A Systematic Char acterization of
Application Sensitivity to Networ k Performance

by

Richard Paul Martin

B.A. (Rutgers University) May 1992
M.S. (University of Californiaat Berkeley) December 1996

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Computer Science

inthe

GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor David E. Culler, Chair
Professor David A. Patterson
Professor Hal R. Varian

Spring 1999

The dissertation of Richard Paul Martin is approved:

Chair Date

Date

Date

University of Californiaat Berkeley

Spring 1999

A Systematic Char acterization of
Application Sensitivity to Networ k Performance

Copyright Spring 1999

by
Richard Paul Martin

Abstract

A Systematic Characterization of
Application Sensitivity to Network Performance

by

Richard Paul Martin
Doctor of Philosophy in Computer Science

University of Californiaat Berkeley

Professor David E. Culler, Chair

Thisthesis provides a systematic study of application sensitivity to network performance.
Our aim isto investigate the impact of communication performance on real applications. Using the
LogGP model as an abstract framework, we set out to understand which aspects of communication
performance are most important. The focus of our investigation thus centers on a quantification of
the sensitivity of applicationsto the parameters of the LogGPmodel: network latency, software over-
head, per-message and per-byte bandwidth. We define sensitivity asthe change in some application
performance metric, such as run time or updates per second, as a function of the LogGP parame-
ters. The strong association of the LogGP model with real machine components allows us to draw
architectural conclusions from the measured sensitivity curves aswell.

Thebasic methodol ogy to measure sensitivity issimple. First, webuild anetworking appa-
ratuswhose parametersare adjustable according to the LogGP model. To build such an apparatuswe
start with ahigher performance system than what is generally available and add controllable delays
toit. Next, the apparatus must be calibrated to make sure the parameters can be accurately controlled
according to the model. The calibration also yields the useful range of LogGP parameters we can
consider.

Once we have a calibrated apparatus, we run real applicationsin a network with control-
lable performance characteristics. We vary each LogGP parameter in turn to observe the sensitivity
of the application relative to a single parameter. Sensitive applications will exhibit a high rate of
“dowdown” as we scale a given parameter. Insensitive applications will show little or no differ-
ence in performance as we change the parameters. In addition, we can categorize the shape of the

slowdown curve because our apparatus alows us to observe plateaus or other discontinuities. In all
cases, we must compare our measured results against analytic models of the applications. The ana-
lytic models serve a check against our measured data. Points wherethe dataand model deviate from
one another expose areas that warrant further investigation.

We usethree distinct application suitesin order to broaden the applicability of our results.
Thefirst suiteconsistsof parallel programsdesigned for low-overhead Massively Parallel Processors
(MPPs) and Networks of Workstations (NOWSs). The second suite is a sub-set of the NAS parallel
benchmarks, which were designed on older MPPs. The final suite consists of the SPECsfs bench-
mark, which is designed to measure Network File System (NFS) performance over local area net-
works.

Our results show that applications display the strongest sensitivity to software overhead,
slowing down by as much asafactor of 50 when overhead isincreased by afactor of 20. Evenlightly
communicating applications can suffer afactor of 3-5 slowdown. Frequently communicating appli-
cations also display strong sensitivity to various bandwidths, suggesting that communication phases
arebursty and limited by the rate at which messages can be injected into the network. We found that
simple models are able to predict sensitivity to the software overhead and bandwidth parametersfor
most of our applications. We also found that queuing theoretic models of NFS servers are useful in
understanding the performance of industry published SPECsfs benchmark results.

Theeffect of added latency isqualitatively different from the effect of added overhead and
bandwidth. Further, the effects are harder to predict because they are more dependent on applica-
tion structure. For our measured applications, the sensitivity to overhead and various bandwidthsis
much stronger than sensitivity to latency. We found that thisresult stemmed from programmerswho
are quite adept at using latency tolerating techniques such as pipelining, overlapping, batching and
caching. However, many of thesetechniquesare till sensitive to software overhead and bandwidth.
Thus, efforts in improving software overhead, per-message and per-byte bandwidth, as opposed to
network transit latency, will result in the largest performance improvements across a wide class of
applications demonstrating diverse architectural requirements.

We concludethat computer systems are complex enough to warrant our perturbation based
methodol ogy, and specul ate how the methodol ogy might be applied to other computer systemsareas.
We also conclude that without either much more aggressive hardware support or the acceptance of

radical new protocols, software overheads will continue to limit communication performance.

Professor David E. Culler
Dissertation Committee Chair

to Mimi L. Phan.

Acknowledgements

I must first thank my uncle, Dr. James Martin. Without his singular insight on the nature
of graduate studies | would not have finished this thesis.

| must also thank my advisor, Dr. David E. Culler, for innumerable interesting conversa-
tions over the years. However, | am especially grateful for the guidance | received during thosefirst
critical yearsin graduate school. Your early sheparding on the HPAM system got me off to a great
start.

My parents, Dr. Richard and EImaMartin, deservemuch credit. Thanksfor all the support
you have provided, especialy for all those computers. More importantly, thanks for sitting through
my endless small demos. | must also thank my father for the “Professor X" book, which still gives
me agood laugh.

To my long time fiance and now wife, Mimi Phan, | must thank for giving me the love,
support and perspective to keep going during the long and difficult years.

| am greatly indebted to all the co-authors on variousworks, and what alist it has become.
I’m honored to even have my name on the same pages as you: Amin Vahdat, Marc Fiuczynski, Lok
Tin Liu, Remzi Arpaci-Dusseau, Frederick C.B. Wong, Chad Yoshikawa, Andrea Arpaci-Dusseau,
Klaus Schauser, Randy Wang and Arvind Krishnamurthy.

| would also like to express thanks to my office-mates in 445 Evans, 467 and 466 Soda:
Steve Luna, Cedric Krumbein, Brent Chun, Tony Chan, Vikram Makhijaand Matt Welsh. You were
agreat group towork with and provided quite abit of respite from the daily grind of graduate studies.

To the other members of the NOW project, thank you for six years simulating conversa-
tions. Predictions aside, most of us made it, and that’s success enough. Thanksto Steve R., Doug,
Kristin, Jeanna, Drew, Mike, Satoshi, Nisha, Kim, Eric, Alan, and Steve L. for making such a big
project bearable.

Finally, I would like to thank my other two committee members, Dave Patterson and Hal

Varian, for giving excellent advice during my qualstalk aswell asfor reading thiswork.

Contents

Table of Contents

List of Figures

List of Tables

1

Introduction

11 Background e e e e e
111 Experiment ParadigmAXis.
112 EvaduationMethodsAXisS.
113 SUMMANY e

1.2 Contributions
121 Peformance Analysis
122 ApplicationBehavior
1.2.3 Network Architecture.
124 Modeing e

1.3 ThesisOrganization e e e e e

M ethodology
21 Experiment DesignPhilosophy
22 LogGPNetwork Model
23 APPAAUSES e e e e
231 BascSplit-C/AM Apparatus o oo
232 MPILApparatus e
233 TCPIPAPParatuS oot e e e e
24 FactorDesign e
25 OtherModels
251 Bulk SynchronousPardlel
252 QueueSharedMemory e
253 LoPCandLoGPC
254 QueuingTheory
26 RelaedMethodologies e
261 Holt
262 Chang

Vi

o~ WE

263 ANN . .
264 Hall
265 SUMMArY

3 Split-C/AM Program Sensitivity

31 Characterization e e e
311 Split-CBenchmark Suite
312 Characteristics o
3.2 AnayticModels. e
321 Overhead e
322 gD . . e
323 Laency e
324 GAD . ..
33 SengtivityResults
331 Overhead e
332 gap . .
333 Laency e
334 BulkGap
34 SUMMAY e e
341 PeformanceAnalysis
34.2 ApplicationBehavior
343 Network Architecture.
344 Modeing

NAS Parallel Benchmark Sensitivity

4.1 Characterization e e e e

42 Sensitivity Results
421 Overhead e
422 QAD . . e
423 LaenCy e e e
424 BulkGap

4.3 NPB Sengitivity Summary
431 PerformanceAnalysis
432 ApplicationBehavior o
4.3.3 Network Architecture.
434 Modeing

NFS Sensitivity

51 Experimental SEtup

5.2 SPECsfsCharacteristics. e

53 SPECsfsAnayticModel
5.3.1 Mode Construction
532 Model ACCUraCy o o i i
533 Expected Sengitivity

54 PreviousWork onNFSPerformance

55 SengitivityResults 87
551 Laency 87

55.2 HighLatency 89

553 Overhead 91

554 BulkGap 94

56 NFSSummary e 95
56.1 PerformanceAnaysis o 96

56.2 NFSBehavior 96

56.3 Architecture. 97

564 Modeing 97

6 Investigating Overhead Reduction 99
6.1 PipdineFramework L 102
6.2 Example: SPINEIPRouter 103
6.2.1 Architecture. 104

6.22 SPINEEventProcessing i 107

7 Conclusions 112
71 Peformance Analysis. e 112
7.2 ApplicationBehavior 114
7.3 Architecture 115
74 Modding 117
75 Fina Thoughts e 118
Bibliography 120
A SPECSsfs97 Disclosures 129

B PerformanceData 134

Vi

List of Figures

21 LogGP Abstract Machine 19
22 VaryingLogGP Parameters e 22
2.3 Calibration of LogGP Parameters oL 24
24 Calibration of Bulk Gap for the Parallel Program Apparatus 26
25 BasdineMPI Performance 28
2.6 TCP/IP ApparatusArchitecture 31
2.7 Calibration of bulk Gap for TCP/IP-GAM apparatus 34
28 MethodologiesinContext 44
3.1 Split-C CommunicationBalance o 48
3.2 SenditivitytoOverhead for 16 and32Nodes 56
3.3 Senditivitytogap e 59
34 SendtivitytoLatency 61
35 SendtivitytoBulk Gap 62
4.1 NASParallel BenchmarksCommunicationBalance 67
42 MG MessageSizeHistogram oo 68
4.3 NPB SenditivitytoOverhead 69
44 NPB Senditivitytogap 71
45 NPB SenditivitytoLatency o o 72
4.6 NPB Sendtivity to BandwidthandGap 73
51 Important Characteristicsof theSFSCurve 79
52 SPECsfsAnalyticModel 81
53 SPECsfsModeled vs. Measured BaselinePerformance 84
54 SPECsfsSenditivitytoLatency 87
5,5 SPECsfsLatencyvs. ResponseTime 89
5.6 Effectsof VerylLonglLatency 20
5.7 SPECsfsSensitivitytoOverhead 91
5.8 Peak Throughputvs. Overhead 93
59 TimeBreakdown Near Peak Op/sec 94
510 SenditivitytoGap e 95
6.1 SPINE Approach toOverhead Reduction 100

6.2 Generic GAM Pipédline

6.3 SPINE IP Router Architecture

6.4 SPINE IP Router Event Plot

Vii

List of Tables

21
22

31
3.2
33
34

41
4.2
4.3

51

6.1
6.2

Al
A2
A3
A4
A5
A.6
A7
A8

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9

BaselineLogGP Parameters. 20
CalibrationSummary e e 25
Split-C Applicationsand DataSets 47
Split-C CommunicationSummary e 49
Predicted vs. Measured Run TimesVaryingOverhead 57
Predicted vs. measured runtimesvaryinggap 60
NPB Communication Summary it 66
NPB Predicted vs. Measured Run TimesVaryingOverhead 70
NPB Predicted vs. Measured Run TimesVaryingBulk Gap 74
SPECsfsLinear Regression Models& Accuracy 83
GAM PipelineParameters 103
SPINE LogGP Parameters. 110
SPECsfs97 Disclosure: SCS| Performance 130
SPECsfs97 Disclosure: SCS| Server and Network 130
SPECsfs97 Disclosure: SCSI Load Generators 131
SPECsfs97 Disclosure: SCSI Testbed Configuration 131
SPECsfs97 Disclosure: RAID Performance 131
SPECsfs97 Disclosure: RAID Server and Network 132
SPECsfs97 Disclosure: RAID Load Generators. 132
SPECsfs97 Disclosure: RAID Testbed Configuration 133
Split-C/AM Run Timesvarying Overheadon16nodes. 135
Split-C/AM Run Timesvarying Overheadon 32nodes. 135
Split-C/AM Run Timesvaryinggap v v i i i e 135
Split-C/AM Run TimesvaryingLatency 136
Split-C/AM Run Timesvarying Bandwidth 136
NPB Run TimesvaryingOverhead 136
NPB Run Timesvaryinggap 137
NPB Run Timesvaryinglatency 137
NPB Run Timesvarying Bandwidth 137

B.10 SPECsfsResponse Timesin varying Latency onthe SCSl system 138
B.11 SPECsfsResponse Timesvarying Latency ontheRAID system 139
B.12 SPECsfsResponse Timesvarying Overhead ontheRAID 140
B.13 SPECsfs Response Timesvarying Overhead on the SCSl system 141

B.14 SPECsfs Response Timesvarying Bandwidth on the SCSI system 142

Chapter 1

| ntroduction

Natureis so complex and random that it can only be approached with a systematic
tool that presupposescertain factsabout it. Without such a pattern it would beimpossi-
bleto find an answer to questions even assimpleas ‘What am | looking at? — James
Burke, The Day the Universe Changed.

In recent years networking infrastructure and applications have experienced rapid growth.
Inthe System Area Network (SAN) context designsare quite diverse, spanning arange of both hard-
ware [16, 17, 23, 47, 53] as well as specialized system software [72, 81, 88, 103]. Local Area Net-
works (LANS) have also made impressive improvements, advancing from shared 10 Megabit (Mb)
designs, to 100 and 155 Mb designs [15, 33], to switched gigabit designs[98, 99]. Wide Area Net-
works (WANS) are also experiencing equally dynamic growth: emerging systemsinclude packet ra-
dio, Integrated Services Digital Network (ISDN), Cable Modems, Asymmetric Digital Subscriber
Loop (ADSL) and Direct Broadcast Satellite (DBS). On the applications side, there are many new
applications spanning these domains, such as protocol validatorsand network infrastructure services
[41, 97].

Theexplosion of designsin networking technol ogiesand applicationshasresultedinanin-
creased demand for asystematic, quantitative framework inwhich to reason about performance. His-
torically, networking hardware and system software are evaluated using micro-benchmarks. Tools
such asttcp [22], Imbench [74], and netperf [58] provide the two most commonly used micro-bench-
marks: Round Trip Time (RTT) and peak bandwidth (PB). Indeed, the eval uation of many designs[16,
33, 103] often only reports these two metrics. A third common metric is bandwidth as a function of
transfer size. However, even this additional metric tells us very little about the underlying commu-
nication sub-system. Like the MIPS of CPU performance, micro-benchmarks in isolation provide

little insight as to how improvements in networks improve application performance.

The exponential growth in CPU performance illustrates the benefit of a good conceptual
framework that capturesthe essential performancetradeoffs of asystem. Anenormousimprovement
over the simple MIPS micro-benchmark was the “iron triangle”. 1 Although conceptually simple,
theiron triangle model of application execution captures the essence of many performancetradeoffs
without drowning in details. It gaveadiversecommunity of application devel opers, compiler writers
and computer architects acommon framework in which to reason about the performance impact of
different designs. The model thus allowed quantitative comparisons of processor designs using real
programs. Indeed, a consistent theme across a variety of computer systems areas has been that the
metrics and conceptual models used in evaluation are asimportant, if not more so, than the designs
themselves.

Thiswork uses an existing model, LogGP [2, 29], as ageneralized framework for under-
standing application performance as it relates to the network hardware/software combination. The
parameters of the model: latency, overhead, gap and peak bandwidth for large transfers, correspond
well to the networking hardware and software components of real machines. Animportant feature of
the LogGP model isthat it allows application devel opers and machine designersto reason about the
overlap between communication and computation. Thus, algorithmsand applications can be charac-
terized asto their degree of latency tolerance. The RTT and peak bandwidth metricsbundle overhead
and latency into single parameters; characterizing an application’s tolerance to latency as distinct
from overhead isimpossiblewith those parametersalone. Inaddition, RTT and PB fail to captureim-
portant characteristics of distributed systems, which transfer “medium” sized data (in the single KB
range) [106]. Although there are other algorithmic modelsin the literature [18, 43, 46, 101] which
can capture some aspects of the network, they have been devel oped for parallel program design and
so do not correspond well to machine components. Evaluating the components of the networking
system as they relate to the application is easier with the LogGP model.

Oncewe haveafirm grounding inamodel, we can begin to make quantitative claimsabout
networked computer systems in the language of the model, in our case LogGP. Thisthesis provides
such a systematic study of the LogGP parameter space. Our aim isto investigate the impact of com-
munication performance on real applications. Furthermore, we want to understand which aspects
of communication performance are most important. We begin our investigation by quantifying the

sensitivity of applications to the parameters of the LogGP model. We define sensitivity as some ap-

'Theirontriangle is the model: CPU time = Instruction Count x Cycles per Instruction x Cycle Time.

plication changein performance, such asrun time or updates per second, as afunction of the LogGP
parameters.

The methodology to measure sensitivity is conceptually ssimple, although somewhat in-
volved in practice. First, we build a networking apparatus whose parameters are adjustable accord-
ing to the LogGP model. To build such an apparatus we start with a higher performance system than
what isgenerally availableand add controllabledelaystoit. Next, wecalibratethe apparatusto make
sure we can control the parameters accurately.

Once we have a calibrated apparatus, we can run the applications in a network with the
desired performance characteristics. We “turn the knob”, varying each parameter in turn and ob-
serving the resulting sensitivity of the application as a function of a single parameter. In all cases,
we must compare our measured results against an analytic model of the application. The analytic
models serve a check against our measured data. Points where the data and model deviate from one
another expose potential anomaliesthat warrant further investigation.

