spin Time (us)

(c) (d)

T
1000

Figure 8.8: Sensitivity to Conditional Spin for Continuous-Communication Pro-
grams. The workload consists of three continuously communicating jobs on 32 workstations.
The time between barriers is set to g = 100ms with no load-imbalance (V = 0). Fach line
in the graphs designates a different communication granularity, c. The metric along the
y-axis is the slowdown of the workload when implicitly coscheduled with two-phase waiting
versus explicit coscheduling with spin-waiting. Along the z-axis, the pairwise spin time for
both reads and barriers are changed simultaneously. The vertical line marks 3W, our chosen
value of Sgond' In Figures a and ¢, the context-switch cost is set to W = 50us; in Figures b
and d, W = 50us; note the change in scale along the y-axis between the two sets. In the top
two graphs, processes communicate in a repeated NEWS pattern; in the bottom two graphs,
processes communicate with random destinations.

Figure 8.9:

Slowdown

Slowdown

Slowdown

Slowdown

Slowdown

c=10us
15
14
13
12
11 \/_/¥/_/
1
5(100 150 200 250 300
Pair Spin Time (us)
©=50 us
15
14
13
12
11 MJ
1
5(100 150 200 250 3
Pair Spin Time (us)
©=250 us
15
14

WVN

1t 250 3
Pai

0 200
i Spin Time (us)

©=1000 us

W/\N

250 3

150 200
Pair Spin Time (us)

©=2000 us

5 100

150 200 250 3
Pair Spin Time (us)

Slowdown

Slowdown

Slowdown

Slowdown

Slowdown

c=10 us
15
14
13
12
11

I
1
i 100 150 200 250 300
Pair Spin Time (us)

=50 us
15
14
13
12
11
1

i 100 150 200 250 3
Pair Spin Time (us)

=250 us
15
14
13
12
11

i 100 150 200 250 3
Pair Spin Time (us)
©=1000 us
15
14
13
12
11 P~
L
1
i 100 150 200 250 3
Pair Spin Time (us)
©=2000 us
15
14
13
12
11

e~ |

100

150 200 250 3
Pair Spin Time (us)

Closeups of Sensitivity to Conditional Spin Amount

115

(W = 50pus).

Figure 8.10:

Slowdown

Slowdown

Slowdown

Slowdown

Slowdown

c=10 us
0 400 600 800 1000 120
Pair Spin Time (us)
=50 us
0 400 600 800 1000 120
Pair Spin Time (us)
=250 us
0 400 600 800 1000 120
Pair Spin Time (us)
©=1000 us

W\/\//

0 400 600 800 1000 120
Pair Spin Time (us)
©=2000 us

o

0 400

600 800 1000 12
Pair Spin Time (us)

Slowdown

Slowdown

Slowdown

Slowdown

Slowdown

c=10us

0 400

600 800 1000 12
Pair Spin Time (us)

c=50 us

400 600 800 1000 120
Pair Spin Time (us)
=250 us
0 400 600 800 1000 120
Pair Spin Time (us)
©=1000 us
400 1000 12

600 800
Pair Spin Time (us)

©=2000 us

L

P

0 400

600 800 1000 12
Pair Spin Time (us)

116

Closeups of Sensitivity to Conditional Spin Amount (W = 200us).

117

NEWS, W = 200 us

NEWS, W =50 us

2
c=10 —
1.9 =50 -
=250
1.84 ¢=1000
1.74
c 1.64 c
3 3
(=} (=}
=] =]
3 3
o o
7] 7]
1 T T 1 T T
10 100 1000 10 100 1000
Pair Spin Time (us) Pair Spin Time (us)
(a) (b)
Random Destinations, W = 50 us Random Destinations, W = 200 us
2
c c
3 3
(=} (=}
=l =l
3 3
o o
7] 7]
1 T T 1 T T
10 100 1000 10 100 1000
Pair Spin Time (us)

Pair Spin Time (us)

(c) (d)

Figure 8.11: Sensitivity to Conditional Spin for Continuous-Communication
Programs with Frequent Barriers. The experimental setup is identical to that in the
preceding figures, except the time between barriers is set to g = Ims instead of g = 100ms.
Again, the vertical line marks 3W, our chosen value of Sgond‘ Note that the point ¢ = 2ms
is not shown because it is not possible for ¢ > ¢ in this workload.

118

ideal explicit coscheduling. As one can easily see, 3W usually has comparable performance
to the best conditional spin; in no case is the best performance more than 10% better
than the performance with our derived conditional spin time. In some cases, the optimal
spin amount is lower than 3W, (e.g., for with random destinations, when ¢ = 10us and
W = 200us, the optimal point occurs when conditional spin time is 200us); in other case,
the optimal conditional spin amount is higher than 3W (e.g., with the NEWS pattern, when
¢ = 250us and W = 200pus, the optimal point occurs with a conditional spin of 400us).

Returning to Figure 8.8, in the final region, conditional spin time is increased
well past its optimal point; thus, processes continue spinning even when receiving messages
relatively infrequently. In this region, the cost of spinning longer exceeds the benefit of
maintaining partial coordination. Note that performance may degrade more noticeably
for a given amount of conditional spin than baseline spin, because multiple consecutive
conditional spins may be performed for a given communication operation.

Our final workload for this section, shown in Figure 8.11, examines continuous-
communication applications where the time between barriers is reduced from g = 100ms to
g = Llms. As expected, with more frequent barriers, the performance of implicit coschedul-
ing is less sensitive to the amount of conditional spin. However, conditional spinning re-
mains beneficial for fine-grain applications. For example, on a machine with W = 200us,
a conditional spin amount equal to Sgond:SW improves the performance of NEWS with
¢ = 10us from 70% slower than explicit coscheduling to only 20% slower.

8.3.3 Discussion

The conclusion from this section is that all processes should spin at least the
baseline amount when waiting for an event, and conditionally spin longer when receiving
messages. Through this set of simulations, we have shown that this simple modification
to the two-phase waiting algorithm significantly helps fine-grain applications that contain
infrequent barriers. For example, with the baseline spin amount derived in Section 6.2,
some fine-grain continuous-communication applications exhibit performance 8 times slower
than ideal explicit coscheduling; with conditional spinning, performance is always within
35%.

In workloads where barriers are performed infrequently, it is often the case that
only a subset of the cooperating processes are scheduled at a given time. Conditional
spinning is beneficial in these circumstances for two reasons. First, conditional spinning
helps processes maintain partial coordination as it develops. Second, conditional spinning
dynamically adjusts to the increased penalty of blocking when receiving messages: it helps
both the sending and receiving processes avoid an additional context-switch.

8.4 Load-Imbalance

To illustrate baseline and conditional spinning, the previous experiments assumed
that the processes in each application were perfectly load balanced. As a result, when the
scheduling was coordinated, processes could spin for Sgase at a barrier and complete the
barrier successfully. In this section, we broaden our investigation to consider the impact of

119

load-imbalance on bulk-synchronous and continuous-communication applications.

We show two main results. First, when workloads contain large amounts of load-
imbalance, implicit coscheduling can achieve better performance than explicit coscheduling
with spin-waiting. Second, to obtain the best performance, processes must estimate the
amount of load-imbalance across processes for each barrier.

8.4.1 Bulk-Synchronous Workloads

In this section we analyze the performance of bulk-synchronous applications with
load-imbalance. Because our bulk-synchronous applications do not receive messages in the
phase with load-imbalance, we can use baseline spin without conditional spinning. We begin
by examining the sensitivity of the applications to the amount of baseline spin when we fix
the time between barriers, ¢, and vary the load-imbalance, V.

To determine an interesting range for V, we note that our analysis in Section 6.4.2
determined that processes should block rather than spin when the load-imbalance exceeds
a value between 3W and (3 + P)W, depending upon the communication pattern after the
barrier. To cover a wide portion of this space for context-switch costs of 50 and 200us, we
focus on applications that have load-imbalances of 2ms or less. For an application to have
V = 2ms, the time between barriers must be at least 1ms; therefore, to measure programs
that are the most sensitive to the scheduling effects, we set ¢ = Ims. Finally, since the cost
of losing coordination depends upon the amount of communication, we examine workloads
with the Barrier, NEWS, and Transpose patterns.

Figures 8.12 and 8.13 show the slowdown of implicit coscheduling as a function of
baseline spin for context-switch costs of W = 200us and W = 50us, respectively. Within
each graph, the baseline spin time is increased from W to 3ms. The graphs from left to
right change the communication pattern, increasing the amount of communication: for the
Barrier pattern, there are no reads; with NEWS, there are four reads; with Transpose,
there are P = 32 reads. The graphs from top to bottom increase the load-imbalance in the
program from V =0 to V = 2ms.

On each graph, a vertical line indicates two critical spin times: the minimum
baseline spin time, SgasezTﬁ,igger, and the baseline spin time accounting for load-imbalance,
Tﬁ,igger + V. For each context-switch cost, communication pattern, and amount of load-
imbalance, both of these spin amounts correspond to a local minima. Before discussing
which baseline spin amount leads to the best performance, we describe the three perfor-
mance regions in each graph.

In the first performance region, the baseline spin time is less than Tﬁ,igger. In this
region, processes are independently scheduled because few barriers complete successfully.
For those applications with little load-imbalance or for those communication pattern with
a second barrier (i.e., NEWS and Transpose which have no load-imbalance at the second
barrier), performance suffers because scheduling coordination is lost at the barrier and
little waiting time is hidden. However, in those workloads where load-imbalance is high,
implicit coscheduling can improve performance relative to explicit coscheduling (e.g., the
Barrier pattern with W = 50us and V' > 1ms), as exhibited by the slowdown less than 1.

In the second region, the baseline spin amount is greater than or equal to Tﬁ,igger,

120

Barrier, v=0us NEWS, v=0us Transpose, v=0us

Slowdown

PR e e
[N S N
Slowdown

PR e e
[N S N
Slowdown

PR e e
[N S N

1 1 1
09 09 09
08 08 08
5 100 1000 2000 5 100 1000 2000 5 100 1000 2000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)
Barrier, v=250us NEWS, v=250us Transpose, v=250us
15 15 15

Slowdown

PR e e
[N S N
Slowdown

PR e e
[N S N
Slowdown

PR e e
[N S N

1 1 1
09 09 09
08 08 08
5 100 1000 2000 5 100 1000 2000 5 100 1000 2000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)
Barrier, v=500us NEWS, v=500us Transpose, v=500us
15 15 15
14 14 14

TN

Slowdown
[
BN

Slowdown
[
BN

Slowdown
[
BN

1 1 1
09 09 09
08 08 08
5 100 1000 2000 5 100 1000 2000 5 100 1000 2000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)
Barrier, v=1ms NEWS, v=1ms Transpose, v=1ms
15 15 15
14 14 14

N\

Slowdown
[
BN

Slowdown
[
BN

Slowdown
[
BN

1 1 1
09 09 09
08 08 08
5 100 1000 2000 5 100 1000 2000 5 100 1000 2000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)
Barrier, v=1.5ms NEWS, v=15ms Transpose, v=1.5ms
15 15 15
14 14 14

T

13 13 13
s 12 s 12 s 12
g g g
3 3 3
3 3 3
g 11 g 11 g 11
1 1 1
09 09 09
08 08 08
¢ 100 1000 2000 ¢ 100 1000 2000 ¢ 100 1000 2000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)
Barrier, v=2ms NEWS, v=2ms Transpose, v=2ms
15 15 15

A

M

Slowdown

PR e e
[N S N
Slowdown

PR e e
[N S N
Slowdown

PR e e
[N S N

1 1 1

091~ 09 09

08 08 08
5 100 1000 2000 5 100 1000 2000 5 100 1000 2000

Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)

Figure 8.12: Sensitivity to Baseline Spin for Bulk-Synchronous Programs with
Load-Imbalance (W = 50us).

121

Barrier, v=0us NEWS, v=0us Transpose, v=0us
2 2 2
18 18 18
16 16 16
H H H
k<] 14 k<] 14 k<] 14
H . H . H .
o o o
2] 2] 2]
12 12 12
1 1 1
08 08 08
200 1000 2000 200 1000 2000 200 1000 2000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)
Barrier, v=250us NEWS, v=250us Transpose, v=250us
2 2 2
18 18 18

16 16 16
H H H
2 14 2 14 2 14
H L H g H
E E E
2] 2] 2]
12 12 12
1 1 1
08 08 08
200 1000 2000 200 1000 2000 200 1000 2000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)
Barrier, v=500us NEWS, v=500us Transpose, v=500us
2 2 2
18 18 18

16 16 16
B B B
2 14 2 14 2 14
H H S ¥’
3 3 3
@ L 2 H
12 /\ 12 12
1 1 1
08 08 08
200 1000 2000 200 1000 2000 200 1000 2000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)
Barrier, v=1ms NEWS, v=1ms Transpose, v=1ms
2 2 2
18 18 18
16 16 16
B B B
2 14 2 14 2 14
H H S ¥’
3 3 3
@ @ @
12 *”_//K 12 12
1 1 1
08 08 08
200 1000 2000 200 1000 2000 200 1000 2000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)
Barrier, v=1.5ms NEWS, v=1.5ms Transpose, v=1.5ms
2 2 2
18 18 18

Slowdown
e e
IS °
Slowdown
e e
IS °
Slowdown
IS [
IS °

12 M/A 12 12
1 1 1
08 08 08
200 1000 2000 200 1000 2000 200 1000 2000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)
Barrier, v=2ms NEWS, v=2ms Transpose, v=2ms
2 2 2
18 18 18

Slowdown
e e
IS °
Slowdown
e e
IS °
Slowdown
IS [
IS °

12 \/\//_/_/_\‘ 12 12

1 1 1
08 08 08
200 2000 200 2000 200 2000

1000 1000 1000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)

Figure 8.13: Sensitivity to Baseline Spin for Bulk-Synchronous Programs with
Load-Imbalance (W = 200pus).

122

but less than Tﬁ,igger + V. When processes increase their baseline spin to Tﬁ,igger, per-
formance improves dramatically because barriers with no load-imbalance now complete
successfully. As processes increase their baseline spin time up to Tﬁ,igger + V, performance
slowly degrades. Spinning in this regime results in very few additional barriers completing
successfully, and a large spin penalty is paid on every unsuccessful barrier.

In the third region, the process spins for Tﬁ,igger + V or longer. Once the process
spins through the load-imbalance of the application, performance again improves as the
majority of barriers complete successfully. The processes are now usually scheduled in
a coordinated fashion. However, after spinning longer than Tﬁ,igger + V, performance
degrades, once more because the percentage of successful barriers does not increase and a
larger spin penalty is paid for unsuccessful barriers.

Whether the best performance occurs when spinning Tﬁ,igger or Tﬁ,igger + V de-
pends upon the ratio of V to W and the amount of communication in the application.
For example, with the Barrier pattern, spinning for TQBMgge,, 4+ V is superior to spinning
only Tﬁ,igger when V' < 5W. However, as the communication pattern is changed and more

communication is performed after the barrier, spinning for Tﬁ,igger +V continues to be ben-
eficial for larger amounts of load-imbalance. For example, with the NEWS and Transpose
patterns, spinning Tﬁ,igge,, + V remains superior as long as V' < 20W. These simulation
results are consistent with the analytical analysis presented in Section 6.4.2.

8.4.2 Continuous-Communication Workloads

In our next set of experiments, we vary the amount of baseline spin time when
conditional spinning is employed and set to its optimal value, Sgong. In these experiments
we examine continuous-communication applications, setting the time between barriers to
g = Ims and varying load-imbalance between V = 0 and V = 2ms. Rather than investigate
multiple communication patterns, we instead examine only Random destinations and vary
the communication interval, c.

Figures 8.14 and 8.15 show the slowdown for this workload as a function of baseline
spin, for context-switch costs of 50 and 200us, respectively. Within each graph, the baseline
spin time is increased from S¢o,g to 3ms. The amount of communication is increased across
graphs from the left to the right; we examine ¢ = 250, 50, and 10us. The graphs from top
to bottom increase the load-imbalance in the program from V =0 to V = 2ms.

The two points that are local minima on the graphs again correspond to possible
baseline spin amounts. The first point is the left-most data point on the graph, which
designates the minimum amount of baseline spin; due to our implementation of conditional
spinning in the simulator the minimum baseline spin is S¢onq. The second point is Tﬁ,igger—l—
V', indicated by a vertical line. As with the bulk-synchronous workloads, whether the
minimum baseline spin or Tﬁ,igger + V achieves the best performance depends upon the
relative values of V' and W and the amount of communication in the application.

For the most fine-grain applications (i.e., ¢ = 10 and 50us), spinning for the
load-imbalance of the barrier is preferable. Due to the fact that messages are continuously
arriving, a process achieves no benefit for relinquishing the processor when it reaches a
barrier early. For example, consider applications with a load-imbalance of 2ms communi-

123

cating every 10us on a system with a context-switch cost of 50us; this workload exhibits
a slowdown of 35% if processes use the minimal baseline spin, but a slowdown of 16% if
processes use a baseline spin of Tﬁ,igger + V.

In general, to minimize worst-case performance, processes should spin for the load-
imbalance of the barrier, up through (3 + P)W. For a system with W = 50us, the worst-
case slowdown that occurs when processes spin for TQBMgge,, + V is 16%; for a system with
W = 200us, this increases to 26%. However, the performance of the workloads is still
acceptable with the minimum baseline spin: for W = 50us, the worst-case slowdown is 35%
and for W = 200us it is 45%.6

8.4.3 Approximating Load-Imbalance

In our final set of experiments in this section, we show the performance of a
more complete set of bulk-synchronous applications when load-imbalance is estimated at
run-time. To predict the load-imbalance of a barrier, we use the algorithm described in
Section 6.4.2. With this approach, the process at the root of the barrier records the time
each participating process arrives at the barrier; arrivals that are late due to uncoordinated
scheduling are removed from the sample. The root process then predicts that the load-
imbalance of the next barrier will be equal to the largest remaining sample. This simple
algorithm is sufficient for our synthetic applications because the maximum load-imbalance
across processes varies little across the lifetime of the job.

The difficult part of the algorithm is in determining the amount of load-imbalance
after which it is beneficial to spin-wait only the minimum amount rather than the full load-
imbalance. In our prototype, the root process decides that processes should spin only the
minimum amount when the predicted value of V" exceeds 10W. Clearly, a more sophisticated
approach would determine this crossover value based on the amount of communication in
the application, and thus the penalty for losing coordination.

Figure 8.16 shows the performance of this simple approach for the three bulk-
synchronous communication patterns with a context-switch cost of 200us. As expected, all
communication patterns with coarse-grained computation and high load-imbalance achieve
better performance with implicit scheduling than with explicit coscheduling. At these
points, processes learn to spin for only a short time and then relinquish the processor
so that another process can be scheduled. The largest slowdown occurs when the load-
imbalance in the program is near ¢ = Ims and V = 2g = 10W, representing one of the
workloads we examined in great detail in this section. Our final results indicate that we are
able to achieve performance within 35% of coscheduling for all bulk-synchronous workloads
containing three competing applications.

SWe believe that the performance of applications with a large amount of load-imbalance will improve
significantly if processes spin only the minimum amount, SE___, instead of max(SgaSe7 Scona) when waiting.
This small modification will especially improve the performance of fine-grain applications since processes
spin the extra amount on every read when processes are not coordinated.

124

v=0us, c=250us v=0us, c=50us v=0us, c=10us
15 15 15
14 14 14
€ 13 € 13 € 13
H H H
H H H
]] €
H H H
@ 12 @ 12 @ 12
11 11 11
1 1
150 200 1000 2000 150 200 100 2000 1000 2000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)
v=250us, c=250us v=250us, c=50us v=250us, c=10us
15 15 15
14 14 14
€ 13 € 13 € 13
H H H
H H H
]]]
E g s
@ 12 @ 12 @ 12
11 11 11 f’\
1 1 1
150 200 1000 2000 150 200 1000 2000 150 200 1000 2000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)
v=500us, c=250us v=500us, c=50us v=500us, c=10us
15 15 15
14 14 14
€ 13 € 13 € 13
H H H
H H H
]] €
H H H
@ 12 @ 12 @ 12
11 11 11
1 1
150 200 1000 2000 150 200 1000 2000 0 200 1000 2000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)
v=1ms, c=250us v=1ms, c=50us v=1ms, c=10us
15 15 15
14 14 14
€ 13 € 13 € 13
H H H
H H H
]] €
H H H
@ 12 @ 12 @ 12
11 11 11
1 1
150 200 1000 2000 150 200 100 2000 0 200 1000 2000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)
v=15ms, c=250us v=1.5ms, c=50us v=1.5ms, c=10us
15 15 15
14 14 14
€ 13 € 13 € 13
H H H
H H H
]] €
H H H
@ 12 @ 12 @ 12
11 11 11
1 1
150 200 1000 2000 150 200 1000 2000 150 200 1000 2000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)
v=2ms, c=250us v=2ms, c=50us v=2ms, c=10us
15 15 15
14 14 14
€ 13 € 13 € 13
H H H
H H H
]] €
H H H
@ 12 @ 12 @ 12
11 11 11
1
150 200 2000 150 200 2000 2000

1000 1000 1000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)

Figure 8.14: Sensitivity to Baseline Spin for Continuous-Communication Pro-
grams with Load-Imbalance (W = 50us).

125

v=0us, c=250us v=0us, c=50us v=0us, c=10us
15 15 15
14 14 14
€ 13 € 13 € 13
H H H
H H H
]]]
H H H
o o o
@ 12 @ 12 @ 12
11 11 11
1
600 1000 2000 1000 2000 1000 2000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)
v=250us, c=250us v=250us, c=50us v=250us, c=10us
15 15 15
14 14 14
€ 13 € 13 € 13
H H H
H H H
]]]
H H H
o o o
@ 12 @ 12 @ 12
11 11 11
1 1 1
600 1000 2000 600 1000 2000 600 1000 2000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)
v=500us, c=250us v=500us, c=50us v=500us, c=10us
15 15 15
14 14 14
€ 13 € 13 € 13
H H H
H H H
]]]
H H H
o o o
@ 12 @ 12 @ 12
—i
11 11 11
00 2000 1000 2000 1000 2000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)
v=1ms, c=250us v=1ms, c=50us v=1ms, c=10us
15 15 15
14 14 14

Slowdown
-
©

Slowdown
-
©

Slowdown
-
©

11 11 11
1
600 1000 2000 1000 2000 1000 2000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)
v=15ms, c=250us v=1.5ms, c=50us v=15ms, c=10us
15 15 15
14 14 14
c 13 c 13 < 13
H H H
3 3 3
g g g
E E H - ——"
2 2 2
5 12 5 12 5 12
11 11 11
1 1 1
600 1000 2000 600 1000 2000 600 1000 2000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)
v=2ms, c=250us v=2ms, c=50us v=2ms, c=10us
15 15 15
14 14 14
< 13 < 13 < 13
H H H
3 3 3
g g g
H H] /\—\,\,_/\/\/\/\/
3 3 3
5 12 5 12 5 12
11 11 11
00 2000 1000 2000 1000 2000
Base Spin Time (us) Base Spin Time (us) Base Spin Time (us)

Figure 8.15: Sensitivity to Baseline Spin for Bulk-Synchronous Programs with
Load-Imbalance (W = 200pus).

126

[]1dle

77 Switch

Barrier
Il Sync

[Compute Comm

UMOPMO|S

100us

300us g

500us g

g=

g=1ms

g=5ms
NEWS
Il Sync

g=10ms

100ms

500ms g

g=!

[]1dle

77 Switch

Comm

23

E
ia%¢

[Compute

UMOPMO|S

100us

300us g

500us g

g=

g=5ms g=lms
Transpose

g=10ms

100ms

500ms g

g=!

Comm |l Sync I Switch] Idle

[0 Compute B3

UMOPMO|S

100us

300us g

500us g

g=

g=1ms

g=5ms

g=10ms

100ms

500ms g

g=!

Performance with Global Approximation of Load-Imbalance for
The root process of the barrier approzimates load-imbalance

Bulk-Synchronous Programs. The slowdown of implicit coscheduling with a run-time
by observing the arrival times at previous barriers and removing outliers due to scheduling

approzimation of the amount of load-imbalance for each barrier relative to coscheduling
irreqularities.

with spin-waiting is shown.

