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Abstract

This paper presents Cerberus, an eÆcient sys-
tem for simulating the execution of shared-memory
multiprocessor programs on a uniprocessor worksta-
tion. Using EDS (execution driven simulation), it
generates address traces which can be used to drive
cache simulations on the 
y, eliminating the large disk
space requirements needed by trace �les. It is fast be-
cause it links the program to be traced together with
the cache or statistics gathering tool into a single
executable, which eliminates the context-switching
needed by communicating processes. It is 
exible be-
cause it has a simple interface which allows users to
easily add any kind of module to use the generated
trace information. It compares favorably to other ex-
isting tracers and runs on a commonly available work-
station. And it is accurate, allowing cycle-by-cycle
interactions between the simulated processors. The
resulting slowdown from Cerberus is approximately
31 in uniprocessor mode and 45{50 in multiprocessor
mode relative to the workloads run natively on the
same machines.We demonstrate that EDS uses only
5 percent of the total execution cycles when combined
with a cache simulator and show that EDS is just as
eÆcient as using trace driven simulation.

The implementation details of Cerberus are pro-
vided here, along with a performance analysis of mul-
tiprocessor simulation in the Cerberus environment.
Some of the other simulation and trace generation
tools are surveyed, with the strengths and weaknesses
of those tools discussed.

yThe work presented here has been supported in part by the
State of California under the MICRO program, Sun Microsys-
tems, Toshiba Corporation, Fujitsu Microelectronics, Cirrus
Corporation, Microsoft Corporation, Quantum Corporation,
and Sony USA Research bLaboratories. Partial support was
also provided by Siemens A.G., which supported Je� Rothman
during some of this work.

1 Introduction

Execution driven simulation (EDS) is a powerful
method for evaluating computer architectures. EDS
is particularly useful for deriving accurate results for
multiprocessor systems, since the precise sequence of
instruction executions on the parallel processors may
vary as the simulated design varies. We have devel-
oped Cerberus, an EDS simulation system, to pro-
vide accurate cycle-by-cycle instruction simulation
with a low degree of slowdown relative to untraced
native execution. Cerberus is an extremely 
exible
system for simulating programs targeted for MIMD
machines. Many other EDS tools allow a trade-o� of
accuracy for speed. Cerberus provides the highest
level of simulation accuracy with speed comparable to
other tools using less accurate simulation modes that
also run on uniprocessor workstations. Note that this
is a two-edged sword. If the behavior of the traced
workload is unstable with respect to minor changes
in parameters of the platform on which it is running
(e.g., memory timing) or minor changes in the code
(e.g., data layout), then EDS will re
ect this insta-
bility. Such e�ects may make it hard to do studies in
which other parameters are varied, since the e�ects
of those changes may be swamped by the inherant
instability of the workload.

There are a number of methods for studying
multiprocessor machine behavior. Hardware can be
electronically monitored and workloads run directly
[TS90]. Synthetic models can be created to gen-
erate arti�cial reference streams [THW90]. Trace
driven simulation (TDS) has been widely used, with a
wide variety of methods for collecting traces [Smi94,
UM97]. EDS is gaining wide usage for accurate sim-
ulation of new architectural models. EDS varies from
the other methods of modeling by linking the archi-
tectural simulator directly to the trace instruction
generator, without the intermediate step of storing
a set of (invariant) traces. This allows interaction
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between the hardware model and the software. A
trace generation system using EDS has the advan-
tage of simplicity of use, low slowdown, small disk
space requirements, and accuracy with easy system
parameter recon�guration. EDS does have the disad-
vantage that the trace consumer (e.g., a cache simu-
lator) would normally be run on the same system as
the trace generator; running the trace consumer on a
separate machine would require separate processes on
di�erent machines and a pipe between them, which
would be very ineÆcient. Thus, if the tracer runs on
a slow machine, the trace consumer must do so as
well.

The execution time overhead of a trace genera-
tion system is also an important factor to consider.
For a system which studies multiprocessor designs by
running the simulator on a uniprocessor, the most im-
portant speed optimization is incorporating the par-
allel trace generator, processor thread scheduler and
cache simulator into a single process. By utilizat-
ing these optimizations with careful design and re-
�nement through pro�ling, we have created in Cer-
berus a very eÆcient system for investigating the
properties of multiprocessor hardware and software
which does not trade accuracy for speed. It is easy
to create programs for, using simple SMP primitives
to specify parallelism. It uses low-level cycle-by-cycle
simulation to very accurately model the interactions
between simulated processors. It uses assembly lan-
guage routines for commonly called simulation func-
tions, which reduces simulation slowdown. And it
has a very simple trace generation interface, allowing
users to easily add cache simulators, code pro�lers or
other statistics gathering tools.

The remainder of this paper is structured as fol-
lows: Section 2 provides background on multiproces-
sor tracing methodology and an overview of some of
the most recent tools developed for tracing memory
accesses. Sections 3 and 4 discuss the design and im-
plementation of Cerberus and the method used for
annotating object code to provide memory reference
traces, as well as examples of the code modi�cation
process. The performance evaluation of Cerberus is
found in Section 5. In Section 6 we present our con-
clusions. The Appendices provide a detailed survey
of other multiprocessor tracing tools, discuss diÆcul-
ties encountered while developing Cerberus, details
about using the Cerberus system, and some of the
low-level speci�cations about our tool.

2 Summary of Trace Genera-

tion Methods

A variety of methods exist for deriving trace infor-
mation from workloads. We provide a brief summary
of the methods here; see Appendix A and [UM97]
for a more detailed description of the di�erent ap-
proaches. Table 1 provides some details of each of
the various methods, specifying whether the method
could only collect traces for the target architecture
(trace driven simulation or TDS) or if the trace infor-
mation could be piped or used directly with a cache
simulator (execution driven simulation or EDS, also
referred to as program driven simulation). In addi-
tion, we specify the hardware on which it can be run
and the approximate slowdown compared to running
the workloads under test in native and/or uniproces-
sor mode.

Hardware approaches to collecting traces for mul-
tiprocessors have included adding I/O cards to cap-
ture transactions on the memory bus [Wil90, Vas93]
and modifying the microcode to capture memory ref-
erences [SA88]. OS system calls have also been used
to capture traces, such as the UNIX debugging com-
mand Ptrace, to cause an interrupt to a reference col-
lection routine for each instruction of a user-level pro-
gram [Lac88]. Modi�cation of error correcting code
(ECC) bits was used to allow interrupts on just the
shared memory references in [RHL+93], which then
invoked a cache simulator subsystem.

Software methods have been the most widespread
means for collecting and using traces. These ap-
proaches can be generally broken down into inter-
preters (native code running on top of a simulator)
and code modi�ers (augmented code which allows
traces to be collected). The interpretive methods
have been used to simulate 68000 execution [Dah91]
and the MIPS R3000 instruction sets [VF94].

Augmenting source or object code has been used
to trace code running on parallel machines or to simu-
late parallel execution on uniprocessor workstations.
The former approach has been used to add minimally
intrusive instructions to the low-level code, writing
records to memory bu�ers [EKKL90, AE90, SJF92].
Modifying code and adding routines to simulate
the execution of a parallel machine on a unipro-
cessor machine has been the most popular method
[CMJS88, DG90, BDCW91, Del91, Boo94]. Our
trace simulator falls into this last category.
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Name Reference Method Memory Model System Processor Slowdown

ATUM2 [SA88] TDS Bus VAX 8350 VAX 20

Wilson [Wil90] TDS Bus 1 Proc. Multimax NS32032 1

Vashaw [Vas93] TDS Bus Multimax MS32032 6

Lacy [Lac88] TDS Bus Sequent Balance NS32032 100,000

Tracer [AE90] TDS Any Sun 4/260 Sparc 10

MPTrace [EKKL90] TDS Bus Sequent Symmetry i386 3{8

TDS Bus Multimax NS32532 45{163
Trapeds [SJF92]

EDS Hcube iPSC/2 i386 13{22

RPPT [CMJS88] EDS Any Any Any 1.3{35

Proteus [BDCW91, Del91] EDS Any MIPS Workstation MIPS R3000 35{100

Tango [DG90] EDS Any MIPS Workstation MIPS R3000 500-18000

FAST [Boo94] EDS Any MIPS Workstation MIPS R3000 10{110

Wisconsin 52{250 w/
Wind Tunnel

[RHL+93] EDS Fat Tree CM{5 Sparc
Cache Sim.

DDM [Dah91] EDS Bus Tree Sun 3/80 MC68000 2000

MINT [VF94] EDS Any Any Any 20-70

Cerberus This Paper EDS Any MIPS Workstation MIPS R3000 19-52

Table 1: Summary of surveyed tracing tools.

3 The Cerberus Model

At the time we were developing Cerberus, the
existing tools for generating traces were slow, inexact
with respect to individual processor timings, and/or
diÆcult to use or interface with user created cache
simulators. We designed our tool to overcome these
problems and to simulate multiprocessor program ex-
ecution as quickly and eÆciently as possible. The
goals we set out to achieve in creating our tracing tool
were: (1) create a system for uni- and multiprocessor
simulation and instruction and address trace genera-
tion; (2) have an eÆcient system that would be able
to simulate billions of instructions in a reasonable
amount of time; (3) support more than one model
for expressing shared-memory parallelism; (4) be able
to attach modules easily (such as a cache simulator
or code pro�ler) to consume traces on the 
y, avoid-
ing the use of massive amounts of disk space to store
traces; (5) be able to link a simulator to the trace
generator in one UNIX process to minimize operat-
ing system context switching; (6) accurately estimate
execution time by simulating all user code and sys-
tem libraries using instruction-level simulation (i.e.,
processor thread switching after each instruction).

The following subsections describe the multipro-
cessor shared memory model and design of the Cer-
berus simulation system.

3.1 Expressing Parallelism

Parallel programs begin with a single thread,
which then creates the other threads after an initial-
ization phase in the program. Cerberus supports
two programming models, the Sequent model [Seq87]
in which N threads are forked o� at once (m fork),
and the s fork model, which forks o� one thread at a
time. Much of the parallelism is created by the use of
special functions in the original source code, such as
special fork functions (m fork and s fork) to create
multiple processor threads. These functions, as well
as synchronization (locks and barriers) are handled
by function calls to the thread library at runtime.

In the m fork (Sequent) model, the most impor-
tant function is m fork. The arguments to m fork
are a pointer to a function (which is to be exe-
cuted in parallel by all processors) and arguments
to that function (same for s fork). Upon a call to
m fork, the program switches to multiprocessor ex-
ecution mode and a previously set number of pro-
cessors start executing the same function. Each pro-
cessor runs until it completes execution of the task
it was assigned. Once all processors �nish executing
their functions, the program returns to uniprocessor
mode. From uniprocessor mode it is possible to start
other parallel executions of functions using m fork.
However,m fork is usually called once per program.

The number of processors is set by using the
m set procs command before m fork is invoked.
Each processor is assigned a unique identi�cation
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number (which can be obtained by calls to the func-
tion m get myid) that is used to di�erentiate be-
tween the processors to allow them to perform sepa-
rate parts of the computation. Special synchroniza-
tion constructs are also provided. Locks are provided
to serialize accesses to shared data structures and
to implement critical sections. Barriers are provided
to separate program phases and for synchronization.
This can be used to make sure that all processors
have completed a task before continuing to the next
one. The most commonly used barrier is m sync,
which waits until the number of processors set by
m set procs have checked-in before resuming exe-
cution of the program.

In the s fork model, processor threads are cre-
ated one at a time by a loop in which processor 0 calls
s fork (similar to the fork process-creating function
in UNIX). Unlike the Sequent model, there is no im-
plicit count of the number of active threads, so bar-
rier operations must explicitly state the number of
threads involved.

3.2 Memory Model

Two di�erent memory models are supported by
Cerberus: the Sequent model, which can called
the \heavy threads" model, and the \lightweight
threads" model. Most of the description here con-
cerns the Sequent model, with di�erences between
the models described at the end of this section.

During compilation, variables are assigned by the
compiler to various locations in the memory data
space, depending on the size and type of the variables
(Figure 1). Due to the RISC nature of the MIPS pro-
cessor, 32-bit address pointer creation requires two
instructions to load the full data address. Small data
(typically less than or equal to eight bytes in size) are
assigned to a 64 Kbyte region of memory (the global
pointer (gp) table) which allows access to data using
a one instruction sequence. Larger data must be put
into other data sections which requires two instruc-
tion sequences to access. Bulk storage space is also
available for uninitialized data, which is not stored as
part of the executable �le but allocated at run-time.
The data space above the bulk storage area is used
for dynamic memory allocation.

During runtime, when a \fork" routine is called
the �rst time, each new thread is provided with its
own copy of the entire data space (except code and
read-only data) when it is created. The original data
space is shared by all threads, and holds the shared
variables, as shown in Figure 1. Cerberus ensures
that all references to shared variables are directed
to this shared address space. In the Sequent model,

all variables that are not explicitly designated to be
shared with the shared type quali�er are private.
This includes global variables as well as automatic
(stack) variables. Therefore it is necessary to pro-
vide each processor with its own (private) copy of
the memory space. There also needs to be a shared
memory space, for which purpose we use the memory
space created by the compiler. In addition, mem-
ory space is set aside to allow dynamic memory allo-
cation, keeping the shared heap in proximity to the
shared memory space. Likewise, the local heaps and
stacks for each processor are contiguous with each
processor's local memory space.

