
A Systematic Characterization of
Application Sensitivity to Network Performance

by

Richard Paul Martin

B.A. (Rutgers University) May 1992
M.S. (University of California at Berkeley) December 1996

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor David E. Culler, Chair
Professor David A. Patterson
Professor Hal R. Varian

Spring 1999

The dissertation of Richard Paul Martin is approved:

Chair Date

Date

Date

University of California at Berkeley

Spring 1999

A Systematic Characterization of

Application Sensitivity to Network Performance

Copyright Spring 1999

by

Richard Paul Martin

1

Abstract

A Systematic Characterization of

Application Sensitivity to Network Performance

by

Richard Paul Martin

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor David E. Culler, Chair

This thesis provides a systematic study of application sensitivity to network performance.

Our aim is to investigate the impact of communication performance on real applications. Using the

LogGP model as an abstract framework, we set out to understand which aspects of communication

performance are most important. The focus of our investigation thus centers on a quantification of

the sensitivity of applications to the parameters of the LogGP model: network latency, software over-

head, per-message and per-byte bandwidth. We define sensitivity as the change in some application

performance metric, such as run time or updates per second, as a function of the LogGP parame-

ters. The strong association of the LogGP model with real machine components allows us to draw

architectural conclusions from the measured sensitivity curves as well.

The basic methodology to measure sensitivity is simple. First, we build a networking appa-

ratus whose parameters are adjustable according to the LogGP model. To build such an apparatus we

start with a higher performance system than what is generally available and add controllable delays

to it. Next, the apparatus must be calibrated to make sure the parameters can be accurately controlled

according to the model. The calibration also yields the useful range of LogGP parameters we can

consider.

Once we have a calibrated apparatus, we run real applications in a network with control-

lable performance characteristics. We vary each LogGP parameter in turn to observe the sensitivity

of the application relative to a single parameter. Sensitive applications will exhibit a high rate of

“slowdown” as we scale a given parameter. Insensitive applications will show little or no differ-

ence in performance as we change the parameters. In addition, we can categorize the shape of the

2

slowdown curve because our apparatus allows us to observe plateaus or other discontinuities. In all

cases, we must compare our measured results against analytic models of the applications. The ana-

lytic models serve a check against our measured data. Points where the data and model deviate from

one another expose areas that warrant further investigation.

We use three distinct application suites in order to broaden the applicability of our results.

The first suite consists of parallel programs designed for low-overhead Massively Parallel Processors

(MPPs) and Networks of Workstations (NOWs). The second suite is a sub-set of the NAS parallel

benchmarks, which were designed on older MPPs. The final suite consists of the SPECsfs bench-

mark, which is designed to measure Network File System (NFS) performance over local area net-

works.

Our results show that applications display the strongest sensitivity to software overhead,

slowing down by as much as a factor of 50 when overhead is increased by a factor of 20. Even lightly

communicating applications can suffer a factor of 3-5 slowdown. Frequently communicating appli-

cations also display strong sensitivity to various bandwidths, suggesting that communication phases

are bursty and limited by the rate at which messages can be injected into the network. We found that

simple models are able to predict sensitivity to the software overhead and bandwidth parameters for

most of our applications. We also found that queuing theoretic models of NFS servers are useful in

understanding the performance of industry published SPECsfs benchmark results.

The effect of added latency is qualitatively different from the effect of added overhead and

bandwidth. Further, the effects are harder to predict because they are more dependent on applica-

tion structure. For our measured applications, the sensitivity to overhead and various bandwidths is

much stronger than sensitivity to latency. We found that this result stemmed from programmers who

are quite adept at using latency tolerating techniques such as pipelining, overlapping, batching and

caching. However, many of these techniques are still sensitive to software overhead and bandwidth.

Thus, efforts in improving software overhead, per-message and per-byte bandwidth, as opposed to

network transit latency, will result in the largest performance improvements across a wide class of

applications demonstrating diverse architectural requirements.

We conclude that computer systems are complex enough to warrant our perturbation based

methodology, and speculate how the methodology might be applied to other computer systems areas.

We also conclude that without either much more aggressive hardware support or the acceptance of

radical new protocols, software overheads will continue to limit communication performance.

3

Professor David E. Culler
Dissertation Committee Chair

to Mimi L. Phan.

Acknowledgements

I must first thank my uncle, Dr. James Martin. Without his singular insight on the nature

of graduate studies I would not have finished this thesis.

I must also thank my advisor, Dr. David E. Culler, for innumerable interesting conversa-

tions over the years. However, I am especially grateful for the guidance I received during those first

critical years in graduate school. Your early sheparding on the HPAM system got me off to a great

start.

My parents, Dr. Richard and Elma Martin, deserve much credit. Thanks for all the support

you have provided, especially for all those computers. More importantly, thanks for sitting through

my endless small demos. I must also thank my father for the “Professor X” book, which still gives

me a good laugh.

To my long time fiance and now wife, Mimi Phan, I must thank for giving me the love,

support and perspective to keep going during the long and difficult years.

I am greatly indebted to all the co-authors on various works, and what a list it has become.

I’m honored to even have my name on the same pages as you: Amin Vahdat, Marc Fiuczynski, Lok

Tin Liu, Remzi Arpaci-Dusseau, Frederick C.B. Wong, Chad Yoshikawa, Andrea Arpaci-Dusseau,

Klaus Schauser, Randy Wang and Arvind Krishnamurthy.

I would also like to express thanks to my office-mates in 445 Evans, 467 and 466 Soda:

Steve Luna, Cedric Krumbein, Brent Chun, Tony Chan, Vikram Makhija and Matt Welsh. You were

a great group to work with and provided quite a bit of respite from the daily grind of graduate studies.

To the other members of the NOW project, thank you for six years simulating conversa-

tions. Predictions aside, most of us made it, and that’s success enough. Thanks to Steve R., Doug,

Kristin, Jeanna, Drew, Mike, Satoshi, Nisha, Kim, Eric, Alan, and Steve L. for making such a big

project bearable.

Finally, I would like to thank my other two committee members, Dave Patterson and Hal

Varian, for giving excellent advice during my quals talk as well as for reading this work.

iii

Contents

Table of Contents iii

List of Figures vi

List of Tables ix

1 Introduction 1
1.1 Background . 3

1.1.1 Experiment Paradigm Axis . 4
1.1.2 Evaluation Methods Axis . 6
1.1.3 Summary . 10

1.2 Contributions . 11
1.2.1 Performance Analysis . 11
1.2.2 Application Behavior . 12
1.2.3 Network Architecture . 13
1.2.4 Modeling . 14

1.3 Thesis Organization . 14

2 Methodology 17
2.1 Experiment Design Philosophy . 18
2.2 LogGP Network Model . 18
2.3 Apparatuses . 20

2.3.1 Basic Split-C/AM Apparatus . 21
2.3.2 MPI Apparatus . 26
2.3.3 TCP/IP Apparatus . 29

2.4 Factor Design . 35
2.5 Other Models . 37

2.5.1 Bulk Synchronous Parallel . 38
2.5.2 Queue Shared Memory . 38
2.5.3 LoPC and LoGPC . 39
2.5.4 Queuing Theory . 39

2.6 Related Methodologies . 40
2.6.1 Holt . 40
2.6.2 Chang . 41

iv

2.6.3 Ahn . 42
2.6.4 Hall . 43
2.6.5 Summary . 44

3 Split-C/AM Program Sensitivity 46
3.1 Characterization . 46

3.1.1 Split-C Benchmark Suite . 49
3.1.2 Characteristics . 52

3.2 Analytic Models . 53
3.2.1 Overhead . 53
3.2.2 gap . 54
3.2.3 Latency . 54
3.2.4 Gap . 55

3.3 Sensitivity Results . 55
3.3.1 Overhead . 56
3.3.2 gap . 59
3.3.3 Latency . 60
3.3.4 Bulk Gap . 62

3.4 Summary . 63
3.4.1 Performance Analysis . 63
3.4.2 Application Behavior . 63
3.4.3 Network Architecture . 64
3.4.4 Modeling . 64

4 NAS Parallel Benchmark Sensitivity 65
4.1 Characterization . 66
4.2 Sensitivity Results . 68

4.2.1 Overhead . 69
4.2.2 gap . 70
4.2.3 Latency . 70
4.2.4 Bulk Gap . 71

4.3 NPB Sensitivity Summary . 72
4.3.1 Performance Analysis . 72
4.3.2 Application Behavior . 73
4.3.3 Network Architecture . 74
4.3.4 Modeling . 75

5 NFS Sensitivity 76
5.1 Experimental Setup . 77
5.2 SPECsfs Characteristics . 78
5.3 SPECsfs Analytic Model . 81

5.3.1 Model Construction . 81
5.3.2 Model Accuracy . 83
5.3.3 Expected Sensitivity . 85

5.4 Previous Work on NFS Performance . 86

v

5.5 Sensitivity Results . 87
5.5.1 Latency . 87
5.5.2 High Latency . 89
5.5.3 Overhead . 91
5.5.4 Bulk Gap . 94

5.6 NFS Summary . 95
5.6.1 Performance Analysis . 96
5.6.2 NFS Behavior . 96
5.6.3 Architecture . 97
5.6.4 Modeling . 97

6 Investigating Overhead Reduction 99
6.1 Pipeline Framework . 102
6.2 Example: SPINE IP Router . 103

6.2.1 Architecture . 104
6.2.2 SPINE Event Processing . 107

7 Conclusions 112
7.1 Performance Analysis . 112
7.2 Application Behavior . 114
7.3 Architecture . 115
7.4 Modeling . 117
7.5 Final Thoughts . 118

Bibliography 120

A SPECsfs97 Disclosures 129

B Performance Data 134

vi

List of Figures

2.1 LogGP Abstract Machine . 19
2.2 Varying LogGP Parameters . 22
2.3 Calibration of LogGP Parameters . 24
2.4 Calibration of Bulk Gap for the Parallel Program Apparatus 26
2.5 Baseline MPI Performance . 28
2.6 TCP/IP Apparatus Architecture . 31
2.7 Calibration of bulk Gap for TCP/IP-GAM apparatus 34
2.8 Methodologies in Context . 44

3.1 Split-C Communication Balance . 48
3.2 Sensitivity to Overhead for 16 and 32 Nodes 56
3.3 Sensitivity to gap . 59
3.4 Sensitivity to Latency . 61
3.5 Sensitivity to Bulk Gap . 62

4.1 NAS Parallel Benchmarks Communication Balance 67
4.2 MG Message Size Histogram . 68
4.3 NPB Sensitivity to Overhead . 69
4.4 NPB Sensitivity to gap . 71
4.5 NPB Sensitivity to Latency . 72
4.6 NPB Sensitivity to Bandwidth and Gap . 73

5.1 Important Characteristics of the SFS Curve 79
5.2 SPECsfs Analytic Model . 81
5.3 SPECsfs Modeled vs. Measured Baseline Performance 84
5.4 SPECsfs Sensitivity to Latency . 87
5.5 SPECsfs Latency vs. Response Time . 89
5.6 Effects of Very Long Latency . 90
5.7 SPECsfs Sensitivity to Overhead . 91
5.8 Peak Throughput vs. Overhead . 93
5.9 Time Breakdown Near Peak Op/sec . 94
5.10 Sensitivity to Gap . 95

6.1 SPINE Approach to Overhead Reduction . 100

vii

6.2 Generic GAM Pipeline . 102
6.3 SPINE IP Router Architecture . 104
6.4 SPINE IP Router Event Plot . 107

ix

List of Tables

2.1 Baseline LogGP Parameters. 20
2.2 Calibration Summary . 25

3.1 Split-C Applications and Data Sets . 47
3.2 Split-C Communication Summary . 49
3.3 Predicted vs. Measured Run Times Varying Overhead 57
3.4 Predicted vs. measured run times varying gap 60

4.1 NPB Communication Summary . 66
4.2 NPB Predicted vs. Measured Run Times Varying Overhead 70
4.3 NPB Predicted vs. Measured Run Times Varying Bulk Gap 74

5.1 SPECsfs Linear Regression Models & Accuracy 83

6.1 GAM Pipeline Parameters . 103
6.2 SPINE LogGP Parameters. 110

A.1 SPECsfs97 Disclosure: SCSI Performance . 130
A.2 SPECsfs97 Disclosure: SCSI Server and Network 130
A.3 SPECsfs97 Disclosure: SCSI Load Generators 131
A.4 SPECsfs97 Disclosure: SCSI Testbed Configuration 131
A.5 SPECsfs97 Disclosure: RAID Performance . 131
A.6 SPECsfs97 Disclosure: RAID Server and Network 132
A.7 SPECsfs97 Disclosure: RAID Load Generators 132
A.8 SPECsfs97 Disclosure: RAID Testbed Configuration 133

B.1 Split-C/AM Run Times varying Overhead on 16 nodes 135
B.2 Split-C/AM Run Times varying Overhead on 32 nodes 135
B.3 Split-C/AM Run Times varying gap . 135
B.4 Split-C/AM Run Times varying Latency . 136
B.5 Split-C/AM Run Times varying Bandwidth . 136
B.6 NPB Run Times varying Overhead . 136
B.7 NPB Run Times varying gap . 137
B.8 NPB Run Times varying latency . 137
B.9 NPB Run Times varying Bandwidth . 137

x

B.10 SPECsfs Response Times in varying Latency on the SCSI system 138
B.11 SPECsfs Response Times varying Latency on the RAID system 139
B.12 SPECsfs Response Times varying Overhead on the RAID 140
B.13 SPECsfs Response Times varying Overhead on the SCSI system 141
B.14 SPECsfs Response Times varying Bandwidth on the SCSI system 142

1

Chapter 1

Introduction

Nature is so complex and random that it can only be approached with a systematic
tool that presupposes certain facts about it. Without such a pattern it would be impossi-
ble to find an answer to questions even as simple as ‘What am I looking at?’ — James
Burke, The Day the Universe Changed.

In recent years networking infrastructure and applications have experienced rapid growth.

In the System Area Network (SAN) context designs are quite diverse, spanning a range of both hard-

ware [16, 17, 23, 47, 53] as well as specialized system software [72, 81, 88, 103]. Local Area Net-

works (LANs) have also made impressive improvements, advancing from shared 10 Megabit (Mb)

designs, to 100 and 155 Mb designs [15, 33], to switched gigabit designs [98, 99]. Wide Area Net-

works (WANs) are also experiencing equally dynamic growth: emerging systems include packet ra-

dio, Integrated Services Digital Network (ISDN), Cable Modems, Asymmetric Digital Subscriber

Loop (ADSL) and Direct Broadcast Satellite (DBS). On the applications side, there are many new

applications spanning these domains, such as protocol validators and network infrastructure services

[41, 97].

The explosion of designs in networking technologies and applications has resulted in an in-

creased demand for a systematic, quantitative framework in which to reason about performance. His-

torically, networking hardware and system software are evaluated using micro-benchmarks. Tools

such as ttcp [22], lmbench [74], and netperf [58] provide the two most commonly used micro-bench-

marks: Round Trip Time (RTT) and peak bandwidth (PB). Indeed, the evaluation of many designs [16,

33, 103] often only reports these two metrics. A third common metric is bandwidth as a function of

transfer size. However, even this additional metric tells us very little about the underlying commu-

nication sub-system. Like the MIPS of CPU performance, micro-benchmarks in isolation provide

2

little insight as to how improvements in networks improve application performance.

The exponential growth in CPU performance illustrates the benefit of a good conceptual

framework that captures the essential performance tradeoffs of a system. An enormous improvement

over the simple MIPS micro-benchmark was the “iron triangle”. 1 Although conceptually simple,

the iron triangle model of application execution captures the essence of many performance tradeoffs

without drowning in details. It gave a diverse community of application developers, compiler writers

and computer architects a common framework in which to reason about the performance impact of

different designs. The model thus allowed quantitative comparisons of processor designs using real

programs. Indeed, a consistent theme across a variety of computer systems areas has been that the

metrics and conceptual models used in evaluation are as important, if not more so, than the designs

themselves.

This work uses an existing model, LogGP [2, 29], as a generalized framework for under-

standing application performance as it relates to the network hardware/software combination. The

parameters of the model: latency, overhead, gap and peak bandwidth for large transfers, correspond

well to the networking hardware and software components of real machines. An important feature of

the LogGP model is that it allows application developers and machine designers to reason about the

overlap between communication and computation. Thus, algorithms and applications can be charac-

terized as to their degree of latency tolerance. The RTT and peak bandwidth metrics bundle overhead

and latency into single parameters; characterizing an application’s tolerance to latency as distinct

from overhead is impossible with those parameters alone. In addition, RTT and PB fail to capture im-

portant characteristics of distributed systems, which transfer “medium” sized data (in the single KB

range) [106]. Although there are other algorithmic models in the literature [18, 43, 46, 101] which

can capture some aspects of the network, they have been developed for parallel program design and

so do not correspond well to machine components. Evaluating the components of the networking

system as they relate to the application is easier with the LogGP model.

Once we have a firm grounding in a model, we can begin to make quantitative claims about

networked computer systems in the language of the model, in our case LogGP. This thesis provides

such a systematic study of the LogGP parameter space. Our aim is to investigate the impact of com-

munication performance on real applications. Furthermore, we want to understand which aspects

of communication performance are most important. We begin our investigation by quantifying the

sensitivity of applications to the parameters of the LogGP model. We define sensitivity as some ap-�
The iron triangle is the model: CPU time = Instruction Count � Cycles per Instruction � Cycle Time.

3

plication change in performance, such as run time or updates per second, as a function of the LogGP

parameters.

The methodology to measure sensitivity is conceptually simple, although somewhat in-

volved in practice. First, we build a networking apparatus whose parameters are adjustable accord-

ing to the LogGP model. To build such an apparatus we start with a higher performance system than

what is generally available and add controllable delays to it. Next, we calibrate the apparatus to make

sure we can control the parameters accurately.

Once we have a calibrated apparatus, we can run the applications in a network with the

desired performance characteristics. We “turn the knob”, varying each parameter in turn and ob-

serving the resulting sensitivity of the application as a function of a single parameter. In all cases,

we must compare our measured results against an analytic model of the application. The analytic

models serve a check against our measured data. Points where the data and model deviate from one

another expose potential anomalies that warrant further investigation.

After we have collected the sensitivity data, we can answer a range of questions. These

include questions about the accuracy and applicability of our method, questions about application

behavior, questions about communication architectures, and finally, questions related to the accuracy

and applicability of simple application models.

The rest of this chapter is organized as follows. We first introduce two axes of experiment

design fundamental to networking research. The first axis categorizes the nature of the questions

of the experiment, and the second axis categorizes the nature of the experiment method. Next, we

describe the contributions of this thesis. Finally, we present a roadmap of the thesis organization.

1.1 Background

What does a “better” network mean? In order to answer the question in a concrete manner

a researcher must run quantitative experiments. As with any scientific experiment, a network exper-

iment aims to elucidate the nature of the system’s response to some stimulus. In computer network-

ing, the dependent variables are few, e.g., latency, bandwidth, packets-per-second, and run-time. The

number and types of independent variables are many. Because the most common type of experiment

evaluates two or more designs, the independent variable is often some aspect of the network design,

such as a retry protocol or routing algorithm. The number of independent variables thus spans the

entire design space. In addition to different types of variables, there are a number of methods used

to carry out the experiments.

4

In this section we present a simple way to categorize a wide range of networking research.

Our framework for categorizing computer network experiment design divides the design space along

two axes. These axes provide intuition into the nature of this thesis’ experiments, and taxonomic

placement of this work into a broad spectrum of computer networking research.

The first axis categorizes the response of interest along the spectrum from network to appli-

cation. Specifically, the axis defines the class to which the dependent variables belong. For example,

run time clearly belongs to the application class. Packet latency across a set of routers belongs to the

network class. Most experiments fall clearly into one class or another. Defining experiments along

this axis is important because it dictates what can be abstracted. For example, if the network is the

focus of the experiment, many application details can be eliminated. Likewise, if run-time is the

dependent variable, we may wish to focus our efforts on understanding the application and abstract

away network details.

The second axis categorizes the experimental method. Once the viewpoint of the exper-

iment has been established (network or application), we have a number of methods of evaluation,

e.g. simulation or direct measurement. These methods fall under general performance evaluation

techniques; we survey them in order to gain insight as to the rational for the method chosen in this

study.

In the next sections, we explore these two axes in greater detail. We start by describing

the two points on the experiment paradigm axis. We then describe four methodologies used in net-

working experiments. Finally, we summarize with an overview of the strengths and weaknesses of

the different experiment methods.

1.1.1 Experiment Paradigm Axis

Networking research traditionally has taken two perspectives with regards to evaluation.

In any network evaluation, there is the network itself, as well as the application load placed on it. A

network with no load is like a highway without cars—evaluation of the roadways is difficult if we do

not understand the characteristics of the traffic load. Over-extending the analogy a bit, applications,

like traffic, respond differently to changing network (road) conditions. In order to perform a tractable

study, an experimenter often has to focus on one response or the other. That is, either the network-

level or the application-level response will be the focus of the study.

5

Network Focus

The first, and most common perspective, is to observe the network response to some ap-

plication load. Two classic studies which exemplify this view are [24] and [56]. In these works,

the application load is presented as a “black-box”: only a series of packets bound for different des-

tinations is observable. The experiments use network-centric dependent variables, e.g. latency and

bandwidth, as the metric of evaluation. The network perspective evolved because it is close to what

is observable at network switches. All the switch “sees” is a stream of packets and traditionally they

have little, if any, information on the applications’ characteristic load.

Because the network perspective contains such little information on application character-

istics, many studies take a simple approach and model the applications as independent and identi-

cally distributed (IID) processes. These traditional loads have the twin advantages in that they are

amenable to analytic analysis and are easy to correctly generate in a simulator. However, a serious

drawback of these application models is that they do not approximate a real application load very

well. A recent half-decade series of empirical studies [62, 66, 67], has shown that application traffic

is bursty on all time scales. Traditional IID processes fail to capture this effect; the ramifications of

this discrepancy are still under investigation.

Application Focus

The second school of thought looks at the application performance given variable network

parameters. In these classes of experiments, the dependent variables are application related. For

example, what bandwidth can a single FTP transfer obtain with a certain loss rate?

The primary advantage of such a perspective is that it more closely models what a real user

might think of as “better”. The computer architecture community has taken this approach to the most

extreme level; every new microprocessor feature in the last 10 years has been defined by its impact

on the SPEC benchmark suite. In the parallel architecture community, a few application suites have

emerged, such as the SPLASH suite [110] and the NAS Parallel Benchmarks (NPB) [9, 11]. Among

wider-area networks, the state of affairs is such that no real application suites have been defined for

a broad segment of the community.

The application based perspective has the disadvantage of being quite complex to analyze.

Unless we have a good models and an understanding of the applications, they can become opaque

“black-boxes”. Experiments designed along this axis may not yield an understanding of how sys-

tem design facets shape application behavior. A more difficult problem is that the application focus

6

requires the researcher to map application-level observations to specific architectural features. An

example of this problem is the lack of continuity across network interface designs. Returning to the

processor architecture analogy, the SPEC benchmarks are the most analyzed programs on the planet,

thus much is understood about their structure. A thorough analysis has been done for the SPLASH

benchmarks [110], but little analysis has been done for the other benchmarks.

Assuming we cross the application complexity barrier, a second advantage of the applica-

tion paradigm is that it focuses attention on the most important aspects of the network. For example,

in the CPU world many programs are known to be quite sensitive to caches and branch predictors.

The effect of this conclusion has been that many CPU designers focus on these aspects of their de-

signs. With networks, latency or bandwidth alone are often touted as the figure of merit in many

network-centric studies. In the WAN context, however, there are no agreed-upon standard applica-

tion workloads. Without a deconstructed workload, a credible evaluation of new designs in the WAN

arena will remain difficult.

1.1.2 Evaluation Methods Axis

Once the experimenter has chosen a perspective, a range of evaluation methodologies are

available to perform the experiment. We classify them in order of increasing approximation to real

systems. The four methods are: analytic modeling, simulation, emulation, and direct measurement.

Each approach has appropriate uses and a range of strengths and weaknesses. The discussion here

is presented as background to put this thesis into an appropriate context.

Analytic Modeling

Analytic modeling is traditionally not considered an “experimental” technique, although

it could be classified as a gedanken experiment 2. The purpose of an analytic model is often the

same as an experiment, that is, answer basic questions about a network system, e.g., what is the peak

bandwidth through the system? The difference is that the technique results in a set of equations that

establish the relationship among various parameters and performance metrics. Unlike any of the

other methods, nothing is “run” in the usual sense.

The complexity of such models can range from very simple frequency-cost pairs, to queu-

ing theory models [50, 65], to advanced queuing theoretic techniques [57, 63]. Both the complexity

and accuracy of such models can cover a large range, depending on the purpose of the model. Of-�
a thought experiment

7

ten a high degree of accuracy is not required, so analytic modeling is a viable technique in many

circumstances.

Although at first they appear quite flexible, analytic models tend not to capture a wide range

of system behavior because of the assumptions needed to make the equations tractable, and also to

close the system of equations in the first place. For example, feedback loops in real systems are

difficult to capture using analytic models. Chapter 5 presents observations describing the difference

between measured data and models due to these effects.

In general, a scientific model is only “valid” as to accuracy of the model compared to real

systems. For example, claims are often made in the popular press that Newtonian physics models

are invalid because they can be quite inaccurate. However, a more accurate statement is that New-

tonian mechanics are only valid in the realm of everyday experience. Questions regarding accuracy

in the network models is a realm where much previous work in analytic modeling fails, not because

of inaccurate models, but because of the lack of validation against actual systems. Indeed, general

rules of thumb describing the accuracy of analytic models do not seem to exist for many classes of

networks. This is a regrettable state of affairs because analytic modeling can be a powerful predictor

of real systems.

An often overlooked power of analytic modeling is its ability to formalize how a system

behaves, not in questions of absolute accuracy. That is, analytic models help us conceptualize the

essence of the system, as opposed to merely describing the system’s response to some stimulus. At

this level, the value of the model is not in answering the absolute contribution of each component,

but instead identifying the important components and their relationships in the first place. At some

level, every researcher has a model in mind when answering performance analysis questions. The

model’s abstractions of a real system capture the essential elements without burdensome details. In

addition, the formulation of a formal model provides the researcher a way to put these abstractions

into a quantitative, testable form. The resulting advances in conceptual thinking are often the most

valuable part of a model. For example, the simple analytic models described by the iron triangle in

CPU design silenced endless artistic debates and forced designers into a realm of quantitative archi-

tectural tradeoffs. The absolute accuracy of such simple models for use in real programs was not

addressed until much later [90].

8

Simulation

A step closer to a real system is a simulator. One might think of a simulator as a model

without a closed form description. Simulation is perhaps the most popular technique in the research

arsenal because of its infinite flexibility. A simulation experiment can potentially explore the entire

design space. However, simulation suffers from a number of drawbacks some of which are com-

monly known, but a number of which are more subtle.

A well known drawback of simulation is its lack of scale. That is, the size of the system

which can be simulated with any fidelity is often quite limited. Indeed, expanding the scale of simula-

tion is an active area of research [54, 87]. In the parallel architecture regime, the effects of simulation

scale have been studied extensively [110]. A primary effect is that architectural parameters must be

scaled with the input in order to obtain meaningful results.

Simulation experiments also have a number of well known engineering drawbacks includ-

ing complexity, time to build the simulator, time to debug the simulator, and time to validate the

simulator. The importance of the last point cannot be over stressed. All too often, detailed simulator

results are constructed without a corresponding validation either using an analytic model or a live

system. While intuition can be used to validate a simulator [57], such an approach might only serve

to feed the experimenter’s previous bias.

An insidious danger with simulation is that the bias or misconceptions of the experimenter

will become encoded in the simulator. While also true of analytic modeling, the danger is increased

in simulation because of the increased level of detail when using simulation. Often, these bias mani-

fest themselves as invalid assumptions. For example, the assumption that traffic has uniform random

destinations is quite common and may not be true for many real networks [76]. In another example,

one simulation study showed that paging over a network would be much faster than to local disk [5],

but later results showed the performance to be much less than expected [3]. The inaccuracy origi-

nated because of the faulty assumption that network paging would have much lower overhead than

disk paging.

A more subtle danger than faulty assumptions is that often the simulator is adept at simu-

lating one class of system over another. For example, shared memory may be given preference over

message passing because extensive simulation tools have been developed for shared-memory sys-

tems. The network experimenter may observe artifacts of shared memory machines, e.g. very short

packets, while missing the effects of longer packets that occur when using message passing or WAN

protocols.

9

Emulation

We define emulation, as distinct from simulation, as when some part of a live system is

run and the components which comprise the independent variables are emulated. That is, the part

of the system under test is a real, while the parts which compose the independent component of the

experiment are emulated. A primary advantage of such an approach is that it can be scaled larger

than simulation. For example, the data set sizes in [73] are a factor of 10 larger than the simulation

results for similar programs found in [52, 110].

Emulation is certainly not as flexible as simulation. A substantial limitation of emulation

is that it misses at least an order of magnitude of the design space possible compared to simulation

because the live system component requires real hardware and software. While the emulated por-

tion can be modified, the interfaces between it and the live portion will dictate how much of the

design space can be controlled. With full-blown simulation, only programming effort and computer

resources limit the simulation.

Another drawback of emulation over simulation is the reduced fidelity of the experiments.

It is often difficult to observe the live parts of the system in order to understand observed responses.

In the operating system community, there has been much recent research on live system measure-

ment [4]. An interesting tradeoff between fidelity and scale was explored by mixing multiple levels

of simulation and emulation in [89]. In the programming language realm, binary translators have a

similar effect [27, 92]. Increasing the fidelity of the “emulation” adds instructions, and this overhead

can be adjusted according to the needs of the experimenter.

Direct Measurement

Direct measurement is by definition the most “realistic” of experimental techniques. We

define direct measurement as when only a complete system is used in the experiment; no part of the

system is emulated or simulated. Most often, direct measurement is used to judge different systems

in similar points in the design space. For example, [49] compares Autonet, Ethernet and FDDI.

Direct measurement can only evaluate discrete points in the design space rather than a

range of designs. The single-point nature of direct measurement can be both beneficial and detri-

mental. On one hand, limiting the design space to a few points limits the number of independent

variables. 3 In addition, since the measured systems are real we could actually use such systems. On

the other hand, the inability to scale parameters in a controlled fashion makes determining impor-�
Section 2.4 backgrounds experiment factor design.

10

tant parameters in the design space difficult. Direct measurement does not help us conceptualize a

system, and can even leave us more befuddled than before. The lack of a model may thus effect our

conclusions. Because the system under measurement is an actual artifact, as opposed to a model,

many studies often do not articulate the results in terms of abstract parameters.

A potential pitfall of using live systems is that the systems may not be configured “prop-

erly”. For example, a version of Solaris had certain TCP window constants set too low as shipped

from the manufacturer [61]. Although analyzing a system “as shipped” might still be a fair charac-

terization, it does not represent the true potential of a mis-configured system. Validating the results

of live systems against analytic models can expose mis-configuration errors.

1.1.3 Summary

Our two axes of categorization, experiment paradigm and methodology, allow us make

sense of the broad field of network experiments. Network-centric studies describe what happens to

the network, are useful for improving network performance, but tell us little about which aspects of

the network are most important. Application-centric studies describe application behavior, point to

network areas that yield the largest benefit, but do not describe how to make improvements.

On the methodology axis, we saw that analytic modeling requires little engineering ef-

fort and helps conceptualize how a system works. However, the models are somewhat inflexible

in their ability to capture how real systems operate and thus can be inaccurate. Simulation requires

substantial engineering, is limited in scale, but has unlimited flexibility. Emulation has limited flex-

ibility because it requires live system components. It also entails substantial engineering effort. The

results, however, can be quite accurate, because many important behaviors only appear at realistic

input set sizes. Direct measurement is the most inflexible technique, does not help us conceptualize

the system at all, but provides the most realistic results.

In the context of our framework, this thesis is clearly an application-centric, emulation

based study. Our method allows us to reason about application behavior, and thus conclude about

which aspects of the network are most important. Our emulation-based approach allows us to use a

wide range of applications with realistic data sets and networking parameters. The live experiment

data, coupled with analytic models, gives us greater confidence in our results and conclusions than

using a single method.

11

1.2 Contributions

Our contributions fall into four areas. The primary contribution is an investigation of a

novel performance analysis technique for network experimentation. Recall that because our study is

application-centric, we can also make statements about application behavior. Answers to networking

architecture questions make up the third area because of the close association of the LogGP model

to real machine components. Modeling is our fourth, and smallest, area of contribution. Although

the models are relatively simple, we can still draw some conclusions from them. The next sections

describe this thesis’s contributions in each of these areas. We also describe the questions this thesis

attempts to answer in these areas, along with a brief summary of our results. Chapter 7 contains our

humble attempt to answer these questions in more detail.

1.2.1 Performance Analysis

The primary contribution of this thesis is a methodology for the systematic exploration

of the space of network design. The experimental methodology is inspired by analytic bottleneck

analysis [57, 65], but is performed on a live system rather than on analytic models. The basic tenet

of the approach is to introduce carefully controlled delays in key system components. The delays

allow us to quantify the sensitivity of the system to each component. In our definition, sensitivity is

the change in an application-centric metric as a function of one of the LogGP parameters. In contrast

to bottleneck analysis, which only identifies peak performance, our method can expose bottlenecks

as well as characterize their nature by examining the sensitivity curve.

Returning to our taxonometric experiment design space described in Section 1.1, our ex-

perimental method is application-centric and emulation based. The apparatus allows us to “sandbox”

running applications in a network with the desired performance characteristics. That is, we run real

applications in a controllable network. The novelty of our approach is the use of this artificial net-

work. We gain the benefit of observing the effects that occur in applications running realistic data

sets. The disadvantage of our approach is that, although we do use a network which is higher perfor-

mance than what is generally available, we are unable to observe sensitivities beyond its operational

limits. Another encumbrance of our method is that in order to understand the sensitivity curves, we

must create models of the applications.

In spite of our method’s shortcomings, it allows us good observational fidelity. Sensitive

applications will exhibit a high rate of “slowdown” as we scale a given LogGP parameter. Insensitive

applications will show little or no difference in performance as we change the parameters. Another

12

important advantage of our method over traditional ones is that we can categorize the shape of the

slowdown curve because our apparatus allows us to observe plateaus or other discontinuities. These

discontinuities are of prime importance to the system architect because designs can take advantage

of performance plateaus.

We find that our application-centric, emulation approach works well in practice. However,

care must be taken to calibrate the apparatus, as well as cross-check the results against simple models.

We are able to quantify the sensitivity curves of many different applications in a variety of program-

ming domains, including parallel computing and distributed file systems. Our apparatus scales over

an order of magnitude in overhead, latency and bandwidth. We can thus emulate networks ranging

from high-performance SANs, to traditional LANs, and even WAN links.

1.2.2 Application Behavior

A unique approach of this thesis is the use of live systems in a bottleneck-style of anal-

ysis, as opposed to the more traditional approaches using analytic models. We find that a modern

computer system is complex enough that our approach is a valid method of simply characterizing

the application space.