After we have collected the sensitivity data, we can answer arange of questions. These
include questions about the accuracy and applicability of our method, questions about application
behavior, questions about communication architectures, and finally, questionsrel ated to the accuracy
and applicability of simple application models.

Therest of this chapter is organized asfollows. We first introduce two axes of experiment
design fundamental to networking research. The first axis categorizes the nature of the questions
of the experiment, and the second axis categorizes the nature of the experiment method. Next, we
describe the contributions of thisthesis. Finally, we present aroadmap of the thesis organization.

1.1 Background

What doesa“ better” network mean? In order to answer the question in aconcrete manner
aresearcher must run quantitative experiments. Aswith any scientific experiment, anetwork exper-
iment aims to elucidate the nature of the system’sresponse to some stimulus. In computer network-
ing, the dependent variablesarefew, e.g., latency, bandwidth, packets-per-second, and run-time. The
number and types of independent variables are many. Because the most common type of experiment
evaluatestwo or more designs, the independent variable is often some aspect of the network design,
such as aretry protocol or routing algorithm. The number of independent variables thus spans the
entire design space. In addition to different types of variables, there are a number of methods used

to carry out the experiments.

In this section we present asimple way to categorize awide range of networking research.
Our framework for categorizing computer network experiment design dividesthe design spacealong
two axes. These axes provide intuition into the nature of this thesis experiments, and taxonomic
placement of this work into a broad spectrum of computer networking research.

Thefirst axis categorizestheresponse of interest al ong the spectrum from network to appli-
cation. Specifically, the axis definesthe classto which the dependent variablesbelong. For example,
run time clearly belongsto the application class. Packet latency acrossaset of routers belongsto the
network class. Most experiments fall clearly into one class or another. Defining experiments along
this axisisimportant because it dictates what can be abstracted. For example, if the network isthe
focus of the experiment, many application details can be eliminated. Likewisg, if run-timeisthe
dependent variable, we may wish to focus our efforts on understanding the application and abstract
away network details.

The second axis categorizes the experimental method. Once the viewpoint of the exper-
iment has been established (network or application), we have a number of methods of evaluation,
e.g. smulation or direct measurement. These methods fall under general performance evaluation
techniques; we survey them in order to gain insight as to the rational for the method chosen in this
study.

In the next sections, we explore these two axes in greater detail. We start by describing
the two points on the experiment paradigm axis. We then describe four methodol ogies used in net-
working experiments. Finally, we summarize with an overview of the strengths and weaknesses of
the different experiment methods.

1.1.1 Experiment Paradigm Axis

Networking research traditionally has taken two perspectives with regards to evaluation.
In any network evaluation, thereisthe network itself, aswell as the application load placed on it. A
network with no loadislike a highway without cars—evaluation of the roadwaysis difficult if we do
not understand the characteristics of the traffic load. Over-extending the analogy a bit, applications,
liketraffic, respond differently to changing network (road) conditions. In order to perform atractable
study, an experimenter often has to focus on one response or the other. That is, either the network-
level or the application-level response will be the focus of the study.

Networ k Focus

The first, and most common perspective, is to observe the network response to some ap-
plication load. Two classic studies which exemplify this view are [24] and [56]. In these works,
the application load is presented as a “black-box”: only a series of packets bound for different des-
tinationsis observable. The experiments use network-centric dependent variables, e.g. latency and
bandwidth, asthe metric of evaluation. The network perspective evolved becauseit is close to what
isobservable at network switches. All the switch “sees’ isastream of packetsand traditionally they
have little, if any, information on the applications’ characteristic load.

Because the network perspective contains such little information on application character-
istics, many studies take a simple approach and model the applications as independent and identi-
cally distributed (11D) processes. These traditional loads have the twin advantagesin that they are
amenable to analytic analysis and are easy to correctly generate in a simulator. However, a serious
drawback of these application models is that they do not approximate a real application load very
well. A recent half-decade series of empirical studies[62, 66, 67], has shown that application traffic
isbursty on al time scales. Traditiona 11D processesfail to capture this effect; the ramifications of
this discrepancy are still under investigation.

Application Focus

The second school of thought looks at the application performance given variable network
parameters. In these classes of experiments, the dependent variables are application related. For
example, what bandwidth can a single FTP transfer obtain with a certain loss rate?

Theprimary advantage of such aperspectiveisthat it more closely modelswhat areal user
might think of as” better”. The computer architecture community hastaken this approach to the most
extreme level; every new microprocessor feature in the last 10 years has been defined by itsimpact
on the SPEC benchmark suite. In the parallel architecture community, afew application suites have
emerged, such asthe SPLASH suite [110] and the NAS Parallel Benchmarks (NPB) [9, 11]. Among
wider-area networks, the state of affairsis such that no real application suites have been defined for
a broad segment of the community.

The application based perspective hasthe disadvantage of being quite complex to analyze.
Unless we have a good models and an understanding of the applications, they can become opague
“black-boxes’. Experiments designed along this axis may not yield an understanding of how sys-
tem design facets shape application behavior. A more difficult problemis that the application focus

requires the researcher to map application-level observations to specific architectural features. An
example of this problemisthelack of continuity across network interface designs. Returning to the
processor architecture anal ogy, the SPEC benchmarks are the most analyzed programson the planet,
thus much is understood about their structure. A thorough analysis has been done for the SPLASH
benchmarks[110], but little analysis has been done for the other benchmarks.

Assuming we cross the application complexity barrier, a second advantage of the applica-
tion paradigm isthat it focuses attention on the most important aspects of the network. For example,
in the CPU world many programs are known to be quite sensitive to caches and branch predictors.
The effect of this conclusion has been that many CPU designers focus on these aspects of their de-
signs. With networks, latency or bandwidth alone are often touted as the figure of merit in many
network-centric studies. In the WAN context, however, there are no agreed-upon standard applica-
tion workloads. Without adeconstructedworkload, acredible evaluation of new designsinthe WAN
arenawill remain difficult.

1.1.2 Evaluation Methods Axis

Once the experimenter has chosen a perspective, arange of evaluation methodologies are
available to perform the experiment. We classify them in order of increasing approximation to real
systems. The four methods are: analytic modeling, simulation, emulation, and direct measurement.
Each approach has appropriate uses and a range of strengths and weaknesses. The discussion here
is presented as background to put this thesisinto an appropriate context.

Analytic Modeling

Analytic modeling is traditionally not considered an “experimental” technique, although
it could be classified as a gedanken experiment 2. The purpose of an analytic model is often the
same as an experiment, that is, answer basic questions about anetwork system, e.g., what isthe peak
bandwidth through the system? The differenceis that the technique resultsin a set of equations that
establish the relationship among various parameters and performance metrics. Unlike any of the
other methods, nothing is“run” in the usual sense.

The complexity of such models can range from very simple frequency-cost pairs, to queu-
ing theory models [50, 65], to advanced queuing theoretic techniques[57, 63]. Both the complexity

and accuracy of such models can cover a large range, depending on the purpose of the model. Of-

Zathought experiment

ten a high degree of accuracy is not required, so analytic modeling is a viable technique in many
circumstances.

Althoughat first they appear quiteflexible, analytic model stend not to captureawiderange
of system behavior because of the assumptions needed to make the equations tractable, and also to
close the system of equations in the first place. For example, feedback loops in real systems are
difficult to capture using analytic models. Chapter 5 presents observations describing the difference
between measured data and models due to these effects.

In general, ascientific model isonly “valid” as to accuracy of the model compared to real
systems. For example, claims are often made in the popular press that Newtonian physics models
are invalid because they can be quite inaccurate. However, a more accurate statement is that New-
tonian mechanics are only valid in the realm of everyday experience. Questions regarding accuracy
in the network modelsis arealm where much previous work in analytic modeling fails, not because
of inaccurate models, but because of the lack of validation against actual systems. Indeed, general
rules of thumb describing the accuracy of analytic models do not seem to exist for many classes of
networks. Thisisaregrettable state of affairs because analytic modeling can be apowerful predictor
of real systems.

An often overlooked power of analytic modeling is its ability to formalize how a system
behaves, not in questions of absolute accuracy. That is, analytic models help us conceptualize the
essence of the system, as opposed to merely describing the system’s response to some stimulus. At
thislevel, the value of the model is not in answering the absolute contribution of each component,
but instead identifying the important components and their relationshipsin thefirst place. At some
level, every researcher has a model in mind when answering performance analysis questions. The
model’s abstractions of areal system capture the essential elements without burdensome details. In
addition, the formulation of aformal model provides the researcher away to put these abstractions
into a quantitative, testable form. The resulting advances in conceptual thinking are often the most
valuable part of amodel. For example, the simple analytic models described by theiron trianglein
CPU design silenced endless artistic debates and forced designersinto arealm of quantitative archi-
tectural tradeoffs. The absolute accuracy of such simple models for use in real programs was not
addressed until much later [90].

Simulation

A step closer to areal system is asimulator. One might think of a simulator as a model
without a closed form description. Simulation is perhaps the most popular techniquein the research
arsena because of itsinfinite flexibility. A simulation experiment can potentially explore the entire
design space. However, simulation suffers from a number of drawbacks some of which are com-
monly known, but a number of which are more subtle.

A well known drawback of smulation isits lack of scale. That is, the size of the system
which can besimulated with any fidelity isoften quitelimited. Indeed, expanding the scale of simula-
tionisan activeareaof research [54, 87]. Inthe parallel architectureregime, the effects of smulation
scale have been studied extensively [110]. A primary effect is that architectural parameters must be
scaled with the input in order to obtain meaningful results.

Simulation experimentsal so have a number of well known engineering drawbacksinclud-
ing complexity, time to build the simulator, time to debug the simulator, and time to validate the
simulator. Theimportance of thelast point cannot be over stressed. All too often, detailed simulator
results are constructed without a corresponding validation either using an analytic model or alive
system. Whileintuition can be used to validate a simulator [57], such an approach might only serve
to feed the experimenter’s previous bias.

Aninsidiousdanger with simulation isthat the bias or misconceptions of the experimenter
will become encoded in the simulator. While a so true of analytic modeling, the danger isincreased
in simulation because of theincreased level of detail when using simulation. Often, these bias mani-
fest themselvesasinvalid assumptions. For example, the assumption that traffic has uniform random
destinationsis quite common and may not be true for many real networks[76]. In another example,
one simulation study showed that paging over anetwork would be much faster thanto local disk [5],
but later results showed the performance to be much less than expected [3]. The inaccuracy origi-
nated because of the faulty assumption that network paging would have much lower overhead than
disk paging.

A more subtle danger than faulty assumptionsisthat often the simulator is adept at simu-
lating one class of system over another. For example, shared memory may be given preference over
message passing because extensive simulation tools have been developed for shared-memory sys-
tems. The network experimenter may observe artifacts of shared memory machines, e.g. very short
packets, while missing the effects of longer packets that occur when using message passing or WAN
protocols.

Emulation

We define emulation, as distinct from simulation, as when some part of alive system is
run and the components which comprise the independent variables are emulated. That is, the part
of the system under test isareal, while the parts which compose the independent component of the
experiment are emulated. A primary advantage of such an approach is that it can be scaled larger
than simulation. For example, the data set sizesin [73] are afactor of 10 larger than the ssimulation
resultsfor similar programs found in [52, 110].

Emulation is certainly not asflexible as simulation. A substantial limitation of emulation
isthat it misses at least an order of magnitude of the design space possible compared to simulation
because the live system component requires real hardware and software. While the emulated por-
tion can be modified, the interfaces between it and the live portion will dictate how much of the
design space can be controlled. With full-blown simulation, only programming effort and computer
resources limit the simulation.

Another drawback of emulation over simulation isthe reduced fidelity of the experiments.
Itisoften difficult to observethe live parts of the system in order to understand observed responses.
In the operating system community, there has been much recent research on live system measure-
ment [4]. An interesting tradeoff between fidelity and scale was explored by mixing multiple levels
of simulation and emulation in [89]. In the programming language realm, binary translators have a
similar effect [27, 92]. Increasing thefidelity of the“emulation” addsinstructions, and this overhead
can be adjusted according to the needs of the experimenter.

Direct M easurement

Direct measurement is by definition the most “realistic” of experimental techniques. We
define direct measurement as when only a complete system is used in the experiment; no part of the
systemisemulated or simulated. Most often, direct measurement is used to judge different systems
in similar points in the design space. For example, [49] compares Autonet, Ethernet and FDDI.

Direct measurement can only evaluate discrete points in the design space rather than a
range of designs. The single-point nature of direct measurement can be both beneficial and detri-
mental. On one hand, limiting the design space to a few points limits the number of independent
variables. 3 In addition, since the measured systems are real we could actually use such systems. On
the other hand, the inability to scale parameters in a controlled fashion makes determining impor-

9 Section 2.4 backgrounds experiment factor design.

10

tant parameters in the design space difficult. Direct measurement does not help us conceptualize a
system, and can even leave us more befuddled than before. Thelack of amodel may thus effect our
conclusions. Because the system under measurement is an actual artifact, as opposed to a model,
many studies often do not articulate the resultsin terms of abstract parameters.

A potential pitfall of using live systemsis that the systems may not be configured “prop-
erly”. For example, aversion of Solaris had certain TCP window constants set too low as shipped
from the manufacturer [61]. Although analyzing a system “as shipped” might still be afair charac-
terization, it does not represent the true potential of a mis-configured system. Validating the results
of live systems against analytic models can expose mis-configuration errors.

1.1.3 Summary

Our two axes of categorization, experiment paradigm and methodology, allow us make
sense of the broad field of network experiments. Network-centric studies describe what happens to
the network, are useful for improving network performance, but tell us little about which aspects of
the network are most important. Application-centric studies describe application behavior, point to
network areas that yield the largest benefit, but do not describe how to make improvements.

On the methodology axis, we saw that analytic modeling requires little engineering ef-
fort and helps conceptualize how a system works. However, the models are somewhat inflexible
in their ability to capture how real systems operate and thus can be inaccurate. Simulation requires
substantial engineering, islimited in scale, but has unlimited flexibility. Emulation has limited flex-
ibility becauseit requireslive system components. It also entails substantial engineering effort. The
results, however, can be quite accurate, because many important behaviors only appear at realistic
input set sizes. Direct measurement is the most inflexible technique, does not help us conceptualize
the system at all, but provides the most realistic results.

In the context of our framework, this thesis is clearly an application-centric, emulation
based study. Our method allows us to reason about application behavior, and thus conclude about
which aspects of the network are most important. Our emul ation-based approach allows usto use a
wide range of applications with realistic data sets and networking parameters. The live experiment
data, coupled with analytic models, gives us greater confidence in our results and conclusions than
using asingle method.

11

1.2 Contributions

Our contributions fall into four areas. The primary contribution is an investigation of a
novel performance analysistechnique for network experimentation. Recall that because our study is
application-centric, we can al so make statements about application behavior. Answersto networking
architecture questions make up the third area because of the close association of the LogGP model
to real machine components. Modeling is our fourth, and smallest, area of contribution. Although
the models are relatively ssimple, we can still draw some conclusions from them. The next sections
describe this thesis' s contributionsin each of these areas. We also describe the questions this thesis
attempts to answer in these areas, along with a brief summary of our results. Chapter 7 contains our
humbl e attempt to answer these questionsin more detail.

1.2.1 Performance Analysis

The primary contribution of this thesis is a methodology for the systematic exploration
of the space of network design. The experimental methodology is inspired by analytic bottleneck
analysis[57, 65], but is performed on a live system rather than on analytic models. The basic tenet
of the approach is to introduce carefully controlled delays in key system components. The delays
allow usto quantify the sensitivity of the system to each component. In our definition, sensitivity is
the changein an application-centric metric as afunction of one of the LogGP parameters. In contrast
to bottleneck analysis, which only identifies peak performance, our method can expose bottlenecks
aswell as characterize their nature by examining the sensitivity curve.

Returning to our taxonometric experiment design space described in Section 1.1, our ex-
perimental method is application-centric and emulation based. The apparatusallowsusto “ sandbox”
running applicationsin a network with the desired performance characteristics. That is, werun rea
applicationsin a controllable network. The novelty of our approach isthe use of this artificial net-
work. We gain the benefit of observing the effects that occur in applications running realistic data
sets. The disadvantage of our approach isthat, although we do use anetwork whichishigher perfor-
mance than what is generally available, we are unable to observe sensitivitiesbeyond its operational
limits. Another encumbrance of our method isthat in order to understand the sensitivity curves, we
must create models of the applications.

In spite of our method's shortcomings, it allows us good observational fidelity. Sensitive
applicationswill exhibit ahigh rate of “slowdown” aswe scaleagiven LogGP parameter. Insensitive
applicationswill show little or no differencein performance as we change the parameters. Another

12

important advantage of our method over traditional onesis that we can categorize the shape of the
slowdown curve because our apparatus allows usto observe plateausor other discontinuities. These
discontinuitiesare of prime importance to the system architect because designs can take advantage
of performance plateaus.

Wefind that our application-centric, emulation approachworkswell in practice. However,
caremust betakento calibratethe apparatus, aswell ascross-check theresultsagainst simple models.
We are ableto quantify the sensitivity curves of many different applicationsin avariety of program-
ming domains, including parallel computing and distributed file systems. Our apparatus scales over
an order of magnitude in overhead, latency and bandwidth. We can thus emulate networks ranging
from high-performance SANS, to traditional LANS, and even WAN links.