The \lightweight threads" model is also supported
by Cerberus, which is used by the SPLASH-2 ap-
plications suite [WOT+95]. In this model, all global
variables are implicitly shared; only the stack vari-
ables are private. Use of this model is speci�ed by
passing a command to the runtime system at start-
up, which causes the threads to use the shared mem-
ory for all global variables. It is thus not necessary
to specify which memory locations are shared as in
the heavy threads model.

3.3 Processor Model
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Figure 2: Model of processor-scheduler-cache simula-
tor interaction.

Figure 2 shows a schematic of the Cerberus sim-
ulation model. At each time step, all available proces-
sors are scheduled to run for a single instruction and
return the instruction (and data) addresses accessed
during that cycle. Some threads may not be available
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Figure 1: The memory space assigned by the MIPS C compiler is duplicated, with one copy for the shared
memory space, and a copy for each simulated processor.

for scheduling, due to the ability to stall individual
threads for cache misses or at barriers. Once all the
memory references are collated for a time step, the
information is passed on to the cache simulator (or
other tool). The cache simulator is called even if all
threads are stalled, to tell the cache simulator to ad-
vance its clock and perform shared bus/memory sys-
tem operations, which will eventually cause the sim-
ulated processors to become available again. When
each thread has completed execution of the function
it was assigned, it is deactivated. When all threads
have been deactivated, the system returns to single
processor mode and �nishes the program.

To support simulation of parallelism on a unipro-
cessor workstation, it is necessary to provide the ap-
pearance of multiple code streams executing simulta-
neously and to support the illusion of shared and pri-
vate data spaces. Supporting both of these requires a
200+ byte context block per processor to keep track

of the state of each simulated processor, such as inte-
ger and 
oating-point register values, control register
values, special private and shared memory pointers,
and simulation state (detailed in Appendix E). The
context block is the key item through which modi�ed
code and simulated processors interact to provide the
semblance of parallelism.

To be able to simulate multiple threads of ex-
ecution on a uniprocessor workstation, a simulator
has to provide some sort of a thread package with
a simulated processor scheduler, or rely on the host
machine's operating system for scheduling the sim-
ulated processors. With a user-level threads pack-
age using instruction-level task switching granular-
ity (which Cerberus uses), each simulated instruc-
tion appropriately loads and stores the registers with
which it interacts and returns back to the simula-
tor. All instructions that read a register (or registers)
must load that register from the context block (except
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for register r0, which is always 0). For many instruc-
tions, particularly ALU instructions, two registers are
read, which requires two values to be read from the
context block for those simulated instructions. Any
register that is modi�ed during the instruction (typ-
ically one register) must have its value copied to the
context block at the end of that simulated instruc-
tion.

Loading and storing state each cycle provides the
ability to switch processor threads after execution of a
single instruction. Some simulators switch processors
on a basic block granularity [CMJS88, Boo94], which
involves calling the scheduler at the beginning of each
basic block and requires loading and storing all the
a�ected simulated registers at the beginning and end
of each basic block.

Synchronization operations provides an opportu-
nity for scheduling optimization. When processors
reach a barrier, they are descheduled until all pro-
cessors reach that barrier. This provides a means of
reducing simulation overhead and eliminating redun-
dant spin-wait traces. A further optimization (which
we have not investigated) is to also descheduling pro-
cessors waiting for locks, reactivating them when they
acquire the lock.

Not all EDS methods use the low-level schedul-
ing and �ne granularity thread context switches that
Cerberus uses. Some methods use a UNIX pro-
cess per simulated processor, which avoids user-level
scheduling and explicit saving of simulated processor
status [AE90, DG90]; UNIX process switching, how-
ever, incurs a rather high overhead. Synchronization
between processors is performed at varying levels of
granularity, which can be controlled by the user by
specifying the accuracy/slowdown trade-o� they are
willing to make. Another method inserts calls to the
simulator into the C code before compilation, which is
used to switch processor contexts when an interesting
event requiring synchronization occurs [Del91]. Since
the compiler takes care of saving state between func-
tion calls, little explicit e�ort needs to be made to
keep track of each processor's state.

4 Implementation Details

In the process of designing Cerberus, we set
about with certain goals to make the implementation
as clean, simple, accurate, and eÆcient as possible.
To make it clean and simple, it was designed to auto-
matically convert parallel C code to allow it compile
on a normal workstation with minimal work by the
user. To make it accurate, each simulated processor
was designed to execute a single emulated instruc-

tion and pass control back to the thread scheduler.
In addition, the scheduler was designed to deschedule
threads while they were stalled on various conditions,
like cache misses. Note, however, that our simula-
tor does not currently account for varying instruction
times - we treat an integer add and a 
oating-point
divide as taking the same time. Such timing could be
added, if desired, but it would make the EDS system
extremely platform speci�c.

To aid in attaining the eÆciency goal, we cre-
ated our own multi-threaded processor simulator that
can be linked up with a cache simulator (or other
tools) and run as a single executable using one UNIX
process. This eliminates a signi�cant amount of OS
overhead caused by context-switching. We also made
great e�orts to update information in the executable
�le (like source code line numbers and other sym-
bolic information) in order to be able to easily use
a uniprocessor debugger such as dbx [Com86] with
the system. Our tool has roughly only a 40 to 50
times slowdown running with a stub cache simulator
in multiprocessor mode; this makes it roughly 200
times faster than Tango with the same granularity
of simulation (simulating each thread in instruction
sized steps). We have thus met our goals of an eÆ-
cient multiprocessor simulator that allows use of ex-
ecution driven simulation for cache simulators and
other tools.

The following sections describe the code modi�-
cation process from C code to machine language ex-
ecutable. Section 4.1 describes some of the salient
characteristics of the MIPS R3000 processor, which
is the target architecture of the modi�cation process.
Sections 4.2 through 4.8 follow the modi�cation pro-
cedure step by step. Section 4.9 and 4.10 discuss how
the threads package and scheduler interface with the
instrumented code. Section 4.11 provides some of
the details of the types of cache simulators used with
Cerberus and how they interact with the trace gen-
eration package.

4.1 R3000 Architecture Characteris-
tics

The original target of Cerberus was the DEC
3100/5000 series of machines, which use the MIPS
R2000/3000 RISC microprocessors. The R3000 in-
struction set employs a �xed 32-bit format with 3
main format types. This makes it easy to disassem-
ble and decode for modi�cation purposes. There are
some characteristics that cause diÆculties (discussed
in Section 4.12 and Appendix B). One of the most
interesting \features" of the MIPS architecture is the
partial exposure of the 5 stage instruction pipeline
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to the programmer. To allow exploitation of pipeline
delays caused by certain operations, delay slots are
associated with these instructions. Any branch or
jump instruction is followed by a delay slot instruc-
tion that is executed during the bubble in the instruc-
tion pipeline caused by the change in control 
ow.
The delay slot instruction is executed regardless of
whether the branch is taken. As part of the code
modi�cation process detailed below, the instruction
in the delay slot is moved to the position before the
branch or jump with which it is associated, taking
care to make sure that the results of the delay slot
instruction have no e�ect on the branch. This in-
struction movement can cause other diÆculties when
the delay slot is the target of a branch (which some
optimizers can introduce into the code).

Load instructions are also followed by a delay slot
instruction, which cannot have a dependency on the
register being loaded. This load delay causes no ma-
jor diÆculties, but must be observed in the modi�ca-
tion process and in the hand-coded assembly routines.

4.2 Overview of Code Annotation and
Modi�cation

Sequential
Code (*.c)

Lexical
Analyzer

Object
File

System
Libraries

Parallel
Libraries

Modified
Object

modCode

Executable

Linker

Cache
Simulator

Simulator/
Scheduler

C Compiler
gcc −O2 −g3

Parallel
Code (*.C)

Figure 3: Flowchart of the process by which Cer-
berus takes code targeted for a parallel machine and
modi�es it to run on a uniprocessor workstation.

One of the chief goals for Cerberus was to be
able to run a multiprocessor trace generator on a
uniprocessor workstation using a standard C com-
piler. Figure 3 shows the steps necessary to accom-
plish this task. This process begins by running the

parallel source code through a series of macro pack-
ages and lexical analyzers, which generate suitable
new sequential uniprocessor source code. The new
source code renames shared memory variables to al-
low detection of the intended parallelism in the com-
piled (object) code. Shared variables are detected
because they are prepended with the shared pre�x,
which can be detected in the object code's symbol
table. The following sections detail each stage of the
compilation process.

4.3 Parallel C Code Annotation

To generate sequential C code from a Sequent C
program, the original source code is run through a
lexical analyzer and some shell scripts. The resulting
source code retains hints about reconstructing the
original parallel shared memory organization of the
code, but can be compiled with a standard C com-
piler. Sequent C's principal di�erence from normal
C is the addition of the shared and private type
quali�ers. The shared and private keywords deter-
mine whether a variable is visible to all the proces-
sors, or whether each processor has a private copy of
the variable. Variables are private by default. These
quali�ers are applied to global variables (ones which
have a name scope which is visible in all functions).

The lexical analyzer examines all the �les included
by each .C (parallel code) �le with the aid of the
shell scripts to identify which variables are shared.
Variables are considered private by default, so the
private keyword is eliminated. Each variable that
is shared is annotated by using the C pre-processor's
#de�ne statement. For each shared variable, the pre-
�x shared is prepended to the variable name. This
pre�x can easily be recognized in the object code dur-
ing the modi�cation process when the variable names
are examined. To make sure the variable names ex-
ist in the compiler output, the compiler debugging
option (-g or -g3) must be turned on.

4.4 Compilation

After the C code is annotated, it is compiled with
standard compiler switches (plus -g3 for symbolic in-
formation). At this stage standard library functions
that are to be traced, along with a pseudo-parallel
functions library, are linked together. The parallel li-
brary contains additional functionality such as locks
and barriers, and printf type functions with locks.
Special versions of printf and fprintf are necessary
to serialize I/O calls to prevent programs from writ-
ing their output on top of each other. In addition,
a �le is linked into the code which contains dummy
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(unused) calls to the simulator functions. This aids
modCode (Cerberus' code modi�er) in inserting
calls to the simulator during the code modi�cation
process by de�ning the simulator functions in the
symbol table. The �le also contains a large array
used to keep relocation pointers to data pointers in
memory. At run-time, this array (called SIMrelptr)
is consulted to keep pointers coherent for any new
data spaces created (e.g., by m fork).

4.5 Code Modi�cation

The new object �le is run through Cerberus's
code modi�ermodCode, which adds instructions to
the original code in such a manner as to create an
output �le with exactly the same functionality as the
original program, but instrumented so that it gener-
ates instruction and data memory addresses as the
program executes as well as calls simulation routines
for each original instruction.

The modi�cation process turns each original in-
struction from the unmodi�ed object �le into an eight
instruction block of code in the output �le. Figures 4
and 5 (Table 2 explains the opcodes used) show the
before and after samples from the code modi�cation
process. The one to eight instruction change causes
the �nal executable to have a factor of eight increase
in the code size in addition to the data and code
space used by the scheduler and memory subsystem
simulator. This expansion is done to permit quick
calculations of original instruction addresses, given
the modi�ed instruction address. The address calcu-
lation consists of a subtraction of a base address, a
division by eight (right shift by three), and an ad-
dition of a new base address. Expansion by a vari-
able amount would make the calculation more com-
plicated and would likely require table lookups. The
choice of eight as the expansion factor was made be-
cause it is a power of two (allowing a shift instead of
division for address calculations) and because most
instructions can be emulated by and make the proper
simulator calls with a sequence of eight instructions.
Due to the nature of the MIPS instruction set, it is
generally necessary to be able to load two values from
the simulated register set, directly execute the emu-
lated instruction, and write the result back to the
simulated register set. Because of the delay slot asso-
ciated with every branch on the MIPS architecture,
this means the minimum expansion requirement for
most instructions is six additional instructions, for a
total of seven. This dictates the use of eight as the
expansion factor, because 16 would be too much, and
would slow the program down even more than it is,
as well as multiplying the code size by another fac-

tor of two. To speed up simulation, unconditional
branches are added into the code to skip over nops
when the actions associated with an instruction can
be performed in less than 6 instructions (such as nops
and move instructions in the original code).

4.6 Accessing Data

Since the object code is analyzed instruction by
instruction, it is possible to determine statically
which variable is being referenced, look up the vari-
able's name, and decide whether or not the vari-
able is shared (by looking for the shared pre�x).
If the variable is shared, the data space assigned
by the compiler is used as the destination, because
that region is the designated shared memory area.
Otherwise, code is inserted into the eight-instruction
block sequence to add a run-time o�set (whose value
is processor dependent) to the data address, caus-
ing the variable accesses to be in one of the private
memory spaces associated with the processor, as dis-
played in Figure 6. In the case of the lightweight
threads model, this run-time o�set is 0, which causes
all global memory to be shared memory.