The use of a live system allows us to observe and quantify real application behavior and

validate models. Modeling results are always suspect until validated by other means. Although mea-

surement as a technique can certainly quantify application behavior, using measurement alone it is

difficult to obtain, without factor analysis, the sensitivity results provided for by our method.

We can obtain answers to a broad range of questions about application behavior using the

methods in this thesis. The sensitivities to
�

, � ,� , and � are the most obvious. However, we can also

ask questions such as is communication bursty, or uniform? Do applications contain many serial

dependencies? If so, does the nature of these dependencies result in more sensitivity to overhead or

latency? We can also begin to explore questions such as if we can we restructure the application to

better suit modern machine characteristics. If we observe enough applications, we can also hope to

make some generalizations about how programmers use these systems.

We find that programmers employ a diverse set of latency tolerating techniques and that

these are quite effective in practice. However, many of these techniques are still sensitive to over-

head. Thus, many applications demonstrated the strongest sensitivity to software overhead. For both

a range of parallel programs and NFS, overhead is a limiting factor. Continued improvements in

software overhead will yield the largest benefits. Applications also demonstrated strong sensitivity

13

to various bandwidths, suggesting that communication phases are bursty and limited by the rate at

which messages or bytes can be injected into the network. Examining the history of many programs,

we see that program optimizations shift sensitivity away from latency and overhead and towards

bandwidth.

1.2.3 Network Architecture

Armed with the sensitivity results and the LogGP model, we can answer a number of im-

portant architectural questions. For example, how much do network design changes affect appli-

cation performance? How does increasing network performance improve application performance?

Would additional hardware support be worth the costs? If so, what architectural features would yield

the largest benefit?

LogGP plays a key role in our ability to answer these architectural questions because the

parameters of the model were designed to correspond to real machine components. The LogGP

model has been validated as an architectural model, as well as a parallel programming model, on

a wide variety of real machines and message layers [31, 55]. We can thus draw strong conclusions

about how improvements in machines will affect application performance based on our abstract sen-

sitivity results. For example, if we improved the networking code by a factor of 2, and if our sensi-

tivity models for � have a slope of 1 (i.e. each factor of � improves performance by 1 unit) then we

can have reasonable confidence that our improved networking code would result in an overall 	�

performance improvement.

Our result that applications demonstrate the strongest sensitivity to software overhead im-

plies that continued improvements in software overhead will yield the largest benefits. Hardware and

software should be designed to minimize software overhead, perhaps even at the expense of some

of the other parameters. In particular, our results show the somewhat counter intuitive result that ar-

chitectures that minimize overhead at the expense of network latency can deliver increased overall

performance for most applications.

Applications also demonstrated strong sensitivity to various bandwidths. Although many

designs can deliver near peak per-byte bandwidths for long messages, we also measured a number of

applications where small message throughput was nearly as important. Architectures must deliver

not only low overheads, but also should deliver close to the peak bandwidth for small messages. As

with overhead, our results on application behavior show that architectures that can sustain a high per-

message rate for small messages at the expense of latency can still maintain good overall application

14

performance.

Chapter 6 explores a novel architectural designs based on the results of this thesis. We

use SPINE [40], a software infrastructure, to examine the effect of overhead reduction by adding

computation into the network device. The results, while encouraging, show that our understanding

of overhead reduction techniques is still quite limited and more investigation in this area is warranted.

We show that more radical software and hardware architectures will be needed to deliver order of

magnitude performance improvements to applications while maintaining connectivity to standard

protocols.

1.2.4 Modeling

Because we use analytic modeling to validate the results of our live system experiments,

we can ask questions about the models themselves. For example, how well do simple models4 predict

application run time? How accurate are simple models compared to live systems? If they are not

sufficient, how closely do fully characterized applications (e.g. those in [39]) match the known data?

Our simple models are by definition linear in event frequency and cost. If the measured

sensitivities are linear to the parameters simple models may be sufficient. More complex charac-

terizations such as those in [39] consider dependencies between communication events. A recent

complex variant of the LogP model [43] considers queuing effects due to endpoint congestion. For

this work we will use simple models wherever possible. We find that simple models can capture the

high-level impact of changing network performance, particularly for overhead, but more complex

models are needed when good fidelity is required.

We use a basic queuing theory to model NFS. While simple models may be useful in this

case, servers traditionally have been described using queuing theoretic models. Our apparatus allows

us to compare measured results against this class of traditional models. We find that queuing theory is

able to capture much of the behavior of an NFS system. However, at high loads the feedback control

loops in NFS cause the measured values to diverge from the models substantially.

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 describes the methodology in

detail. We describe our basic apparatus. We first background the basic communication software�
We define a simple model to be one were the execution time is a linear function of a series of
 event types where

each type has a frequency ��� , and cost ��� . Thus, total execution time = �������� ���������

15

and then describe how we added controllable delays to the different system components. Next, we

provide an outline of the micro-benchmark calibration technique used to make sure the apparatus is

operating correctly. We then document two variations of the basic apparatus, named after the com-

munications layers built on top of the basic apparatus: MPI and TCP/IP. The next section in Chapter 2

describes the single parameter at-a-time approach we have chosen to use for our experiments, as op-

posed to some other combination of scaling the parameters. We then document alternative models

to LogGP, followed by a discussion of why LogGP is the most appropriate choice for our work. We

conclude Chapter 2 with a description of four related experiments an compare their methodologies

to that of this thesis using the framework we developed in Section 1.1.

The next three chapters describe the sensitivity findings of our methodology for three ap-

plication suites. Each chapter first characterizes the applications. Next, we present analytic models

of the applications. We then present the sensitivity results along with a description of the utility of

the models. Finally, we summarize the results of each suite.

Chapter 3 presents the results for a set of Split-C and Active Message programs. Our ap-

paratus performed admirably, exposing sensitivity curves for all the parameters. The apparatus ex-

posed a number of non-linearities in the sensitivity curves and found an interesting anomaly in one

application. We find that these programs are very sensitive to overhead and gap, and quantitatively

less sensitive to latency and Gap. Our linear models were good at predicting slowdowns due to in-

creased overhead, were less successful at predicting the effects of gap, and rather poor at predicting

the effects of increased latency and per-byte bandwidth.

Chapter 4 presents the sensitivities of some of the NAS Parallel Benchmarks (NPB). Com-

munication patterns of the NPB are much different from the Split-C/AM programs. Communication

is dominated by few, large messages. Unlike the Split-C/AM programs, the NPB are insensitive to

overhead, gap and latency. They do, however, show some sensitivity to Gap. The primary network

architectural feature relevant to these applications is network bisection bandwidth.

Chapter 5 presents the sensitivity results and models of Sun’s Network File System (NFS).

We find that like the Split-C programs, NFS is quite sensitive to added software overhead. NFS also

displayed sensitivity to latencies in the LAN region of milliseconds, but showed a flat region for

network latency under 150 microseconds.

In Chapter 6 we explore the SPINE system which applies some of the results of the previ-

ous chapters. One goal of SPINE is to improve performance by reducing overhead. In effect, SPINE

reduces overhead by pushing some of the application work into the other parameters via intelligent

network interfaces. The chapter briefly introduces a pipelining framework to better model the com-

16

munication system, followed by the performance results of the actual system. We show that SPINE’s

performance improvements are mixed; it reduces overhead but does not improve the other parame-

ters. The utility of the SPINE approach thus depends on the application context. We conclude the

chapter with some thoughts on areas of future research.

Chapter 7 brings the results of the previous five chapters together. We organize the con-

clusions around the four areas of contributions: performance analysis, behavior, architecture and

modeling. We hypothesize that our perturbation style of analysis could be used in a variety of com-

puter systems contexts. The chapter also draws some parallels between the style used in this work

and experiments in other sciences. We end the thesis with some final thoughts on the meaning of our

findings.

17

Chapter 2

Methodology

... it were far better never to think of investigating the truth at all, than to do so
without a method. — René Descartes, Rules for the Direction of the Mind.

In this section, we describe our experimental methodology. We first describe the design

philosophy behind our method, followed by a placement of our experiments in the wider context

of experiment design. Next, we describe the LogGP network model, whose parameters correspond

directly to the factors in our experiments.

The bulk of this chapter describes the networking component of the apparatuses used in

the experiments. The three systems are named after the primary communications layers used by the

applications: Split-C/AM, MPI and TCP/IP. Aspects of the apparatus not related to communication,

such as changes in the disk-subsystem, are described in later chapters.

After describing the apparatuses, we focus on our methodology for varying the network

parameters. We use a single-factor at a time approach, scaling each LogGP factor in turn. We justify

our use of single factor design by comparing other styles of experiment design, such as ��� designs.

We conclude this chapter with a discussion of related network models and previous work.

The purposed of the related models section is to describe why LogGP is an appropriate network

model. We compare and contrast LogGP with other models developed in the literature. The exam-

ination of previous work focuses primarily on the experimental methods used. We place each work

in the framework described in Section 1.1. The secondary purpose in examining previous work is

to understand how their results compare or contrast with the results of this thesis. By examining a

wide range of other experiments, we may be able to reinforce or diminish our results.

18

2.1 Experiment Design Philosophy

In the space of experimental design, this work uses application-centric metrics combined

with an emulation methodology. The basic approach is to determine application sensitivity to ma-

chine communication characteristics by running a benchmark suite on a large system in which the

communication layer has been modified to allow the latency, overhead, per-message bandwidth and

per-byte bandwidth to be adjusted independently. This four-parameter characterization of commu-

nication performance is based on the LogGP model [2, 29], the framework for our systematic inves-

tigation of the communication design space. By adjusting these parameters, we can observe changes

in the execution time or throughput of applications on a spectrum of systems ranging from the current

high-performance clusters to conventional LAN based clusters.

We validate the emulation with analytic models. The models range from simple frequency-

cost pairs to simple queuing networks. The intent of the models is to validate the emulation experi-

ments. A side benefit of the models is that we can compare the accuracy of the models against live

systems. The absolute accuracy can serve as a guide for future designers as to the applicability of

analytic models to their situations.

In order to both demonstrate the soundness of the methodology, as well as draw general

conclusions about application behavior, we must have a representative application suite. While no

suite can possibly capture all application behavior, a diverse suite may capture the relevant structures

of a broad class of programs. Our suite includes a variety of parallel programs written in the Split-C

programming language, a sub-set of the NAS Parallel Benchmarks and the SPECsfs benchmark.

2.2 LogGP Network Model

When investigating trade-offs in communication architectures, it is important to recognize

that the time per communication operation breaks down into portions that involve different machine

resources: the processor, the network interface, and the actual network. However, it is also impor-

tant that the communication cost model not be too deeply wedded to a specific machine implemen-

tation. The LogGP model [2, 29] provides an ideal abstraction by characterizing the performance of

the key resources, but not their structure. A distributed-memory environment in which processors

physically communicate by point-to-point messages is characterized by four parameters (illustrated

in Figure 2.1).

�
: the latency, or delay, incurred in communicating a message containing a small number of words

19

P M P M P M

Interconnection network

P (processors)

L (latency)

g (gap)

limited capacity
(L/g to or from
a proccessor)

o (overhead) o

. . .

Figure 2.1: LogGP Abstract Machine
The LogGP model describes an abstract configuration in terms of five performance parameters: ,
the latency experienced in each communication event, ! , the overhead experienced by the sending
and receiving processors, " , the gap between successive sends or successive receives by a processor,#

, the cost-per-byte for long transfers, and $, the number of processors/memory modules.

from its source processor/memory module to its target.

! : the overhead, defined as the length of time that a processor is engaged in the transmission or

reception of each message; during this time, the processor cannot perform other operations.

" : the gap, defined as the minimum time interval between consecutive message transmissions or

consecutive message receptions at a module; this is the time it takes for a message to cross

through the bandwidth bottleneck in the system.

$: the number of processor/memory modules.

 , ! , and " are specified in units of time. It is assumed that the network has a finite capacity,

such that at most %& (')"+* messages can be in transit from any processor or to any processor at any time.

If a processor attempts to transmit a message that would exceed this limit, it stalls until the message

can be sent without exceeding the capacity limit.

The simplest communication operation, sending a single packet from one machine to an-

other, requires a time of -,/.�! . Thus, the latency may include the time spent in the network inter-

faces and the actual transit time through the network, which are indistinguishable to the processor.

A request-response operation, such as a read or blocking write, takes time .� 0,213! . The processor

20

Platform 4 (5 s) 6 (5 s) 7 (5 s) MB/s 8:9;=<
Berkeley NOW 2.9 5.8 5.0 38
Intel Paragon 1.8 7.6 6.5 141
Meiko CS-2 1.7 13.6 7.5 47

Table 2.1: Baseline LogGP Parameters.
This table shows the performance of the hardware platform used, the Berkeley NOW. Two popular
parallel computers, the Intel Paragon and the Meiko CS-2 are included for comparison.

issuing the request and the one serving the response both are involved for time >�4 . The remainder

of the time can be overlapped with computation or sending additional messages.

The available per-processor message bandwidth, or communication rate (messages per

unit time) is ?A@B6 . Depending on the machine, this limit might be imposed by the available network

bandwidth or by other facets of the design. In many machines, the limit is imposed by the message

processing rate of the network interface, rather than the network itself. Because many machines

have separate mechanisms for long messages, e.g., DMA, it is useful to extend the model with an

additional gap parameter, C , which specifies the time-per-byte, or the reciprocal of the bulk transfer

bandwidth [2]. In our machine, C is determined by the DMA rate to or from the network interface,

rather than the network link bandwidth.

The LogGP characteristics for the Active Message layer are summarized in Table 2.1. For

reference, we also provide measured LogGP characteristics for two tightly integrated parallel pro-

cessors, the Intel Paragon and Meiko CS-2 [31].

2.3 Apparatuses

In this section we describe the various apparatuses used. The experimental apparatus con-

sists of commercially available hardware and system software, augmented with publicly available

research software that has been modified to conduct the experiment. There are three distinct vari-

ations of the same basic apparatus. All use the an Active Messages [104] variant called Generic

Active Messages (GAM) [30]. The primary differentiator between the apparatuses is the high-level

transport layered on top of this basic messaging substrate, Split-C [28], MPI [75] or TCP/IP. Each

apparatus is used for one application suite: Split-C/AM for the Split-C applications, MPI-GAM for

the NAS Parallel Benchmarks, and TCP-GAM for the SPECsfs benchmark. The Split-C and MPI

apparatus use the identical GAM Active Message layer. The Active Message Layer for the TCP/IP

21

version of the apparatus required substantial modification to the semantics of the Active Message

layer.

2.3.1 Basic Split-C/AM Apparatus

In this section we first describe the hardware used. Next, we provide background on the

GAM layer, which forms the core communication system of our apparatus. We then describe how

we vary the LogGP parameters by engineering controllable delays into GAM. Finally, we briefly

describe how we calibrated the apparatus using a simple microbenchmarking technique.

Hardware

The hardware for all our experiments is a NOW of 35 UltraSPARC Model 170 worksta-

tions (167 MHz, 64 MB memory, 512 KB L2 cache) running Solaris 2.5. Each has a single Myricom

M2F network interface card on the SBUS, containing 128 KB SRAM card memory and a 37.5 MHz

“LANai” processor [17]. The processor runs our custom firmware, called the LANai Control Pro-

gram (LCP). The LANai processor plays a key role in allowing us to independently vary LogGP

parameters. The machines are interconnected with ten 8-port Myrinet switches (model M2F, 160

MB/s per port) in a two-level fat tree topology. Each of the 7 switches in the first level is connected

to five machines and all three second level switches. At any given time, we only run programs on

32 machines. Often a machine or two was down; a few spares went a long way towards having 32

working machines at any given time.

GAM Active Message Layer

The GAM Active Message layer on Myrinet was developed as an experimental research

prototype. Its primary goal was to deliver high performance communication to parallel applications

on NOWs. Although GAM is not strictly necessary for use in this study, two of its characteristics

proved quite useful. First, its high performance increased the range of the LogGP parameter space

we can consider. Second, its simplicity allowed for easy insertion of delays into various portions of

the system.

The GAM Active Message layer follows a request-reply model. The underlying network is

assumed to be reliable, but only possesses finite buffering. Because of the finite buffering, care must

be taken to avoid fetch-deadlock. Deadlock avoidance is achieved by using credit counts between

pairs of nodes. This is the D�E algorithm described in [32] and similar to the one used in [72]. The

22

Host Processor

o: stall SPARC on

L: set presence
bit at time
Rx+ L

after injection
in Tx loop

g:delay LANai

o: stall SPARC on

∆
Processor

message receptionmessage send

LANai network

Host Processor

LANai network
Processor

Delay Queue

Rx Queue

Figure 2.2: Varying LogGP Parameters
This figure describes our methodology for individually varying each of the LogGP parameters. The
interaction between the host processor, the network processor (LANai) and the network is shown for
communication between two nodes.

layer is not thread-safe and requires polling to receive messages. Polls are automatically inserted

when sending messages, however.

In addition to requests and replies, messages are typed as short or long. Short messages

are up to 6 words in length, with one word consumed as a function handler. Long messages contain

a function pointer, two words for function arguments and a block of data up to 4KB long. Short and

long messages are orthogonal to requests and replies. Thus, a short or long message may be sent in

response to either type of request. A library function performs the packetization for direct memory-

copy requests longer than 4KB. Note that in the GAM specification [30] there is not an arbitrarily

long reply bulk-transfer function; replies in the Myrinet apparatus are limited to 4KB.

Varying the LogGP Parameters

The key experimental innovation is to build adjustments into the communication layer so

that it can emulate a system with arbitrary latency, overhead, gap and Gap. Our technique is depicted

in Figure 2.2 which illustrates the interaction of the host processor, the LANai (network interface

processor) and the network for communication between two nodes. The next sections describe how

we varied each parameter in detail.

Overhead The majority of the overhead is the time spent writing the message into the network

interface or reading it from the interface. Thus, varying the overhead, F , is straightforward. For

each message send and before each message reception, the operation is modified to loop for a specific

23

period of time before actually writing or reading the message.

gap and Gap The gap is dominated by the message handling loop within the network processor.

Thus, to vary the gap, G , we insert a delay loop into the LCP message injection path after the message

is transferred onto the wire and before it attempts to inject the next message. Since the stall is done

after the message is actually sent, the network latency is unaffected. Also, since the host processor

can write and read messages to or from the network interface at its normal speed, overhead should not

be affected. We use two methods to prevent excessive network blocking from artificially affecting

our results. First, the LANai is stalled at the source rather than the destination. Second, the firmware

takes advantage of the LANai’s dual hardware contexts; the receive context can continue even if the

transmit context is stalled.

To adjust H , the transmit context stalls after injecting a fragment (up to 4KB) for a period

of time proportional to the fragment size. We stall the LCP for an adjustable number of microseconds

for each 100 bytes of up to a 4 KB fragment. For example, if the Gap “knob” was set to 11, we would

stall the LANai transmit context for an extra 11 I s for each 100 bytes of data in a fragment.

Latency The latency, J , requires care to vary without affecting the other LogGP characteristics. It

includes time spent in the network interface’s injection path, the transfer time, and the receive path,

so slowing either the send or receive path would increase J . However, modifying the send or receive

path would have the side effect of increasing G . Our approach involves adding a delay queue inside

the LANai. When a message is received, the LANai deposits the message into the normal receive

queue, but defers setting the flag that would indicate the presence of the message to the application.

The time that the message “would have” arrived in the face of increased latency is entered into a

delay queue. The receive loop inside the LANai checks the delay queue for messages ready to be

marked as valid in the standard receive queue. Modifying the effective arrival time in this fashion

ensures that network latency can be increased without modifying K or G .

Calibration

With any empirical apparatus, as opposed to a discrete simulator, it is important to cali-

brate the actual effect of the settings of the input parameters. In this study, it is essential to verify

that our technique for varying LogGP network characteristics satisfies two criteria: first, that the

communication characteristics are varied by the intended amount and second that they can be varied

independently.

24

µsec

µsec

µsec

10
9
8
7
6
5
4
3
2
1
0

µsecg = 12.8

µsec∆ = 10

0 10 20 30 40 50 60 70

Oreceive = 4

BurstSize

Round Trip Time = 21

Osend = 1.8

20

15

10

5

0

S
ec

/M
es

sa
g

e
µ

∆µsec

12
11

Figure 2.3: Calibration of LogGP Parameters
The LogP signature is visible as the isobaric plot of burst size vs. fixed computational delay, L .
This signature was a calibration made when the desired M was 14 N s. The send overhead, receive
overhead and gap can be read from the signature. Overhead is modeled as the average of the send
and receive overhead. Latency is computed as OP (round trip time)-2o.

Such a calibration can be obtained by running a set of Active Message micro-benchmarks,

described in [31]. The basic technique is to measure the time to issue a sequence of Q messages with

a fixed computational delay, L between messages. The clock stops when the last message is issued

by the processor, regardless of how many requests or responses are in flight. Plotting the average

message cost as a function of the sequence size (burst size) and added delay generates a LogP signa-

ture, such as that shown in Figure 2.3. Each curve in the figure shows the average initiation interval

seen by the processor as a function of the number of messages in the burst, Q , for a fixed L . For a

short sequence, this shows the send overhead. Long sequences approach the steady-state initiation

interval, M . For sufficiently large L the bottleneck is the processor, so the steady state interval is the

send overhead plus the receive overhead plus L . Finally, subtracting the two overheads from half

the round-trip time gives R .

Table 2.2 describes the result of this calibration process for three of the four communica-

tion characteristics. For each parameter, the table shows the desired and calibrated setting for that

parameter. For much of the tunable range for overhead, the calibrated value is within 1% of the de-

sired value. Observe that as S is increased, the effective gap increases because the processor becomes

the bottleneck, consistent with the LogGP model. As desired, the value of R is independent of S . The

calibrated M is somewhat lower than intended and varying M has little effect on R and no effect on

25

Desired Observed Desired Observed Desired Observed
o o g L g g o L L L o g

2.9 2.9 5.8 5.0 5.8 5.8 2.9 5.0 5.0 5.0 2.9 5.8
4.9 5.1 10.1 5.0 8.0 7.5 2.9 5.1 7.5 8.1 2.9 6.3
7.9 8.1 16.0 4.7 10 9.6 2.9 5.5 10 10.3 2.9 6.4

12.9 13.0 26.0 5.0 15 14 3.0 5.5 15 15.5 2.9 7.0
22.9 23.1 46.0 4.9 30 29 3.0 5.5 30 30.4 2.9 9.6
52.9 52.9 106.0 5.4 55 52 2.9 5.5 55 55.9 3.0 15.5
77.9 76.5 151.0 5.3 80 76 2.9 5.5 80 80.4 2.9 21.6

102.9 103.0 205.9 6.0 105 99 3.0 5.5 105 105.5 3.0 27.7

Table 2.2: Calibration Summary
This table demonstrates the calibration of desired LogP parameter values versus measured values.
The table also shows that the LogP parameters can mostly be varied independent of one another. As
predicted by the LogP model, when TVUXW then W is not longer observable as a distinct parameter, it
degenerates to T . Note that in the steady-state, the data for W includes the time to send and receive a
message. The increase in W at high Y is due to our system’s fixed capacity of 4 outstanding messages
between processor pairs. It differs from the LogP capacity model which specifies that up to Z&Y\[BW+]
messages can be in-flight to a given processor at a time.

T . Increasing Y has little effect on T . A notable effect of our implementation is that for large values

of Y , the effective W rises. Because the implementation has a fixed number of outstanding messages

independent of Y , due in part to the ^�_ deadlock avoidance algorithm, when Y becomes very large

the implementation is unable to form an efficient network pipeline. In effect, the capacity constraint

of our system is constant, instead of varying with Y and W as the LogGP model would predict.

To calibrate ` , we use a similar methodology, but instead send a burst of bulk messages,

each with a fixed size. The delay inside the LANai bulk handling loop was set to a specific number

of microseconds per 100 bytes of data. From the initiation interval and message size we derive the

calibrated bandwidth. We increase the bulk message size until we no longer observe an increase in

bandwidth, which happens at a 2K byte message size. Figure 2.4 shows a linear relationship between

the added delay in the LANai code and the observed ` . The linear relationship shows that the appa-

ratus can deliver a range of ` quite accurately. The small dip at the lower left shows that as we add

a linear delay, a sublinear increase in ` occurs. We can conclude from this probe that the baseline

firmware is not rate-limited, instead the system is overhead-limited.

26

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70 80 90

B
u
lk

 G
a
p
 (

u
s
e
c
/b

y
te

)

a

Delay (usec)

Bulk Gap Calibration

Figure 2.4: Calibration of Bulk Gap for the Parallel Program Apparatus
This figure shows the empirical calibration for bulk Gap. The dependent variable shows the added
delay in b s per 100 bytes of packet size. The independent variable is the Gap expressed in b s per
byte (1/bandwidth) at a 2KB packet size. After a small delay, the relationship is linear, showing that
the apparatus for adjusting bulk Gap is quite accurate.

2.3.2 MPI Apparatus

The last few years has seen a standard message passing interface, aptly named the Message

Passing Interface (MPI) [75], emerge from the parallel programming community. In this section,

we describe the construction and performance of MPI on top of our basic apparatus described in the

previous section. Recall that this apparatus is used in our study of the NAS Parallel Benchmark suite.

We conclude this section with a simple model which describes how the MPI will react to changes in

LogGP parameters.

The MPI specification in quite complex, including many collective operations, four seman-

tic classes of point-to-point messages, methods of grouping processes (communicators), and many

ways of tag-matching between sends and receives. In order to manage this complexity, the MPICH

implementation [6] layers the more complex MPI abstractions on top of simpler ones. For example,

collective operations, such as MPI All to all are implemented as standard point-to-point mes-

sages using MPI send. The point-to-point messages are in turn, mapped to the lowest layer, the

MPI abstract device (MPID). The MPID layer is quite small; it implements just three ways to send

point-to-point messages.

27

Construction

In order to construct a tunable apparatus, it was sufficient to map the MPID layer to GAM

[109]. The three ways to send messages at the MPID level correspond to two mappings to the GAM

level. The first send type, the “standard” send, is the most common. More importantly, of the three

MPID sends, the standard send is the only one used by the NPB. An MPI layer standard send eventu-

ally maps to the MPID function MPID AM Post send. This function sends a contiguous memory

region to another processor, and returns when the data has been accepted by the communications

layer. The tag and communications group are already specified by higher MPI layers. All MPI re-

ceive functions map to a single receive function at the MPID layer, MPID AM Post recv. This

function tests for completion at the processor that receives the message. For the standard send, no

messages are sent inside the MPID AM Post recv call.

The implementation strategy for the standard send depends on the size of the message sent.

The GAM interface provides 2 distinct message sizes: 0 - 4KB, via the am request function, and

greater than 4KB in the am store function. Each of the methods results in substantially different

start-up costs and per-byte bandwidths, resulting in two methods of constructing sends at the MPID

level.

The MPID AM Post send call is mapped to the GAM layer using the Myrinet specific

am request function for messages less than 4KB long. The am request function was added

after the initial GAM specification in order to handle the “medium” message sizes needed by many

distributed systems. It delivers a continuous block of data up to 4KB long, and invokes a handler

on the remote end when the block arrives. The block on the remote side exists only for the life of

the handler. For these medium message sizes, the MPID-GAM implementation simply launches the

message into the network, or stalls if the network is full. Upon arrival, if the receive is posted, the

data is copied into the final destination. If the receive has not been posted, the message is copied into

a temporary buffer. Control messages, e.g., for barriers, are implemented with the am request 4

function. Recall that am request 4 sends an active message with 4 32-bit words as arguments.

For messages larger than 4KB, MPID AM Post send first performs a round trip using

the am request 4 call. The receiver returns the destination address of the location of the receive

buffer. If the receive has not been posted, the handler on the receiver creates a temporary buffer. The

sender blocks until it receives the response containing the address of the receive buffer. Once the

address has been obtained, the sender uses the am store function to send the data into the correct

destination. Recall that am store copies a block of arbitrary data from one node to another, and

28

0

To=25.4
B=0.058

0 5000 10000 15000 20000 25000 30000

200

400

600

800

1000

1200
measured

T
ra

n
s
fe

r
T

im
e
(u

s
e
c
)

To=148.5

MPI Linear Model

B=0.027

Bytes

Figure 2.5: Baseline MPI Performance
This figure shows the baseline performance of the MPI-GAM system. The figure plots half the round
trip time for different size messages. Two distinct performance regimes are observable, one for mes-
sages c 4KB and the other for messages d 4KB. The modeled start-up cost, e�f is obtained from the
y-intercept of a least squares fits to the two performance regimes. The per-byte costs, gih jkml , is
obtained from the slopes of the fitted lines.

thus requires all memory addresses to be known in advance of the call. A key point of the GAM

implementation is that am store internally maps to a sequence of am request calls. The GAM

LCP can pipeline these requests resulting in the maximum bandwidth of 38 MB/s for a long sequence

of 4KB am request messages.

Performance

In this section, we investigate the performance of the MPI message passing layer built on

top of GAM. The purpose of this section is to understand how the inflation of the LogGP parameters

at the GAM level affects the performance of MPI. We show how the different implementations of

the standard MPI send result in different performance regimes.

MPI benchmarks traditionally use a linear model of performance. In the traditional linear

model, a per message start-up cost of e�f is paid on every message. A second parameter, npo , captures

bandwidth limitations of the machine. The cost to send an n-byte message, e�q , is thus modeled ase�qrhse�fut qk l . Fitting this model into the LogGP perspective requires care, although by definition,vxw jk l . Modeling e�f requires knowledge of the underlying implementation. For example, e�f

29

may correspond directly to y , or, if a round trip is required, may include z as well.

The classic experiment to compute {�| is realized in the benchmark [35, 36]. This code

performs a ping-pong of messages between two nodes. One node sends a message of size } bytes.

After the entire message is received, the second node responds with a message of size } bytes. The

total time for the test approximates ~���{ | . The time reported is half of the time to send the message

and receive the response.

Figure 2.5 shows the results of the experiment for the MPI-GAM system for increasing } .

The first thing the note is that there is a sharp inflection point at 4KB. The slope of the line changes

suddenly at 4 KB because of the change in the way MPI-GAM maps MPI messages to the GAM

system. The figure clearly shows the tradeoff in increased start-up cost vs. delivered bandwidth. If

we break up the line into to regions and compute the a least squares fit, we see that the fit is quite

good for each of the two regions.

LogGP to MPI Model

Given that we know the basic MPI performance and protocol, we are now in a position

to model the effect of inflation of the LogGP parameters on MPI performance. We characterize the

change in parameters on the linear model described in the previous section.

Inflation of overhead will impact the system in three ways. The first and most obvious way

is on {�� . For messages under 4 KB, the MPID to GAM protocol only uses one message, so we simply

add y to the cost of {�� . For messages over 4 KB, the protocol uses a round trip, and so in our model

we inflate {�� by �3y . The third way overhead impacts the system is for long messages. We add y to the

cost of each 4 KB fragment, thus reducing the effective �p� . Adding latency to the system primarily

impacts the {�� term. We model an increase in z as adding ~�z to the cost of {�� for messages over 4

KB and ignore effects for messages � 4 KB. The gap is perhaps the most difficult to model. Because

the MPI-GAM system uses few small messages, we chose to ignore added � entirely. We shall see

that is the not all that poor of an assumption. Indeed, one of the NPB can ignore added � entirely. The

Gap is perhaps easiest to cast into the MPI linear framework. Changes in Gap correspond directly

to changes in �p� via the model �p������ .

2.3.3 TCP/IP Apparatus

The TCP/IP apparatus operates along the same lines as the parallel program apparatus.

We use this apparatus in our sensitivity measurements of the SPECsfs NFS benchmark. A guiding

30

engineering principle used in building the apparatus was to re-cycle as much of the user-level GAM

code and LCP as possible. The alternative approach of adding delays and calibrating Myricom’s

device drivers and LCP was rejected as too time consuming to complete in the context of this thesis.

Our approach to building the apparatus was to insert the GAM layer inside the Solaris ker-

nel. We created a kernel module which contained the user-level GAM code, slightly modified to run

in the kernel, and then layered the STREAMS TCP/IP on top of it. However, modifications had to

be made to the semantics of the GAM layer in order to accommodate placing active messages in the

kernel.

The user level GAM layer required three semantic changes in order to most easily accom-

modate the STREAMS abstraction while still providing controllable delays. First, the request-reply

model was removed from the code. The elimination of request-reply caused the second change, the

removal of reliability semantics. Finally, the buffering semantics for medium messages required an

extra copy on the receive side.

Construction

Figure 2.6 shows the architecture of the TCP/IP-GAM apparatus. A number of STREAMS

and character Solaris kernel drivers are required. Two drivers from Myricom are required to boot

and control the LANai card (not shown). The Active Message driver implements most of the GAM

functions. In order to more easily handle control operations, the Active Message driver is a simple

character driver. STREAMS drivers require special messages in order to send control information;

these are clumsy to use. However, as a character driver, the Active Message driver is unable to in-

terface to the STREAMS subsystem directly. Therefore, a pseudo-Ethernet STREAMS driver was

constructed to interface to the IP layer. The Ethernet driver was modeled on the Lance Ethernet driver

provided in the Solaris source code. The Lance uses some fast-paths not provided in the normal sam-

ple drivers. The interface between the Ethernet and Active Message drivers is a modification of the

GAM functions.

The Unix STREAMS model assumes a number of modules which are connected by queues.

Figure 2.6 shows the relationship between these modules. The STREAMS framework contains the

notion of layering. Each module has a “down” direction, towards the device, called the write side.

The inverse is the “up” direction, called the em read side, which moves data toward the user process.

In addition to the two directions, there are two types of reads and writes: put procedures

and service procedures. The main difference between put and service procedures is in the scheduling

31

Read()/Write() calls

Application
Process

Stream head Stream head

Node Node

Node

Control
Process

Kernel

Node

Kernel

Kernel Active Messages

Socket module

TCP module

IP module

Pseudo Ethernet

Interrupt

Socket module

TCP module

IP module

Pseudo Ethernet

Kernel Active Messages

2

3

4

5

61 Read()/Write() calls

Application
Process

Figure 2.6: TCP/IP Apparatus Architecture
This figure shows the software architecture of the TCP/IP emulation environment. Two Solaris kernel
modules are used. One simulates and Ethernet driver and the second runs Kernel-to-Kernel Active
Messages. The figure shows the path needed to send a message. After the application passes the
message to the kernel(1), it eventually ends up at the pseudo-ethernet driver (2) which calls the kernel
active message driver (3). After crossing the Myrinet, the receiving LANai interrupts the host (4),
which invokes the poll routine of the kernel active message driver. The driver then passes it through
the STREAMS sub-system (5) and eventually the message ends up at the receiving application (6).

of the operation. The put procedure is called directly by the preceding module, while the service

procedure is called via the STREAMS scheduler.

Tracing the path of a write system call in Figure 2.6, after the write call at (1), the Socket

layer calls the write-put procedure of the TCP module, which calls the write-put procedure of the

IP module, which calls the write-put procedure of the pseudo-Ethernet driver. Finally, at (2), the

pseudo-Ethernet driver calls am requestwith the IP packet as the data for the medium active mes-

sage. In the normal case, the service procedures are not called. The kernel Active Message module

copies the message into the LANai firmware queue at (3). The current implementation thus requires

2 copies on the send side.