Figure 8.16:

127

8.4.4 Discussion

In this section, we have seen that processes arriving at a barrier should spin-wait
either only the minimum baseline amount, or should spin-wait for the minimum baseline
amount plus the expected load-imbalance of the barrier. The spin time that leads to superior
performance depends upon two factors.

e The amount of load-imbalance in the application relative to the cost of a context-
switch.

e The amount of communication in the application.

Both of these factors determine the relative costs of losing coordination and of
idly spin-waiting. For our workloads, we found that the best performance is achieved when
processes spin for the expected load-imbalance, V', when V is less than 10 to 20/W. However,
if the application is not able to approximate load-imbalance, performance is still acceptable
if processes spin only the minimum baseline amount at all barriers, regardless of the load-
imbalance.

The work in this section has shown that research in two related areas is still
needed. First, more sophisticated algorithms for approximating load-imbalance at run-time
would be helpful for more realistic applications. Second, to better determine whether a
process should wait for a barrier with load-imbalance to complete, an approach is needed
that predicts the cost of losing coordination, based on dynamic communication rates and
patterns.

8.5 Local Scheduler

The previous experiments in this chapter assumed that the local operating system
scheduler on each workstation was the default Solaris 2.4 Time-Sharing (TS) scheduler.
This scheduler was sufficient for the previous workloads because each of the jobs had the
same communication characteristics; therefore, the scheduler treated each of the processes
similarly and there was no bias for or against any of the jobs. However, as described
in Section 5.2, when the workload consists of jobs communicating at different rates, the
Solaris TS scheduler is not fair.

In this section, we demonstrate that the Stride Scheduler with System Credit
(SSC) is more fair for a wider range of workloads than the TS scheduler. We also investigate
the impact of job placements on implicit coscheduling performance. Finally, we measure
performance as the number of jobs in the system is increased from two to four.

8.5.1 Bulk-Synchronous Workloads

For diverse workloads, not only is a new local scheduler needed, but a new per-
formance metric as well. The previous experiments measured the time required for a fixed
workload of competing jobs to complete; however, this does not illustrate the relative com-
pletion times of the jobs in the workload. Therefore, in the experiments that follow, we

128

examine the completion time of a single job in competition with continuously-running back-
ground jobs. In these workloads, we independently vary the communication granularity of
both the examined job and the background jobs, producing a slowdown surface in our
graphs.

The first workloads we examine contain a job in competition with either one, two,
or three continuously-running background jobs. While all jobs in the workload communi-
cate in the bulk-synchronous NEWS pattern and contain no load-imbalance, the granularity
between barriers, g, is varied independently for the two sets of jobs and the resulting surface
is plotted. Across the x-axis of each graph, the granularity of the evaluated job is increased
from 50us to 1s, while across the y-axis the granularity of the background job(s) is increased.
Thus, the points along the diagonal correspond to the workloads evaluated in the previous
sections, where all jobs have identical communication characteristics. In all experiments,
we examine only a system with a high context-switch cost of W = 200us; therefore, the
slowdowns we present are expected to be higher than those observed in practice.

The metric along the z-axis is the slowdown of the single measured job with implicit
coscheduling relative to ideal explicit coscheduling. Contour lines along the base of each
graph indicate the regions with a slowdown less than or equal to the amount indicated.
We call the slowdown that a job experiences against jobs with identical communication
characteristics its base slowdown. If the scheduler tends to favor the measured job within
a mixed workload, its slowdown in that workload is less than its base slowdown; if the
scheduler is biased against this measured job, its slowdown is greater than its base slowdown.
The local scheduler provides fair performance for a workload with a measured job A and a
collection of competing jobs, if it exhibits near to the base slowdown with that workload;
that is, slowdown is flat as the characteristics of the competing applications are changed.

In previous experiments, competing jobs were placed identically across all worksta-
tions; that is, process 0 of all the jobs is placed on workstation 0, and so on through process
31 and workstation 31. We begin our evaluation by placing jobs in this manner. However,
our second set of experiments investigates performance when processes are randomly placed.

Identical Job Placement

With two-phase waiting, the natural tendency of implicit coscheduling is to bias
against fine-grain jobs competing against more coarse-grain jobs, since fine-grain jobs relin-
quish the CPU more frequently. It is therefore the responsibility of the local schedulers to
adjust for this unfairness.

Our first results, shown in Figure 8.17, examine one job in competition with two
jobs for both local schedulers. Two observations are apparent from this figure. First, as
expected with the Solaris Time-Sharing (TS) scheduler, for a fixed competing workload,
slowdown increases as the interval between barriers in the measured job is decreased; slow-
down decreases as the interval in the measured job is increased. Second, the Stride Scheduler
with Credit (SSC) provides fair performance over a wider range of workloads than the TS
scheduler.

We see that the fairness of the TS scheduler degrades slowly as the characteristics
of the competing job are varied. For example, a bulk-synchronous job performing a barrier

129

Time-Sharing (3 Jobs)

1.4 -
1.3
1.2
1.1 -
c 16 1.
§ 1.4 99
E 1.2 ’
0 1
0.8
""" 1s
100ms
; }) Q)
& P e
S - 100 Q
Granular,'ty (g;\/ @0‘(\ I us foNa
Stride Scheduling with Credit (3 Jobs)
1.6 -
15 -
1.4
1.3 -
% 16 12 -
T 14 1-%'
% 1.2 0.9 —
1 83 —
0.8 ’
<5 .
00 > ,\
BN & - @
o 100 o
Granular,'ty (g;\/ @0‘(\ I us &

Figure 8.17: Fairness for Bulk-Synchronous Programs with Identical Placement
(3 Jobs). Three bulk-synchronous jobs communicating with the NEWS pattern and no
load-imbalance are time-shared on 32 workstations. Along the x-axis, the time between
barriers for the job under evaluation is varied between 50us and 1s. Along the y-axis, the
time between barriers is varied for the two continuously running competing job. The metric
along the z-axis is the slowdown of the evaluated job implicitly coscheduled with the full two-
phase waiting algorithm versus explicit coscheduling with spin-waiting. In the first graph,
the Solaris Time-Sharing (TS) scheduler is used on each workstation; in the second, the

Stride-Scheduler with System Credit (SSC) is used.

130

every ¢ = 10ms exhibits a slowdown of 14% when competing against two other jobs that
also synchronize every g = 10ms. However, when the measured job competes against
background jobs that synchronize more frequently, the slowdown is less than 14%; in fact,
in some cases, the measured job exhibits a speedup relative to its performance with explicit
coscheduling (e.g., when the g = 10ms job competes against jobs with ¢ < 500us). Against
jobs that synchronize less frequently, the observed slowdown is higher than 14% (e.g., its
slowdown increases to 34% against jobs synchronizing only once a second).

The SSC scheduler does a better job than the TS scheduler in fairly scheduling a
diverse set of applications. The fairness of SSC falls into two distinct regions: slowdown
is relatively flat as the communicating granularity of the competing jobs is varied across
several orders of magnitude; however, after a certain point, scheduling becomes very biased
toward coarse-grain jobs. For example, when the bulk-synchronous job with ¢ = 10ms
competes against any two jobs with granularities between ¢ = 50us and ¢ = 100ms, the
slowdown is between 1.0 and 1.09. However, when competing against very coarse-grain
jobs (e.g., when g > 100ms), slowdown increases rapidly: up to 1.6 times worse than with
explicit coscheduling.

Closer inspection of the inflection point with SSC reveals that fairness severely
degrades when the granularity of processes exceeds that of a time-slice, () = 100ms. Against
jobs whose synchronization interval, g, is larger than (), competing fine-grain jobs do not
acquire their fair share of resources even though they are given exhaustible tickets after
relinquishing the processor. The problem appears to be that each competing coarse-grain
job tends to run for g before the fine-grain job is able to coordinate itself and regain control
of the cluster; once the fine-grain job is coordinated, it is scheduled for a time-slice. If the
job has been allocated a sufficient number of exhaustible tickets, it should be scheduled for
multiple time-slices; however, in our implementation, this does not occur. We believe that
this performance problem is not fundamental to implicit coscheduling and could be fixed
with more attention to the stride scheduler running on each workstation.

In Figure 8.18 we show the impact of increasing the number of competing jobs;
in these graphs, the measured job competes against one, two, or three other jobs. As
expected, the base slowdown increases gradually with more jobs. For example, with the TS
scheduler and jobs synchronizing every ¢ = 50us, slowdown is about 1.1 with two jobs and
1.2 with four jobs. The SSC scheduler has slightly better performance as the number of
jobs increases; for example, with SSC slowdown is only 1.05 with two jobs and 1.08 with
four jobs.

Achieving coordination is more difficult with more jobs because the likelihood
that each local scheduler picks a different runnable process increases. The difference in
performance across the two local schedulers is primarily due to the lengths of the time-
slices. With SSC, time-slices are always set to ¢ = 100ms (although processes can be
preempted by newly awakened jobs). With TS, time-slices range between) = 20ms at the
highest priority down to 200ms at the lowest priorities. With shorter time-slices, a greater
percentage of time is spent obtaining coordination. As described in Section 5.2.3, with the
TS scheduler, the more jobs in the system, the more time each process spends executing
at a higher priority with a shorter time-slice. By forcing jobs to run only at the lower
priorities with 200ms time-slices, we were able to significantly improve the scalability of the

Time-Sharing (2 Jobs)

Slowdown

Slowdown

Slowdown

(e)

o Pk
orkPN

OO kRRRpPR
worRNWAO

Slowdown

Slowdown

Slowdown

Stride Scheduling with Credit (2 Jobs)

1.4 -
1.3 -
1.2
1.1 -
16 1-
1.4 gg -
1.2 :
1
0.8
1s
100ms
G
o> .
N '\,@6 ()6\6 = . o &@\
< o
Granularity (g;’ \90(“) Ous <&
Stride Scheduling with Credit (3 Jobs)
1.6 -
15 -
1.4
1.3 -
1.6 1.2 -
1.4 1.1 -
1.2 0.9
1 gg
0.8 '
1s
100ms
G
o> .
N N «° e - &
o
Stride Scheduling with Credit (4 Jobs)
1.
1.
1.
1.
1.6 1.
1.4 1.
12 o
1 g-
0.8 0.
1s
100ms
G
oF)
® O ® ' 10 S
o
Gra”“’arity (g)'\' \996\ AS Ous @&

(f)

oNwoRrRNWATIO

131

Figure 8.18: Fairness for Bulk-Synchronous Programs with Identical Placement.
Bulk-synchronous jobs communicating with the NEWS pattern and no load-imbalance are

time-shared on 32 workstations.

Along the z-axis, the time between barriers for the job

under evaluation is varied between 50us and 1s. Along the y-azis, the time between barriers

is varied for a continuously running competing job.

The metric along the z-axis is the

slowdown of the evaluated job with implicit coscheduling versus explicit coscheduling. The
number of jobs in the system is increased from two to four across graphs down the page.
In the first graph of each pair, the Solaris TS scheduler is used on each workstation; in the
second graph, the Stride-Scheduler with Credit is used.

132

TS scheduler with more jobs.

Another trend that is evident from Figure 8.18 is that as the number of competing
jobs is increased, fewer workloads are given fair scheduling. Clearly, it is more difficult
for a fine-grain job to acquire its portion of the CPU when competing against additional
coarse-grain jobs. However, SSC remains relatively fair as long as all jobs synchronize more
frequently than a time-slice.

Random Job Placement

In our next experiments, we evaluate the impact of randomly placing the processes
of each job across workstations. When processes are randomly placed, the process that forms
the root of the barrier for each application is on a different workstation. As a result, there
is no single workstation that acts an implicit master for the cluster.

Figure 8.19 shows the performance when processes are randomly allocated to work-
stations. The graphs show that random placement has very little impact on base slowdown
or on fairness with the SSC scheduler. However, with the TS scheduler, random placement
adversely affects base slowdown. For example, four competing jobs that synchronize every
g = 50us experience a slowdown of more than 60% relative to explicit coscheduling with
random placement; however, when the root processes were colocated on the same work-
station, the jobs experienced a slowdown of only 18%. Once again, the majority of the
effect is due to the shorter time-slices of the TS scheduler; performance can be significantly
improved by increasing the length of all time-slices to 200ms.

8.5.2 Continuous-Communication Workloads

In our next workloads, we consider applications that continuously communicate.
We examine two distinct workloads: one in which processes synchronize with barriers every
g = 100 ms and one in which processes synchronize every g = 1s. Each process is perfectly
load-balanced and each communicates in a Random pattern every ¢ time units. In these
workloads, ¢ is varied independently for the measured job (along the x-axis) and for the
competing jobs (along the y-axis). In these experiments, the processes are always randomly
placed across workstations.

We begin by evaluating the workload where the time between barriers is g =
100ms. Figure 8.20 shows the slowdown of the measured job for both the TS and SSC
schedulers for two, three, and four jobs.

With the TS scheduler, as the number of competing jobs is increased, the base
slowdown degrades. For example, when all processes communicate every ¢ = 50us, the base
slowdown for two jobs is only 11% worse than explicit coscheduling; with four jobs, the base
slowdown increases to 51%. Fairness degrades much more severely as the number of jobs
is increased. Against one competing coarse-grain job, a job communicating every ¢ = 50pus
exhibits slowdowns only 30% worse than explicit coscheduling; against three competing
jobs, the slowdown is more than 3.5 times worse than coscheduling.

On the other hand, with the SSC scheduler, base performance and fairness remain
near that of explicit coscheduling for a wide range of workloads. For example, with even four
jobs in the workload, base slowdown is always within 15%. Further, because all processes

133

Time-Sharing (2 Jobs) Stride Scheduling with Credit (2 Jobs)
1.2 - 15 -
1.1 - 1.4 -
1 1.3
0.9 - 1.2 -
c c 16 11 -
S g 14 o
2 g 12 08 -
»n [
0.8
1s 1s
100ms R 100ms
9 o . 9
. &]
Qxx\"’\\\\s i > o® g < 100, 0\‘\")‘\
@& Gra”“’arity (g)'\' \90@ AS us @&
Stride Scheduling with Credit (3 Jobs)
1.6 -
15 -
1.4
1.3 -
c $ 16 12 -
g 8 14 11 -
3 & 12 0.9
%] 1 8? —
0.8 '
1s
100ms
W @
o e . ; &
> Gr e Ko & " 100us @c\‘\a
anularity (o) o8 N &
Stride Scheduling with Credit (4 Jobs)
1.6 - 1.6 -
1.5 - 15 -
1.4 1.4
13 - - 13 -
< 12 - s 16 12 -
3 11 - S 14 11 -
K] - H 1 -
g : 5 12
5 0.9 - a b 0.9
o 08 — 1 3.573 —
0.8 = 06 -
1s T 1s
100ms 100ms
@ o @
. & .
<\\X\’c)‘(ﬂ N A ()@6 00 0\3\’6‘\
@& Gra”“’arity (g)'\' \996\ AS us @&

(e) ()

Figure 8.19: Fairness for Bulk-Synchronous Programs with Random Placement.
Bulk-synchronous jobs communicating with the NEWS' pattern and no load-imbalance are
time-shared on 32 workstations. Along the z-axis, the time between barriers for the job
under evaluation is varied between 50usand 1s. Along the y-azis, the time between barriers
is varied for a continuously running competing job. The metric along the z-axis is the
slowdown of the evaluated job with implicit coscheduling versus explicit coscheduling. The
number of jobs in the system is increased from two to four across graphs down the page.
In the first graph of each pair, the Solaris TS scheduler is used on each workstation; in the
second graph, the Stride-Scheduler with Credit is used.

134

Time-Sharing (2 Jobs) Stride Scheduling with Credit (2 Jobs)

Slowdown
Slowdown

Slowdown

Slowdown

Slowdown
Slowdown

Figure 8.20: Fairness for Continuous-Communication Programs (g = 100ms). Jobs
continuously communicating with the NEWS pattern and no load-imbalance are time-shared
on 32 workstations. The processes of each job are randomly placed across workstations.
Along the z-axis, the time between reads for the job under evaluation is varied between
50us and 100ms. Along the y-axis, the time between reads is varied for a continuously
running competing job. The metric along the z-axis is the slowdown of the evaluated job with
implicit coscheduling and the full two-phase waiting algorithm (ideal baseline and pairwise
spin times) versus explicit coscheduling with spin-waiting. Note the change in scale as the
number of jobs is increased with the Solaris Time-Sharing scheduler.

135

synchronize with barriers every ¢ = 100ms regardless of their communication intensity, ¢,
all programs in the workload must coordinate every time-slice, (J; therefore, the problem
identified with our current implementation does not occur in this workload. As a result, for
all communication granularities, the slowdown against one or two competing jobs is always
within 20% of explicit coscheduling. Only when one relatively fine-grain job competes
against three relatively coarse-grain jobs does slowdown approach 40%.

In our final set of experiments, we evaluate workloads that are particularly insidi-
ous for fair implicit coscheduling: applications that synchronize with barriers every g = 1s.
Not only are workloads containing identical copies of such applications difficult to schedule
due to the rarity of the coordinating barriers, but with the granularity greater than the
time-slice, ¢ = 100ms, coarse-grain processes may receive more than their fair share of the
resources, even with the SSC scheduler. Therefore, the results in Figure 8.21 illustrate the
worst-case performance we are likely to see.

The TS scheduler exhibits both unacceptable base slowdown and scheduling biases
for many workloads. For example, four fine-grain jobs with the same communication may be
slowed down more than five times that of explicit coscheduling. Scheduling is also strongly
biased by communication frequency; one job communicating every ¢ = 50us that competes
with coarse-grain jobs communicating every ¢ = 5ms is slowed down by more than seven
times.

The SSC scheduler significantly improves both the base slowdown and fairness for
this workload. For example, with even four jobs, the base slowdown is never greater than
20%. Fairness, although greatly improved relative to the TS scheduler, is still not acceptable.
In a few workloads containing four jobs, a fine-grain job competing against more coarse-
grain jobs experiences slowdowns more than three times worse than ideal. Once again, we
believe that these biases can be removed by further the tuning the local stride schedulers
running on each workstation.

8.5.3 Discussion

In this section, we have shown that the Solaris Time-Sharing (TS) scheduler is
not adequate for fairly scheduling jobs that communicate at different rates. The Stride
Scheduler with System Credit (SSC), which extends a stride scheduler [171] to be fair to
jobs that voluntarily relinquish the processor, allocates resources more fairly for a wider
range of workloads. While our current implementation remains biased towards jobs that
synchronize less frequently than the time-slice of the scheduler, we believe that this problem
is not fundamental to our approach.

This section also investigated two additional changes to the workloads. First, we
measured the impact of job placement: identical processes are place on the same worksta-
tion or processes are placed randomly. When the process that acts as the root of barrier
operations is placed on the same workstation as other root processes, that workstation
acts as an implicit master of the cluster. When applications perform frequent barriers,
then the process running on the implicit master directs the scheduling of all of the other
workstations in the cluster. If root processes are not colocated, coordinated scheduling is
harder to achieve. Second, we investigated the impact of adding more competing jobs to the

136

Stride Scheduling with Credit (2 Jobs)

Time-Sharing (2 Jobs)

O RERRpRRER
orkRrNMwhOON

Slowdown
P
(=2}
PRRPRRRRR
RPRNWAOION
Slowdown
P
s

o

Slowdown
Slowdown

Time-Sharing (4 Jobs) Stride Scheduling with Credit (4 Jobs)

Slowdown
ORNWAUIOIND
Slowdown

Figure 8.21: Fairness for Continuous-Communication Programs (g = 1s). Jobs
continuously communicating with the NEWS pattern and no load-imbalance are time-shared
on 32 workstations. The processes of each job are randomly placed across workstations.
Along the z-axis, the time between reads for the job under evaluation is varied between
50us and 1s. Along the y-axis, the time between reads is varied for a continuously run-
ning competing job. The metric along the z-axis is the slowdown of the evaluated job with
implicit coscheduling and the full two-phase waiting algorithm (ideal baseline and pairwise
spin times) versus explicit coscheduling with spin-waiting. Note the change in scale as the
number of jobs is increased with the Solaris Time-Sharing scheduler.

137

workload. For both random job placement and additional jobs, the extra cost of achieving
coordination can be amortized by using time-slices on the order of 100ms. Due primarily to
its longer time-slices, our SSC scheduler achieves better performance than the TS scheduler
for these workloads.

8.6 Summary

In this chapter, we have verified through simulation that implicit coscheduling
delivers fair and efficient performance for a wide variety of synthetic workloads. In our
workloads, we have considered both bulk-synchronous applications and applications that
continuously-communicate. We have analyzed performance sensitivity to three important
application parameters: the rate of communication, the rate of synchronization, and the
amount of load-imbalance internal to the application. We have also evaluated the impact
of two system parameters: network latency, L, and the cost of a context-switch in the local
operating system scheduler, W.

Implicit coscheduling can be configured to use either coordinated or uncoordinated
scheduling, depending upon the relative values of L and W. Since coordinated schedul-
ing achieves superior performance for fine-grain applications on current clusters, implicit
coscheduling should be configured to use two-phase waiting at communication operations,
rather than blocking immediately. There are two important components of two-phase wait-
ing: baseline and conditional spinning.

Baseline spin within the two-phase waiting algorithm keeps processes coordinated.
Our simulations have shown that baseline spin is sufficient to achieve respectable perfor-
mance for bulk-synchronous applications and applications that synchronize frequently. Ap-
plications that rarely synchronize, yet communicate frequently, are difficult to schedule
effectively. Such jobs require that processes remain scheduled when only partial coordi-
nation exists; this is achieved by using conditional spinning, where a process continues to
spin-wait when receiving messages from other processes.

When workloads consist of jobs with similar communication characteristics, the
Solaris Time-Sharing (TS) scheduler obtains acceptable performance. However, it does not
fairly handle workloads where some jobs are more fine-grain than others and thus voluntarily
relinquish the processor more frequently; in such workloads, fine-grain jobs do not receive
their fair share of the resources. The stride scheduler with system credit (SSC) greatly
improves the fairness of such workloads.

138

Chapter 9

Prototype Implementation

Although the simulation environment provided by SIMplicity is fairly detailed, it
fails to capture all of the aspects of a complete system. Some of the simplifying assumptions
of the simulator are necessary to reduce the time required to complete the simulation; for
example, neither the overhead of sending messages or the cost of predicting load-imbalance
is modeled. Other simplifying assumptions were made due to insufficient data from real
systems; for example, the impact of daemon processes in the system is not modeled. Finally,
in some cases, assumptions are simply not representative of the real world; for example, the
simulations assumed that processes are notified of message arrivals with interrupts, whereas
with our communication-layer, processes must explicitly poll the network.

To increase our confidence in implicit coscheduling, we have implemented a pro-
totype version on the U.C. Berkeley Network of Workstations (NOW) cluster. In this
chapter we describe that implementation, which only involves changes in the parallel lan-
guage run-time layer and, optionally, a new scheduling module; no changes are required in
the applications themselves. In our discussion, we focus on the requirements of the Active
Message layer, the configuration of spin-time in the two-phase waiting algorithm within
the Split-C run-time layer, the application workload, and the development of the operating
system schedulers.

9.1 System Architecture

Our implementation of implicit coscheduling is performed on the U.C. Berkeley
NOW cluster. Most of our experiments measure a cluster of 16 Ultra 1 Model 170 work-
stations, although some are performed on 32 workstations. Each machine contains a single
167 MHz UltraSPARC processor, a 512 KB off-chip second-level cache, and 128 MB of main
memory. A diagram of each workstation is shown in Figure 9.1. Fach workstation runs a
copy of Solaris 2.6 [51], a modern, multi-threaded operating system based on SVR4 [67].