1.2.2 Application Behavior

A unique approach of thisthesisis the use of live systemsin a bottleneck-style of anal-
ysis, as opposed to the more traditional approaches using analytic models. We find that a modern
computer system is complex enough that our approach is a valid method of ssimply characterizing
the application space.

The use of alive system allows us to observe and quantify real application behavior and
validate models. Modeling resultsare always suspect until validated by other means. Although mea-
surement as a technique can certainly quantify application behavior, using measurement aloneit is
difficult to obtain, without factor analysis, the sensitivity results provided for by our method.

We can obtain answersto a broad range of questions about application behavior using the
methodsin thisthesis. The sensitivitiesto L,o,g, and GG are the most obvious. However, we can also
ask questions such as is communication bursty, or uniform? Do applications contain many serial
dependencies? If so, does the nature of these dependencies result in more sensitivity to overhead or
latency? We can also begin to explore questions such as if we can we restructure the application to
better suit modern machine characteristics. If we observe enough applications, we can aso hope to
make some generalizations about how programmers use these systems.

We find that programmers employ a diverse set of latency tolerating techniques and that
these are quite effective in practice. However, many of these techniques are still sensitive to over-
head. Thus, many applications demonstrated the strongest sensitivity to software overhead. For both
arange of paralel programs and NFS, overhead is a limiting factor. Continued improvements in

software overhead will yield the largest benefits. Applications also demonstrated strong sensitivity

13

to various bandwidths, suggesting that communication phases are bursty and limited by the rate at
which messages or bytes can beinjected into the network. Examining the history of many programs,
we see that program optimizations shift sensitivity away from latency and overhead and towards
bandwidth.

1.2.3 Network Architecture

Armed with the sensitivity results and the LogGP model, we can answer a number of im-
portant architectural questions. For example, how much do network design changes affect appli-
cation performance? How does increasing network performance improve application performance?
Would additional hardware support be worth the costs? If so, what architectural featureswouldyield
the largest benefit?

LogGP plays akey rolein our ability to answer these architectural questions because the
parameters of the model were designed to correspond to real machine components. The LogGP
model has been validated as an architectural model, as well as a parallel programming model, on
awide variety of real machines and message layers[31, 55]. We can thus draw strong conclusions
about how improvementsin machineswill affect application performance based on our abstract sen-
sitivity results. For example, if we improved the networking code by a factor of 2, and if our sensi-
tivity modelsfor o have aslope of 1 (i.e. each factor of o improves performance by 1 unit) then we
can have reasonable confidence that our improved networking code would result in an overall 2x
performance improvement.

Our result that applications demonstrate the strongest sensitivity to software overhead im-
pliesthat continued improvementsin software overhead will yield thelargest benefits. Hardwareand
software should be designed to minimize software overhead, perhaps even at the expense of some
of the other parameters. In particular, our results show the somewhat counter intuitive result that ar-
chitectures that minimize overhead at the expense of network latency can deliver increased overall
performance for most applications.

Applications a'so demonstrated strong sensitivity to various bandwidths. Although many
designscan deliver near peak per-byte bandwidthsfor long messages, we a so measured anumber of
applications where small message throughput was nearly asimportant. Architectures must deliver
not only low overheads, but also should deliver close to the peak bandwidth for small messages. As
with overhead, our results on application behavior show that architecturesthat can sustain ahigh per-

message rate for small messages at the expense of latency can still maintain good overall application

14

performance.

Chapter 6 explores a novel architectural designs based on the results of this thesis. We
use SPINE [40], a software infrastructure, to examine the effect of overhead reduction by adding
computation into the network device. The results, while encouraging, show that our understanding
of overhead reduction techniquesisstill quitelimited and moreinvestigationin thisareaiswarranted.
We show that more radical software and hardware architectures will be needed to deliver order of
magnitude performance improvements to applications while maintaining connectivity to standard

protocols.

1.2.4 Modeling

Because we use analytic modeling to validate the results of our live system experiments,
we can ask questionsabout the model sthemselves. For example, how well do simplemodels® predict
application run time? How accurate are simple models compared to live systems? If they are not
sufficient, how closely do fully characterized applications(e.g. thosein [39]) match the known data?

Our simple models are by definition linear in event frequency and cost. If the measured
sensitivities are linear to the parameters simple models may be sufficient. More complex charac-
terizations such as those in [39] consider dependencies between communication events. A recent
complex variant of the LogP model [43] considers queuing effects due to endpoint congestion. For
thiswork wewill use simple models wherever possible. We find that simple models can capture the
high-level impact of changing network performance, particularly for overhead, but more complex
models are needed when good fidelity is required.

We use a basic queuing theory to model NFS. While simple models may be useful in this
case, serverstraditionally have been described using queuing theoretic models. Our apparatusallows
usto compare measured resultsagainst thisclass of traditional models. Wefind that queuing theory is
able to capture much of the behavior of an NFS system. However, at high |oads the feedback control
loops in NFS cause the measured values to diverge from the models substantially.

1.3 ThesisOrganization

The rest of this thesis is organized as follows. Chapter 2 describes the methodology in

detail. We describe our basic apparatus. We first background the basic communication software

*We define a simple model to be one were the execution time is a linear function of a series of n event types where
each type has afrequency F;, and cost C;. Thus, total execution time = Z:‘zl Fi x C;

15

and then describe how we added controllable delays to the different system components. Next, we
provide an outline of the micro-benchmark calibration technique used to make sure the apparatusis
operating correctly. We then document two variations of the basic apparatus, named after the com-
muni cationslayersbuilt on top of thebasic apparatus: MPI and TCP/IP. The next sectionin Chapter 2
describesthe single parameter at-a-time approach we have chosen to use for our experiments, asop-
posed to some other combination of scaling the parameters. We then document alternative models
to LogGP, followed by adiscussion of why LogGP isthe most appropriate choice for our work. We
conclude Chapter 2 with a description of four related experiments an compare their methodol ogies
to that of this thesis using the framework we developed in Section 1.1.

The next three chapters describe the sensitivity findings of our methodology for three ap-
plication suites. Each chapter first characterizesthe applications. Next, we present analytic models
of the applications. We then present the sensitivity results along with a description of the utility of
the models. Finally, we summarize the results of each suite.

Chapter 3 presentsthe results for a set of Split-C and Active Message programs. Our ap-
paratus performed admirably, exposing sensitivity curvesfor all the parameters. The apparatus ex-
posed anumber of non-linearitiesin the sensitivity curves and found an interesting anomaly in one
application. We find that these programs are very sensitive to overhead and gap, and quantitatively
less sensitive to latency and Gap. Our linear models were good at predicting slowdowns due to in-
creased overhead, were less successful at predicting the effects of gap, and rather poor at predicting
the effects of increased latency and per-byte bandwidth.

Chapter 4 presentsthe sensitivities of some of the NAS Parallel Benchmarks (NPB). Com-
muni cation patterns of the NPB are much different from the Split-C/AM programs. Communication
is dominated by few, large messages. Unlike the Split-C/AM programs, the NPB are insensitive to
overhead, gap and latency. They do, however, show some sensitivity to Gap. The primary network
architectural feature relevant to these applicationsis network bisection bandwidth.

Chapter 5 presentsthe sensitivity results and models of Sun’sNetwork File System (NFS).
We find that like the Split-C programs, NFSis quite sensitive to added software overhead. NFS also
displayed sensitivity to latencies in the LAN region of milliseconds, but showed a flat region for
network latency under 150 microseconds.

In Chapter 6 we explore the SPINE system which applies some of the results of the previ-
ouschapters. Onegoal of SPINE istoimprove performance by reducing overhead. In effect, SPINE
reduces overhead by pushing some of the application work into the other parameters viaintelligent
network interfaces. The chapter briefly introduces a pipelining framework to better model the com-

16

muni cation system, followed by the performanceresultsof the actual system. We show that SPINE’s
performance improvements are mixed; it reduces overhead but does not improve the other parame-
ters. The utility of the SPINE approach thus depends on the application context. We conclude the
chapter with some thoughts on areas of future research.

Chapter 7 brings the results of the previous five chapters together. We organize the con-
clusions around the four areas of contributions: performance analysis, behavior, architecture and
modeling. We hypothesize that our perturbation style of analysis could be used in avariety of com-
puter systems contexts. The chapter also draws some parallels between the style used in this work
and experimentsin other sciences. We end the thesiswith some final thoughts on the meaning of our

findings.

17

Chapter 2

M ethodology

. it were far better never to think of investigating the truth at all, than to do so
without a method. — René Descartes, Rules for the Direction of the Mind.

In this section, we describe our experimental methodology. We first describe the design
philosophy behind our method, followed by a placement of our experiments in the wider context
of experiment design. Next, we describe the LogGP network model, whose parameters correspond
directly to the factorsin our experiments.

The bulk of this chapter describes the networking component of the apparatuses used in
the experiments. The three systems are named after the primary communicationslayers used by the
applications; Split-C/AM, MPI and TCP/IP. Aspects of the apparatus not related to communication,
such as changes in the disk-subsystem, are described in later chapters.

After describing the apparatuses, we focus on our methodology for varying the network
parameters. We use a single-factor at atime approach, scaling each LogGP factor in turn. We justify
our use of single factor design by comparing other styles of experiment design, such as 2* designs.

We conclude this chapter with a discussion of related network models and previouswork.
The purposed of the related models section is to describe why LogGP is an appropriate network
model. We compare and contrast LogGP with other models developed in the literature. The exam-
ination of previouswork focuses primarily on the experimental methods used. We place each work
in the framework described in Section 1.1. The secondary purposein examining previous work is
to understand how their results compare or contrast with the results of thisthesis. By examining a

wide range of other experiments, we may be able to reinforce or diminish our results.

18

2.1 Experiment Design Philosophy

In the space of experimental design, thiswork uses application-centric metrics combined
with an emulation methodology. The basic approach is to determine application sensitivity to ma-
chine communication characteristics by running a benchmark suite on alarge system in which the
communication layer has been modified to allow the latency, overhead, per-message bandwidth and
per-byte bandwidth to be adjusted independently. This four-parameter characterization of commu-
nication performanceis based on the LogGP model [2, 29], the framework for our systematic inves-
tigation of the communication design space. By adjusting these parameters, we can observe changes
in the execution time or throughput of applicationson aspectrum of systemsranging from the current
high-performance clustersto conventional LAN based clusters.

Wevalidatetheemulation with analytic models. The model srangefrom simplefrequency-
cost pairs to simple queuing networks. Theintent of the modelsis to validate the emulation experi-
ments. A side benefit of the modelsis that we can compare the accuracy of the models against live
systems. The absolute accuracy can serve as a guide for future designers as to the applicability of
analytic models to their situations.

In order to both demonstrate the soundness of the methodology, as well as draw general
conclusions about application behavior, we must have a representative application suite. While no
suite can possibly capture all application behavior, adiverse suite may capturetherelevant structures
of abroad class of programs. Our suite includes avariety of parallel programswritten in the Split-C

programming language, a sub-set of the NAS Parallel Benchmarks and the SPECsfs benchmark.

2.2 LogGP Network Model

When investigating trade-offsin communication architectures, it isimportant to recognize
that the time per communication operation breaks down into portionsthat involve different machine
resources: the processor, the network interface, and the actual network. However, it is also impor-
tant that the communication cost model not be too deeply wedded to a specific machine implemen-
tation. The LogGP model [2, 29] providesan ideal abstraction by characterizing the performance of
the key resources, but not their structure. A distributed-memory environment in which processors
physically communicate by point-to-point messages is characterized by four parameters (illustrated
in Figure 2.1).

L: thelatency, or delay, incurredin communicating amessage contai ning asmall number of words

19

<4—— P (processors) ——»

PIM||IP M . e PIM
o (overhead) 0 M~

g (gap)

L (latency)

Interconnection network ~_ limited capacity

(L/g to or from
a proccessor)

Figure 2.1: LogGP Abstract Machine
The LogGP model describes an abstract configuration in terms of five performance parameters: 1,
the latency experienced in each communication event, o, the overhead experienced by the sending
and receiving processors, g, the gap between successive sendsor successive receives by a processor,
G, the cost-per-byte for long transfers, and P, the number of processors/memory modules.

from its source processor/memory module to its target.

o: the overhead, defined as the length of time that a processor is engaged in the transmission or

reception of each message; during thistime, the processor cannot perform other operations.

g: thegap, defined as the minimum time interval between consecutive message transmissions or
consecutive message receptions at a module; this is the time it takes for a message to cross
through the bandwidth bottleneck in the system.

P: the number of processor/memory modules.

L, 0,and g arespecifiedin unitsof time. Itisassumed that the network hasafinite capacity,
suchthat at most [L /g messagescan beintransit from any processor or to any processor at any time.
If aprocessor attempts to transmit a message that would exceed thislimit, it stalls until the message
can be sent without exceeding the capacity limit.

The simplest communication operation, sending a single packet from one machine to an-
other, requires atime of I, 4+ 20. Thus, the latency may include the time spent in the network inter-
faces and the actual transit time through the network, which are indistinguishable to the processor.
A request-response operation, such as aread or blocking write, takestime 21, + 40. The processor

20

Platform o(us) | g9 | L (us) | MBIs(%)
Berkeley NOW 2.9 5.8 5.0 38
Intel Paragon 18 7.6 6.5 141
Meiko CS-2 1.7 13.6 7.5 47

Table 2.1: BaselineLogGP Parameters.
This table shows the performance of the hardware platform used, the Berkeley NOW. Two popular
parallel computers, the Intel Paragon and the Meiko CS-2 are included for comparison.

issuing the request and the one serving the response both are involved for time 20. The remainder
of the time can be overlapped with computation or sending additional messages.

The available per-processor message bandwidth, or communication rate (messages per
unit time) is 1/¢. Depending on the machine, this limit might be imposed by the available network
bandwidth or by other facets of the design. In many machines, the limit is imposed by the message
processing rate of the network interface, rather than the network itself. Because many machines
have separate mechanisms for long messages, e.g., DMA, it is useful to extend the model with an
additional gap parameter, &, which specifies the time-per-byte, or the reciprocal of the bulk transfer
bandwidth [2]. In our machine, GG is determined by the DMA rate to or from the network interface,
rather than the network link bandwidth.

The LogGP characteristicsfor the Active Message layer are summarized in Table2.1. For
reference, we also provide measured LogGP characteristics for two tightly integrated parallel pro-
cessors, the Intel Paragon and Meiko CS-2 [31].

2.3 Apparatuses

In this section we describe the various apparatuses used. The experimental apparatus con-
sists of commercialy available hardware and system software, augmented with publicly available
research software that has been modified to conduct the experiment. There are three distinct vari-
ations of the same basic apparatus. All use the an Active Messages [104] variant called Generic
Active Messages (GAM) [30]. The primary differentiator between the apparatusesis the high-level
transport layered on top of this basic messaging substrate, Split-C [28], MPI [75] or TCP/IP. Each
apparatusis used for one application suite: Split-C/AM for the Split-C applications, MPI-GAM for
the NAS Parallel Benchmarks, and TCP-GAM for the SPECsfs benchmark. The Split-C and MPI
apparatus use the identical GAM Active Message layer. The Active Message Layer for the TCP/IP

21

version of the apparatus required substantial modification to the semantics of the Active Message
layer.

2.3.1 Basic Split-C/AM Apparatus

In this section we first describe the hardware used. Next, we provide background on the
GAM layer, which forms the core communication system of our apparatus. We then describe how
we vary the LogGP parameters by engineering controllable delays into GAM. Finally, we briefly
describe how we calibrated the apparatus using a simple microbenchmarking technique.

Hardware

The hardware for all our experimentsisa NOW of 35 UltraSPARC Model 170 worksta-
tions (167 MHz, 64 MB memory, 512 KB L2 cache) running Solaris2.5. Each hasasingle Myricom
M 2F network interface card on the SBUS, containing 128 KB SRAM card memory and a37.5 MHz
“LANai” processor [17]. The processor runs our custom firmware, called the LANai Control Pro-
gram (LCP). The LANai processor plays a key role in alowing us to independently vary LogGP
parameters. The machines are interconnected with ten 8-port Myrinet switches (model M2F, 160
MB/s per port) in atwo-level fat tree topology. Each of the 7 switchesin thefirst level is connected
to five machines and all three second level switches. At any given time, we only run programs on
32 machines. Often a machine or two was down; afew spares went along way towards having 32

working machines at any given time.

GAM Active Message L ayer

The GAM Active Message layer on Myrinet was devel oped as an experimental research
prototype. Its primary goal was to deliver high performance communication to parallel applications
on NOWSs. Although GAM is not strictly necessary for use in this study, two of its characteristics
proved quite useful. First, its high performance increased the range of the LogGP parameter space
we can consider. Second, its simplicity allowed for easy insertion of delaysinto various portions of
the system.

The GAM Active Messagelayer followsarequest-reply model. Theunderlying network is
assumed to be reliable, but only possessesfinite buffering. Because of the finite buffering, care must
be taken to avoid fetch-deadlock. Deadlock avoidance is achieved by using credit counts between
pairs of nodes. Thisisthe kP algorithm described in [32] and similar to the one used in [72]. The

22

Host Processor Host Processor

o: stall SPARC on o: stall SPARC on
message send message reception

LANai network LANai network)
Processor Processor L: set presence
bit at time

Rx+AL
g:delay LANai i RX QUL
in Tx loop

after injection
Delay Queue

Figure 2.2: Varying LogGP Parameters
Thisfigure describes our methodology for individually varying each of the LogGP parameters. The
inter action between the host processor, the network processor (LANai) and the network is shown for
communication between two nodes.

layer is not thread-safe and requires polling to receive messages. Polls are automatically inserted
when sending messages, however.