When the receiving LANai sees a message in the receive queue, it generates an interrupt.

The kernel vectors control to the Active Message poll function, am poll, at (4). Am poll in turn

32

calls a handler in the pseudo-Ethernet driver, at (5). At this point, the pseudo-Ethernet driver allo-

cates a STREAMS message structure and copies the packet into it. Next, the driver calls the read-put

procedure of the IP module, and the messages eventually reaching the stream head. So far, all the

receive processing has taken place inside the interrupt handler. Finally, when the application calls

the read call, the message is copied into the application’s memory.

Encapsulation is relatively straightforward. A Maximum Transmission Unit (MTU) of

3584 bytes (3.5K) was chosen because this represents the smallest unit that achieves the maximum

bandwidth. We shall explore bandwidth in the calibration section.

A number of problems occurred when layering the STREAMS framework on top of the

Active Message abstraction. The basic problem stems from interfacing the STREAMS notion of

queues on top of the request-reply model. Modifications to GAM include eliminating the request-

reply model and reliability guarantees. In addition, the GAM longevity model for medium messages

did not support the STREAMS abstraction well, therefore the pseudo-Ethernet driver makes copies

of the messages. The next paragraphs describe the request-reply semantics, reliability, longevity

problems and the workarounds.

Request-Reply Semantics The basic problem with maintaining request-reply semantics is that the

matching of requests to replies is difficult because the STREAMS subsystem can send data in an in-

terrupt handler. The following example illustrates this problem. An Internet Control Message Pro-

tocol (ICMP) ping request arrives. In the interrupt handler, the IP module calls the ICMP routine.

Still in the interrupt handler, the ICMP routine responds to the ping request by calling the write-put

routine of the pseudo-Ethernet. All this happens before control is returned to the Active Message

module. In the STREAMS model, the higher-layers can send an arbitrary number of messages in

response to an incoming message, thus violating a semantic tenet of the GAM abstraction: that no

requests can be sent during the execution of a reply handler.

While there are different possible solutions to the problem, the easiest to implement and

most compatible with the STREAMS framework was to simply eliminate the request-reply model.

All messages become “requests”, and are deposited directly into the send queue of the LCP. The

notion of a “reply” message was eliminated from the code running on the host.

Reliability Recall that reliability was built in the Active Message layer by a combination of request-

reply semantics linked to storage management. Once the request-reply model was discarded, main-

taining reliability was dropped from the system, primarily because the increase in storage manage-

33

ment complexities was not seen as worth the engineering effort required. Higher layers, such as TCP

and RPC, must be used to provide reliability semantics in the TCP/IP-GAM system.

In addition to the difficulties of storage management, blocking was also a problem with in-

corporating the user-level GAM implementation into the kernel. The reliability of GAM can require

blocking the current thread for extended periods. If the number of outstanding requests is too high,

GAM spin-waits until an incoming reply signals a request buffer is “free”. Although this blocking is

fine, even beneficial, for user-level programs, spin-waiting a thread for an arbitrary time is not per-

mitted inside the kernel—such behavior can crash the entire system. The kernel GAM layer was thus

modified to simply discard messages when outbound LCP queue is full. Although the STREAMS

system provides for a “queue-full” signal to be propagated to higher modules, the added complexity

of using this mechanism was judged to be not worth the engineering effort.

Data Longevity Data longevity semantics in the GAM abstraction effectively placed enough re-

strictions that copies had to be made on both the send and receive sides. On the sending side, the

GAM model returns control to the sender once (1) the data area can be re-used for data storage and

(2) the system has enough buffering to accept the message. Although the previous changes to the

GAM layer eliminated these restrictions, the decision was made that the extra performance gained

from zero-copy (inside the kernel) sends was an excessive engineering effort needed for this appa-

ratus.

A second issue arises with attempting zero-copy sends on the Sun UltraSPARC worksta-

tion (the sun4u architecture). In a sun4u environment, I/O devices have their own address space;

they cannot access memory in an arbitrary fashion. Instead of mapping and unmapping STREAMS

buffers on every send, the AM driver copies the data into a fixed, I/O addressable region. Given

the very fast (180MB/s) rate of the UltraSPARC memory system, this copy is not too expensive (20� s for a 3.5 KB fragment).

On receives, the medium message data area is only valid for the life of the handler. This

clashes with the STREAMS notion that a STREAMS message buffer exists in a single address space

of the kernel independent of any particular queue. Thus, in order to implement zero-copy receives,

the active message layer code would require modification to not free buffers upon return of control

from the handler. As with the send case, the effort needed to construct a zero-copy apparatus was

deemed not worth the added development time and risk.

34

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

B
u
lk

 G
a
p
 (

u
s
e
c
/b

y
te

)

�

Delay (usec)

Bulk Gap Calibration for the TCP/IP apparatus

TCP/IP
Parallel

Figure 2.7: Calibration of bulk Gap for TCP/IP-GAM apparatus
This figure shows the empirical calibration for bulk Gap for the TCP/IP apparatus. The dependent
variable shows the added delay in � s per 100 bytes of packet size. The independent variable is the
Gap expressed in � s per byte (1/bandwidth). The figure shows the TCP/IP-GAM apparatus for ad-
justing bulk Gap is quite accurate. The basic parallel program apparatus calibration is shown as
well, demonstrating that the two systems are near equivalent as to Gap adjustment.

Calibration

Because the LCP of the TCP/IP-GAM apparatus is taken from the parallel programming

apparatus, we know that � and a network-limited � are identical, so we do not measure those param-

eters again. However, unlike the parallel programming apparatus, � is substantially different. As can

be seen from Figure 2.6, there are many software components involved in sending a message; the

result is a large software overhead.

Since we know � , we can compute � from a simple round trip time. Measurements show

a mean RTT of 340 � s. With � at 5 � s we can deduce � as roughly 82 � s. Unlike in user-space,

calibration of the delay loop inside the kernel can be tricky because many floating-point math rou-

tines are not supported in the kernel. Fortunately, the Solaris Device Driver Interface (DDI) contains

a time-calibrated spin loop, drv usecwait. It was intended for short waits to slow devices, but

serves as a calibrated spin-loop quite well.

We must re-calibrate � , because the increases in � may affect the range for which changes

to the LCP bulk data handling loop affect � . We use the same methodology as the parallel apparatus.

We cannot control the fragment sizes used by the kernel, however. Our gap experiment thus sends

a single large block of data (10 MB), with each write call sending 8KB at a time. The observed

35

time to report the entire transfer on the sender is taken as the delivered bandwidth. Figure 2.7 shows

the results of the experiment. The parallel program Gap calibration is also plotted for comparison.

Notice that for much of the Gap range, the two lines are nearly identical, showing that even with the

different kernel fragmentation algorithm the Gap apparatus is quite accurate.

2.4 Factor Design

Once we have a calibrated, tunable apparatus, we face the question of how to vary each of

the LogGP parameters. The space of possible settings is quite large. If we ignore � , there are still

four parameters, each of which can be scaled by an order of magnitude. For example, we can vary� from 5-100 � s and still obtain meaningful results.

In the terminology of experiment design, a factor is a variable that affects the outcome

of the experiment. In this thesis, each of the networking components of the LogGP parameters,�
, � ,� , � , is clearly a factor. In addition, another dimension, or factor, we can control is the program

used as a benchmark, e.g., Radix, EM3D, NowSort. Factors can take on different levels. For exam-

ple, � could take on levels of 5, 10, and 25 � s. Along the benchmark dimension, the “levels” would

be the programs used as benchmarks. There are number of ways to explore the entire space covered

by factors and levels. We provide a brief background here.

The traditional ways of combining factors and levels results in three classes of experi-

ments: simple, full, and fractional [57]. In all types, all the factors are varied. The real difference

between the methods is how the levels are adjusted. In the simple design, we first assign each factor

a constant level. Next, we vary each factor by a large number of levels, while keeping the other fac-

tors at their constant level. Simple experiments have the advantage that we can observe the effect of

each factor is isolation, but has the disadvantage that it may miss interactions between factors, i.e.,

factors may not be independent. For example, in the LogGP case, we know that if we inflate ��� � ,

then � is no longer observable as a separate parameter; it degenerates into � . Therefore, the LogGP

model tells us that sensitivity experiments where we simultaneously inflate both � and � such that�V� � will probably not yield different results than inflating � alone.

Another class of experimental design is called the full factor method. In this type of design,

all factors are varied by all levels. Clearly, this experiment design has the disadvantage of requiring

the most experiments. It does, however, have the advantage of capturing all interactions between the

factors. For example, in our experimental designs space, we have five factors (the LogGP parameters

and benchmark), each of which can take on, say 8 levels. A full-factor design would require running

36

���
or 32768 experiments. In our case, such a design clearly requires too many experiments.

The final class of designs are called fractional designs. In these types of experiments, the

number of levels is reduced from the full factor design while still simultaneously varying factors and

levels. The minimalist case is called a ��� design. If we have factors and we vary each factor by

two levels, then the number of experiments performed is � � . In our case such a design would require

only 32 experiments; quite a small number. However, such an experiment design leaves many unan-

swered questions. For example, we cannot see knees or plateaus in the data because by definition we

are only sampling at 2 levels for each factor. Also, in our case, we would only sample 2 benchmarks!

The classic �¡� design, as well as many other fraction designs, are best suited when the interactions

between factors is largely unknown and the purpose of the experiments is thus an exploration of the

interactions between parameters.

This thesis uses a simple design, as opposed to a fractional design. There are two advan-

tages of this design. First, we can observe a wide variety of applications by fully scaling the bench-

mark axis. This is the most crucial axis to scale, as we do not claim to have a representative workload

of all applications. By observing the reaction of a wide range of programs, we can better classify new

programs as similar or dissimilar to our existing set. In addition, our wide range of benchmarks al-

lows us to quantify the sensitivity of a “worst-case” program for each networking parameter. For

example, EM3D(read) is a program that performs only blocking reads. It should therefore be a pro-

gram that is “worst-case” with respect to sensitivity to ¢ .

A second advantage of a simple experiment design is that it allows us to explore more

factor levels at the edge of our apparatuses’ operational limits. For example, with parallel programs

we are quite interested at the response of programs near the lowest overhead limit of our apparatus. If

we see an insensitive region, we may concluded that a new class of low overhead protocols has solved

the “overhead problem”, or at least some other system component is the bottleneck. On the other

hand, if we still observed a sensitive region in the low overhead regime, we may conclude instead

that further reductions in overhead are warranted. With a fractional design, we are more likely to miss

these regions. Likewise, in the NFS context we are interested in performance near peak operations

per second. The shape of the response-time vs. throughput curve near the peak operations per second

for different £ is most interesting; it tells us how useful lowering £ is in performing graceful load

degradation.

The main disadvantage of our simple design is that we may miss interactions between the

factors. However, the LogGP model can compensate us somewhat, in that it gives us a way to reason

about what the interactions should be. Although we have chosen not to explore these interactions, it

37

would be useful as a validation of the LogGP model.

The most important class of factor-level combinations missing from this work are that of

real machines. For example, we could easily emulate a machine running a TCP/IP stack on 100 Mb

Ethernet. This class of machines will be quite important in the future, as it represents a very cost-

effective point in the design space. Likewise, our apparatus could emulate a 622Mb ATM cluster

of workstations. Running experiments on these common designs would not only provide additional

validations of our experiments, it would allow a near direct comparison of the cost-performance of

these technologies (e.g. ATM vs. Ethernet). However, although such point-comparisons are quite

useful, many other studies already have performed such comparisons [1, 49, 61]. For the purposes

of this thesis, we view the uniqueness of isolating the impact of each parameter as more important

that making point-wise comparisons of different technologies.

2.5 Other Models

The LogGP model is not the only model available to describe program behavior. In this

section, we explore other models. We first describe the models, as well as relate their purposes,

strengths and weaknesses in the context of this thesis. We also describe why this thesis uses the

LogGP model.

Most of the models presented here were developed in the context of parallel program de-

sign, must be considered in light of that purpose. Previous to the invention of the models presented

here, many parallel programs were written using the Parallel Random Access Machine (PRAM)

model. The problem with the PRAM model is that it ignores real machine characteristics and thus

encourages algorithm designers to exploit characteristics of the PRAM machine that result in poor

performance on real machines.

Although a reaction the unrealistic assumptions of the PRAM model, many of the models

explored in this section do not have parameters that correspond well to a variety of real machine com-

ponents. Out of a fear that additional parameters will make the models cumbersome to use, many of

the models attempt to capture the limitations of real machines in only 1 or 2 parameters. The pur-

pose of the parameters is to encourage algorithm designers to creating algorithms that run well on

real machines; the parameters are not intended to model the machines per say. The lack of archi-

tectural focus is not a fault of the models, but limits their applicability for understanding the role of

machine architecture on application performance.

38

2.5.1 Bulk Synchronous Parallel

The Bulk Synchronous Parallel (BSP) model [101] attempts to bridge theory and practice

with an very simple model. Computation is divided into a number of “supersteps” that are separated

by global barriers. Each superstep must be at least ¤ units long, and messages from one step cannot

be used until the next step. Like the LogGP model, BSP does not model any specific topology. In

addition to the restriction that a superstep must last at least ¤ time units, messages can only be sent

or received at an interval of ¥ during a given step.

Although proven useful for algorithm design, the BSP’s restricted architectural focus would

greatly limit this thesis. The architectural parameters are only ¤ and ¥ . In a real programs ¦ and §
are often limitations that would be missed by the BSP model.

In addition, it would be difficult to categorize all parallel programs into the BSP frame-

work. Most challenging are the supersteps. For example, several of the applications in this thesis

use task-queue models that do not fit well into the BSP framework. The task-queue programs have

only a few long phases where communication is overlapped with computation; in some programs

there is only a single phase [97]! Thus, although a program written in the BSP framework will make

efficient use of machine resources, the model will not reveal much about application behavior or

architectural characteristics.

2.5.2 Queue Shared Memory

Like BSP, the Queue Shared Memory (QSM) model is also designed for parallel program-

ming [46]. This model extends the PRAM model to include queuing effects at shared memory loca-

tions. The model divides memory into local and global portions. Operations on the global memory

take unit time, unless they operate on the same location, in which case they are queued and serviced

at a rate of ¥ . Thus, the only two parameters in this model are ¥ and ¨ , and the only network param-

eter is ¥ .

A major flaw from an architectural perspective with this model is that the ¥ parameter is on

a per-word basis. The QSM developers correctly note that a machine with many memory banks per

processor can adequately approximate such a model, and use the Cray vector supercomputers as an

examples. However, as technology trends move more memory capacity per chip [50], it will become

increasing difficult at an architectural level to sustain many memory banks. This flaw in the QSM

model could be easily corrected by modifying the model to a point where ¥ is sustained for every

global memory operation, which would encourage algorithm designers to avoid remote memory as

39

much as possible.

2.5.3 LoPC and LoGPC

The LoPC and LoGPC models [43, 78] extend the basic LogP model with contention pa-

rameters. The original paper, [43] added the © parameter to model contention effects at the end-

points. In large parallel machines with all-to-all patterns, these contention effects can result com-

munication times that are 50% greater than predicted by a straightforward LogGP model [39]. Note

that these contention effects get worse with increasing overhead.

The LoGPC model extends the contention effects into the network. However, in order to

model these effects, the work makes certain assumptions about the network. Although the model

captures a large class of networks by abstracting k-ary d-cubes, other topologies, such as certain

expander networks, are not modeled. Still, for low-order dimension-routed networks, network con-

gestion can be a serious limitation.

Of all the models presented here, LoPC is perhaps the most interesting for the purposes of

this thesis. Contention effects can become a significant fraction of the time on large machines. This

observation is not new [84], but the recent work on LoPC and LoGPC better quantify this effect.

However, as was shown in [39], as well as in the LoPC model itself, for the range of ma-

chines of interest to this study, (16-32 nodes) the endpoint contention effects are minimal. For ex-

ample, the predicted vs. actual communication cost of the radix sort program on a 32 node CM-5

differed by only 9%. Only at larger machines sizes (256 and 512 nodes) do contention effects dom-

inate, resulting in predictions that are up to 50% inaccurate. However, the standard LogGP model is

quite suitable for this study because of the machine sizes used.

2.5.4 Queuing Theory

In the world of LAN and WAN networks, queuing theoretic approaches dominate [57, 63,

65]. The problem with using this class of models for parallel programs is that the basic assumptions

about program behavior do not mesh well with what many parallel programs do. For example, queu-

ing theoretic models assume that the output of a program can be modeled by some stochastic process.

That is, network data is generated as some random function of time. Often, poisson processes are

used because the mathematics remain tractable while constructing “realistic” models. In addition,

much of queuing theory is built on the assumption that the system is in steady-state operation. This

allows the modeler to close the resulting system of equations. The nature of many parallel programs,

40

however, is often not captured well by stochastic processes. For example, bulk-synchronous parallel

programs alternate between communication and computation phases; thus all communication occurs

in large bursts. Communication events are not random, nor is there a global steady-state. We shall

examine application behavior in detail when we examine the sensitivity results.

However, we do use a queuing theoretic model in the study of NFS servers. In this case,

the benchmark itself is influenced by the stochastic model of program behavior. This self-referential

assumptions are part of the reason why the queuing model works well for the benchmark. We will

examine this phenomenon in Section 5.6.

2.6 Related Methodologies

The section describes the methodologies of related work. Although impossible to cover

all related research, we highlight four studies that have results most relevant to our work. We show

that although both the application and design spaces are enormous, nearly all of the studies can be

placed along the two axis of experiment design outlined in Section 1.1.

Where possible, we explain the results of these studies using the LogGP model. Although

most of the studies did not use LogGP, we show that most of the results can be interpreted in a LogGP

framework. Casting other results into a LogGP framework also serves as additional validation of the

model.

2.6.1 Holt

The focus of [52] is quite close in spirit to this thesis. The main questions in that work were

how shared memory parallel programs would respond to different abstract machine parameters. The

study was application-centric and used simulation as the evaluation method. Its abstract parameters

are very close to those of the LogGP model. Because the programs were written using shared mem-

ory, and the machines studied were cc-NUMA designs, the study introduced a new term, occupancy.

In terms of the LogGP model, occupancy of a machine’s cache controller lies somewhere between

overhead and gap. Occupancy can limit the peak message rate. Even with speculative and out-of-

order processors, a high occupancy can also stall the processor, causing an increase in overhead. Theª
of the Holt model was unchanged that in LogGP.

In addition to a similar network model, Holt’s experiment paradigm was quite similar to

this thesis. Instead of “slowdown”, however, parallel efficiency was used as the application-centric

41

metric. Even without the initial run-time, slowdown can be derived from this metric, as they both

share the same denominator. Parallel efficiency, however, has a number of problems when used as

a metric compared with slowdown. The primary reason is that it obscures the real question, which

is machine sensitivity to the parameters.

The Holt study found that occupancy, as opposed to latency, was the dominate term af-

fecting parallel program performance. Much like software overhead, occupancy in shared-memory

programs is difficult to tolerate [32]. It found that very high « , into the 1000’s of machine cycles,

would reduce efficiency by 50%, a factor of 2 in slowdown. However, a much smaller increase in

controller occupancy, into the 100’s of cycles, could reduce efficiency by up to 50% as well.

The Holt study also developed a number of analytic models to investigate the effects of

increased latency and occupancy. The simplest models used a simple frequency-cost pair scheme

and ignored contention effects. On a 64 processor machine, this model was off by up to 40%. A

more accurate queuing model reduced the difference between the simulation and the model to less

that 15%. Unfortunately, the model was only used for one simple application, so we can not conclude

about the general accuracy of the model compared to the simulation.

2.6.2 Chang

A recent work [21] examined NFS performance over congested ATM networks. The goal

of this work was to determine the effect of various ATM credit based flow control schemes on NFS.

The work was an application-centric simulation study. A trace-fed simulation from various NFS

tasks (e.g. a compile) was used as the evaluation. The study used run-time of the entire task as the

metric for evaluation, as opposed measuring individual operations of the NFS protocol. The most

related part of the methodology was that the study examined the impact of scaling an abstract param-

eter, « , in addition to point-wise comparisons of flow control schemes. The study did not explore

other parameters, however.

The study found that a high « , over 10 milliseconds, was detrimental. However, low « ,

in the ¬ s range, was not found to impact performance. In addition, the study found that a combina-

tion of TCP backoff algorithm and segment sizes can slow performance down by as much as 30%.

Because of the custom workloads, however, making a direct comparison of absolute sensitivities to

our NFS results is difficult.

42

2.6.3 Ahn

This study [1] compared two TCP congestion control and avoidance strategies, TCP-Reno

and TCP-vegas. The study examined the effects of these different congestion avoidance strategies

on FTP traffic. Much like this thesis, a slowdown layer, called the “hitbox”, was interposed under

the TCP/IP stack to emulate WAN links. The work was application-centric and used an emulation

methodology. The hitbox was built as an interposition layer between the IP layer and the device

driver in the BSD operating system. Unlike this thesis, however, the independent variable of the

experiment was not a set of abstract parameters. Rather, the independent variable was the TCP al-

gorithm.

The hitbox can abstract the link bandwidth, propagation delay, and bit error rate. The

methodology to construct the emulator was different from this thesis in that many links were used to

construct the network. That is, each link was designed to emulate a single wide area link, and many

hosts with multiple links were used to emulate a WAN. This approach is contrasts our approach where

we emulate the entire ­ using a single delay.

The metric used was rather simple, the time to FTP a 512KB file. In other experiments, the

average of many simultaneous transfers was used as the dependent variable. Although the dependent

variable in the experiment was application-centric, the study attempted to answer several network-

centric questions as well. These included which TCP algorithm transmitted more bytes through the

network, as well as which resulted in longer queues at the switches.

The study found that TCP Vegas can increase delivered bandwidth by 3-5% over the Reno

version. The additional overhead of Vegas over Reno was described but not measured. In addition,

the study found that Vegas resulted in an easier load on the network switches, in terms of offered

bandwidth, than Reno.

In spite of the excellent apparatus, the study was somewhat disappointing because the app-

lication-centric focus was not fully investigated. Only measured competing FTP traffic was the sub-

ject of the study. However, the hitbox emulation system could have measured the impact of different

network designs and algorithms on a wide variety HTTP, NFS and multimedia traffic as well.

The construction of the hitbox raised the issue of the apparatus changing what it’s trying to

measure. Because they did not use a separate network processor to emulate network parameters, the

hitbox itself added communication overhead. The study concluded that the additional overhead was

only 3%, but the calibration methodology was slightly dubious. The study measured the slowdown

of a quicksort while the background idle hitbox was running. A better methodology would have been

43

a direct measurement of the change in ® as a function of the hitbox operations.

2.6.4 Hall

The impact of specific networking technologies (ATM, Autonet, FDDI) on NFS was ex-

amined in [49]. This study used an application-centric, direct measurement methodology. They used

two workloads. The first was NFSstone [93], the precursor to SPECsfs. Some of their most inter-

esting data, however, came from the direct measurements of a 200 workstation production system

serving about 150 people.

The methodology of measurements of a production system differ sharply from majority of

previous work, and in some sense is also the most representative. For example, if real systems do not

behave like poisson processes, this will be captured in production system. The study found that the

observed RTT in productions systems had a much larger variance in comparison to their controlled

experiments.

Their conclusions are quite similar to ours: CPU overhead is a dominant factor in NFS

performance. One of the targets of the study was the effects of overhead reduction by increasing the

Maximum Transmission Unit (MTU) size. The study found that reducing overhead by increasing

MTU size can greatly impact performance. However, the data shows the relationship is non-linear.

Increasing the MTU from the 1.5 KB Ethernet MTU to the 4.3 KB FDDI MTU resulted in a large

improvement in the average response time for a mix of NFS operations. However, the improvement

from a 4.3 KB MTU to the 9 KB ATM MTU was much less, and in some cases actually degraded

performance. Unfortunately, they did not present the operation mix for their live experiments.

It is important to note that interpretation of the results in the original work was not cast in

term of overhead. Rather, the work discussed “end-system” performance:

... in order to achieve maximum benefit from modern and fast networks in the future
a big effort must be addressed towards the improvement of the end systems.

This quote highlights the importance of simple models, such as LogGP, in understanding

machine performance. Without a simple model, characterizing complex systems in meaningful ways

is difficult task. For example, the Hall study provided detailed breakdowns of different pieces of the

NFS operations, but did not lump them into the categories of overhead and latency. Although easy to

discern the difference from their data, such simple categorization would have made explaining their

results much more intuitive.

44

Degree of
realism

Experimental perspective

N
e
tw

o
rk

A
p
p
lic

a
ti
o
n

Simulation Emulation Direct
Measurement

Analytic
Modeling

MartinHolt Hall

Chang Anh

Chiu Huang Wilson

Figure 2.8: Methodologies in Context
This figure shows were various works fit in the space of network experiment methodologies. The x-
axis orders methodologies by degrees of realism, while the y-axis shows the focus of the dependent
variable.

2.6.5 Summary

In this section, we return to the network experiment conceptual framework developed in

Section 1.1. Figure 2.8 shows a number of studies placed in our framework of experiment design.

The experiments are: Holt [52], Martin [73], Hall [49], Chang [21], Ahn [1], Chiu [24], Huang [54]

and Wilson [62, 66, 67]. When placing experiments in this space, we have used the primary focus

of the study to determine the axis. Although some studies [1, 52, 73] used multiple techniques at

once, it is interesting that even these have one axis clearly dominate the other.

We can see that experiments cover nearly the full spectrum of experiment design. A point

relevant to this thesis is that there are few experiments which categorize application-centric sensitiv-

ities to abstract parameters. Thus, there is little systematic exploration of the system design space.

Instead, most studies compare single instances of different systems or algorithms, e.g. TCP Vegas

vs. Reno [1], credit vs. rate based flow control [21], or congestion avoidance algorithms [24]. A

point which does not need elaboration is that, of course, many research groups have an axe to grind

with regard to these systems.

There is a notable lack of application-centric experiments which rely on analytic model-

ing. Although [24], and to a lesser extent [56] model the effects on applications somewhat, the ac-

tual concern is not applications per say, but the collective effects of many applications on the net-

work infrastructure. Speculating a bit, the author believes this is because applications are difficult

45

to model. Indeed, only recently has the network community accepted the work in [66]; that poisson

processes are an inaccurate model for aggregating application traffic. It is clear from our examina-

tion of the literature that application behavior has not received the same attention in the network or

parallel program communities as in the architecture or database communities. The adoption of well

defined benchmark suites would go a long way towards solving this problem.

46

Chapter 3

Split-C/AM Program Sensitivity

An experimental science is supposed to do experiments that find generalities. It’s not
just supposed to tally up a long list of individual cases and their unique life histories.
That’s butterfly collecting. — Richard C. Lewontin, The Chronicle of Higher Education,
February 14, 1997

This chapter contains an examination of the sensitivities of a suite of parallel programs

written in the Split-C language or programmed in Active Messages directly. We first characterize

the programs in terms of Split-C operations and parallel program orchestration techniques. We then

describe the programs in detail, followed by some simple analytic models of them. Next, we present

the results of our sensitivity experiments and comment on the accuracy of the analytic models. Fi-

nally, we summarize the results of this chapter.

3.1 Characterization

With a methodology in place for varying communication characteristics, we now charac-

terize the architectural requirements of the Split-C application suite. Split-C is a parallel extension of

the C programming language that provides a global address space on distributed memory machines.

Split-C (version 961015) is based on GCC (version 2.6.3) and Generic Active Messages (version

961015), which is the base communication layer throughout. Note that two of the programs use Ac-

tive Messages directly, bypassing the Split-C layer. Although the programming model does not pro-

vide automatic replication with cache coherence, a number of the applications perform application-

specific software caching. The language has been ported to many platforms [2, 72, 103, 104]. The

sources for the applications, compiler, and communication layer can be obtained from a publicly

47

Program Description Input Set 16 node 32 node
Time (sec) Time (sec)

Radix Integer radix sort 16 Million 13.66 7.76
32-bit keys

EM3D(write) Electro-magnetic wave 80000 Nodes, 40% remote, 88.59 37.98
propagation degree 20, 100 steps

EM3D(read) Electro-magnetic wave 80000 Nodes, 40% remote, 230.0 114.0
propagation degree 20, 100 steps

Sample Integer sample sort 32 Million 24.65 13.23
32-bit keys

Barnes Hierarchical N-Body 1 Million Bodies 77.89 43.24
simulation

P-Ray Ray Tracer 1 Million pixel image 23.47 17.91
16390 objects

Mur ¯ Protocol SCI protocol, 2 procs, 67.68 35.33
Verification 1 line, 1 memory each

Connect Connected 4 Million nodes 2.29 1.17
Components 2-D mesh, 30% connected

NOW-sort Disk-to-Disk Sort 32 Million 127.2 56.87
100-byte records

Radb Bulk version of 16 Million 6.96 3.73
Radix sort 32-bit keys

Table 3.1: Split-C Applications and Data Sets
This table describes our applications, the input set, the application’scommunication pattern, and the
base run time on 16 and 32 nodes. The 16 and 32 node run times show that most of the applications
are quite scalable between these two machine sizes.

available site 1.

To ensure that the data is not overly influenced by startup characteristics, the applications

must use reasonably large data sets. Given the experimental space we wish to explore, it is not prac-

tical to choose data sets taking hours to complete; however, an effort was made to choose realistic

data sets for each of the applications. We used the following criteria to characterize applications in

our benchmark suite and to ensure that the applications demonstrate a wide range of architectural

requirements:

° Message Frequency: The more communication intensive the application, the more we would

expect its performance to be affected by the machine’s communication performance. For ap-

plications that use short messages, the most important factor is the message frequency, or equiv-

alently the average interval between messages. However, the behavior may be influenced by±
ftp.cs.berkeley.edu/pub/CASTLE/Split-C/release/sc961015

48

(a) Radix (b) EM3D(write) (c) EM3D(read) (d) Sample (e) Barnes

(f) P-Ray (g) Mur ² (h) Connect (i) NOW-sort (j) Radb

Figure 3.1: Split-C Communication Balance
This figure demonstrates the communication balance between each of the 32 processors for our 10
Split-C applications. The greyscale for each pixel represents a message count. Each application
is individually scaled from white, representing zero messages, to black, representing the maximum
message count per processor as shown in Table 3.2. The ³ -coordinate tracks the message sender
and the ´ -coordinate tracks the receiver.

the burstiness of communication and the balance in traffic between processors.

µ Write or Read Based: Applications that read remote data and wait for the result are more

likely to be sensitive to latency than applications that mostly write remote data. The latter are

likely to be more sensitive to bandwidth. However, dependences that cause waiting can appear

in applications in many forms.

µ Short or Long Messages: The Active Message layer used for this study provides two types

of messages, short packets and bulk transfers. Applications that use bulk messages may have

high data bandwidth requirements, even though message initiations are infrequent.

µ Synchronization: Applications can be bulk synchronous or task queue based. Tightly syn-

chronized applications are likely to be dependent on network round trip times, and so may be

very sensitive to latency. Task queue applications may tolerate latency, but may be sensitive

to overhead. A task queue based application attempts to overlap message operations with lo-

cal computation from a task queue. An increase in overhead decreases the available overlap

between the communication and local computation.

µ Communication Balance: Balance is simply the ratio of the maximum number of messages

49

Program Avg. Msg./ Max Msg./ Msg./ Msg. Barrier Percent Percent Bulk Small
Proc Proc Proc/ Interval Interval Bulk Reads Msg. Msg.

ms (¶ s) (ms) (KB/s) (KB/s)
Radix 1,278,399 1,279,018 164.76 6.1 408 0.01% 0.00% 26.7 4,612.9
EM3D(write) 4,737,955 4,765,319 124.76 8.0 122 0.00% 0.00% 0.6 3,493.2
EM3D(read) 8,253,885 8,316,063 72.39 13.8 369 0.00% 97.07% 0.0 2,026.9
Sample 1,015,894 1,294,967 76.76 13.0 1,203 0.00% 0.00% 0.0 2,149.2
Barnes 819,067 852,564 18.94 52.8 279 23.25% 20.57% 110.4 407.1
P-Ray 114,682 278,556 6.40 156.2 1,120 47.85% 96.49% 358.5 93.5
Connect 6,399 6,724 5.45 183.5 47 0.06% 67.42% 0.0 152.5
Mur · 166,161 168,657 4.70 212.6 11,778 49.99% 0.00% 3,876.6 65.8
NOW-sort 69,574 69,813 1.22 817.4 1,834 49.82% 0.00% 3,125.1 17.2
Radb 4,372 5,010 1.17 852.7 25 34.73% 0.04% 33.6 21.4

Table 3.2: Split-C Communication Summary
For a 32 processor configuration, the table shows run times, average number of messages sent per
processor, and the maximum number of messages sent by any processor. Also shown is the message
frequency expressed in the average number of messages per processor per millisecond, the average
message interval in microseconds,the average barrier interval in milliseconds, the percentage of the
messages using the Active Message bulk transfer mechanism, the percentage of total messages which
are read requests or replies, the average bandwidth per processor for bulk messages in kilobytes per
second, and the average bandwidth per processor for small messages in kilobytes per second.

sent per processor to the average number of messages sent per processor. It is difficult to pre-

dict the influence of network performance on applications with a relatively large communica-

tion imbalance since varying LogP parameters may exacerbate or may actually alleviate the

imbalance.

3.1.1 Split-C Benchmark Suite

Table 3.1 summarizes the programs we chose for our benchmark suite as run on both a 16

and a 32 node cluster. Most applications are well parallelized when scaled from 16 to 32 proces-

sors. It is important to note the history of these applications when examining our results. All of the

applications were designed for low overhead MPPs or NOWs. The program designers were often

able to exploit the low-overhead aspect of these machine architectures in the program design. Each

application is discussed briefly below.

¸ Radix Sort: sorts a large collection of 32-bit keys spread over the processors, and is thor-

oughly analyzed in [39]. It progresses as two iterations of three phases. First, each processor

determines the local rank for one digit of its keys. Second, the global rank of each key is cal-

culated from local histograms. Finally, each processor uses the global histogram to distribute

the keys to the proper location. For our input set of one million keys per processor on 32 pro-

50

cessors the application spends 98% of its time in the communication phases.

The communication density plot of Figure 3.1a is useful in understanding the communication

behavior of this application. The darkness of cell ¹»º½¼ indicates the fraction of messages sent

from processor ¹ to processor ¼ . The dark line off the diagonal reflects the global histogram

phase, where the ranks are accumulated across processors in a kind of pipelined cyclic shift.

The grey background is the global distribution phase. Overall, the communication is frequent,

write-based and balanced.

¾ EM3D: EM3D [28] is the kernel of an application that models propagation of electromagnetic

waves through objects in three dimensions. It first spreads an irregular bipartite graph over

all processors. During each time-step, changes in the electric field are calculated as a linear

function of the neighboring magnetic field values and vice versa. We use two complementary

versions of EM3D, one write-based and the other read-based. Both versions contain relatively

short computation steps. The write-based EM3D uses pipelined writes to propagate updates by

augmenting the graph with special boundary nodes. EM3D(write) represents a large class of

bulk synchronous applications, alternating between local computation and global communi-

cation phases. The read version uses simple blocking reads to pull update information locally

and does not need to create special boundary nodes. The locality of connectivity in the graph

for both versions is indicated by the dark swath in Figures 3.1b and 3.1c.