As mentioned in Section 3.2, forming a 32-bit
pointer to access \large" data requires two instruc-
tions. In a normal MIPS executable, a special range
of memory space, called the global pointer table,
is maintained to allow single instruction accesses to
memory. Instructions using this table access mem-
ory by a 16 bit signed o�set from the global pointer
(gp). Only small data and small block storage are
kept in the global pointer region, which can be up
to 64 Kbytes in size. When a new data space is cre-
ated, each processor gets its own copy of the entire
data space, with a corresponding global pointer which
points to its own copy of the global pointer table.
This local (private, unique to each processor) pointer
to the copy of the global pointer table is referred to
as the lgp register. For accesses to the shared part of
memory, there is a shared global pointer (sgp) which
all processors have in common.

Shared variables are accessed using an o�set from
the sgp or by creating a 32-bit pointer to the shared
data space. Private variables are accessed using an
o�set of the lgp or by adding a processor depen-
dent o�set to a 32-bit pointer, which then points to
a private data space. Each processor has a complete
duplicate of the original memory space (copied the
�rst time m fork or s fork is called) as its private
space. The portions of the shared memory space used
by shared variables is duplicated in each processor's
memory space, but is never accessed. Likewise, all
private global variables have a corresponding region

8



Opcode Explanation

addiu r2,r3,100 Add immediate (unsigned) r3 and 100, result goes into r2

addu r2,r3,r4 Add unsigned r3 and r4, results put in register r2

beq r2,r0,0x100001e0 branch to address 0x10001e0 if r2 equals r0 (r0 is hardwired 0)

b 0x10001000 Unconditional branch to the instruction at address 0x10001000

jal routine Jump to routine and store return address in register r31

lui r9,0x1008 The upper 16 bits of r9 are set to 0x1008, the lower 16 bits are set to 0

lw r2,-5000(r10) Load the word at address r10-5000 into register r2

nop Do nothing for one cycle

slti r2,r3,100 r2 set to 1 if r3 is less than 100, r2 set to 0 otherwise

sw r10,16(r2) Store the word in r10 into the address r2+16

Table 2: Explanation of opcodes used in Figures 4{7.

(mp3d.c: 181) 0x10000184: 0c001211 jal sscanf

(mp3d.c: 181) 0x10000188: 24c60008 addiu r6,r6,8

(mp3d.c: 182) 0x1000018c: 8f828330 lw r2,-31952(gp)

(mp3d.c: 182) 0x10000190: 00000000 nop

(mp3d.c: 182) 0x10000194: 8c420008 lw r2,8(r2)

(mp3d.c: 182) 0x10000198: 00000000 nop

(mp3d.c: 182) 0x1000019c: 28420064 slti r2,r2,100

(mp3d.c: 182) 0x100001a0: 1040000f beq r2,r0,0x100001e0

(mp3d.c: 182) 0x100001a4: 00000000 nop

Figure 4: Example of code before expansion, Figure 5 shows code after augmentation.

in the shared memory space which is never accessed.
Private memory accesses using 32-bit pointers are
initially calculated as pointers to the shared mem-
ory space, but are de
ected to the private memory
space of a processor by adding an o�set. When the
lightweight threads model is in use, all global mem-
ory is shared, so the lgp and sgp point to the same
place in memory.

One complication in copying the memory space
is �nding pointers and determining how to deal with
them: copy them without modi�cation (pointer to a
shared data structure) or to change them to point to
a local version of the same data structure in a pro-
cessor's memory space. The heavy threads paradigm
employed by Cerberus causes the private data space
for each processor to be copied from the data space
created by the compiler, which can have pointers
within it de�ned at compile-time. If the data space
is initialized with pointers to data objects, it is nec-
essary to determine whether the pointers are really
to private or global memory when new data spaces
are created. If a pointer is to shared memory, the
address in the copy of the data space is already cor-
rect. If the address points to private data space, care
must be taken to make sure the pointer points to the
appropriate space in the copied (private) data space,
not to the memory location the compiler established

(which by default is the shared memory space).
For example, some routines have pointers to

bu�ers that are de�ned at compile-time, and each
processor must be sure to have its own private bu�ers.
Because pointers to statically de�ned bu�ers have
relocation entries associated with them, it is possi-
ble to create a list of relocation entries which auto-
matically point to the variables which point to the
bu�ers (maintained as an array of pointers SIM-
relptr). During the process of creating the data
space for simulated processors at run-time, it is nec-
essary to update these pointers when the data space
is copied by m fork; otherwise these pointers would
point to a spuriously shared data object (in the de-
fault memory space that is used as the shared area),
instead of private per-processor copies of the objects.
To keep track of these pointers, the SIMrelptr array
of pointers is linked in with the code before modi�-
cation. New relocation entries are added during code
modi�cation which point to entries in this array to
keep track of all the pointers which need to be �xed;
these relocation entries and the entries in SIMrelptr
are maintained and updated by the object linker.

Each time a new data space for a processor is
created, the original memory space allocated by the
compiler is scanned for these pointers by consulting
the SIMrelptr array, and the values copied to the new
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# Delay slot of the call to sscanf

(mp3d.c: 181) 0x400e40: 0c112939 jal pSIMstep

(mp3d.c: 181) 0x400e44: 00000000 nop

(mp3d.c: 181) 0x400e48: 8c480018 lw r8,24(r2)

(mp3d.c: 181) 0x400e4c: 00000000 nop

(mp3d.c: 181) 0x400e50: 25090008 addiu r9,r8,8

(mp3d.c: 181) 0x400e54: 10000002 b 0x400e60

(mp3d.c: 181) 0x400e58: ac490018 sw r9,24(r2)

(mp3d.c: 181) 0x400e5c: 00000000 nop

# Call to sscanf

(mp3d.c: 181) 0x400e60: 0c112939 jal pSIMstep

(mp3d.c: 181) 0x400e64: 00000000 nop

(mp3d.c: 181) 0x400e68: 00000000 nop

(mp3d.c: 181) 0x400e6c: 0c109110 jal sscanf

(mp3d.c: 181) 0x400e70: ac5f007c sw r31,124(r2)

(mp3d.c: 181) 0x400e74: 10000000 b 0x400e80

(mp3d.c: 181) 0x400e78: 00000000 nop

(mp3d.c: 181) 0x400e7c: 00000000 nop

# Load a pointer from gp region

(mp3d.c: 182) 0x400e80: 8c480070 lw r8,112(r2)

(mp3d.c: 182) 0x400e84: 0c112948 jal pSIMld

(mp3d.c: 182) 0x400e88: 25058630 addiu r5,r8,-31184

(mp3d.c: 182) 0x400e8c: 8c480070 lw r8,112(r2)

(mp3d.c: 182) 0x400e90: 00000000 nop

(mp3d.c: 182) 0x400e94: 8d098630 lw r9,-31184(r8)

(mp3d.c: 182) 0x400e98: 00000000 nop

(mp3d.c: 182) 0x400e9c: ac490008 sw r9,8(r2)

# NOP for load delay slot

(mp3d.c: 182) 0x400ea0: 0c112939 jal pSIMstep

(mp3d.c: 182) 0x400ea4: 00000000 nop

(mp3d.c: 182) 0x400ea8: 10000005 b 0x400ec0

(mp3d.c: 182) 0x400eac: 00000000 nop

(mp3d.c: 182) 0x400eb0: 00000000 nop

(mp3d.c: 182) 0x400eb4: 00000000 nop

(mp3d.c: 182) 0x400eb8: 00000000 nop

(mp3d.c: 182) 0x400ebc: 00000000 nop

# Load a value at an offset from the pointer

(mp3d.c: 182) 0x400ec0: 8c480008 lw r8,8(r2)

(mp3d.c: 182) 0x400ec4: 0c112948 jal pSIMld

(mp3d.c: 182) 0x400ec8: 25050008 addiu r5,r8,8

(mp3d.c: 182) 0x400ecc: 8c480008 lw r8,8(r2)

(mp3d.c: 182) 0x400ed0: 00000000 nop

(mp3d.c: 182) 0x400ed4: 8d090008 lw r9,8(r8)

(mp3d.c: 182) 0x400ed8: 00000000 nop

(mp3d.c: 182) 0x400edc: ac490008 sw r9,8(r2)

# NOP for load delay slot

(mp3d.c: 182) 0x400ee0: 0c112939 jal pSIMstep

(mp3d.c: 182) 0x400ee4: 00000000 nop

(mp3d.c: 182) 0x400ee8: 10000005 b 0x400f00

(mp3d.c: 182) 0x400eec: 00000000 nop

(mp3d.c: 182) 0x400ef0: 00000000 nop

(mp3d.c: 182) 0x400ef4: 00000000 nop

(mp3d.c: 182) 0x400ef8: 00000000 nop

(mp3d.c: 182) 0x400efc: 00000000 nop

# Evaluate loaded value

(mp3d.c: 182) 0x400f00: 0c112939 jal pSIMstep

(mp3d.c: 182) 0x400f04: 00000000 nop

(mp3d.c: 182) 0x400f08: 8c480008 lw r8,8(r2)

(mp3d.c: 182) 0x400f0c: 00000000 nop

(mp3d.c: 182) 0x400f10: 29090064 slti r9,r8,100

(mp3d.c: 182) 0x400f14: 10000002 b 0x400f20

(mp3d.c: 182) 0x400f18: ac490008 sw r9,8(r2)

(mp3d.c: 182) 0x400f1c: 00000000 nop

# NOP from delay slot of branch

(mp3d.c: 182) 0x400f20: 0c112939 jal pSIMstep

(mp3d.c: 182) 0x400f24: 00000000 nop

(mp3d.c: 182) 0x400f28: 10000005 b 0x400f40

(mp3d.c: 182) 0x400f2c: 00000000 nop

(mp3d.c: 182) 0x400f30: 00000000 nop

(mp3d.c: 182) 0x400f34: 00000000 nop

(mp3d.c: 182) 0x400f38: 00000000 nop

(mp3d.c: 182) 0x400f3c: 00000000 nop

# Branch instruction

(mp3d.c: 182) 0x400f40: 0c112939 jal pSIMstep

(mp3d.c: 182) 0x400f44: 00000000 nop

(mp3d.c: 182) 0x400f48: 8c480008 lw r8,8(r2)

(mp3d.c: 182) 0x400f4c: 00000000 nop

(mp3d.c: 182) 0x400f50: 11000073 beq r8,r0,0x401120

(mp3d.c: 182) 0x400f54: 00000000 nop

(mp3d.c: 182) 0x400f58: 00000000 nop

(mp3d.c: 182) 0x400f5c: 00000000 nop

Figure 5: Example of code after expansion.
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addu r9,r9,r11

sw r9,64(r2)

lui r9,0x1008

lw r11,320(r2)

nop

jal pSIMstep

nop

nop

jal pSIMstep

nop

lw r8,64(r2)

addiu r9,r8,−25808

sw r9,64(r2)

nop

nop

nop

addiu r16,r16,11936

lui r16,0x1003

Call to simulator

load local offset value

perform operation

add local offset

store to simulated reg 16

Call to simulator

load simulated reg 16

add low 16 bits of address

store to simulated reg 16

map at memory address 0x10032ea0

REFHI

REFLO

Relocation
Entries

Loading 32−bit
addresss

Symbol Table Entry

New Code Sequence

Old Code Sequence

Loading Address of Private Global Variable 
map

jump delay slot

load delay slot

jump delay slot

Figure 6: Expansion of a two instruction sequence to load the 32-bit address of a global variable which is
private to each processor. Without intervening in the address calculating process, the address would point
to the shared region of memory. For private global variables a special o�set value is added to the upper 16
bits of the address, to redirect the memory reference (to variable map) into a processor's private memory
space. The redirection register value is kept in simulated register 80 (a 320 byte o�set from the simulated
processor's context block pointer (register r2)).

data space are updated to be appropriate for the new
private memory space (Figure 1).

4.7 Interfacing with the Simulator-
Scheduler Package

Each instruction in the original unmodi�ed ob-
ject code is turned into a block of eight instructions
in the modi�ed object code. Not all the instructions
in the block are used in all cases, but all use the
�rst few instructions of the block of eight to call the
address collator (indirectly through an assembly lan-
guage \staging" function). If there are still active
threads (simulated processors) to process during the
current cycle, the thread scheduler is called. When

all the addresses have been collected for the current
time step, the address collator calls the cache simu-
lator (or other tool module). The scheduler returns
control to a particular thread only when this simu-
lated processor is ready to proceed, after any (sim-
ulated) memory or other delay. Figure 7 shows an
example of augmentation, demonstrating how an in-
struction from the unmodi�ed object code gets aug-
mented to call the simulator, load the necessary sim-
ulated register information, perform the operation,
and save the resulting state. The call to pSIMstep
is a call to an assembly language \staging" function
which in turn calls the C language portions of the
simulator. This staging function sets up for a call to
the C-based collator/simulator routines, saving sim-
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jal pSIMstep

nop

lw r8,8(r2)

lw r9,12(r2)

nop

addu r10,r8,r9

sw r10,16(r2)

nop

addu r4,r2,r3

Call to the Simulator

Loading from registers

Perform operation

Store results back

Figure 7: Expansion of one instruction in the original object code to eight instructions in the modi�ed object
�le. The �rst nop is necessary due to the jump delay slots used on the MIPS architecture. The second
nop is due to a load delay slot. Most instructions can be emulated with an eight instruction block; those
requiring more instructions call out to additional assembly language routines.

ulated processor state, preparing the instruction and
data (if appropriate) addresses for the simulator to
process using the MIPS standard function calling con-
ventions [KH92]. Not all augmented instructions call
pSIMstep, but may call one of a number of simi-
lar hand-coded assembly language routines to han-
dle special cases, such as load-store operations, lock-
ing, 
oating-point instructions and other more com-
plicated operations. The assembly language routines
call one of three C language routines, which handle in-
struction addresses (SIMstep), instruction and data
addresses (SIMmem), or locking operations (SIM-
lock). These three routines collate the memory ad-
dresses, call the cache simulator or other tool once
each time step, then call the scheduler to return con-
trol to one of the active threads. At some point, con-
trol is returned to each of the threads that are active,
on a round-robin basis.