In addition to requests and replies, messages are typed as short or long. Short messages
are up to 6 wordsin length, with one word consumed as a function handler. Long messages contain
afunction pointer, two words for function arguments and a block of dataup to 4KB long. Short and
long messages are orthogonal to requests and replies. Thus, ashort or long message may be sent in
response to either type of request. A library function performsthe packetization for direct memory-
copy reguests longer than 4KB. Note that in the GAM specification [30] there is not an arbitrarily
long reply bulk-transfer function; repliesin the Myrinet apparatus are limited to 4K B.

Varying the L ogGP Parameters

The key experimental innovation is to build adjustmentsinto the communication layer so
that it can emulate asystem with arbitrary latency, overhead, gap and Gap. Our techniqueisdepicted
in Figure 2.2 which illustrates the interaction of the host processor, the LANai (nhetwork interface
processor) and the network for communication between two nodes. The next sections describe how
we varied each parameter in detail.

Overhead The majority of the overhead is the time spent writing the message into the network
interface or reading it from the interface. Thus, varying the overhead, o, is straightforward. For

each message send and before each messagereception, the operationismodified to loop for aspecific

23

period of time before actually writing or reading the message.

gap and Gap The gap is dominated by the message handling loop within the network processor.
Thus, to vary thegap, ¢, weinsert adelay loop into the L CP message injection path after the message
istransferred onto the wire and before it attempts to inject the next message. Sincethe stall is done
after the message is actually sent, the network latency is unaffected. Also, since the host processor
canwrite and read messagesto or fromthe network interfaceat its normal speed, overhead should not
be affected. We use two methods to prevent excessive network blocking from artificially affecting
our results. First, the LANai isstalled at the source rather than the destination. Second, the firmware
takes advantage of the LANai’ s dual hardware contexts; the receive context can continue even if the
transmit context is stalled.

To adjust (7, the transmit context stalls after injecting afragment (up to 4KB) for a period
of timeproportional to thefragment size. We stall the L CP for an adjustable number of microseconds
for each 100 bytes of upto a4 KB fragment. For example, if the Gap “knob” wasset to 11, wewould
stall the LANai transmit context for an extra 11 is for each 100 bytes of datain afragment.

Latency Thelatency, I, requirescareto vary without affecting the other LogGP characterigtics. It
includes time spent in the network interface’s injection path, the transfer time, and the receive path,
so slowing either the send or receive path would increase .. However, modifying the send or receive
path would have the side effect of increasing g. Our approach involves adding adelay queueinside
the LANai. When a message is received, the LANai deposits the message into the normal receive
gueue, but defers setting the flag that would indicate the presence of the message to the application.
The time that the message “would have” arrived in the face of increased latency is entered into a
delay queue. The receive loop inside the LANai checks the delay queue for messages ready to be
marked as valid in the standard receive queue. Modifying the effective arrival time in this fashion

ensures that network latency can be increased without modifying o or g.

Calibration

With any empirical apparatus, as opposed to a discrete simulator, it is important to cali-
brate the actual effect of the settings of the input parameters. In this study, it is essentia to verify
that our technique for varying LogGP network characteristics satisfies two criteria: first, that the
communication characteristicsare varied by the intended amount and second that they can be varied
independently.

24

\ A T T
,,,,,,,,, Round TripTime=21useC | [Apsec

12—
11—

5 o 8 5—

0]

] o
; — - 1285

3

g
A =10 psec

> oreceive=4 psec i
Osend = 1.8usec

1 1 1 | | L
0O 10 20 30 40 50 60 70

BurstSize

T

Figure 2.3: Calibration of LogGP Parameters
The LogP signature is visible as the isobaric plot of burst size vs. fixed computational delay, A.
This signature was a calibration made when the desired ¢ was 14 is. The send overhead, receive
overhead and gap can be read from the signature. Overhead is modeled as the average of the send
and receive overhead. Latency is computed as %(round trip time)-20.

Such acalibration can be abtained by running a set of Active Message micro-benchmarks,
describedin[31]. Thebasic techniqueisto measurethe timeto issue a sequence of m messageswith
afixed computational delay, A between messages. The clock stops when the last message isissued
by the processor, regardless of how many requests or responses are in flight. Plotting the average
message cost asafunction of the sequence size (burst size) and added delay generatesa L ogP signa-
ture, such asthat shown in Figure 2.3. Each curvein the figure shows the average initiation interval
seen by the processor as afunction of the number of messagesin the burst, m, for afixed A. For a
short sequence, this shows the send overhead. Long sequences approach the steady-state initiation
interval, g. For sufficiently large A the bottleneck isthe processor, so the steady stateinterval isthe
send overhead plus the receive overhead plus A. Finaly, subtracting the two overheads from half
the round-trip time gives L.

Table 2.2 describes the result of this calibration process for three of the four communica-
tion characteristics. For each parameter, the table shows the desired and calibrated setting for that
parameter. For much of the tunable range for overhead, the calibrated value is within 1% of the de-
sired value. Observethat as o isincreased, the effective gap increases because the processor becomes
the bottleneck, consistent with the LogGP model. Asdesired, thevalueof I isindependent of 0. The
calibrated ¢ is somewhat lower than intended and varying ¢ has little effect on 1. and no effect on

25

Desired Observed Desired Observed Desired Observed

0 0 g L g g 0 L L L 0 g
29 29 5.8 | 5.0 5858|2950 5.0 50129 | 58
49 51| 10.1|5.0 8075|2951 75 81|29 | 63
7.9 81| 16.0| 4.7 10/ 96|29 |55 10| 103 | 29| 64
129 | 130 | 26.0| 5.0 15| 14| 3.0| 55 15| 155|129 | 70
229 | 231 | 46.0| 4.9 30| 29| 30|55 30| 304 |29| 96
529 | 529 | 1060 | 54 55| 52|29 |55 55| 559 |30 155
779 | 765 | 1510 5.3 80| 76| 29|55 80| 804 |29 216
102.9 | 103.0 | 2059 | 6.0 105| 99 | 3.0| 55 105 | 1055 | 3.0 | 27.7

Table 2.2: Calibration Summary

This table demonstrates the calibration of desired LogP parameter values versus measured val ues.
The table also shows that the LogP parameters can mostly be varied independent of one another. As
predicted by the LogP model, when o > ¢ then ¢ isnot longer observable as a distinct parameter, it
degeneratesto o. Note that in the steady-state, the data for ¢ includesthe timeto send and receivea
message. Theincreasein g at high 1. isdueto our system'sfixed capacity of 4 outstanding messages
between processor pairs. It differs from the LogP capacity model which specifiesthat up to [L/g]
messages can be in-flight to a given processor at a time.

o. Increasing I, haslittle effect on o. A notable effect of our implementation isthat for large values
of L, the effective g rises. Because the implementation has a fixed number of outstanding messages
independent of 1., duein part to the & P deadlock avoidance algorithm, when I, becomesvery large
the implementation is unable to form an efficient network pipeline. In effect, the capacity constraint
of our system is constant, instead of varying with I, and ¢ as the LogGP model would predict.

To calibrate (¢, we use a similar methodol ogy, but instead send a burst of bulk messages,
each with afixed size. The delay inside the LANai bulk handling loop was set to a specific number
of microseconds per 100 bytes of data. From the initiation interval and message size we derive the
calibrated bandwidth. We increase the bulk message size until we no longer observe an increasein
bandwidth, which happensat a2K byte messagesize. Figure2.4 showsalinear rel ationship between
the added delay inthe LANai code and the observed ¢&. Thelinear relationship showsthat the appa-
ratus can deliver arange of G quite accurately. The small dip at the lower left shows that aswe add
alinear delay, a sublinear increase in G occurs. We can conclude from this probe that the baseline
firmwareis not rate-limited, instead the system is overhead-limited.

26

Bulk Gap Calibration
0.9 —

08t
0.7 1
06
051
04t
031
02+
01t

0

Bulk Gap (usec/byte)

0 10 20 30 40 50 60 70 80 90
Delay (usec)

Figure 2.4: Calibration of Bulk Gap for the Parallel Program Apparatus
This figure shows the empirical calibration for bulk Gap. The dependent variable shows the added
delay in us per 100 bytes of packet size. The independent variable is the Gap expressed in us per
byte (1/bandwidth) at a 2KB packet size. After a small delay, therelationship islinear, showing that
the apparatus for adjusting bulk Gap is quite accurate.

2.3.2 MPI Apparatus

Thelast few years has seen a standard message passing interface, aptly named the M essage
Passing Interface (MPI) [75], emerge from the parallel programming community. In this section,
we describe the construction and performance of MPI on top of our basic apparatus described in the
previoussection. Recall that thisapparatusisusedin our study of theNAS Parallel Benchmark suite.
We conclude this section with a simple model which describes how the MPI will react to changesin
L ogGP parameters.

TheMPI specificationin quite complex, including many collective operations, four seman-
tic classes of point-to-point messages, methods of grouping processes (communicators), and many
ways of tag-matching between sends and receives. In order to manage this complexity, the MPICH
implementation [6] layers the more complex MPI abstractions on top of simpler ones. For example,
collective operations, suchasMPl _Al | _t o_al | areimplemented as standard point-to-point mes-
sages using MPl _send. The point-to-point messages are in turn, mapped to the lowest layer, the
MPI abstract device (MPID). The MPID layer is quite small; it implements just three ways to send
poi nt-to-point messages.

27

Construction

In order to construct a tunable apparatus, it was sufficient to map the MPID layer to GAM
[109]. Thethree waysto send messages at the MPID level correspond to two mappingsto the GAM
level. Thefirst send type, the “ standard” send, is the most common. More importantly, of the three
MPID sends, the standard send isthe only one used by the NPB. An MPI layer standard send eventu-
ally mapsto the MPID function MPI D_.AM Post _send. Thisfunction sends a contiguous memory
region to another processor, and returns when the data has been accepted by the communications
layer. The tag and communications group are already specified by higher MPI layers. All MPI re-
ceive functions map to a single receive function at the MPID layer, MPl D.AMPost r ecv. This
function tests for completion at the processor that receives the message. For the standard send, no
messages are sent inside the MPI D_.AM Post r ecv cal.

Theimplementation strategy for the standard send depends on the size of the message sent.
The GAM interface provides 2 distinct message sizes: 0 - 4KB, viatheamr equest function, and
greater than 4KB in the amst or e function. Each of the methods resultsin substantially different
start-up costs and per-byte bandwidths, resulting in two methods of constructing sends at the MPID
level.

The MPI D AMPost _send call is mapped to the GAM layer using the Myrinet specific
amr equest function for messages less than 4KB long. The amr equest function was added
after theinitial GAM specification in order to handle the “medium” message sizes needed by many
distributed systems. It delivers a continuous block of data up to 4KB long, and invokes a handler
on the remote end when the block arrives. The block on the remote side exists only for the life of
the handler. For these medium message sizes, the MPID-GAM implementation simply launchesthe
message into the network, or stallsif the network is full. Upon arrival, if the receive is posted, the
dataiscopied into thefinal destination. If the receive hasnot been posted, the messageis copied into
atemporary buffer. Control messages, e.g., for barriers, are implemented with theamr equest 4
function. Recall that amr equest 4 sends an active message with 4 32-bit words as arguments.

For messages larger than 4KB, MPI D_.AMPost _send first performs a round trip using
theamr equest _4 call. Thereceiver returns the destination address of the location of the receive
buffer. If the receive has not been posted, the handler on the receiver createsatemporary buffer. The
sender blocks until it receives the response containing the address of the receive buffer. Once the
address has been obtained, the sender usesthe amst or e function to send the datainto the correct
destination. Recall that amst or e copies a block of arbitrary data from one node to another, and

28

1200

MPI Linear Model

. measured <—
1000 F To=254 .~ g

o

o B=0.058 .

)]

S, 800 F A
£

= 600 .
o

w= 400 [A
g To=1485

© | B=0.027 |
= 200

1 L | | 1

0 1
0 5000 10000 15000 20000 25000 30000
Bytes

Figure 2.5: Baseline M Pl Performance
Thisfigure shows the baseline performance of the MPI-GAM system. The figure plots half the round
trip time for different size messages. Two distinct performance regimes are observable, one for mes-
sages < 4KB and the other for messages > 4KB. The modeled start-up cost, 7; is obtained fromthe
y-intercept of a least squaresfits to the two performance regimes. The per-byte costs, B = i, is
obtained from the slopes of the fitted lines.

thus requires all memory addresses to be known in advance of the call. A key point of the GAM
implementationisthat amst or e internally maps to a sequence of amr equest calls. The GAM
L CP can pipelinethese requestsresulting in the maximum bandwidth of 38 MB/sfor along sequence
of 4KB amr equest messages.

Performance

In this section, we investigate the performance of the MPI message passing layer built on
top of GAM. The purpose of this section isto understand how the inflation of the LogGP parameters
at the GAM leve affects the performance of MPI. We show how the different implementations of
the standard MPI send result in different performance regimes.

MPI benchmarkstraditionally use alinear model of performance. In the traditional linear
model, aper message start-up cost of 7}, ispaid on every message. A second parameter, 1., captures
bandwidth limitations of the machine. The cost to send an n-byte message, T, is thus modeled as
T, = To+ 5. Fitting this model into the L ogGP perspective requires care, although by definition,
G = i. Modeling T, requires knowledge of the underlying implementation. For example, Ty

29

may correspond directly to o, or, if around trip is required, may include I, aswell.

The classic experiment to compute 7T), is realized in the benchmark [35, 36]. This code
performs a ping-pong of messages between two nodes. One node sends a message of size n bytes.
After the entire message is received, the second node responds with a message of size n bytes. The
total timefor the test approximates 2 x T,,. Thetimereported is half of the time to send the message
and receive the response.

Figure 2.5 showsthe results of the experiment for the MPI-GAM system for increasing .
Thefirst thing the note is that there is a sharp inflection point at 4KB. The slope of the line changes
suddenly at 4 KB because of the change in the way MPI-GAM maps MPI messages to the GAM
system. Thefigure clearly shows the tradeoff in increased start-up cost vs. delivered bandwidth. If
we break up the line into to regions and compute the a least squares fit, we see that the fit is quite

good for each of the two regions.

LogGPto MPI Model

Given that we know the basic MPI performance and protocol, we are now in a position
to model the effect of inflation of the LogGP parameters on MPI performance. We characterize the
change in parameters on the linear model described in the previous section.

Inflation of overhead will impact the systemin three ways. Thefirst and most obviousway
isonTy. For messagesunder 4 KB, the MPID to GAM protocol only uses onemessage, sowesimply
add o to the cost of Ty. For messages over 4 KB, the protocol usesaround trip, and so in our model
weinflate Ty by 40. Thethird way overhead impactsthe systemisfor long messages. Weadd o tothe
cost of each 4 KB fragment, thus reducing the effective .. Adding latency to the system primarily
impactsthe T, term. We model anincreasein I, asadding 21 to the cost of T for messages over 4
KB and ignore effects for messages < 4 KB. The gap is perhapsthe most difficult to model. Because
the MPI-GAM system uses few small messages, we chose to ignore added ¢ entirely. We shall see
that isthenot all that poor of an assumption. Indeed, one of the NPB can ignore added ¢ entirely. The
Gap is perhaps easiest to cast into the MPI linear framework. Changesin Gap correspond directly

to changesin R, viathe model R., = &.

2.3.3 TCP/IP Apparatus

The TCP/IP apparatus operates along the same lines as the parallel program apparatus.
We use this apparatus in our sensitivity measurements of the SPECsfs NFS benchmark. A guiding

30

engineering principle used in building the apparatus was to re-cycle as much of the user-level GAM
code and LCP as possible. The aternative approach of adding delays and calibrating Myricom’s
devicedriversand L CP was rejected as too time consuming to complete in the context of thisthesis.

Our approach to building the apparatus wasto insert the GAM layer inside the Solaris ker-
nel. We created a kernel module which contained the user-level GAM code, slightly modified to run
in the kernel, and then layered the STREAMS TCPF/IP on top of it. However, modifications had to
be made to the semantics of the GAM layer in order to accommodate placing active messagesin the
kernel.

The user level GAM layer required three semantic changesin order to most easily accom-
modate the STREAM S abstraction while still providing controllable delays. First, the request-reply
model was removed from the code. The elimination of request-reply caused the second change, the
removal of reliability semantics. Finally, the buffering semantics for medium messages required an
extracopy on the receive side.

Construction

Figure 2.6 showsthe architecture of the TCP/IP-GAM apparatus. A number of STREAMS
and character Solaris kernel drivers are required. Two drivers from Myricom are required to boot
and control the LANai card (not shown). The Active Message driver implements most of the GAM
functions. In order to more easily handle control operations, the Active Message driver isasimple
character driver. STREAM S drivers require special messages in order to send control information;
these are clumsy to use. However, as a character driver, the Active Message driver is unableto in-
terface to the STREAMS subsystem directly. Therefore, a pseudo-Ethernet STREAMS driver was
constructed tointerfaceto the | Player. The Ethernet driver wasmodeled on the Lance Ethernet driver
provided inthe Solaris source code. The Lance uses somefast-pathsnot provided inthe normal sam-
ple drivers. Theinterface between the Ethernet and Active Message driversisa modification of the
GAM functions.

TheUnix STREAM Smodel assumesanumber of modul eswhich are connected by queues.
Figure 2.6 shows the relationship between these modules. The STREAMS framework contains the
notion of layering. Each module has a*“down” direction, towards the device, caled the write side.
Theinverseisthe“up” direction, called the em read side, which moves datatoward the user process.