¾ Sample Sort: is a probabilistic algorithm which sorts a large collection of 32-bit keys by first

choosing ¿ÁÀVÂ “good” splitter values and broadcasting them to all processors. Every processor

distributes its keys to the proper destination processor, based on the splitter values, and finally,

a local radix sort is performed on the received keys. An interesting aspect of this application

is the potential for unbalanced all-to-all communication as each processor potentially receives

a different number of keys. This is reflected in the vertical bars in Figure 3.1d. For our input

size, the local sort time is dominated by the distribution of keys to their proper destinations.

For our input of 16 million keys Sample sort spends 85% of the time in the two communication

phases.

¾ Barnes: Our implementation of this hierarchical N-Body force calculation is similar to the

version in the SPLASH benchmark suite [110]. However, the main data structure, a spatial

oct-tree, is replicated in software rather than hardware. Each timestep consists of two phases,

a tree construction phase and an interaction phase among the simulated bodies. Updates of the

51

oct-tree are synchronized through blocking locks. During the interaction phase, the processors

cache oct-tree nodes owned by remote processors in a software managed cache. Communica-

tion is generally balanced, as the solid grey square shows in Figure 3.1e.

Ã P-Ray: This scene passing ray tracing program distributes a read-only spatial oct-tree over all

processors. The processors evenly divide ownership of objects in the scene. When a processor

needs access to an object stored on a remote processor, the object is cached locally in a fixed

sized software-managed cache. Communication thus consists entirely of blocking read opera-

tions; the frequency of such operations is a function on the scene complexity and the software

caching algorithm. The dark spots in Figure 3.1f indicate the presence of “hot” objects which

are visible from multiple points in the scene.

Ã Parallel Mur Ä : In this parallel version of a popular protocol verification tool [34, 97], the ex-

ponential space of all reachable protocol states is explored to catch protocol bugs. Each pro-

cessor maintains a work queue of unexplored states. A hash function maps states to “owning”

processors. When a new state is discovered, it is sent to the proper processor. On reception of

a state description, a processor first checks if the state has been reached before. If the state is

new, the processor adds it to the work queue to be validated against an assertion list.

Ã Connected Components: First, a graph is spread across all processors [69]. Each proces-

sor then performs a connected components on its local subgraph to collapse portions of its

components into representative nodes. Next, the graph is globally adjusted to point remote

edges (crossing processor boundaries) at the respective representative nodes. Finally, a global

phase successively merges components between neighboring processors. The communication

to computation ratio is determined by the size of the graph.

Ã NOW-sort: The version of NOW-sort used in this study sorts records from disk-to-disk in two

passes [8]. The sort is highly tuned, setting a the MinuteSort world record in 1997. The sort-

ing algorithm contains two phases. In the first phase, each processor reads the records from

disk and sends them to the final destination processor. The perfectly balanced nature of the

communication of phase 1 is shown by the solid black square in Figure 3.1i. The sort uses

one-way Active Messages directly, sending bulk messages at the rate the records can be read

from disk. Phase 2 of the algorithm consists of entirely local disk operations. Unlike the other

applications, NOW-sort performs a large amount of I/O, so can overlap communication over-

head with disk accesses.

52

Å Radb: This version of the radix sort [2] was restructured to use bulk messages. After the

global histogram phase, all keys are sent to their destination processor in one bulk message.

Depending on network characteristics, use of these bulk messages can speed up the perfor-

mance of the sort relative to the standard radix sort.

3.1.2 Characteristics

As summarized in Table 3.1, the applications represent a broad spectrum of problem do-

mains and communication/computation characteristics. To quantify the differences among our target

applications, we instrumented our communication layer to record baseline characteristics for each

program (with unmodified LogGP parameters) on 32 nodes. Table 3.2 shows the average number of

messages, maximum number of messages per node (as an indication of communication imbalance),

the message frequency expressed in the average number of messages per processor per millisecond,

the average message interval in microseconds, and the average interval between barriers as a mea-

sure of how often processors synchronize. Table 3.2 also shows the percentage of the messages using

the Active Message bulk transfer mechanism, the percentage of the total messages which are a read

request or reply, the average bandwidth per processor for bulk messages, and the average bandwidth

per processor for small messages. Note that the reported bandwidth is for bytes transmitted through

the communication layer as opposed to bandwidth delivered to the application, e.g., it includes head-

ers.

Table 3.2 shows that the communication frequency of our applications varies by more than

two orders of magnitude, and yet none of them are “embarrassingly parallel.” This disparity suggests

that it is quite difficult to talk about typical communication behavior or sensitivity. Most of the ap-

plications have balanced communication overall, whereas others (Sample, P-Ray) have significant

imbalances. Barnes and EM3D(write) are bulk synchronous applications employing barriers rela-

tively frequently. Barnes, Mur Æ , P-Ray, Radb and NOW-sort utilize bulk messages while the other

applications send only short messages. Finally, EM3D(read), Barnes, P-Ray, and Connect do mostly

reads, while the other applications are entirely write based. Applications doing reads are likely to be

dependent on network round trip times, and thus sensitive to latency, while write based applications

are more likely to be tolerant of network latency. Most of the applications demonstrate regular com-

munication patterns. However, Connect and P-Ray are more irregular and contain a number of hot

spots. While these applications do not constitute a workload, their architectural requirements vary

across large classes of parallel applications.

53

3.2 Analytic Models

3.2.1 Overhead

To develop insight into our experimental results, we develop a simple analytical model of

application sensitivity to added overhead. The model is based on the fact that added overhead is

incurred each time a processor sends or receive a message. Thus, given an processor’s base runtime,ÇAÈ½ÉËÊ�Ì , the added overhead, ÍÏÎ , and Ð , the number of communication events for each processor, we

expect runtime, ÇÒÑÓÉ»ÔÖÕ , to be:

Ç×ÑÓÉ»ÔÖÕÙØÚÇAÈ½ÉËÊÛÌÝÜ2Þ ÐßÍÏÎ
The factor of two arises because, for Split-C programs, all communication events are one

of a request/response pair. For each request sent, the processor will incur an overhead penalty receiv-

ing the corresponding response in addition to the overhead for the sent request. If the processor is

sending a response, it must have incurred an overhead penalty when it received the request message.

Given this model for the overhead sensitivity of individual processors, we extrapolate to

predicting overall application runtime by making the following simplifying assumptions. First, ap-

plications run at the speed of the slowest processor, and second, the slowest processor is the processor

that sends the most messages. Thus, by replacing Ð in the equation with the maximum number of

messages sent by a processor from Table 3.2, we derive a simple model for predicting application

sensitivity to added overhead as a function of the maximum number of messages sent by any pro-

cessor during execution.

The simple linear model presented above does not capture serial dependencies in the appli-

cation. Our overhead model will thus tend to under predict run time due to serialization effects. For

example, imagine a pipelined shift performed by all processors: processor zero sends to processor

one, which waits for the message then forwards it to processor two, etc. The maximum number of

messages sent by any processor is one, but the entire time of the operation is proportional to à . As

we inflate overhead by ÍáÎ , the total time for this operation will increase by àpÍÏÎ , not ÍÏÎ as predicted

by the model. Serial dependencies such as the one outlined above are highly application specific and

so we choose to use the a simple linear model. Section 3.3.1 quantifies the model’s under prediction.

for all the applications.

54

3.2.2 gap

Developing a model for application sensitivity to gap presents more difficulties than de-

veloping the model for sensitivity to overhead. A processor is not affected unless it attempts to send

messages more frequently than the gap. At this point, the processor must stall for a period waiting

for the network interface to become available. Without more precise knowledge of inter-message

intervals, the model for gap sensitivity depends on assumptions made about these intervals. At one

extreme, the uniform model assumes that all messages are sent at the application’s average message

interval, â , from Table 3.2. In this case, the predicted runtime, ã¡äæåAçèÓé»êÖë , can be predicted as a function

of total gap, ì , the average message interval, â , the base runtime, ãAí&îÒï ê , and the maximum number

of messages sent by any node, ð :

ã äñåAçèÓé»ê½ëÝò
óô õ ã í&îÒï ê÷ö ðùøúìrûùâ�ü if ìþý/âãAí&îÒï ê otherwise

At the other extreme, the burst model assumes that all messages are sent in discreet com-

munication phases where the application attempts to send as fast as the communication layer will

allow. Under this model, the added gap, ÿ�ì , is incurred for each communication event. This second

model again assumes that the applications runs at the speed of the processor sending ð messages,

the maximum number of messages per processor from Figure 3.2, and would predict runtime, ã ä í çèÓé»ê½ë ,
as:

ã¡ä í çèÓé»êÖë ò ã í&îÓï ê ö ðßÿ�ì
Application communication patterns determine which of the two models more closely pre-

dicts actual application runtime. The uniform model predicts that applications ignore increased gap

until reaching a threshold equaling the application’s average message interval. At this threshold, the

applications should slowdown linearly with increasing gap. The burst model predicts a linear slow-

down independent of average message interval.

3.2.3 Latency

Our model for latency is very simple. We simply model each synchronous Split-C read as

the cost of an round trip, i.e.
��� ö���� . Such a model, however, fails to account for any higher-level

dependencies, such as synchronization via split-phased operations. Many of the programs have care-

fully orchestrated communication phases and these use a variety of synchronization mechanisms, in-

cluding split phased reads, writes and barriers. The only application which performs many blocking

55

reads is EM3D(read). Due to the low barrier frequency of most programs, we ignore the � cost of

barrier synchronization in our model.

We thus cannot expect a simple linear model for latency to provide much accuracy given

the structure of most of the programs. The LogGP model certainly allows for more accurate mod-

els [39], however.

3.2.4 Gap

We model bulk transfers at costing a penalty of 	 per 4 KB fragment plus a cost of
 per

byte. However, few of the benchmarks use long messages. Thus, for this set of benchmarks, our

predictions about the effects of
 may not be widely applicable. The NAS Parallel Benchmarks,

described in the next chapter, use long messages exclusively and so it is there where we will explore

sensitivity to
 .

3.3 Sensitivity Results

Given our methodology and application characterization, we now quantify the effect of

varying LogGP parameters on our application suite. To this end, we independently vary each of the

parameters in turn to observe application slowdown. For each parameter, we attempt to explain any

observed slowdowns based on application characteristics described in the last section. Using this

intuition, we develop models to predict application slowdown.

Recall that any observed run time is a random variable, and thus any two run times, even

very controlled conditions, will yield different results. In order to better account for these discrepan-

cies, we take the minimum value of three sample run times. We take the minimum because it is most

representative of the program execution behavior without outside interference. It was found that the

majority of the discrepancy in run-time was due to effects of the GLUnix global control layer used to

start and stop jobs [45]. These effects are not of interest to the results of this thesis. The data in this

section shows that once the variance do to GLUnix is removed (by taking the minimum run-time),

the Split-C/AM programs are very well behaved; programs do not yield widely varying results from

run to run.

56

0

5

10

15

20

25

0 20 40 60 80 100 120 140

S
lo

w
d

o
w

n�

Overhead

EM3D(w)
Sample

Radix
EM3D(r)

Barnes
P-ray

Murphi
Connect

NOWsort
Radb

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140

S
lo

w
d

o
w

n�

Overhead

Radix
EM3D(w)
EM3D(r)
Sample
Barnes

P-ray
Murphi

Connect
NOWsort

Radb

(a) (b)

Figure 3.2: Sensitivity to Overhead for 16 and 32 Nodes
This figure plots application slowdown as a function of overhead in microseconds. Slowdown is rel-
ative to application performance with our system’s baseline LogGP parameters. Overhead is scaled
by a factor of 30, from high-performance SAN protocols to high-overhead TCP/IP stacks. Measure-
ments for the graph on the left were taken on 16 nodes, while measurements for the graph on the
right were taken on 32 nodes with a fixed input size.

3.3.1 Overhead

Figure 3.2(b) plots application slowdown as a function of added overhead measured in mi-

croseconds for our applications run on 32 nodes. The extreme left portion of the x-axis represents

runs on our cluster. As overhead is increased, the system becomes similar to a switched LAN im-

plementation. Currently, 100 � s of overhead with latency and gap values similar to our network is

approximately characteristic of TCP/IP protocol stacks [60, 61, 103]. At this extreme, applications

slow down from 2x to over 50x. Clearly, efforts to reduce cluster communication overhead have

been successful. Further, all but one of our applications demonstrate a linear dependence to over-

head, suggesting that further reduction in overhead will continue to yield improved performance.

Qualitatively, the four applications with the highest communication frequency, Radix, Sample, and

both EM3D read and write, display the highest sensitivity to overhead. Barnes is the only application

which demonstrates a non-linear dependence to overhead. Instrumentation of Barnes on 16 nodes

revealed that as overhead is increased, lock contention causes the program to go into livelock. With

zero added overhead, the average number of failed lock attempts per processor is 2000 per timestep.

57

o
 s Radix EM3D(write) EM3D(read) Sample Barnes
measure predict measure predict measure predict measure predict measure predict

2.9 7.8 7.8 38 38 114 114 13.2 13.2 43.2 43.2
3.9 10.5 10.3 48.1 47.5 138.7 130.7 16.1 15.8 50.1 44.9
4.9 13.2 12.9 58.1 57.0 161.6 147.3 18.7 18.4 56.3 51.8
6.9 18.7 18.0 77.4 76.1 208.8 180.5 23.8 23.6 76.1 60.3
7.9 21.5 20.5 87.4 85.6 232.9 197.2 26.5 26.2 N/A N/A
13 36.3 33.3 138.5 133.3 354.4 280.3 39.3 39.1 N/A N/A
23 68.9 58.9 236.2 228.6 600.1 446.7 65.2 65.0 N/A N/A
53 198.2 135.7 535.9 514.5 1332.5 945.6 142.7 142.7 N/A N/A

103 443.2 263.6 1027.8 991.0 2551.7 1777.2 272.1 272.2 N/A N/A

o
 s P-Ray Mur � Connect NOW-sort Radb
measure predict measure predict measure predict measure predict measure predict

2.9 17.9 17.9 35.3 35.3 1.17 1.17 56.9 56.9 3.73 3.73
3.9 19.0 18.5 37.1 35.7 1.19 1.18 56.7 57.0 3.77 3.74
4.9 19.6 19.0 37.7 36.0 1.20 1.19 61.2 57.1 3.77 3.75
6.9 22.0 20.1 41.8 36.7 1.23 1.20 57.9 57.4 3.82 3.77
7.9 20.8 20.7 41.9 37.0 1.24 1.21 58.3 57.6 3.83 3.78
13 28.2 23.5 46.2 38.7 1.31 1.25 58.1 58.3 3.93 3.83
23 39.0 29.1 51.2 42.1 1.44 1.34 58.3 59.7 4.10 3.93
53 69.7 45.8 72.6 52.2 1.85 1.61 61.7 63.9 4.81 4.23

103 114.0 73.6 107.8 69.1 2.52 2.08 71.1 70.8 6.19 4.73

Table 3.3: Predicted vs. Measured Run Times Varying Overhead
This table demonstrates how well our model for sensitivity to overhead predicts observed slowdown
for the 32 node runs. For each application, the column labeled ������������� is the measured runtime,
while the column labeled ����������� � is the runtime predicted by our model. For frequently communicat-
ing applications such as Radix, EM3D(write), and Sample, the model accurately predicts measured
runtimes.

At 13 ! s of overhead, the number of failed lock attempts per processor per timestep skyrockets to

over 1 million. This implementation of Barnes does not complete for overhead values greater than

13 ! s on 16 nodes and 7 ! s on 32 nodes.

To determine the effect of scaling the number of processors on sensitivity to overhead,

we executed our applications on 16 nodes with fixed inputs. Figure 3.2(a) plots the resulting slow-

down as a function of overhead for runs on 16 nodes. With the exception of Radix, the applications

demonstrate almost identical sensitivity to overhead on 16 processors as they did on 32 processors,

slowing down by between a factor of between 2 and 25. Recall that Radix contains a phase to con-

struct a global histogram. The number of messages used to construct the histogram is a function of

the radix and the number of processors, not the number of keys. For a constant number of keys, the

relative number of messages per processor increases as processors are added. Radix thus becomes

more sensitive to overhead as the number of processors is increased for a fixed input size. In addition,

the difference in sensitivities between 16 and 32 nodes is exacerbated by a serial phase in program,

58

which is described below.

Table 3.3 describes how well our simple overhead model predicts application performance

when compared to measured runtimes. For two applications which communicate frequently, Sample,

and EM3D(write), our model accurately predicts actual application slowdown . For a number of

other applications, most notably Radix, P-Ray and Mur " , the sensitivity to overhead was actually

stronger than our model’s prediction; the model consistently under-predicts the run time, which is

consistent with the assumptions made by the model.

Another way to describe the “serialization effect” is that our model implicitly assumes all

work in the program is perfectly parallelizable; i.e., there are no serial phases in the program. This

assumption leads to under-predicted run times. If a processor, #%$, serializes the program in a phase
& messages long, when we increase ' by ()' , then the serial phase will add to the overall run time

by & ()' . However, the simple model does not capture the serialization effect when #%*,+- #.$.

A more important result of the of the serialization effect is that it reduces speedup as a

function of overhead, i.e. speedup gets worse the greater the overhead. Thus, parallel efficiency

will decrease as overhead increases for any applications which have a serial portion. Notice how for

Radix, parallel decreases as a function of overhead when scaled from 16 to 32 nodes.

Radix sort demonstrates a dramatic example of the serialization effect. The sensitivity to

overhead for Radix on 32 processors is over double that of 16 processors. When overhead rises to

100 / s, the slowdown differential between 16 and 32 processors is a factor of three. The global his-

togram phase contains a serialization proportional to the radix and number of processors [39]. In the

unmodified case, the phase accounts for 20% of the overall execution time on 32 processors. When

the overhead is set to 100 / s, this phase accounts for 60% of the overall execution time. However,

on 16 processors with 100 / s of overhead, the histogram phase takes only 16% of the total time.

In the case of P-ray, recall from Figure 3.1 that the application shows a strong communica-

tion imbalance. Three processors are “hot spots”, likely containing popular objects. We conjecture

that the nodes doing the most work are not the ones sending the most messages. By increasing the

overhead, all other processors which attempt access to hotspots in the octree are likely slowed down

by a linear factor not predicted by our model

The other five applications, however, actually demonstrate a stronger sensitivity to over-

head than predicted by the model. The only application which demonstrates a non-linear dependence

to overhead was Barnes. Further experimentation with the program revealed that as overhead was

increased, lock contention caused the program to go into livelock. In fact, we were unable to add

more than 10 / s of overhead and still have the application complete in a reasonable amount of time.

59

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120

S
lo

w
d

o
w

n0

gap

Radix
EM3D(w)

Sample
EM3D(r)

Barnes
P-ray

Murphi
Connect

NOWsort
Radb

Figure 3.3: Sensitivity to gap
This figure plots slowdown as a function of gap in microseconds. The gap is scaled by a factor of 20.
While no hardware has a gap of over 20 1 s, we can observe from the figure that many applications
have linear responses to gap for then entire observed range.

3.3.2 gap

We next measure application sensitivity to gap. Figure 3.3 plots application slowdown as

a function of added gap in microseconds. The programs demonstrate widely varying reactions to

gap, ranging from being unaffected by 100 1 s of gap to slowing down by a factor of 16. The qualita-

tive difference between application sensitivity to gap and sensitivity to overhead can be explained by

the fact that sensitivity to gap is incurred by the program only on the portion of the messages where

the application attempts to send at a rate greater than the gap. The rest of the messages are not sent

quickly enough to be affected by the gap. Thus, infrequently communicating applications can po-

tentially ignore gap entirely, while overhead is incurred independent of message frequency. The four

applications with the highest communication frequency, Radix, EM3D(write) and read, and Sample,

suffer the largest slowdowns from added gap. The other applications are much more tolerant to gap,

slowing down by no more than a factor of 4 even in the presence of 100 1 s of added gap.

Given the linear dependence to gap demonstrated by the applications in Figure 3.3, we

believe that for our applications, the burst model more accurately predicts application behavior. Ta-

ble 3.4 depicts how well the burst model predicts actual program slowdown. As anticipated, the

60

g 2 s Radix EM3D(write) EM3D(read) Sample Barnes
measure predict measure predict measure predict measure predict measure predict

5.8 7.8 7.8 38 38 114 114 13.2 13.2 43.2 43.2
8 10.2 11 46.1 49.9 119 134.8 14.8 16.5 44.1 45.4

10 13 14.2 56.5 61.8 129.7 155.6 17.5 19.7 50.2 47.5
15 19.2 20.5 78.5 85.6 164.7 197.2 24.2 26.2 55.3 51.8
30 38.1 39.7 150.3 157.1 289.3 321.9 42.9 45.6 61.6 64.6
55 69.9 71.7 273.1 276.2 523 529.8 75.1 78 99.1 85.9
80 101.9 103.7 394 395.4 756.9 737.7 107.5 110.4 157.3 107.2

105 133.8 135.7 515.6 514.5 993.1 945.6 139.7 142.7 207.9 128.5

g 2 s P-Ray Mur 3 Connect NOW-sort Radb
measure predict measure predict measure predict measure predict measure predict

5.8 17.9 17.9 35.3 35.3 1.17 1.17 56.9 56.9 3.73 3.73
8 18.1 18.6 37.4 35.8 1.19 1.18 57.9 57.0 3.77 3.74

10 17.8 19.3 36.1 36.2 1.21 1.19 57.6 57.2 3.78 3.75
15 17.9 20.7 36.2 37.0 1.24 1.23 60.9 57.6 3.80 3.78
30 19.1 24.9 38.4 39.5 1.34 1.32 57.3 58.6 3.86 3.85
55 23.2 31.8 37.5 43.8 1.51 1.50 57.2 60.4 3.96 3.98
80 29.0 38.8 39.3 48.0 1.68 1.69 56.9 62.1 4.08 4.10

105 35.5 45.8 39.9 52.2 1.85 1.88 57.4 63.9 4.25 4.23

Table 3.4: Predicted vs. measured run times varying gap
This table demonstrates how well the burst model for sensitivity to gap predicts observed slowdown.
For each application, the column labeled 4�5�6�7�8:9;5 is the measured runtime, while the column la-
beled <�9�5�=�>�? @ is the runtime predicted by our model.

model over predicts sensitivity to gap since not all messages are sent in bursts. The model works

best for heavily communicating applications, as a larger percentage of their messages are slowed by

gap.

The two models considered demonstrate a range of possible application behavior. Appli-

cations communicating at very regular intervals would follow the uniform model, while applications

communicating in discreet phases would track the burst model.

3.3.3 Latency

Traditionally, most attempts at improving network performance have focused on improv-

ing the network latency. Further, perceived dependencies on network latencies have led program-

mers to design their applications to hide network latency. Figure 3.4 plots application slowdown as

a function of latency added to each message. Perhaps surprisingly, most of applications are fairly

insensitive to added latency. The applications demonstrate a qualitatively different ordering of sen-

sitivity to latency than to overhead and gap. Further, for all but one of the applications the sensitivity

does not appear to be strongly correlated with the read frequency or barrier interval, the operations

most likely to demonstrate the strongest sensitivity to latency.

61

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120 140

S
lo

w
d

o
w

n0

Latency

EM3D(r)
Barnes
P-Ray

EM3D(w)
Radix

Sample
Murphi

Connect
NOWsort

Radb

Figure 3.4: Sensitivity to Latency
This figure plots slowdown as a function of latency in microseconds. Latency is scaled by a factor of
20, ranging from SAN class latencies to a network built out of several long latency ATM switches.
The figure shows the effectiveness of a wide range of practical latency tolerating techniques.

The sensitivity of EM3D(read), Barnes, P-Ray, and Connect to latency results from these

applications’ high frequency of read operations (see Figure 3.2). Read operations require network

round-trips, making them the most sensitive to added latency. However, for all but one of these ap-

plications, the observed slowdowns are modest (at most a factor of four in the worst-case) even at

the latencies of store-and-forward networks (100 A s).

EM3D(read) performs a large number of blocking reads; it represents a “worst-case” ap-

plication from a latency perspective because it does nothing to tolerate latency. It is also the only

application for which a simple model of latency is accurate. Interestingly, for equal amounts of

added “work” per message (100 A s of latency and 50 A s of overhead), the simple latency model

for EM3D(read) is quite accurate yet the simple overhead model under predicts the run time.

The applications which do not employ read operations largely ignore added latency. The

small decrease in performance at the tail of the slowdown curves is caused by the increase in gap

associated with large latencies as the Active Message flow control mechanism limits the network

capacity (see Table 2.2).

62

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40

S
lo

w
d

o
w

n�

MB/s

Radb
NOWsort

P-ray
Barnes

Radix
Murphi

EM3D(w)
EM3D(r)
Sample

Connect

0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
lo

w
d

o
w

n�

Gap (usec/byte)

Radb
NOWsort

P-ray
Barnes

Radix
Murphi

EM3D(w)
EM3D(r)
Sample

Connect

(a) (b)

Figure 3.5: Sensitivity to Bulk Gap
This figure plots slowdown as a function of maximum available network bandwidth (a) as well as bulk
Gap (b). Bandwidth is scaled from 10 Mb Ethernet speeds to SAN speeds of near 30 MB/s. Although
bandwidth is a more intuitive measure, it is difficult to visualize the sensitivity to bandwidth from
figure (a) because as we scale B in a linear manner we are plotting a CD bandwidth curve. Figure
(b) shows some applications slow down in a linear fashion as we scale B linearly.

3.3.4 Bulk Gap

Only applications attempting to send large amounts of data in bursts should be affected by

reductions in bulk transfer bandwidth. Note that we do not slow down transmission of small mes-

sages, but rather add a delay corresponding to the size of the message for each bulk message. Further,

applications should tolerate decreases in available bulk bandwidth until the bandwidth dips below

the application’s requirements at any point during its execution.

Figure 3.5(a) plots application slowdown as a function of the maximum available bulk

transfer bandwidth, a more intuitive measure than Gap. We also plot the same sensitivity to Gap

in Figure 3.5(b) in order to show the linear relationship between slowdown and B . Overall, the ap-

plications in our suite do not display strong sensitivity to bandwidth. No application slows by more

than a factor of three even when bulk bandwidth is reduced to 1 MB/s. Further, all of the appli-

cations, including Radb, which moves all of its data in a single burst using bulk messages, do not

display sensitivity until bulk bandwidth is reduced to 15 MB/s. Surprisingly, the NOW-sort is also

insensitive to reduced bandwidth. This version of the NOW-sort uses two disks per node. Each disk

63

can deliver 5.5 MB/s of bandwidth [8], and during the communication phase a single disk is used for

reading and the other for writing. As Figure 3.5 shows, NOW-sort is disk limited. Until the network

bandwidth drops below that of a single disk, NOW-sort is unaffected by decreased bandwidth.

3.4 Summary

Varying the LogGP parameters for our network of workstations and benchmark suite led

to a number of interesting results. We organize these around our four areas of contributions.

3.4.1 Performance Analysis

In the performance analysis area, we find that our apparatus was quite effective in mea-

suring the sensitivities of the Split-C/AM suite. Running real programs on the apparatus was not

a problem. All the programs were well behaved, giving consistent results from run to run. Even

Barnes, which would go into live-lock as we scaled overhead, exhibited this behavior in a repeat-

able way.

We were able to observe a number of effects that would be difficult to observe using other

techniques. These include a hyper-sensitivity to overhead from a number of applications. In addi-

tion, we were able to observe live-lock effects for Barnes which would require fairly sophisticated

models or simulators to observe. Our apparatus also allows us to quantify the point in the overhead

space where this effect occurs.

3.4.2 Application Behavior

In the behavior area, we find that applications displayed the strongest sensitivity to net-

work overhead, slowing down by as much as a factor of 50 when overhead is increased to roughly

100 E s. Even lightly communicating processes suffer a factor of 3-5 slowdown when the overhead is

increased to values comparable to many existing LAN communication stacks. Frequently commu-

nicating applications also display strong sensitivity to gap suggesting that the communication phases

are bursty and limited by the rate at which messages can be injected into the network.

The effect of added latency and bulk gap is qualitatively different from the effect of added

overhead and gap. For example, applications which do not perform synchronization or read oper-

ations (both of which require round trip network messages) can largely ignore added latency. For

64

our measured applications, the sensitivity to overhead and gap is much stronger than sensitivity to

latency and per-byte bandwidth.

3.4.3 Network Architecture

The most interesting result, which relates to the architecture area, is the fact that all the

applications display a linear dependence to both overhead and gap. This relationship suggest that

continued architectural improvements in these areas should result in a corresponding improvement

in application performance (limited by Amdahl’s Law). In contrast, if the network performance were

“good enough” for the applications, (i.e., some other part of the system was the bottleneck), then we

should observe a region were the applications did not slow down as network performance decreased.

In contrast, efforts in improving network latency will not yield as much performance improvements

across as wide a class of applications.

A second architectural result is that there is an interesting tradeoff between processor per-

formance and communication performance. For many parallel applications, relatively small im-

provements in network overhead and gap can result in a factor of two performance improvement.

This result suggests that in some cases, rather than making a significant investment to double a ma-

chine’s processing capacity, the investment may be better directed toward improving the perfor-

mance of the communication system.

3.4.4 Modeling

In the modeling area, we found that for both overhead and gap, simple models are able to

predict sensitivity to these parameters for most of our applications. The effects of latency, on the

other hand, are harder to predict because they are more dependent on application structure. The ap-

plications used a wide variety of latency tolerating techniques, including pipelining (radix, sample),

batching (EM3D, Radb), caching (Barnes, P-ray) and overlapping (Mur F and NowSort). Each of

these techniques requires more sophisticated models to capture the effect of added latency than our

frequency-cost model allows.

65

Chapter 4

NAS Parallel Benchmark Sensitivity

... it is a consistent theme that each generation of computers obsoletes the perfor-
mance evaluation techniques of the prior generation. — Hennessey & Patterson, Com-
puter Architecture: A Quantitative Approach

The NAS Parallel Benchmarks (NPB) are widely used to evaluate parallel machines. To

date, every vendor of large parallel machines has presented NPB version 1.0 results [10]. The recent

convergence of parallel machines and the introduction of a standard programming model (MPI), the

NAS group created version 2.2 of the benchmark suite [11]. In contrast to the vendor-specific imple-

mentations of version 1.0, NPB 2.2 presents a consistent, portable, and readily available workload to

parallel machine designers, analogous to the SPECcpu benchmarks for single-processor machines.

Much has been written about the theoretical techniques in these codes [13, 111], but an understanding

of their practical communication behavior is at best incomplete.

In this chapter, we examine the sensitivities of three of the six NAS parallel benchmarks:

FT, IS and MG. The three are computational kernels from numerical aerodynamic simulation codes.

The other three benchmarks, SP, BT and LU, are longer codes that are considered pseudo-applica-

tions. Unfortunately, apparatus limitations did not allow us to run the much larger pseudo-applications

for this study. The input set comes in 3 sizes: class A, B, and C. All our experiments are run on the

class B size, which is appropriate to run on 32 nodes but does not scale down to single node sizes.

However, because we are not measuring the scalability of the codes class B is reasonable input set

size to run on our apparatus.

66

Program Run Time Collective MPI Device Active Message Max-Min
(sec) All-to-All(v) Level Level Ratio

Msgs. Bytes Msgs. Bytes Small 4K Frag
FT 173.2 20 325058560 660 325058560 1980 79360 0.0%
IS 18.7 20 40833600 670 40833600 2010 9969 17.0%
MG 17.8 2854 27570880 2854 27570880 8562 6731 0.1%

Table 4.1: NPB Communication Summary
For a 32 processor configuration, the table shows run times, the number and size of collective op-
erations at the MPI level, the maximum number and size of operations at the MPI Device level (per
processor), the resulting number of messages at the Active Message level (per processor), and the
percentage skew, measured in bytes, between the processors that sent the maximum and minimum
number of bytes.

4.1 Characterization

In this section we characterize the NPB much in the same way as we did the Split-C/AM

benchmarks in the previous chapter. We begin with a brief description of each benchmark, followed

by a balance graph and message count analysis. We compare the communication characteristics of

the benchmarks to the Split-C/AM programs. The benchmarks are:

G FT: This kernel performs a 3-D Fast Fourier Transform (FFT) on a HJIJKJLNMOIQP�H grid. The pro-

gram implements the FFT as a series of 1-D FFTs. Each iteration, the program does a global

transpose of all the data, thus performing a perfectly balanced all-to-all communication pat-

tern. The FFT requires a large amount of computation in addition to a large volume of com-

munication.

G IS: The Integer Sort (IS) benchmark performs a bucket sort on 1 million 32 bit keys per proces-

sor. Notice that the run time for IS is much higher than for the equivalent Split-C sorts [39].

Like sample sort, this sort performs unbalanced all-to-all communication, relying on a ran-

dom key distribution for load balancing. Thus, the communication pattern is dependent on

the data-set.

G MG: This program solves a poisson equation on a H�IJK�R grid using a multigrid “W” algorithm.

Unlike FT and IS, communication is quite localized, occurring between neighboring proces-

sors on the different grid levels. The communication pattern does not depend on the data.

Figure 4.1 shows that the three NPB codes are well structured. FT and MG are perfectly

balanced; each processor sends and receives the same amount of data. IS is slightly unbalanced,

67

(a) FT (b) IS (c) MG

Figure 4.1: NAS Parallel Benchmarks Communication Balance
This figure demonstrates the communication balance between each of the 32 processors for 3 of the
NAS Parallel Benchmarks. The greyscale for each pixel represents a byte count, as opposed to the
message counts in Figure 3.1. Each application is individually scaled from white, representing zero
bytes, to black, representing the maximum byte count per processor as shown in Table 4.1. The S -
coordinate tracks the message sender and the T -coordinate tracks the receiver.

but on the whole is not overly imbalanced. For FT and IS, Figure 4.1 shows that communication is

global, which each processor sending much data to all other processors. Such patterns will stress the

bisection bandwidth of the network. We can see that the hierarchical grid pattern in MG results in a

much more localized communication pattern.

Table 4.1 shows just how different the NPB are from the Split-C/AM applications in Ta-

ble 3.2. First, for FT and IS, we see that all communication is performed at the MPI level in collective

operations. Using an MPI collective operations allows the communication layer to perform a num-

ber of optimizations, for example inserting global barriers [19] or using pairwise exchanges [39] that

can greatly improve the performance of such operations. However, the MPICH implementation re-

duces these operations to a series of simple point-to-point sends at the MPID level. Table 4.1 shows

that even after this reduction, the number of messages is still very small. For example, the IS sort

sends only 670 messages per processor, compared with over 1 million for the Split-C sample sort.

Clearly, the authors of the NPB have taken pains to minimize message cost by aggregating

messages at the application level. Table 4.1 shows that as a result, the very few messages sent are

very large. For FT, the result is that on a 32 processor system the messages are half a megabyte each.

For IS, the size is still quite large, averaging about 60 KB. In both these applications, the median

message size is close to the average.