Once the scheduler has returned control to the
thread, the rest of the eight instruction block is run,
including the direct execution of the actions per-
formed by the simulated instruction. The value re-
turned by the scheduler to the thread in register r2
is the base address of the context block for that par-
ticular thread. All the saved context for a thread is
accessed as an o�set from r2. For example, all sim-
ulated integer registers rx can be found at memory
address r2 + 4 � x. Simulated 
oating-point registers
fy are found at memory address r2+4�y+128. Other
information, such as the program counter and status

control registers are found as higher o�sets from r2.
Register r2 was chosen for this purpose because

the MIPS calling conventions specify that r2 contains
the return value from function calls. For uniproces-
sor mode operation, this allows the C simulator func-
tions to return control to a thread using a simple C
return instruction. This has the e�ect of making
it appear as though the augmented program makes
simple calls to the simulator, which then returns as a
function call should. In the case of a multiprocessor
simulation, the paradigm is somewhat di�erent than
standard function calls, in that control jumps around
between di�erent parts of the augmented code and
the scheduler, and some scheduler related function
calls never return, or at least not as expected in a
normal program. The changes of control act more as
gotos with passed parameters than proper function
calls. An assembly language routine psched is called
by the scheduler to change the function call paradigm
into the appropriate changes of control for the whole
simulation.

4.8 Final Linking

The �nal stage in creating the simulation exe-
cutable is linking the modi�ed code to the analysis
tools. Typically a cache simulator with a memory
subsystem is linked in with the trace generator, but
any kind of user de�ned tracing module can be inter-
faced. A simple stub that dumps the traces to disk or
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performs simple analysis of the generated traces can
be used in place of a complex cache simulator.

Standard library �les for the I/O and math func-
tions that the analysis tools use are linked in as well.
There may be two copies of some standard library
functions in the executable: modi�ed and normal.
For example, the printf function used by the parallel
code needs to be distinct from that used by the cache
simulator, otherwise all printf's would be traced, not
just those used by the parallel code under study. The
modi�cation process changes the names of the instru-
mented versions of the standard library functions to
prevent the analysis tools from using the wrong li-
braries. Once the modi�ed code, the cache simulator
and the standard libraries at linked together, a sin-
gle executable which generates and consumes traces
from the code is ready to run.

4.9 Interface to the Cache Simulator

The C simulation routines collate the addresses
generated by the instrumented code in a special data
structure in the preparation of a call to the cache
simulator (detailed in Appendix E.1).

In uniprocessor mode, the cache simulator is
called each time the scheduler is called. In multi-
processor mode, addresses are accumulated for each
active processor during a global cycle time (or time
step). Once all the addresses have been accumulated
for all active processors during a time step, the cache
simulator is called. The return value from the cache
simulator is a bit vector which tells the scheduler
which processors are stalled due to cache misses, and
allows the processors with cache hits to proceed to
the next instruction. The scheduler uses the bit vec-
tor to determine which processors are capable of be-
ing scheduled during the next time step. A bit value
of 1 means the processor is stalled; 0 indicates that
the processor can be scheduled. Each non-blocked
processor is scheduled and capable of generating an
instruction address and possibly a data address for
the next cycle.

4.10 Scheduler

There are two types of schedulers used in Cer-
berus. For sequential mode operation, a very simple
scheduler runs the single thread if it is ready, and
waits while it is stalled on a cache miss. While the
processor is stalled, the simple scheduler waits in a
loop, repeatedly calling the cache simulator (which
runs a bus simulator) until the cache miss has been
serviced. A simple C return instruction suÆces to
return control to the single thread. A more complex

scheduler is used for multiprocessor operations and is
described below.

The parallel scheduler consists of two loops in se-
ries. The �rst loop searches for a processor that is
ready to run during the current time step. This loop
schedules any processor that is ready and calls the
low-level assembly language scheduler psched (which
never returns). If all non-stalled processors have been
processed during the current time step, the loop �n-
ishes and the second loop is run.

The second loop calls the cache simulator with
all the addresses that have been accumulated during
the current time step. The cache simulator gener-
ates a bit vector of active and stalled processors for
the scheduler to use, based on cache misses occur-
ring and resolved during the current time step. In-
ternal to the second scheduling loop is a loop which
searches for any processor ready to run. If success-
ful, the simulated processor is scheduled and the low-
level scheduler psched is called. If all processors are
stalled (either due to cache misses, waiting at a bar-
rier, or deactivated), the second loop calls the cache
simulator and advances the global time by one. In
this case the cache simulator is not provided with
any new memory addresses, but is called to advance
the bus simulation, which will eventually un-stall the
caches. This process continues until either a proces-
sor is ready (cache operation �nishes) or until the
parallel part of the program has �nished. At some
point a thread will be ready to execute and will be
scheduled. Eventually, all threads will die at the end
of parallelism in the program and the system will re-
sume single thread execution using the pjoin routine.
The only time the second major loop really exits is
when parallelism �nishes, otherwise a non-returning
call is made to a thread which is ready to be sched-
uled.

4.11 Cache Simulators

The most typical modules used with Cerberus
are cache simulators, code pro�lers, or other statistic
gathering tools. All use the same interface and are
easily linked into the trace generator in the last stage
of executable �le creation. Most of the cache simu-
lators we have created to use with Cerberus model
fully-associative caches, designed to work with a �xed
cache size for each simulation. To make the caches as
eÆcient as possible, cache block (line, sector) lookups
use hash tables which have the same number of en-
tries as the number of blocks in the cache (like a
direct-mapped hash table), leading to a quick deter-
mination of whether a hit or miss has occurred. The
blocks are also maintained in a single large linked-
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list in LRU order for replacement, with a pointer to
the last block for quick LRU block displacement on a
cache miss when the cache is full. The LRU list and
hash lists are doubly-linked for ease in updating the
list when removing blocks from any location within
the lists (which can occur on cache hits). No attempt
is made to maintain stack distances, as was done in
[TS89].

To aid in shared memory operations, a special
cache-like structure with unlimited capacity is used
which has an entry for every distinct data block ref-
erenced by all processors. This \supercache" is a
feature in many of our cache simulators. It has no
e�ect on the consistency protocols under test, but
it keeps track of which caches contain which blocks.
Without the supercache, all caches must be searched
when certain operations (such as invalidations, up-
dates, cache misses, etc.) occur to shared blocks. It
is generally the case that contention for shared blocks
is low [GW92], so the supercache is useful in cutting
down on searches.

To reduce bus traÆc caused by locks, our cache
simulator uses a slightly di�erent model of locks than
do Sequent machines. This has no e�ect on the lock
paradigm assumed by the code, but is made for simu-
lation eÆciency purposes. If a cache read miss occurs
to the memory location used for a lock operation, the
Sequent treats the resulting bus access as a write miss
[TS90], which can cause a tremendous amount of bus
traÆc for high contention locks. Our cache model
treats a read miss during a locking operation with
a special read-invalidate operation, which reads the
cache block and detects whether the word-size lock
is locked or not. If not locked, a block invalidation
operation is broadcast if the block is in the shared
state. If the lock is locked, the bus operation acts
like a block read. This allows processors to spin on
locks in the cache without causing extra bus traf-
�c. To implement this feature, it is necessary to use
the lock's actual data address, which is passed by the
trace generator. The cache simulator modi�es (locks)
the lock's memory location (using the SIMgotlock
call), modifying the lock's value if it is unlocked and
takes the appropriate coherence action.

Part of the Cerberus package contains locking
routines to use with the cache simulator. The cache
simulators (even simple stubs) are required to call the
locking routines when appropriate. The locking was
originally handled by special assembly language lock-
ing routines called directly from the modi�ed code,
but this was found to be incompatible with using the
simulators interchangeably with TDS mode. By han-
dling locking in the cache simulator, it is possible to
make the coherence operations take place properly at

the time the lock is modi�ed, instead of trying to an-
ticipate the lock being acquired by the modi�ed code
based on the cache block state.

4.12 Summary of Implementation
DiÆculties

This is a short summary of the implementation
diÆculties we encountered while creating our tool. A
more detailed version with our solutions to the prob-
lems can be found in Appendix B. Many of the dif-
�culties have little to do with multiprocessor simula-
tion, but were encountered while trying to simulate
the uniprocessor workloads, such as SPEC92 or the
usual systems libraries.

When trying to modify FORTRAN code, it was
found that the FORTRAN compiler puts read-only
data into the text section, which has to be detected
in order not to modify the data, assuming it was code.

A pair of functions implementing non-local gotos
allowing jumps out of and into the middle of functions
(setjmp and longjmp) requires that special state be
saved in order to save and restore state the way those
functions expect.

Low-level memory allocation functions sbrk and
brk need to be intercepted, because both the modi-
�ed code and the simulation package have their own
versions of these functions. This can lead to inconsis-
tent pointers to the top of memory, which can cause
segmentation faults.

Branches must reach eight times as far in the mod-
i�ed code, since the code is expanded by a factor of
eight. On rare occasions the branches cannot reach
far enough, so measures had to be taken to substitute
jumps for branches.

Branch delay slots in the MIPS machine language
are very diÆcult to deal with in certain cases. Some
optimized code makes the delay slot instruction the
target of other branches. This situation e�ectively
makes the delay slot instruction part of the overlap
between two basic blocks. It is necessary to be able
to detect during run-time whether the delay slot in-
struction is being executed at the end of a basic block
or at the beginning of the next basic block.

It was found when porting the simulator between
di�erent machines using the same CPU that the C
compilers de�ned program symbols in inconsistent
ways, and typically at variance with the oÆcial MIPS
speci�cations [MIP89]. C macros were analyzed to
detect which compiler was being used.

Running the simulator on di�erent machines
(with identical operating systems) or under the stan-
dard debugger would often give slightly di�erent re-
sults in terms of miss ratios. This was due to slightly
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di�erent values that the stack pointer was assigned
by the di�erent machines at run-time.

Some of the C compilers ignore the volatile type
quali�er, which is used to force the code to read val-
ues from (shared) memory instead of caching those
values in registers. This requires using more recent
compilers which implement volatile. Sometimes it is
necessary to insert extra volatile quali�ers in front
of variables which are used for spin-locks.

5 Performance

To determine the overhead of simulation, we have
compared the user's CPU time, as computed by
/bin/time of the uniprocessor version of the pro-
grams, with the time from the stub cache simulator in
uniprocessor mode (Table 3) and for multiprocessor
mode with a stub simulator and a full cache coher-
ent cache simulator (Table 5). As will be shown, an
average slowdown of 31 is observed for the workloads
tested by the simulator in uniprocessor mode and a
40 to 50 times slowdown for multiprocessor opera-
tion, simulating just the stub (no cache simulator),
but with synchronization operations supported.

5.1 Workloads

The four programs used for performance measure-
ments come from the �rst SPLASH suite [SWG92],
which are regularly used in our research. These
workloads consist of: MP3D: a hypersonic rare�ed

uid 
ow simulation, using Monte Carlo methods;
LOCUS: a commercial quality VLSI standard cell
router; OCEAN: a simulation of large-scale ocean
movements based on eddy and boundary currents;
and WATER: a measurement of the forces and po-
tentials involved over time among water molecules in
motion. The problem size and characteristics of the
workloads we used can be found in Tables 3{5.

5.2 Measurement of Overhead

To measure the overhead due to the trace gen-
eration process, we compared the user times to run
the unmodi�ed program (with a single processor)
to the modi�ed code with a stub memory interface.
The �rst set of measurements (Table 3) uses the m4
NULL (uniprocessor) ANL macros [LO87] supplied
by Stanford University, which eliminate all parallel
constructs from programs. This removes locks, barri-
ers, and the parallel fork mechanism. Without using
parallel scheduling, Cerberus's scheduler is a much
simpler routine which has low overhead.

The di�erence in slowdowns among the various
workloads (seen in Table 3 and further down in Ta-
ble 5) is due to the instruction mix of each program.
As will be explained in Section 5.4, 
oating-point in-
structions require about 40 instructions to emulate
in the worst case, yet because many of them re-
quire multiple cycles to execute, the slowdown for a

oating-point instruction can be relatively small. The
LOCUS workload has no 
oating-point instructions,
whereas MP3D, OCEAN, and WATER have 9.7, 25.6
and 17.2 percent 
oating-point operations of instruc-
tions executed, respectively. In addition, these pro-
grams have varying mixes of �xed point arithmetic
and memory operations, which can cause their over-
heads to vary.