In addition to the two directions, there are two types of reads and writes. put procedures
and service procedures. The main difference between put and service proceduresisin the scheduling

31

Figure 2.6: TCP/IP Apparatus Architecture

Thisfigure showsthe softwarearchitecture of the TCP/I P emulation environment. Two Solariskernel
modules are used. One simulates and Ethernet driver and the second runs Kernel-to-Kernel Active
Messages. The figure shows the path needed to send a message. After the application passes the
messageto thekernel (1), it eventually ends up at the pseudo-ether net driver (2) which callsthekernel
active message driver (3). After crossing the Myrinet, the receiving LANai interrupts the host (4),
which invokes the poll routine of the kernel active message driver. The driver then passesit through
the STREAMS sub-system (5) and eventually the message ends up at the receiving application (6).

of the operation. The put procedure is called directly by the preceding module, while the service
procedureis called viathe STREAMS scheduler.

Tracing thepath of awr i t e system call in Figure 2.6, after thewrite call at (1), the Socket
layer calls the write-put procedure of the TCP module, which calls the write-put procedure of the
IP module, which calls the write-put procedure of the pseudo-Ethernet driver. Finaly, at (2), the
pseudo-Ethernet driver callsamr equest with thelP packet asthe datafor the medium active mes-
sage. In the normal case, the service procedures are not called. The kernel Active Message module
copiesthe messageinto the LANai firmware queue at (3). The current implementation thus requires
2 copies on the send side.

When the receiving LANai sees amessage in the receive queue, it generates an interrupt.
The kernel vectors control to the Active Message poll function, ampol | , at (4). Ampol | inturn

32

calls ahandler in the pseudo-Ethernet driver, at (5). At this point, the pseudo-Ethernet driver allo-
catesaSTREAM Smessage structure and copiesthe packet into it. Next, thedriver callsthe read-put
procedure of the IP module, and the messages eventually reaching the stream head. So far, all the
receive processing has taken place inside the interrupt handler. Finally, when the application cals
ther ead call, the messageis copied into the application’s memory.

Encapsulation is relatively straightforward. A Maximum Transmission Unit (MTU) of
3584 bytes (3.5K) was chosen because this represents the smallest unit that achieves the maximum
bandwidth. We shall explore bandwidth in the calibration section.

A number of problems occurred when layering the STREAMS framework on top of the
Active Message abstraction. The basic problem stems from interfacing the STREAMS notion of
gueues on top of the request-reply model. Modificationsto GAM include eliminating the request-
reply model and reliability guarantees. In addition, the GAM longevity model for medium messages
did not support the STREAMS abstraction well, therefore the pseudo-Ethernet driver makes copies
of the messages. The next paragraphs describe the request-reply semantics, reliability, longevity
problems and the workarounds.

Request-Reply Semantics The basic problem with maintai ning request-reply semanticsisthat the
matching of requeststo repliesis difficult because the STREAM S subsystem can send datain anin-
terrupt handler. The following example illustrates this problem. An Internet Control Message Pro-
tocol (ICMP) ping request arrives. In the interrupt handler, the IP module calls the ICMP routine.
Still in the interrupt handler, the ICMP routine responds to the ping request by calling the write-put
routine of the pseudo-Ethernet. All this happens before control is returned to the Active Message
module. In the STREAMS model, the higher-layers can send an arbitrary number of messages in
response to an incoming message, thus violating a semantic tenet of the GAM abstraction: that no
reguests can be sent during the execution of areply handler.

While there are different possible solutions to the problem, the easiest to implement and
most compatible with the STREAMS framework was to simply eliminate the request-reply model.
All messages become “requests’, and are deposited directly into the send queue of the LCP. The

notion of a“reply” message was eliminated from the code running on the host.

Reliability Recall that reliability wasbuiltinthe Active M essagelayer by acombination of request-
reply semantics linked to storage management. Once the request-reply model was discarded, main-
taining reliability was dropped from the system, primarily because the increase in storage manage-

33

ment complexitieswas not seen asworth the engineering effort required. Higher layers, suchas TCP
and RPC, must be used to provide reliability semanticsin the TCP/IP-GAM system.

In addition to the difficulties of storage management, blocking wasalso aproblemwithin-
corporating the user-level GAM implementation into the kernel. The reliability of GAM can require
blocking the current thread for extended periods. If the number of outstanding requestsis too high,
GAM spin-waitsuntil anincoming reply signalsarequest buffer is“free”. Althoughthisblockingis
fine, even beneficial, for user-level programs, spin-waiting athread for an arbitrary timeis not per-
mitted inside the kernel—such behavior can crashthe entire system. The kernel GAM layer wasthus
modified to simply discard messages when outbound LCP queue is full. Although the STREAMS
system providesfor a*“ queue-full” signal to be propagated to higher modules, the added complexity

of using this mechanism was judged to be not worth the engineering effort.

Data Longevity Datalongevity semanticsin the GAM abstraction effectively placed enough re-
strictions that copies had to be made on both the send and receive sides. On the sending side, the
GAM model returns control to the sender once (1) the data area can be re-used for data storage and
(2) the system has enough buffering to accept the message. Although the previous changes to the
GAM layer eliminated these restrictions, the decision was made that the extra performance gained
from zero-copy (inside the kernel) sends was an excessive engineering effort needed for this appa-
ratus.

A second issue arises with attempting zero-copy sends on the Sun UltraSPARC worksta-
tion (the sundu architecture). In a sundu environment, 1/0 devices have their own address space;
they cannot access memory in an arbitrary fashion. Instead of mapping and unmapping STREAMS
buffers on every send, the AM driver copies the data into a fixed, 1/0O addressable region. Given
the very fast (180MB/s) rate of the UltraSPARC memory system, this copy is not too expensive (20
usfor a3.5 KB fragment).

On receives, the medium message data areais only valid for thelife of the handler. This
clasheswith the STREAM Snotion that a STREAM S message buffer existsin asingle address space
of the kernel independent of any particular queue. Thus, in order to implement zero-copy receives,
the active message layer code would require modification to not free buffers upon return of control
from the handler. Aswith the send case, the effort needed to construct a zero-copy apparatus was
deemed not worth the added development time and risk.

34

Bulk Gap Calibration for the TCP/IP apparatus
1 T T T T T T T T

TCP/IP —~—
Parallel -+
08t A
0
>
g
o 0.6 |
%]
2
g
0 0.4
L4
>
@
0.2

0

0 10 20 30 40 50 60 70 80 90
Delay (usec)

Figure 2.7: Calibration of bulk Gap for TCP/IP-GAM apparatus
This figure shows the empirical calibration for bulk Gap for the TCP/IP apparatus. The dependent
variable shows the added delay in us per 100 bytes of packet size. The independent variableisthe
Gap expressed in us per byte (1/bandwidth). The figure shows the TCP/IP-GAM apparatus for ad-
justing bulk Gap is quite accurate. The basic parallel program apparatus calibration is shown as
well, demonstrating that the two systems are near equivalent asto Gap adjustment.

Calibration

Because the LCP of the TCP/IP-GAM apparatus is taken from the parallel programming
apparatus, we know that 7, and anetwork-limited ¢ areidentical, so we do not measure those param-
etersagain. However, unlikethe parallel programming apparatus, o is substantially different. Ascan
be seen from Figure 2.6, there are many software components involved in sending a message; the
result is alarge software overhead.

Since we know 7., we can compute o from a simple round trip time. Measurements show
amean RTT of 340 us. With I at 5 uswe can deduce o as roughly 82 is. Unlike in user-space,
calibration of the delay loop inside the kernel can be tricky because many floating-point math rou-
tinesare not supported in the kernel. Fortunately, the Solaris Device Driver Interface (DDI) contains
atime-calibrated spin loop, dr v_usecwai t. It wasintended for short waits to slow devices, but
serves as a calibrated spin-loop quite well.

We must re-calibrate (7, because theincreasesin o may affect the range for which changes
to the LCP bulk data handling loop affect (. We use the same methodol ogy asthe parallel apparatus.
We cannot control the fragment sizes used by the kernel, however. Our gap experiment thus sends

a single large block of data (10 MB), with each write call sending 8KB at a time. The observed

35

timeto report the entire transfer on the sender istaken asthe delivered bandwidth. Figure 2.7 shows
the results of the experiment. The parallel program Gap calibration is also plotted for comparison.
Noticethat for much of the Gap range, thetwo lines are nearly identical, showing that even with the
different kernel fragmentation algorithm the Gap apparatusis quite accurate.

2.4 Factor Design

Once we have a calibrated, tunable apparatus, we face the question of how to vary each of
the LogGP parameters. The space of possible settingsis quite large. If we ignore P, there are still
four parameters, each of which can be scaled by an order of magnitude. For example, we can vary
o from 5-100 ps and still obtain meaningful results.

In the terminology of experiment design, a factor is a variable that affects the outcome
of the experiment. In this thesis, each of the networking components of the LogGP parameters,
L,0,9,GG, isclearly afactor. In addition, another dimension, or factor, we can control isthe program
used as a benchmark, e.g., Radix, EM3D, NowSort. Factors can take on different levels. For exam-
ple, o could take on levels of 5, 10, and 25 i:s. Along the benchmark dimension, the*levels’ would
be the programs used as benchmarks. There are number of waysto explore the entire space covered
by factors and levels. We provide a brief background here.

The traditional ways of combining factors and levels results in three classes of experi-
ments: simple, full, and fractional [57]. In all types, al the factors are varied. The real difference
between the methodsishow the levels are adjusted. In the simple design, we first assign each factor
aconstant level. Next, we vary each factor by alarge number of levels, while keeping the other fac-
torsat their constant level. Smple experiments have the advantage that we can observe the effect of
each factor isisolation, but has the disadvantage that it may miss interactions between factors, i.e.,
factors may not be independent. For example, in the LogGP case, we know that if weinflate o > ¢,
then ¢ is no longer observable as a separate parameter; it degeneratesinto o. Therefore, the LogGP
model tells us that sensitivity experiments where we simultaneously inflate both o and ¢ such that
o > g will probably not yield different results than inflating o alone.

Another classof experimental designiscalled thefull factor method. Inthistype of design,
all factorsare varied by all levels. Clearly, this experiment design has the disadvantage of requiring
the most experiments. It does, however, have the advantage of capturing all interactions betweenthe
factors. For example, in our experimental designsspace, we havefivefactors (the LogGP parameters

and benchmark), each of which can take on, say 8 levels. A full-factor design would require running

36

85 or 32768 experiments. In our case, such adesign clearly requires too many experiments.

Thefinal class of designsare called fractional designs. In these types of experiments, the
number of levelsisreduced from the full factor design while still simultaneously varying factorsand
levels. The minimalist caseis called a 2% design. If we have k factors and we vary each factor by
two levels, then the number of experiments performedis 2*. In our case such adesign would require
only 32 experiments; quite asmall number. However, such an experiment design leaves many unan-
swered questions. For example, we cannot see knees or plateausin the data because by definition we
areonly sampling at 2 levelsfor each factor. Also, in our case, wewould only sample 2 benchmarks!
The classic 2* design, as well as many other fraction designs, are best suited when the interactions
between factorsis largely unknown and the purpose of the experimentsis thus an exploration of the
interactions between parameters.

Thisthesis uses a simple design, as opposed to afractional design. There are two advan-
tages of this design. First, we can observe awide variety of applications by fully scaling the bench-
mark axis. Thisisthemost crucial axisto scale, aswe do not claim to have arepresentativeworkload
of all applications. By observing thereaction of awide range of programs, we can better classify new
programs as similar or dissimilar to our existing set. In addition, our wide range of benchmarks al-
lows us to quantify the sensitivity of a“worst-case” program for each networking parameter. For
example, EM3D(read) is a program that performs only blocking reads. It should therefore be a pro-
gram that is “worst-case” with respect to sensitivity to L.

A second advantage of a simple experiment design is that it allows us to explore more
factor levels at the edge of our apparatuses’ operational limits. For example, with parallel programs
wearequiteinterested at the response of programs near the lowest overhead limit of our apparatus. If
wesee aninsensitiveregion, wemay concluded that anew classof low overhead protocolshas solved
the “overhead problem”, or at least some other system component is the bottleneck. On the other
hand, if we till observed a sensitive region in the low overhead regime, we may conclude instead
that further reductionsin overhead arewarranted. With afractional design, wearemorelikely to miss
these regions. Likewise, in the NFS context we are interested in performance near peak operations
per second. The shape of theresponse-timevs. throughput curve near the peak operationsper second
for different o is most interesting; it tells us how useful lowering o isin performing graceful load
degradation.

The main disadvantage of our simple design is that we may missinteractions between the
factors. However, the LogGP model can compensate us somewhat, inthat it givesusaway toreason
about what the interactions should be. Although we have chosen not to explore these interactions, it

37

would be useful as avalidation of the LogGP model.

The most important class of factor-level combinations missing from thiswork are that of
real machines. For example, we could easily emulate a machine running a TCP/IP stack on 100 Mb
Ethernet. This class of machines will be quite important in the future, asit represents a very cost-
effective point in the design space. Likewise, our apparatus could emulate a 622Mb ATM cluster
of workstations. Running experiments on these common designs would not only provide additional
validations of our experiments, it would allow a near direct comparison of the cost-performance of
these technologies (e.g. ATM vs. Ethernet). However, although such point-comparisons are quite
useful, many other studies aready have performed such comparisons|[1, 49, 61]. For the purposes
of thisthesis, we view the uniqueness of isolating the impact of each parameter as more important

that making point-wise comparisons of different technologies.

2.5 Other Models

The LogGP model is not the only model available to describe program behavior. In this
section, we explore other models. We first describe the models, as well as relate their purposes,
strengths and weaknesses in the context of this thesis. We also describe why this thesis uses the
LogGP model.

Most of the models presented here were developed in the context of parallel program de-
sign, must be considered in light of that purpose. Previousto the invention of the models presented
here, many parallel programs were written using the Parallel Random Access Machine (PRAM)
model. The problem with the PRAM model is that it ignores real machine characteristics and thus
encourages algorithm designers to exploit characteristics of the PRAM machine that result in poor
performance on real machines.

Although areaction the unrealistic assumptions of the PRAM model, many of the models
exploredin thissection do not have parametersthat correspond well to avariety of real machine com-
ponents. Out of afear that additional parameterswill make the models cumbersometo use, many of
the models attempt to capture the limitations of real machinesin only 1 or 2 parameters. The pur-
pose of the parametersis to encourage algorithm designers to creating algorithms that run well on
real machines; the parameters are not intended to model the machines per say. The lack of archi-
tectural focusis not afault of the models, but limits their applicability for understanding the role of

machine architecture on application performance.

38

25.1 Bulk Synchronous Parallel

The Bulk Synchronous Parallel (BSP) model [101] attemptsto bridge theory and practice
with anvery simplemodel. Computation isdivided into anumber of “supersteps’ that are separated
by global barriers. Each superstep must be at least I, unitslong, and messages from one step cannot
be used until the next step. Like the LogGP model, BSP does not model any specific topology. In
addition to the restriction that a superstep must last at least 7 time units, messages can only be sent
or received at an interval of g during a given step.

Although proven useful for algorithm design, the BSP' srestricted architectural focuswould
greatly limit thisthesis. The architectural parametersareonly . and g. In areal programs o and ¢
are often limitations that would be missed by the BSP model.

In addition, it would be difficult to categorize al parallel programs into the BSP frame-
work. Most challenging are the supersteps. For example, several of the applicationsin this thesis
use task-queue models that do not fit well into the BSP framework. The task-queue programs have
only a few long phases where communication is overlapped with computation; in some programs
thereisonly asingle phase[97]! Thus, although a program written in the BSP framework will make
efficient use of machine resources, the model will not reveal much about application behavior or
architectural characteristics.

252 Queue Shared Memory

Like BSP, the Queue Shared Memory (QSM) model isalso designed for parallel program-
ming [46]. Thismodel extendsthe PRAM model to include queuing effects at shared memory loca-
tions. The model divides memory into local and global portions. Operations on the global memory
take unit time, unless they operate on the same location, in which case they are queued and serviced
at arate of g. Thus, the only two parametersin thismodel are ¢ and P, and the only network param-
eterisg.

A magjor flaw from an architectural perspectivewith thismodel isthat the ¢ parameterison
aper-word basis. The QSM devel opers correctly note that a machine with many memory banks per
processor can adequately approximate such a model, and use the Cray vector supercomputers as an
examples. However, astechnology trends move more memory capacity per chip [50], it will become
increasing difficult at an architectural level to sustain many memory banks. This flaw in the QSM
model could be easily corrected by modifying the model to a point where g is sustained for every
global memory operation, which would encourage algorithm designers to avoid remote memory as

39

much as possible.

253 LoPC and LoGPC

The LoPC and LoGPC models[43, 78] extend the basic LogP model with contention pa-
rameters. The original paper, [43] added the C' parameter to model contention effects at the end-
points. In large parallel machines with all-to-all patterns, these contention effects can result com-
munication times that are 50% greater than predicted by a straightforward LogGP model [39]. Note
that these contention effects get worse with increasing overhead.

The LoGPC model extends the contention effects into the network. However, in order to
model these effects, the work makes certain assumptions about the network. Although the model
captures a large class of networks by abstracting k-ary d-cubes, other topologies, such as certain
expander networks, are not modeled. Still, for low-order dimension-routed networks, network con-
gestion can be a serious limitation.

Of al the models presented here, LoPC is perhapsthe most interesting for the purposes of
thisthesis. Contention effects can become a significant fraction of the time on large machines. This
observation is not new [84], but the recent work on LoPC and LoGPC better quantify this effect.