MG, however, is different in that most messages are small; the median message size occurs

at 32 KB, but the average message size is 10 KB. Figure 4.2 plots a histogram of message sizes. It

shows that the vast majority of the data is sent in large messages; 97% of the data sent in messages

68

0

10000

20000

30000

40000

50000

60000

70000

0 500 1000 1500 2000 2500 3000

M
e

s
s
a

g
e

 S
iz

e
 (

B
y
te

s
)

U

Message #

MG Message Size Histogram

Figure 4.2: MG Message Size Histogram
This figure shows the message size histogram for all 2615 messages sent by a single processor while
running the MG benchmark for class B input on 32 nodes. Message sizes are sorted in decreasing
order. Notice that message sizes follow an exponential distribution. Although most messages are
small, nearly all the data is sent in very large messages.

over 4 KB and 99% sent in messages over 1 KB. Although it has a larger number of small messages,

the total message cost is dominated by the large messages. The small message count is so low (around

1000) that these fail to have much impact on the total communication time.

4.2 Sensitivity Results

In this section, we examine the sensitivity of the NPB to the LogGP parameters. In partic-

ular, we concentrate the discussion on V and W . Given our MPI-GAM apparatus, and the nature of

the NPB sending a few long messages, these are likely to be the most important parameters. Recall

that for long messages, our apparatus inflates V for every 4KB fragment. Long messages will be af-

fected by V , although not nearly to the same extent as small messages. We will examine the validity

of this approach in the discussion section.

We attempt to explain any slowdown using the our knowledge of the MPI layer and the

simple piecewise-linear model of message passing in Section 2.3.2. Where we can not explain the

discrepancy, we hypothesize on reasons why a noticeable discrepancy exits between the measured

69

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140

S
lo

w
d

o
w

nX

Overhead (us)

FT
IS

MG

Figure 4.3: NPB Sensitivity to Overhead
This figure plots measured slowdown as a function of overhead in microseconds.

and predicted performance.

As with the Split-C section, each plotted data point is the minimum of three runs of the

program. However, we shall see from the data, the NPB are not as well behaved as the Split-C/AM

programs. In addition, there were bugs in the network switches that made data collection impossible

for some of the benchmarks. 1

4.2.1 Overhead

Given the MPICH design and our empirical apparatus, we would expect modest sensitivi-

ties to overhead. Figure 4.3 shows the slowdown of the three benchmarks as we scale the AM layer

overhead from 5 to 100 Y s. The first noticeable result is that the NPB are much less sensitive to over-

head than the Split-C/AM programs. Instead of slowing down by factors of 20 or 30, as most of the

Split-C/AM programs are, the NPB only slow down by factors of less than 2. Indeed, the program

with the heaviest volume of communication, FT, is only slowed down a modest 20% at 100 Y s of

overhead. Also, unlike many Split-C/AM benchmarks, there are noticeable flat regions; IS and FT

have noticeable flat regions out to 60 Y s while MG has a flat region past 60 Y s.Z
The workaround from the vendor was to increase all messages sizes to [1 KB. While allowing the NPB to run without

crashing, this would artificially inflate the gap, Gap and latency parameters of the study to unacceptable levels. Corrected
switches were not available in time for this thesis.

70

o \ s FT IS MG
measure predict measure predict measure predict

10 173.3 173.3 18.7 18.7 17.8 17.8
11 178.0 173.3 21.3 18.7 18.3 17.8
20 175.7 174.8 22.5 18.9 19.8 18.0
30 177 176.4 - - 23.8 18.3
60 184.9 181.2 22.6 19.8 26.5 19.0

110 222.0 189.3 32.9 20.9 26.6 20.2

Table 4.2: NPB Predicted vs. Measured Run Times Varying Overhead
This table demonstrates how well our model for sensitivity to overhead predicts observed slowdown
for the 32 node runs. For each application, the column labeled]�^�_�`�a�b�^ is the measured runtime,
while the column labeled c�b�^�d�e�f g is the runtime predicted by our model. The model accurately pre-
dicts measured run times for smaller overheads.

Table 4.2 shows the measured vs. predicted performance for the NPB. The models are

reasonably accurate for h values under 50 i s. But for high overheads, the applications are more

sensitive than the models predict. The extra sensitivity might be because a round-trip is required for

most messages. At very high overheads (e.g. 100 i s) contention effects may dominate, magnifying

the cost of the round-trip set-up.

4.2.2 gap

Figure 4.4 shows the NPB are much less sensitive to gap than to overhead. One bench-

mark, FT, can ignore a j entirely! Although messages are sent in bursts, the very large size of most

messages means that even a high j can be amortized over a low communication frequency. A safe

conclusion that can be drawn is that these benchmarks are very insensitive to j . This is in contrast

to many of the Split-C/AM benchmarks, which exhibited a strong sensitivity to j .

4.2.3 Latency

As we would expect, the NPB are quite insensitive to increased k . Figure 4.5 plots the

latency figures for two of the benchmarks. Unfortunately, a bug in the switches prevented collecting

data for the FT benchmark. It is a relatively safe assumption, given our characterization, that FT

would have a very low sensitivity to k . Recall that a round trip is only required once per message at

the MPID level, so the number of round trips numbers in the 100’s per processor.

Even with the MPICH-GAM round-trip set-up cost, the applications’ infrequent use of

messages and the very large size of most messages allows them to amortize the cost of a long k .

71

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120

S
lo

w
d

o
w

nX

gap

FT
IS

MG

Figure 4.4: NPB Sensitivity to gap
This figure plots measured slowdown as a function of gap in microseconds.

Given that GAM provides in-order delivery, it would not bee too difficult to remove this round-trip

set-up. In that case we would expect sensitivity to l to be even lower than the results presented here.

4.2.4 Bulk Gap

We now turn our attention to bulk Gap. Figure 4.6 plots sensitivity to bandwidth, or mn . We

see that there is a flat region to about 5 MB/s and then a sharp turn upward. The first result is that the

NPB are quite insensitive to a bandwidth below 12.5 MB/s. This is an important result because 100

Mb Ethernet and 155 Mb ATM are at or well above this performance level. Thus, these technologies

would be adequate for running the NPB on the class of processor used in this study.

The sharp inflection, however, demands more attention. An important question is if the

infection is due to an abnormal rise in sensitivity. Recall we are plotting sensitivity to a non-linear

change in the independent variable, i.e., sensitivity as a function of mo . We are scaling p in a linear

fashion but plotting bandwidth instead, which is a non-linear change. It is thus difficult to ascertain

via the naked eye if the inflection is due to a hyper-sensitivity or simply following a normal mo curve.

In order to ascertain the sensitivity, we turn to the linear model of MPI performance de-

veloped in Section 2.3.2. Recall that in that section, we described how MPI performance should be

affected by inflation of the LogGP parameters. Table 4.3 shows the resulting measured vs. predicted

72

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140

S
lo

w
d

o
w

nX

Latency (us)

FT
IS

MG

Figure 4.5: NPB Sensitivity to Latency
This figure plots measured slowdown as a function of latency in microseconds.

performance as we scale q . We see that indeed, at 1.2 MB/s the applications are hyper-sensitive to

q , in that they take much longer to run than predicted by the model. The cause of the increased

slowdown is unclear; the LANai can continue to receive messages so network congestion should

not be a problem. Whatever the result of the hyper-sensitivity, the result shows a technology such as

switched 10Mb Ethernet is probably not sufficient for these applications.

4.3 NPB Sensitivity Summary

As with the Split-C/AM chapter, we organize our conclusions on the NPB around the areas

of performance analysis, application behavior, architecture and modeling.

4.3.1 Performance Analysis

In the performance analysis regime, we find that our apparatus is adequate for measuring

sensitivity of the NPB, although the programs are somewhat noisier than the Split-C programs. The

apparatus also showed that it can measure non-linear responses for a number of the NPB. The extra

layer of communication protocol between our apparatus and the application (MPI), did cause us to

expend extra effort in modeling that we did not do for the Split-C/AM programs. A method around

73

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 35 40

S
lo

w
d

o
w

nr

MB/s

FT
IS

MG

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
lo

w
d

o
w

nr

Gap (usec/byte)

FT
IS

MG

(a) (b)

Figure 4.6: NPB Sensitivity to Bandwidth and Gap
This figure plots slowdown as a function of maximum available network bandwidth (a) as well as Gap
(b). Bandwidth is a more intuitive measure, but it is difficult to visualize the sensitivity to bandwidth
from the Figure (a) because as we scale s in a linear manner we are plotting a tu bandwidth curve.
Figure (b) shows FT and MG slow down in a hyper-linear fashion as we scale s linearly.

this problem would be to add delays into the MPI layer directly.

As a side effect of slowing down GAM instead of MPI, the apparatus introduces a some-

what artificial sensitivity to v . For example, many machines, (e.g., Cray T3D, Intel Paragon, Meiko

CS-2 [7, 31]), do not introduce extra overhead on a per-fragment basis. However, a number of TCP/IP

stacks do exhibit per-fragment overheads [26, 60, 61]; such per-fragment overheads form a visible

“sawtooth” line in per-byte costs. Our per-fragment overhead is thus a reasonable, if somewhat ex-

aggerated, approximation of this class of software overhead.

4.3.2 Application Behavior

Turing our attention to the application behavior area, the NPB we examined in this chapter

have a communication structure that is dominated by infrequent, large and bursty communication.

The resulting sensitivity to s is quite intuitive. They are also sensitive to v somewhat, although our

results are somewhat inflated due to the apparatus construction mentioned previously. Sensitivity to
w was almost very low, even non-existent for FT.

The structure of the NPB shows their origins quite clearly: the codes were developed on

74

BW(1/G) FT IS MG
(MB/s) measure predict measure predict measure predict

37 173.3 173.3 18.7 18.7 17.8 17.8
19 177.0 181.6 22.1 19.7 23.5 18.5
15 171.8 186.2 19.6 18.8 19.5 18.9

11.2 186.2 193.5 23.0 21.2 19.9 19.5
4.6 225.6 235.2 22.6 26.4 25.5 23.0
1.2 660.9 437.6 - - 60.8 40.2

Table 4.3: NPB Predicted vs. Measured Run Times Varying Bulk Gap
This table demonstrates how well our model for sensitivity to Bulk Gap predicts observed slowdown
for the 32 node runs. For each application, the column labeled x�y�z�{�|�}�y is the measured runtime,
while the column labeled ~�}�y������ � is the runtime predicted by our model. The model accurately pre-
dicts measured run times for bandwidths greater than 10Mb/s.

MPP machines as the iPSC and Delta which have very high message passing costs [32]. The high

communication costs, yet ample bandwidth, on these machines lead to a design where communica-

tion is avoided as much as possible. When communication is necessary, it is packed into a few large

messages. Given this history, the rather low sensitivities should not be too surprising.

It is instructive to compare the structure and resulting sensitivity of the NPB codes to the

Split-C/AM codes. The Split-C/AM were developed in the context of very low-overhead machines,

e.g., the CM-5, and Berkeley NOW. Thus, these programs assumed low-overhead and so show quite

a high sensitivity to it. This raises the a classic engineering analysis question: are our results merely

the result of a historic accident, or is there something more fundamental going on? We shall explore

this question in greater detail in Chapter 7.

4.3.3 Network Architecture

Our architectural conclusions for the NPB are rather meager. Primarily, they are sensitive

to per-byte network bandwidth. In particular, as we saw from the communication balance graphs, a

machine’s bisection bandwidth will be an issue for two of these benchmarks. However, unlike the

Split-C/AM applications, communication is so infrequent on the machine sizes studied that for the

NPB, improvements in per-node processor performance, as opposed to network performance, will

yield the largest benefits.

75

4.3.4 Modeling

In the modeling area, we find that the 3 benchmarks exhibit stronger sensitivities to low-

performance networks than simple models describe. However, this should not cause too much con-

cern. The fact that the models fail to describe this class of low performance networks should not be

surprising given that we are scaling the apparatus by an order of magnitude. The only conclusion

one can draw is that in spite of their highly optimized communication, very cheap, low performance

networks are not suitable for the NPB.

76

Chapter 5

NFS Sensitivity

... but just running a lot of simulations and seeing what happens is a frustrating and
finally unproductive exercise unless you can somehow create a ”model of the model”
that lets you understand what is going on. — Paul Krugman, from a talk given to the
European Association for Evolutionary Political Economy.

In this chapter, we examine the sensitivity of Sun’s Network File System (NFS) to network

performance. Our motivation is driven by the fact that previous work shows that 60%-70% of LAN

traffic is filesystem related [48, 76]. We apply the same basic methodology used in the previous

two chapters. The NFS application parameter space, however, is much larger than he Split-C/AM

programs or the NPB. In the previous two chapters, run-time was the simple figure of merit. In the

NFS case, there can be many different metrics, e.g. read bandwidth, write bandwidth, and response

time.

Our method of fixing the class of inputs that are the traditional characteristics of NFS work-

loads, e.g. the mix of reads/writes/lookups, is to use the SPECsfs benchmark [94]. The SPECsfs

benchmark is an industry-standard benchmark used to evaluate NFS servers. The networking pa-

rameters are the same LogGP parameters used throughout this thesis.

The output of the SPECsfs benchmark is a two-dimensional curve of response time vs.

throughput, for a fixed mix of operations, as opposed to a point-metric such as run-time. Because

of the two-dimensional nature the SFS curve, our results are presented differently than in previous

chapters. Instead of a fixed slowdown line, the results are three dimensional: throughput vs. re-

sponse time vs. change in network performance. While we could plot a single 3-D graph of these

parameters, it is more informative to plot a series of 2-D graphs. The SFS curve has important struc-

tures that would be difficult to discern in a single 3-D graph. We detail the important parts of the

77

SFS curve in the next section.

In order to understand the SFS curve, a more complex model of the NFS system is nec-

essary than the simple frequency-cost pairs used in the Split-C/AM and NPB models. We thus use

simple queuing theoretic models to understand the relationship between the networking parameters

and the SFS curve. As in previous chapters, our goal in this work is not to develop highly accurate

models. Rather, the purpose of the queuing model is to gain insight as to how a system should behave

as we change the networking parameters. The model’s value lies in its ability to identify why the sys-

tem responds as it does. The quote at the beginning of this chapter illustrates this same purpose of

analytic models in the field of economics.

The combined use of a model and experimental data forms a synergy which is much more

powerful than either alone. With only a model, we can predict the responses but the results are sus-

pect. Measured data alone, while not suffering from lack of credibility, often lacks the simple con-

ceptual interpretations that models provide. Using both a model and measurement we can explain

the measured results in terms of the model. Points where the data deviates from model predictions

expose weaknesses in our understanding of the system.

A side benefit of our choice of workload, SPECsfs, is that it allows us to compare our re-

sults to industry published data. More importantly, using the techniques in this work we can infer

the structure of the NFS servers from the data published by SPEC.

The remainder of the chapter is organized as follows. We first describe the details of the

apparatus relevant to NFS servers in Section 5.1. Section 5.2 provides background on SPECsfs, the

workload for this chapter. Next, Section 5.3 introduces our simple queuing-theoretic model of an

NFS system. Section 5.4 documents previous work on NFS. Next, Section 5.5 documents the mea-

sured sensitivities to network parameters on two live systems and describes the accuracy of the pre-

dictions made by the model. Section 5.6 summarizes some implications of our results, and analyzes

industrial data in the context of our methods.

5.1 Experimental Setup

This section introduces the experimental set-up used in our NFS experiments. We focus

on the disk sub-system because this is the component of interest unique to NFS performance. Recall

that the networking apparatus used to control the LogGP parameters was described in detail Sec-

tion 2.3.3. This section first describes the general characteristics of the clients, followed by a more

detailed description of the two different servers.

78

As in the Split-C/AM and NPB experiments, all of the machines in our experiments consist

of Sun Ultra-1 workstations. Attached to the S-Bus is an internal narrow SCSI bus and local disk that

holds the operating system and swap space. All the clients have 128 MB of main memory. We use

a total of 4 clients: 3 load-generators and 1 master control station. The control station and other

machines are also connected via a switched 10Mb/s Ethernet. The Ethernet is used to start and stop

the benchmark as well as monitor results.

The primary difference between our two servers is the disk sub-system. The “SCSI” sys-

tem contains 128MB of main memory and 24 7200 RPM 9GB IBM drives. The drives are evenly

divided between two SCSI buses. The S-bus interfaces used are the fast-wide Sun ‘’FAS” controller

cards. In contrast, the “RAID” system contains 448 MB of main memory. The 28 7200 RPM 9GB

Seagate disks are contained in a Sun “A3000” RAID. The disks are divided into 5 RAID level-0

(striping) groups; 4 groups have 6 disks and the last group contains 4 disks. The striping size is 64

KB. The A3000 contains 64 MB of battery-backed NVRAM which can absorb some writes that may

otherwise have gone to disk.

There are two reasons for investigating different systems. First, they allow us to draw

conclusions about the effects of different hardware and software, e.g., drivers, main memory, and

NVRAM. Second, having two systems serves as a check on our model; inaccuracies may show in

one system but not the other. In addition, the RAID is closer in spirit to servers found in published

SPEC data.

5.2 SPECsfs Characteristics

Just as we did with the Split-C/AM and the NPB, in this section we first characterize the

SPECsfs benchmark which forms the workload for this chapter. We then describe the similarities

and differences between this and previous work done to quantify NFS performance.

SPEC, while widely known for its CPU benchmarks, also produces an NFS benchmark,

SPECsfs (formerly known as LADDIS) [107]. SPEC released the latest version, SFS 2.0, in 1997 [94].

Version 2.0 adds several enhancements. First is the addition of version 3 of the NFS protocol [82] as

well as retaining NFS version 2. In addition, TCP can be used as a transport layer instead of UDP.

The combination of these two variants results in four possible configurations (e.g., NFS version 3

on UDP and NFS version 2 on TCP). We focus on NFS version 2 running over UDP because this

will comprise a large number of installed systems. Unless otherwise reported, all results are for sys-

tems running SFS 2.0, NFS version 2 using UDP. We do examine some TCP vs. UDP tradeoffs in

79

R
es

po
ns

e
Ti

m
e

S
at

ur
at

io
n

Slope
Base

NFS Operations/Second

Figure 5.1: Important Characteristics of the SFS Curve
This figure shows the important characteristics of all SFS curves: the base (i.e. minimum) response
time, the slope, which determines the rate of increase in response time as load increases for a linear
region of the curve, and the saturation point at the peak operations sustainable.

Section 5.5.2.

SPECsfs, as a synthetic benchmark, must define both the operation mix and scaling rules.

The mix has been derived from much observation of production systems [94, 107]. SFS 2.0 uses a

significantly different mix from SFS 1.0. With the decline of diskless workstations it was found that

the percentage of writes had also steadily declined. Qualitatively, the SFS 2.0 operation mix is mostly

small metadata operations and reads, followed by writes. The mix represents a challenge to latency

tolerating techniques because of the small and synchronous nature of most operations. The two most

common operations are get attributes and directory lookup; combined they make up

62% of the SFS 2.0 workload. Reads comprise 14% and writes comprise 7% of the operations with

other metadata operations making up the remainder.

Learning from past benchmarking errors, SPECsfs also defines scaling rules for the data

set. In order for a vendor to report a large number of operations per second, the server must also

handle a large data-set. For every NFS op/sec, the clients create an aggregate of 10 MB of data. The

amount of data accessed similarly increases; for each op/sec 1 MB of data is touched.

Unlike the SPEC CPU benchmarks which report point-values, SPECsfs reports a curve

of response time vs. throughput. The reported response time is the weighted average of different

operations’ response times, where the weights are determined by the percentage of each operation

in the mix. Figure 5.1 shows an abstract SFS results curve. The signature of the curve contains three

key features: the base response time, the slope of the curve in the primary operating regime, and the

saturation point.

At low throughput there will be an average base minimum response time. The base rep-

80

resents the best average response time obtainable from the system. The base will be determined by

a host of factors, including the network, the speed of the CPU, the size of the file cache, the amount

of Non-Volatile RAM (NVRAM), and the speed of the disks.

As load on the server increases, there will be a region where there is a linear relationship

between throughput and response time. The slope signifies how well the server responds to increas-

ing load; a low slope implies the clients cannot perceive a more loaded server, while a high slope

implies noticeable delays as we add load. The slope will be affected by queuing effects in the net-

work, at the server CPU, the server disks and the client CPU. However, a much more important role

in the determination of the slope is the changing miss rate in the server file cache.

As the load further increases, a bottleneck in the system will limit the maximum through-

put at the saturation point. The nature of the bottleneck will determine if the point is reached sud-

denly, resulting in a pronounced inflection, or gradually. Example bottlenecks include an insufficient

number of clients, lack of network bandwidth, the speed and number of CPUs on the server, and an

insufficient number of server disks.

SPECsfs is designed to isolate server performance. The benchmark therefore takes care to

avoid client interactions to the extent they influence the accuracy of the load placed on the server. For

example, differences in client file cache management make it difficult for the benchmark to control

both the size and nature of the server load. The load generators thus call RPC procedures directly,

bypassing the client filesystem and file cache. The results of this study therefore are primarily from

the server perspective. Average response time results on production systems will depend on the type

of workload (e.g. attribute vs. bandwidth intensive) and size of the client caches. See [44] for an

examination of the effects of client caches on server load.

Using SPECsfs as a workload is quite novel in an academic setting. One factor limiting

previous work was the scale on which the benchmark must be run in order to obtain meaningful

results. For example, an insufficient number of disks would limit our understanding of CPU bottle-

necks. Also, industry reported results are for very large systems, often beyond the range of a dedi-

cated academic testbed. For example, at the completion of this study, one of our testbeds immediately

went into production use.

From our “grey-box” perspective, SPECsfs is quite useful because it fixes all the NFS para-

metric inputs but one: the server load. We can thus restrict the parameter space primarily to the net-

work. At the same time, our choice of SPECsfs clearly limits our understanding of NFS in several

ways; it is attribute intensive and it does not model the client well. Practically, however, our choice

allows us to interpret industrial data published on SPEC’s website in the framework presented in this

81

CPU
λ1

λ1

Disk

Disk

Disk

λ3

hit

miss

NFS
Cache

P

P

M/M/1

λ2

Exit

M/M/m

Response Time

Delay
Fixed

D

Figure 5.2: SPECsfs Analytic Model
This figure shows the simple analytic model used to validate the NFS results. The model assumes a
poisson arrival rate of ��� requests per second. The model then uses a fixed delay center to model
the network, an M/M/1 queue to model to CPU, a splitter to captures NFS cache effects, and finally
an M/M/m queue to model the disk subsystem. The parameters for each component were determined
by empirical measurement.

paper. We perform a brief analysis of industrial data in Section 5.6.

5.3 SPECsfs Analytic Model

In this section we build a simple analytic model of the entire NFS system, focused on the

server portion of the system. The goal of the model is to provide a framework for understanding the

effects of changes in � , � and � on the SFS results curve. We then compare the predictions of the

model against two measured SFS curves. If the model and experimental data agree, we can have

reasonable confidence in both. Significant differences between the two would show where either

the model fails to describe the system, or where the system is mis-configured and thus not operat-

ing “correctly”. In either case, more investigation may be needed to resolve the discrepancy. We

conclude the section with predictions on the sensitivity of the system to network parameters.

5.3.1 Model Construction

Figure 5.2 shows the queuing network we use to model an NFS server, adopting the simple

techniques described in [57, 65]. The model consists of a CPU, disks, NFS cache, and a delay center.

Our model ignores queuing delays in the controllers and I/O bus; they can easily support the load

placed on them given the small nature of most requests.

We assume that the arrival rate follows a Poisson process with a rate of ��� requests per

82

second. Because the departure rate must equal the arrival rate, the departure rate is also ��� .
The CPU is the simplest component of the system. We model it as an M/M/1 queue. We

derived the average service time, including all sub-systems (e.g. TCP/IP protocol stacks, and the

local filesystem, UFS) from experimental measurement. For the SCSI based system, the measured

average service time was 900 � s per operation. The RAID system has a lower average service time

of 650 � s. We provide a detailed investigation the components of the service time in Section 5.5.3.

Most NFS operations have the potential to be satisfied by an in-memory cache. Only 7% of

the SFS 2.0 mix are writes and these must bypass the cache—NFS version 2 semantics require that

they exist in stable storage before the write completes. The 64 MB of NVRAM in the RAID can

cache writes, however. The file cache size, and corresponding miss rate, are critical to determining

the base response time as well as the slope of the SFS curve. However, the SFS strategy of increasing

the data set size per op/sec places an upper limit on the effectiveness of a cache.

We model the NFS caches (both in-memory and NVRAM) as a splitter. The probability of

a hit is given as ��� ��� and of a miss as �.����������������� ��� . On a hit, the request is satisfied and leaves

the system. Because the data set accessed by SFS increases with the load, ��� ��� is a function of � � .
We use a simple approach to computing � � ��� . We take the main memory size plus the NVRAM size

and divide it by the accessed data set size. In terms of our model, the splitting a Poisson stream

results in two Poisson streams, ��� and �¡ . The rate of requests going to the disks is easily derived

as � �¢�%�£���¤�¥� �
The disks are modeled by an M/M/m queue where m is equal to the number of disks. We

have empirically observed using the iostat command an unloaded average service time of 12 ms

for the IBM drives. We use the same value to model the Seagate drives.

We fold the remaining components into a fixed delay center with a delay of ¦ . These

components include the overhead in the client operating system, fixed costs in the server, and the

network latency. The use of fixed delay greatly simplifies the model, allowing us to focus on the

important elements of the server. We can still obtain reasonable accuracy using a fixed delay center,

however. We empirically observed a ¦ of 3.4 msec. This fixed delay parameter was obtained by

observing a small request rate of 300 op/sec on the RAID system. At that rate, the entire workload

fits into memory, so nearly all disk requests have been eliminated.

83

SCSI RAID
Range(op/sec) 200-1050 500-1400

Q-model Measured Q-model Measured
Slope 8.5 14.3 10.4 18.9§ sec per op/s

Y-intercept 8.0 4.52 -6.8 -0.04
Base 8.6 7.3 4.3 4.5¨�© 0.93 0.99 0.98 0.96

Table 5.1: SPECsfs Linear Regression Models & Accuracy
This table demonstrates linear regressions of the SFS queuing-theoretic models and measured data.
The table shows the slope of the SFS curve, (increase in response time vs load), the Y-intercept, the
base performance at 200 and 500 ops/sec, and the coefficient of determination (¨ ©).

5.3.2 Model Accuracy

Figure 5.3 shows the accuracy of our simple queuing model compared to the measured data

for our baseline systems. The baseline systems have the minimum ª , « , and ¬ , and thus maximum

performance in all dimensions. In order to measure the slope of the SFS curves, we performed a lin-

ear regression on a range of measured data (200-1050 for the SCSI and 500-1400 for the RAID). Ta-

ble 5.1 shows that within these ranges a linear model is quite accurate; the ¨�© values are 0.99 (SCSI)

and 0.96 (RAID).

At a qualitative level, we can see that the NFS cache sizes have a significant impact on the

shapes of both the measured and modeled systems. Below 500 ops/sec for the RAID, the SFS curve

is fairly flat because the cache is absorbing most of the requests. The SCSI system, with its small

cache, has a continuously rising curve. The slope of the RAID is much steeper than the SCSI system

for exactly the same reason—differences in cache size.

At a more quantitative level, across the entire range of throughputs the relative error of

the queuing model is at worst 24% for the SCSI and 30% for the RAID. This is reasonably accu-

rate considering the simplicity of the model, e.g., we do not model writes by-passing the file cache.

Unfortunately, the queuing model consistently under predicts the slopes of the SFS curve. Linear re-

gressions of the queuing model predict slopes of 8.5 (SCSI) and 10.4 (RAID) § s per op/sec. These

are substantially lower than the 14.3 and 18.9 § s per op/sec for the measured slopes.

The shape of the inflection point is a second inaccuracy of the model. In the SCSI system,

the measured inflection point is quite muted compared to the modeled curve. The last point of the

modeled SCSI curve, which has no measured counterpart, shows a rapid rise in response time in the

84

base

modeled

slope
measured

180 380 580 780 980 1180

NFS Ops/sec

0

5

10

15

20

25

30

35

40

R
es

po
ns

e
T

im
e

(m
se

c)

SCSI
Modeled vs Measured

slope

measured

base

modeled

280 480 680 880 1080 1280 1480 1680

NFS Ops/Sec

0

5

10

15

20

25

30

35

40

R
es

po
ns

e
T

im
e

(m
se

c)

RAID
Modeled vs Measured

Figure 5.3: SPECsfs Modeled vs. Measured Baseline Performance
This figure plots the modeled as well as baseline SFS curves for the SCSI system (top) as well as for
the RAID based system (bottom).

99+% utilization regime. The real system, however, will not enter into that regime. We explore the

effects of high utilization in Section 5.5.3.

In spite of the inaccurate slopes and inflection point, the queuing model is quite accurate for

most of the operating regime. Only at very high utilization does it deviate much from the measured

values. Interestingly, the ­�® values in Table 5.1 show that the live system behaves in a linear fashion

across almost all of the operating regime, more so than the model would predict.

For the purposes of capacity planning, the queuing model may be quite acceptable because

operating at the extremes of the performance ranges is undesirable. A lightly loaded system wastes

resources, while a system operating near capacity results in unacceptable response times.

85

5.3.3 Expected Sensitivity

The model provides a concise conceptual framework; we use it to predict the impact of

changing each LogGP parameter. The delay center captures the network latency term. We thus

model an increase in ¯ as a linear increase in ° , thereby changing the base response time. Each
± s of added ¯ should add 2 ± s to the base response time, because each operation is a synchronous

request-response pair. An increase in ¯ should have no effect on the slope or saturation point. In

the next section, we see that our model predictions for the slope and saturation point are accurate

for a wide range of ¯ values, but not for extreme ranges. We also see that the model consistently

under-predicts the sensitivity of the base response time to ¯ .

Increasing ² we expect changes to all three components of the SFS signature. The response

time should increase because of the client overhead encapsulated in the ° parameter and increased

service time on the CPU. The slope should increase due to queuing delays at the CPU. The most im-

portant effect of ² is that the saturation point may be reached sooner. Because of the increased service

time on the CPU, it will reach maximum utilization sooner. If, however, some other component of

the system were the bottleneck, we may observe a region where the saturation point is insensitive

to ² . For our two servers, the model predicts that the CPU will be the bottleneck. We model the

relationship between the saturation point and overhead as:

³�´Jµ·¶�¸�´�µº¹ ²�»�¼
½

³�¾�¸�¿ÁÀÃÂ¡ÄÆÅ ²
where

³£¾�¸�¿
is the average CPU service time per operation previous measured in Sec-

tion 5.3.1. The coefficient of 2.4 is the average number of messages per NFS operation. We model

2 messages per operation: a request and a reply. However, as ² is incurred on every message, we

also model 2 extra fragments per read or write due to MTU effects. Given the frequency and size of

reads and writes, the MTU effects raise the constant to 2.4. The next Section will show our model

of sensitivity to ² to be quite accurate.

The bandwidth, ÇÈ , is not captured well by any single parameter of the model. If we assume

that requests are uniformly distributed in time, É will have no effect until Ê ÇÌË ÇÈ . Indeed, this is

a good test to see if requests are bursty or not. If requests are bursty then we expect that the NFS

system would be quite sensitive to changes in É .

86

5.4 Previous Work on NFS Performance

Due to its ubiquity as a distributed filesystem there is vast body of work on NFS. Fortu-

nately, [82] contains an excellent bibliography and summary. This section does not try to document

all previous NFS work; rather we categorize related work and introduce papers which describe pre-

vious results upon which our work builds.

NFS studies fall into roughly three categories: protocol changes, client/server enhance-

ments, and performance evaluation. Although papers contain some element of all three, often they

focus in a single area. Many NFS protocol studies explore changes to improve filesystem seman-

tics [68, 71, 77, 83], however, a few are performance oriented [38]. Enhancement studies focus on

client/server design changes rather than protocol changes [37, 100]. For example, [59] looks at write

gathering to improve performance, and a comparison of TCP vs. UDP and copy reduction techniques

are examined in [70].

Our work clearly falls into the performance analysis category, using network performance

as the dependent variable. The work in [96] takes an interesting perspective compared with ours.

Instead of examining NFS performance as a function of the network, it examines network perfor-

mance as a function of NFS load. It found that modest NFS load can severely degrade Ethernet per-

formance. With the advent of multi-gigabit switched LANs, network loading due to NFS traffic is a

minor problem compared with the days of shared 10 Mb Ethernet.

Although it deals with differences between NFS version 2 and version 3 [82], performs

much performance analysis to justify the changes. It found that a server running NFS version 3 is

roughly comparable to the same server running version 2 with NVRAM. However, little exploration

of the impact of the version 3 protocol changes is made with relation to network performance.

An extensive bottleneck analysis is presented in [108]. The book examines the peak thr-

oughputs of real-world components (e.g. CPU, disks, network) and characterizes where the satura-

tion point will be for different configurations. An interesting result of the work is that most servers

in the SPEC results are over-provisioned with disks.

Section 2.6.2 showed that perhaps the closest study in spirit to the experiments in this chap-

ter is [21]. That work was primarily concerned with NFS performance over congested ATM net-

works. They found that a high Í , in the 10’s of milliseconds, was quite detrimental. A trace-fed

simulation was used rather than a live system. Moreover, their custom workloads make a quantita-

tive comparison to our work difficult.

We examined the methodology of [49] in Section 2.6.4. Recall that their conclusions are

87

0

10

20

30

40

50

0 200 400 600 800 1000

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
e

c
)

Î

NFS Ops/Sec

SCSI

L(usec)
10
50

100
500

1000
2000
4000

0

10

20

30

40

50

0 200 400 600 800 1000 1200 1400 1600

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
e

c
)

Î

NFS Ops/sec

RAID

L(usec)
10
15
50

100
150

1000
4000

(a) (b)

Figure 5.4: SPECsfs Sensitivity to Latency
This figure plots the SFS curves as a function of latency in microseconds. Measurements for the
graph on the left were taken on the SCSI system, while measurements for the graph on the right were
taken on the RAID system.

quite similar to ours: CPU overhead is a dominant factor in NFS performance. We compare their

results to ours in greater detail in Section 5.6. Some of their most interesting data, however, came

from their direct measurement of a large production system.

5.5 Sensitivity Results

Given our methodology and NFS characterization, we now quantify the effect of vary-

ing LogGP parameters. As in previous chapters, we independently vary each of the parameters in

turn and observe the resulting SFS curves. For each parameter, we attempt to explain any observed

changes to the SFS signatures based on the model developed in Section 5.3. In addition, we measure

the most appropriate sensitivity for each parameter. For latency this is change in base response time

as a function of Ï . For overhead, it is the change in saturation point as a function of Ð .

5.5.1 Latency

Historically end-to-end latency is often thought of as the critical parameter for NFS perfor-

mance [21, 80]. In terms of the LogGP model, the typical definition of latency includes both Ï and

88

Ñ . In this section, we examine solely the Ò term. By focusing on latency alone, we can better quantify

the effects of the network itself, rather than mixing the effects of the network and end-system.

Response to Latency

Figure 5.4(a) shows a range of SFS curves resulting from increasing Ò for the SCSI system.

Likewise, Figure 5.4(b) shows the results for the RAID. The range of Ò has been scaled up from a

baseline of 10 Ó s to 4 msec. For comparison, most LAN switches have latencies in the 10’s of Ó s.