The workstations are connected with Myrinet, a switch-based, high-speed, local-
area network, with links capable of bi-directional transfer rates of 160 MB/s [20]. Each
machine has a single Myrinet card on the S-Bus, which is attached via cable to an eight-port
switch; multiple switches can be linked together to form large, arbitrary topologies. The
105-node U.C. Berkeley NOW cluster is comprised of three 35-node clusters, each containing

139

Ultral Workstation

,,,

U'F‘{C UPA Processor Data Bus
y
512 KB
L2 Cache
4
’E SS UP
E: ASIC 128MB
< Memory SIMMs
| I
1GB/s |
| SYSIO BMX !
‘ ASIC Chips g |
| UPA DataBus !
I
| ¢ 64-bit, 25 MHz S-Bus I
| I
| I
| A A !
| I
I ;

I
Myrinet 160 MB/s 1
Network 4—;_
Interface I
I
% ﬁ ‘
I

5400 RPM 5400 RPM
v Seagate Hawk v Seagate Hawk

Fast-Wide SCSI Bus
Fast-Wide SCSI Bus

Figure 9.1: Internals of Ultra 1 Workstation. The figure depicts the internal archi-
tecture of an Ultral workstation. The Network Interface Card is connected to the S-Bus of

each workstation.

Figure 9.2: Network Topology for Cluster of 32 Workstations. The figure shows
35 workstations connected with 13 eight-port Myrinet switches. Three such groups comprise
the entire 105-node U.C. Berkeley NOW cluster.

140

‘ Variable ‘ Description Value ‘

L network latency 9.8us
0 overhead 3.6us
q gap 13.7ps
P number of processors usually 16
w wake-up from message arrival T0us
Q duration of time-slice SSC : 100ms

TS : from 20ms to 200ms (Table 5.1)

Table 9.1: System Parameters in Implementation. The table shows the relevant net-
work, machine, and operating system parameters in our system. L, o, and g are determined
by the microbenchmark described in [38]. W is calculated from Figure 9.3.

13 of these switches connected in a 3-ary, tree-like structure as shown in Figure 9.2.

9.2 Message Layer

Processes communicate in our system with AM-II [110], an extension of the Ac-
tive Message paradigm [167]. The Active Message model is essentially a simplified remote
procedure call that can be implemented efficiently on a wide range of hardware platforms.
When a process sends an Active Message, it specifies a handler to be executed on the remote
node. When the message is received, the handler executes atomically with respect to other
message arrivals. AM-II extended previous versions of Active Messages on clusters [115] by
handling multiple communicating processes, client-server applications, and system services.
The LogP parameters of AM-II are shown in Table 9.1.

A fundamental difference from the simulations occurs in the manner in which
processes are notified of a message arrival. In the simulations, processes received an asyn-
chronous interrupt whenever a message arrived; the message was then immediately handled
if the process was scheduled. In our implementation environment, a process is notified of a
message arrival only when it touches the network: either by sending a message or by explic-
itly polling the network with AM_Poll. Thus, to a remote process waiting for a response, a
process that is ignoring the network appears as if it were not scheduled. While this behavior
does not match the assumptions of our model or of the simulations, we have not found it
to adversely affect performance.

The parallel language run-time layer, described in the next section, has the re-
sponsibility of implementing the two-phase waiting algorithm for implicit coscheduling. To
support the two-phase waiting algorithm, the underlying message layer must meet three
requirements.

1. A waiting process must be able to voluntarily relinquish the processor until a message
arrives.

141

2. To implement conditional spinning, a process must know if a message has arrived in
a given interval.

3. The message layer must never spin-wait on a remote action; if the message layer
reaches a remote condition for which it must wait before proceeding, control should
be returned immediately to the parallel language run-time layer.

AM-II was designed to allow processes to relinquish the processor while waiting
for a message to arrive. A waiting process simply calls AM_SetAndWait with the proper
arguments; when a message arrives, the process is woken and eventually scheduled. When
control is returned to the process, it explicitly polls the network to handle the message.

However, the initial version of AM-II did not meet the second two requirements
of implicit coscheduling. First, AM-II did not initially contain a mechanism for processes
to determine when a message arrived. Fortunately, the modification was straight-forward:
AM-II now returns the number of messages handled in each call to AM_Poll, thus enabling
conditional two-phase waiting.

Second, the initial version of AM-II contained circumstances under which the
process spin-waits until a remote condition is satisfied: for example, when waiting for flow-
control credits or queue space (because an outgoing message requires that the next slot
in a fixed-length FIFO queue is free). For these circumstances, a recent version of AM-II
provides a non-blocking interface that returns control to the calling process, while signifying
that the message was not sent. However, this modification to AM-II was not made early
enough to be incorporated into our current implementation of implicit coscheduling.

To ensure that AM-II does not spin-wait, the Split-C parallel language run-time
layer ensures that those cases are never exercised. By guaranteeing that the next slot in
a FIFO queue of 16 entries is available before sending a message, the parallel run-time
layer can be assured that AM-II will not spin-wait. Therefore, Split-C tracks the number
of outstanding messages, and, after sending the number that fit in the underlying queue
(16), waits for all messages to be acknowledged before sending more; this modification
to the run-time layer is transparent to the application. Note that due to the FIFO data
structure used in AM-II, this condition is more strict than simply ensuring that there are
no more than 16 outstanding messages. Without this precaution, implicitly coscheduled
programs that send many small one-way messages to random destinations may spin-wait;
this deficiency causes erratic performance, with some slowdowns five times worse than ideal
explicit coscheduling.

9.3 User Processes

For our parallel language, we use Split-C [39], a parallel extension to C with
operations for accessing remote memory built on Active Messages. We chose Split-C because
many of its applications are communication intensive, and, therefore, sensitive to scheduling
perturbations. In addition, it closely matches the model assumed in the simulations. In this
section, we describe the communication primitives within Split-C and the implementation
of the two-phase waiting algorithm.

142

9.3.1 Communication Primitives

Split-C contains a rich set of communication operations, much more so than those
in our model or our simulations.

¢ Request-Response: Read and write operations access remote memory, requiring
the requesting process to wait for the response. Get and put are split-phase forms
of read and write, respectively, where the initiating process does not wait for the
response until a later synchronization statement, sync. In all versions of the Split-C
library, reads and writes are implemented simply as gets and puts, respectively,
immediately followed by a waiting sync statement. Bulk transfer is provided for each
of these communication styles.

e One-Way Request: A process may write a remote memory location without waiting
for an acknowledgment with a store operation. The receiving process waits for a
specific number of bytes to be written with store_sync.

e All-to-All Synchronization: In addition to barriers which synchronize all pro-
cesses, there also exists a complete set of reduction and broadcast operations. These
other synchronization operations are currently built on top of store operations; there-
fore, processes perform the two-phase waiting algorithm within each store_sync op-
eration with no global knowledge of load-imbalance.

9.3.2 Waiting Algorithm

Previous implementations of the run-time library in Split-C assumed a dedicated
environment (or explicit coscheduling), and, therefore, relied entirely on spin-waiting at
communication and synchronization events. Modifying the Split-C run-time library for
implicit coscheduling requires two simple modifications: ensuring that AM-II does not
spin-wait and altering the operations that wait for replies (i.e., syncs, store_syncs and
barriers) to use two-phase waiting.

Implementation

In the original implementation of Split-C, barriers were constructed in a hierarchi-
cal tree. The problem with this notification structure for implicit coscheduling is that one
unscheduled process delays the notification of all the processes in that subtree. Therefore,
in our modified version of Split-C, barriers are implemented by having all processes send
and receive notification messages directly to and from root process; this matches the model
of barriers in our analysis and our simulations. As we will see later in this section, the linear
tree barrier requires significantly more time than the hierarchical version when the cluster
has more than eight nodes.

The two-phase waiting algorithm is identical for sync, store_sync, and barrier
operations, with the exception of the amount of baseline spin. The basic algorithm operates
as follows. In the first phase, the Split-C library polls the AM-II layer (while recording the
number of incoming requests) until the event completes or up to the amount designated by
SBase- If the event completed, the Split-C library returns control to the user application.

143

If the event has not completed, the number of incoming requests is examined; our
implementation does not differentiate between different types of arriving messages (i.e.,
requests requiring responses versus one-way requests). If the average time between message
arrivals is less than Tp,,q, then the process spins for a single S¢,,q interval. The process
continues to spin for intervals of S¢,ng as long as at least one message arrives in the interval.

If the event has not yet completed, the second phase begins: the process calls the
AM-II function AM_SetAndWait to relinquish the processor. When a message arrives, the
process wakes; when the process is scheduled, the Split-C layer polls the network to handle
the new message. If this message satisfies the condition for which the process is waiting,
the process continues its computation; otherwise, the process spins a small fixed amount,
W once more recording message arrivals to potentially enable conditional spinning.

Configuration of Spin-Time

The conditional spin amounts are determined by the models presented in Sec-
tion 6.3. However, to more accurately configure the baseline spin-time at syncs (and
store_syncs) and at barriers, we run a small set of microbenchmarks rather than rely
strictly on the LogP models. These microbenchmarks allow us to include the computation
overhead of the Active Message handlers and to observe the full distribution of completion
times. The result from running each benchmark in a dedicated environment is then fed
back into the Split-C library. The spin-times in our implementation are summarized in
Table 9.2.

To determine the baseline spin-time that processes should wait at a sync opera-
tion, we measure the round-trip time when short messages are exchanged between pairs of
processes. To measure TSBchch both the sending and receiving processes remain scheduled
and spin-wait throughout the experiment. To measure Tﬁngger, the receiving process relin-
quishes the processor by calling AM_SetAndWait before each message arrives; since there are
no other active processes, the receiving process is immediately scheduled when the message
arrives.

Figure 9.3 shows the cumulative distribution of round-trip times under the two
scenarios for 1000 messages. The data indicates that when the receiver is scheduled, most
operations complete within TSBched = 60us. Note that this is higher than predicted by the
simple LogP model of 2L + 40 = 34us. When the receiver must be scheduled when the
message arrives, most operations complete within Tﬁngger = 130us. We have found that the
baseline spin time should be determined by the knee-of-the-curve, rather than the average
completion time. In our implementation, the knee usually occurred at the time at which 95-
97% of the operations had completed. Therefore, Sgase = max(Tﬁhed,Tﬁngger) = 130us.
Finally, the time to trigger the scheduling of a process on message arrival is calculated as
W= TTBrigger - TSBched = 70“‘9

To determine the baseline spin for barriers, we have a corresponding benchmark.
To simplify our implementation of the barrier waiting algorithm, all processes wait for the
same value of Sgase, even though some processes are notified earlier than others. Therefore,
we measure the completion time of the barrier from the perspective of the last process to
be notified by the root. Once again, for Tghedv we examine the case where all processes are

‘ Variable ‘ Description Equation ‘ Value ‘
SBuse baseline spin Sgase or Sgase
SE . read baseline spin max(TE, Tﬁngger) 130ps
Té%ched request-response time Figure 9.3 60ps
(remote process scheduled)
Tﬁngger request-response time Figure 9.3 130ps
(remote process triggered)
SE . barrier baseline spin max(T8, ., Tﬁ,igger) 450ps
Tﬁhed barrier time Figure 9.4 450us
(remote processes scheduled)
ﬁ,igger barrier time Figure 9.4 300us
(remote processes triggered)
Scond conditional spin Sgond or Sg(md or Sg(md
Sgond request-response conditional spin 3W 210us
Sgond one-way request conditional spin w T0us
Sg(md barrier conditional spin 3w 210ps
LBiock blocking latency — —
VBiock blocking load-imbalance ~20-W | = 1.5bms
Table 9.2: Conditional Two-Phase Waiting Parameters for Implementation. The

table summarizes variables and equations for the time a process should spin before blocking.

145

Read Time

100

Scheduled ------
80 1

60

60 us
130us

401

Cumulative Percentage
Scheduled
Triggered

20

0 50 100 150 200
Time (us)

Figure 9.3: Microbenchmark Results for Read Baseline Spin. The distribution of

measured request-response times is shown for two cases: when the remote process is already

scheduled when the request arrives and when the scheduling of the remote process is triggered

by the arrival of the request message.

scheduled throughout the experiment. For Tﬁ,igge,,, we examine the case where all processes
but one have relinquished the processor. To measure Tﬁ,igger,
the one that is notified last arrive at the barrier early and sleep while waiting for messages
to arrive (i.e., Prqae = 1). When the one late process arrives at the barrier, its notification
message triggers the scheduling of the root process, which in turn notifies all processes.

Since the barrier time depends upon the number of processors, this benchmark must be

all of the processes except

repeated for each cluster size.
Figure 9.4 shows the distribution of our barrier measurements for Tghed and
Tﬁ,igger on a range of cluster sizes between P = 2 and P = 32. When all processes reach

the barrier simultaneously, as when measuring Tghed, the root process spends a significant
amount of time handling the notification messages ((P — 1) - max(o, g)). When one process
reaches the barrier much later than the others, the root has already handled the previous
notification messages, and thus the late process sees only the cost of W 4 o required for the
root to handle this one notification message. Since (P —1) - max(o, g) is greater than W 4o
for clusters of size greater than eight, Tghed is larger than Tﬁ,iggeron those clusters. Thus,
Sgase = TSBched = 450“‘9

Our linear barrier implementation was chosen to avoid the problem where an
unscheduled process prevents a subset of the parallel job from being notified that the barrier
is complete. However, as Figure 9.4 shows, the drawback of the linear barrier is that its
completion time increases linearly with the number of processes. On 32 processors, the
barrier requires more than 800us to complete.

The high cost of the barrier has an interesting interaction with implicit coschedul-
ing. On clusters of approximately 32 nodes, better performance is achieved when processes
block immediately at barriers rather than wait for the barrier to complete, even when
there is no load-imbalance in the application. In fact, in this regime, implicit coscheduling

146

Barrier Scheduled Time

100 T
pP=2 —
P=4 ——
80 P=8 -
@ P=16
S
% 3 P=32
c <
8 60 I
2 g
2 3
s 40 S
> (2]
€ ©
> —
° i
20
0 T T T =
0 200 400 600 800 1000
Time (us)
Barrier Triggered Time
100 e ———eee e
P=2 —
P=4 -
P=8 -
80 P=16
o 2 p=32 -
g 2
< ™
8 60 1
& 8
g S
5 40 1 =
€ ©
3 b
o
20
0 ey T — T
0 200 400 600 800 1000

Time (us)

Figure 9.4: Microbenchmark Results for Linear Barrier Baseline Spin. The top
graph shows the distribution of barrier completion times (from the perspective of the process
notified last) if all participating processes are coordinated and send notification messages
stmultaneously to the root process. The bottom graph shows the distribution when all but
one process arrive at the barrier early and block until the barrier is completed; when the last
notification message arrives at the root process, it is scheduled and sends responses to all
processes. The number of participating processes is increased from two to 32 in both sets of
measurements.

147

with immediate-blocking achieves a speed-up relative to that of explicit coscheduling with
spin-waiting.

As a result, for most of our measurements in the following chapter, we examine
clusters of 16 nodes. For this cluster size, better performance is achieved when processes are
coordinated at barriers than when processes block immediately, thus stressing the ability
of implicit coscheduling to dynamically coordinate cooperating processes. However, future
research must examine the interaction of implicit coscheduling with hierarchical-tree barriers
in order to achieve good absolute performance on larger clusters.

New Split-C Interfaces

Finally, three new functions are added to Split-C so that user applications can
wait for messages with the appropriate two-phase waiting algorithm. The most general
function, wait_until, takes a pointer to an arbitrary function that must be satisfied before
the wait function returns. The next two functions are optimizations for special cases that
are expected to occur frequently: wait until x returns control when the given memory
location contains the specified value; wait_until not_x returns when the location contains
any value other than the one specified.

void wait_until(int (*condition)());
void wait_until_x(volatile int *addr, int value);
void wait_until_not_x(volatile int *addr, int value);

9.4 Application Workload

We evaluate both synthetic and real applications in our implementation. Analyzing
synthetic applications exposes the strengths and weaknesses of implicit coscheduling in a
controlled environment. However, the synthetic programs do not change behavior over time
and do not mix different communication styles; therefore, we also examine a set of seven
Split-C applications with a variety of characteristics.

9.4.1 Synthetic Applications

The synthetic applications are designed to closely match the bulk-synchronous
and continuous-communication benchmarks employed in the simulations. These synthetic
applications allow us not only to evaluate our implementation in a controlled fashion, but
also to compare our results to those predicted by the simulations. These benchmarks have
the further advantage that they require only a small amount of memory, allowing us to run
many competing applications without paging of virtual memory. The primary difference
from the simulation versions is that we increase the number of iterations performed so
that the Split-C applications require between 20 and 30 seconds to complete in a dedicated
environment. We also evaluate performance with one-way stores and bulk messages.

148

Program Description Problem Size Message Pattern
(per P) and Style
mm Matrix multiply 256 x 256 Regular all-to-all
bulk-stores
radix Radix sort 2M keys Regular all-to-all
bulk-stores
radix:small | Radix sort 128K keys Random all-to-all
stores
fft Fast Fourier transform 512K points Regular all-to-all
bulk-stores
fft:small Fast Fourier transform 256K points Regular all-to-all
stores
em3d Electro-magnetic 5000 nodes, 20 steps Neighboring
wave propagation degree: 20, 40% remote bulk-stores
distribution 3
em3d:small | Electro-magnetic 5000 nodes, 10 steps Neighboring
wave propagation degree: 20, 40% remote reads
distribution 3
em3d:init Initialization phase - Random all-to-all
of em3d stores and reads

Table 9.3: Communication Characteristics of Benchmark Applications. Problem
sizes are chosen so that the applications require between 10 and 60 seconds when run alone
and three copies fit in 128 MB of memory. The initialization phase of the two versions
of EM3D consume a significant portion of the execution times and have much different
communication characteristics.

149

Bulk Radix: Distribution of ¢
100 T T

(<)

=

i

c

Q 4

<

[

a

Q

=

kS 4

=]

£

3

(8}

0 . . .
1 10 100 1000
Time between Communication Events (us)
Bulk Radix: Distribution of g Bulk Radix: Distribution of V
100 T T T 100 T T T
[[
= j=2) 4
i i
c c
Q Q
< < 7
[[
a a
[[]
= =
s s 4
=] =]
£ £
3 3 4
(8} (8}
0
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
Time between Barriers (us) Load Imbalance (us)

Figure 9.5: Communication Characteristics of Radix. The graphs show the distri-
bution of the time between communication events (c), barriers (g), and load-imbalance (V')
Jor Bulk Radiz Sort. The measurements were taken for one job of 16 processes running
on a dedicated system. The data shows that there is approzimately 100us of computation
between 70% of the communication operations. Radix performs only about 80 barriers in its
lifetime.

150

em3d: Time Series of Synchronization Granularity em3d: Distribution of ¢
1000 T T T T T T T T T 100 T T
800 [1 80 1
(<)
=) 600 - H 1 60 | i
! ©
> a
£ P
8 2
=] = © = 4
2 400 E 20
0] =1
(8]
200 - 20 9
0 0
100 105 110 115 120 125 130 135 140 145 150 0 20 40 60 80 100
Barrier Number Time between Communication Events (us)
ema3d: Distribution of g em3d: Distribution of V
100 100 T T
80+ 80 1
[[
= =
i i
c c
8 60+ 8 60 [1
© ©
a a
Q Q
2 =
s 404 s 40 4
=] =]
£ £
3 3
(8] (8]
204 20 9
0 T T T 0 L L L
0 500 1000 1500 2000 100 1000 10000 100000
Time between Barriers (ms) Load Imbalance (us)

Figure 9.6: Communication Characteristics of EM3D. The first graph shows the reg-
ular nature of FM3D, in which e-nodes and h-nodes are calculated in turn for a number of
time-steps. The main loop of the application contains three barriers: one at the beginning of
the time-step, one after performing the calculations for e-nodes, and one after the calcula-
tions for h-nodes. Thus, the average time for each e-node or h-node step across all processes
is about 800ms. The remaining graphs show the distribution of the time between communi-
cation events (c), barriers (g), and load-imbalance (V'). The barriers after the e-node and
h-node calculations have between V = 10ms and V = 300ms worth of load-imbalance.

151

Radix: Distribution of ¢
100 T T

80 | 9

40]

Cumulative Percentage

20 - 1

0
0 20 6 80
Time between Communication Events (us)

100

Figure 9.7: Communication Characteristics of Radix:Small. Because this version
of Radixz Sort performs very few barriers, the graphs for g and V' are not shown. The graph
shows that there is only 30us of computation (including the overhead of collecting the tracing
information) between 75% of communication operations.

ema3r: Distribution of ¢

100
80 1
[
=
8
c
8 60 -]
[
a
Q
2
s 40 4
=]
£
3
(8]
20 - q
0
0 5 10 15 20 25 30 35 40 45 50
Time between Communication Events (us)
ema3r: Distribution of g ema3r: Distribution of V
100 T T T 100 T
80 | 4 4
[[
= =
8 8
c c
8 60 [4 8]
[[
a a
Q Q
2 2
s 40 4 s 4
=] =]
£ £
3 3
(8] (8]
20 1 1
0 0 . . .
0 500 1000 1500 2000 2500 3000 3500 4000 0 50 100 150 200
Time between Bariers(ms) Load Imbalance (ms)
Figure 9.8: Communication Characteristics of EM3D:Small. The version of

EM3D:Small proceeds in time-steps like FM3D shown in Figure 9.6; however, communi-
cation occurs much more frequently (c = 10us) and the time-steps are significantly slower

(g == 2.5s).

152

9.4.2 Real Split-C Applications

To evaluate a more varied set of applications, we measure the performance of
seven Split-C programs written by different programmers. The applications include matrix
multiplication, mm, two versions of radix sort, radix [3, 48], two fast Fourier transforms,
fft [3, 40], and two versions of a model of electro-magnetic waves propagated in three
dimensions, em3d [39]. The problem sizes, shown in Table 9.3, were chosen such that three
copies of each application could fit into 128MB of memory without paging and such that
each application required between 10 and 60 seconds in a dedicated environment. The only
modifications made to any of the programs were to replace instances of spin-waiting in the
radix sort programs with calls to the Split-C functions to implement two-phase waiting.

When two versions of an application exist, one copy has been optimized to com-
municate with large messages, while the other uses short messages. The seven applications
exhibit a variety of communication characteristics. For example, in the bulk version of em3d
there is 60us of computation between most messages and 900ms between barriers, while
in em3d:small there exists only 10us between messages and nearly 3 seconds between bar-
riers. Figures 9.5 through 9.8 show the distribution of the time between barriers (g), the
load-imbalance across processes (V'), and time between communication operations (¢) for
the two versions of em3d and radix sort.

9.5 Operating System Scheduler

Scheduling processes in a cluster contains two steps. First, processes must be
allocated to nodes of the cluster. Second, the local operating system scheduler on each
workstation must schedule its processes over time. Since the focus of this dissertation is on
the second step, we describe these issues in the reverse order. We begin by describing the
two local schedulers (i.e., the default Solaris time-sharing scheduler and our implementation
of stride scheduling with system credit) and our model of explicit coscheduling. We then
briefly describe our approach to ensure that jobs receive a fair proportion of resources in
the shared cluster.

9.5.1 Local Schedulers
Time-Sharing

When our implementation measurements do not require fairness across competing
jobs (i.e., when the workload contains jobs with similar communication characteristics)
we use the Solaris 2.6 Time-Sharing scheduler (TS). The process scheduling modules in
Solaris 2.6 are very similar to those in Solaris 2.4, as used in the simulations and described
in Section 7.5.2; therefore, we do not repeat the description here.

Stride Scheduling

To fairly schedule applications with different communication characteristics, we
have also implemented a Stride Scheduler with System Credit (SSC) as a new scheduling

153

class in Solaris. The advantages of adding a new scheduling class are mainly administrative.
By using an already existing interface, we do not need source code for the kernel and can
distribute our module to outside users. Development and distribution is also simplified
since the scheduling module can be dynamically loaded and unloaded, without rebooting
the machine. Specifying that a new job should belong to the stride scheduling class, or
should be given ¢ tickets, is easily performed with the priocntl command from the shell,
or by forking off new processes from a process already in the stride scheduling class. The
basic functionality of SSC matches that originally described in Section 5.3, however, a few
details had to be changed due to the existing interface for scheduling classes in Solaris.

The basic function of the SSC module is to raise the priority of the process with the
lowest pass and lower the priority of all other processes; in this way, the class-independent
scheduling functions will dispatch the desired process. Allocation of a new process can occur
in three circumstances: when the time-slice of the scheduled process expires (@ = 100ms),
when a process with a lower pass value than the scheduled process becomes runnable
(e.g., due to a message arrival), and when the running process voluntarily relinquishes the
processor.