However, aswas shown in [39], aswell asin the LoPC model itself, for the range of ma-
chines of interest to this study, (16-32 nodes) the endpoint contention effects are minimal. For ex-
ample, the predicted vs. actual communication cost of the radix sort program on a 32 node CM-5
differed by only 9%. Only at larger machines sizes (256 and 512 nodes) do contention effects dom-
inate, resulting in predictionsthat are up to 50% inaccurate. However, the standard LogGP model is
quite suitable for this study because of the machine sizes used.

2.5.4 Queuing Theory

Intheworld of LAN and WAN networks, queuing theoretic approaches dominate [57, 63,
65]. The problem with using this class of modelsfor parallel programsis that the basic assumptions
about program behavior do not mesh well with what many parallel programsdo. For example, queu-
ing theoretic model sassumethat the output of a program can be model ed by some stochastic process.
That is, network data is generated as some random function of time. Often, poisson processes are
used because the mathematics remain tractable while constructing “realistic’ models. In addition,
much of queuing theory is built on the assumption that the system is in steady-state operation. This
allowsthe modeler to closethe resulting system of equations. The nature of many parallel programs,

40

however, isoften not captured well by stochastic processes. For example, bulk-synchronous parallel
programs alternate between communi cation and computation phases; thus all communication occurs
in large bursts. Communication events are not random, nor isthere a global steady-state. We shall
examine application behavior in detail when we examine the sensitivity results.

However, we do use a queuing theoretic model in the study of NFS servers. In this case,
the benchmark itself isinfluenced by the stochastic model of program behavior. Thisself-referential
assumptions are part of the reason why the queuing model works well for the benchmark. We will

examine this phenomenon in Section 5.6.

2.6 Related Methodologies

The section describes the methodologies of related work. Although impossible to cover
all related research, we highlight four studiesthat have results most relevant to our work. We show
that although both the application and design spaces are enormous, nearly all of the studies can be
placed along the two axis of experiment design outlined in Section 1.1.

Where possible, we explain the results of these studies using the LogGP model. Although
most of the studiesdid not use L ogGP, we show that most of the resultscan beinterpretedin aLogGP
framework. Casting other resultsinto aL ogGP framework also serves as additional validation of the
model.

2.6.1 Holt

Thefocusof [52] isquiteclosein spirit to thisthesis. The main questionsin that work were
how shared memory parallel programswould respond to different abstract machine parameters. The
study was application-centric and used simulation as the evaluation method. Its abstract parameters
arevery closeto those of the LogGP model. Because the programs were written using shared mem-
ory, and the machines studied were cc-NUMA designs, the study introduced anew term, occupancy.
In terms of the LogGP model, occupancy of a machine’s cache controller lies somewhere between
overhead and gap. Occupancy can limit the peak message rate. Even with speculative and out-of -
order processors, ahigh occupancy can also stall the processor, causing anincreasein overhead. The
L of the Holt model was unchanged that in LogGP.

In addition to a similar network model, Holt's experiment paradigm was quite similar to
thisthesis. Instead of “slowdown”, however, parallel efficiency was used as the application-centric

41

metric. Even without the initia run-time, slowdown can be derived from this metric, as they both
share the same denominator. Parallel efficiency, however, has a number of problems when used as
ametric compared with slowdown. The primary reason is that it obscures the real question, which
is machine sensitivity to the parameters.

The Holt study found that occupancy, as opposed to latency, was the dominate term af-
fecting parallel program performance. Much like software overhead, occupancy in shared-memory
programs is difficult to tolerate [32]. It found that very high L, into the 1000's of machine cycles,
would reduce efficiency by 50%, a factor of 2 in slowdown. However, a much smaller increase in
controller occupancy, into the 100's of cycles, could reduce efficiency by up to 50% as well.

The Holt study also developed a number of analytic models to investigate the effects of
increased latency and occupancy. The simplest models used a ssimple frequency-cost pair scheme
and ignored contention effects. On a 64 processor machine, this model was off by up to 40%. A
more accurate queuing model reduced the difference between the simulation and the model to less
that 15%. Unfortunately, the model was only used for one simpleapplication, so we can not conclude
about the general accuracy of the model compared to the simulation.

2.6.2 Chang

A recent work [21] examined NFS performance over congested ATM networks. The goal
of thiswork was to determine the effect of various ATM credit based flow control schemeson NFS.
The work was an application-centric simulation study. A trace-fed simulation from various NFS
tasks (e.g. acompile) was used as the evaluation. The study used run-time of the entire task asthe
metric for evaluation, as opposed measuring individual operations of the NFS protocol. The most
related part of the methodol ogy wasthat the study examined theimpact of scaling an abstract param-
eter, L, in addition to point-wise comparisons of flow control schemes. The study did not explore
other parameters, however.

The study found that a high 7., over 10 milliseconds, was detrimental. However, low 1.,
in the us range, was not found to impact performance. In addition, the study found that a combina-
tion of TCP backoff algorithm and segment sizes can slow performance down by as much as 30%.
Because of the custom workloads, however, making a direct comparison of absolute sensitivitiesto
our NFS resultsis difficult.

42

2.6.3 Ahn

Thisstudy [1] compared two TCP congestion control and avoidance strategies, TCP-Reno
and TCP-vegas. The study examined the effects of these different congestion avoidance strategies
on FTP traffic. Much like this thesis, a Slowdown layer, called the “hitbox”, was interposed under
the TCP/IP stack to emulate WAN links. The work was application-centric and used an emulation
methodology. The hitbox was built as an interposition layer between the IP layer and the device
driver in the BSD operating system. Unlike this thesis, however, the independent variable of the
experiment was not a set of abstract parameters. Rather, the independent variable was the TCP al-
gorithm.

The hitbox can abstract the link bandwidth, propagation delay, and bit error rate. The
methodol ogy to construct the emulator was different from this thesisin that many links were used to
construct the network. That is, each link was designed to emulate a single wide area link, and many
hostswith multiplelinkswere used to emulateaWAN. Thisapproachiscontrastsour approachwhere
we emulate the entire I, using asingle delay.

Themetric used was rather smple, thetimeto FTPa512KB file. In other experiments, the
average of many simultaneoustransferswas used asthe dependent variable. Although the dependent
variable in the experiment was application-centric, the study attempted to answer several network-
centric questions as well. These included which TCP agorithm transmitted more bytes through the
network, aswell aswhich resulted in longer queues at the switches.

The study found that TCP Vegas can increase delivered bandwidth by 3-5% over the Reno
version. The additional overhead of Vegas over Reno was described but not measured. In addition,
the study found that VVegas resulted in an easier load on the network switches, in terms of offered
bandwidth, than Reno.

In spite of the excellent apparatus, the study was somewhat di sappointing because the app-
lication-centric focuswas not fully investigated. Only measured competing FTP traffic wasthe sub-
ject of the study. However, the hitbox emulation system could have measured the impact of different
network designs and algorithms on awide variety HTTP, NFS and multimediatraffic as well.

The construction of the hitbox raised theissue of the apparatus changing what it’ strying to
measure. Because they did not use a separate network processor to emulate network parameters, the
hitbox itself added communication overhead. The study concluded that the additional overhead was
only 3%, but the calibration methodology was dlightly dubious. The study measured the slowdown
of aquicksort whilethe background idle hitbox wasrunning. A better methodol ogy would have been

43

adirect measurement of the changein o as afunction of the hitbox operations.

2.6.4 Hall

The impact of specific networking technologies (ATM, Autonet, FDDI) on NFS was ex-
aminedin [49]. Thisstudy used an application-centric, direct measurement methodology. They used
two workloads. The first was NFSstone [93], the precursor to SPECsfs. Some of their most inter-
esting data, however, came from the direct measurements of a 200 workstation production system
serving about 150 people.

The methodology of measurements of aproduction system differ sharply from majority of
previouswork, and in some senseisalso the most representative. For example, if real systemsdo not
behave like poisson processes, thiswill be captured in production system. The study found that the
observed RTT in productions systems had a much larger variance in comparison to their controlled
experiments.

Their conclusions are quite similar to ours; CPU overhead is a dominant factor in NFS
performance. One of thetargets of the study was the effects of overhead reduction by increasing the
Maximum Transmission Unit (MTU) size. The study found that reducing overhead by increasing
MTU size can greatly impact performance. However, the data shows the relationship is non-linear.
Increasing the MTU from the 1.5 KB Ethernet MTU to the 4.3 KB FDDI MTU resulted in a large
improvement in the average response time for amix of NFS operations. However, the improvement
froma4.3 KB MTU to the 9 KB ATM MTU was much less, and in some cases actually degraded
performance. Unfortunately, they did not present the operation mix for their live experiments.

It isimportant to note that interpretation of the resultsin the original work wasnot cast in
term of overhead. Rather, the work discussed “end-system” performance:

... inorder to achieve maximum benefit from modern and fast networksin the future
abig effort must be addressed towards the improvement of the end systems.

This quote highlights the importance of simple models, such as LogGP, in understanding
machineperformance. Without asimplemodel, characterizing complex systemsin meaningful ways
isdifficult task. For example, the Hall study provided detailed breakdowns of different pieces of the
NFS operations, but did not lump them into the categories of overhead and latency. Although easy to
discern the difference from their data, such simple categorization would have made explaining their

results much more intuitive.

Experimental perspective

§

8 Holt Martin Hall
Q

Q

< Chang Anh

g’ Chiu Huang Wilson

_ Degree of

T o T K realism
Analytic ~ Simulation Emulation Direct

Modeling Measurement

Figure 2.8: Methodologiesin Context
This figure shows were various works fit in the space of network experiment methodologies. The x-
axis orders methodol ogies by degrees of realism, while the y-axis shows the focus of the dependent
variable.

26,5 Summary

In this section, we return to the network experiment conceptual framework developed in
Section 1.1. Figure 2.8 shows a number of studies placed in our framework of experiment design.
The experimentsare: Holt [52], Martin [73], Hall [49], Chang [21], Ahn [1], Chiu [24], Huang [54]
and Wilson [62, 66, 67]. When placing experimentsin this space, we have used the primary focus
of the study to determine the axis. Although some studies [1, 52, 73] used multiple techniques at
once, it isinteresting that even these have one axis clearly dominate the other.

We can see that experiments cover nearly the full spectrum of experiment design. A point
relevant to thisthesisisthat there are few experimentswhich categorize application-centric sensitiv-
ities to abstract parameters. Thus, there is little systematic exploration of the system design space.
Instead, most studies compare single instances of different systems or algorithms, e.g. TCP Vegas
vs. Reno [1], credit vs. rate based flow control [21], or congestion avoidance algorithms [24]. A
point which does not need elaboration isthat, of course, many research groups have an axeto grind
with regard to these systems.

There is a notable lack of application-centric experiments which rely on analytic model-
ing. Although [24], and to alesser extent [56] model the effects on applications somewhat, the ac-
tual concern is not applications per say, but the collective effects of many applications on the net-
work infrastructure. Speculating a bit, the author believes this is because applications are difficult

45

tomodel. Indeed, only recently has the network community accepted the work in [66]; that poisson
processes are an inaccurate model for aggregating application traffic. It is clear from our examina-
tion of the literature that application behavior has not received the same attention in the network or
parallel program communities asin the architecture or database communities. The adoption of well

defined benchmark suites would go a long way towards solving this problem.

46

Chapter 3

Split-C/AM Program Sensitivity

An experimental scienceis supposed to do experimentsthat find generalities. 1t’'snot
just supposed to tally up a long list of individual cases and their unique life histories.
That'sbutterfly collecting. — Richard C. Lewontin, The Chronicleof Higher Education,
February 14, 1997

This chapter contains an examination of the sensitivities of a suite of parallel programs
written in the Split-C language or programmed in Active Messages directly. We first characterize
the programsin terms of Split-C operationsand parallel program orchestration techniques. We then
describethe programsin detail, followed by some simple analytic models of them. Next, we present
the results of our sensitivity experiments and comment on the accuracy of the analytic models. Fi-

nally, we summarize the results of this chapter.

3.1 Characterization

With a methodology in place for varying communication characteristics, we now charac-
terizethe architectural requirements of the Split-C application suite. Split-Cisaparallel extension of
the C programming language that provides a global address space on distributed memory machines.
Split-C (version 961015) is based on GCC (version 2.6.3) and Generic Active Messages (version
961015), which is the base communication layer throughout. Note that two of the programs use Ac-
tive Messages directly, bypassing the Split-C layer. Although the programming model does not pro-
vide automatic replication with cache coherence, a number of the applications perform application-
specific software caching. The language has been ported to many platforms[2, 72, 103, 104]. The
sources for the applications, compiler, and communication layer can be obtained from a publicly

47

Program Description Input Set 16 node 32 node
Time(sec) | Time (sec)
Radix Integer radix sort 16 Million 13.66 7.76
32-bit keys
EM3D(write) | Electro-magnetic wave | 80000 Nodes, 40% remote, 88.59 37.98
propagation degree 20, 100 steps
EM3D(read) | Electro-magnetic wave | 80000 Nodes, 40% remote, 230.0 114.0
propagation degree 20, 100 steps
Sample Integer sample sort 32 Million 24.65 13.23
32-bit keys
Barnes Hierarchical N-Body 1 Million Bodies 77.89 43.24
simulation
P-Ray Ray Tracer 1 Million pixel image 23.47 17.91
16390 objects
Murp Protocol SCI protocol, 2 procs, 67.68 35.33
Verification 1line, 1 memory each
Connect Connected 4 Million nodes 2.29 1.17
Components 2-D mesh, 30% connected
NOW-sort Disk-to-Disk Sort 32 Million 127.2 56.87
100-byte records
Radb Bulk version of 16 Million 6.96 3.73
Radix sort 32-bit keys

Table 3.1: Split-C Applicationsand Data Sets
Thistabledescribes our applications, the input set, the application’scommuni cation pattern, and the
base run time on 16 and 32 nodes. The 16 and 32 node run times show that most of the applications
are quite scal able between these two machine sizes.

available site *.

To ensure that the datais not overly influenced by startup characteristics, the applications
must use reasonably large data sets. Given the experimental space we wish to explore, it isnot prac-
tical to choose data sets taking hours to complete; however, an effort was made to choose realistic
data sets for each of the applications. We used the following criteriato characterize applicationsin
our benchmark suite and to ensure that the applications demonstrate a wide range of architectural

reguirements:

e Message Frequency: The more communication intensive the application, the morewewould
expect its performance to be affected by the machine’s communication performance. For ap-
plicationsthat use short messages, the most important factor isthe message frequency, or equiv-
alently the average interval between messages. However, the behavior may be influenced by

'ftp. cs. berkel ey. edu/ pub/ CASTLE/ Split-C/rel ease/ sc961015

48

(a) Radix (b) EM3D(write) | (c) EM3D(read) | (d) Sample (e) Barnes
i r r
() P-Ray (h) Connect (i) NOW-sort () Radb
- . //‘.;:ﬂ/:u:'
&
E &

Figure 3.1: Split-C Communication Balance
This figure demonstrates the communication balance between each of the 32 processors for our 10
Flit-C applications. The greyscale for each pixel represents a message count. Each application
isindividually scaled fromwhite, representing zero messages, to black, representing the maximum
message count per processor as shown in Table 3.2. The y-coordinate tracks the message sender
and the z-coordinate tracks the receiver.

the burstiness of communication and the balance in traffic between processors.

e Write or Read Based: Applications that read remote data and wait for the result are more
likely to be sensitive to latency than applications that mostly write remote data. The latter are
likely to be more sensitiveto bandwidth. However, dependencesthat cause waiting can appear
in applicationsin many forms.

e Short or Long Messages: The Active Message layer used for this study provides two types
of messages, short packets and bulk transfers. Applicationsthat use bulk messages may have
high data bandwidth requirements, even though message initiations are infrequent.

e Synchronization: Applications can be bulk synchronous or task queue based. Tightly syn-
chronized applicationsare likely to be dependent on network round trip times, and so may be
very sensitive to latency. Task queue applications may tolerate latency, but may be sensitive
to overhead. A task queue based application attempts to overlap message operations with lo-
cal computation from atask queue. An increase in overhead decreases the available overlap
between the communication and local computation.

e Communication Balance: Balance is simply theratio of the maximum number of messages

49

Program Avg. Msg./ | Max Msg./ | Msg./ Msg. Barrier | Percent | Percent Bulk Small
Proc Proc Proc/ Interval | Interval Bulk Reads Msg. Msg.
ms (us) (ms) (KB/s) (KB/s)
Radix 1,278,399 | 1,279,018 | 164.76 6.1 408 0.01% 0.00% 26.7 | 4,612.9
EM3D(write) 4,737,955 | 4,765,319 | 124.76 8.0 122 0.00% 0.00% 0.6 | 3,493.2
EM3D(read) 8,253,885 | 8,316,063 72.39 138 369 0.00% | 97.07% 0.0 | 2,026.9
Sample 1,015,894 | 1,294,967 76.76 13.0 1,203 0.00% 0.00% 0.0 | 2,149.2
Barnes 819,067 852,564 18.94 52.8 279 | 23.25% | 20.57% 1104 407.1
P-Ray 114,682 278,556 6.40 156.2 1,120 | 47.85% | 96.49% 358.5 93.5
Connect 6,399 6,724 5.45 1835 47 0.06% | 67.42% 0.0 1525
Mure 166,161 168,657 4.70 2126 | 11,778 | 49.99% 0.00% | 3,876.6 65.8
NOW-sort 69,574 69,813 1.22 817.4 1,834 | 49.82% 0.00% | 3,125.1 17.2
Radb 4,372 5,010 117 852.7 25 | 34.73% 0.04% 33.6 214

Table 3.2: Split-C Communication Summary

For a 32 processor configuration, the table shows run times, average number of messages sent per
processor, and the maximum number of messages sent by any processor. Also shown is the message
frequency expressed in the average number of messages per processor per millisecond, the average
messageinterval in microseconds,the average barrier interval in milliseconds, the percentage of the
messages using the Active Message bulk transfer mechanism, the percentage of total messageswhich
areread regquestsor replies, the average bandwidth per processor for bulk messagesin kilobytes per
second, and the average bandwidth per processor for small messages in kilobytes per second.

sent per processor to the average number of messages sent per processor. It isdifficult to pre-
dict the influence of network performance on applicationswith arelatively large communica
tion imbalance since varying LogP parameters may exacerbate or may actually alleviate the
imbalance.