Most IP routers, which would be used to form a campus-wide network, have latencies of about a

millisecond. Thus the range explored in Figure 5.4 is most likely what one might find in an actual

NFS network. We will explore the effect of very high WAN-class latencies in Section 5.5.2.

We have truncated the SCSI curves at the saturation point, to increase readability, but present

the full RAID data. Figure 5.4(b) shows the 4 msec RAID curve “doubling back”. Because the SFS

benchmark reports the response time vs. delivered throughput, as opposed to offered load, attempts

to exceed the saturation point can result in fewer operations per second than attempted. We will ex-

plore this effect in greater detail in the discussion of overhead.

As predicted by the queuing model, the measured data shows the primary effect of in-

creased Ò is to raise the base response time. Also, as predicted by the model, the slope does not

change. Modest changes in Ò do not affect the saturation point. However, a high Ò can cause the

saturation point to fall, as shown by both the 4 msec curves. The reason for the drop is that insuffi-

cient parallelism exists due to lack of client processes. We have tested this hypothesis by increasing

the number of load generator processes on the client. An unusual side effect of increasing the num-

ber of load generators is a change in the slope of the SFS curve. We therefore use the minimum

number of load generators that can saturate the system in the baseline case even if it results in lower

saturation points as we scale Ò .

Returning to the base response time, a key question is what the rate of the increase to Ò
is. That is, for each Ó s of Ò added, what is the corresponding increase in response time? The next

section explores this question in greater detail.

Sensitivity to Latency

Figure 5.5 shows the sensitivity of response time as a function of Ò for a range of through-

puts, i.e., each line is a vertical slice though Figure 5.4. Two distinct sensitivity regions are observ-

able. Figure 5.5(a) shows the first region has a constant sensitivity of 3 Ó s of response time for each

89

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500 3000 3500 4000

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
e

c
)

Î

Latency (usec)

SCSI

Ops/sec
200
400
600
800

0

5

10

15

20

0 200 400 600 800 1000

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
e

c
)

Î

Latency (usec)

SCSI

Ops/sec
200
400
600
800

(a) (b)

Figure 5.5: SPECsfs Latency vs. Response Time
This figure plots response time as a function of latency in microseconds. Measurements were taken
on the SCSI system. The graph on the left shows a range of Ô up to 4000 Õ s. The graph on the right
shows that up to 150 Õ s there is little sensitivity to Ô .

Õ s of added Ô between 150 - 4000 Õ s. This is quite a bit higher than the 2 predicted by the model in

Section 5.3.2. Figure 5.5(b) shows a completely insensitive region between 10 and 150 Õ s.

An important result is that in the sensitive region, all the sensitivity curves are a constant 3

across an order magnitude change in Ô . Given that the system is responding in a linear fashion, there

may be an accurate way to model it. However, the constant of 3 is quite a bit higher than the constant

2 predicted by our simple model. A more complex model is needed to account for the discrepancy.

In the insensitive region we can see there is little, if any, measurable change in response

time as we vary Ô . For the same range of Ô , the same results applies to the RAID as well. This has

important implications for switch and interface designers as these operate in the 10’s of Õ s region.

From an NFS perspective, a LAN switch adding 10 Õ s of delay per hop would be quite acceptable.

5.5.2 High Latency

The original NFS protocol was not designed to operate in environments with very high Ô .

NFS version 3 added several latency tolerating techniques, most notably asynchronous writes [82].

In this section, we examine the effects of very high Ô , in the 10’s of millisecond range. For example,

WANs typically have an Ô ranging from 10’s to 100’s of milliseconds.

90

0

20

40

60

80

100

120

140

160

200 400 600 800 1000 1200 1400 1600

re
s
p

o
n

s
e

 t
im

e
(m

s
e

c
)

OPs/sec

NFS version 2

baseline
L=10ms
L=20ms
L=40ms

0

50

100

150

200

250

300

0 100 200 300 400 500 600

R
e

s
p

o
n

s
e

 T
im

e
(m

s
e

c
)

Î

NFS V3 OPs/sec

NFS version 3

baseline
L=10ms
L=20ms
L=40ms

(a) (b)

Figure 5.6: Effects of Very Long Latency
This figure plots the SFS curves as a function of very high latencies on the RAID. Measurements
for the graph on the left were taken on for NFS Version 2 over UDP, while measurements for the
graph on the right were taken using NFS Version 3 running over TCP. The figure is designed to show
the relative performance degradation for each version as neither the operations/sec or the response
times between versions is comparable.

Figure 5.6 compares the relative effectiveness of NFS version 2 running on UDP, a typical

configuration, to version 3 running on TCP for networks with high Ö . The experiment varies both

the NFS version and network transport at once to better understand the total impact of an upgrade.

Typically, operating systems that ship with version 3 also allow TCP as a transport layer. Both the

throughput and response times between NFS version 2 and version 3 are not comparable; thus we

examine the percentage of performance loss as we scale Ö .

Figure 5.6(a) shows, as expected, that the “classic” NFS V2/UDP performance over WAN

latencies is dismal. First, the base response time is hyper-sensitivity to high latency in that it is much

greater than one would predict from the simple model. Second, very little of the peak load is obtain-

able. NFS Version 3 over TCP is able to handle long latencies much better than version 2 over UDP.

Figure 5.6(b) shows that even at an Ö of 40 msec (a round trip of 80 msec), Version 3/TCP can sustain

50% of the peak throughput without adding extra clients.

A notable effect on both versions is that average response time decreases as the load in-

creases. This could be caused by a number of effects. One possible effect could be the interaction

of a light workload with the RPC and TCP transport protocols. These algorithms constantly probe

91

0

10

20

30

40

50

0 200 400 600 800 1000

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
e

c
)

Î

NFS OPs/Sec

SCSI

O(usec)
80

105
130
180
280
480
580

0

10

20

30

40

50

60

70

80

90

100

200 400 600 800 1000 1200 1400 1600

R
e

s
p

o
n

s
e

 T
im

e
(m

s
e

c
)

Î

NFS Ops/sec

RAID

O(usec)
80
85
90
95

100
105
130
180
280

(a) (b)

Figure 5.7: SPECsfs Sensitivity to Overhead
This figure plots the SFS curves as a function of overhead in microseconds. Measurements for the
graph on the left were taken on the SCSI system, while measurements for the graph on the right were
taken on the RAID system.

the network looking for more bandwidth. Under a light workload however, an insufficient number

of packets may be sent for the protocol to reach a stabilization point in its time-out/re-try algorithm.

As both curves are consistent with this theory, it begs the question as to the performance of these

algorithms [56] under a very light load.

5.5.3 Overhead

Software overhead, the orphan of networking analysis, permeates the design space because

it affects all aspects of the SFS signature curve. We focus our analysis efforts, however, on its effect

on the saturation point. Not only are these effects likely to be the most pronounced, but they also

will greatly impact the machine size needed to sustain high loads.

Response to Overhead

Figure 5.7 shows the SPECsfs curves for both the SCSI and RAID systems while scaling

overhead from a baseline of 80 × s. For the SCSI system we have truncated the results at the saturation

point to make the graph more readable.

Figure 5.7 shows that the base response time increases as we scale Ø , and the measured

92

results are close to the model predictions. The slope of the SFS curve is fairly insensitive to Ù until

throughput is near the saturation point. A queuing model gives us nearly the same result; the slope of

the SFS curve will not change drastically with respect to Ù . The most dramatic effect of Ù , however,

is on the saturation point.

Figure 5.7(b) shows what happens to the saturation point in the RAID when system ca-

pacity is exceeded; both response time and throughput degrade slightly as offered load exceeds the

saturation point. A less dramatic version of this effect was observable as we scaled Ú as well. An in-

teresting open question is how well the system responds to these extreme conditions, i.e., how much

performance is obtainable when the offered load is 150% of peak? Queuing theoretic models tell us

that response time should increase to infinity as offered load nears 100%. Figure 5.7(b) shows that

in a real system (which is a closed system) the response time hovers around an overhead-dependent

maximum while the delivered throughput slowly decreases. Feedback loops built into the RPC layer,

based on algorithms in [56], keep the system out of the realm of very high response times, instead

forcing the entire system towards lower throughputs. The algorithms are quite effective; rather than

a complete system breakdown we observe small degradations in throughput and response time. A

full investigation of these effects, however, is beyond the scope of this work.

Because we are scaling a processor resource, the lower saturation point must be due to the

higher service time of the CPU. In the next sections we will explore the nature of the saturation point.

We first derive the sensitivity curve and then examine the components of the service time for both

the SCSI and RAID systems.

Sensitivity to Overhead

Figure 5.8 shows the relationship between overhead and throughput. The modeled line

shows where the CPU reaches 100% utilization in the model presented in Section 5.3, while the mea-

sured line is derived from the results in Figure 5.7. The most interesting aspect of both systems is

that the peak performance drops immediately as we add overhead; unlike the response to latency,

there is no insensitive region. Therefore, we can easily conclude that the CPU is the bottleneck in

the baseline system. Also for both curves, the response to overhead is non-linear, i.e., for each Û s of

added overhead, the peak drops off quickly and then tapers out.

To determine the accuracy of the model, we performed a curvilinear regression against the

overhead model in Section 5.3.2. The Ü�Ý values of .99 for the SCSI and .93 for the RAID show that

our model is fairly accurate. The sensitivity to Ù agrees well with the model.

93

0

200

400

600

800

1000

50 100 150 200 250 300 350 400 450 500 550 600

P
e

a
k
 O

p
s
/s

e
c

Þ

Overhead (usec)

SCSI

Modeled
Measured

0

200

400

600

800

1000

1200

1400

1600

50 100 150 200 250 300

P
e

a
k
 O

p
s
/s

e
c

Þ

Overhead (usec)

RAID

Modeled
Measured

(a) (b)

Figure 5.8: Peak Throughput vs. Overhead
This figure plots the saturation point as a function of overhead in microseconds. Measurements for
the graph on the left were taken on the SCSI system, while measurements for the graph on the right
were taken on the RAID system.

Examining Overhead

The SCSI and RAID system both use the same CPU, operating system, network, and nearly

the same number of disks. Yet RAID’s saturation point is much higher. An obvious question is the

reason for the lower performance of the SCSI system. Figure 5.9 reports the percentage breakdown

of different components of CPU near the saturation point for both the SCSI and RAID. Because the

monitor itself (kgmon) uses some CPU, it is not possible to actually reach the saturation point while

monitoring the system. The relative areas of the charts show the difference in average time per op-

eration, including CPU idle time, of 1 msec for the SCSI and 714 ß s for the RAID.

The most obvious difference is the time spent in the device drivers; the FAS SCSI drivers

spend an average of 150 ß s per NFS operation while the RAID drivers spend an average of only 36

ß s. The networking stacks and filesystem code comprise the two largest components of the CPU

time. However, an interesting feature of both systems is that a significant amount of the service time

(20% and 26%) is spent in general kernel procedures which do not fall into any specific category.

There are a myriad of these small routines in the kernel code. Getting an order of magnitude reduc-

tion in the service time would require reducing the time of many sub-systems. Much as was found

in [26, 60] there is no single system accounting for an overwhelming fraction of the service time.

94

Other(19.9%)

Unaccounted(5.2%)

Sync(5.2%)

NFS(6.1%)

Network(11.9%)
Bcopy/Bcmp(10.1%)

MemMgt(4.7%)

Waiting(10.8%)

UFS(10.7%)

SCSI-driver(15.4%)

Kernel Time (SCSI)
% time in sub-system

Other(26.1%)

Unaccounted(4.0%)

Sync(6.5%)

NFS(3.3%)

Network(17.1%)

Bcopy/Bcmp(13%)

MemMgt(5.7%)

Waiting(4%)

UFS(14%)

RAID-driver(5.1%)

Kernel Time (RAID)
% time in sub-system

(a) (b)

Figure 5.9: Time Breakdown Near Peak Op/sec
These charts show the percentage of time spent in each sub-system when operating near the satura-
tion point. Measurements for the graph on the left were taken on the SCSI system at 1000 ops/sec,
while measurements for the graph on the right were taken on the RAID system at 1400 ops/sec. The
area of each chart shows the relative time per operation, including idle time (i.e., waiting on I/O),
of 1 msec for the SCSI and 714 à s for the RAID.

5.5.4 Bulk Gap

We choose to examine sensitivity to bulk Gap, á , as opposed to the per-message rate â .

First, networking vendors often tout per-byte bandwidth as the most important metric in comparing

networks. Using our apparatus we can quantify its sensitivity (and thus importance). Secondly, for

the SPECsfs benchmark, â is quite low (in the 1000’s msg/sec range) and is easily handled by most

networks.

Unlike overhead, which is incurred on every message, sensitivity to Gap is incurred only

if the data rate exceeds the Gap. Only if the processor sends data in an interval smaller than that

specified by á will it stall. The clients and server could potentially ignore á entirely. Recall the

burst vs. uniform models for gap presented in Section 3.2.2. At one extreme, if all data is sent at a

uniform rate that is less than á we will not observe any sensitivity to Gap. At the other extreme, if

all data is sent in bursts then we would observe maximum sensitivity to Gap.

Because SPECsfs sends messages at a controlled rate, we would expect that message in-

tervals are not bursty and the benchmark should be quite insensitive to Gap. Figure 5.10 shows that

this is indeed the case. Only when the bandwidth (ãä) falls from a baseline of 26 MBs to a mere 2.5

MB/s do we observe any sensitivity to á . We are thus assured that the SFS benchmark is not bursty.

Measured production environments, however, are quite bursty [49, 66]. Our measured sen-

95

0

10

20

30

40

50

0 200 400 600 800 1000

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
)

å

NFS Ops/Sec

SCSI

MB/s (1/G)
25.9
14.5
11.2
9.1
5.8
2.5
1.2

Figure 5.10: Sensitivity to Gap
This figure plots the SFS curves as a function of Gap in microseconds. Measurements for the graph
were taken on the SCSI system.

sitivity to æ is thus lower than what one might expect in a production environment. We explore the

implications of bursty networks to the sensitivity of æ in more detail in Chapter 5.6.

Figure 5.10 shows queuing delays at very low bandwidths that are not captured by the

model. There is a slight increase in slope at a bandwidth of 2.5 MB, and at 10 Mb Ethernet speeds

(1.2 MB/s) there is a noticeable increase in slope. Replacing the simple delay center with a more

sophisticated queuing network would capture these effects. However, given the low bandwidths at

which these effects occur, we have made a quite reasonable tradeoff between model simplicity and

accuracy.

5.6 NFS Summary

In this section, we describe the implications of our sensitivity results. As in previous chap-

ters, we organize our results around the four areas of performance analysis, application behavior,

architecture and modeling.

96

5.6.1 Performance Analysis

This chapter demonstrates that the TCP/IP apparatus is quite effective at adding control-

lable delays to various system components. One apparent drawback of our apparatus is that we could

not reduce overhead to low levels. It would thus appear that our apparatus is limited in its ability to

answer questions in the regime of low overhead. However, our methodology can overcome this limi-

tation. Rather than answer the question “what is the benefit of reduced overhead?” by measuring the

effects of low overhead directly, our method and apparatus allow indirect observation. The shape of

the sensitivity curve will quantify the effects of reducing overhead in a real system, limited by Am-

dahl’s Law of course. A steep slowdown curve would show that overhead reduction would have an

immediate, positive impact.

A new use of our apparatus in this chapter was the scaling of latency into the WAN range.

While performing adequately in this context, it was clear from the results that neither NFS nor the

SPECsfs benchmark are suited to run over this class of networks. While not entirely surprising, our

methodology showed it can quantify some of the strange effects that happen at these long latencies.

5.6.2 NFS Behavior

On the behavior side, one primary result is that in typical SAN and switched LAN envi-

ronments, the latency is quite satisfactory for NFS. Latencies under 150 ç s are easily obtainable in

these environments, even when cascading switches. Further reductions will have little benefit.

In the WAN range, we have seen that the changes to NFS version 3 indeed improve perfor-

mance. However, such latencies are still a significant performance drag, as was also found in [21].

Qualitatively, the changes in Version 3 have raised the level of NFS performance over WANs from

“unusable” to merely “slow”. Even with these enhancements however, it may not be economically

viable to use NFS over WAN ranges. Given the low cost of disk storage compared with WAN links,

it may make more sense to replicate the entire data-set. Even for large amounts of data, the storage

requirements are cheap compared with the recurring costs of WAN links.

The SPECsfs workload has minimal bandwidth needs and is quite regular; generating traf-

fic on the order of single MB/s. However, real networks exhibit quite bursty behavior and thus band-

width requirements would be higher, but not into the gigabit range.

97

5.6.3 Architecture

In the architectural arena, overhead continues to be a performance limiter, much as it is for

the Split-C/AM programs, and this is where significant performance improvements could be made.

A similar conclusion as was found in [49] as well. The study examined three points in the network-

ing space (ATM, Autonet and FDDI), rather than systematically varying overhead. However, it is

encouraging that two different studies have come to the same conclusions by much different meth-

ods.

Although the networking overhead was only 20% of the entire service time, that does not

mean that attempts to reduce è will yield marginal results. Indeed, networking overhead is one of

the primary components of the service time. However, a number of subsystems must be improved

at once for significant progress to be made. For example, a combination of novel overhead reduc-

ing interfaces between major OS sub-systems, disks and network interfaces might yield significant

improvements.

Turning to latency, the architectural improvements in é from IP switches, which place

much of routing logic in silicon, will have a large impact on NFS. The order of magnitude drop in é
from the millisecond to the 10-20 ê s region [98, 99] will expand the range of NFS to a much wider

area. Recent switches also offer increased port densities, ranging to 100’s of ports at 100 Mb Ether-

net speeds. A network composed of these low-latency, high-density IP switches would expand the

range of NFS service to a whole campus, even multiple campuses, instead of it’s traditional domain,

a building. The implications of such an expansion are interesting; NFS service could reach a much

larger number of machines than previously possible.

For bandwidth, network technologies such as switched 100Mb Ethernet and 155 Mb ATM

provide plenty of bandwidth for NFS workloads. Given that most NFS packets are quite small, over-

head, rather than bandwidth or latency, will still be the dominant factor facing future network design-

ers.

5.6.4 Modeling

Simple queuing models are quite effective in analyzing the behavior of an NFS server. We

were able to model changes in response time, slope and saturation point for a variety of parameters,

although more investigation is needed to better describe the effect of latency on response time. We

empirically measured and validated the inputs to the model. However, one could obtain close to the

same inputs for a specific configuration by looking at the data published data on SPEC’s website [95].

98

Using the SPEC data and the results of this study, it is relatively straightforward to deduce the pa-

rameters of the queuing model for a specific configuration from the published SFS curves. A word

of caution is needed when using this approach: mixing parameters for different hardware/software

configurations, particularly overhead, can be quite inaccurate.

Deconstructing the NetApp F630 and AlphaServer 4000 5/466 using the data from the

SPEC webpages is an instructive exercise. They both have roughly the same CPU (500 MHz Al-

pha), but the Alphaserver has twice the main memory and disks as the NetApp box. The NetApp

box however, has half the base response time, a much lower slope, and a higher saturation point.

Putting the results into the context of this work, we can conclude that Network Appliance was quite

successful in their bid to reduce overhead via a specialized operating system [51]. Another approach

to obtaining a higher saturation point is to add processors, demonstrated by the 18 CPU Sun system.

Such an approach would not reduce the base response time, however, unless the operating system

can parallelize a single NFS operation.

99

Chapter 6

Investigating Overhead Reduction

There is no such thing as a failed experiment, only more data. —Max Headroom.

The previous three chapters have shown that of all the LogGP parameters, most applica-

tions exhibit considerable sensitivity to overhead. That results points to overhead reduction as a

promising avenue for improving application performance. In this chapter, we present preliminary

work on a novel software architecture, called SPINE [40], which was constructed with overhead re-

duction as a specific design goal. SPINE allows the application developer to reduce overhead by

partitioning the application between the host CPU and network interface. The potential advantage

of the SPINE approach is that the network interface may be able to reduce overall data movement

and control transfers, both of which impact ë , at a cost of an inflated gap and latency. The key to this

overhead-reduction technique is to limit the inflation of the other parameters.

There are many potential ways which to reduce overhead. Fortunately, they can be classi-

fied into three general methods:

ì Restructure the application. In this approach, the application is changed to reduce and/or

aggregate communication. An example of this approach can be seen in the successive versions

of the EM3D application presented in [28]. The simplest versions are quite sensitive to ë , but a

series of progressively more complex transformations alters the application until it is primarily

sensitive to í .

ì Change the communication protocol. A straightforward method of reducing overhead is

to use a faster communications layer. For example, NFS was initially built on UDP instead of

TCP for exactly this reason [70]. The tradeoff is that the application may have to re-implement

functionality in the higher overhead layer in order to use the other one.

100

Memory
CPU

Network
Interface

$

Network
Interface

DataControl System
Interconnect

$

CPU

Network
Interface

Memory

Network
Interface

System
InterconnectControl

Data

(a) (b)

Figure 6.1: SPINE Approach to Overhead Reduction
This figure shows the basic overhead reduction technique used in SPINE. In a normal system, shown
in figure (a), the CPU must handle control and/or data from the network interface. Control and data
flow for messages in SPINE, as shown in figure (b), can avoid the main CPU entirely. A unique aspect
of SPINE is the ability to safely run arbitrary application code on the network processor.

î Add functional units. A familiar approach in the architecture community, this approach has

been spurned in the network community in recent years. The basic idea is to partition the prob-

lem such that multiple hardware units can pipeline packet processing. As we reduce ï , we hope

that the additional cost in terms of ð ,ñ and ò will not be too high—or may even be less. A

DMA engine is a well known example of an added functional unit that reduces ï and often

greatly improves ò . Although exploiting parallelism in communication has been explored in

the context of Symmetric Multiprocessors [91], there has been surprisingly little work in more

specialized support.

In this section, we will explore a combination of restructuring and adding functional units

to reduce overhead in an IP router. In the terminology of this thesis, we are trying to push the appli-

cation “work” into the other LogGP parameters. This approach has been tried in the past in many

different I/O contexts. Figure 6.1 shows the basic method behind this approach. In the context of

networking, most work has used off-board protocol processors. A few designs have added a com-

bination DMA/checksum engine [33]. More aggressive designs implemented demultiplexing and

segmentation/reassembly [12].

The dangers of adding functional units to assist the main processor, an thus reduce over-

head, are widely known [26, 50]. The strongest objections tend to be that assist device is “slower”

in some manner. However, “slower” is often ill-defined. More precise definitions would include in-

creased latency, reduced throughput, or even increased overhead because of added synchronization

101

costs. In the next sections, we will see that although SPINE is successful at reducing overhead, it

does not improve the latency or bandwidth. The importance of reducing overhead without altering

the other parameters depends on the application context. For a busy server, overhead reduction might

be important, but in other contexts absolute latency or bandwidth may be more critical.

In the early 1980’s many commercial network adapter designs incorporated the entire pro-

tocol stack into the adapter. There were two reasons for such an approach, which, due to its com-

plexity, required an I/O processor. First, many host operating systems did not support the range of

protocols that existed at the time (e.g., TCP/IP, telnet, and rlogin) [86]. Writing these protocols once

for a re-programmable network adapter was an effective method of quickly incorporating protocols

into a variety of operating systems. Second, the host processors of the time were not powerful enough

to run both multi-tasking jobs and network protocol stacks efficiently.

By the late 1980’s however, the tide had turned, with only support for very common pro-

tocol operations included in the adapter. The migration of common protocols into commodity oper-

ating systems and the exponential growth of processor speed eliminated the original motivations for

re-programmable network adapters at the time. There has been a great deal of work, however, in of-

floading pieces of network protocols. For example, there has been work to offload Internet checksum

calculations [33], link layer processing, and packet filtering.

In terms of this thesis, there are clearly tradeoffs between reducing ó and increasing ô and
õ . For example, both the Meiko CS-2 and Paragon machines used I/O processors. Adding I/O pro-

cessors added ô to the system, and in the Meiko they also added a very high õ as well [64]. Given

the results of this thesis however, reducing ó at the expense of ô is the correct tradeoff. However,

inflation of õ is not as clear a benefit as this reduces the effectiveness of latency tolerating techniques.

Although the LogGP model is quite useful, its parameters are too abstract to capture some

of the performance enhancements of a system which reduces overhead. We need a method to more

concretely characterize the effect of adding or removing functional units. Although we can cast such

performance improvements in terms of the LogGP model, as in the above example, a better class of

models are the pipeline models introduced in the next section. The problem with LogGP is that it

lumps too much of the off-CPU processing into just two parameters: õ and ô . In addition, these

parameters include a myriad of system components. Pipeline models allow us to isolate the effect of

each function unit in isolation, yet allow a re-construction of the entire communications path.

102

(µsec)

Occupancy Gap

0

1

2

3

4

Send LANai

Send CPU

Wire

Receive LANai

Receive CPU

Stage
0 32 64 96 160 192128

Bubbles

Time

155 2042nd packet1st packet

Figure 6.2: Generic GAM Pipeline
This figure plots the movement of 2 packets each of size 2 KB through the abstract GAM pipeline.
Time is represented on the x-axis and the stage number on the y-axis. The fixed occupancy is shown
in light grey and the variable per-byte cost (Gap) time in dark grey for each stage. Bubbles (idle
time) can result when moving from different speed stages.

6.1 Pipeline Framework

A less common viewpoint than either queuing theoretic models or parallel program models

are pipeline models [32, 106]. In this family of models, the network is modeled as a series of store-

and-forward stages. The time to move data through each stage is modeled as a fixed occupancy, ö ,

plus a variable per-byte cost, also called Gap, ÷ . Different versions of the models arise about the

restrictions placed on the stages. For example, the stages may allow for only fixed-size packets, as

opposed to the more general variable size packets.

Although superficially similar to a network queuing model, the analysis techniques of pipe-

line models are quite different. The differences arise because the questions asked about pipelines

have to do with how to discretize the packets to obtain minimum delay or maximum bandwidth

through the pipeline, not steady-state behavior assuming a random process model. Some of the anal-

ysis techniques are the same as the min-max techniques used in the operations research community.

Figure 6.2 shows an abstract pipeline framework in which to reason about networking per-

formance. Time is represented on the x-axis and stage number on the y-axis. Two 2 KB packets are

shown making their way through the network pipeline. The occupancy portion of the time is repre-

sented as light grey, and the Gap portion in dark grey. Table 6.1 shows the actual values as measured

in [106]. Note in the real GAM system, stages 2 and 3 are collapsed into a single stage to simplify

the LANai firmware. However, performance is not affected because the sum of stages 1 and 2 nearly

equals stage 1.

103

Stage Occupancy Gap
(ø sec) (ø sec/KB)

Send CPU 6.7 7.2
Send LANai 5.3 24.5
Wire 0.2 6.4
Recv. LANai 5.2 18.5
Recv. CPU 9.6 7.2

Table 6.1: GAM Pipeline Parameters
This table shows the abstract pipeline parameters for the GAM system. Each stage is abstracted by
a fixed cost, called the occupancy, and a cost-per-byte, which corresponds to a Gap parameter per
stage.

6.2 Example: SPINE IP Router

In this section we explore the overhead reduction techniques used in the Safe Programmable

Integrated Networking Environment (SPINE). SPINE allows fragments of application code to run

on the network interface. An explicit goal of the SPINE system is to improve performance by re-

ducing data and control transfers between the host and I/O device. In the context of this thesis, such

reductions can reduce ù . As we shall see in the next sections, this often comes at the expense of ú
and û . The next sections show that by allowing application code to execute on the network interface,

we can obtain substantial efficiencies in data movement and control transfers.

Loading application-specific code, as opposed to vendor-supplied firmware, onto a pro-

grammable adapter raises many questions. How and when does it execute? How does one protect

against bugs? How does this code communicate with other modules located on the same adapter,

peer adapters, remote devices, or host-based applications spread across a network?

We address these questions using extensible operating system technology derived from

the SPIN operating system [14] and communication technology from the NOW project [5] to de-

sign SPINE. SPINE extends the fundamental ideas of SPIN, that is, type-safe code downloaded into

a trusted execution environment. In the SPIN system, application code was downloaded into the

operating system kernel. In the SPINE environment, code is downloaded into the network adapter.

Extensibility is important, as we cannot predict the types of applications that may want to run directly

on the adapter.

The next sections document an application we have constructed on the SPINE system:

an Internet Protocol router. We have also constructed a video client application. However, the IP

104

SPINE I/O
Runtime

Extension
RouterLANai

Card

Router Application

Network
Kernel

Stack

SPINE I/O
Runtime

Extension
Router

2

3

4

5

6

1

7

Network

Kernel
User

Kernel Runtime
SPINE

LANai
Card

8

I/O Bus

Network
WireWire

Figure 6.3: SPINE IP Router Architecture
This figure shows the SPINE IP router architecture. In the common case, IP packets move directly
between LANai cards, bypassing the main CPU completely.

router is a better example of both the benefits and dangers of the overhead reduction techniques of

the SPINE approach.

6.2.1 Architecture

The SPINE system structure is illustrated in Figure 6.3. Programming re-programmable

adapters requires operating system support both on the host and on the LANai processor. A small

set of core interfaces defines the SPINE run-time. These are implemented in C, and provide a basic

execution environment (e.g. an operating system) to SPINE extensions. In a nutshell, SPINE exten-

sions are application defined code to be loaded onto the network adapter. Extensions are realized as

sets of Modula-3 procedures that have access to the interfaces defined by the SPINE run-time. In

our case, the extensions implement IP router code.

The run-time interfaces exported to extensions include support for messaging, safe access

to the underlying hardware (e.g., DMA controllers), and a subset of the Modula-3 interface. The

interface also consists of message FIFOs that enable user-level applications, peer devices, and ker-

105

nel modules to communicate with extensions on the network adapter using an active message style

communication layer.

User-level applications inject extensions onto the adapter using SPINE’s dynamic linker,

and send messages directly to extensions via a memory mapped FIFO using SPINE’s communication

library. The kernel run-time currently works in the context of Linux and Windows NT.

A Message-Driven Architecture

The primary purpose of a network adapter is to move messages efficiently between the

system and the network media. The network adapter’s basic unit of work is thus a message. To ef-

ficiently schedule messages and the associated message processing, the SPINE I/O run-time uses

a message driven scheduling architecture, rather than the process or thread-oriented scheduling ar-

chitecture found in conventional operating systems. The primary goal is to sustain three forms of

concurrent operation: host-to-adapter message movement, message processing on the adapter, and

adapter-to-network message movement.

Maximizing the number of concurrent operations is our attempt to maximize the effec-

tive bandwidth. If we blocked on each data-movement operation, each DMA engine in the LANai

would see a lower effective bandwidth as it would have to “wait its turn” behind other units. In the

pipelining context, we are thus attempting to maximize the effective ü term at the cost of increased

occupancy. The increase in occupancy arises because of the overhead in managing as many concur-

rent operations as possible. We will see the result of this tradeoff in the next section. Briefly, we see

that occupancy of the I/O processor can result in a serious performance limitation.

In SPINE the message dispatcher manages these concurrent operations. A re-programmable

network adapter not only moves data; it reacts and applies transformations to it as well. On message

arrival, the adapter may have to operate on the data in addition to moving it. This style of processing

is captured well by the Active Message programming model, which we use to program SPINE exten-

sions on the network adapter. Every message in the system is an active message. SPINE extensions

are thus expressed as a group of active message handlers. On message arrival, the SPINE dispatcher

can route messages to the host, a peer device, over the network, or invoke an active message handler

of a local SPINE extension.

As Figure 6.3 shows, the I/O run-time is a glorified message multiplexor, managing the

movement of messages between input queues from the host, the network, and peer LANai cards to the

various output queues. The key difference in the SPINE architecture from other fast message and I/O

106

processing schemes is that extensions provide a safe way for the user to program the interpretation

and movement of messages from any of these sources.

The two goals of handler execution, in order to determine the correct action for each mes-

sage, and rapid message flow implies that handlers must be short-lived. Thus, the contract between

the SPINE run-time and extension handlers is that the handlers are given a small, but predictable

time to execute. If a handler exceeds the threshold it is terminated in the interests of the forward

progress of other messages. Long computations are possible, but must be expressed as a sequence

of handlers. The premature termination of handlers opens a Pandora’s box of safety issues. We do

not describe these issues in this thesis, as they are tangential to the investigation of host-overhead

reduction. The reader is referred to [40] for a complete treatment of the resulting operating systems

issues.

To increase the amount of pipelining in the system, message processing is broken up into

a series of smaller events. These events are internally scheduled as active messages, which invoke

system provided handlers. Thus, only a single processing loop exists; all work is uniformly imple-

mented as active messages. We document the performance of these internal messages, and thus the

throughput and latency of the SPINE I/O run-time, in the next section.

Returning to Figure 6.3 we can trace the execution of events in the SPINE IP router. The

sequence of events needed to route an IP packet from one adapter to another are:

1. The router application communicates with the SPINE kernel run-time to obtain a queue into

the I/O run-time running on the LANai card.

2. The router application loads the router extension onto the LANai and then loads the IP routing

tables onto the extension.

3. As a packet arrives from the wire, the hardware network DMA engine spools it to card-memory.

The I/O run-time polls a set of software events; one of which polls a hardware event register.

When the packet arrives, the head of the message specifies it is for the IP router extension.

4. The I/O run-time calls the router extension receive event. If no router extension is loaded, the

run-time drops the packet.

5. After looking up the destination LANai of the packet, the router extension calls into the I/O

run-time to send the packet to the output queue on the correct LANai card.

107

Poll Q0
Poll Q1
Poll Q2
Poll Q3
Poll Q4
Poll Q5
Poll Q6
Free buffer
Peer ACK
Rx check header
Rx check body
EnQ router in
Router In handler
EnQ IP output
Peer to peer start
DMA start handler
DMA generic start
DMA start body
DMA start header

0 10 20 30 40 50 60 70 80 90 100 110 120 130

SPINE IP Router Event Graph

Time (µsec)

E
ve

n
t
T
yp

e Route
Packet 2

Route
Packet 1

Rt.
Pkt. 3

DMA
Packet 1

DMA
Packet 0

DMA
Packet 2

Receive
Packet 1

Receive
Packet 2

Receive
Packet 3

Figure 6.4: SPINE IP Router Event Plot
This figure plots events as they unfold in the SPINE IP router. Time is shown on the x-axis and event
types on the y-axis. A box is plotted at the point in time at each event occurrence. The width of the
box corresponds to the length of the event. The dashed rectangles correspond to higher-level packet
semantics: receiving a packet, routing it, and forwarding it over the PCI bus. The arrows trace the
causal relationships of a single packet as it moves through the system.

6. The I/O run-time sends the packet to the LANai card specified. In this case, the packet must

move over the I/O bus into the input queue of another LANai card.

7. The second LANai card does not need to forward the packet to any extensions; the address of

the output queue was known to the router extension. Thus, on finding the entire packet in the

I/O bus input queue, the I/O run-time invokes the wire-output routine.

8. If the extension can not route the packet, it can be sent to the kernel network stack for further

processing. Later, the host OS can route the packet to the appropriate card.

6.2.2 SPINE Event Processing

In this section, we show how SPINE event processing translates into overall performance.