The problem with this straight-forward implementation in Solaris, is that a per-
process lock must be acquired before modifying the priority of a process. However, it is
not always possible to acquire this lock. A clock-tick that expires every 10ms invokes the
routine that determines when a time-slice has expired; however, this clock-tick runs at the
highest system-level priority, and, therefore, can neither be preempted nor block. As a
result, no locks can be acquired in the clock-tick routine, forcing a slight redesign of the
approach used in the simulator and described in Section 7.5.2.

Rather than modify process priorities in the clock-tick routine (and potentially
on every sleep and wake-up event), our current implementation changes the priorities of
jobs only when a periodic timer expires every) = 100ms. This timer runs at a lower
system-level priority, and therefore can freely acquire and release locks (similar to the 1s
timer in the Solaris TS scheduler). Thus, every) = 100ms, a modified allocation routine is
called that orders the priority of every process in reverse rank according to its pass value.
Within this 100ms time-slice, the highest-priority process will always be scheduled when it
is runnable; as before, its pass is incremented by its stride at every 10ms clock-tick. If
the running process voluntarily relinquishes the processor, the process with the next highest
priority is automatically dispatched with no additional computation. When the highest-
priority process reawakens, it is given exhaustible tickets by the system, and automatically
preempts the lower-priority process.

A second modification was also required in our implementation that did not exist
in our simulations. Solaris does not immediately inform the scheduling class when a process
exits; instead, this routine is called only when the process storage needs to be reclaimed; e.g.,
when another process is started or after a thread reaper runs. The difficulty that arises is
that the stride scheduler believes that the tickets belonging to the exited process are actively
competing; consequently, the value of the other tickets funded by the same currency are
artificially decreased. To fix this problem, when the stride scheduling allocation routine
examines each process every 100ms, it looks for processes which are marked as free or as
a zombie, and deallocates its tickets.

154

9.5.2 Explicit Coscheduling

Rather than implement a version of explicit coscheduling to serve as a compar-
ison point for implicit coscheduling, we model the explicit coscheduling performance of a
workload by simply adding together the execution time of each application when run in a
dedicated environment with spin-waiting at all communication and synchronization events.
This approach represents the ideal explicit coscheduling performance because it does not
capture any cache effects or additional overhead for global context-switching. For most
measurements, we report the slowdown of the workload with implicit coscheduling relative
to ideal explicit coscheduling. We repeat each experiment between five and ten times and
report the average slowdown.

9.5.3 Job Placement

To place the parallel jobs across the nodes of the cluster, we leverage GLUnix, a
Global-Layer UNIX [65]. GLUnix tracks the load on each machine in the cluster, redirects
standard 1/0O, and provides job control. In our experiments, we specify the precise machine
on which each process should be placed.

155

Chapter 10

Implementation Study

In this chapter, we have two goals as we present measurements for our imple-
mentation prototype. Our first goal is to compare the measurements of our prototype
implementation to those predicted by our simulator. To facilitate this comparison, we eval-
uate synthetic applications with the same bulk-synchronous and continuous-communication
characteristics as those studied in the simulations. The most significant change in our ex-
perimental workload is that we run on a cluster of only 16 workstations for most of our
experiments, rather than the 32 workstations measured in the simulations.

Our second goal is to show the effectiveness of implicit coscheduling on a more
thorough set of applications and workload combinations:

1. Additional Communication Primitives: one-way requests and bulk messages.

2. Real Applications: a collection of seven Split-C applications with a variety of com-
munication primitives and message patterns.

3. Scalability: sensitivity to the number of competing jobs and workstations.

4. Job Placement: allocation of processes to workstations such that the load across
workstations is not balanced.

10.1 Verification of Simulations

Our first experiments compare the performance of our implementation to that
predicted by the simulator. We begin by verifying that the parameters for baseline and
conditional spinning derived in Chapter 6 are appropriate for a range of bulk-synchronous
and continuous-communication workloads. In these experiments we run with the Solaris
Time-Sharing scheduler. In later experiments, we evaluate fairness across jobs with different
communication characteristics; for these workloads we compare the Solaris Time-Sharing
scheduler to our Stride Scheduler with System Credit.

156

10.1.1 Baseline Spin

In this section, we show the importance of baseline spinning for bulk-synchronous
applications. Our first set of experiments confirm that the baseline spin amounts derived
in Section 6.2 are optimal in our implementation for applications with no load-imbalance;
these experiments closely duplicate the simulations performed in Section 8.2. Our second
set of experiments show that the minimum baseline spin also performs well for applications
with load-imbalance.

Sensitivity to Baseline Spin

In our first workloads, three bulk-synchronous jobs compete on 16 workstations.
Each process performs a barrier every g = 100us, then communicates with its four nearest
neighbors in a NEWS pattern (with ¢ = 8us of intervening computation), and finally performs
a second barrier; these steps are repeated for approximately 20 seconds. Because we are
validating the best minimum baseline spin-time, we examine applications with no load-
imbalance (i.e., V =0).

To separately evaluate the impact of baseline spin on reads and barriers, we vary
the baseline spin for reads while keeping the baseline spin for barriers fixed at its optimal
point of Sgase = 450us. No pairwise spinning is performed in these experiments. Figure 10.1
shows the slowdown of the workload with implicit coscheduling relative to the ideal model
of explicit coscheduling.

These measurements agree with both our initial theory and our previous simulation
results. That is, the performance of the workload improves at two points: when the baseline
spin amount equals TSBched = 60us and when the baseline spin amount equals Tﬁngger =
130us. As expected, performance is poor when processes spin less than TSBchch because
processes do not remain coordinated after a communication event. Thus, processes pay
at least a context-switch for every communication operation. The best performance is
achieved when processes spin at least Tﬁngger, the completion time of a read when the
request messages triggers the scheduling of the remote process; this point is marked on the
graph. Performance degrades slowly as processes spin longer than Tﬁngger, since processes
pay a higher penalty in spin-time for those read operations that do not complete successfully.

While the general shapes of the curves from the simulation and implementation
are similar, there are two obvious differences. First, in the simulations, as the baseline spin
for reads was increased, the measured performance dramatically improved at precisely the
points where the baseline spin equaled Té%ched and Tﬁngger. In our implementation, since
T#, . and Tﬁngger represent distributions of completion times (shown in Figure 9.3) and
not distinct points, performance improves more smoothly as baseline spin is changed.

Second, performance is less sensitive to spin-time in the implementation than in
the simulations. For example, in the simulations, even with the lower context-switch cost
of W = 50us, performance was 3.5 times worse with immediate blocking than with ex-
plicit coscheduling. In the implementation, performance is only 70% worse with immediate
blocking. This effect is discussed after our next set of experiments.

The next experiments measure performance as the barrier baseline spin is varied
while the read baseline spin is held constant at Sgase. The results shown in the second graph

157

Sensitivity to Read Baseline
1.8

1.7 1
1.64
1.5+
1.4+
1.3

1.2

111 M

10 100 1000 10000
Read Baseline Spin (us)

Slowdown (Relative to Ideal)

Sensitivity to Barrier Baseline

1.8

1.7 1

1.64

1.5+

1.4+

1.3

Slowdown (Relative to Ideal)

121
1.1 ~\’_’j\/\x

1 T T T
10 100 1000 10000
Barrier Baseline Spin (us)

Figure 10.1: Sensitivity to Baseline Spin for Bulk-Synchronous Programs. In the
first graph, the baseline spin for reads is varied between lus and 1000us along the z-axis,
while the baseline spin for barriers is fixed at Sgase. In the second graph, the baseline spin
Jfor barriers is varied while the read spin time is kept constant at Sgase. The vertical line
in each graph designates the baseline spin amount, Spyse, shown in Table 9.2. The metric
along the y-axis is the slowdown of the workload when implicitly coscheduled with two-phase
waiting versus explicit coscheduling with spin-waiting; the points represent the average of
five runs. The workload consists of three bulk-synchronous jobs on 16 workstations. The
time between barriers, g, is set to 100us, there is no load-imbalance (v =10), and the time
between reads after the barrier is fived at ¢ = 8us.

158

of Figure 10.1, once again qualitatively match our previous simulation results. First, the
best performance is achieved when processes spin approximately Sgase = 450us. Second,
as processes spin longer than Sgase, performance degrades severely. Because a noticeable
percentage of barriers do not complete successfully regardless of spin-time, processes pay
the penalty of extra spin time on a significant number of the barriers; this effect appears
more prominent in our implementation than in our simulations because we examine baseline
spin amounts up to 10ms, rather than up to only lms.

However, as with reads, when processes block immediately at barriers, the perfor-
mance of our implementation is not as poor as that in our simulations. In fact, performance
is only 20% worse than with explicit coscheduling. This performance discrepancy is due
to the presence of message overhead, o, and gap, g, in the implementation, but not in the
simulations. Due to o and g, barriers in our implementation require a significantly longer
time than in the simulations. Since the time for a barrier on 16 processors (S5 = 450us)
is significantly longer than a context-switch (W = 70us), there is a smaller penalty for
losing scheduling coordination. Slow barriers have similar performance implications as bar-
riers with load-imbalance: there is an advantage to blocking before the barrier completes
in order to allow competing processes to perform useful work.

In summary, the baseline spin amounts derived in Section 6.2 and shown in Ta-
ble 9.2 achieve the best performance for a workload with bulk-synchronous applications
with no load-imbalance. At read operations, processes should spin Sgase = 130us within
the two-phase waiting algorithm before relinquishing the processor; at barrier operations,
processes should spin SE, .= 450us.

Sensitivity to Load-Imbalance

The previous experiments showed that losing scheduling coordination for bulk-
synchronous applications with no load-imbalance had little penalty; there is even less rela-
tive penalty for losing coordination when there is load-imbalance across processes. In our
next set of experiments, we show that spinning the minimum baseline amount at reads and
barriers is sufficient for a wide variety of bulk-synchronous applications. In these work-
loads, we examine both the NEWS and Transpose communication patterns for a range of
computation granularities (between ¢ = 100us and ¢ = 100ms) and levels of load-imbalance
(between V =0and V =2-g).

The measurements presented in Figure 10.2 show that for all workloads on 16
workstations, the slowdown with implicit coscheduling is no greater than 15% worse than
ideal explicit coscheduling. Therefore, little additional benefit can be achieved by approx-
imating load-imbalance at run-time for these workloads. These results closely match the
predictions of the simulator for a system with W = 50us (shown in Figure 8.12), where
the worst-case slowdown is within 25% when processes spin the minimum baseline amount.
As predicted for a similar range of simulated workloads in Figure 8.16, applications with
a large amount of load-imbalance (e.g., V' > 20ms) exhibit speedups relative to explicit
coscheduling.

In summary, given the high costs of barrier operations relative to context-switches
in our environment, it is not necessary for bulk-synchronous applications to approximate

159

NEWS
[Slowdown

8 8 883888

1.2
11

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Slowdown

$3F7I0 TTETIY PEEEIY SSEIEY 2ETIIY
>>>>>> >>>>>> >>>>>> >>>>>> >>>>>>

500us g=100us

g=100ms g=50ms g=10ms g=5ms g=1lms g

Transpose
[Slowdown

=)

1.2
11

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Slowdown

TIITY TTTUIY TTTUIY grerLe uuuuu‘ﬁ‘ ‘?‘ﬁﬁ‘ﬁ“ﬁ“ﬁ‘ %‘??uﬂ“ﬁ‘
2553 255 533535 253553

g=100ms g=50ms g=10ms g=5ms g=1lms g=500us g=100us

Figure 10.2: Performance on Bulk-Synchronous Workloads. The graphs compare
implicit coscheduling with the full conditional two-phase waiting algorithm (i.e., baseline and
conditional spin amounts as specified in Table 9.2) to ideal explicit coscheduling with spin-
waiting. The workload consists of three bulk-synchronous jobs on 16 workstations. Both
the NEWS and Transpose communication patlerns are examined; in each case, the lime
between read operations is fixed at ¢ = 8us. The time between barriers, g, is varied between
100us and 100msacross the sets of bars. Within each set of bars, the load-imbalance across
processes is varied fromV =0toV =2.g.

160

load-imbalance at run-time. Instead, it is sufficient for processes to spin-wait the mini-
mum baseline amount at barriers and lose coordination when load-imbalance exists. With
this simple implementation of implicit coscheduling, bulk-synchronous applications perform
within 15% of implicit coscheduling.

10.1.2 Conditional Spin

To show the importance of conditional spinning, we investigate applications that
are more difficult to schedule: those with continuous communication in all phases. The
simulation results in Section 8.3 showed that conditional spinning with Sgond significantly
improved performance. However, the simulations examined a relatively limited set of appli-
cations: the time between barriers was fixed at ¢ = 100ms and there was no load-imbalance
across processes. For our implementation measurements, we expand our workload to ex-
amine a larger set of synchronization granularities (from g = 100us to ¢ = 100ms) and two
load-imbalances (V =0 and V =1.5-¢).

Comparison of Waiting Algorithms

Figure 10.3 compares the performance of three different waiting algorithms: block-
ing immediately, two-phase waiting with baseline spinning, and two-phase waiting with
baseline and conditional spinning. The spin amounts used in the two-phase waiting algo-
rithms match those summarized in Table 9.2. In these workloads, processes repeatedly read
from their four nearest neighbors in a regular NEWS pattern.

The trends in these graphs match those found in the simulations (Figure 8.4) in
several respects. First, as expected, blocking immediately performs more poorly on the
continuous-communication workload than on the bulk-synchronous workload. Second, the
smaller the amount of computation between reads (i.e., the smaller the value of ¢) and the
less load-imbalance (i.e., the smaller the value of V'), the more performance suffers when
processes block immediately.

However, once again, the simulations overestimate the penalty of blocking imme-
diately relative to explicit coscheduling. For example, with g = 100ms between barriers and
¢ = 10pus between reads, the performance of immediate blocking is roughly 3.25 times worse
than explicit coscheduling in the simulations, but less than 2.75 times worse in our imple-
mentation. Nevertheless, in neither environment is blocking immediately a viable approach
for processes that communicate frequently.

Figure 10.3 also shows that performing two-phase waiting with baseline spinning
improves performance significantly over blocking immediately. When there is no load-
imbalance in the applications, performance is always within 52% of ideal explicit coschedul-
ing, in stark contrast to the 2.4 times slowdown measured in the simulations (Figure 8.7).
As a result of this better than expected improvement, conditional spinning achieves less
additional benefit. For example, at the point where g = 100ms, ¢ = 10us, and V' = 0,
conditional spinning improves the execution time of the workload from 52% worse than
explicit coscheduling to within 28%.

161

No Load-Imbalance (V=0)
[Block Base [l Conditional

3
= 2.75
N 2.5
- 2.25
2 5
1.758
15 2
= o = 1280
i 5
k8 34 1
e 5
o & 0.75
& i 2z 05
i)
4 il 0.25
;:: B
) a a @ E 9 @ 9 9 9 . 9 9 b 0
3 2 ¢ 5 L & § 2 g -
g=100ms g=1lms g=100us
Load-Imbalance (V=1.5)
[Block Ed Base [l Conditional 3
2.75
2.5
2.25

&

b
ke

1

%

kl

K

b

K

kel

%

%

K

b

K

kel

%

4l

K

< 1%

£ £
s &

ol

%
E}
3
8

&

2ms

10us |
250us

10us |

10us
]
50uS [
= RS
250us [——
20
1ms [E——)
e
S —]
T
1
CooOoORrRREREN
N O N O N
77 Sowdo
owdown

50uS [
=

c=10us |
o=t
c=250us
=
o=
=
o=
c=:
c
o=
&=
o=
c=:
&=

g=100ms g=10ms g=1ms g=100us

Figure 10.3: Sensitivity to Waiting Algorithm for Continuous-Communication
Programs. We compare the performance of the workloads when processes block imme-
diately, two-phase wait with baseline spinning, and two-phase wait with both baseline and
conditional spinning. The workload consists of three jobs running on 16 workstations. Fach
application communicates with request-response (read) messages in a NEWS pattern. The
time between barriers is varied between g = 100us and g = 100ms and the time between
reads is also varied between ¢ = 10us and ¢ < g. The applications in the first graph have
no load-imbalance (V = 0); in the second graph, the load-imbalance is V = 1.5g.

162

NEWS + No Load-Imbalance (V=0) Random + No Load-Imbalance (V=0)
[Slowdown _ [Slowdown _
= 18 = 18
= 16 = 16
= 14 ¢ = 14 ¢
= 12 Z = 12 Z
= o = o
=1 3 =1 3
= 08 = 08
= 06 = 06
= 04 = 04
é 0.2 % 0.2
mmmmmmmmmm E 0 SRR e E 0
§ ¢ g & ¢ ' R N N R
g=100ms g=10ms g=1ms g=100us g=100ms g=10ms g=1ms g=100us
NEWS + Load-Imbalance (V=1.5) Random + Load-Imbalance (V=1.5)
[Slowdown _ [Slowdown _
= 18 = 18
= 16 = 16
= 14 ¢ = 14 ¢
= 2 =
= 120 = 120
= K] = K]
=1 5 R
= 089 = 089
= 06 = 06
= 04 = 04
= 02 = 02
mmmmmmmmmm E 0 SRR e E 0
§ ¢ g & ¢ ' R N N R
g=100ms g=10ms g=1ms g=100us g=100ms g=10ms g=1ms g=100us
Figure 10.4: Performance of Continuous-Communication Programs with

Request-Response Messages. The workload consists of three jobs running on 16 work-
stations. Fach application communicates with request-response (read) messages in either
the NEWS or Random pattern. The time between barriers is varied between g = 100us and
g = 100ms and the time between reads is also varied between ¢ = 10us and ¢ < g. The
applications in the first set of graphs have no load-imbalance (V = 0); in the second set of
graphs, the load-imbalance is V = 1.5g.

163

Conditional Spin Performance

Figure 10.4 explores the performance of conditional spinning in more detail, ex-
panding the workload to include applications communicating in a Random pattern. There
are four interesting facts to observe from these measurements.

First, conditional spinning is highly effective for all but a few extreme communica-
tion and synchronization rates. For example, performance is usually within 30% of explicit
coscheduling for workloads with no load-imbalance. As expected from the bulk-synchronous
applications, jobs with frequent barriers perform similarly to explicit coscheduling and
jobs with significant load-imbalance and infrequent communication (e.g., ¢ > 1ms) exhibit
speedups.

Our second observation is that the only workloads that do not perform well are
those where both load-imbalance and communication rates are very high. For example,
when V' = 150ms and processes communicate every ¢ = 10us, performance is almost 80%
worse than explicit coscheduling. We believe that such workloads will not occur often in
practice, because their performance will be poor even in a dedicated environment. To sup-
port these extreme applications, the two-phase waiting algorithm must predict the amount
of load-imbalance in the application and adjust the baseline spin time to match the expected
completion time of the barrier. With this approach, processes remain coordinated at the
barrier, which allows waiting processes to handle incoming message requests.

Third, we note that workloads that communicate in a NEWS pattern perform slightly
worse than workloads that communicate in an all-to-all Random pattern. Applications in
which all processes communicate with one another stay coordinated as a unit more effec-
tively than applications in which processes communicate in subgroups. As described in
Section 6.4.2, all-to-all communication patterns encourage either all or none of the pro-
cesses to remain scheduled. This effect matches the simulation results in Figure 8.7 and
the simulations reported in [47]: when processes did not spin the full baseline amount, pro-
cesses communicating in an all-to-all Transpose pattern stayed coordinated through the
communication phase more often than those communicating in the NEWS pattern.

Fourth, the Random pattern with infrequent barriers and infrequent communication
(i.e., ¢ = 2ms) observes a speedup relative to explicit coscheduling, even with no load-
imbalance. This effect is due to the fact that processes are only notified of message arrivals
when they either send a message or explicitly poll the network. Even though each process
performs about the same amount of computation between communication events, there is
always some small amount of variation in the actual amount of intervening computation;
that is, cooperating processes do not communicate with one another at precisely the same
time. Because messages are only handled when the destination process touches the network,
a sending process that is slightly slower than its destination must wait until the next time
the destination process communicates for the request to be serviced. As a result, even in a
dedicated environment, a sending process may spin-wait for more than 2ms for the reply.
With such high waiting times at read operations, processes can achieve better performance
by spinning only the baseline amount and relinquishing the processor if the response does
not return in the expected interval.

Finally, the data indicates that conditional spinning is not effective when processes
are communicating in the NEWS pattern at an interval of approximately ¢ = 250us and

164

there are infrequent barriers. This communication rate has particularly poor performance
because the time between arriving messages is just slightly longer than the interval required
to activate conditional spinning, Sgond = 3W = 210us. As a result, conditional spinning is
rarely activated for these workloads. Even worse, when conditional spinning is activated, it
is unlikely that any messages arrive in the next interval, and thus the additional spin-time is
wasted. Additional experiments (not shown) that evaluated values of S5 . other than 3W
produced only marginal improvements for these workloads and drastically harmed others.

In this section exploring conditional spinning, we have demonstrated that the
performance of implicit coscheduling on continuous-communication applications is within
30% of explicit coscheduling for most workloads containing three jobs on 16 workstations.
However, in a few extreme cases of very frequent communication coupled with large load-
imbalance, applications exhibit slowdowns of nearly 80%. We want to stress that these
workloads are unlikely to occur often in practice: even applications with excessively large
amounts of load-imbalance perform adequately as long as processes compute for at least
50us between messages.

10.1.3 Local Scheduler

In the previous measurements in this chapter we evaluated workloads containing
multiple copies of the same application. As a result, fair allocation of resources is not an
issue and the Solaris Time-Sharing (TS) scheduler is sufficient for evaluating the effective-
ness of implicit coscheduling. However, as shown with the simulations in Section 8.5, the
TS scheduler does not adequately handle workloads containing jobs with different commu-
nication rates, giving applications that communicate less frequently more than their fair
share of resources.

In this section, we reproduce a subset of the simulation experiments that evaluated
the fairness of the Solaris Time-Sharing scheduler and the Stride Scheduler with System
Credit (SSC). In these measurements, as in the corresponding simulations, the performance
metric is the relative execution time with implicit coscheduling versus explicit coscheduling
for one job competing against a number of continuously-running background jobs. Rather
than repeat the full combination of workloads examined in the simulations, we focus only
on those workloads shown to be particularly problematic. That is, rather than vary the
communication characteristics of both the measured job and the background jobs, we exam-
ine a single fine-grain job in competition with background applications whose computation
granularities are varied from fine to coarse-grain.

Once again, we call the slowdown that a job experiences against jobs with iden-
tical communication characteristics the base slowdown. The local scheduler provides fair
performance for a workload with a measured job A and a collection of background jobs
if it exhibits slowdown near the base slowdown for job A. If the scheduler tends to favor
the measured job within the workload, then its slowdown in that workload is less than its
base slowdown; if the scheduler is biased against this measured job, its slowdown in that
workload is larger than its base slowdown.

165

Time-Sharing -- Bulk Synchronous

1.4 9=100us, Jobs=3 —
12 \/
1 4
c
§ 0.8
=
o
wn 0.6 1
0.4 1
0.2 1
0 T T T
100 1000 10000 100000 1le+06
Competing Synchroniziation Interval (g us)
Stride Scheduling with Credit -- Bulk Synchronous
1.4 9=100us, Jobs=3 —
12 A/—’\/\/\/
1 4
c
§ 0.8
=
o
wn 0.6 1
0.4 1
0.2 1
0 T T T
100 1000 10000 100000 1le+06

Competing Synchroniziation Interval (g us)

Figure 10.5: Fairness with Bulk-Synchronous Programs. One measured job and
two competing background jobs are allocated to 16 workstations. Only the slowdouwn of
the one job is measured; the background jobs run continuously during the experiment. We
evaluate bulk-synchronous workloads; the time between barriers in the measured job is firved
at g = 1ms, while g is varied in the background jobs up to g = 1s. All bulk-synchronous
jobs have V. = 0, ¢ = 8us, and communicate in the NEWS pattern. The first graph uses
the default Solaris Time-Sharing scheduler on each workstation; the second graph uses our
implementation of the Stride Scheduler with System Credit.