For the multiprocessor simulation evaluation, the
ANL m4 macros were modi�ed to use the Sequent's
m fork command to create new processor threads
and the m sync command for barriers. The code
in the workloads was slightly changed to work with
the new Sequent primitives. The major modi�cation
was to change the loop that created the threads into
an m fork call to a function that di�erentiated be-
tween the master thread (processor 0) and the slave
threads. The declarations for variables were changed
to include the shared type quali�er when appropri-
ate. More recently we implemented the s fork single
thread creation routine, allowing the workloads to be
used without modifying the original source code.

5.3 Simulation Slowdown

Using a single workstation and the user CPU
time from the UNIX /bin/time command, we mea-
sured the execution time for the sequential version of
our workloads run natively on a workstation and for
the simulated parallel versions. These measurements
were all taken on a DEC 5000/125. Table 5 shows
the ratios of the runtimes for all the simulations in
comparison to the native sequential version of the
workloads. The average slowdown with the stub sim-
ulator attached for small amounts of parallelism is
around 45; with a complex cache simulator attached
simulating a cache coherency protocol [RS99] (similar
to the Illinois protocol [PP84]) with 16 byte blocks
and 16 Kbyte split instruction and data caches per
processor, the average slowdown ranges between 920
and 1030. Note that we are not claiming that our
cache simulator is as eÆcent as some more tightly in-
tegrated EDS-cache simulator tools (like CacheMire
[BDNS93]; rather our point is that the EDS portion
of the simulation only requires about 5 percent of the
execution cycles.

One reason the simulations slow down with more
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Simulation Characteristics without Parallelism

Programs
Measure

LOCUS MP3D OCEAN WATER Average

Simulated References (Millions) 100.9 236.7 54.5 65.2

Instruction References (Millions) 79.8 175.6 38.5 48.4

Data References (Millions) 21.1 61.1 16.0 16.8

Slowdown (Simulated/Native Times) 41.2 19.0 29.1 36.4 31.4

Table 3: Comparisons of the overhead in time for several programs compiled with parallel fork and synchro-
nization constructs removed.

Memory Refs. with Parallelism (�106)

Number of Processors
Workload

1 2 4 8 16

LOCUS 97.8 97.8 99.4 101.0 107.8

MP3D 310.8 310.9 311.0 311.2 311.7

OCEAN 52.8 55.8 62.7 78.6 106.5

WATER 66.4 66.4 66.4 66.5 66.6

Table 4: Number of total memory references for the workloads increases as the number of processors increase.

processors is the increase in the number of references
(Table 4). OCEAN in particular shows a large in-
crease in the number of addresses generated, which
naturally causes the simulation to slow down, partic-
ularly with a cache simulator in use. In addition, in-
creasing the number of processors (threads) increases
the size of the working set perceived by the host work-
station, causing the system to slow down due to cache
misses and page faults.

5.4 Instruction Overhead

The modi�cation process is designed to minimize
the amount of overhead for the most common instruc-
tions while �tting all the necessary state preserving
operations into the 8 instruction block. However,
a number of instructions cannot be handled under
those restrictions and require additional routines to
aid in saving and restoring simulated processor state.
For example, 
oating-point instructions have approx-
imately twice the overhead of integer instructions,
due to the large number of instructions it takes to
load all of the registers involved. In the worst case
it must load four 
oating-point registers (two dou-
ble precision registers) and the 
oating-point control
register. To make the call to the FP loading routine
�t into the eight instruction limit, a fair amount of
decoding must be done to the argument passed to
the special assembly language loading routine. The
routine determines what precision must be handled,
and which registers must be loaded. For example,
an integer instruction with no special cases to han-

dle (such as the add instruction in Figure 7) requires
the eight instruction block in the code and 12 instruc-
tions in assembly language to handle the interfacing
with the C code routines. Floating-point operations
require the eight instruction block plus 32 instruc-
tions to load two 
oating-point registers (27 for one
register). However, many 
oating-point instructions
require multiple cycles to execute. For example, a
double precision multiply takes 5 cycles to execute; a
double precision divide takes 19 cyclesy. Code with a
high density of 
oating-point instructions will gener-
ally show less slowdown than pure integer code, be-
cause as noted, all instructions are treated as having
the same execution time.

The simulation overhead for each workload de-
pends upon the mix of instructions to be simulated.
Some instructions have less overhead than normal
integer instructions. Load-store instructions have
lower overhead per memory reference because the
additional overhead for capturing the data address
is small. Branch and jump instructions also have
slightly lower overhead than normal instructions, be-
cause the branch often takes place in the middle of
the block of eight instructions, skipping several of the
nops used to pad-out the block to the proper length.
In addition, some instructions use register r0 (which
always has value 0) or have only 0 or 1 operands. It
is then possible to complete those operations in less

yThe latency of these operations on the R3000 can be par-
tially hidden until the results are required. Our simulations,
however, assume that instructions are executed serially.
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Ratio of Simulation Time to Native Runtime
Program Problem Size Stub Simulator (Procs) Cache Simulator (Procs)

1 2 4 8 16 1 2 4 8 16

LOCUS Primary1 44.6 44.3 44.4 45.0 52.4 842.6 792.3 797.3 881.7 1164.0

MP3D 50 steps, 20000 particles 39.5 38.3 37.8 37.5 40.3 1075.8 968.2 926.6 935.1 1030.9

OCEAN 34 x 34 grid, 1000 meter res. 43.8 44.8 50.4 64.7 86.2 1003.0 957.0 1190.3 1357.3 2389.8

WATER 4 steps, 64 molecules 52.0 49.5 48.7 49.2 50.6 1113.1 975.6 914.8 937.8 1035.5

Average 45.0 44.2 45.3 49.1 57.4 1008.6 923.3 957.2 1028.0 1404.8

Table 5: Slowdown ratios of simulated vs. native execution of workloads with parallelism support added.

than 8 instructions (such as nops from the original
code, which require only 4). In cases where the op-
eration can be performed with few instructions, an
optimization is made whereby a branch is inserted
to skip over the nops which are used to pad-out the
block of 8 instructions.

5.5 Simulation Overhead

To determine and measure where the simulator
spends its time, Pixie [Smi91] was used to pro�le
the simulation executable. Among other statistics,
Pixie is able to determine the number of instruction
and data references for the simulation and the cycles
spent in each function. Table 6 was derived by group-
ing related functions together and adding up the in-
structions executed in the functions. The largest sin-
gle source of overhead (data collation is spread over
several functions and also includes the single thread
scheduler) is the multi-thread scheduler. During exe-
cution, it cycles through the processors, scheduling
each one that is not stalled. When all the avail-
able processors have been run, the cache simulator
is called with the address information generated by
the active processors. The return value is a bit vector
of the processors which are active and can be sched-
uled the next step. The process of determining which
processors (threads) to schedule, calling the cache
simulator and advancing the time step requires ap-
proximately 20{40 instructions per call to the sched-
uler. The number of instructions it takes to �nd the
next processor to schedule falls with the number of
processors simulated, so that the simulator actually
executes fewer instructions to run the whole simu-
lation with more processors (for well behaved work-
loads). As the number of processors increases further,
the working-set size of the simulation increases suf-
�ciently to bog down the host system due to cache
misses and page faults.

Figure 8 shows the average user time for each
workload spent by the simulator for each memory ref-
erence generated, with a stub simulator attached, and
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Figure 8: Microseconds per memory reference with a
stub simulator and a full cache simulator.

with a shared bus coherent cache simulator. These
times per reference are quite low: corresponding num-
bers for a uniprocessor simulator were reported in
the 200{400 microsecond per second range for a DEC
5000/240 in [GHPS93]. We note that the trace gen-
eration time is insigni�cant compared to the trace
consumption (cache simulation) time (around 5 per-
cent).

As the number of processors increases, the exe-
cution time slightly decreases up to 4 processors and
then increases with additional processors. This is par-
ticularly noticeable for the simulations with a cache
attached. The decrease is due to factors such as more
eÆcient scheduling of processors and the increase in
total simulated cache space causing a reduction of
the miss ratios (misses are costlier than hits to simu-
late). The increasing execution time with more pro-
cessors (beyond 4) is due to the increasing working-
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Percentage of Cycles in Simulation

Source MP3D LOCUS OCEAN WATER Avg.

Stub Tool 19.9 22.9 18.8 19.0 20.1

Multithread Scheduler 28.9 24.5 29.8 29.9 28.3

Data Collation (C) 31.2 33.7 29.6 29.9 31.1

Prep. Routines (Asm.) 13.1 11.5 14.6 14.2 13.4

Instruction Simulation 6.9 7.4 7.2 7.0 7.1

Table 6: Measurement of overhead in the simulator with a minimal tool stub, 4 processors.

set/memory space requirements on the host system
and increasing communications and synchronization
needs for the coherent cache simulation. In addition,
the system time for larger simulations increases as
the demand on the virtual memory system to run
the simulation increases with more processors.

Table 7 shows a comparison of the processing time
per reference for a few cache simulators. All of the
simulations were run on a DEC 5000/125. The tim-
ings were computed using the user time from the UL-
TRIX utility /bin/time. The input to each TDS
simulator is a trace �le generated from MP3D using
10 steps of 1000 particles in the test geometry. Our
cache simulator computes timing information and
simulates cycle-by-cycle for bus operations, maintain-
ing a write bu�er and performing complex coherency
operations, including caching of locks. It also inter-
acts with the memory reference generator to stop the

ow of addresses during cache stalls. Each proces-
sor maintains fully-associative data and instruction
caches. The MPSIM simulator is based on the work
in [Tho87], which simulates a range of cache sizes
by using stacks. It does not simulate bus timing.
The other cache simulator is Dinero, a public domain
uniprocessor cache simulator by Mark Hill. Dinero
was evaluated using both direct-mapped and fully-
associative con�gurations.

Also included in Table 7 is the time it took to just
generate the traces, as well as the trace �le sizes. The
trace format uses 6 bytes per entry, with 1 byte for
the processor number, 1 byte for the reference type,
and 4 bytes for the memory address. The traces were
generated using Cerberus with a utility to dump the
traces to disk. An interesting point to note is that
it takes Cerberus approximately 2 microseconds for
each address reference generated (Figure 8), but 13 to
15 additional microseconds to write the information
to disk (Table 7), which shows that disk operations
heavily dominate trace generation time. A �lter pro-
gram was used to turn the trace �les into a format
suitable for Dinero, which takes ASCII input of the
form \type address" (processor number is not neces-
sary). All of the simulations used similar cache con-

�gurations (as much as possible) with 16 byte blocks,
with 16K byte instruction and data caches when it
was possible to specify. The parallel cache simula-
tors used the Illinois coherency protocol for MPSIM
and an adaptive invalidation protocol similar to Illi-
nois [RS99] for our cache simulator which used the
Cerberus system. The results show that a cache
simulator using Cerberus has speed comparable to
(and often better than) TDS based simulators and
scales well in multiprocessor mode.

5.6 Design and Performance Trade-
o�s

In the process of designing the simulation tool,
we had to make decisions about trading accuracy
for speed. Our approach was to use the minimum
granularity possible for switching between threads,
while attempting to minimize the slowdown. Other
EDS simulators have chosen a coarser grain of con-
text switching. Other possibilities were on a basic
block granularity [CMJS88, Boo94] and at user de-
termined levels of granularity [DG90, Del91]. Pro-
teus [Del91] in particular modi�es the C language
source code just for certain (shared) memory refer-
ences, which can cause each processor to have a dif-
ferent value of the global time at any given point in
the program, as the processors synchronize time at
shared memory points. Our method of task switch-
ing on each instruction is the most accurate, yet is not
any slower than the other, less accurate, emulators.
Considering all the other management features that
must be handled by our simulator, such as schedul-
ing processor threads, our simulator does very well
in comparison to other simulators that can be run on
single processor workstations.

6 Conclusion

The key to understanding how multiprocessor sys-
tems work is an accurate model of the interactions
between the processors. Many parallel programs use
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Microseconds per Reference, MP3D trace

Simulated Processors
Cache Simulator Type Reference

1 2 4 8 16

Cerberus with Cache Simulator EDS This Paper 49.0 50.9 49.7 47.6 54.9

MPSIM TDS [Tho87] 45.8 50.6 51.7 55.0 67.2

DineroIII with Direct Mapped Caches TDS [Hil] 41.2

DineroIII with Fully Associative Caches TDS [Hil] 64.1

Trace File Generation Time (�S per ref) 16.8 15.6 15.0 14.8 14.9

Trace File Size (MB) 24.9 25.0 25.0 25.1 25.3

Table 7: Comparison of Cerberus attached to a fully-associative cache simulator (using an adaptive coher-
ence protocol) with various TDS cache simulators.

dynamically scheduled task distribution among the
processors, with work queues for load balancing. This
can cause the interleaving of memory references to be
quite di�erent depending on the target environment.
Failure to accurately model processor interactions
could lead to mutual exclusion and synchronization
violations, as well as incorrect load balancing [Bit90].
To provide an accurate view of program execution,
execution driven simulation is the best method for
dynamically scheduled workloads. EDS also has the
side bene�t of eliminating the massive amount of disk
space necessary for storing traces.