The apparatus for our experiments is different than the one used in the rest of this thesis. We use a

cluster of 4 Intel Pentium Pro workstations (200MHz, 64MB memory, 512 KB L2 cache) running

108

Windows NT version 4.0. One node has four LANai cards and acts as the router. The Myricom

LANai adapters are on a 33 MHz PCI bus, and they contain 1MB SRAM card memory. The LANai

is clocked at 33 MHz, and has a wire rate of 160MB/s.

Figure 6.4 shows a real snapshot of the event processing. We used algorithms for forward-

ing table compression and fast IP lookup described in [79], and inserted one thousand routes into less

than 20KB of memory on the adapter. The event trace was collected while forwarding two million

packets at a maximum rate such that the percentage of dropped packets was less than 0.5%. The

average per-packet processing time, or ý , was 95 þ s/packet.

In order to understand Figure 6.4, first recall that all SPINE processing is ultimately de-

composed into internal Active Message handlers. For example, when the IP router extension calls

the procedure to forward a message to a peer device, the run-time implements this functionality by

issuing a series of active messages to itself. Thus, event and handler invocation becomes synony-

mous. This approach not only simplifies the dispatcher, but it also exposes the natural parallelism

inherent in the operation.

The x-axis in Figure 6.4 represents time. The y-axis is an enumeration of event (handler)

types. The dark boxes represent time spent in event processing. The position of the boxes on the

x-axis shows the time a particular event took place. The position on the y-axis shows what event

was processed at that time. The width of the dark box shows the length of the event. For example,

during the period between 16 and 20 microseconds, the IP routing handler (Step 4 in Figure 6.3) was

running.

The events are ordered by type. The lower events are polls to the 7 input queues. The next

set (peer ACK and Free buffer) are LANai-to-LANai flow control over the PCI bus. Receiving over

the wire occupies the next 3 events, followed by only 2 events needed to route the packet. The final

5 events manage the DMA engine over the PCI bus.

Because SPINE breaks message processing into many tiny events, the event graph at first

appears to be a jumbled maze with little discernible structure. In reality however, Figure 6.4 shows

a regular, periodic pattern. The key to understanding the event graph is to recognize the high level

structure shown in Figure 6.3 emerging from the thicket of small events. From these patterns we can

deduce both the rate at which packets are processed, as well as the latency of a packet as it passes

through the system. The dashed rectangles in Figure 6.4 outline higher-level packet-processing steps.

Recall that to route an IP packet requires 3 high level operations: receiving the packet (step 3 in

Figure 6.3), determining the destination (routing, step 4 in Figure 6.3), and forwarding the packet to

an egress adapter (steps 5-6 in Figure 6.3).

109

The gap, ÿ , in terms of seconds per packet, is easily discernible via the period of new pro-

cessing steps in the event graph. The time between receiving packets 1, 2 and 3 in Figure 6.4 is

roughly 55 � s. The period for other kinds of processing, such as routing and DMA, is similar. Thus,

we can conclude that we can route a new IP packet once every 55 � s.

The latency, � , or time it takes a single packet to move through the system, is observable

by tracing the path of a single packet. The arrows in Figure 6.4 trace the processing path of packet

2 as it is received, routed, and transferred to the egress adapter. From the graph we can see that the

latency of a packet through the input adapter is roughly 100 � s. Note that the bandwidth and latency

are distinct due to overlap (as shown in Figure 6.4). The gap is determined by the most complex

operation, which is the DMA of the packet between the two LANai cards.

A large discrepancy exists between the average measured ÿ of 95 � s/packet and the ob-

served times in Figure 6.4 of 55 � s/packet. The key to understanding the missing 40 microseconds

is that Figure 6.4 does not show a typical event ordering; rather it is a best case ordering.

We have discovered by observing many event plots that the slightly lower priority of PCI

events in SPINE results in oscillations of event processing. Several incoming packets are serviced

before any outgoing packets are sent over the PCI. These oscillations break an otherwise smooth

packet pipeline. The system oscillates between the fast state of one-for-one receive-and-send, and the

slow state of receiving a few packets and draining them over PCI. In our pipelining model, this would

be modeled as a succession of occupancies followed by a several transfers, forming large pipeline

bubbles. The net result is that the average forwarding time increases from 55 to 95 � s. We are cur-

rently investigating ways to improve the priority system of the SPINE dispatcher to eliminate this

effect.

A closer look at Figure 6.4 shows two key limitations of the SPINE architecture. First, a

general-purpose event scheduler may not always optimize performance. Second, the occupancies

needed to multiplex many hardware devices on a weak embedded processor are substantial.

SPINE was constructed to be general enough so that the natural parallelism of packet pro-

cessing would automatically be interleaved with user extensions. However, precise scheduling would

be possible if we a priori knew what sequence of events need to be processed, and thereby achieve

better overall performance. Indeed, many other projects [81, 103] have exploited this fact and de-

veloped firmware with a fixed event-processing schedule that is specialized for a specific message

abstraction or application. The lack of an efficient, static processing schedule may be an inherent

limitation of any general-purpose system.

The second weakness in the SPINE architecture is that the occupancy to multiplex many

110

Platform � (� s) � (� s) � (� s) MB/s ���	�

SPINE IP Router 0.0 95 155 17.0
USC/ISI IP Router 80 80 - 16.7
UltraSPARC GAM 2.9 5.8 5.0 38

Table 6.2: SPINE LogGP Parameters.
This table shows the LogGP performance of the SPINE IP router, the USC/ISI IP router, and the
Berkeley GAM system. � is at 2 KB packet size; larger sizes are possible for the USC/ISI router. Both
the USC/ISI and SPINE routers use identical hardware, but much different software architectures.
The gap of the USC/ISI router is equal to the overhead, because the CPU is the bottleneck for small
packets. The gap in the SPINE router is limited by the internal scheduling algorithm of the SPINE
I/O run-time. Latency results were not reported for the USC/ISI router. The table shows the SPINE
safety and functionality services in the LANai significantly increase the � and � terms over the basic
GAM parameters.

concurrent events is substantial. In terms of our pipeline model, these occupancies show up in the

fixed cost per packet, i.e., the occupancy. Each packet requires 29 events to process, resulting in a

long occupancy of 100 � s per packet. Many of these events are checks for events that never occur.

For example, polls to queues that are empty. However, many are more insidious forms of occupancy,

such as events to manage the concurrency of the host-DMA engine.

A somewhat disappointing result is that in spite of aggressive overlap, the occupancies of

the LANai processor greatly lengthen the period of packet processing. Observe how the box outlin-

ing the “DMA packet 1” in Figure 6.4 is lengthened by 10 � s due to the polls to the input queues

during the period between 75-85 � s. If the LANai processor had better PCI messaging support, the

period could be reduced.

The net result is that the pipeline formed by the SPINE IP router has a � of within 15 � s and

a slightly better � than a router built from the same 200 MHz Pentium Pro processor, the same LANai

cards and a modified BSD TCP/IP stack [105]. 1 Table 6.2 summarizes the LogGP parameters of the

two routers. Although the SPINE architecture can obtain close to the same performance in terms of

gap and latency with a weaker CPU, it is not clear that without additional architectural support, such

as a faster embedded processor or additional messaging support, if the overhead reducing techniques

of the SPINE architecture are worth the additional software complexity.

In the server context where high CPU utilization due to I/O results in unacceptable per-

formance degradations, such as in Global Memory Systems [102], SPINE-like architectures make

The device driver copies only the packet headers into host memory. Special code in the device driver and LCP does

a direct LANai-to-LANai DMA after the regular host OS makes the forwarding decision.

111

sense. However, in the more general case advanced I/O architectures should improve gap and la-

tency as well. Architectures more radical than SPINE are needed to deliver an order of magnitude

performance improvement for single communication streams. A slew of novel software protocols

can deliver this kind of overhead reduction [25, 72, 81, 103]. However, an unfortunate problem with

these protocols is that in order to obtain their performance one loses connectivity to a vast body of

applications. An open question is thus if new I/O architectures can obtain an order-of-magnitude

performance improvement over traditional designs while maintaining connectivity to common pro-

tocols stacks.

112

Chapter 7

Conclusions

Caltrans spent $1 billion to replace the old Cypress freeway. It spent millions more
to widen Interstate 80. But ... the commute hasn’t gotten any better. The problem is
not the new Cypress freeway – it’s getting to it from Berkeley and beyond. —Catherine
Bowman, SF Chronicle, Feb. 8, 1999.

This 980 thing has been ridiculous. —David E. Culler, SF Chronicle, Oct. 1, 1998.

This chapter concludes the thesis. We organize our conclusions around the four areas of

contributions: performance analysis, observed application behavior, architecture and modeling. Each

section also provides some perspective about how this thesis fits into the wider context of computer

science and the sciences in general.

We conclude this chapter with a short analogy in the hope that it will help the reader re-

member our results. We then present some open questions and promising areas of research. We end

with some final thoughts for the reader to contemplate.

7.1 Performance Analysis

This thesis demonstrates that performing application-centric sensitivity emulation experi-

ments validated with analytic modeling is a powerful strategy for understanding complex computer

systems. The fundamental premise of the method is that by introducing precision delays in key

components we can understand their importance to overall system performance. Our perturbation

method is surprising simple, almost to the point of seeming uninteresting. However, system design-

ers use a similar style of analysis all the time in analytic modeling—so much so that the style has a

name: bottleneck analysis. What makes the method in this thesis unique is that we have applied a

similar methodology to real systems as opposed to analytic models or simulations.

113

The perturbation nature of the method has much in common with the experiments in the

life-sciences. Even the smallest living organisms contain a complexity well beyond anything man-

made. A fundamental question is thus how to even begin to understand such systems. Yet, many

experiments in the life sciences take a similar, simple approach as in this thesis. The first step is to

“damage” (in our case, slowdown) a component in a controlled manner. Next, a stimulus is applied

to the system (e.g. running the application) and then the experimenter can observe differences in

behavior from the baseline, “undamaged” system. Differences in behavior are thus related in some

way to the modified component. An experiment in the field of neuroscience using this style of anal-

ysis can be found in [85]. It is somewhat eerie that computer systems are approaching a level of

complexity that necessitates this style of analysis.

Another advantage of the method is that we can probe the system in a systematic manner

without having to rely on factor analysis. This is quite different from more traditional studies com-

paring systems. Many studies compare two or more systems which differ from each other in many

dimensions. A factor analysis must then be used to quantify the impact of each component. The

method presented in this thesis takes an opposite approach. Because each factor can be controlled,

we can use a single system and adjust the factors one at a time.

As computer systems become more complex, perhaps the methods used in this thesis will

become more widespread. For example, often the claim is made that “the network is too slow”. Us-

ing the methods in this thesis, we could slow the network down and observe if any application metrics

changed. If nothing changed, we can rest assured that some other component is the bottleneck. If, on

the other hand, we observe an immediate slowdown, we may conclude that improving the network

will improve performance to until some other component becomes the bottleneck.

Our style of analysis is not limited to networks; we could apply our methodology to com-

ponents in computer architecture, operating systems, graphics, and indeed, any computer systems

area. For example, often the claim is made that the context switch time of the operating system is

too slow. One could artificially inflate this time and observe the effects on application behavior in or-

der to determine the sensitivity to context switch time. In a like manner, we could slow down the file

system, virtual memory and other sub-systems in the operating system to help us isolate the impact

of these systems.

The reasons for a dearth of live sensitivity approaches in the computer sciences are two-

fold. First, it is a formidable engineering effort to construct a tunable apparatus. As we saw in Chap-

ter 2, the construction requires access to components that were not designed for modification. Simu-

lation suffers from a similar drawback in that a reasonable simulation requires substantial engineer-

114

ing effort. A second reason for the lack of live approaches is that the calibration can be almost as

involved as building the apparatus itself. The calibration aspect cannot be taken lightly; a bug in the

apparatus can easily ruin the whole experiment. The calibration aspect again mirrors experiments in

other sciences, where recording calibrations can become a daily event. Fortunately, the calibrations

needed in this thesis, although extensive, are not so tedious.

There is a large weakness with the method of this thesis, however. Although straightfor-

ward to observe cause and effect, without a model such data is merely adds to an increasing obscure

pile of experimental results. As the quote in Chapter 5 shows, such data in an of itself is of little

value unless it leads to an understanding of the how and why a system works. In this thesis, we have

attempted to use as simple models as possible to understand application behavior. We discuss the

effectiveness and character of our models in Section 7.4.

7.2 Application Behavior

The “live system” nature of our method is much more powerful than relying on analytic

modeling or simulation alone, because we can make statements about application behavior. These

observations, coupled with the LogGP model, allow us to draw architectural conclusions as well.

We have found that applications use a wide range of latency tolerating techniques, and that

these work quite well in practice. A little reflection shows that this should not be too surprising given

the tremendous attention given to latency tolerating techniques from many areas of computer science.

Indeed, the 1990’s has seen a broad, if somewhat disorganized, assault on the “latency” problem

from the theory, language, and architecture communities. For example, models such as BSP, LogP

and QSM are important theoretic tools needed to design algorithms which mask latency. Languages

such as Id and Split-C were designed to allow the programmer and run time system to tolerate latency.

On the architectural front, recent designs have emphasized reduced overhead and simpler interfaces

to allow for greater latency tolerance (e.g. the T3D vs. T3E). The importance of these techniques

across a broad range of computer science is such that they have entire book chapters devoted to the

them [32].

In spite of the many latency tolerant programs, NFS does exhibit hyper-sensitivity to la-

tency for the performance regimes of traditional LANs. However, as was noted in Chapter 5.6, IP

switching hardware has crossed a fundamental threshold into the 10-20 microsecond regime. Al-

though these latencies are still an order of magnitude higher than current SANs, they push NFS into

a latency-insensitive region.

115

Of the applications studied, the NPB represent the least sensitive to all the LogGP param-

eters. This is partly due to the combination of scaling rule (fixed problem size) and machine size

used. On a 32 processor machine the communication to computation ratio is quite small, even with

the larger class B problem size. Given fixed problem-size scaling, only on very large configurations,

e.g. 512 processors, will any of the LogGP parameters have much impact on overall performance.

A second reason the NPB are quite insensitive to communication is because these codes

have been extensively studied at the algorithmic level. Over the past 10 years much attention has

been focused on how to minimize communication costs in these codes. Given that the early parallel

machines that the NPB were developed on (e.g. the nCUBE/2 and the iPSC/1) had very large com-

munication costs (5,000+ cycles) it is not too surprising that much attention was given to minimizing

the costs of communication. In fact, literature from the 1980’s often models all communication as

pure overhead, because message passing machines at the time provided little opportunity for over-

lap [42].

It is interesting to conjecture if the application behavior observed is fundamental to the ap-

plication, or simply a historical accident. The developers of each suite certainly had an architectural

model in mind when designing the applications measured in this thesis, and this is reflected in the

structure of the applications. For the Split-C/AM benchmarks, the model was low-overhead parallel

machines and clusters. The NPB were designed in the context of previous generation high-overhead

hypercubes. NFS was developed in the LAN context. Perhaps the only certain claim we can make

about the “fundamental” properties of these applications is that with the passage of time, program-

mers will invent new ways to tolerate latency and avoid overhead. The clever application designer

is rewarded for shifting the sensitivity of the application away from � , avoiding � , and towards �
and � wherever possible. A common pattern is that as applications age, they first lose sensitivity to

latency, then to overhead, and finally end with some sensitivity to a form of bandwidth (either � or

�).

7.3 Architecture

The primary architectural result of this thesis is that software overheads for communica-

tion performance are still too high. Of all the LogGP parameters, the sensitivity to � cannot be over-

stated. This is because many of the latency-tolerating techniques are still sensitive to overhead. For

example, work overlapping and communication pipelining techniques still incur a cost of � on every

message, even though they can mask latency.

116

Even for Split-C/AM applications, which were developed on low-overhead machines, over-

head is still a limiting factor. Sensitivities slopes of 1-2 were common for the Split-C/AM programs.

For NFS, we observed a sensitivity slope of -1.5 in overhead vs. throughput. These sensitivities also

do not have flat regions, implying that further reductions in overhead will have immediate benefits.

We observed some of the benefits of reduced overhead for NFS in the Network Appliance box; that

machine can sustain a much higher throughput than a comparable box running OSF/1 by using a

specialized operating system.

The NAS Parallel Benchmarks did not exhibit much sensitivity to overhead. This result is

clearly explainable by observing the applications’ structure; few messages are sent for the machine

size (32) and problem size (class B) used in this study. Our results might be different if we extrap-

olated to an order-of-magnitude change in machine size, i.e., a 512-node machine. However, such

machines are the uncommon case. Much as they have in the past, “small” configurations of 32 and

64 nodes will continue to dominate the field of parallel computing.

Almost all of the latency tolerating techniques of applications shift the sensitivity from

latency to some form of bandwidth, either per-message as in � or per-byte, � . The pressures that

latency tolerating techniques place on bandwidth are not unique to networking, they have been ob-

served in the CPU regime as well [20]. Although maintaining a high per-byte bandwidth is quite

tractable, obtaining high per-message bandwidths is still an architectural challenge.

Our results on application behavior lead us to the somewhat counterintuitive architectural

conclusion that future architectures do not need to continue to optimize for network transit latency.

Instead, designers should focus on reducing overhead. Programmers are adept at using latency-tol-

erating techniques, thus architectures should focus on enabling programmers to better tolerate la-

tency. From an architectural perspective, building machines to tolerate latency is easier than reducing

the entire end-to-end path. In practice, it means designers should concentrate on improving access

to the network interface while maintaining a high message rate; many latency tolerating techniques

are still sensitive to overhead and gap.

A host of novel techniques exist to reduce both overhead and gap in the network inter-

face hardware/software combination. However, the problem with non-standard techniques is that

they ignore a very large existing infrastructure which is unlikely to change for the foreseeable fu-

ture. Powerful non-technical forces will continue to cause large software overheads. Intuitively, the

network interface is where three vendors’ software and hardware must work together: the operating

system vendor, the switch/hub vendor, and the network interface hardware vendor. Immutable stan-

dards for connecting all three are thus inevitable. For example, porting NFS to any of the alternative

117

message passing layers is not impossible, but is certainly a formidable engineering task. The chal-

lenge to future network interface designers will be to reduce overhead and gap while maintaining

connectivity between applications in the existing infrastructure.

One might be tempted to simply add CPU’s and network interfaces in a large SMP box to

decrease the effective gap and Gap, or to amortize the overhead among many processors. However,

such an approach has several limitations. First, the parallelization of a single stream is quite limited

using current operating systems [91]. Thus, In order to obtain a reduced gap, the application has to

parallelize the communication into multiple streams itself. Second, the size of the machine needed

to sustain a very high effective � and � is substantial. For example, in order to add just 8 gigabit

network interfaces into a server and use them simultaneously requires 8 separate I/O busses. While

machines of this size do exist, the very high premium attached to this class of machines is well-

known.

7.4 Modeling

We have found that simple models can give “reasonable” performance predictions. The

simple frequency-cost pair overhead models were often close to the measured performance. At worst

they were 50% inaccurate. The results for gap were farther off, and for latency the results are even

more inaccurate. From an architectural standpoint, these results shows that a simple frequency-cost

pair analysis is an adequate “ballpark” measure for a system designer. However, more detailed ap-

plication and system models are needed (e.g. [39, 43]) to make truly accurate predictions across a

range applications and machine configurations.

The simple models proved useful in evaluating assumptions about application behavior.

For example, the simple gap models showed that communications are bursty in nature for both the

Split-C/AM programs and NPB. These models also showed that serial dependencies can cause hyper-

sensitives to overhead. The radix sort is a prime example of this effect.

The queuing models used for the NFS system are much more accurate than simple fre-

quency cost-pair models used for the other applications. This accuracy, however, is somewhat cir-

cular. The SPECsfs benchmark is built using some assumptions of queuing theory, namely the traffic

is generated as a Poisson process. Given that observed traffic is quite bursty, we would expect actual

NFS traffic to be more sensitive to overhead and Gap than our results showed. However, given that

the observed sensitivity to � is very low, even under the worst-case assumption that all messages

are sent in bursts, the small nature of observed NFS requests means that even current LANs will not

118

bandwidth limit NFS.

The one place where the queuing model proved quite useful was in interpreting the results

of vendors’ SFS curves. Section 5.6 gave a small example of how we could compare two servers

given SFS curves and the SPECsfs disclosures. We saw that we could, for example, derive the to-

tal software overhead from observing the base, slope and saturation points. An interesting exercise

would be to see how well the model did on a variety of published curves. However, such a compar-

ison is beyond the scope of this thesis.

7.5 Final Thoughts

Modern computer systems have reached mind boggling complexity. The design of a mod-

ern business server includes sub-systems that are impressive engineering achievements in their own

right: the processor, the memory and I/O system, the operating system, the database and the business

application logic.

To make the example more concrete, imagine the number of designers involved in a 4-way

UltraSPARC III server, running Solaris 7, Oracle 8 and SAP R/3 on 18 GB IBM disk drives, stitched

together with the UPA memory bus, multiple PCI and SCSI busses, and connected to the outside

world via Alteon gigabit Ethernets (each with 2 processors). The number of people involved in the

entire design certainly ranges into the tens of thousands. No one person can hope to understand it

all. Yet, performance analysis of such systems is not an impossible task.

The staggering complexity of such systems will require computer performance analysts to

increasingly use “black-box” methods. In this thesis we investigated one such method in the context

of computer networks. Similar analysis techniques will eventually become an accepted methodology

in computer science, much as they have in the other sciences.

With regard to our findings, we leave the reader with a short analogy in the hope it will

serve as an aid to recalling our experimental results. The quotations at the beginning of this chapter

parallels an everyday experience many drivers have in the San Francisco Bay Area have to that of

modern computer networks. Commuters often wonder why after opening the billion dollar Cypress

freeway, congestion seems just as bad as when using the previous detour, Interstate 980. On a smaller

scale, computer users wonder why, after installing their new gigabit networks, applications don’t

seem any faster. In both cases, it’s not the freeway or network that is the limiting factor per say.

Rather, it’s the access to the network or freeway: software overhead in computer networks, on-ramps

in the freeway case, that are the real bottlenecks.

119

The SPINE work showed some of the benefits and costs of using more specialized software

to reduce overhead. Although quite successful at reducing overhead, the resulting pipeline was not

faster in terms of gap or latency than a fast CPU running a more standard, but still modified, TCP/IP

stack. Chapter 6 showed that it an open question is if the overhead reduction obtainable with novel

SAN protocols can be achieved with the much more common Internet protocols.

In the final analysis, we can conclude from the results in this thesis that computer systems

are complex enough to warrant our controlled perturbation, emulation-based methodology. We ob-

served that programmers used a variety of latency tolerating techniques and that these work quite

well in practice. However, many of these techniques are still sensitive to software overhead. We

found that without either more aggressive hardware support or the acceptance of radical new proto-

cols, software overheads will continue to limit communication performance across a wide variety of

application domains.

120

Bibliography

[1] AHN, J. S., DANZIG, P. B., LIU, Z., AND YAN, L. Evaluation of TCP Vegas: emulation
and experiment. In Proceedings of the ACM SIGCOMM ’95 Conference on Communications
Architectures and Protocols (Cambridge, MA, Aug. 1995).

[2] ALEXANDROV, A., IONESCU, M., SCHAUSER, K. E., AND SCHEIMAN, C. LogGP: In-
corporating Long Messages into the LogP model - One step closer towards a realistic model
for parallel computation. In 7th Annual Symposium on Parallel Algorithms and Architectures
(May 1995).

[3] ANDERSON, E. A., AND NEEFE, J. M. An Exploration of Network RAM. Tech. Rep. CSD-
98-1000, University of California at Berkeley, July 1998.

[4] ANDERSON, J.-A. M., BERC, L. M., DEAN, J., GHEMAWAT, S., HENZINGER, M. R., LE-
UNG, S.-T., SITES, R. L., VANDERVOORDE, M. T., WALDSPURGER, C. A., AND WEIHL,
W. E. Continuous Profiling: Where Have All the Cycles Gone? In Proceedings of the 16th
ACM Symposium on Operating Systems Principles (1997), pp. 1–14.

[5] ANDERSON, T. E., CULLER, D. E., PATTERSON, D. A., AND THE NOW TEAM. A Case
for NOW (Networks of Workstations). IEEE Micro (Feb. 1995).

[6] ARGONNE NATIONAL LABORATORY. MPICH-A Portable Implmentation of MPI, 1997.
http://www.mcs.anl.gov/mpi/mpich.

[7] ARPACI, R. H., CULLER, D. E., KRISHNAMURTHY, A., STEINBERG, S., AND YELICK,
K. Empirical Evaluation of the CRAY-T3D: A Compiler Perspective. In Proceedings of the
22nd International Symposium on Computer Architecture (1995).

[8] ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H., CULLER, D. E., HELLERSTEIN,
J. M., AND PATTERSON, D. A. High-performance sorting on networks of workstations. In In
Proceedings of the ACM International Conference on Management of Data (SIGMOD) (Tuc-
son, AZ, May 1997), pp. 243–254.

[9] BAILEY, D. H., BARSZCZ, E., BARTON, J. T., BROWNING, D. S., CARTER, R. L.,
DAGUM, L., FATOOHI, R. A., FREDERICKSON, P. O., LASINSKI, T. A., SCHREIBER,
R. S., SIMON, H. D., VENKATAKRISHNAM, V., AND WEERATUNGA, S. K. The NAS Par-
allel Benchmarks. International Journal of Supercomputing Applications 5, 3 (1991), 63–73.

121

[10] BAILEY, D. H., BARSZCZ, E., DAGUM, L., AND SIMON, H. D. NAS Parallel Benchmark
Results. Tech. Rep. RNR-93-016, NASA Ames Research Center, 1993.

[11] BAILEY, D. H., HARRIS, T., DER WIGNGAART, R. V., SAPHIR, W., WOO, A., AND

YARROW, M. The NAS Parallel Benchmarks 2.0. Tech. Rep. NAS-95-010, NASA Ames
Research Center, 1995.

[12] BAILEY, M. L., PAGELS, M. A., AND PETERSON, L. L. The x-chip: An Experiment in
Hardware Demultiplexing. In Proceedings of the IEEE Workshop on High Performance Com-
munications Subsystems (Feb. 1991).

[13] BARSZCZ, E., FATOOHI, R., VENKATKRISHNAN, V., AND WEERATUNGA, S. Solution of
Regular, Sparse Triangular Linear Systems on Vector and Distributed-Memory Multiproces-
sors. Tech. Rep. RNR-93-007, NASA Ames Research Center, Apr. 1993.

[14] BERSHAD, B. N., CHAMBERS, C., EGGERS, S., MAEDA, C., MCNAMEE, D., PARDYAK,
P., SAVAGE, S., AND SIRER, E. G. SPIN—An Extensible Microkernel for Application-
Specific Operating System Services. Tech. rep., University of Washingtion, 1994.

[15] BLACK, R., LESLIE, I., AND MCAULEY, D. Experience of Building an ATM switch for
the Local Area. In Proceedings of the ACM SIGCOMM ’94 Conference on Communications
Architectures and Protocols (London, UK, Sept. 1994), pp. 158–167.

[16] BLUMRICH, M. A., LI, K., ALPERT, R., DUBNICKI, C., FELTEN, E., AND SANDBERG, J.
Virtual Memory Mapped Network Interface for the SHRIMP Multicomputer. In Proceedings
of the 21st International Symposium on Computer Architecture (Apr. 1994).

[17] BODEN, N. J., COHEN, D., FELDERMAN, R. E., KULAWIK, A. E., SEITZ, C. L.,
SEIZOVIC, J. N., AND SU, W.-K. Myrinet—A Gigabit-per-Second Local-Area Network.
IEEE Micro 15, 1 (Feb. 1995), 29–38.

[18] BREWER, E. A. High-Level Optimization via Automated Statistical Modeling. In Proceed-
ings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP) (June 1995).

[19] BREWER, E. A., AND KUSZMAUL, B. C. How to Get Good Performance from the CM-5
Data Network. In Proceedings Eighth International Parallel Processing Symposium (SPAA)
(Cancun, MX, Apr. 1994).

[20] BURGER, D., GOODMAN, J. R., AND KAGI, A. Memory Bandwidth Limitations of Future
Microprocessors. In Proceedings of the 23rd International Symposium on Computer Archi-
tecture (Philadelphia, PA, May 1996), pp. 78–89.

[21] CHANG, K., MORRIS, R., AND KUNG, H. T. NFS Dynamics Over Flow-Controlled Wide
Area Networks. In Proceedings of the 1997 INFOCOMM (Kobe, Japan, Apri 1997), pp. 619–
625.

[22] CHESAPEAKE COMPUTER CONSULTANTS, INC. Test TCP (TTCP), 1997. http://www.ccci.-
com/tools/ttcp/.

122

[23] CHIOU, D., ANG, B., ARVIND, BECKERLE, M., BOUGHTON, G., GREINER, R., HICKS,
J., AND HOE, J. StarT-NG: Delivering Seamless Parallel Computing. In EURO-PAR’95
Conference (Aug. 1995).

[24] CHIU, D. M., AND JAIN, R. Analysis of the Increase and Decrease Algorithms for Conges-
tion Avoidance in Computer Networks. Computer Networks and ISDN Systems 17 (1989),
1–14.

[25] CHUN, B. N., MAINWARING, A. M., AND CULLER, D. E. Virtual Network Transport Pro-
tocols for Myrinet. IEEE Micro 18, 1 (1998), 53–63.

[26] CLARK, D. D., JACOBSON, V., ROMKEY, J., AND SALWEN, H. An Analysis of TCP Pro-
cessing Overhead. IEEE Communications Magazine 6 (June 1989), 23–29.

[27] CMELIK, B., AND KEPPEL, D. Shade: a Fast Instruction-set Simulator for Execution Profil-
ing. In Proceedings of the 1994 ACM SIGMETRICS Conference (May 1994).

[28] CULLER, D. E., DUSSEAU, A. C., GOLDSTEIN, S. C., KRISHNAMURTHY, A., LUMETTA,
S., VON EICKEN, T., AND YELICK, K. Parallel Programming in Split-C. In Proceedings of
Supercomputing ’93 (1993), pp. 262–273.

[29] CULLER, D. E., KARP, R. M., PATTERSON, D. A., SAHAY, A., SCHAUSER, K. E., SAN-
TOS, E., SUBRAMONIAN, R., AND VON EICKEN, T. LogP: Towards a Realistic Model of
Parallel Computation. In Fourth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (1993), pp. 262–273.

[30] CULLER, D. E., KEETON, K. K., LIU, L. T., MAINWARING, A. M., MARTIN, R. P., RO-
DRIGUES, S., WRIGHT, K., AND YOSHIKAWA, C. O. The Generic Active Message Inter-
face Specification. NOW Research Project White Paper, http://now.cs.berkeley.edu/Papers2,
1995.

[31] CULLER, D. E., LIU, L. T., MARTIN, R. P., AND YOSHIKAWA, C. O. Assessing Fast Net-
work Interfaces. In IEEE Micro (Feb. 1996), vol. 16, pp. 35–43.

[32] CULLER, D. E., SINGH, J. P., AND GUPTA, A. Parallel Computer Architecture: A Har-
ware/Software Approach. Morgan Kaufmann, 1999.

[33] DALTON, C., WATSON, G., BANKS, D., AND CALAMVOKIS, C. Afterburner (network-
independent card for protocols). IEEE Network 3, 4 (July 1993), 36–43.

[34] DILL, D., DREXLER, A., HU, A., AND YANG, C. Protocol Verification as a Hardware De-
sign Aid. In International Conference on Computer Design: VLSI in Computers and Proces-
sors (1992).

[35] DONGARRA, J. J., AND DUNIGAN, T. Message-Passing Performance of Various Computers.
Tech. Rep. UT-CS-95-299, University of Tennessee, Knoxville, July 1995.

[36] DONGARRA, J. J., AND DUNIGAN, T. MPI Benchmark, May 1995. http://www.netlib.org.-
benchmark/comm.tgz.

123

[37] DUBE, R., RAIS, C. D., AND TRIPATHI, S. Improving NFS Performance Over Wireless
Links. IEEE Transactions on Computers 46, 3 (Mar. 1997), 290–298.

[38] DUCHAMP, D. Optimistic Lookup of Whole NFS Paths in a Single Operation. In Proceedings
of the 1994 USENIX Summer Conference (Boston, MA, June 1994), pp. 161–169.

[39] DUSSEAU, A. C., CULLER, D. E., SCHAUSER, K. E., AND MARTIN, R. P. Fast Paral-
lel Sorting Under LogP: Experience with the CM-5. In IEEE Transactions on Parallel and
Distributed Systems (1996), vol. 7, pp. 791–805.

[40] FIUCZYNSKI, M. E., MARTIN, R. P., BERSHAD, B. N., AND CULLER, D. E. SPINE: An
Operating System for Intelligent Network Adapters. Tech. Rep. UW-CSE-98-08-01, Univer-
sity of Washington, Aug. 1998.

[41] FOX, A., GRIBBLE, S., CHAWATHE, Y., AND BREWER, E. Scalable Cluster-Based Network
Services. In Proceedings of the 16th ACM Symposium on Operating Systems Principles (Oct.
1997).

[42] FOX, G. C., JOHNSON, M. A., LYNENGA, G. A., OTTO, S. W., SALMON, J. K., AND

WALKER, D. W. Solving Problems on Concurrent Processors: General Techniques and Reg-
ular Problems. Prentice Hall, 1988.

[43] FRANK, M. I., AGARWAL, A., AND VERNON, M. LoPC: Modeling Contention in Parallel
Algorithms. In Proceedings of SIXTH ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP) (June 1997).

[44] FROESE, K. W., AND BUNT, R. B. The Effect of Client Caching on File Server Workloads.
In Proceedings of the 29th Hawaii International Conference on System Sciences (Wailea, HI,
Jan. 1996), pp. 150–159.

[45] GHORMLEY, D. P., PETROU, D., RODRIGUES, S. H., VAHDAT, A. M., AND ANDERSON,
T. E. GLUnix: a Global Layer Unix for a Network of Workstations. Software Practice and
Experience 28, 9 (July 1998), 929–61.

[46] GIBBONS, P., MATIAS, Y., AND RAMACHANDRAN, V. Can a Shared-Memory Model Serve
as a Bridging Model for Parallel Computation? In Symposium on Parallel Algorithms and
Architectures (July 1997), pp. 72–83.

[47] GILLETT, R. B. Memory Channel Network for PCI. In IEEE Micro (Feb. 1996), vol. 16,
pp. 12–18.

[48] GUSELLA, R. A Measurement Study of Diskless Workstation Traffic on an Ethernet. IEEE
Transactions on Communications 38, 9 (Sept. 1990), 1557–1568.

[49] HALL, J., SABATINO, R., CROSBY, S., LESLIE, I., AND BLACK, R. Counting the Cycles:
a Comparative Study of NFS Performance Over High Speed Networks. In Proceedings of the
22nd Annual Conference on Local Computer Networks (LCN’97) (Minneapolis, MN, Nov.
1997), pp. 8–19.

124

[50] HENNESSY, J. L., AND PATTERSON, D. A. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, 1996.

[51] HITZ, D., LAU, J., AND MALCOLM, M. File System Design for an NFS File Server Appli-
ance. In Proceedings of the Winter 1994 USENIX Conference (San Francisco, CA, Jan. 1994),
pp. 235–246.