166

Bulk-Synchronous Workloads

In Figure 10.5 we evaluate a bulk-synchronous workload containing three jobs on
16 workstations with both the TS and the SSC schedulers. In the measured job, the time
between barriers is held constant at ¢ = lms, while in the background jobs, the time
between barriers is varied up to ¢ = 1s. In these workloads, all jobs communicate in the
NEWS pattern with ¢ = 8us and no load-imbalance at barriers (V = 0).

Our measurements with the TS scheduler are similar to those predicted by the
simulations in Figure 8.17. In both environments, the slowdown of the fine-grain measured
job gradually worsens as the granularity of the background jobs is increased. For example, in
the simulations when the time between barriers in the measured job is ¢ = 100us, the base
slowdown is 12%; when competing against coarse-grain jobs where g > 100ms, slowdown
increases to 40%. In our implementation, fairness degrades from base slowdown of 5% to
a slowdown of 30%. We believe the slight improvement in performance is due to the fact
that we assume a higher context-switch cost of W = 200us in the simulations.

More dramatically, measurements with the SSC scheduler show that slowdown
is relatively flat as the granularity of the background jobs is increased. The simulations
predicted that performance with SSC is fair until the computation time between barriers
in the background jobs exceeds the length of a time-slice; at the point where ¢ > 100us,
slowdown relative to explicit coscheduling increases dramatically from less than 10% to more
than 60%. However, in our implementation, even when the granularity of the competing
jobs is above g = 100us, the slowdown of the fine-grain job remains relatively constant. We
believe that our modification to the SSC scheduler that ranks the priority of each job over
the () = 100ms interval, as described in Section 9.5.1, is responsible for this improvement.

Continuous-Communication Workloads

For our final fairness experiments, we evaluate the fairness of the two local sched-
ulers on three continuous-communication workloads. In these workloads, we examine the
effect of competing jobs communicating at different rates, but synchronizing with the same
granularity; in the measured job, the time between reads is held constant at ¢ = 50us, while
c is varied for the background jobs. We consider workloads with two different values of g
(100ms and 1s); in each case, the jobs in the same workload have the same value of ¢g. In
all cases, there is no load-imbalance (V = 0), and processes read from remote processes in
a Random pattern. For the continuous-communication workload with ¢ = 1s, we evaluate
both two and three background jobs.

The performance shown in Figure 10.6 illustrates that both schedulers perform
better than the simulation predictions in Figures 8.20 and Figures 8.21. For example, with
the TS scheduler, we predicted slowdowns nearly 2, 3.5, and 8 times worse than ideal explicit
coscheduling for the three continuous-communication workloads (i.e., with ¢ = 100ms for
three jobs, g = 1s for three jobs, and g = 1s for four jobs). However, in the measurements
of our system, the worst-case slowdowns are only 1.3, 1.75, and 2.10 worse than explicit
coscheduling. We believe the dramatic difference in these results is due to the fact that we
assume a significantly higher context-switch cost of W = 200us in the simulations.

More importantly, the SSC scheduler is surprisingly fair for all measured work-

167

Time-Sharing Continuous Communication

c
2
o
he] cteriizeeesnesT
E 14 g=1s, Jobs=4 —
n g=1s, Jobs=3 ------
g=100ms, Jobs=3 -
0.5
0 T T T T
10 100 1000 10000 100000
Competing Communication Interval (c us)
Stride Scheduling with Credit -- Continuous Communication
2 4
c
2
o
=} S
E 14 g=1s, Jobs=4 —
[g=1s, Jobs=3 ------
g=100ms, Jobs=3 -
0.5
0 T T T T
10 100 1000 10000 100000

Competing Communication Interval (c us)

Figure 10.6: Fairness with Continuous-Communication Programs. One measured
job and two or three competing background jobs are allocated to 16 workstations. Only
the slowdown of the one job is measured; the background jobs run continuously during the
experiment. We evaluate continuous-communication workloads where barriers are rarely
performed. In each workload, the values of g are identical for all jobs (either g = 100ms
or g = l1s), there is no load-imbalance, and processes read from remote processes in a
Random pattern. The examined job has the interval between reads set at ¢ = 50us, while
c is varied for the two or three background jobs. The first graph uses the default Solaris
Time-Sharing scheduler on each workstation; the second graph uses our implementation of
the Stride Scheduler with System Credit.

168

loads. Even with four jobs in the system and processes synchronizing only once a second,
the slowdown of the fine-grain measured job is within 55%. This represents a significant
improvement relative to the 3.5 times slowdown predicted by the simulations for some
continuous-communication workloads. It would be interesting to incorporate the SSC im-
plementation changes into the simulator to confirm that it fixes the problems seen there.

10.2 Range of Workloads

For the remainder of our experiments, we evaluate workloads containing jobs with
the same communication characteristics and thus return to the Solaris Time-Sharing sched-
uler. In this section, we measure workloads that differ significantly from those evaluated in
our earlier simulations. We begin by expanding our communication primitives to include
one-way requests (i.e., stores) and bulk messages. Next, we evaluate the performance of
a set of real Split-C applications. We then stress the scalability of implicit coscheduling,
increasing both the number of competing jobs and the number of workstations. Finally, we
test the robustness of our approach to different layouts of processes across workstations.

10.2.1 Additional Communication Primitives

Our previous measurements assumed that the only communication operations were
short request-response messages, i.e., reads. In our next experiments, we show that one-ways
requests (i.e., stores) and bulk request-response messages also perform well with implicit
coscheduling.

One-Way Request Messages

In our next experiments, we investigate the performance of applications perform-
ing one-way requests, or stores. In these workloads, we again examine three continuous-
communication NEWS applications competing on 16 workstations; the applications are iden-
tical to those in the previous experiments, except for the replacement of store operations
for reads.

Note that in these experiments, we use a variation of our performance metric: we
calculate the slowdown of the workload with implicit coscheduling relative to the sum of the
execution times when each job is run individually with implicit coscheduling (as opposed to
run individually with spin-waiting). This difference is required because, for reasons not fully
understood, one job containing frequent store operations (e.g., ¢ = 10us) run in a dedicated
environment performs twice as slowly with spin-waiting as with two-phase waiting.! If
we were to compare implicit coscheduling to spin-waiting, our performance on fine-grain
applications would exhibit a significant speedup.

Figure 10.7 shows our performance on a range of workloads for two different
conditional spin times, Sgond = 3W and Sgond = W. In Section 6.3, we showed that

"We hypothesize that the improvement results because the version with two-phase waiting forces the
sending process to back off when contention occurs at destination processes.

169

UMOPMO|S

n wn wn)
™ ™ o o~ i — (=} o

R R R

BB

o
N—r
o R]
o) R s
- e
c B]
o = Rt rRi)
s [T sue-o
[su=
[snose=>
= s
® [snos=o
o R R ot
[] snot=0

100us

9

100ms

g

UMOPMO|S

0 wn ol o
™ ™ o o~ - - o o

RS0

Bl

R

1.5)

RSt

suig=o

swi=o

wu»u»unu»u»unu»u»«nu»um
[

T
(RN

BEeiestes

Load-Imbalance (V

e
&

I W

3
S|

B

RReRR|

R R

] snoto

kY

100us

9

g=10ms

100ms

g

W. The

The time between barriers is

0]
Cond —

3W; the second bar in each set assumes S

Cond —

Performance of Continuous-Communication Programs with One-
O

Way Requests. Fach application communicates with one-way request (store) messages
in the NEWS pattern. The first bar in each set shows the slowdown when processes perform

workload consists of three jobs running on 16 workstations.

conditional spinning with S

Figure 10.7:

¢ = 10us and ¢ < g. The applications in the first graph have no load-imbalance (V =0); in

varied between g = 100us and g = 100ms and the time between reads is also varied between
the second graph, the load-imbalance is V = 1.5g.

170

a one-way request message must arrive every W time units to justify having the receiv-
ing process spin longer than the baseline amount. However, a request-response message
must only arrive every 3W units to justify spinning longer, due to the additional cost paid
by the requesting process for such operations. Therefore, our previous experiments used
S8 =3W.

As Figure 10.7 indicates, when a process conditionally spins for an interval of 3W
after receiving a one-way request, the performance of frequently communicating workloads
suffers dramatically. If the destination process spins for 3W after receiving a message, then
the process wastes too many cycles when messages are arriving frequently, yet the scheduling
of processes is not fully coordinated. For example, with ¢ = 100ms and ¢ = 10us, the
workload completes 3.5 times slower than with explicit coscheduling.

If a process conditionally spins for only W after receiving a one-way message, then
the process correctly trades off the cost of spinning with the cost of being scheduled later
to receive a one-way message. Thus, with Sg(md = W, this workload completes only 50%
slower than with explicit coscheduling. Once again, workloads that perform more frequent
barriers or communicate slightly are not sensitive to the amount of conditional spinning;
these workloads perform within 20% of explicit coscheduling regardless of the conditional
spin-time.

While these experiments reveal that workloads with one-way request messages
perform best with Sg(md = W, the measurements in Section 10.1.2 showed that workloads
with request-response messages perform best with Sgond = 3W. This discrepancy in the
best conditional spin-time for different message types is an issue for our implementation
because the receiving process does not know the type of the message that it has received
and handled; as described in Section 9.3.2, our current interface to the AM-II polling
function simply returns the number of messages handled in that invocation. Since one-
way messages are an application concept and are not primitives within the AM-II layer,
distinguishing between message types must be done at the application layer — perhaps
with additional accounting in the Active Message handlers. Therefore, in our prototype
implementation, we use the single value of S¢og = 3W for our remaining experiments.
However, a complete implementation should distinguish between incoming message types
for the best performance on all workloads.

Bulk Messages

Our next experiments briefly evaluate the performance of implicit coscheduling
on applications that communicate with bulk messages. These workloads contain three
continuous-communication applications that are identical to those in the previous experi-
ments, with the exception that 16KB of data are read from remote processes instead of a
single word.

Our implementation reads bulk data from remote nodes by building on the support
for medium-sized messages in AM-II. Each medium message can return 8KB of data. To
read larger amounts of data, the sending process initiates multiple requests for 8KB, and
then waits for all responses before continuing its computation.

Figure 10.8 shows that most workloads requesting bulk messages exhibit a speedup

171

No Load-Imbalance (V=0)

[Slowdown

— 0

n
&

g=100ms g=10ms g=1lms

-1ms
c=2ms
©c=50us

S

Load-Imbalance (V=1.59)

[Slowdown
c
73
07 8
=
e
=0

3 3

-1ms
-2ms.
50us.

-250us
1ms
2ms

250us

250us

I
[y N

c
c
c

n
i © W W

c
c
c

g=100ms g=10ms g=1lms

Figure 10.8: Performance of Continuous-Communication with Bulk Messages.
Fach application repeatedly requests 16KB messages (i.e., reads) from neighbors in the
NEWS pattern. The workload consists of three jobs running on 16 workstations. Not as many
workloads are shown as for the previous experiments: the time between barriers is varied
between g = 1ms and g = 100ms and the time between reads is varied between ¢ = H0us or
¢ = 250us and ¢ < g. The applications in the first graph have no load-imbalance (V = 0);
in the second graph, the load-imbalance is V = 1.5g.

172

with implicit coscheduling relative to explicit coscheduling. In these experiments, the
baseline amount that processes spin while waiting for the bulk response is identical to
that for short request-response messages (i.e., Sgase = 130us). Because bulk messages re-
quire more time than short messages to complete, processes relinquish the processor before
the bulk read is completed.

Our measurements show that implicit coscheduling can achieve superior perfor-
mance to explicit coscheduling for applications with bulk messages of 16KB. By waiting
only a small baseline amount before relinquishing the processor, even workloads with no
load-imbalance can finish in 80% of the time required with explicit coscheduling. Just as
processes should relinquish the processor in the presence of high network latency or load-
imbalance, processes should also relinquish the processor when waiting for bulk messages.
These preliminary measurements indicate that processes should not wait for messages longer
than 16KB.

For workloads with bulk messages shorter than 16 KB or with a mix of short and
long messages, it is likely that processes should remain coordinated. Remaining coordi-
nated through the bulk request-response message requires an adjustment of the baseline
spin amount to reflect the expected completion time of the longer transfer. We leave the
investigation of the message size at which processes should wait for the bulk transfer to
complete rather than relinquish the processor as another area for future work.

10.2.2 Real Applications

Analyzing synthetic applications exposes some of the strengths and weaknesses
of our implementation in a controlled environment. However, the synthetic programs do
not change behavior over time and do not mix different communication styles. To evaluate
a more varied set of applications, we examine the real Split-C applications described in
Section 9.4.

The performance of these seven Split-C applications with baseline and conditional
spinning is shown in Figure 10.9. In these experiments, three copies of the specified ap-
plication are run on 16 workstations. For all applications, performance is within 30% of
ideal explicit coscheduling. A few of the applications exhibit significant speedups relative
to explicit coscheduling due to their use of bulk messages: mm and f£ft.

The two applications, radix:small and emd3d:small, that perform the worst
with implicit coscheduling rarely synchronize yet communicate frequently with random des-
tinations, matching the worst-case continuous-communication synthetic applications. For
example, as shown in Figure 9.7, radix:small has almost no barriers and usually com-
putes for less than ¢ = 30us between store operations; as shown in Figure 9.8, em3d:small
has about 2.5 seconds between barriers, yet computes only about ¢ = 10us between reads.
We note that both of these applications were specifically written to stress communication
performance and are known to not scale as well as their optimized counterparts with bulk
messages in a dedicated environment [3, 39]. As expected for continuous-communication
applications, conditional spinning significantly improves performance relative to baseline
spinning. For example, with baseline spinning, em3d:small runs nearly 80% slower than
explicit coscheduling; with conditional spinning it improves to within 30%.

173

[l Baseline Spin [] Conditional Spin 18

1.6
1.4
1.2

H
lowdown

08
0.6
0.4

0.2

[

Pair
[

Local

Pa\r‘
T e
O
O A
[0 0 O 0 0 0 o e
[

o

Local
Pair
Local
Local
Pa\r‘
Local
Pair
Local
Pa\r‘
Local
Pa\r‘

mm fft radix em3d fft:small radix:small em3d:small

Figure 10.9: Performance of Real Split-C Applications. Three copies of each Split-
C application are run on 16 workstations. The first four applications use bulk messages,
while the last three use small messages. mm is matriz multiply; £t is a fast Fourier trans-
form; radix is a radiz sort; em3d models the propagation of electro-magnetic waves in three
dimensions.

We believe that the performance of radix:small and em3d:small could both be
improved in two ways. First, both applications perform both read and store operations.
However, both applications use the same conditional spin amount as the applications built
exclusively on reads (i.e., Sconda = 3W). Using the desired conditional spin-time of Scond =
W could improve these applications, as demonstrated in Section 10.2.1.

Second, our implementation of Split-C can slightly degrade the performance of
applications sending many one-way messages to random destinations in a dedicated envi-
ronment. As described in Section 9.3.1, to avoid spinning in AM-II, the Split-C run-time
layer sends messages in bursts of no more than sixteen before waiting for all to return. Thus,
store operations must sometimes wait on an acknowledgment with implicit coscheduling. As
a result, running just a single copy of em3d:small with this constraint results in slowdowns
of 10% compared to the unmodified version of Split-C. Leveraging the new non-blocking
interfaces to AM-II layer is expected to improve these workloads.

Since it appears that implicit coscheduling can more than adequately handle real
applications with a distribution of message sizes, communication patterns, and communi-
cation intervals, in our remaining experiments we return to synthetic applications to more
thoroughly stress the performance of implicit coscheduling in a controlled manner.

10.2.3 Job Scalability

Our next experiments investigate the performance of implicit coscheduling as the
number of competing jobs in the system is increased. We examine two bulk-synchronous and
two continuous-communication workloads as we increase the number of competing jobs from
one to seven. We stop at seven jobs because this is the number of communicating processes

174

UMOPMO|S

E
IS
©
[a]
]|

© © < o

— o o o o o
I -
R R SR S R R RS
B R R SR TSI, wopuen
| | uneseq
I oo
B R R R Rl uopuey

[Jinesoq

I 070

R R R RSB R RR BRI wopuey

7 anejea

I, - 0r-0

nesoq

I, -
RS ReR OO0 wopuey

f e

I oo

| inejea

I, o>

B S S SRS EIETNCS: iopuey

ol

[Janesoq

2Jobs 3Jobs 4Jobs 5Jobs 6Jobs 7Jobs

1Jobs

UMOPMO|S

© «© < o
<+ © ©o o o o

=200ms
100ms

100ms, V
HQ

9
4 Random

e
pos
lsts®

[Default

PR AR X IR RALX LR ISLIIR
BRSSO WopURY

[—
I o>

P R R A R R
BESTGOOSOOSOTBUGRHE, WoPUeY

[Jinesoq

l___ Eme
P SO e o Ao 9 Do
IR R T wopuey

7 anesea

I - oc:->

[nesoq

I, -
IR RIS o

f e

I, :co:->
RERREEREERE

i
| inejea

I, co:->

B S S IR TSSO BT wiopuRY

TR0 RRTRRRs: wopumy

ol

[Jinesoq

2Jobs 3Jobs 4Jobs 5Jobs 6Jobs 7Jobs

1Jobs

Job Scalability with Bulk-Synchronous Programs. The number of

jobs in the system is increased from one to seven, each running on 16 workstations. Within

Figure 10.10:

each graph we investigate three slight variations on the placement of jobs and on the local

operating system scheduler.
layout across nodes. In the

Finally, with Q

In the Default case, processes are placed with an identical

processes are randomly placed on different nodes.

)

Random case

100ms, processes are placed identically across workstations as in the Default

case, but the local scheduler is modified to use () = 100ms time-slices at all priority levels.
Fach workload reads from remote processors in the NEWS pattern. The first bulk-synchronous
workload represents medium-grain applications (g = 1ms) with no load-imbalance (V =0);

the second bulk-synchronous workload represents coarse-grain applications (g = 100ms) with

a large amount of load-imbalance (V = 200ms).

175

the AM-II layer can simultaneously support without paging communication endpoints to
and from the network interface card.

Bulk-Synchronous Workloads

Figure 10.10 shows the performance of implicit coscheduling with conditional
spinning on bulk-synchronous workloads. The first bulk-synchronous workload represents
medium-grain applications (¢ = 1ms) with no load-imbalance (V' = 0); the second bulk-
synchronous workload represents coarse-grain applications (¢ = 100ms) with a large amount
of load-imbalance (V' = 200ms). All applications communicate in the NEWS pattern.

Within each graph we investigate three slight variations on the placement of jobs
and on the local operating system scheduler. In the Default case, processes are placed
with an identical layout across nodes; that is, process 0 from each job is placed on node
0, and so on through process 15 and node 15. In the Random case, processes are randomly
placed on different nodes. Finally, with Q=100ms, processes are placed identically across
workstations as in the Default case, but the local scheduler is modified slightly to use
) = 100ms time-slices at all priority levels.

As shown in the first graph, the medium-grain bulk-synchronous workload with no
load-imbalance has very stable performance as the number of competing jobs is increased.
As predicted by the simulation results across Figures 8.18 and 8.19, when the layout of
processes is identical across jobs, performance is slightly better than when processes are
placed randomly, due to the tendency of the root process to direct the scheduling of the
entire job. However, this effect is much smaller in our implementation. In addition, this
workload has little sensitivity to the time-slice used by the local scheduler.

However, as shown in the second graph, the performance of the coarse-grain work-
load with high load-imbalance actually increases relative to explicit coscheduling as the num-
ber of jobs is increased. For workloads with high load-imbalance, better system throughput
can be achieved when processes relinquish the processor when waiting at barriers and allow
a competing process to perform useful work, than when processes wastefully spin-wait with
coordinated explicit coscheduling. With only a few processes in the system, a significant
amount of idle time exists on each workstation, indicating that the full benefit of relinquish-
ing the processor is not realized. With more competing jobs, the likelihood increases that
another process has useful work to perform.

Perhaps more surprisingly, performance for the highly load-imbalanced workload
improves when processes are randomly placed across workstations. When the root processes
from every job are colocated on the same workstation, this workstation performs more work
than the other workstations and becomes a system bottleneck. Thus, when the root pro-
cesses are allocated to different workstations, workloads with high load-imbalance achieve
better performance. Finally, we note that this workload also has little sensitivity to the
time-slice used by the local scheduler.

Continuous-Communication Workloads

We also investigate the scalability of two continuous-communication workloads. In
both workloads, barriers are rarely performed (i.e., ¢ = 100ms), there is no load-imbalance,

176

UMOPMO|S
< © © T o
— — — o o o o o

Do o o o R e oo LoOS oot oot od ot
B T AT] SWOOT=0

P T T T T
B S S A T T oI 0o0)
G S e oo =
R R R R RIS wooT=0

unejeq

A S RSSO
e g I D S S O S S Sl S S SR S 3

[P0 DR L RO A R Al R a0 B OE AL 2 A RO a0 =
BB R R R BRI Ry swoor=0

e R R K P

unejea

.
d555e] swoot=0
nejeq
£
B R T T B SR o)
o [aetetate st tatetetetatetetatottotetatetetetatoretetestol B o)
o
ﬂ_ | unejeq
o ez
e e o 0 oo |
b B R S S I B Swi00T=0
=
3
o
[} B o o R o 0 B o Lol ool 0]
o B S L K S50 SWO0T=0

2Jobs 3Jobs 4Jobs 5Jobs 6Jobs 7Jobs

1Jobs

c=2ms

100ms

Q=

el
it

[Default

<
i

1.2

UMOPMO|S

—

Rl

oo
T L]

ST e
Soetesens R

SwooT=0

uneeq

T T e
IR IR KR KK I IR IR H K R]
[tetteteratitotetetetetitotetetstetitetetitotete)

B T T
2

SwoT=0

unejeq

oSt e ot tatoretetutetototitatelotetatetotets IR

% RTTTIRLTS 25
S e R G B S

o 0]
BRSNS

unejea

SwooT=0

unejeq

R I I I
SRR

[aletelaterols’

B ool ot oo o

R e

S TS T T
[ioasiey 00

SwoT=0

unejea

I
ST swooT=0

unejsa

oo
e T LTI cusoor=d

ettt st et sty it

wnejeq

2Jobs 3Jobs 4Jobs 5Jobs 6Jobs 7Jobs

1Jobs

-Communication Programs. The

Job Scalability with Continuous

Figure 10.11

increased from one to seven. We investigate only the case

number of jobs in the system is

We compare the performance of the

where processes are allocated identically across jobs.

Default Solaris

-slices for all

100ms), there

mme

100ms ¢

Time-sharing scheduler to one modified to use Q

ties. In both workloads, barriers are rarely performed (
load-imbalance, and processes read from remote processes in the Random pattern.

15 no

€., g =

priori

In the

Um-grain

in the medi

)

te every ¢ = 50us
te every ¢ = 2ms.

, processes communica

fine-grain workload on the left

workload on the right

, Processes communica

177

and processes read from remote processes in the Random pattern. In the fine-grain workload,
processes communicate every ¢ = 50us; in the medium-grain workload, processes communi-
cate every ¢ = 2ms. Since these workloads perform few barriers, performance is insensitive
to the layout of processes across workstations and we investigate only the case where pro-
cesses are allocated identically across jobs. However, we do compare the performance of
the default Solaris Time-Sharing (TS) scheduler (marked Default) to one modified to use
() = 100ms time-slices for all priorities (marked Q=100ms).

The first graph in Figure 10.11 shows that the performance of the fine-grain
continuous-communication workload is sensitive to the number of competing jobs and the
scheduling policy. As the number of jobs is increased from three to seven, performance
degrades from 10% to 45% worse than our ideal model of explicit coscheduling. Due to
the sensitivity of this workload to whether communicating processes are coordinated, per-
formance is sensitive to the lengths of the time-slices. Since time-slices in the Solaris TS
scheduler vary from ¢) = 20ms at the high priorities to () = 200ms, the more time a process
spends at high priorities, the shorter its time-slice and the more time is wasted achieving
coordination. Because the priority of every process is raised once a second and lowered only
when the process completes a time-slice, if a process is in competition with more processes
it will complete fewer time-slices in the one second interval. Therefore, with more jobs
in the system, processes spend more time executing at high priorities and receive shorter
time-slices.