Cerberus is an EDS-based multiprocessor sim-
ulation system that allows program trace generation
with a high degree of 
exibility and �ne grain accu-
racy without sacri�cing performance. It is 
exible in
allowing the easy attachment of user created tools for
code pro�ling, cache simulation, trace generation and
other statistics gathering. The intuitive shared mem-
ory programming models used by Cerberus lead to
easy expression of parallelism in programs.

Cerberus provides eÆcient simulation of multi-
processors by creating a single UNIX process with
lightweight threads for each simulated processor,
tightly linked with a user's measurement tool. This
eliminates the extra context switches needed by other
simulation systems, and allows for very low-level and
accurate simulation of the interleaving of processor
memory references.

Some trace generation tools have less slowdown,
but with some loss of accuracy. Cerberus derives
its accuracy by simulating instruction-by-instruction;
others tools use basic block granularity or instru-
mented high-level code to synchronize simulated pro-
cessors. Cerberus does not sacri�ce eÆciency to at-
tain its accuracy. However, since the actual execution
time of instrumented code is heavily dominated by
the measurement tools (especially in the case of mul-
tiprocessor cache simulators), eÆciency is generally
not a major concern for the address generation sub-

system. One of the results of this study shows that
execution time measurements of TDS systems show
little speed advantage over Cerberus. We believe
that Cerberus is a very good system for accurately
and 
exibly studying new computer architecture de-
signs.
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A Survey of Trace Generation

Methods

There are a number of other packages for examin-
ing and generating processor traces in the public do-
main. Both hardware and software approaches have
been taken to collect traces of multiprocessor behav-
ior. Many of the papers on these methods stress the
eÆciency of how the traces were collected, but the
major issues are the amount of disk space necessary
to store the traces, the time to simulate the multi-
processor machine, and the accuracy of the traces.
As was demonstrated in the main section of this re-
port, cache simulator time signi�cantly outweighs the
overhead due to trace generation in EDS systems.

Two major methods of collection and using multi-
processor traces exist: trace driven simulation (TDS)
and execution driven simulation (EDS). TDS implies
two steps: trace collection and trace consumption.
Trace collection methods span a wide range from
software modi�cation of code to hardware probes on
the system bus to collect addresses. The traces col-
lected re
ect the architecture of the system under
test as well as any distortions induced by the collec-
tion method. Appendix A.1 describes the di�erent
methods of TDS.

EDS provides the ability to combine generating
and consuming traces into a single package. Traces
can be created by a number of di�erent simulation en-
vironments ranging from simulating a multiprocessor
system on a uniprocessor machine to using slightly
modi�ed multiprocessor operating system software
for trace generation. Instead of dumping traces to
disk, they are fed into a cache and memory simula-
tor, which allows interaction between the program
and the simulated hardware. The bene�ts of this
method are discussed in Appendix A.2. A summary
of our survey of the di�erent trace generation tools for

21



multiprocessors can be found in Table 1. A general
survey of uni- and multiprocessor trace generation
methods can be found in [UM97].

A.1 Trace Driven Simulation

Numerous papers have been written using from
the results of Trace Driven Simulation (TDS) for
multiprocessors (such as [EK88, EK89b, GS94]). A
number of tools have been created to generate traces
from multiprocessor programs. Besides potential in-
accuracy from timing distortions in predicting perfor-
mance (discussed in [Bit90, HE92, KEL91, GH93]),
one critical problem with TDS is the large trace
�les required to store long traces. There are several
methods which can be used to compact uniprocessor
traces. By taking advantage of the spatial locality
naturally present in instruction streams, it is possi-
ble to use di�erence encoding to reduce the trace size
by up to 100 [Sam89]. In addition, general compres-
sion methods such as the Lempel-Ziv algorithm in
tools such as gzip or compress can be applied to
the traces after more intelligent di�erence encoding
has been used.

A.1.1 Hardware/Firmware Trace Collection

There have been several attempts to collect mem-
ory reference traces by directly monitoring the system
hardware, or by modifying the microcode �rmware to
collect traces. The main advantage of this method is
the inclusion of operating system (OS) references in
the traces. Among the disadvantages are the non-
availability of internal processor state, such as mem-
ory references handled by on-chip caches, which does
not reach the memory bus where it can be detected.
Also, current processors lack microcode which can be
modi�ed by users.

Address Tracing Using Microcode (ATUM) was
used to modify the microcode of a multiprocessor
VAX 8350 to extract user and OS multiprocessor
traces [SA88]. Because the traces had to be cap-
tured to bu�ers in physical memory, the length of the
traces was limited to under two million instructions.
By modifying the OS to be able to collect traces of
system behavior, distortions in operational behavior
were introduced into the traces. This is a trade-o�
which must often be made when OS and user code
interactions need to be studied.

Wilson [Wil90] collected 14 million reference sam-
ples from an Encore Multimax using a hardware in-
terface. The traces from a single processor executing
multiprocessor code was captured by sending mem-
ory management unit (MMU) generated physical ad-

dresses to a special input/output (I/O) card. In an
improvement to that method, Vashaw [Vas93] added
special hardware to a Multimax to sample up to
eight processors, to collect address and data refer-
ences from the system. Vashaw collected approx-
imately 32 million references from eight programs,
including OS references. The OS typically had a
small impact on the number of references (the me-
dian number of OS references was a 4 percent share),
but showed worse behavior than the user code. As
was noted, the traces re
ected the interference of the
measurement technique, as well as the in
uence of
the underlying machine architecture.

A.1.2 Software Generated Traces

Traces were generated from a Sequent Balance
12000 using the UNIX Ptrace system call [Lac88].
By single-stepping the program to generate mem-
ory references, a slowdown of over 100,000 resulted;
thus requiring about two weeks to collect the tar-
get of 42 million references. The traces generated
in this manner were used by Eggers and Katz in
[EK88, EK89b, EK89a].

Tracer [AE90] augments the assembly language
of a parallel application to generate data references;
however, it was unable to augment system library
routines. The UNIX fork and wait calls were used to
run the parallel simulation on a sequential machine.
This package requires tasks to be statically assigned
to particular processors, and memory accesses were
reconstructed from estimating memory access delays
from hints in the generated traces.

MPTrace [EKKL90] augments Sequent code to
generate traces by directly executing on the machine.
Data is put into bu�ers; once the bu�er from a proces-
sor �lls up, all processors are halted to allow dumping
to disk. Trace generation slowdown is quite small, on
the order of three to eight times. However, as noted
in [UM97], reconstructing the trace from the infor-
mation saved in this procedure causes a slowdown of
an estimated 1000 cycles per reference generated.

A.2 Execution Driven Simulation

Execution driven simulation (EDS), also referred
to as program driven simulation or direct execution,
o�ers an approach that instruments code or emulates
it so that it calls a simulation package when an in-
teresting event occurs during execution. Code can be
directly executed, which can lead to faster run time
than can be obtained by interpreting each instruc-
tion. A thread scheduler can be used to interleave
several processor threads to give the appearance of
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multiprocessor execution. The level at which the code
is modi�ed varies between these approaches; some
modify each instruction in the object code, some at
the level of basic blocks; some add code to a high-
level language to denote shared memory accesses.
The method of scheduling the simulated processors
varies between the di�erent approaches: implement-
ing a user-level threads package or creating a process
for each simulated processor to use the underlying
system OS scheduler. Some simulators run on top
of multiprocessor machines, allowing each simulated
processor to be hosted by a real processor.

There are a number of bene�ts to using EDS for
uni- and multiprocessor tracing. The primary advan-
tages of EDS are accuracy and the ability to pro-
duce and consume large traces without reading large
trace �les from disk. Traces can occupy hundreds of
megabytes for any reasonably long sample. Unipro-
cessor traces can be signi�cantly compressed without
losing information [Sam89], but multiprocessor trace
generation/compaction is somewhat more complex.
Acquisition and release of locks and barrier synchro-
nization can cause timing-dependencies in the gener-
ated traces [GH93], and should be abstracted to allow
processors in a hypothetical architecture to change to
a allow variation in orderings. These synchronization
operations must be handled in some manner to pro-
vide a reasonably accurate execution order, which is
generally not a concern for uniprocessors, as timing
dependencies rarely exist. Using a Pixie-like encoding
scheme [Smi91] in conjunction with the UNIX utility
gzip, our tool Cthulhu [Rot], which interfaces with
Cerberus to generate multiprocessor address traces
to disk, we achieved a trace compression ratio ranging
from 12 to 71, with an average of 31. Even with this
compression, trace �les containing less than a billion
memory references can require more than 100 MBytes
of storage. [UM97] provides more details about the
compression of multiprocessor traces.

EDS also allows 
exibility in changing the hypo-
thetical system under simulation without requiring a
new dump of traces to disk. For example, the num-
ber of simulated processors can be changed in many
EDS systems without much e�ort, whereas TDS re-
quires a separate trace generation run (with the cor-
responding large output �le(s)) for major con�gura-
tion adjustments. EDS also allows feedback between
the trace generation portion and the system archi-
tecture simulator, which is important in determining
the correct ordering of events. In addition, EDS al-
lows access to the simulated processor state and the
entire contents of memory. It is possible to imagine
developing a cache coherence algorithm that avoids
write-invalidations when the value to be overwritten

is the same as the new value. Such optimizations
are not possible to evaluate with TDS. TDS has cer-
tain architectural assumptions built into the traces
in the form of event timings, which as described in
Appendix A.1, may produce inaccurate results when
a di�erent environment is simulated.

A.2.1 Interpreters

The DDM simulator [Dah91] consists of a number
of simulated MC68000 modules which are connected
with memory system modules to simulate a hierar-
chical bus architecture. The system was written in
ADA for expressing concurrent constructs, and suf-
fered a slowdown of approximately 2000 y. One of the
important points this paper makes concerns the suit-
ability of TDS for multiprocessor simulations. The
author argues that TDS for multiprocessors fails to
take the dependence of the trace on the architectural
assumptions of generation system, which can cause
timing distortions when evaluating a di�erent system
architecture.

MINT [VF94] is a MIPS R3000 interpreter on
which binaries for a parallel machine can be eÆciently
simulated. By using arrays of function pointers in-
stead of C switch-case statements, it is faster than
most systems, whether interpreted or directly sim-
ulated. It has a slowdown of between 20 and 70.
MINT can be run on systems other than the MIPS,
but it requires that the system calls for the MIPS ex-
ecutable be supported on any platform on which it is
used. It does have the rather humorous property of
being able to interpret the Tango system (described
below) faster than Tango can be run directly on a
UNIX system.

A.2.2 Modi�ed Code Execution

The Rice Parallel Processing Testbed [CMJS88]
o�ers fast simulation of many memory architectures
by inserting code at the beginning of basic blocks and
for global communication events. Code written in
Concurrent C is instrumented and linked to modules
de�ning the memory system to form an executable
�le. This method can su�er from a lack of accuracy
because the timing ignores local processor events such
as cache misses.

The EDS method in Trapeds [SJF92] modi�es the
assembly language of parallel programs as well as the
operating systems on a multiprocessor iPSC/2 (com-
posed of a hypercube interconnect of i386 processors).

yThe slowdowns reported in this section are for simulators
without other subsystems (such as cache simulators) compiled
in, with exceptions noted.
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The ordering of messages is collected from unmodi-
�ed code, which is used to enforce the ordering of
messages in the instrumented code. This ordering
may cause distortions as the simulated hardware pa-
rameters vary from those of the underlying machine.
The OS kernel can also be modi�ed on the iPSC/2,
but also can su�er distortion from extra page faults,
etc. The OS was found to consist of a signi�cant por-
tion of the execution time, caused by the kernel calls
necessary for message passing.

Due to the poor I/O organization and perfor-
mance on the iPSC/2, the system is best utilized
consuming the traces on the 
y with a cache sim-
ulator rather than writing the traces to disk. While
allowing quick simulation of parallel programs, it is
restricted to the memory architectures of the iPSC/2,
on which it runs directly. Trapeds was also applied
to an Encore Multimax, a shared memory bus-based
system using National Semiconductor's NS32532 pro-
cessors. The traces from this system were dumped
to disk with time and synchronization based tags to
allow re-creation of the interleaving of the transac-
tions of the processors. There were found to be three
types of distortions that disturbed the timing valid-
ity of the traces: (1) reordering of original pattern of
accesses at synchronization points; (2) modi�cation
of time spent waiting at synchronization points; and
(3) modi�cation of the ordering of memory accesses
between synchronization points.

FAST [Boo94], created at U.C. Berkeley, is a rel-
atively low-overhead simulator with a light-weight
threads package, which accurately models low-level
thread interleavings, with a slowdown between 10 and
110. The processor threads are interleaved using ba-
sic block granularity. It very accurately models the
execution time of basic blocks, taking into account in-
terlocks for the 
oating-point pipeline for operations
started in other basic blocks. To avoid diÆculties
with simulating system libraries, it makes approxima-
tions about the duration of the library calls it cannot
directly trace.