3.1.1 Split-C Benchmark Suite

Table 3.1 summarizes the programs we chose for our benchmark suite asrun on both a 16
and a 32 node cluster. Most applications are well parallelized when scaled from 16 to 32 proces-
sors. It isimportant to note the history of these applications when examining our results. All of the
applications were designed for low overhead MPPs or NOWSs. The program designers were often
able to exploit the low-overhead aspect of these machine architecturesin the program design. Each
application is discussed briefly below.

e Radix Sort: sorts alarge collection of 32-bit keys spread over the processors, and is thor-
oughly analyzed in [39]. It progresses as two iterations of three phases. First, each processor
determinesthe local rank for one digit of its keys. Second, the global rank of each key is cal-
culated from local histograms. Finally, each processor uses the global histogram to distribute

the keysto the proper location. For our input set of one million keys per processor on 32 pro-

50

cessors the application spends 98% of its time in the communication phases.

The communication density plot of Figure 3.1ais useful in understanding the communication
behavior of this application. The darkness of cell 7, j indicates the fraction of messages sent
from processor to processor j. The dark line off the diagonal reflects the global histogram
phase, where the ranks are accumul ated across processors in akind of pipelined cyclic shift.
The grey background isthe global distribution phase. Overall, the communication isfrequent,
write-based and balanced.

EM3D: EM3D [28] isthekernel of an application that model s propagation of electromagnetic
waves through objects in three dimensions. It first spreads an irregular bipartite graph over
all processors. During each time-step, changes in the electric field are calculated as a linear
function of the neighboring magnetic field values and vice versa. We use two complementary
versionsof EM 3D, onewrite-based and the other read-based. Both versionscontain relatively
short computation steps. Thewrite-based EM 3D uses pipelined writesto propagate updates by
augmenting the graph with special boundary nodes. EM 3D (write) represents a large class of
bulk synchronous applications, alternating between local computation and global communi-
cation phases. Theread version uses simple blocking reads to pull updateinformation locally
and does not need to create special boundary nodes. The locality of connectivity in the graph
for both versionsis indicated by the dark swath in Figures 3.1b and 3.1c.

Sample Sort: isaprobabilistic algorithm which sorts alarge collection of 32-bit keys by first
choosingp—1 “good” splitter valuesand broadcastingthem to all processors. Every processor
distributesitskeysto the proper destination processor, based on the splitter values, and finaly,
alocal radix sort is performed on the received keys. An interesting aspect of this application
isthe potential for unbalanced all-to-all communication as each processor potentially receives
adifferent number of keys. Thisisreflected in the vertical barsin Figure 3.1d. For our input
size, the local sort time is dominated by the distribution of keys to their proper destinations.
For our input of 16 million keys Sample sort spends 85% of the timein the two communication

phases.

Barnes. Our implementation of this hierarchical N-Body force calculation is similar to the
version in the SPLASH benchmark suite [110]. However, the main data structure, a spatial
oct-tree, isreplicated in software rather than hardware. Each timestep consists of two phases,
atree construction phase and an interaction phase among the simulated bodies. Updates of the

51

oct-treeare synchronized through blocking locks. During theinteraction phase, the processors
cache oct-tree nodes owned by remote processorsin a software managed cache. Communica-
tionisgenerally balanced, as the solid grey square showsin Figure 3.1e.

P-Ray: Thisscene passing ray tracing program distributesaread-only spatial oct-tree over al
processors. The processorsevenly divide ownership of objectsin the scene. When aprocessor
needs access to an abject stored on a remote processor, the object is cached locally in afixed
sized software-managed cache. Communication thus consistsentirely of blocking read opera-
tions; the frequency of such operationsis afunction on the scene complexity and the software
caching algorithm. The dark spotsin Figure 3.1f indicate the presence of “hot” abjectswhich

arevisible from multiple pointsin the scene.

Parallel Mur¢: Inthisparallel version of apopular protocol verification tool [34, 97], the ex-
ponential space of all reachable protocol statesis explored to catch protocol bugs. Each pro-
cessor maintains awork queue of unexplored states. A hash function maps statesto “owning”
processors. When anew stateis discovered, it is sent to the proper processor. On reception of
a state description, a processor first checksif the state has been reached before. If the stateis
new, the processor adds it to the work queue to be validated against an assertion list.

Connected Components. First, a graph is spread across all processors [69]. Each proces-
sor then performs a connected components on its local subgraph to collapse portions of its
components into representative nodes. Next, the graph is globally adjusted to point remote
edges (crossing processor boundaries) at the respective representative nodes. Finally, aglobal
phase successively merges components between neighboring processors. The communication

to computation ratio is determined by the size of the graph.

NOW-sort: Theversion of NOW-sort used in thisstudy sortsrecordsfrom disk-to-disk intwo
passes[8]. The sort is highly tuned, setting athe MinuteSort world record in 1997. The sort-
ing algorithm contains two phases. In the first phase, each processor reads the records from
disk and sends them to the final destination processor. The perfectly balanced nature of the
communication of phase 1 is shown by the solid black square in Figure 3.1i. The sort uses
one-way Active Messages directly, sending bulk messages at the rate the records can be read
from disk. Phase 2 of the algorithm consists of entirely local disk operations. Unlike the other
applications, NOW-sort performs alarge amount of 1/O, so can overlap communication over-
head with disk accesses.

52

e Radb: This version of the radix sort [2] was restructured to use bulk messages. After the
global histogram phase, al keys are sent to their destination processor in one bulk message.
Depending on network characteristics, use of these bulk messages can speed up the perfor-
mance of the sort relative to the standard radix sort.

3.1.2 Characteristics

As summarized in Table 3.1, the applications represent a broad spectrum of problem do-
mai nsand communi cati on/computati on characteristics. To quantify the differencesamong our target
applications, we instrumented our communication layer to record baseline characteristics for each
program (with unmodified LogGP parameters) on 32 nodes. Table 3.2 showsthe average number of
messages, maximum number of messages per node (as an indication of communication imbalance),
the message frequency expressed in the average number of messages per processor per millisecond,
the average message interval in microseconds, and the average interval between barriers as amea-
sureof how often processors synchronize. Table 3.2 al so showsthe percentage of the messagesusing
the Active Message bulk transfer mechanism, the percentage of the total messages which are aread
request or reply, the average bandwidth per processor for bulk messages, and the average bandwidth
per processor for small messages. Note that the reported bandwidth isfor bytestransmitted through
the communication layer as opposed to bandwidth delivered to the application, e.g., it includes head-
ers.

Table 3.2 showsthat the communication frequency of our applicationsvariesby more than
two ordersof magnitude, and yet none of them are“ embarrassingly parallel.” Thisdisparity suggests
that it is quite difficult to talk about typical communication behavior or sensitivity. Most of the ap-
plications have balanced communication overall, whereas others (Sample, P-Ray) have significant
imbalances. Barnes and EM3D(write) are bulk synchronous applications employing barriers rela-
tively frequently. Barnes, Mury, P-Ray, Radb and NOW-sort utilize bulk messages while the other
applications send only short messages. Finally, EM 3D(read), Barnes, P-Ray, and Connect do mostly
reads, whilethe other applicationsare entirely write based. Applicationsdoing readsare likely to be
dependent on network round trip times, and thus sensitive to latency, while write based applications
aremore likely to betolerant of network latency. Most of the applications demonstrate regular com-
munication patterns. However, Connect and P-Ray are moreirregular and contain a number of hot
spots. While these applications do not constitute a workload, their architectural requirements vary

across large classes of parallel applications.

53

3.2 Analytic Models

3.2.1 Overhead

To develop insight into our experimental results, we devel op asimple analytical model of
application sensitivity to added overhead. The model is based on the fact that added overhead is
incurred each time a processor sends or receiveamessage. Thus, given an processor’sbase runtime,
Torig, the added overhead, Ao, and m, the number of communication events for each processor, we

expect runtime, rp,q, to be:
Tpred = Torig + 2mAo0

The factor of two arises because, for Split-C programs, all communication events are one
of arequest/response pair. For each request sent, the processor will incur an overhead penalty receiv-
ing the corresponding response in addition to the overhead for the sent request. If the processor is
sending aresponse, it must haveincurred an overhead penalty when it received the request message.

Given this model for the overhead sensitivity of individual processors, we extrapolate to
predicting overall application runtime by making the following simplifying assumptions. First, ap-
plicationsrun at the speed of the slowest processor, and second, the slowest processor i sthe processor
that sends the most messages. Thus, by replacing m in the equation with the maximum number of
messages sent by a processor from Table 3.2, we derive a simple model for predicting application
sensitivity to added overhead as a function of the maximum number of messages sent by any pro-
cessor during execution.

Thesimplelinear model presented above does not capture serial dependenciesinthe appli-
cation. Our overhead model will thustend to under predict run time due to serialization effects. For
example, imagine a pipelined shift performed by all processors: processor zero sends to processor
one, which waits for the message then forwards it to processor two, etc. The maximum number of
messages sent by any processor is one, but the entire time of the operation is proportional to P. As
weinflate overhead by Ao, thetotal timefor thisoperationwill increaseby P Ao, not Ao aspredicted
by the model. Serial dependencies such asthe one outlined above are highly application specific and
so we chooseto usethe asimplelinear model. Section 3.3.1 quantifiesthe model’sunder prediction.

for al the applications.

3.22 gap

Developing a model for application sensitivity to gap presents more difficulties than de-
veloping the model for sensitivity to overhead. A processor isnot affected unlessit attemptsto send
messages more frequently than the gap. At this point, the processor must stall for a period waiting
for the network interface to become available. Without more precise knowledge of inter-message
intervals, the model for gap sensitivity depends on assumptions made about these intervals. At one
extreme, the uniform model assumesthat all messages are sent at the application’ saverage message
interval, I, from Table 3.2. In this case, the predicted runtime, 7}(51 4» €an be predicted as a function

of total gap, g, the average message interval, 7, the base runtime, r,,., and the maximum number

of messages sent by any node, m:

rpred -

(W) { Thase + m(g—1) ifg>1T

Thase otherwise

At the other extreme, the burst model assumesthat all messages are sent in discreet com-
munication phases where the application attempts to send as fast as the communication layer will
allow. Under thismodel, the added gap, Ag, isincurred for each communication event. This second
model again assumes that the applications runs at the speed of the processor sending m messages,
the maximum number of messages per processor from Figure 3.2, and would predict runtime, r;i)e &

as

® _

Irpred -

Thase T+ mAg

Application communication patterns determine which of thetwo modelsmore closely pre-
dicts actual application runtime. The uniform model predicts that applicationsignore increased gap
until reaching athreshold equaling the application’ saverage message interval. At thisthreshold, the
applications should slowdown linearly with increasing gap. The burst model predicts alinear slow-
down independent of average message interval.

3.2.3 Latency

Our model for latency isvery simple. We simply model each synchronous Split-C read as
the cost of an round trip, i.e. 40+ 21.. Such amodel, however, fails to account for any higher-level
dependencies, such as synchronization via split-phased operations. Many of the programshave care-
fully orchestrated communication phases and these use avariety of synchronization mechanisms, in-
cluding split phased reads, writesand barriers. The only application which performs many blocking

55

readsis EM3D(read). Due to the low barrier frequency of most programs, we ignore the I, cost of
barrier synchronization in our model.

We thus cannot expect asimple linear model for latency to provide much accuracy given
the structure of most of the programs. The LogGP model certainly allows for more accurate mod-

els[39], however.

3.24 Gap

We model bulk transfers at costing a penalty of o per 4 KB fragment plus a cost of GG per
byte. However, few of the benchmarks use long messages. Thus, for this set of benchmarks, our
predictions about the effects of G may not be widely applicable. The NAS Parallel Benchmarks,
described in the next chapter, uselong messages exclusively and so it isthere where we will explore

sensitivity to G.

3.3 Sengitivity Results

Given our methodology and application characterization, we now quantify the effect of
varying LogGP parameters on our application suite. To this end, we independently vary each of the
parametersin turn to observe application slowdown. For each parameter, we attempt to explain any
observed slowdowns based on application characteristics described in the last section. Using this
intuition, we develop models to predict application slowdown.

Recall that any observed run timeis arandom variable, and thus any two run times, even
very controlled conditions, will yield different results. In order to better account for these discrepan-
cies, wetake the minimum value of three sample run times. We take the minimum becauseit is most
representative of the program execution behavior without outside interference. It was found that the
majority of the discrepancy in run-timewas due to effects of the GLUnix global control layer used to
start and stop jobs [45]. These effects are not of interest to the results of thisthesis. Thedatain this
section shows that once the variance do to GLUnix is removed (by taking the minimum run-time),
the Split-C/AM programs are very well behaved; programs do not yield widely varying results from

run to run.

56

25 T T T T T T 60

EM3D(w) +— Radix +—
Sample -+-- EM3D(w) -+--
Radix -a--- EM3D() -a--
EM3D(r) -* 50 Sample -
2) Bames -+- Bames -+-
P P-ray -x-- P-ray -x--
' Murphi - Murphi -
Connect -+ 40 Connect -+
NOWsort -& - NOWsort -& -
¢ Br Radb +— c Radb ~+—
2 2
3 3 0}
3 3
o o
[} 0h [}
20 +
5 L
10
0 I I I I \ I 0 e I I
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Overhead Overhead
@ (b)

Figure 3.2: Sensitivity to Overhead for 16 and 32 Nodes
Thisfigure plots application slowdown as a function of overhead in microseconds. Sowdown isrel-
ative to application performance with our system's baseline LogGP parameters. Overhead is scaled
by a factor of 30, from high-performance SAN protocolsto high-overhead TCP/IP stacks. Measure-
ments for the graph on the left were taken on 16 nodes, while measurements for the graph on the
right were taken on 32 nodes with a fixed input size.

3.3.1 Overhead

Figure 3.2(b) plots application slowdown as afunction of added overhead measured in mi-
croseconds for our applications run on 32 nodes. The extreme left portion of the x-axis represents
runs on our cluster. As overhead isincreased, the system becomes similar to a switched LAN im-
plementation. Currently, 100 s of overhead with latency and gap values similar to our network is
approximately characteristic of TCP/IP protocol stacks [60, 61, 103]. At this extreme, applications
sow down from 2x to over 50x. Clearly, efforts to reduce cluster communication overhead have
been successful. Further, al but one of our applications demonstrate a linear dependence to over-
head, suggesting that further reduction in overhead will continue to yield improved performance.
Qualitatively, the four applications with the highest communication frequency, Radix, Sample, and
both EM 3D read and write, display the highest sensitivity to overhead. Barnesistheonly application
which demonstrates a non-linear dependence to overhead. Instrumentation of Barnes on 16 nodes
revealed that as overhead isincreased, lock contention causes the program to go into livelock. With
zero added overhead, the average number of failed lock attempts per processor is 2000 per timestep.

57

o us Radix EM 3D(write) EM 3D(read) Sample Barnes

measure | predict || measure | predict || measure | predict || measure | predict || measure | predict

29 7.8 7.8 38 38 114 114 132 132 432 432
39 105 10.3 48.1 475 138.7 130.7 16.1 15.8 50.1 44.9
49 132 129 58.1 57.0 161.6 147.3 18.7 184 56.3 51.8
6.9 18.7 18.0 774 76.1 208.8 180.5 238 23.6 76.1 60.3
7.9 215 20.5 87.4 85.6 232.9 197.2 26.5 26.2 N/A N/A
13 36.3 333 1385 1333 354.4 280.3 39.3 39.1 N/A N/A
23 68.9 58.9 236.2 228.6 600.1 446.7 65.2 65.0 N/A N/A
53 198.2 135.7 535.9 514.5 13325 945.6 142.7 142.7 N/A N/A
103 443.2 263.6 1027.8 991.0 2551.7 | 1777.2 272.1 272.2 N/A N/A

ous P-Ray Mur ¢ Connect NOW-sort Radb

measure | predict || measure | predict || measure | predict || measure | predict || measure | predict

29 17.9 17.9 35.3 35.3 117 117 56.9 56.9 3.73 3.73
39 19.0 185 37.1 35.7 1.19 1.18 56.7 57.0 3.77 3.74
4.9 19.6 19.0 37.7 36.0 1.20 1.19 61.2 57.1 3.77 3.75
6.9 220 20.1 41.8 36.7 1.23 1.20 57.9 57.4 3.82 3.77
7.9 20.8 20.7 41.9 37.0 1.24 121 58.3 57.6 3.83 3.78
13 28.2 235 46.2 38.7 131 1.25 58.1 58.3 393 3.83
23 39.0 29.1 51.2 421 144 1.34 58.3 59.7 4.10 393
53 69.7 4538 72.6 52.2 1.85 161 61.7 63.9 481 423
103 114.0 73.6 107.8 69.1 252 2.08 711 70.8 6.19 4.73

Table 3.3: Predicted vs. Measured Run Times Varying Over head
This table demonstrates how well our model for sensitivity to overhead predicts observed slowdown
for the 32 node runs. For each application, the column labeled measure isthe measured runtime,
whilethe columnlabeled predict istheruntime predicted by our model. For frequently communicat-
ing applications such as Radix, EM3D(write), and Sample, the model accurately predicts measured
runtimes.