Setting the length of all time-slices to ¢ = 100ms improves the performance of
five or more competing jobs. With this small modification, implicit coscheduling performs
within 30% of explicit coscheduling for up to seven jobs. Changing the local scheduler to use
the SSC scheduler with time-slices of) = 100ms is expected to have similar performance.

The second graph which shows the behavior of the medium-grain continuous-
communication workload is much more surprising. In Figure 10.4 we noted that a workload
containing three applications performing infrequent barriers and infrequent communication
(i.e., ¢ = 2ms) exhibits a speedup relative to explicit coscheduling. Since cooperating pro-
cesses do not communicate with one another at precisely the same time and messages are
only handled when the destination process touches the network, a sending process that is
slightly slower than its destination will have to wait until the next time the destination
process communicates for the request to be serviced. With such high waiting times at read
operations, processes achieve better performance by relinquishing the processor after the
baseline spin amount. With three competing jobs, the improvement was small relative to
explicit coscheduling. However, as the number of jobs is increased, this effect increases in
magnitude.

10.2.4 Workstation Scalability

The previous implementation measurements considered a cluster of 16 worksta-
tions. In our next experiments, we show that the performance of implicit coscheduling is
relatively constant as the number of workstations is increased from two to 32. We examine
the same four workloads as in the previous experiments: two continuous-communication
applications (i.e., ¢ = 100ms and V = 0 with the Random communication pattern and

178

Scalability with Workstations

14
121 //\/—/\
o T
s 0.8
o
°
8
%) 0.6
Continuous (c=50us) —
04 BSP (g=1ms,V=0) -
’ BSP (g=100ms,V=200ms) -
Continuous (c=2ms)
0.2
0 T T T T T T T
0 4 8 12 16 20 24 28 32

Workstations

Figure 10.12: Workstation Scalability. Three competing jobs are allocated to an in-
creasing number of workstations. We evaluate two continuous-communication and two bulk-
synchronous workloads. In both continuous-communication workloads, barriers are rarely
performed (i.e., g = 100ms), there is no load-imbalance, and processes read from remote
processes in the Random pattern. In the fine-grain workload, processes communicate every
¢ = b0us; in the medium-grain workload, processes communicate every ¢ = 2ms. The
bulk-synchronous workloads read from remote processors in the NEWS pattern. The first
bulk-synchronous workload represents medium-grain applications (g = 1ms) with no load-
imbalance (V = 0); the second bulk-synchronous workload represents coarse-grain applica-
tions (g = 100ms) with a large amount of load-imbalance (V' = 200ms).

179

either ¢ = 50us or ¢ = 2ms) and two bulk-synchronous applications (i.e., g = lms with
V =0 and g = 100ms with V = 200ms, both with the NEWS pattern).

Figure 10.12 shows the performance of these four workloads as a function of the
number of workstations in the cluster. As the size of the cluster increases, the baseline spin
for barriers increases as well, as shown in Figure 9.4. The graphs show that in no case does
performance degrade as the number of workstations is increased; the slowdown is always
within 30% of ideal explicit coscheduling. Performance is slightly worse for cluster sizes less
than 16 workstations for the one fine-grain continuous-communication workload because
the shorter execution time of barriers implies that coordinated scheduling is relatively more
beneficial. All in all, these results are very promising for larger configurations.

The main caveat with our workstation scalability results is that, as described in
Section 9.3.2, barriers are implemented in a linear fashion. In a dedicated environment,
hierarchical-tree barriers become more efficient than linear barriers for more than eight
workstations. While we have shown that implicit coscheduling performs very well with
linear barriers, we have not yet evaluated the impact of tree barriers. Tree barriers may
not be as beneficial in our environment relative to explicit coscheduling if context-switches
are triggered on all intermediate nodes. As a result, a thorough study of the scalability of
implicit coscheduling should investigate the impact of tree barriers.

10.2.5 Job Placement

Our previous experiments considered workloads where each workstation executed
the same number of jobs; hence, when load-imbalance existed, it was due only to load-
imbalance within the applications. In this section, we show that implicit coscheduling
performs well when the load across machines is unbalanced and that performance may even
improve relative to explicit coscheduling.

The three workloads that we examine (coarse, medium, and fine) consist entirely of
bulk-synchronous applications. The coarse-grain workload consists of applications synchro-
nizing every g = 100ms with V = 200ms; the medium-grain workload contains applications
synchronizing every ¢ = 10ms with V = 5ms; finally, the fine-grain workload contains ap-
plications synchronizing every g = 100us with V = 0. All workloads read in a NEWS pattern
with ¢ = 8us of intervening computation.

Figure 10.13 shows four parallel job layouts and the corresponding slowdowns
of the workloads. The layouts are not necessarily ideal for job throughput, but, instead
represent placements that may occur as jobs dynamically enter and exit the system; for
example, the jobs in layout b would be more efficiently placed with job A on workstations
0 through 7 and job B on workstations 8 through 15, thus requiring only two coscheduling
rows.

Layouts a, b and ¢ are constructed to verify that implicit coscheduling can han-
dle uneven loads across workstations. As desired for these three layouts, the applications
perform as if they were running on machines evenly loaded with three jobs. Because the
applications run at the rate of the most loaded workstation, workstations with less jobs are
idle with implicit coscheduling for the same time as an explicit coscheduling implementa-
tion. Thus, medium and fine-grain jobs perform similarly to explicit coscheduling, and the

180

7 8 9 101112 1314 15 7 8 9 101112 1314 15

0123 45°€6 0123456
[A[A[AJAJAJAJAJAJA[A] [[[[[] L[[[[AlAlAJAJAJATATIA] [[[]

TR TR TR TTTRTTTTRARRTTTTTRRS R TTTAERTTTTRTTTORRRTTTARTTTTRARRIT TR
iodiuffivfiofio]loffle {ufluflofioff ullufio]lo
I| |||I|!|I II!II II!II II!Il II!II II!Il II!I |I!I| II!II II!Il II!I II!I II!I II!II |I!I

012345678 9101112131415 012345678 0101112131415
[AIAJA[AA[AIA[A[A[AIA[A[AA] | | [AIAJA[AA[AIA[AIAIAL | | [|]]

S

B/8/BB|B[B|BBBBHdel¢de B|B[B/B/BIB|BB|B|B]
oppDDBDD [[[[[1] Glelelmlelel 100 lelell
© @

T STBB]

Job Placement
[Coarse Medium [Fine

el
s b 0.9
el isies .
e el
S5 st 1S
o ool B 0.8
ptetsl] eSete!] =
2 ey eetetyl [
tatel 050 o 3
o 0255] [peaaca
S <o Roese5e) tetetel (o}
(25055 X5
e s fed iz 0.7 5
X% 50 el sl
Cocse] egeds] Goedesd
ooge leoeod] etetel
s SR ko) tetstel 0.6
e 2 Besd b 29
2y 6 e g
] bitosel st et 05w
G L] Fas) 15 &3e5e .
%25350] 51 [e5aL) 5525
<503l ool 55 [s3¢365d
el peedl ket
525 bt pessdl [o553054 0.4
oo gl ko :
ool pesd keese)
L] ReS5] [i2sel
taterel Besee, Datereki
v leretely| [33450%4 0.3
ORI ko5l [09525¢5] .
255 e e tetstel
S50 22 rirged] K5
G el e [0
%203501 501 2524252 1525525]
Bt et
5 55 B el
RK] LA vy [peataca
] R [ediey Kotsead) 0.1
o s By s =
%] faset [ty e =0
5 2 E 2 E 2 E 2
= =R =R =R
8 s 2 s 2 s 2
Layout=a Layout=b Layout=c Layout=d

Figure 10.13: Sensitivity to Job Placement. Three or four jobs, A, B, C, and,
optionally, D are placed across 16 workstations. The figures designate how the processes
would be scheduled over time with explicit coscheduling. For each of the four layouts, we
investigate three workloads: coarse, medium, and fine. The coarse-grain workload consists
of applications synchronizing every g = 100ms with V. = 200ms; the medium-grain workload
contains applications synchronizing every g = 10ms with V. = bms; finally, the fine-grain
workload contains applications synchronizing every g = 100us with V. = 0. All workloads
read in a NEWS pattern with ¢ = 8us of intervening computation.

181

coarse-grain jobs achieve a speedup, as expected.

Layout d is designed to show that implicit coscheduling automatically adjusts the
execution of jobs to fill available time on each workstation. In this layout, three coschedul-
ing rows are required for each of the parallel jobs to be scheduled simultaneously, yet the
load on each machine is at most two. For jobs with coarse-grain communication dependen-
cies, implicit coscheduling achieves an additional speedup relative to explicit coscheduling
because processes can run at any time, not only in the predefined slots of the scheduling
matrix. Obtaining this benefit with explicit coscheduling is only possible if the appropriate
alternate job is carefully chosen to run when a machine is idle. Thus, with layout d, the
coarse-grain workload with implicit coscheduling requires only 55% of the execution time
as with explicit coscheduling.

10.3 Summary

In this chapter, we have measured the performance of our implementation of im-
plicit coscheduling on a range of applications. From our measurements we make two con-
tributions beyond that of simply understanding the absolute performance of our imple-
mentation. First, we can compare our results to those predicted by the simulations and
understand the importance of the factors that we did not model in the simulations. Second,
by analyzing which workloads perform well with implicit coscheduling and which do not, we
can recommend a programming style to application developers. Therefore, to conclude this
chapter, we first summarize our measured performance, then compare this performance to
that predicted by the simulations, and finally, advise programmers on how to achieve the
best performance with implicit coscheduling.

10.3.1 Implementation Performance

In most of the experiments in this chapter, we examined workloads containing three
competing parallel applications, all with the same communication characteristics, running
on 16 workstations with the default Solaris Time-Sharing (TS) scheduler. On synthetic
applications, we found that spinning the baseline and conditional amounts specified in Ta-
ble 9.2 resulted in the best implicit coscheduling performance. Bulk-synchronous programs
proved to perform very well in our environment: performance on our measured workloads
is always within 15% of ideal explicit coscheduling and sometimes better than explicit
coscheduling. Continuous-communication applications can be more problematic. Although
most perform within 30% of explicit coscheduling, a few extreme cases of very frequent
communication (¢ = 10us) coupled with large load-imbalance (V' > 150ms) perform almost
80% worse than explicit coscheduling; however, we do not believe such workloads will occur
often in practice.

We also investigated several types of applications that we did not examine in sim-
ulations. We showed that applications containing one-way request messages perform well
in our environment. We found that for workloads with very frequent communication and
infrequent barriers, conditional spinning should differentiate between message types (i.e.,
spin only Sg(md = W for a one-way message arrival, rather than Sgond = 3W). We also

182

measured the performance of synthetic applications communicating with bulk messages and
saw that processes requesting 16KB of data achieve speedups relative to explicit coschedul-
ing. We also measured seven Split-C applications with a variety of characteristics and saw
that the worst-case performance is within 20% of explicit coscheduling.

In other experiments, we studied the scalability of implicit coscheduling and its
ability to handle workloads where some workstations are allocated more processes than oth-
ers. We found that as the number of competing jobs increases up to seven per workstation,
the performance of workloads that are difficult to coordinate can be improved by using a
constant time-slice of 100ms in the TS scheduler for all priority levels. Our measurements
showed no degradation as the size of the cluster was increased to 32 workstations. Finally,
performance is robust even when the number of processes allocated to each workstation is
not identical throughout the system.

Finally, our experiments show that our implementation of stride scheduling with
system credit (SSC) is fair for a wide range of workloads. Even when a fine-grain job com-
petes against three other jobs communicating several orders of magnitude less frequently,
the fine-grain job exhibits only a 55% slowdown. This is a substantial improvement com-
pared to the default TS scheduler which exhibits a slowdown of 2.1. The modified version
of SSC in our implementation is fair even when some jobs compute between barriers for a
greater interval than the scheduling time-slice, unlike the version in the simulator.

10.3.2 Comparison to Simulation Predictions

In general, our implementation results closely match the performance predicted
by the simulations with the context-switch cost on message arrival set to W = 50us. The
primary differences in the two environments are: the mechanism for message-arrival no-
tification and the presence of communication overhead and gap. We examine these two
differences in turn.

In the simulations, a process is notified of a message arrival with an asynchronous
interrupt. In our implementation, a process is notified only when it touches the network:
either by sending a message or by explicitly polling the network with AM Poll. Thus, to a
remote process waiting for a response, a process that is ignoring the network appears as if
it were not scheduled. Given a dedicated environment, an exclusive dependency on polling
is known to harm the performance of applications that ignore the network for prolonged
periods of time [23, 94, 113]. Interestingly, implicit coscheduling with two-phase waiting
performs better for such programs than explicit coscheduling with spin-waiting. When a
sending processes must wait a significant amount of time for the destination process to touch
the network and return the response message, the process can achieve better performance
by relinquishing the processor and allowing another process to be scheduled.

The presence of communication overhead, o, and gap, g, in the implementation
make barriers costly. Given our implementation of linear barriers and the relatively low
context-switch cost, the need to stay coordinated while waiting at a barrier is less than pre-
dicted. As a result, bulk-synchronous applications should only spin the minimum baseline
amount at barriers before relinquishing the processor; for such workloads, there is no need
to approximate load-imbalance. However, for applications that continuously-communicate

183

even while some processes wait at barriers, approximating load-imbalance may still be
worthwhile. Finally, for clusters with more than 16 workstations, a tree barrier is superior
and should be used; investigating the performance of implicit coscheduling with a differ-
ent barrier implementation is reserved for future work. In retrospect, modeling o in our
simulator would have been worth the additional programming complexity and increase in
execution time.

10.3.3 Advice for Programmers

Our experience with a wide range of workloads has led us to understand which
types of applications behave well with implicit coscheduling. To achieve the best perfor-
mance with implicit coscheduling, applications should be written with the following char-
acteristics.

1. Infrequent Communication: If processes communicate infrequently with one an-
other, then their scheduling can proceed relatively independently of one another across
nodes. Independent scheduling is especially advantageous in situations where the load
across workstations is uneven, whether due to load-imbalance internal to the applica-
tion or to irregular placement of processes across workstations.

2. Frequent Barriers: If processes must communicate frequently, then frequent bar-
riers should be used to keep the scheduling of all processes coordinated. During an
intense communication phase, there should be little load-imbalance. Ideally, barriers
should precede all communication phases, as in our bulk-synchronous workloads.

3. All-to-all Communication: Applications in which all processes communicate with
one another (e.g., the Transpose and Random communication patterns) stay coordi-
nated as a unit more effectively than processes which communicate in subgroups (e.g.,
the NEWS pattern).

4. Bulk Messages: Most applications that communicate with bulk messages exhibit
speedups relative to explicit coscheduling. Because processes relinquish the processor,
rather than wait for slow responses to arrive, other processes can perform useful
computation.

Many of these qualities match those that programmers strive to obtain to achieve
good speedups in a dedicated environment. For example, barriers before communication
phases are known to be beneficial [24, 48] as are bulk messages to amortize communication
costs [3]. Therefore, many applications are expected to adhere to these principles even
when not specifically targeted for an implicit coscheduling environment. These well-behaved
applications can expect to see slowdowns with implicit coscheduling within 15% of explicit
coscheduling.

184

Chapter 11

Conclusions

In this thesis, we have shown that implicit information can greatly simplify the
task of building cooperative system services in a distributed environment. In an implicitly-
controlled system, components infer remote state by observing naturally-occurring local
events, rather than explicitly contacting other components to obtain information. Implicit
information is particularly useful when explicit interfaces do not provide the desired infor-
mation.

We have shown that implicit coscheduling is an effective method for scheduling
communicating processes in a coordinated manner. In this chapter, we summarize the
implicit coscheduling approach and our simulation and implementation results; we then
describe extensions to implicit coscheduling that we did not have the opportunity to inves-
tigate.

11.1 Summary

This section summarizes implicit coscheduling, our approach to scheduling commu-
nicating processes in a distributed system, such as a network of workstations. With implicit
coscheduling, no explicit messages are required to organize the coordination of processes
across machines. Instead, each process leverages naturally-occurring communication to in-
fer when it is beneficial to be scheduled and shares this knowledge with the local operating
system scheduler.

The two primary components of implicit coscheduling are the waiting algorithm
processes employ when dependent on remote processes and the behavior of the local oper-
ating system scheduler. Implicit coscheduling requires that processes employ a conditional
two-phase waiting algorithm with the correct baseline and conditional spin-times, and a
preemptive, fair local scheduler. We discuss each of these two components in more detail.

11.1.1 Conditional Two-Phase Waiting

In this thesis, we have introduced conditional two-phase waiting, a generalization
of two-phase waiting. With basic two-phase waiting, processes spin-wait for some amount
of time while waiting for the desired event to occur; if the event does not occur, then

185

the process voluntarily relinquishes the processor and blocks. The amount of spin-time
may vary dynamically from operation to operation, but is a predefined amount before each
waiting operation begins. In conditional two-phase waiting, processes begin by spin-waiting
a predefined baseline amount, but may then conditionally spin longer depending upon events
that are observed while spin-waiting.

Picking the baseline and conditional spin amounts is critical to achieving the best
implicit coscheduling performance. Communicating processes remain coordinated across
distributed machines by matching the baseline spin-time to the expected worst-case com-
pletion time of the operation when the arriving message triggers the scheduling of the
remote processes. Processes use the arrival rate of messages to determine if they should
conditionally spin longer. If messages arrive frequently enough that the cost of blocking and
reawakening exceeds the cost of idly spinning, then the waiting process continues to spin.
Determining the correct baseline and conditional spin amounts is relatively simple given a
few heuristics.

Successful implicit coscheduling requires that all levels of an application (e.g., the
user-level code, the run-time library of the parallel language, and the message-layer) apply
conditional two-phase waiting whenever dependent on a result generated from a remote
process. The parallel language run-time library is the appropriate layer to implement the
waiting algorithm because its performance determines the time for communication oper-
ations and it contains semantic information about the relationship between requests and
responses within higher-level primitives, such as reads and barriers.

11.1.2 Local Operating System Scheduler

By choosing whether to spin-wait or relinquish the processor at a communication
operation, each process informs its local operating system scheduler whether it is beneficial
for this process to be scheduled. Each scheduler is free to respond to this information as it
desires: it can schedule any of the runnable processes. However, fair implicit coscheduling
of jobs communicating at different rates is only achieved when the local schedulers provide
a fair and accurate cost model to user processes.

Schedulers based on multilevel feedback queues, such as the Solaris Time-Sharing
scheduler, are not precisely fair; that is, they do not adequately compensate processes for
the time that they do not compete for the processor. Proportional-share schedulers, such as
a stride scheduler, are fair only to processes that are actively competing for the processor. In
this thesis, we described an extension to a stride scheduler that gives compensation tickets
to processes that relinquish the processor.

11.1.3 Performance

In this dissertation, we have both simulated and implemented implicit coschedul-
ing. The two environments were constructed to be quite similar to one another in work-
load and architectural assumptions. In most experiments, we examined workloads con-
taining three competing synthetic applications: both bulk-synchronous and continuously-
communicating jobs. Across workloads, we varied three important application parameters:
the rate of communication, the rate of synchronization, and the amount of load-imbalance

186

internal to the application. In the simulations, we also evaluated the impact of network
latency and the cost of a context-switch in the local operating system scheduler.

The primary differences across the simulation and implementation environments
are the mechanism for message-arrival notification and the presence of communication over-
head and gap. In the simulations, a process is notified of a message arrival with an asyn-
chronous interrupt, while in our implementation, a process is notified only when it explicitly
interacts with the network. The presence of communication overhead and gap in the imple-
mentation increased the cost of barriers and reduced the benefit of coordinated scheduling.

Our simulation and implementation measurements have shown that, given the ap-
propriate spin amount, baseline spinning is sufficient to achieve respectable performance
for bulk-synchronous applications and applications that synchronize frequently. However,
applications that rarely synchronize and yet communicate frequently, are difficult to sched-
ule effectively. Such applications require that processes remain scheduled when only partial
coordination exists; this is achieved with conditional spinning. The baseline and conditional
spin amounts that gave the best implicit coscheduling performance matched the spin times
derived in our analysis.

Bulk-synchronous programs perform well in our environment: performance on our
measured workloads is always within 15% of ideal explicit coscheduling and sometimes
better than explicit coscheduling. Continuously-communicating applications can be more
problematic. Although most perform within 30% of explicit coscheduling, a few extreme
cases of very frequent communication coupled with large internal load-imbalance perform
almost 80% worse than desired; however, we do not believe such workloads will occur often
in practice.

In our implementation, we demonstrated that applications communicating with
bulk messages (16KB) exhibit modest speedups relative to explicit coscheduling. We also
measured seven Split-C applications with a wide variety of characteristics and saw that the
worst-case performance is within 20% of ideal explicit coscheduling. In other experiments,
we studied the scalability of implicit coscheduling and its ability to handle workloads where
some workstations are allocated more processes that others. We observed no degradation
as the size of the cluster was increased to 32 workstations. Performance is robust even when
the number of processes allocated to each workstation is unbalanced.

Finally, our simulation and implementation experiments show that our extension
of stride scheduling with system credit is fair for a wide range of workloads. Even when
a fine-grain job competes against other jobs communicating several orders of magnitude
less frequently, the fine-grain job exhibits a worst-case slowdown within 55% of explicit
coscheduling. This is a substantial improvement compared to the default Solaris Time-
Sharing scheduler which exhibits a slowdown of 210%.

The types of applications that perform well with implicit coscheduling are the
same that achieve good speedups in a dedicated environment; for example, barriers before
communication phases are known to be advantageous [24, 48], as are bulk messages to
amortize communication costs [3]. Therefore, many applications are expected to behave
well with implicit coscheduling, even when not specifically targeted for our environment.
In summary, these well-behaved applications can expect to see slowdowns with implicit
coscheduling within 15% of ideal explicit coscheduling.

187

11.2 Future Work

This thesis has raised a number of new questions for scheduling workloads in a
distributed environment. In this section, we describe some of the extensions to implicit
coscheduling and the additional programming models and workloads we feel would be par-
ticularly interesting to evaluate.

11.2.1 Implementation Issues

We begin by briefly discussing the areas within our implementation that could be
developed further.

Approximating Load-Imbalance

Measurements of our implementation revealed that bulk-synchronous applications
can ignore load-imbalance within the application: acceptable performance is achieved when
processes block after spinning only a small time at the barrier. However, in continuously-
communicating applications, processes that arrive at the barrier early should remain sched-
uled to handle incoming messages; while conditional spinning greatly improves performance,
it is not entirely adequate.

In our initial simulations and implementation measurements, we did not inves-
tigate continuously-communicating applications and, therefore, did not fully realize the
importance of predicting load-imbalance. As a result, our implementation does not con-
tain sufficient techniques for predicting load-imbalance from past measurements. We ex-
pect that spinning for the expected load-imbalance of the barrier would help continuously-
communicating programs to stay coordinated and would improve performance.

Hierarchical Barriers

As discussed in Section 9.3.2, the barriers in our version of the Split-C run-time
layer are constructed with a linear notification of processes. In a dedicated environment,
hierarchical-tree barriers are more efficient than linear barriers for more than eight worksta-
tions. However, if context-switches occur on all of the intermediate nodes of the tree with
implicit coscheduling, then a linear barrier may be advantageous. A thorough study of the
scalability of implicit coscheduling should investigate the impact of tree barriers.

One-way Messages

As described in Section 10.2.1, our implementation does not deal with one-way
messages appropriately in two circumstances. First, our conditional waiting algorithm in
Split-C does not distinguish between types of arriving message (i.e., request-response mes-
sages or one-way messages). As a result, the waiting process cannot accurately calculate the
necessary arrival rate to justify the cost of spin-waiting. Second, the Split-C run-time layer
does not leverage the non-blocking interface of AM-II; thus, the number of messages that
the application can have outstanding may be artificially limited, reducing performance.

188

11.2.2 Programming Model

In this section we discuss possible extensions to implicit coscheduling to handle
applications communicating with bulk messages and those written in a message-passing
language.