Tango [DG90] is a multiprocessor simulator cre-
ated at Stanford University. It uses UNIX processes
for each processor in the simulation, which can cause
a great deal of context switching overhead depending
on the granularity of the simulation. Each process
is scheduled by the normal UNIX scheduler, and co-
ordinates with other processes when a shared mem-
ory or synchronization event occurs. The disadvan-
tage of this approach is the heavy weight context
switches used by the operation system to switch be-
tween simulated processors. Tango allows the user
to specify the granularity of synchronization between
processes (simulated processors) for shared memory

event communication. At the least accurate and
fastest level, processors synchronize only at synchro-
nization events, which are presumably locks or barri-
ers between tasks. The next level of accuracy requires
accessing the memory process for shared data refer-
ences as well. The most accurate, but slowest level
of granularity requires synchronization for all global
and local events. Using this model at the most ac-
curate granularity can cause the simulation to run at
up to 20,000 times slower than an unmodi�ed ver-
sion of the program. A newer version called Tango
Lite is available that uses a light weight threads in-
stead of processes. This version is reported to have a
slowdown of 45 [GH93].

Proteus [BDCW91, Del91] is an EDS simulator
from the Massachusetts Institute of Technology. It
is one of the fastest simulators, because only the
source code concerning shared memory events is aug-
mented. Calls to the simulator and processor sched-
uler are added for each shared memory reference.
This method of code modi�cation is particularly
clever because it uses the C compiler to manage sav-
ing and restoring registers when each processor con-
text is changed, which is necessary only for calls to
the simulator. The result of this high-level manage-
ment is a typical slowdown of 35{100, but at the cost
in the accuracy of instruction timing. Processors are
allowed to drift from the correct global time for eÆ-
ciency purposes. It uses a light weight thread sched-
uler to avoid the context switch overhead in Tango.

The Wisconsin Wind Tunnel [RHL+93] directly
executes parallel binaries on a CM-5 machine. Their
method allows most code to run directly without
modi�cation on the system, using the error correct-
ing code (ECC) bits to trap accesses to shared mem-
ory. Only in the case of shared memory misses does
extra simulation code run, caused by an ECC trap.
A software layer is added to provide the abstraction
of shared memory on top of a message passing ma-
chine. Since each simulated processor actually runs
on a real processor, the simulator is extremely fast.
The slowdown reported for this system ranges from
52{250 with the memory simulator connected to the
trace generation subsystem. One of the side e�ects of
this simulation is possible inaccuracies of the shared
memory latency due to the coarseness of timing with
message passing. In addition, use of small caches (less
than 32 Kbytes) can cause signi�cant slowdowns (30{
40 without the cache simulator) because the OS trap
handler is invoked frequently [UM97].
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B Implementation DiÆculties

A number of issues arose during the creation of
the simulator which caused programming diÆculties.
A summary some of the chief diÆculties that had to
be overcome and our solutions for the implementation
of the project follows:

1. Although object code produced by FORTRAN
is very similar to C object code, there are
a few important di�erences. The chief issue
is the method of passing parameters. FOR-
TRAN passes by reference, i.e., uses pointers
to all parameters, including constants. The
compiler puts the constants in the text sec-
tion to make the values read-only. Although
the rdata (read-only data) section is available
in the MIPS a.out executable format for that
purpose, the compiler sticks the constants at
the beginning of the procedures that make func-
tion calls using the constants. It was necessary
to determine which items in the text section
were instructions and which were constants. It
was also necessary to make sure that the con-
stants were not modi�ed as the instructions are
and that the address passed to the cache simula-
tor re
ected the same address as in the original
code.

2. Non-local gotos (setjmp and longjmp pair)
were found in the SPEC92 benchmark Xlisp
[Kel90, KYI91]. This pair allows jumps out of
an arbitrary function call depth by longjmp
to the point in any function set by setjmp.
A fair amount of information must be saved
to allow jumping into the middle of a func-
tion. This environment information consists
of the \saved" integer and 
oating-point regis-
ters (those preserved across function calls), PC,
stack, and 
oating-point control register values.
When longjump is called, these values must be
restored to the appropriate registers to restore
the environment to allow the function jumped
into to continue operating properly. A special
routine is used to detect when longjump has
been called and update the simulated registers.

3. Most system calls can be directly made from
the modi�ed code (typically from library rou-
tines), but the low-level memory allocation sys-
tem calls sbrk and brk must be intercepted.
Both modi�ed and unmodi�ed versions of the
standard library exist in the same executable
�le, and both sets of the libraries are actively
used. Most of the time this does not cause any

problems and is necessary, but it does not work
with sbrk. Both the modi�ed and unmodi�ed
versions of the standard library function sbrk
maintain a pointer to the highest location of
the data segment that has been allocated (the
break point). This value becomes inconsis-
tent when there are two versions of sbrk run-
ning. The break point can occasionally be de-
creased by the inconsistency, causing segmen-
tation faults. More importantly, it is useful for
correctness and debugging reasons for each pro-
cessor to have its own contiguous range of pri-
vate memory. A special local memory allocator
is used instead of sbrk in the modi�ed code to
implement this feature and to avoid the multi-
ple sbrk problem.

4. Branches are limited to distances of �131072
(�217), because of the 16-bits allowed for des-
tination speci�cation (since the address has to
be word aligned, it provides for an 18-bit signed
integer displacement range). Any branch with a
displacement exceeding 16 Kbytes in distance in
the original code needs to be restructured in the
modi�ed code to work correctly, because when
the code is augmented, the distance is multi-
plied by 8, which exceeds the range of a branch
instruction. This was solved by replacing af-
fected branches with an unconditional jump,
that jumps to a routine which tests the branch
condition, and resumes execution at the correct
place both for taken and not-taken branches.
Code space is reserved at the end of the modi-
�ed code to put the branch and jump instruc-
tions for each long branch encountered. It is
rare that branches need to be re-vectored in this
way.

5. One issue that only occurs in multiprocessor
mode is the reaction of the C compiler to the
keyword volatile. This type quali�er is used
for shared variables to force reads from shared
memory to always fetch values frommemory (as
opposed to caching it in a register) before the
value is tested. The optimizer tends to cache
the value in a register, and this precludes co-
herent alteration of the value by another sim-
ulated processor. The volatile quali�er is not
acted upon by some C compilers (such as the
standard cc compiler supplied with Ultrix), and
the result can be an in�nite loop or other prob-
lem for some of the simulated processors. This
is due to the fact that the cached value cannot
be updated by other processors. Using ANSI
compilers (such as gcc) takes care of this is-
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sue. It is still necessary to watch for spins on
shared-memory variables, to make sure that op-
timization does not interfere with proper oper-
ation. This problem has been observed only in
LOCUS.

6. The existence of branch delay slots causes an
occasional problem. Because the delay slot
instruction must be expanded into eight in-
structions and executed before the branch takes
place, the delay slot instruction is moved before
the branch instruction in the modi�ed code.
But the branch condition may be a�ected by
the values computed in the delay slot, so it is
necessary to use temporary registers to avoid
con
icts.

However, some optimizers target branches to
the instruction in the delay slot, which saves
one instruction in the executable, but has no ef-
fect on the dynamic number of instructions exe-
cuted. Figure 9 shows an example of code with
such a branch. In the case of a branch into the
delay slot, the delay slot instruction is executed
independently of the branch instruction whose
delay slot it occupies; the delay slot instruction
acts like the beginning of a basic block. For cor-
rect execution in this odd case, the delay slot
instruction, which has been moved before the
branch by the code modi�cation process, must
skip the branch instruction and continue execu-
tion of its basic block. It is necessary to deter-
mine whether the delay slot instruction should
allow execution to continue to the next eight in-
struction block containing the branch instruc-
tion (normal case) or to jump over the block of
code containing the branch.

This problem was solved by using the delay slot
instruction of the branch that targets the delay
slot to load special registers which dynamically
determine whether to skip the branch. But the
targeted delay slot can also be needed for this
special role, causing more complexity. In Fig-
ure 9, the instruction at address 0x10007b7c
is the target of a branch into the delay slot.
In the modi�ed code, when this instruction is
branched to, for correct execution it must be en-
sured that the branch at 0x10007b78 is skipped.
To determine when to do this, the delay slot
of the targeting branch (at 0x10007b64) loads
a special value into a location in the proces-
sor's context block, indicating that this special
branch might occur. This value is detected at
0x10007b7c if the branch occurs; it is not de-

tected if the delay slot instruction is executed as
the delay slot of the branch at 0x10007b78. If
this problem sounds confusing, it was certainly
no fun to resolve, but it does work correctly.

7. Program symbols are inconsistently de�ned by
the C compiler. This project was developed on
several MIPS based platforms, and depending
on the operating system and the compiler, the
a.out format symbol de�nitions vary. Accord-
ing to the MIPS manual [MIP89], symbols that
are unde�ned are placed in the external symbol
table, while de�ned symbols reside in the local
symbol table. On one system, variables stayed
in the external table even after they were de-
�ned, which does not follow the correct MIPS
rules. Another related issue is that some of the
compilers have di�erent types of symbols, which
are incompatible with other compilers, speci�-
cally those related to struct de�nitions. This
caused problems as the project was ported be-
tween di�erent MIPS platforms. The solution
to this problem was to use C macros for condi-
tional compilation, which can be used to include
the appropriate C routines for each type of OS
and compiler.

8. Running the trace generator under the debug-
ger, on di�erent machines, or with di�erent
path names to input �les can generate slightly
di�erent results. It was disconcerting to �nd
the miss ratios were di�erent for runs of the
same workload and cache simulator on di�erent
machine, but only on the order of two or three
extra misses out of millions of references. This
problem was tracked down to the initial value
of the stack pointer. This can di�er between
machines of the same type, as well as if the pro-
gram is run using a debugger. The value typi-
cally di�ered by a small amount (e.g., the initial
value of the stack pointer sp varied by 16 for
two machines in our research group: 0x7�fbac8
vs. 0x7�fbab8 running MP3D under the debug-
ger on two workstations under otherwise iden-
tical circumstances). This is enough to a�ect
the mapping of some stack variables to cache
blocks. Fortunately this di�erence is so small
that it has very little impact on the results,
changing the number of cache hits or misses by
around 3 out of more than 100,000,000 refer-
ences.

26



(../doopen.c: 110) 0x10007b5c: li r4,43

(../doopen.c: 110) 0x10007b60: beq r4,r2,0x10007b7c % branch to delay slot

(../doopen.c: 113) 0x10007b64: r1,98

(../doopen.c: 110) 0x10007b68: r2,r1,0x10007ba4

(../doopen.c: 113) 0x10007b6c: nop

(../doopen.c: 113) 0x10007b70: lb r11,2(r7)

(../doopen.c: 113) 0x10007b74: nop

(../doopen.c: 113) 0x10007b78: bne r4,r11,0x10007ba4

(../doopen.c: 113) 0x10007b7c: li r1,-2 % delay slot and target of branch

(../doopen.c: 113) 0x10007b80: lh r12,16(r3)

Figure 9: Code snippet which exhibits a branch into a delay slot.

C Installing Cerberus

The Cerberus tar �le contains four main subdi-
rectories: modCode, appl, cache, and docs. mod-
Code contains source code for the code modi�er
modCode, the simulator libraries and routines in
C and MIPS assembly language, and a subdirectory
called parallel, which contains some include �les.
Simply typingmake in the modCode directory will
compile all the tools and libraries necessary for par-
allelization. Certain variables, such as the DIR vari-
able, should be adjusted to point to the modCode
directory.

The appl directory contains the global Make�le
included by the Make�les of the applications to be
parallelized. The applications can be placed in sub-
directories of appl, but that isn't required. In all the
Make�les, it is possible to adjust the Make�le vari-
ables to point to the appropriate directory locations,
such as the include statement in Appendix F.1.

When a program to be simulated is created or
un-tarred into a directory, it is necessary to make a
symbolic link from that directory to the subdirec-
tory modCode/parallel to allow the Make�le to
�nd the proper include �les. In addition, it is nec-
essary to have a �le called paramFile in the work-
load's directory, which is used for passing command
line switches to the cache simulator (speci�ed in Ap-
pendix D). These can all be seen in the samplemp3d
subdirectory of appl.

The cache directory holds a simple multiproces-
sor cache simulator stub which keeps track of some
simple statistics (instruction, load, store, lock, and
unlock operation counts). It provides the minimum
code necessary for unpacking the data structure con-
taining all the address references, and handling the
lock management package. We found it necessary to
have the cache simulator perform the actual locking
operations, since there was no way for the cache to
be sure a lock was going to take place unless it mod-
i�ed the lock directly. It also makes it possible to

cleanly attach a trace reading (TDS) program as the
front end to the cache simulator interchangeably with
a Cerberus generated front end (such as Cthulhu
[Rot]).

In the docs directory will be found a copy
of this Technical Report as well as any other
notes that aid in running the Cerberus sys-
tem. In addition, there is a Cerberus website
at http://www.cs.berkeley.edu/�rothman/cerberus,
where contact information, updates and other infor-
mation can be found.