[52] HOLT, C., HEINRICH, M., SINGH, J. P., ROTHBERG, E., AND HENNESSY., J. The Effects
of Latency, Occupancy, and Bandwidth in Distributed Shared Memory Multiprocessors. Tech.
Rep. CSL-TR-95-660, Stanford University, Jan. 1995.

[53] HORST, R. TNet: A Reliable System Area Nework. IEEE Micro 15, 1 (Feb. 1995), 37–45.

[54] HUANG, P., ESTRIN, D., AND HEIDEMANN, J. Enabling Large-scale Simulations: Selec-
tive Abstraction Approach to the Study of Multicast Protocols. In In Proceedings of the Sixth
International Symposium on Modeling, Analysis and Simulation of Computer and Telecom-
munication Systems (MASCOTS ’98) (Montreal, July 1998).

[55] IANNELLO, G., LAURIA, M., AND MERCOLINO, S. LogP Performance Characterization
of Fast Messages atop Myrinet. In Sixth Euromicro Workshop on Parallel and Distributed
Processing (PDP’98) (Madrid, Spain, Jan. 1998), pp. 395–401.

[56] JACOBSON, V. Congestion Avoidance and Control. In Proceedings of the ACM SIGCOMM
’88 Conference on Communications Architectures and Protocols (Stanford, CA, Aug. 1988),
pp. 314–329.

[57] JAIN, R. The Art of Computer Systems Performance Analysis. John Wiley & Sons, 1991.

[58] JONES, R. Netperf 2.1 Homepage. http://www.cup.hp.com/netperf/NetperfPage.html, Feb.
1995.

[59] JUSZCZAK, C. Improving the Write Performance of an NFS Server. In Proceedings of the
1994 USENIX Winter Conference (Jan. 1994).

[60] KAY, J., AND PASQUALE, J. The Importance of Non-Data-Touching Overheads in TCP/IP.
In Proceedings of the 1993 SIGCOMM (San Francisco, CA, September 1993), pp. 259–268.

[61] KEETON, K., PATTERSON, D. A., AND ANDERSON, T. E. LogP Quantified: The Case for
Low-Overhead Local Area Networks. In Hot Interconnects III (Stanford University, Stanford,
CA, August 1995).

[62] KHALIL, K. M., LUC, K. Q., AND WILSON, D. V. LAN Traffic Analysis and Workload
Characterization. In Proceedings of the 15th Conference on Local Computer Networks (Min-
neapolis, MN, Sept. 1990), pp. 112–122.

[63] KLEINROCK, L. Queueing Systems. John Wiley & Sons, New York, 1976.

125

[64] KRISHNAMURTHY, A., SCHAUSER, K. E., SCHEIMAN, C. J., WANG, R. Y., CULLER,
D. E., AND YELICK, K. Evaluation of Architectural Support for Global Address-Based Com-
munication in Large-Scale Parallel Machines. In Proceedings of the 7th International Con-
ference on Architectural Support for Programming Languages and Operating Systems (Oct.
1997), pp. 37–48.

[65] LAZOWSKA, E. D., ZAHORIAN, J., GRAHAM, G. S., AND SEVCIK, K. C. Quantitative
System Performance : Computer System Analysis Using Queueing Network Models. Prentice-
Hall, Englewood Cliffs, N.J, 1984.

[66] LELAND, W. E., TAQQU, M. S., WILLINGER, W., AND WILSON, D. V. On the Self-Similar
Nature of Ethernet Traffic. IEEE Transactions on Networking 2, 1 (Feb. 1994), 1–15.

[67] LELAND, W. E., AND WILSON, D. V. High Time-Resolution Measurement and Analysis of
LAN traffic: Implications for LAN Interconnection. In Proceedings of the 1991 INFOCOMM
(Bal Harbour, FL, April 1991), pp. 1360–1366.

[68] LIU, J. C. S., SO, O. K. Y., AND TAM, T. S. NFS/M: an open platform mobile file sys-
tem. In Proceedings of the 18th International Conference on Distributed Computing Systems
(Amsterdam, Netherlands, May 1998), pp. 488–495.

[69] LUMETTA, S. S., KRISHNAMURTHY, A., AND CULLER, D. E. Towards Modeling the Per-
formance of a Fast Connected Components Algorithm on Parallel Machines. In Proceedings
of Supercomputing ’95 (1995).

[70] MACKLEM, R. Lessons Learned Tuning the 4.3 BSD Reno Implementation of the NFS Pro-
tocol. In Proceedings of the 1991 USENIX Winter Conference (Jan. 1991), pp. 53–64.

[71] MACKLEM, R. Not Quite NFS, Soft Cache Consistency for NFS. In Proceedings of the 1994
USENIX Winter Conference (Jan. 1994), pp. 261–278.

[72] MARTIN, R. P. HPAM: An Active Message Layer for a Network of Workstations. In Pro-
ceedings of the 2nd Hot Interconnects Conference (July 1994).

[73] MARTIN, R. P., VAHDAT, A. M., CULLER, D. E., AND ANDERSON, T. P. The Effects of
Latency, Overhead and Bandwidth in a Cluster of Workstations. In Proceedings of the 24th
International Symposium on Computer Architecture (Denver, CO, June 1997).

[74] MCVOY, L., AND STAELIN, C. lmbench: Portable Tools for Performance Analysis . In
Proceedings of the 1996 USENIX Conference (Jan. 1996).

[75] MESSAGE PASSING INTERFACE FORUM. MPI: A Message Passing Interface Standard Ver-
sion 1.1, July 1995. http://www.mcs.anl.govcom/mpi.

[76] MOGUL, J. C. Network Locality at the Scale of Processes. ACM Transactions on Computer
Systems 10, 2 (May 1992), 81–109.

[77] MOGUL, J. C. Recovery in Spritely NFS. Computing Systems 7, 2 (1994), 201–62.

126

[78] MORITZ, C. A., AND FRANK, M. I. LoGPC: Modeling Network Contention in Message-
Passing Programs. In Proceedings of the 1998 ACM SIGMETRICS and PERFORMANCE
Conference on Measurement and Modeling of Computer Systems (Madison, WI, June 1998).

[79] NILSSON, S., AND KARLSSON, G. Fast Address Lookup for Internet Routers. In Fourth
International Conference on Broadband Communications (Stuttgart, Germany, Apr. 1998),
pp. 11–22.

[80] OUSTERHOUT, J. K. Personal communication, Jan. 1997.

[81] PAKIN, S., LAURIA, M., AND CHIEN, A. High Performance Messaging on Workstations:
Illinois Fast Messages (FM) for Myrinet. In Supercomputing ’95 (San Diego, California,
1995).

[82] PAWLOWSKI, B., JUSZCZAK, C., STAUBACH, P., SMITH, C., LEBEL, D., AND HITZ, D.
NFS Version 3 Design and Implementation. In Proceedings of the Summer 1994 USENIX
Conference (Boston, MA, June 1994), pp. 137–152.

[83] PAYROUZE, N., AND MULLER, G. FT-NFS: an Efficient Fault-Tolerant NFS Server De-
signed for Off-the-Shelf Workstations. In Proceedings of the 26th International Symposium
on Fault-Tolerant Computing (Sendai, Japan, June 1996), pp. 64–73.

[84] PFISTER, G. F., AND NORTON, V. A. Hot Spot Contention and Combining Multistage In-
terconnection Networks. IEEE Transactions on Computers C-34, 10 (1985), 943–8.

[85] PHAN, M. L., SCHENDEL, K. L., RECANZONE, G. H., AND ROBERTSON, L. C. Acoustic
Spatial Deficits in a Patient with Bilateral Parietal Damage. In 27th Annual Meeting of the
Society for Neuroscience (New Orleans, LA, Oct. 1997), p. 1312.

[86] POWERS, G. A front-end TELNET/rlogin Server Implementation. In UniForum 1986 Con-
ference Proceedings (Anaheim, CA, Feb. 1986), pp. 27–40.

[87] REINHARDT, S. K., HILL, M. D., LARUS, J. R., LEBECK, A. R., LEWIS, J. C., AND

WOOD, D. A. The Wisconsin Wind Tunnel: Virtual Prototyping of Parallel Computers. In
Proceedings of the 1993 ACM SIGMETRICS and PERFORMANCE Conference on Measure-
ment and Modeling of Computer Systems (Santa Clara, CA, May 1993), pp. 48–60.

[88] REINHARDT, S. K., LARUS, J. R., AND WOOD, D. A. Tempest and Typhoon: User-Level
Shared Memory. In Proceedings of the 21st International Symposium on Computer Architec-
ture (Apr. 1994), pp. 325–336.

[89] ROSENBLUM, M., HERROD, S. A., WITCHEL, E., AND GUPTA, A. Complete Computer
Simulation: The SimOS Approach. In IEEE Parallel and Distributed Technology (Fall 1995).

[90] SAAVEDRA-BARRERA, R. H. CPU Performance Evaluation and Execution Time Prediction
Using Narrow Spectrum Benchmarking. Tech. Rep. CSD-92-684, University of California at
Berkeley, Feb. 1992.

[91] SCHMIDT, D. C., AND SUDA, T. Measuring the Performance of Parallel Message-based
Process Architectures. In Proceedings of the 1995 INFOCOMM (1995).

127

[92] SCHNARR, E., AND LARUS, J. R. EEL: Machine-independent Executable Editing. In In
Proceedings of the 1995 ACM Conference on Programming Language Design and Implemen-
tation (PLDI) (La Jolla, CA, June 1995).

[93] SHEIN, B., CALLAHAN, M., AND WOODBURY, P. NFSSTONE - A Network File Server
Performance Benchmark. In Proceedings of the 1989 USENIX Summer Conference (Balti-
more, MD, June 1989), pp. 269–274.

[94] STANDARD PERFORMANCE EVALUATION CORP. SPEC SFS97 Benchmarks, 1997. http://-
www.specbench.org/osg/sfs97.

[95] STANDARD PERFORMANCE EVALUATION CORP. SPECsfs97 Press Release Results, 1997.
http://www.specbench.org/osg/sfs97/results.

[96] STERN, H. L., AND WONG, B. L. NFS Performance and Network Loading. In Proceedings
of the Sixth Systems Administration Conference (LISA VI) (Oct. 1992).

[97] STERN, U., AND DILL, D. L. Parallelizing the Murphi Verifier. In 9th International Confer-
ence on Computer Aided Verification (May 1997), pp. 256–267.

[98] STRATEGIC NETWORKS CONSULTING. Fore Systems Intelligent Gigabit Routing Switch
Custom Test, Oct. 1998. http://www.snci.com/reports/ESX-4800.pdf.

[99] STRATEGIC NETWORKS CONSULTING. Packet Engines PowerRail 5200 Enterprise Routing
Switch Custom Test, Apr. 1998. http://www.snci.com/reports/packetengines.pdf.

[100] VAHALIA, U., GRAY, C. G., AND TING, D. Metadata logging in an NFS server. In Pro-
ceedings of the 1995 USENIX Winter Conference (Jan. 1995), pp. 265–276.

[101] VALLIANT, L. G. A Bridging Model for Parallel Computation. Communications of the ACM
33, 8 (1990), 103–111.

[102] VOELKER, G. M., JAMROZIK, H. A., VERNON, M. K., LEVY, H. M., AND LAZOWSKA,
E. Managing server load in global memory systems. In Proceedings of the 1997 ACM SIG-
METRICS and PERFORMANCE Conference on Measurement and Modeling of Computer
Systems (June 1997).

[103] VON EICKEN, T., BASU, A., BUCH, V., AND VOGELS, W. U-Net: A User-Level Network
Interface for Parallel and Distributed Computing. In Proceedings of the Fifteenth SOSP (Cop-
per Mountain, CO, December 1995), pp. 40–53.

[104] VON EICKEN, T., CULLER, D. E., GOLDSTEIN, S. C., AND SCHAUSER, K. E. Active
Messages: a Mechanism for Integrated Communication and Computation. In Proc. of the
19th Int’l Symposium on Computer Architecture (May 1992).

[105] WALTON, S., HUTTON, A., AND TOUCH, J. High-speed Data Paths in Host-based Routers.
Computer 31, 11 (1998), 46–52.

128

[106] WANG, R., KRISHNAMURTHY, A., MARTIN, R. P., ANDERSON, T., AND CULLER, D. E.
Modeling and Optimizing Communication Pipelines. In Proceedings of the 1998 ACM SIG-
METRICS and PERFORMANCE Conference on Measurement and Modeling of Computer
Systems (Madison, WI, June 1998).

[107] WITTLE, M., AND KEITH, B. E. LADDIS: the Next Generation in NFS File Server Bench-
marking. In Summer 1993 USENIX Conference (Cincinnati, OH, June 1993), pp. 111–128.

[108] WONG, B. Configuration and Capacity Planning for Solaris Servers. Prentice-Hall, 1997.

[109] WONG, F. C. Message Passing Interface on NOW Performance. http://www.cs.berkeley.-
edu/Fastcomm/MPI/performance, 1997.

[110] WOO, S. C., OHARA, M., TORRIE, E., SINGH, J. P., AND GUPTA, A. The SPLASH-2
Programs: Characterization and Methodological Considerations. In Proceedings of the 22nd
International Symposium on Computer Architecture (June 1995), pp. 24–36.

[111] YARROW, M., AND DER WIJNGAART, R. V. Communication Improvement for the LU NAS
Parallel Benchmark: A Model for Efficient Parallel Relaxation Schemes. Tech. Rep. NAS-
97-032, NASA Ames Research Center, Nov. 1997.

129

Appendix A

SPECsfs97 Disclosures

This appendix has the SPECsfs97 disclosures. Two sets of disclosures are provided, one

for the SCSI system and one for the RAID system. The purposed of the disclosure is to allow others

to verify results. The format for the tables was taken from the SPECsfs97 webpages. Not all data

points for all experiments are listed; only the baseline numbers are provided (the measured lines in

Table 5.3).

130

Throughput Response Time
(Ops/sec) msec

198 7.3
397 10.1
602 13.8
800 15.6
950 17.6

1006 18.9
1053 19.9

Table A.1: SPECsfs97 Disclosure: SCSI Performance

Configuration
Server Configuration and Availability Network Subsystem

Vendor Sun Microsystems Inc. Network Myrinet
Hardware Available Mar 1995 Controller Desc. Myricom 128K LANai
Software Available Oct 1997 Number Networks 1

Date Tested May 1998 Number Network Controllers 1
SFS License Number A-8 Protocol Type UDP

Licensee Locations Berkeley, CA Switch Type Myricom 8x160 MBs
CPU, Memory and Power Bridge Type N/A

Model Name Sun Ultra-1 Hub Type N/A
Processor 167 MHz UltraSPARC-1 Other Network Hardware N/A

Primary Cache 16KB I+16KB D on chip Disk Subsystem and Filesystems
Secondary Cache 512K(I+D) off chip Number Disk Controllers 3

Other Cache N/A Number of Disks 25
UPS N/A Number of Filesystems 25

Other Hardware N/A File System Creation Ops default
Memory Size 128 MB File System Config default

NVRAM Size N/A Disk Controller On-board narrow SCSI
NVRAM Type N/A # of Controller Type 1

NVRAM Description N/A Number of Disks 1
Server Software Disk Type 2GB 5200RPM SCSI

OS Name and Version Solaris 2.5.1 File Systems on Disks OS, swap
Other Software Myrinet-GAM device drv. Special Config Notes N/A

File System UFS Disk Controller Sun FAS wide SCSI
NFS version 2 # of Controller Type 2

Server Tuning Number of Disks 24
Buffer Cache Size Dynamic Disk Type 9GB 7200RPM IBM SCSI

NFS Processes 128 File Systems on Disks F1-F24
Fileset Size 8.7 GB Special Config Notes N/A

Table A.2: SPECsfs97 Disclosure: SCSI Server and Network

131

Load Generator (LG) Configuration
Number of Load Generators 3

Number of Processes per LG 7
Biod Max Read Setting 5
Biod Max Write Setting 5

LG Type LG1
LG Model Ultra1-170

Number and Type Processors 1 167MHz UltraSPARC
Memory Size 128MB

Operating System Solaris 2.5.1
Compiler gcc

Compiler Options -O2
Network Type Myricom 128K LANai

Table A.3: SPECsfs97 Disclosure: SCSI Load Generators

Testbed Configuration
1 LG1 N1 F1..F8 N/A
2 LG1 N1 F9..F16 N/A
3 LG1 N1 F17..F24 N/A

Table A.4: SPECsfs97 Disclosure: SCSI Testbed Configuration

Throughput Response Time
(Ops/sec) msec

298 3.4
397 4.0
494 4.5
595 4.9
696 6.1
797 7.2
901 8.8

1001 11.4
1205 15.0
1304 18.7
1405 21.0
1503 30.8

Table A.5: SPECsfs97 Disclosure: RAID Performance

132

Configuration
Server Configuration and Availability Network Subsystem

Vendor Sun Microsystems Inc. Network Myrinet
Hardware Available Mar 1995 Controller Desc. Myricom 128K LANai
Software Available Oct 1997 Number Networks 1

Date Tested May 1998 Number Network Controllers 1
SFS License Number A-8 Protocol Type UDP

Licensee Locations Berkeley, CA Switch Type Myricom 8x160 MBs
CPU, Memory and Power Bridge Type N/A

Model Name Sun Ultra-1 Hub Type N/A
Processor 167 MHz UltraSPARC-1 Other Network Hardware N/A

Primary Cache 16KB I+16KB D on chip Disk Subsystem and Filesystems
Secondary Cache 512K(I+D) off chip Number Disk Controllers 2

Other Cache N/A Number of Disks 29
UPS N/A Number of Filesystems 16

Other Hardware N/A File System Creation Ops default
Memory Size 128 MB File System Config default

NVRAM Size N/A Disk Controller On-board narrow SCSI
NVRAM Type N/A # of Controller Type 1

NVRAM Description N/A Number of Disks 1
Server Software Disk Type 2GB 5200RPM SCSI

OS Name and Version Solaris 2.5.1 File Systems on Disks OS, swap
Other Software Myrinet-GAM device drv. Special Config Notes N/A

File System UFS Disk Controller Sun A3000 RAID
NFS version 2 # of Controller Type 1

Server Tuning Number of Disks 28
Buffer Cache Size Dynamic Disk Type 9GB 7200RPM Seagate SCSI

NFS Processes 128 File Systems on Disks F1-F15
Fileset Size 8.7 GB Special Config Notes N/A

Table A.6: SPECsfs97 Disclosure: RAID Server and Network

Load Generator (LG) Configuration
Number of Load Generators 3

Number of Processes per LG 15
Biod Max Read Setting 3
Biod Max Write Setting 2

LG Type LG1
LG Model Ultra1-170

Number and Type Processors 1 167MHz UltraSPARC
Memory Size 128MB

Operating System Solaris 2.5.1
Compiler gcc

Compiler Options -O2
Network Type Myricom 128K LANai

Table A.7: SPECsfs97 Disclosure: RAID Load Generators

133

Testbed Configuration
LG # LG Type Network Target File Systems Notes

1 LG1 N1 F1..F15 N/A
2 LG1 N1 F1..F15 N/A
3 LG1 N1 F1..F15 N/A

Table A.8: SPECsfs97 Disclosure: RAID Testbed Configuration

134

Appendix B

Performance Data

This appendix documents the raw run-times used in the slowdown graphs. All run-times

are expressed in seconds. For the Split-C/AM programs an NPB, all results are on 32 nodes unless

otherwise specified.

135

� Radix EM3D(r) EM3D(w) Sample Barnes P-ray Mur � Connect NowSort Radb� s
2.9 13.7 229.7 88.6 24.6 77.8 23.5 67.6 2.3 127.2 7
3.9 16.1 257.3 108.9 30 81.5 25 69.1 2.3 126.2 7.3
4.9 18.4 278.2 128.6 34.4 86.2 25.8 70.2 2.3 129.6 7.4
6.9 22.9 323.9 167.4 43.7 - 25.6 72.6 2.4 126.3 7.3
7.9 25.1 348.2 186.6 48.2 98.2 29.7 73.5 2.4 127 7.3
12.9 36.6 466.1 283.2 71.6 756.3 35.3 79.8 2.5 130.9 7.3
22.9 60.3 709.3 478.4 118 - 93.1 2.8 126.6 7.4
52.9 129.6 1439.8 1061.4 256.9 - 86.3 131.5 3.5 128.5 8
102.9 251 3047.4 2029.1 493.3 - 148.7 195.7 4.7 127.8 9.1

Table B.1: Split-C/AM Run Times varying Overhead on 16 nodes
This table shows the run time, in seconds, of the Split-C/AM applications while varying the overhead
on 16 nodes. This is the only result for these applications not run on 32 nodes.

� Radix EM3D(r) EM3D(w) Sample Barnes P-ray Mur � Connect NowSort Radb� s
2.9 7.8 114 38 13.2 43.2 17.9 35.3 1.2 56.9 3.7
3.9 10.5 138.7 48.1 16.1 50.1 19 37.1 1.2 56.7 3.8
4.9 13.2 161.6 58.1 18.7 - 19.6 37.7 1.2 61.2 3.8
6.9 18.7 208.8 77.4 23.8 - 22 41.8 1.2 57.9 3.8
7.9 21.5 232.9 87.4 26.5 - 20.8 41.9 1.2 58.3 3.8
12.9 36.3 354.4 138.5 39.3 - 28.2 46.2 1.3 58.1 3.9
22.9 68.9 600.1 236.2 65.2 - 39 51.2 1.3 58.3 4.1
52.9 198.2 1332.5 535.9 142.7 - 69.7 72.6 1.6 61.7 4.8
102.9 443.2 2551.7 1027.8 272.1 - 114 107.8 2.1 71.1 6.2

Table B.2: Split-C/AM Run Times varying Overhead on 32 nodes
This table shows the run time, in seconds, of the Split-C/AM applications while varying the overhead
on 32 nodes.

� Radix EM3D(r) EM3D(w) Sample Barnes P-ray Mur � Connect NowSort Radb� s
5.8 7.8 114 38 13.2 43.2 17.9 35.3 1.2 56.9 3.7
8.3 10.2 119 46.1 14.8 44.1 18.1 37.4 1.2 57.9 3.8
10.8 13 129.7 56.5 17.5 50.2 17.8 36.1 1.2 57.6 3.8
15.8 19.2 164.7 78.5 24.2 55.3 17.9 36.2 1.2 60.9 3.8
30.8 38.1 289.3 150.3 42.9 61.6 19.1 38.4 1.3 57.3 3.9
55.8 69.9 523 273.1 75.1 99.1 23.2 37.5 1.5 57.2 4
80.8 101.9 756.9 394 107.5 157.3 29 39.3 1.7 56.9 4.1
105.8 133.8 993.1 515.6 139.7 207.9 35.5 39.9 1.9 57.4 4.3

Table B.3: Split-C/AM Run Times varying gap
This table shows the run time, in seconds, of the Split-C/AM applications while varying the gap.

136

�
Radix EM3D(r) EM3D(w) Sample Barnes P-ray Mur � Connect NowSort Radb� s

5 7.8 114 38 13.2 43.2 17.9 35.3 1.2 56.9 3.7
7.5 8.5 144 39.4 13.3 50.7 19 39.6 1.2 57.6 3.8
10 8.5 159.8 39.7 13.3 48.6 20.1 36.9 1.2 56.5 3.8
15 8.5 198.7 41.2 13.3 57.6 22.5 36.4 1.2 57.1 3.8
30 10.2 320.8 45.9 13.3 70.5 28.2 39 1.3 57.2 3.9
55 10.7 523.1 56.4 13.3 103.6 39.9 39 1.4 57.5 3.9
80 11.1 726.6 70.3 13.3 131.6 49.9 36.4 1.6 60.2 4
105 12.2 943.5 87.1 13.3 162.3 61.4 38 1.7 61.5 4

Table B.4: Split-C/AM Run Times varying Latency
This table shows the run time, in seconds, of the Split-C/AM applications while varying the latency.

Bandwidth Radix EM3D(r) EM3D(w) Sample Barnes P-ray Mur � Connect NowSort Radb
MB/s
1.19 11.1 115.4 38.9 13.3 80.7 36.2 39.4 1.2 123.6 8.2
4.6 8.6 114.1 38.5 13.3 56.3 21.1 39.4 1.2 65.1 4.7
8.7 8.1 114.1 37.9 13.3 52.5 19.5 36.3 1.2 63.7 4.2
11.2 8.1 113.9 37.9 13.2 51.8 19.3 39 1.2 61.7 4
15 7.9 113.9 39.3 13.4 47.6 19.5 39.6 1.2 57.8 3.9
19 7.9 114 38.1 13.3 47.2 18.9 36.5 1.2 57.5 3.9
31 7.9 116 38.4 13.3 47.3 19.6 36.3 1.2 56.8 3.8
37.5 7.8 114 38 13.2 43.2 17.9 35.3 1.2 56.9 3.7

Table B.5: Split-C/AM Run Times varying Bandwidth
This table shows the run time, in seconds, of the Split-C/AM applications while varying the Gap.

� FT IS MG� s
10 173.2 18.7 17.8
11 178.1 21.3 18.3
20 175.8 22.5 19.9
30 177 - 23.9
60 184.9 22.5 26.6
110 222.1 33 26.6

Table B.6: NPB Run Times varying Overhead
This table shows the run time, in seconds, of the NPB while varying overhead.

137

� FT IS MG� s
5.8 173.2 18.7 17.8
8.3 - 21.3 18.2
10.8 - 21.5 16.8
15.8 - 20.1 16.8
30.8 - 19.6 18.3
55.8 170.6 21.3 22.6
80.8 159.1 21.1 21.3
105.8 171.6 21.4 23.5

Table B.7: NPB Run Times varying gap
This table shows the run time, in seconds, of the NPB while varying gap. A switch bug caused FT
to crash often. Unfortunately, the fixed switches were not available in time for this thesis, and the
work-around would significantly perturb the results.

FT IS MG� s

5 173.2 18.7 17.8
7.5 178.4 22.6 18.2
10 - 20.6 19.2
15 - 21.1 17.8
30 - 21
55 - 19.8 22.1
80 - 19.8 21.9
105 - 19.8 22.2

Table B.8: NPB Run Times varying latency
This table shows the run time, in seconds, of the NPB while varying latency. A switch bug caused FT
to crash for high latency. Unfortunately, the fixed switches were not available in time for this thesis,
and the work-around would significantly perturb the results.

Bandwidth FT IS MG
MB/s
1.19 661 - 60.9
4.6 225.7 22.6 25.5
11.2 186.2 23 20
15 171.8 22.1 19.6
19 177.1 22.1 23.5
37.5 173.2 18.7 17.8

Table B.9: NPB Run Times varying Bandwidth
This table shows the run time, in seconds, of the NPB while varying Gap. Bandwidth is used so as
to make an easier comparison to known systems.

138

Ops/sec Latency (! s)
Measured 10 50 100 500 1000 2000 4000

198 7.3 7.2 7.3 8.2 9.4 11.9 16.4
199 - - - - - 11.3 -

396 - 9.9 - - - - -
397 10.1 - 10 11 12.3 14.9 -
398 - - - - - - 20.5

602 13.8 13.4 14 14.8 - - 26.5
603 - - - - 16.7 18.8 -

762 - - - - - - 35.1
773 - - - - - - 34.7
774 - - - - - - 33.7
790 - - - - - - 33.9
799 - 16.1 15.9 16.9 - 22 -
800 15.6 - - - - - -
801 - - - - 18.8 - -

943 - - - - - 28.8 -
949 - - - - - 25.6 -
950 17.6 - - 18.8 21.8 - -
951 - - 18.3 - - - -
952 - 17.3 - - - - -
958 - - - - - 27.7 -

1000 - - - - 24.9 - -
1006 18.9 - 21.1 20.1 - - -
1007 - 19 - - - - -
1009 - - - - 25.8 - -

1045 - - 23.8 - - - -
1053 19.9 - - - - - -
1054 - 20 - - - - -
1055 - - - 21.5 - - -

Table B.10: SPECsfs Response Times in varying Latency on the SCSI system
The table shows the average response time, in milliseconds, for the SCSI system running NFS version
2 over UDP using the SFS 2.0 operation mix while varying latency.

139

Ops/sec Latency (" s)
Measured 10 15 50 100 150 1000 4000

298 3.4 3.5 3.8 3.7 3.9 5.9 13.4

397 4 3.9 - 4 4.1 - -
398 - - 4 - - 6.3 16.4

494 4.5 4.5 - 4.6 4.9 7 -
495 - - 4.6 - - - 20.5

595 4.9 5.2 4.9 5 5.2 7.6 17.4

696 6.1 5.8 6 6.2 6.2 8.7 20.1

791 - - - - - - 24.5
797 7.2 7.2 7.3 7.6 7.9 - -
798 - - - - - 10.6 -

900 - - 9 - - - -
901 8.8 - - - - - -
902 - 9 - 9.5 9.4 - 25.8
903 - - - - - 12.8 -

1001 11.4 - - - - - -
1002 - - - 11.9 11.1 - -
1003 - 11.5 10.8 - - - -
1004 - - - - - 13.7 -
1006 - - - - - - 31.8

1069 - - - - - - 46.3
1121 - - - - - - 44.2
1170 - - - - - - 42.3
1188 - - - - - - 41.3

1204 - 14.8 14.6 14.6 - - -
1205 15 - - - - - -
1207 - - - - - 17.1 -

1304 18.7 - - - - - -
1305 - 18.2 - - - - -
1306 - - 18.1 18.5 - - -
1307 - - - - - 22.3 -

1400 - 21.6 22.1 21.1 - - -
1402 - - - - - 25.7 -
1405 21 - - - - - -

1499 - 31.2 - - - - -
1501 - - - - - 30.1 -
1503 30.8 - - - - - -
1505 - - - 31 - - -

Table B.11: SPECsfs Response Times varying Latency on the RAID system
The table shows the average response time, in milliseconds, for the RAID running NFS version 2
over UDP using the SFS 2.0 operation mix while varying latency.

140

Ops/sec Overhead (# s)
Measured 80 85 90 95 100 105 130 180 280

298 3.4 - - 3.9 3.6 3.8 4.1 5.1 6.6
299 - 3.8 - - - - - - -

397 4 - - 4 4.2 - - - -
398 - 4 - - - 4.3 4.8 5.6 7.8

494 4.5 4.5 - 4.7 4.6 4.7 5.3 6.6 10.1

595 4.9 5 - 5.3 5.4 5.3 6.3 - 14.9
596 - - - - - - - 7.7 -
615 - - - - - - - - 90.3
627 - - - - - - - - 89.8
638 - - - - - - - - 89.5
651 - - - - - - - - 88.3
660 - - - - - - - - 87.5
679 - - - - - - - - 86.7
692 - - - - - - - - 86.2

696 6.1 6 - 6 6.3 - 7.1 9.2 -

697 - - - - - 6.4 - - -
704 - - - - - - - - 52.9

797 7.2 7.4 - 7.9 7.6 8 9 12.1 -

901 8.8 8.5 - 9.4 - 9.8 - - -
902 - - - - 9 - - - -
903 - - - - - - 10.3 17.3 -

987 - - - - - - - 55.7 -
1001 11.4 - - - - 12.8 - - -
1002 - - - 11.9 11.6 - 14.1 - -
1003 - 11.5 - - - - - - -

1127 - - - - - - 48.9 - -
1168 - - - - - - 47.9 - -

1204 - 15.7 - - - - - - -
1205 15 - - 16.2 - - - - -
1206 - - - - - 19 - - -
1207 - - - - 17.6 - 24.6 - -
1217 - - - - - - 46.5 - -
1282 - - - - - 41.8 - - -

1304 18.7 - - - - 21.9 - - -
1307 - - - 22.7 - - - - -
1309 - 20.4 - - 23.2 - - - -
1330 - - - - 40.6 - - - -
1331 - - - - - 40.4 - - -
1338 - - - 31.4 - - - - -
1359 - - - 39 - - - - -
1378 - - - - 39 - - - -

1404 - 21.8 - - - - - - -
1405 21 - - - - - - - -
1456 - 35.3 - - - - - - -
1503 30.8 - - - - - - - -

Table B.12: SPECsfs Response Times varying Overhead on the RAID
The table shows the average response time, in milliseconds, for the RAID running NFS version 2
over UDP using the SFS 2.0 operation mix while varying overhead.

141

Ops/sec Overhead ($ s)
Measured 80 105 130 180 280 480 580

198 7.3 7.1 7.4 7.6 8.5 9.7 10.5

396 - - - 10.8 - - -
397 10.1 10.1 10.2 - 11.7 - -
398 - - - - - 14.6 16.6

538 - - - - - - 54.6

602 13.8 13.8 14 - - - -
603 - - - 14.7 16.7 - -
604 - - - - - 32.1 -

798 - - 16.9 18.1 - - -
799 - 16.2 - - 25.8 - -
800 15.6 - - - - - -
801 - - - - 35.9 - -

950 17.6 18.7 - - - - -
951 - - - 23.2 - - -
952 - - 19.5 - - - -

1005 - 21.8 21.5 - - - -
1006 18.9 - - - - - -

1029 - 24.9 - - - - -
1042 - - 24.8 - - - -
1053 19.9 - - - - - -

Table B.13: SPECsfs Response Times varying Overhead on the SCSI system
The table shows the average response time, in milliseconds, for the SCSI system running NFS version
2 over UDP using the SFS 2.0 operation mix while varying overhead.

142

Ops/sec Bandwidth(MB/s)

Measured 26 14.5 11.3 10.6 9.1 5.9 4.5 2.5 1.2

198 7.1 7.2 7.3 7.3 7.2 7.5 7.5 7.9 10.6

396 9.8 10 10 - - 10.2 - 11.3 -
397 - - - - 10.1 - 10.4 - 15.7

602 - 13.5 - - 13.6 - - - -
603 - - 14 - - 13.9 14.3 15.7 -
604 - - - - - - - - 25.3

758 - - - - - - - - 35.8
759 - - - - - - - - 35.9
762 - - - - - - - - 35.7
774 - - - - - - - - 34.4

797 - - 15.9 - 15.7 15.8 16.5 - -
798 15.5 15.8 - - - - - - -
799 - - - - - - - 18.4 -

905 17 - - - - - - - -

949 - - 17.4 - - 18.4 - 20.9 -
950 - - - - 18.4 - 18.7 - -
951 - 17.5 - - - - - - -
952 17.4 - - - - - - - -
1004 - - - - - 20.1 - - -

1005 - - 19.1 - 19.4 - 19.8 - -
1006 - 19 - - - - - - -
1007 18.9 - - - - - - 22.1 -
1014 27.7 - - - - - - - -

1039 26.9 - - - - - - - -
1052 - - - - - - 21.4 - -
1053 - - - - 20.3 - - 23.6 -
1054 20.3 - 20.5 - - - - - -
1055 - 20 - - - 21.2 - - -

1074 26.1 - - - - - - - -
1089 24.9 - - - - - - - -
1097 22.7 - - - - - - - -

Table B.14: SPECsfs Response Times varying Bandwidth on the SCSI system
The table shows the average response time, in milliseconds, for the SCSI system running NFS version
2 over UDP using the SFS 2.0 operation mix while varying bandwidth.