Bulk Messages

Our measurements of implicit coscheduling on applications communicating with
bulk messages showed that transferring a 16KB message took long enough that it was
beneficial to relinquish the processor before the operation completed; as a result, implicit
coscheduling exhibits a modest speedup relative to explicit coscheduling. Nevertheless,
coordinated scheduling is still desired for somewhat smaller bulk messages.

Our analysis of the appropriate spin-time in the conditional two-phase waiting
algorithm focused exclusively on short messages. Extending our analysis to consider bulk
messages entails predicting the expected round-trip time of the longer message when the
destination process is scheduled. This calculation is not difficult given a model of network
bandwidth (1/¢g) and knowledge of the size of the message, N. Since the length of the
message is known before it is sent, this calculation is more straight-forward than determining
spin-time at barriers, which requires the load-imbalance to be predicted from past behavior.

Just as processes should prematurely relinquish the processor when waiting time
is high due to network latency or internal load-imbalance, processes should relinquish the
processor when waiting for long messages. The largest message size that processes should
wait for, Npj,ck, depends on the bandwidth of the network and the cost of losing scheduling
coordination for future communication events.

Message-Passing Applications

Applications written with a message-passing library, such as MPI [161] or PVM [157],
represent a substantial segment of parallel programs. Supporting such applications is an
important requirement of scheduling and allocation policies in clusters. In some ways, such
applications are easier to support than the Split-C applications we evaluated, and in some
ways are more difficult.

Most message-passing applications are optimized to transfer data in large mes-
sages, thus amortizing the relatively high overheads and startup costs of communication.
Therefore, most message-passing programs communicate less frequently and with larger
messages than the Split-C applications we measured. Our data and analysis indicates that
these characteristics make applications easier to schedule, since they do not require as much
coordination.

However, with message-passing semantics, communication and synchronization
are combined into a single send-receive operation. If the send operation must wait for a
corresponding receive operation to be posted on the remote process, then the time for the
send includes not only the time to transfer the data, but also the time spent waiting for the
remote process to post the receive. Both of these components must be incorporated into
the baseline spin amount of the waiting algorithm, complicating the analysis. Predicting

189

the synchronization time is similar to predicting the amount of load-imbalance at barrier
operations and is subject to errors. Adapting our prediction algorithms to send-receive
operations would be an interesting and non-trivial area to investigate.

11.2.3 Workloads

In this work, we have measured the performance of implicit coscheduling on only
traditional parallel applications, yet we have often argued that our approach provides better
support for general-purpose workloads than explicit coscheduling. We now discuss our
reasoning for a few of the specific job classes.

Client-Server Applications

Client-server applications are not supported by explicit coscheduling because it
is not known a priori which processes communicate with each other. However, implicit
coscheduling should be able to adapt without difficulty to client-server applications, where
both the set of clients contacting a server as well as the servers contacted by a particular
client change over time; with implicit coscheduling, communicating processes dynamically
adapt to each other’s scheduling behavior.

We expect there to be two new issues with a client-server workload. First, the
two-phase waiting algorithm must be biased to minimize the scheduling costs on the server
versus that of the clients (which are expected to be less loaded than the server); this was
described in Section 6.3.1. Second, the requests sent by the clients are expected to be
more general than simple read and write operations; therefore, in addition to predicting
the network transmission time, the client should predict the time for the operation to be
computed on the server.

I/O-intensive Applications

Explicit coscheduling requires that communicating processes remain scheduled for
their time-slice even when waiting for 1/O to complete. The problem with this approach
is that, unless the waiting process is actively handling messages from other processes, no
useful work is being performed in this interval. For 1/O-intensive applications, the amount
of wasted resources may be significant [95, 144].

Conversely, the natural behavior of implicit coscheduling would be to perform
conditional two-phase waiting when processes are dependent on 1/O results. With this
approach, processes would remain scheduled during 1/O activity when receiving messages
from communicating processes, but could relinquish the CPU when not performing useful
work. We anticipate the primary challenge to be implementing the two-phase waiting
algorithm such that the process can wake either if a message arrives or if the /O operation
completes. Our expectation is that implicit coscheduling will work well with 1/O-intensive
parallel and sequential applications.

190

Interactive Applications

Explicit coscheduling cannot simultaneously handle parallel and interactive jobs.
If the interactive job is given a slot in the coscheduling matrix, parallel jobs are not severely
impacted, but the interactive job receives poor response time. If the interactive job is instead
allowed to interrupt the parallel job in the matrix when necessary, then the interactive job
performs well, but the parallel job suffers [7].

Mixing interactive applications and compute-bound jobs is difficult enough in the
sequential world; compromising between response-time and throughput while maintaining
fairness is still an active area of research [60, 69, 74, 83, 87, 131, 155, 158, 170]. Since sharing
the cluster dynamically between parallel and interactive applications is likely to give the
best utilization [45, 128], it is important to solve this problem in the presence of parallel
jobs, even though this further complicates the issues.

From the perspective of the interactive job, the ideal approach is to promptly in-
terrupt the communicating job whenever the interactive job has work to perform. From the
perspective of the parallel job, interactive jobs should only run when the parallel job is un-
coordinated or not communicating. Whether or not implicit coscheduling can handle such a
problem is an open question: the current fairness mechanisms in our local scheduler may al-
low jobs that have accumulated little CPU time to preempt the scheduled (communicating)
job too readily, disrupting its coordination.

A fair and efficient implementation may require more sophisticated interactions
between the local operating system scheduler and the two-phase waiting algorithm. There
are two interesting approaches that we think are worth investigating. First, the scheduling
of interactive jobs could be postponed by an amount small enough to not noticeably impact
user response time; if the interactive job wakes at an inconvenient time for the parallel
job, then the preemption could be briefly postponed until after the communication phase.
Second, interactive jobs could only preempt a parallel job immediately if computing for
only a very short time (on the order of a few context-switches); the baseline spin-time in
the two-phase waiting algorithm would then be always increased by this amount. In this
way, other cooperating processes that are communicating with this machine would not lose
coordination when the interactive job briefly interrupts.

11.2.4 Job Allocation and Placement

In this dissertation, we focused on the problem of dispatching processes after
those processes have been placed on the nodes of the cluster. While we addressed the
fair allocation of resources across jobs with different communication characteristics, we did
not thoroughly investigate fair allocation across users regardless of the number and type of
jobs those users run. In Section 5.3.5 we outlined two sufficient conditions for ensuring that
each user receives a fair share of the cluster: first, tickets are balanced across nodes and,
second, each local proportional-share scheduler is informed of the number of tickets issued
in each currency across the cluster. We also described our implementation of a parallel
ticket server for informing each local scheduler of this currency information. Throughout
our measurements, we assumed that the system automatically places jobs according to these
constraints.

191

A more pleasant environment in which to operate differs in two main ways. First,
users should have the option of specifying the workstation on which to execute a process
(e.g., to compute on machines near file data, to use special devices, to run diagnostics, or to
explicitly avoid faulty machines). Second, users should be able to specify the distribution
of tickets across their jobs, in order to prioritize more important tasks. These capabilities,
especially in conjunction with the presence of parallel jobs, greatly undermines the ability of
the system to provide fair allocations across users [8]. Measurements of implicit coscheduling
in such environments, as well as in systems supporting migration, would be a worthwhile
endeavor.

11.2.5 Theoretical Analysis

The work in this dissertation is highly empirical. In our development of this
research, we began by developing intuition for the problem and proposing heuristics for its
solution, and then performed a wide set of simulations and implementation measurements to
validate our ideas. Ideally, we would like to prove that the independent schedulers converge
on a common job in a certain amount of time, given certain characteristics. In addition to
this “holy grail”, we feel that a more theoretical treatment of several smaller issues would
be enlightening.

Distribution of Costs

Our analysis of the baseline spin-time in the conditional two-phase waiting algo-
rithm assumes that processes should wait for the expected worst-case time when the request-
ing message triggers the scheduling of the remote process. In the simulation environment,
where there is a fixed cost for transmitting messages and context-switches, the worst-case
time is easy to predict and model.

In our implementation, the measured round-trip time with a context-switch follows
a distribution. Empirically, we found that given a significant tail on the waiting times,
implicit coscheduling suffers dramatically. Therefore, it is important for the underlying
message layer and operating system to be tuned well and to give predictable performance.
Given such a system, the heuristic that the expected worst-case completion time is the
amount of time required for approximately 97% of the benchmark measurements gives good
performance. However, we believe that the distribution function should be incorporated
more formally into the cost models for spin-time.

Penalty for Loosing Coordination

Determining the amount of load-imbalance at which a process should relinquish
the processor rather than spin idly requires a model of the cost of losing coordination.
In Section 6.4.2, we argued that the highest penalty a process may expect to pay is W -
P (the cost of a context-switch times the number of cooperating processes). While this
number roughly matches experimental results, understanding this cost as a function of the
communication pattern would significantly improve our calculations for how long a process

192

should wait for barriers. Such analysis would complement a run-time system that records
and analyzes the current communication pattern.

11.2.6 Implicit Systems

Finally, we would like to study the use of implicit control and implicit information
in more system services. We believe that our approach has the potential to not only simplify
the design and implementation of many distributed services, but also improve performance.
We predict that implicit information will become more valuable as distributed systems
increase in scale and complexity. In systems with many autonomous components, it is
likely that cooperating components will only conform to a minimally defined interface.
With only explicit information, the capability of the system as a whole would degenerate to
that of the “least common denominator”; however, by leveraging the implicit information
that naturally emanates from the interactions in the system, smart components may be
able to infer additional knowledge to improve their performance.

193

Bibliography

[1]

Anurag Acharya, Guy Edjlali, and Joel Saltz. The Utility of Exploiting Idle Worksta-
tions for Parallel Computation. In Proceedings of 1997 ACM Sigmetrics International
Conference on Measurement and Modeling of Computer Systems, Seattle, June 1997.

Rakesh Agrawal and Ahmed K. Ezzat. Location independent remote execution in
NEST. IFEE Transactions on Software Engineering, 13(8):905-912, August 1987.

Albert Alexandrov, Mihai lonescu, Klaus E. Schauser, and Chris Scheiman. LogGP:
Incorporating Long Messages into the LogP model - One step closer towards a realistic
model for parallel computation. In 7th Annual Symposium on Parallel Algorithms and

Architectures (SPAA’95), July 1995.

Thomas E. Anderson, David E. Culler, David A. Patterson, and the NOW Team. A
Case for NOW (Networks of Workstations). IEFE Micro, February 1995.

Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Patterson,
Drew S. Roselli, and Randolph Y. Wang. Serverless Network File Systems. In Proceed-
ings of the 15th ACM Symposium on Operating Systems Principles, pages 109-126,
December 1995.

Remzi H. Arpaci, David E. Culler, Arvind Krishnamurthy, Steve Steinberg, and Kathy
Yelick. Empirical Evaluation of the CRAY-T3D: A Compiler Perspective. In Proceed-
ings of the 22nd International Symposium on Computer Architecture, 1995.

Remzi H. Arpaci, Andrea C. Dusseau, Amin M. Vahdat, Lok T. Liu, Thomas E.
Anderson, and David A. Patterson. The Interaction of Parallel and Sequential
Workloads on a Network of Workstations. In Proceedings of ACM SIGMET-
RICS’95/PERFORMANCE’95 Joint International Conference on Measurement and
Modeling of Computer Systems, pages 267-278, May 1995.

Andrea Arpaci-Dusseau and David Culler. Extending Proportional-Share Scheduling
to a Network of Workstations. In International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), Las Vegas, Nevada, June 1997.

Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, David E. Culler, Joseph M.
Hellerstein, and David P. Patterson. High-Performance Sorting on Networks of Work-
stations. In Proceedings of the 1997 ACM SIGMOD Conference, pages 243-254, 1997.

[10]

[11]

[18]

[19]

[20]

[21]

194

Mikhail J. Atallah, Christina Lock Black, Dan C. Marinescu, Howard Jay Siegel, and
Thomas L. Casavant. Models and Algorithms for Co-scheduling Compute-Intensive
Tasks on a Network of Workstations. Journal of Parallel and Distrbuted Computing,
16:319-327, 1992.

Anindya Basu, Vineet Buch, Werner Vogels, and Thorsten von Eicken. U-Net: A
User-Level Network Interface for Parallel and Distributed Computing. In Proceedings
of the 15th ACM Symposium on Operating Systems Principles, Copper Mountain,
Colorado, December 1995.

E. Biagioni, E. Cooper, and R. Sansom. Designing a Practical ATM LAN. IFEFE
Network, 7(2):32-39, March 1993.

Edward A. Billard and Joseph .C. Pasquale. Adaptive Coordination in Distributed
Systems with Delayed Communication. IEFE Transactions on Systems, Man and
Cybernetics, 25(4):546-54, April 1995.

Andrew P. Black. Supporting Distributed Applications: Experience with Eden. In
10th ACM Symposium on Operating System Principles, pages 181-193, December
1985.

D. Blackwell and M. A. Girshick. Theory of Games and Statistical Decisions. John
Wiley & Sons, Inc., New York, 1954.

Guy E. Blelloch, Charles E. Leiserson, Bruce M. Maggs, C. Gregory Plaxton,
Stephen J. Smith, and Marco Zagha. A Comparison of Sorting Algorithms for the
Connection Machine CM-2. In Proceedings Symposium on Parallel Algorithms and
Architectures, pages 3—-16, July 1991.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kusmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded Runtime System.
Journal of Parallel and Distributed Computing, 37(1):55-69, August 1996.

Robert D. Blumofe and David S. Park. Scheduling Large-Scale Parallel Computations
on Networks of Workstations. In Proceedings of the Third International Symposium
on High Performance Distributed Computing, August 1994.

Matthias A. Blumrich, Kai Li, Richard Alpert, Cezary Dubnicki, Edward W. Felten,
and Jonathan Sandberg. Virtual Memory Mapped Network Interface for the SHRIMP
Multicomputer. In Proceedings of the International Symposium on Computer Archi-
tecture, pages 142-153, April 1994.

N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Sietz, J. Seizovic, and W. Su.
Myrinet — A Gigabit-perSecond Local-Area Network. [EEE Micro, 15(1):29-36,
February 1995.

Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik, Charles L.
Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet—A Gigabet-per-Second Local-
Area Network. IEEE Micro, 15(1):29-38, February 1995.

[22]

[23]

[24]

[25]

[27]

[28]

[29]

[30]

[31]

195

D. Boggs, J. Modgul, and C. Kent. Measured capacity of an Ethernet. In Proceedings
of the SIGCOMM 88 Symposium, pages 222-234, August 1988.

Eric A. Brewer, Frederic T. Chong, Lok T. Liu, Shamik D. Sharma, and John D.
Kubiatowicz. Remote queues: Exposing message queues for optimization and atom-
icity. In Proceedings of the 7th Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 42-53, Santa Barbara, California, July 1995.

Eric A. Brewer and Bradley C. Kuszmaul. How to Get Good Performance from the
CM5 Data Network. In Proceedings of the 1994 International Parallel Processing
Symposium, pages 858-867, Cancun, Mexico, April 1993.

Matt Buchanan and Andrew Chien. Coordinated Thread Scheduling for Workstation
Clusters Under Windows NT. In Proceedings of USENIX Windows NT Workshop,
August 1997.

Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosenblum. Disco: Run-
ning Commodity Operating Systems on Scalable Multiprocessors. ACM Transactions
on Computer Systems, 15(4):412-447, November 1997.

Douglas C. Burger, Rahmat S. Hyder, Barton P. Miller, and David A. Wood. Pag-
ing Tradeoffs in Distributed-Shared-Memory Multiprocessors. In Supercomputing’94,
November 1994.

Clemens H. Cap and Volker Strumpen. Efficient Parallel Computing in Distributed
Workstation Environments. Parallel Computing, 19:1221-1234, 1993.

Thomas L. Casavant and Jon G. Kuhl. A Formal Model of Distributed Decision-
Making and Its Application to Distributed Load Balancing. 6th International Con-

ference on Distributed Computing Systems, page 232, May 1986.

L.M Censier and P. Feautrier. A New Solution to Coherence Problems in Multicache
Systems. IEEEFE Transactions on Computers, C-27(10):866-872, December 1978.

Rohit Chandra, Scott Devine, Ben Verghese, Anoop Gupta, and Mendel Rosenblum.
Scheduling and Page Migration for Multiprocessor Computer Servers. In Proceed-
ings of the 6th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 12-24, October 1994.

Jeffrey S. Chase, Franz G. Amador, Edward D. Lazowska, Henry M. Levy, and
Richard J. Littlefield. The Amber System: Parallel Programming on a Network of
Multiprocessors. ACM Operating Systems Review, 23(5):147-158, December 1989.

Su-Hui Chiang, Rajesh K. Mansharamani, and Mary K. Vernon. Use of Application
Characteristics and Limited Preemption for Run-To-Completion Parallel Processor
Scheduling Policies. In Proceedings of the 1994 ACM SIGMETRICS Conference,
pages 33-44, February 1994.

196

[34] Reuven Cohen and Adrian Segall. An Efficient Priority Mechanism for Token-ring
Networks. IEFFE Transactions on Communications, 42:1769-77, February 1994.

[35] Mark Crovella, Prakash Das, Czarek Dubnicki, Thomas LeBlanc, and Evangelos
Markatos. Multiprogramming on Multiprocessors. Technical Report 385, University
of Rochester, Computer Science Department, February 1991.

[36] D. Culler, A. Dusseau, R. Martin, and K. Schauser. Portability and Performance
for Parallel Processing, chapter 4: Fast Parallel Sorting under LogP: from Theory to
Practice, pages 71-98. John Wiley & Sons Ltd., 1994.

[37] David Culler, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, Brent Chun, Steven
Lumetta, Alan Mainwaring, Rich Martin, Chad Yoshikawa, and Frederick Wong. Par-
allel Computing on the Berkeley NOW. In Ninth Joint Symposium on Parallel Pro-
cessing, Kobe, Japan, May 1997.

[38] David Culler, Lok Tin Liu, Rich Martin, and Chad Yoshikawa. LogP Performance
Assessment of Fast Network Interfaces. ITEFE Micro, February 1996.

[39] David E. Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishnamurthy,
Steven Lumetta, Thorsten von Eicken, and Katherine Yelick. Parallel Programming
in Split-C. In Proceedings of Supercomputing ’93, pages 262-273, 1993.

[40] David E. Culler, Richard M. Karp, David A. Patterson, Abhijit Sahay, Klaus Erik
Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten Eicken von. LogP:
Towards a Realistic Model of Parallel Computation. In Fourth ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pages 262-273, May
1993.

[41] P. Dasgupta, R. C. Chen, S. Menon, M. P. Pearson, R. Ananthanarayanan, U. Ra-
machandran, M. Ahamad, R. J. LeBlanc, W. F. Appelbe, J. M. Bernabeu-Auban,
P. W. Hutto, M. Y. A. Khalidi, and C. J. Wilkenloh. The design and implementation
of the clouds distributed operating system. Computing Systems, 3(1), 1990.

[42] Dorothy E. Denning and Peter J. Denning. Data Security. Computing Surveys,
11(2):227-249, September 1979.

[43] David DeWitt and Jim Gray. Parallel database systems: The future of high-
performance database systems. Communications of the ACM, 35(6):85-98, June 1992.

[44] Fred Douglis and John Ousterhout. Transparent Process Migration: Design Alterna-
tives and the Sprite Implementation. Software - Practice and Erperience, 21(8):757—
85, August 1991.

[45] Larry Dowdy. On the Partitioning of Multiprocessor Systems. Technical Report 88-06,
Department of Computer Science, Vanderbilt University, July 1988.

[46]

[47]

[48]

[49]

[54]

[55]

197

Andrea C. Dusseau, Remzi H. Arpaci, and David E. Culler. Re-examining Scheduling
and Communication in Parallel Programs. Computer Science UCB//CSD-95-881,
University of California, Berkley, December 1994.

Andrea C. Dusseau, Remzi H. Arpaci, and David E. Culler. Effective Distributed
Scheduling of Parallel Workloads. In Proceedings of 1996 ACM Sigmetrics Interna-
tional Conference on Measurement and Modeling of Computer Systems, 1996.

Andrea C. Dusseau, David E. Culler, Klaus E. Schauser, and Richard P. Martin.
Fast Parallel Sorting Under LogP: Experience with the CM-5. IEEFE Transactions on
Parallel and Distributed Systems, 7(8):791-805, August 1996.

Kemal Efe and Margaret A. Schaar. Performance of Co-Scheduling on a Network
of Workstations. In Proceedings of the 13th International Conference on Distributed
Computing Systems, pages 525-531, 1993.

Steve Evans, Kevin Clarke, Dave Singleton, and Bart Smaalders. Optimizing Unix
Resource Scheduling for User Interaction. In 1993 Summer Useniz, pages 205-218.
USENIX, June 1993.

Joseph R. Eykholt, Steve R. Kleiman, Steve Barton, Jim Voll, Roger Faulkner, Anil
Shivalingiah, Mark Smith, , Dan Stein, Mary Weeks, and Dock Williams. Beyond
multiprocessing: multithreading the sunOS kernel. In Proceedings of the Summer
1992 USENIX Technical Conference and Exhibition, pages 11-18, San Antontio, TX,
USA, June 1992.

Dror G. Feitelson. A Survey of Scheduling in Multiprogrammed Parallel Systems. Re-
search report rc 19790 (87657), IBM T.J. Watson Research Center, Yorktown Heights,
NY, February 1995. Second Revision, August 1997.

Dror G. Feitelson and Morris Jette. Improved Utilization and Responsiveness with
Gang Scheduling. In Proceedings of the IPPS °97 Workshop on Job Scheduling Strate-
gies for Parallel Processing, 1997.

Dror G. Feitelson and Larry Rudolph. Distributed Hierarchical Control for Parallel
Processing. [EEFE Computer, 23(5):65-77, May 1990.

Dror G. Feitelson and Larry Rudolph. Gang Scheduling Performance Benefits for Fine-
Grained Synchronization. Journal of Parallel and Distributed Computing, 16(4):306—
18, December 1992.

Dror G. Feitelson and Larry Rudolph. Coscheduling Based on Run-Time Identification
of Activity Working Sets. International Journal of Parallel Programming, 23(2):136—
160, April 1995.

Donald Ferguson, Yechiam Yemini, and Christos Nikolaou. Microeconomic Algorithms
for Load Balancing in Distributed Computer Systems. In International Conference
on Distributed Computer Systems, pages 491-499, 1988.

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

198

R. A. Finkel, M. L. Scott, Y. Artsy, and H.-Y. Chang. Experience with charlotte:
Simplicity and function in a distributed operating system. IFEFE Transactions on
Software Engineering, 15(6):676-685, June 1989.

Sally Floyd and Van Jacobson. Random Early Detection Gateways for Congestion
Avoidance. IEEE/ACM Transactions on Networking, August 1993. implicit, network.

Bryan Ford and Sai Susarla. CPU Inheritance Scheduling. In Useniz Association
Second Symposium on Operating Systems Design and Implementation (OSDI), pages
91-105, 1996.

Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer, and Paul Gau-
thier. Cluster-Based Scalable Network Services. In Proceedings of the 16th Symposium

on Operating Systems Principles (SOSP-97), volume 31,5 of Operating Systems Re-
view, pages 78-91, New York, October5-8 1997. ACM Press.

Hubertus Franke, Pratap Pattnaik, and Larry Rudolph. Gang Scheduling for Highly
Efficient Distributed Multiprocessor Systems. In Proceedings of the Sizth Symposium
on the Frontiers of Massively Parallel Computing, pages 1-9, October 1996.

G. A. Geist and Vaidy Sunderam. The Evolution of the PVM Concurrent Computing
System. In COMPCON, February 1993.

David Gelernter and David Kaminsky. Supercomputing Out of Recycled Garbage:
Preliminary Experience with Pirhana. In Proceedings of Supercomputing 92, pages
417-427, July 1992.

Douglas P. Ghormley, David Petrou, Steven H. Rodrigues, Amin M. Vahdat, and
Thomas E. Anderson. GLUnix: A Global Layer Unix for a Network of Workstations.
In Software Practice and Fxperience, 1989.