D Using Cerberus

Common Commands in paramFile

# rest of the line is a comment
-c switches commands passed to the cache simulator

-n n maximum number of simulated processors
-mem n memory allocated (shared and local)
-mems n shared memory allocated
-meml n local memory allocated per processor
-meml0 n local memory allocated for processor 0

-sharedglobals use lightweight threads (shared globals)

Table 8: Some of the commands passed to the thread
package and the cache simulator.

The �rst step in compiling Sequent code for Cer-
berus requires using a lexical analyzer (generated by
new get shared.l) to convert shared memory vari-
ables with the shared type quali�er to variables with
the word shared prepended. This makes it possible
to determine in the modi�cation stage which vari-
ables are shared in order to target the correct part of
the memory space. This also allows use of a regular
C or FORTRAN compiler to generate object code. A
lexical analyzer is necessary because of the necessity
of processing C grammar for all the possible ways the
shared type quali�er can be incorporated into vari-
able declarations.
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In the process of compiling the source code, it
is necessary to create an object �le with full debug-
ging information in it (using the -g or -g3 options).
The only restriction on the contents of the object
�le is that the function main must be renamed to
app main and must be the �rst function of the ob-
ject �le that serves as input to the code modi�er.
The combined object �le must be linked together us-
ing ld with the -r and -d options, to force de�nitions
of all symbols, and to keep relocation information in
the �le. There are also three library �les that have
to be linked-in to help support some of the tracing
functions and to provide new multiprocessor versions
of such routines as printf. These �les are pps.o,
the pseudo parallel library; newprint.o, the locked
print routines; and headers.o, a special �les that de-
�nes symbols for the code modi�er as well as the data
space for the special array (SIMrelptr) of relocation
entries.

Once the object �les are linked together, they
are passed through Cerberus's code modi�er (mod-
Code), which among other tasks augments the code
by inserting calls to the appropriate simulator entry
points for each instruction of the original code. To
aid in debugging, the symbol table information and
the C line number data are updated to accurately
keep the correspondence between the original C or
FORTRAN source code with the modi�ed assembly
language instructions.

The �nal stage in the process links the scheduler,
helper functions and other tools (such as a cache and
network simulator) to the augmented code to cre-
ate the �nal executable. This program can be exe-
cuted directly on the MIPS platform, and will gener-
ate trace information as the program executes.

To avoid the necessity of recompiling and relink-
ing the executable each time the cache simulator con-
�guration changes, we have a special method of pass-
ing arguments to it. A special �le, called paramFile
must exist in the directory from which the simulation
is being run. Commands can be passed to the cache
simulator or the thread scheduler package to override
certain defaults. Table 8 shows the commands that
can be placed in paramFile.

There are a handful of functions that Cerberus
expects the cache simulator to provide. Some of these
may not be used in a particular simulation, but they
must all be present:

� void user init(int* pargc, char** argv):
used for passing switches to the cache simula-
tor, similar to the main function, except the
pointer to the number of arguments (pargc) is
passed instead of the number of arguments.

� unsigned user sim(CYCLE INFO* pci):
called every time step with a pointer to the
data structure that contains the memory ad-
dresses (speci�ed in Appendix E). It returns a
bit vector, with a bit set for each processor that
is stalled (processor 0 is bit 0, etc.).

� void user multi(): called right before the sim-
ulator enters multiprocessor mode for the �rst
time.

� void user done(): called at the end of the
simulation, to print statistics to a �le or clean
up.

� void user set procs(int num): called with
the new number of active processors any time
the number of processors change.

E Low-Level Details

E.1 Trace Format

At each time step, a pointer to a data structure
of typeCYCLE INFO with trace information in ar-
rays of type TRACE INFO is passed to a routine
called user sim, which is the front end for a cache
simulator or other tool. The data structures are de-
�ned as:

typedef struct t info

f
int proc,type,addr;

unsigned shared:1;

g TRACE INFO;

typedef struct c info

f
int num;

TRACE INFO data[MAXNUMPROCS*2];

g CYCLE INFO;

The num �eld speci�es the number of entries to
be processed during the current cycle. There are one
or two entries per active processor; the second en-
try contains the data memory address for load-store
instructions.

The trace info data structure contains informa-
tion about each memory reference that is passed to
the cache simulator. There are four �elds: one that
identi�es the processor, one containing memory ad-
dress of the reference, a �eld specifying the type of op-
eration to be performed, and a bit indicating whether
the reference is to the shared region of memory. The
operations consist of read data, write data, instruc-
tion read, and (un)locking operations that have the

28



ability to coordinate with the cache simulator to de-
termine if the lock is already locked. All operations
are assumed to be operating on word size (4-byte)
data; this simpli�es the design of the system. The
shared bit is used for debugging purposes and is set
if the memory access is in the region of memory de-
termined to be the shared section.

The return value from the cache simulator is a
bit vector which speci�es which processors hit in the
cache or are stalled. Processors are stalled (inac-
tive) while they are waiting for the cache (bus op-
eration), waiting for a synchronization event (such
as a synchronization barrier, m sync), or while the
program is in a special single processor mode (be-
tween m single and m multi). Each processor can
be stalled independently of other processors.

The trace generator is directly linked with the
cache/memory simulator or other tool, putting all the
pieces into one executable �le. Only one UNIX pro-
cess for the simulation is required. There are no large
trace �les necessary for Cerberus, as the reference
stream generated by the augmented code is imme-
diately consumed by the attached cache simulator.
Another advantage of Cerberus is that full data ad-
dress values are generated and sent to the cache sim-
ulator, resulting in more accurate cache simulations.
Some TDS tracing tools (e.g., Pixie) pack trace in-
formation into 32-bit chunks, which consist of 24 bits
of address, 4 bits of instruction count and 4 bits of
reference type information. The most signi�cant up-
per 8 bits of address are eliminated, which may cause
aliasing problems between instruction and data ad-
dresses.

For uniprocessor operations, one of the more ef-
�cient tools for MIPS workstations is Pixie [Smi91].
The advantage Pixie has over our simulation method
(besides speed) is the type of programs on which it
can be used. Pixie can be used on any executable �le.
Our method requires that the source code be avail-
able (or at least in the form of an object �le that still
has all the symbolic and relocation information in
it). We used Pixie for some of the sequential simula-
tions in our research, but only those for which we did
not have the source code. We have found that Cer-
berus is generally more robust than Pixie in tracing
code. Pixie occasionally breaks on some programs,
Cerberus works on all workloads for which we have
the source code. However, Cerberus is signi�cantly
slower than Pixie at generating uniprocessor traces.

E.2 Simulated Context State

The context for each simulated processor contains
a copy of that processors' version of the register �le

as well as other processor state and information to
assist the thread scheduler. This context, which we
interchangeably refer to as the register �le, contains
128 entries kept in a 2 dimensional array called con-
text block. Size 128 was chosen for two reasons:
because nearly 100 registers are used to maintain
context information for each processor, and using
a power of 2 number of registers saves instructions
in calculating the absolute memory address of array
locations (one shift instruction can replace an inte-
ger multiply or multiple additions). When control
is passed back from the scheduler to the augmented
code, a slice of context block corresponding to the
particular simulated processor is passed in register
r2.

Here are the uses of the various array locations in
context block:

� 0{31: simulated integer register �le

� 32{63: simulated 
oating-point register �le

� 64{65: the LO and HI registers used for �xed
point math

� 66: 
oating-point unit control register

� 67: program counter

� 68: return point in assembly language interface
routine

� 70{71: temp space

� 72: pointer to the bottom of the processor's
stack

� 73: stack size

� 74: processor ID

� 78: used for detecting jumps into branch delay
slots

� 80: local data o�set (redirection register)

� 81: shared global pointer (sgp)

� 82: pointer to the base of local data

� 84: debug register

When these locations are referenced in the assem-
bly language �le, they are multiplied by 4 to account
for the 4-byte size of integers. For example, Figure 6
mentions the word at 320 o�set from the context
block, which when divided by 4, is simulated register
80, the local data o�set.
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E.3 Interfacing Augmented Code
with the Scheduler

The block of eight instructions generated for each
original instruction must call the simulator, load sim-
ulated registers from the context block, perform the
original instruction's actions, and save the results.
The call to the simulator entry point needs to pass the
address of the instruction and the address of the data
memory accessed (for load-store instructions) and re-
quires two or three instructions. The remaining �ve
or six instructions are usually suÆcient to perform
the remaining tasks. In the cases where eight instruc-
tions are not enough to load and save state (such as

oating-point operations), special tightly coded as-
sembly language routines are utilized to perform the
tasks. The routines will be described below and some
are discussed in detail in Appendix B.

The entry points to the simulator are assembly
language routines which gather the address informa-
tion into the proper form for calling the C routines
according to the MIPS register usage conventions.
The stack pointer (sp) and global pointer (gp) are
loaded with appropriate values to allow proper execu-
tion of the C routine. The context block for the sim-
ulated processor is also updated with information to
aid in resuming execution when the processor thread
is rescheduled. Some of the information saved to the
context block is necessary due to the complexity of
simulating multiple processor threads. The multi-
processor scheduling mode is unlike the uniprocessor
mode of simple call and return, in that it requires
the scheduler to actively pick the next thread to run.
This in turn requires the return location within the
assembly language routine to be saved. The return
address back to the modi�ed eight instruction block
of code also needs to be saved.

Some assembly language routines, besides pro-
viding the above mentioned functionality, must also
handle cases where eight instructions are not enough
to both perform the actions of the original instruc-
tion and provide information to the simulator. These
cases are 
oating-point operations, branch delay slots
which are targets of branches (discussed in Ap-
pendix B), calls to functions which are not traced (re-
quiring setup of the real CPU's registers r4{r7 with
values from the simulated registers), system calls, and
calls to setjmp-longjmp (a non-local goto).

The most commonly used simulator entry calls,
which interface between the augmented object code
and the C language simulator routines, are pSIM-
step, pSIMmem and loadfsft, which are 11, 12,
and 32 instructions long, respectively (with some
small variance). loadfsft is used by all 
oating-point

operations, pSIMmem is used by all memory opera-
tions (except for locking operations) and pSIMstep
is used by most other instructions. All the assembly
language entry points to the simulator can be found
in pSIM.s. The �le pFIG.s contains assembly lan-
guage routines that aid the simulator in performing
low-level operations, such as preparing the threads
during a call to m fork or s fork, killing a thread
that is �nished, lock operations, etc.

F Make�le

Here are some sample make�les we use in compil-
ing for Cerberus:

F.1 Example Make�le for MP3D

This �le is a modi�cation of the �le provided from
the SPLASH collection:

# Makefile for mp3d

MODTARG = mp3d

GFLAG = -G 16

CCFLAGS = -g3 -c -O2 ${GFLAG} -DLOCKING

SHDIR = ${CACHE}

OBJS = mp3d.o setup.o adv.o

include ${HOME}/appl/Makefile.common

sh${MODTARG}: ${OJBS}

adv.c: adv.C parallel/parallel.h common.h

mp3d.c: mp3d.C parallel/parallel.h common.h

setup.c: setup.C parallel/parallel.h common.h

adv.o: adv.c parallel/parallel.h common.h

mp3d.o: mp3d.c parallel/parallel.h common.h

setup.o: setup.c parallel/parallel.h common.h
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F.2 Global Make�le

This �le is common among all the workloads simulated:

# Makefile.common

CC = gcc

SHELL = /bin/sh

LDFLAGS = -r -d

# locations of modCode files

MACROS = ${HOME}/appl/monmacs/lib/c.m4.seq

MODDIR = ${HOME}/modCode

MODLIBS = ${MODDIR}/pps.o ${MODDIR}/newprint.o

MODHEAD = ${MODDIR}/headers.o

MOD = ${MODDIR}/modCode

SIM = ${MODDIR}/sim.o

# cache simulators we might want to use

CACHE = ${HOME}/appl/cache

SHFILES = ${SIM} ${SHDIR}/cache.o

to_do: sh${MODTARG}.o mod_sh${MODTARG}.o \

mod_sh${MODTARG}

# how to turn .U and .H files into object code

.SUFFIXES:

.SUFFIXES: .o .c .h .H .C .U

.H.h: ; m4 ${MACROS} $*.H >$*.h

.U.C: ; m4 $(MACROS) $*.U >$*.C

.C.c: ; ${MODDIR}/make_seq $*.C

.c.o: ; ${CC} -c $(CCFLAGS) $*.c

# dependencies

mod_sh${MODTARG}: mod_sh${MODTARG}.o ${SHFILES} ${OBJS} ${EXTRATOOLS} dummy

${CC} -o mod_sh${MODTARG} mod_sh${MODTARG}.o ${SHFILES} ${EXTRATOOLS} -lm

mod_sh${MODTARG}.o: sh${MODTARG}.o ${MOD} ${OBJS}

${MOD} sh${MODTARG}.o

sh${MODTARG}.o: $(OBJS) ${MODLIBS} ${MODHEAD}

ld ${LDFLAGS} -o $@ ${OBJS} ${MODLIBS} ${LIBS} -lc -lm ${MODHEAD}

dummy:

gmake -C ${SHDIR} cache.o

clean:

rm -f $(OBJS) sh$(MODTARG}.o mod_sh$(MODTARG}.o mod_sh$(MODTARG}

31