Dipak Ghosal, Giuseppe Serazzi, and Satish K. Tripathi. The Processor Working Set
and Its Use in Scheduling Multiprocessor Systems. IFEFE Transactions on Software
FEngineering, 17(5):443-453, May 1991.

Berny Goodheart and James Cox. The Magic Garden Fzplained: The Internals of
UNIX System V Release 4. Prentice Hall, 1994.

James Goodman. Using Cache Memory to Reduce Processor-Memory Traffic. In
International Conference on Computer Architecture, pages 124-131, 1983.

Pawan Goyal, Xingang Guo, and Harrick M. Vin. A Hierarchical CPU Scheduler
for Multimedia Operating Systems. In Useniz Association Second Symposium on
Operating Systems Design and Implementation (OSDI), pages 107-121, 1996.

Anoop Gupta, Andrew Tucker, and Shigeru Urushibara. The Impact of Operating
System Scheduling Policies and Synchronization Methods on the Performance of Par-
allel Applications. In Proceedings of the 1991 ACM SIGMETRICS Conference, pages
120-32, May 1991.

199

[71] Joseph Halpern and Yoram Moses. Knowledge and common knowledge in a distributed
environment. Journal of the ACM, 37(3):549-587, 1990.

[72] Joseph L. Hellerstein. Achieving Service Rate Objectives with Decay Usage Schedul-
ing. IEEE Transactions on Software Engineering, 19(8):813-825, August 1993.

[73] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufman, 1990.

[74] G. J. Henry. The Fair Share Scheduler. ATET Bell Laboratories Technical Journal,
63(8):1845-1857, October 1984.

[75] Mark D. Hill, Jim R. Larus, Steve K. Reinhardt, and David A. Wood. Coopera-
tive Shared Memory: Software and Hardware for Scalable Multiprocessors. ACM
Transactions on Computer Systems, 11(4):300-18, November 1993.

[76] Atsushi Hori, Yutaka Ishikawa, Hiroki Konaka, Munenori Maeda, and Takashi
Tomokiyo. A Scalable Time-Sharing Scheduling for Partionable, Distributed Memory
Parallel Machines. In Proceedings of the 28th Annual Hawaii International Conference
on System Sciences, 1995.

[77] Atsushi Hori, Hiroshi Tezuka, and Yutaka Ishikawa. Global State Detection using
Network Preemption. In Proceedings of the IPPS °97 Workshop on Job Scheduling
Strategies for Parallel Processing, 1997.

[78] Atsushi Hori, Hiroshi Tezuka, Yutaka Ishikawa, Noriyuki Soda, Hiroki Konaka, and
Munenori Maeda. Implementation of Gang-Scheduling on Workstation Cluster. In
Proceedings of the IPPS "96 Workshop on Job Scheduling Strategies for Parallel Pro-
cessing, 1996.

[79] Intel. Paragon User’s Manual. Intel Corporation, 1992.

[80] Van Jacobson. Congestion avoidance and control. In SIGCOMM 88 Symposium:
Communications Architectures and Protocols, pages 314-29, August 1988.

[81] Raj Jain. A Delay-Based Approach for Congestion Avoidance in Interconnected Het-
erogeneous Computer Networks. Technical Report DEC-TR-566, Digital Equipment
Corporation, April 1988.

[82] Morris Jette. Performance Characteristics of Gang Scheduling in Multiprogrammed
Environments. In Supercomputing’97, 1997.

[83] Michael B. Jones, Daniela Rosu, and Marcel-Catalin Rogu. CPU reservations and time
constraints: Efficient, predictable scheduling of independent activities. In Proceedings
of the 16th Symposium on Operating Systems Principles (SOSP-97), volume 31,5 of
Operating Systems Review, pages 198-211, New York, October 1997. ACM Press.

[84] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-Grained Mobility
in the Emerald System. ACM Transactions on Computer Systems, 6(1):109-133,
February 1988.

200

[85] Anna R. Karlin, Kai Li, Mark S. Manasse, and Susan S. Owicki. Empirical Studies
of Competitive Spinning for a Shared-Memory Multiprocessor. In Thirteenth ACM
Symposium on Operating Systems Principles, October 1991.

[86] Anna R. Karlin, M.S. Manasse, 1..A. McGeoch, and S. Owicki. Competitive Random-
ized Algorithms For Nonuniform Problems. Algorithmica, 11(6):542-71, June 1994.

[87] J. Kay and P. Lauder. A Fair Share Scheduler. Communications of the ACM, 31(1):44~
55, January 1988.

[88] Jonathan Kay and Joseph Pasquale. The Importance of Non-Data-Touching Over-
heads in TCP/IP. In Proceedings of the 1993 SIGCOMM, pages 259268, San Fran-
cisco, CA, September 1993.

[89] Kimberly Keeton, David A. Patterson, and Thomas E. Anderson. LogP Quantified:
The Case for Low-Overhead Local Area Networks. In Hot Interconnects I11, Stanford
University, Stanford, CA, August 1995.

[90] R. Kent Koeninger, Mark Furtney, and Martin Walker. A shared memory MPP from
Cray Research. Digital Technical Journal of Digital Equipment Corporation, 6(2):8-
21, Spring 1994.

[91] Richard N. Lagerstrom and Stephan K. Gipp. PScheD: Political Scheduling on the
CRAY T3E. In Proceedings of the IPPS ’97 Workshop on Job Scheduling Strategies
for Parallel Processing, 1997.

[92] Butler W. Lampson. A note on the confinement problem. Communications of the

ACM, 16(10):613-615, October 1973.

[93] Butler W. Lampson. Hints for Computer System Design. Operating Systems Review,
17(5):33-48, October 1983.

[94] Koen Langendoen, John Romein, Raoul Bhoedjang, and Henri Bal. Integrating
polling, interrupts, and thread management. In Proceedings of Frontiers '96: The
Sizth Symposium on the Frontiers of Massively Parallel Computation, pages 13-22,
Annapolis, Maryland, October 1996. IEEE Computer Society.

[95] Walter Lee, Matthew Frank, Victor Lee, Kenneth Mackenzie, and Larry Rudolph.
Implications of 1/O for Gang Scheduled Workloads. In Proceedings of the IPPS 97
Workshop on Job Scheduling Strategies for Parallel Processing, 1997.

[96] Samuel J. Leffler, Marshall K. McKusick, Michael J. Karels, and John S. Quarterman.
The Design and Implementation of the 4.3BSD UNIX Operating System. Addison-
Wesley, 1990.

[97] Tom Leighton. Tight Bounds on the Complexity of Parallel Sorting. IEEE Transac-
tions on Computers, C-34(4):344-354, April 1985.

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

201

Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman, Ma-
hesh N. Ganmukhi, Jeffrey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul, Margaret
A. St. Pierre, David S. Wells, Monica C. Wong, Shaw-Wen Yang, and Robert Zak.
The Network Atchitecture of the CM-5. In Symposium on Parallel and Distributed
Algorithms, pages 272-285, June 1992.

Scott T. Leutenegger. Issues in Multiprogrammed Multiprocessor Scheduling. PhD
thesis, Univerisity of Wisconsin-Madison, 1990.

Scott T. Leutenegger and Xian-He Sun. Distributed Computing Feasibility in a Non-
Dedicated Homogenous Distributed System. In Proceedings of Supercomputing ’93,
pages 143-152, 1993.

Scott T. Leutenegger and Mary K. Vernon. The Performance of Multiprogrammed
Multiprocessor Scheduling Policies. In Proceedings of the 1990 ACM SIGMFETRICS
Conference, pages 226-36, May 1990.

Beng-Hong Lim and Anant Agarwal. Waiting Algorithms for Synchronization in
Large-Scale Multiprocessors. ACM Transactions on Computer Systems, 11(3):253—
294, August 1993.

Steven B. Lipner. A comment on the confinement problem. In Proceedings of the 5th
Symposium on Operating Systems Principles, pages 192-196, November 1975.

Michael Litzkow, Miron Livny, and Matt Mutka. Condor - A Hunter of Idle Worksta-
tions. In Proceedings of the 8th International Conference of Distributed Computing
Systems, pages 104-111, June 1988.

Shau-Ping Lo and Virgil D. Gligor. A Comparative Analysis of Multiprocessor
Scheduling Algorithms. In Proceedings of the Seventh International Conference on
Distributed Computing Systems, pages 356—-363, September 1987.

P. Lopez, J.M. Martinez, and J. Duato. A Very Efficient Distributed Deadlock Detec-
tion Mechanism for Wormhole Networks. In Proceedings of the 4th International Sym-
posium on High-Performance Computer Architecture, pages 57-66, February 1998.

Steven S. Lumetta, Arvind Krishnamurthy, and David E. Culler. Towards Modeling
the Performance of a Fast Connected Components Algorithm on Parallel Machines.
In Proceedings of Supercomputing 95, 1995.

Ewing Lusk and Ralph Butler. Portable parallel programming with p4. In Proceedings
of the Workshop on Cluster Computing, December 1992.

Kenneth Mackenzie, John Kubiatowicz, Matthew Frank, Walter Lee, Victor Lee,
Anant Agarwal, and M. Frans Kaashoek. FExploiting Two-Case Delivery for Fast
Protected Messaging. In Proceedings of the 4th International Symposium on High-
Performance Computer Architecture, pages 231-242, February 1998.

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

202

Alan M. Mainwaring. Active Message Application Programming Interface and Com-
munication Subsystem Organization. Master’s thesis, University of California, Berke-
ley, 1995.

Shikharesh Majumdar and Yiu Ming Leung. Characterization of Applications with
1/O for Processor Scheduling in Multiprogrammed Parallel Systems. In Proceedings
of the 1994 IEFE Symposium on Parallel and Distributed Processing, pages 298-307,
1994.

Thomas W. Malone, Richard E. Fikes, Kenneth R. Grant, and Michael T. Howard.
Enterprise: A Market-like Task Scheduler for Distributed Computing Environments.
In The Ecology of Computation, pages 177-205. North-Holland, 1988.

Olivier Maquelin, Guang R. Gao, Herbert H. J. Hum, Kevin Theobald, and Xinmin
Tian. Polling watchdog : Combining polling and interrupts for efficient message
handling. In Proceedings of the 23rd Annual International Symposium on Computer
Architecure, pages 179-190, New York, May 1996.

Jacob Marschak and Roy Radner. Feonomic Theory of Teams. Yale University Press,
New Haven, 1972.

Richard P. Martin. HPAM: An Active Message Layer for a Network of Workstations.
In Proceedings of the 2nd Hot Interconnects Conference, July 1994.

Richard P. Martin, Amin M. Vahdat, David E. Culler, and Thomas E. Anderson.
Effects of Communication Latency, Overhead, and Bandwidth in a Cluster Archi-
tecture. In Proceedings of the 24th Annual International Symposium on Computer
Architecture, Denver, CO, June 1997.

Murray S. Mazer. Reasoning about knowledge to understand distributed Al systems.
IEFEFE Transactions on Systems, Man, and Cybernetics, 21(6):1333-1346, November-
December 1991.

Cathy McCann, Raj Vaswani, and John Zahorjan. A dynamic processor allocation
policy for multiprogrammed shared-memory multiprocessors. ACM Transactions on
Computer Systems, 11(2):146-178, May 1993. Also as tech report 90-03-02, University
of Washington, Dept. of Computer Science and Engineering, 1990.

Cathy McCann and John Zahorjan. Processor Allocation Policies for Message-Passing
Parallel Computers. In Proceedings of the 1994 ACM SIGMFETRICS Conference,
pages 19-32, February 1994.

Cathy McCann and John Zahorjan. Scheduling Memory Constrained Jobs on
Distributed Memory Parallel Computers. In Proceedings of ACM SIGMET-
RICS’95/PERFORMANCE’95 Joint International Conference on Measurement and
Modeling of Computer Systems, pages 208-219, May 1995.

203

[121] Larry McVoy and Carl Staelin. Imbench: Portable Tools for Performance Anal-
ysis. In Proceedings of the 1996 Winter USENIX, January 1996. Available from
http://reality.sgi.com/lm/Imbench /Imbench.html.

[122] R. Metcalf and D. Boggs. Ethernet: Distributed packet switching for local computer
networks. Communications of the ACM, 19(7):395-403, July 1976.

[123] Sape J. Mullender, Guido van Rossum, Andrew S. Tanenbaum, Robert van Renesse,
and Hans van Staveren. Amoeba: A Distributed Operating System for the 1990s.
IEEE Computer Magazine, 23(5):44-54, May 1990.

[124] Matt M. Mutka and Miron Livny. Scheduling Remote Processing Capacity In A
Workstation-Processor Bank Network. In Proceedings of the 7th International Con-
ference on Distributed Computing Systems, pages 2-9, September 1987.

[125] Matt M. Mutka and Miron Livny. The Available Capacity of a Privately Owned
Workstation Environment. Performance Fvaluation, 12(4):269-84, July 1991.

[126] Vijay K. Naik, Sanjeev K. Setia, and Mark S. Squillante. Performance Analysis of
Job Scheduling Policies in Parallel Supercomputing Environments. In Proceedings of
Supercomputing 93, pages 824-833, November 1993.

[127] Nenad Nedeljkovic and Michael J. Quinn. Data Parallel Programming on a Net-
work of Heterogeneous Workstations. In Proceedings of High Performance Distributed
Computing (HPDC), pages 28-36, September 1992.

andolph Nelson and Donald Towsley. A performance evaluation of several priority

128] Randolph Nel d Donald Towsley. A perf luati f | priori
policies for parallel processing systems. Journal of the ACM, 40(3):714-740, July
1993.

[129] John Von Neumann and Oskar Morgenstern. Theory of Games and Economic Behav-
tor. Princeton University Press, Princeton, New Jersey, second edition, 1947.

[130] David Nichols. Using ldle Workstations in a Shared Computing Environment. In
Proceedings of the Eleventh ACM Symposium on Operating Systems Principles, pages
5-12, November 1987.

[131] Jason Nieh, James G. Hanko, J. Duane Northcutt, and Gerard. A. Wall. SVR4 Unix
Scheduler Unacceptable for Multimedia Applications. In Proceedings of the Fourth
International Workshop on Network and Operating System Support for Digital Audio
and Video, November 1993.

[132] Richard L. Norton and Jacob A. Abraham. Using Write Back Cache to Improve Per-
formance of Multiuser Multiprocessors. In 1982 International Conference on Parallel
Processing, August 1982.

[133] David Oppenheimer. Gang scheduling for the SHRIMP Multicomputer. Senior Thesis,
1997.

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

204

John K. Qusterhout. Scheduling Techniques for Concurrent Systems. In Third Inter-
national Conference on Distributed Computing Systems, pages 22-30, May 1982.

Vivek Pai, Mohit Aron, Gaurav Banga, Michael Svendsen, Peter Druschel, Willy
Zwaenepoel, and Erich Nahum. Locality-Aware Request Distribution in Cluster-based
Network Servers. In Fighth International Conference on Architectural Support for
Programming Languages and Operating Systems, San Jose, California, 1998.

Scott Pakin, Mario Lauria, and Andrew Chien. High Performance Messaging on
Workstations: Illinois Fast Messages (FM) for Myrinet. In Proceedings of the 1995
Supercomputing Conference, San Diego, California, 1995.

David Lorge Parnas. On the Criteria to be used in Decomposing Systems into Mod-
ules. Communications of the ACM, 15(12):1053-1058, December 1972.

Joseph Carlo Pasquale. Intelligent decentralized control in large distributed com-
puter systems. Technical Report UCB//CSD-88-422, University of California Berke-
ley, April 1988.

Vinod G.J. Peris, Mark S. Squillante, and Vijay K. Naik. Analysis of the Impact of
Memory in Distributed Parallel Processing Systems. In Proceedings of the 1994 ACM
SIGMETRICS Conference, pages 5—18, February 1994.

G. J. Popek and B. J. Walker, editors. The LOCUS Distributed System Architecture,
pages 73-89. Computer Systems Series. The MIT Press, 1985.

Jim Pruyne and Miron Livny. Parallel Processing on Dynamic Resources with
CARMI. In Proceedings of the IPPS °95 Workshop on Job Scheduling Strategies for
Parallel Processing, pages 165-177, April 1995.

Richard F. Rashid and G. G. Robertson. Accent: A communication oriented network
operating system kernel. In Proceedings of the ACM Symposium on Operating System
Principles, pages 64-75. ACM, 1982.

Daniel Ridge, Donald Becker, Phillip Merkey, and Thomas Sterling. Beowulf: Har-
nessing the Power of Parallelism in a Pile-of PCs. In Proceedings of IEFE Areospace,
1997.

Emilia Rosti, Giuseppe Serazzi, Evgenia Smirni, and Mark S. Squillante. The Impact
of 1/O on Program Behavior and Parallel Scheduling. In SIGMETRICS '98/PER-
FORMANCE’98., June 1998.

Rafael H Saavedra-Barrera. CPU Performance Fvaluation and Frecution Time Pre-
diction Using Narrow Spectrum Benchmarking. PhD thesis, U.C. Berkeley, Computer
Science Division, February 1992.

Vikram Saletore, J. Jacob, and M. Padala. Parallel Computations on the CHARM
Heterogeneous Workstation Cluster. In Third International Symposium on High Per-
Jormance Distributed Computing, August 1994.

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

205

Steven L. Scott. Synchronization and Communication in the T3E Multiprocessor.
In Proceedings of the 7th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, October 1996.

Sanjeev Setia. Trace-driven Analysis of Migration-based Gang Scheduling Policies for
Parallel Computers. In International Conference on Parallel Processing, August 1997.

Kenneth C. Sevcik. Characterizations of Parallelism in Applications and their Use in
Scheduling. In Proceedings of the 1989 ACM SIGMETRICS and PERFORMANCFE
Conference on Measurement and Modeling of Computer Systems, pages 171-180, May
1989.

Alan J. Smith. Cache Memories. Computing Surveys, 14(3):473-530, September 1982.

Patrick G. Sobalvarro. Demand-based Coscheduling of Parallel Jobs on Multipro-
grammed Multiprocessors. PhD thesis, Massachusetts Institute of Technology, January
1997.

Patrick G. Sobalvarro, Scott Pakin, William E. Weihl, and Andrew A Chien. Dynamic
Coscheduling on Workstation Clusters. In Proceedings of the IPPS 98 Workshop on
Job Scheduling Strategies for Parallel Processing, 1998.

Patrick G. Sobalvarro and William E. Weihl. Demand-based Coscheduling of Parallel
Jobs on Multiprogrammed Multiprocessors. In Proceedings of the IPPS ’95 Workshop
on Job Scheduling Strategies for Parallel Processing, pages 63-75, April 1995.

Thomas Sterling, Donald J. Becker, Daniel Savarese, John E. Dorband, Udaya A.
Ranwake, and Charles V. Packer. Beowulf: A Parallel Workstation for Scientific
Computation. In Proceedings of the International conference on Parallel Processing,
volume 1, pages 11-14, 1995.

Ion Stoica, Hussein Abdel-Wahab, Kevin Jeffay, Sanjoy Baruah, Johannes Gehrke,
and C. Greg Plaxton. A Proportional Share Resource Allocation Algorithm for Real-
Time, Time-Shared Systems. In IEFE Real-Time Systems Symposium, December
1996.

lon Stoica, Hussein Abdel-Wahab, and Alex Pothen. A Microeconomic Scheduler
for Parallel Computers. In Proceedings of the IPPS ’95 Workshop on Job Scheduling
Strategies for Parallel Processing, pages 122-135, April 1995.

Vaidy Sunderam. PVM: A Framework for Parallel Distributed Computing. Concur-
rency: Practice and Frperience, 2(4):315-339, December 1990.

Ahmed N. Tantawy, Asser N. Tantawi, and Dimitrios. N. Serpanos. An adaptive
scheduling scheme for dynamic service time allocation on a shared resource. In 12th
International Conference on Distributed Computing Systems, pages 294-301, June
1992.

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

206

Robert R. Tenney and Nils R. Sandell, Jr. Structures for distributed decisionmaking.
IEFEFE Transactions on Systems, Man, and Cybernetics, 11(8):517-527, August 1981.

Jack A. Test. Multi-processor management in the Concentrix operating system. In
Proceedings of the Winter USENIX Technical Conference, pages 173-182, January
1986.

The MPI Forum. MPI: A Message Passing Interface. In Proceedings of Supercomputing
’93, pages 878-883, November 1993.

Marvin M. Theimer, K. Landtz, and David Cheriton. Preemptable Remote Execution
Facilities for the V System. In Proceedings of the 10th ACM Symposium on Operating
Systems Principles, pages 2—12, December 1985.

Marvin M. Theimer and Keith A. Lantz. Finding Idle Machines in a Workstation-
Based Distributed System. IEEE Transactions on Software Engineering, 15(11):1444—
57, November 1989.

Chandramohan A. Thekkath, Henry M. Levy, and Edward D. Lazowska. Separat-
ing Data and Control in Distributed Operating Systems. In Proceedings of the Tth
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 279-289, October 1996.

Thorsten von Eicken, Veena Avula, Anindya Basu, and Vineet Buch. Low-Latency
Communication over ATM Networks using Active Messages. In Proceedings of Hot
Interconnects I, Stanford, CA, August 1994.

Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels. U-Net: A
User-Level Network Interface for Parallel and Distributed Computing. In Proceedings
of the Fifteenth SOSP, pages 40-53, Copper Mountain, CO, December 1995.

Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik
Schauser. Active Messages: a Mechanism for Integrated Communication and Compu-
tation. In Proceedings of the 19th International Symposium on Computer Architecture,
Gold Coast, Australia, May 1992.

Carl A. Waldspurger. Lottery and Stride Scheduling: Flexible Proportional-Share
Resource Management. PhD thesis, Massachusetts Institute of Technology, September
1995. Also appears as Technical Report MIT/LCS/TR-667.

Carl A. Waldspurger, Tad Hogg, Bernado Huberman, Jeffrey Kephart, and Scott
Stornetta. Spawn: A Distributed Computational Economy. IFEF Transactions on
Software Engineering, 18(2):103-117, February 1992.

Carl A. Waldspurger and William E. Weihl. Lottery Scheduling: Flexible
Proportional-Share Resource Management. In First Symposium on Operating Sys-
tems Design and Implementation (OSDI), pages 1-11. USENIX Association, 1994.

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

207

Carl A. Waldspurger and William E. Weihl. Stride Scheduling: Deterministic
Proportional-Share Resource Mangement. Technical Report MIT /LCS/TM-528, Mas-
sachusetts Institute of Technology, MIT Laboratory for Computer Science, June 1995.

Carl A. Waldspurger and William E. Weihl. An Object-Oriented Framework for
Modular Resource Management. In 5th Workshop on Object-Orientation in Operating
Systems (IWOOQOS ’96), October 1996.

Fang Wang, Marios Papaefthymiou, and Mark Squillante. Performance Evaluation of
Gang Scheduling for Parallel and Distributed Multiprogramming. In Proceedings of
the IPPS °97 Workshop on Job Scheduling Strategies for Parallel Processing, 1997.

Kuei Yu Wang and Dan C. Marinescu. Correlation of the paging activity of individual
node programs in the SPMD execution mode. In Proceedings of the 28th Annual
Hawair International Conference on System Sciences. Volume 1: Architecture, pages
61-71, Los Alamitos, CA, USA, January 1995.

Michael S. Warren, Donald J. Becker, M. Patrick Goda, John K. Salmon, and
Thomas Sterling. Parallel Supercomputing with Commodity Components. In Interna-
tional Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA), pages 1372-1381, Las Vegas, Nevada, June 1997.

John Zahorjan and Edward D. Lazowska. Spinning Versus Blocking in Parallel Sys-
tems with Uncertainty. In Proceedings of the IFIP International Seminar on Perfor-
mance of Distributed and Parallel Systems, pages 455-472, December 1988.

John Zahorjan, Edward D. Lazowska, and Derek L. Eager. The Effect of Scheduling
Discipline on Spin Overhead in Shared Memory Parallel Systems. IEFFE Transactions
on Parallel and Distributed Systems, 2(2):180-198, April 1991.

Sognian Zhou, Jingwen Wang, Xiaohn Zheng, and Pierre Delisle. Utopia: A Load
Sharing Facility for Large, Heterogeneous Distributed Computing Systems. Technical
Report CSRI-257, University of Toronto, 1992.