At 13 us of overhead, the number of failed lock attempts per processor per timestep skyrockets to
over 1 million. Thisimplementation of Barnes does not complete for overhead values greater than
13 uson 16 nodesand 7 pis on 32 nodes.

To determine the effect of scaling the number of processors on sensitivity to overhead,
we executed our applications on 16 nodes with fixed inputs. Figure 3.2(a) plots the resulting slow-
down as afunction of overhead for runs on 16 nodes. With the exception of Radix, the applications
demonstrate almost identical sensitivity to overhead on 16 processors as they did on 32 processors,
slowing down by between a factor of between 2 and 25. Recall that Radix contains a phase to con-
struct aglobal histogram. The number of messages used to construct the histogram is a function of
the radix and the number of processors, not the number of keys. For a constant number of keys, the
relative number of messages per processor increases as processors are added. Radix thus becomes
more sensitiveto overhead asthe number of processorsisincreased for afixedinput size. Inaddition,
the difference in sensitivities between 16 and 32 nodes is exacerbated by a serial phase in program,

58

which is described below.

Table 3.3 describeshow well our ssimple overhead model predicts application performance
when compared to measured runtimes. For two applicationswhich communi catefrequently, Sample,
and EM3D(write), our model accurately predicts actual application slowdown . For a number of
other applications, most notably Radix, P-Ray and Mur, the sensitivity to overhead was actualy
stronger than our model’s prediction; the model consistently under-predicts the run time, which is
consistent with the assumptions made by the model.

Another way to describe the “ serialization effect” isthat our model implicitly assumesall
work in the program is perfectly parallelizable; i.e., there are no serial phasesin the program. This
assumption leads to under-predicted run times. If a processor, P, seridizesthe program in a phase
n messages long, when we increase o by Ao, then the serial phase will add to the overall run time
by nAo. However, the smple model does not capture the serialization effect when P,,, # P,.

A more important result of the of the serialization effect is that it reduces speedup as a
function of overhead, i.e. speedup gets worse the greater the overhead. Thus, parallel efficiency
will decrease as overhead increases for any applicationswhich have aserial portion. Notice how for
Radix, parallel decreases as afunction of overhead when scaled from 16 to 32 nodes.

Radix sort demonstrates a dramatic example of the serialization effect. The sensitivity to
overhead for Radix on 32 processorsis over double that of 16 processors. When overhead rises to
100y, the slowdown differential between 16 and 32 processorsisafactor of three. The global his-
togram phase contains a serialization proportional to the radix and number of processors[39]. Inthe
unmodified case, the phase accounts for 20% of the overall execution time on 32 processors. When
the overhead is set to 100y, this phase accounts for 60% of the overall execution time. However,
on 16 processors with 100.:s of overhead, the histogram phase takes only 16% of the total time.

Inthe case of P-ray, recall from Figure 3.1 that the application shows a strong communica-
tion imbalance. Three processors are “hot spots’, likely containing popular objects. We conjecture
that the nodes doing the most work are not the ones sending the most messages. By increasing the
overhead, all other processorswhich attempt accessto hotspotsin the octree are likely slowed down
by alinear factor not predicted by our model

The other five applications, however, actually demonstrate a stronger sensitivity to over-
head than predicted by themodel. The only applicationwhich demonstratesanon-linear dependence
to overhead was Barnes. Further experimentation with the program revealed that as overhead was
increased, lock contention caused the program to go into livelock. In fact, we were unable to add

more than 10 us of overhead and still have the application complete in areasonable amount of time.

59

18 T T T T T T

Radix -—
16t EM3D(w) -+ |
Sample 8-

EM3D(r)
Barnes -&- |

A Pray x-
" Murphi -~
Connect -+
NOWsort - -
@ Radb ~—

14 +

ok b ko

12 F

10 |

X

Slowdown

i

0 1 1 1 1 1 1
0 20 40 60 80 100 120

Figure 3.3: Sensitivity to gap
Thisfigure plots slowdown as a function of gap in microseconds. The gap is scaled by a factor of 20.
While no hardware has a gap of over 20 us, we can observe from the figure that many applications
have linear responsesto gap for then entire observed range.

332 gap

We next measure application sensitivity to gap. Figure 3.3 plots application sowdown as
afunction of added gap in microseconds. The programs demonstrate widely varying reactions to
gap, ranging from being unaffected by 100 1:s of gap to slowing down by afactor of 16. The qualita-
tive difference between application sensitivity to gap and sensitivity to overhead can be explained by
the fact that sensitivity to gap is incurred by the program only on the portion of the messages where
the application attemptsto send at arate greater than the gap. The rest of the messages are not sent
quickly enough to be affected by the gap. Thus, infrequently communicating applications can po-
tentially ignore gap entirely, while overhead isincurred independent of message frequency. Thefour
applicationswith the highest communication frequency, Radix, EM3D(write) and read, and Sample,
suffer the largest slowdowns from added gap. The other applications are much more tolerant to gap,
slowing down by no more than afactor of 4 even in the presence of 100 us of added gap.

Given the linear dependence to gap demonstrated by the applications in Figure 3.3, we
believe that for our applications, the burst model more accurately predicts application behavior. Ta-
ble 3.4 depicts how well the burst model predicts actual program slowdown. As anticipated, the

60

g us Radix EM 3D(write) EM 3D(read) Sample Barnes
measure | predict || measure | predict || measure | predict || measure | predict || measure | predict
5.8 7.8 7.8 38 38 114 114 132 132 432 432
8 10.2 11 46.1 49.9 119 134.8 14.8 16.5 441 454
10 13 14.2 56.5 61.8 129.7 155.6 175 19.7 50.2 475
15 19.2 20.5 785 85.6 164.7 197.2 24.2 26.2 55.3 51.8
30 38.1 39.7 150.3 157.1 289.3 321.9 429 45.6 61.6 64.6
55 69.9 717 2731 276.2 523 529.8 75.1 78 99.1 85.9
80 101.9 103.7 394 395.4 756.9 737.7 107.5 110.4 157.3 107.2
105 1338 135.7 515.6 514.5 993.1 945.6 139.7 142.7 207.9 1285

g us P-Ray Mure Connect NOW-sort Radb

measure | predict || measure | predict || measure | predict || measure | predict || measure | predict
5.8 17.9 17.9 35.3 35.3 117 117 56.9 56.9 3.73 3.73
8 18.1 18.6 374 35.8 1.19 1.18 57.9 57.0 3.77 3.74
10 17.8 19.3 36.1 36.2 121 1.19 57.6 57.2 3.78 3.75
15 17.9 20.7 36.2 37.0 1.24 1.23 60.9 57.6 3.80 3.78
30 19.1 249 384 39.5 1.34 1.32 57.3 58.6 3.86 3.85
55 232 31.8 375 438 151 1.50 57.2 60.4 3.96 3.98
80 29.0 38.8 39.3 48.0 1.68 1.69 56.9 62.1 4.08 4.10
105 355 4538 39.9 52.2 1.85 1.88 57.4 63.9 4.25 423

Table 3.4: Predicted vs. measured run timesvarying gap
Thistable demonstrates how well the burst model for sensitivity to gap predicts observed slowdown.
For each application, the column labeled measure isthe measured runtime, while the column la-
beled predict isthe runtime predicted by our model.

model over predicts sensitivity to gap since not all messages are sent in bursts. The model works
best for heavily communicating applications, as alarger percentage of their messages are slowed by
gap.

The two models considered demonstrate a range of possible application behavior. Appli-
cations communicating at very regular intervalswould follow the uniform model, while applications

communicating in discreet phases would track the burst model.

3.3.3 Latency

Traditionally, most attempts at improving network performance have focused on improv-
ing the network latency. Further, perceived dependencies on network latencies have led program-
mers to design their applicationsto hide network latency. Figure 3.4 plots application slowdown as
afunction of latency added to each message. Perhaps surprisingly, most of applications are fairly
insensitive to added latency. The applications demonstrate a qualitatively different ordering of sen-
sitivity to latency than to overhead and gap. Further, for al but one of the applicationsthe sensitivity
does not appear to be strongly correlated with the read frequency or barrier interval, the operations
most likely to demonstrate the strongest sensitivity to latency.

61

9 T T T T T T
EM3D(r) +—
Barnes -+--
P-Ray
EM3D(w)
Radix J
Sample -*--
Murphi -o--
Connect -+
NOWsort -
Radh ~—

b4k pox oot
Pooxrrxod

Slowdown

0 1 1 1 1 1 1
0 20 40 60 80 100 120 140
Latency

Figure 3.4: Sensitivity to Latency
Thisfigure plots slowdown as a function of latency in microseconds. Latency is scaled by a factor of
20, ranging from SAN class |latencies to a network built out of several long latency ATM switches.
The figure shows the effectiveness of a wide range of practical latency tolerating techniques.

The sensitivity of EM3D(read), Barnes, P-Ray, and Connect to latency results from these
applications' high frequency of read operations (see Figure 3.2). Read operations require network
round-trips, making them the most sensitive to added latency. However, for al but one of these ap-
plications, the observed slowdowns are modest (at most a factor of four in the worst-case) even at
the latencies of store-and-forward networks (100 pS).

EM3D(read) performs alarge number of blocking reads; it represents a “worst-case” ap-
plication from a latency perspective because it does nothing to tolerate latency. It is aso the only
application for which a simple model of latency is accurate. Interestingly, for equal amounts of
added “work” per message (100 ps of latency and 50 us of overhead), the simple latency model
for EM3D(read) is quite accurate yet the simple overhead model under predictsthe run time.

The applications which do not employ read operations largely ignore added latency. The
small decrease in performance at the tail of the slowdown curves is caused by the increase in gap
associated with large latencies as the Active Message flow control mechanism limits the network

capacity (see Table 2.2).

62

Radb —+— Radh —<—

NOWSsort -+- NOWSsort -+--
P-ray -o--- P-ray -@---
251 Barnes -x- 251 Barnes -x

Radix -+~ Radix -+

Murphi - - Murphi - -
EM3D(Ww) -~ EM3D(w) -~ -
2r EM3D(r) —+- 2t EM3D(f) —+- !
Sample -&-- Sample -&- X

Connect *— Connect »—

15F Y 15}

Slowdown
Slowdown

05 [1 05 [
0 L L L L L L L 0 L L L L L L L L
0 5 10 15 20 25 30 35 40 0 01 02 03 04 05 06 07 08 09
MB/s Gap (usec/byte)
@ (b)

Figure 3.5: Sensitivity to Bulk Gap
Thisfigure plotss owdown asa function of maximumavailable networ k bandwidth (a) aswell asbulk
Gap (b). Bandwidthis scaled from 10 Mb Ethernet speedsto SAN speeds of near 30 MB/s. Although
bandwidth is a more intuitive measure, it is difficult to visualize the sensitivity to bandwidth from
figure (a) because as we scale (G in a linear manner we are plotting a % bandwidth curve. Figure
(b) shows some applications slow down in a linear fashion aswe scale G; linearly.

3.3.4 Bulk Gap

Only applications attempting to send large amounts of datain bursts should be affected by
reductions in bulk transfer bandwidth. Note that we do not slow down transmission of small mes-
sages, but rather add adel ay corresponding to the size of the messagefor each bulk message. Further,
applications should tolerate decreases in available bulk bandwidth until the bandwidth dips below
the application’ srequirements at any point during its execution.

Figure 3.5(a) plots application slowdown as a function of the maximum available bulk
transfer bandwidth, a more intuitive measure than Gap. We also plot the same sensitivity to Gap
in Figure 3.5(b) in order to show the linear relationship between slowdown and &. Overall, the ap-
plicationsin our suite do not display strong sensitivity to bandwidth. No application slows by more
than a factor of three even when bulk bandwidth is reduced to 1 MB/s. Further, all of the appli-
cations, including Radb, which moves all of its data in a single burst using bulk messages, do not
display sensitivity until bulk bandwidth is reduced to 15 MB/s. Surprisingly, the NOW-sort is also
insensitive to reduced bandwidth. Thisversion of the NOW-sort uses two disks per node. Each disk

63

can deliver 5.5 MB/s of bandwidth [8], and during the communication phaseasingledisk is used for
reading and the other for writing. AsFigure 3.5 shows, NOW-sort isdisk limited. Until the network
bandwidth drops below that of asingle disk, NOW-sort is unaffected by decreased bandwidth.

3.4 Summary

Varying the LogGP parameters for our network of workstations and benchmark suite led
to anumber of interesting results. We organize these around our four areas of contributions.

3.4.1 Performance Analysis

In the performance analysis area, we find that our apparatus was quite effective in mea-
suring the sensitivities of the Split-C/AM suite. Running real programs on the apparatus was not
a problem. All the programs were well behaved, giving consistent results from run to run. Even
Barnes, which would go into live-lock as we scaled overhead, exhibited this behavior in a repeat-
ableway.

We were able to observe anumber of effects that would be difficult to observe using other
techniques. These include a hyper-sensitivity to overhead from a number of applications. In addi-
tion, we were able to observe live-lock effects for Barnes which would require fairly sophisticated
models or simulatorsto observe. Our apparatus also allows us to quantify the point in the overhead
space where this effect occurs.

3.4.2 Application Behavior

In the behavior area, we find that applications displayed the strongest sensitivity to net-
work overhead, slowing down by as much as a factor of 50 when overhead is increased to roughly
100 us. Evenlightly communicating processes suffer afactor of 3-5 slowdownwhen theoverheadis
increased to values comparable to many existing LAN communication stacks. Frequently commu-
nicating applications al so display strong sensitivity to gap suggesting that the communication phases
are bursty and limited by the rate at which messages can be injected into the network.

Theeffect of added latency and bulk gap is qualitatively different from the effect of added
overhead and gap. For example, applications which do not perform synchronization or read oper-
ations (both of which require round trip network messages) can largely ignore added latency. For

64

our measured applications, the sensitivity to overhead and gap is much stronger than sensitivity to

latency and per-byte bandwidth.

3.4.3 Network Architecture

The most interesting result, which relates to the architecture area, is the fact that all the
applications display a linear dependence to both overhead and gap. This relationship suggest that
continued architectural improvementsin these areas should result in a corresponding improvement
in application performance (limited by Amdahl’sLaw). In contrast, if the network performancewere
“good enough” for the applications, (i.e., some other part of the system was the bottleneck), then we
should observe aregion were the applications did not slow down as network performance decreased.
In contrast, effortsin improving network latency will not yield as much performance improvements
across as wide aclass of applications.

A second architectural result isthat thereis an interesting tradeoff between processor per-
formance and communication performance. For many parallel applications, relatively small im-
provements in network overhead and gap can result in a factor of two performance improvement.
Thisresult suggests that in some cases, rather than making a significant investment to double a ma-
chine's processing capacity, the investment may be better directed toward improving the perfor-

mance of the communication system.

3.4.4 Modeling

In the modeling area, we found that for both overhead and gap, simple models are able to
predict sensitivity to these parameters for most of our applications. The effects of latency, on the
other hand, are harder to predict because they are more dependent on application structure. The ap-
plications used awide variety of latency tolerating techniques, including pipelining (radix, sample),
batching (EM 3D, Radb), caching (Barnes, P-ray) and overlapping (Mure and NowSort). Each of
these techniques requires more sophisticated models to capture the effect of added latency than our
frequency-cost model allows.

65

Chapter 4

NAS Parallel Benchmark Sensitivity

.. it isa consistent theme that each generation of computers obsol etes the perfor-
mance eval uation techniques of the prior generation. — Hennessey & Patterson, Com-
puter Architecture: A Quantitative Approach

The NAS Parallel Benchmarks (NPB) are widely used to evaluate parallel machines. To
date, every vendor of large parallel machines has presented NPB version 1.0 results[10]. Therecent
convergence of parallel machines and theintroduction of a standard programming model (MPI), the
NASgroup created version 2.2 of the benchmark suite[11]. In contrast to the vendor-specificimple-
mentations of version 1.0, NPB 2.2 presentsaconsistent, portable, and readily availableworkload to
parallel machine designers, analogous to the SPECcpu benchmarks for single-processor machines.
Much has been written about thetheoretical techniquesin these codes[13, 111], but an understanding
of their practical communication behavior is at best incomplete.

In this chapter, we examine the sensitivities of three of the six NAS parallel benchmarks:
FT,1Sand M G. Thethreeare computational kernelsfrom numerical aerodynamic simulation codes.
The other three benchmarks, SP, BT and L U, are longer codes that are considered pseudo-applica-
tions. Unfortunately, apparatuslimitationsdid not allow usto run themuch larger pseudo-applications
for this study. Theinput set comesin 3 sizes: classA, B, and C. All our experiments are run on the
class B size, which is appropriate to run on 32 nodes but does not scale down to single node sizes.
However, because we are not measuring the scalability of the codes class B is reasonable input set

Sizeto run on our apparatus.

66

Program | Run Time Collective MPI Device Active Message | Max-Min
(sec) All-to-All(v) Level Level Ratio
Msgs. Bytes | Msgs. Bytes | Small | 4K Frag
FT 173.2 20 | 325058560 660 | 325058560 | 1980 79360 0.0%
IS 18.7 20 | 40833600 670 | 40833600 | 2010 9969 17.0%
MG 17.8 | 2854 | 27570880 | 2854 | 27570880 | 8562 6731 0.1%

Table 4.1: NPB Communication Summary
For a 32 processor configuration, the table shows run times, the number and size of collective op-
erations at the MPI level, the maximum number and size of operations at the MPI Device level (per
processor), the resulting number of messages at the Active Message level (per processor), and the
percentage skew, measured in bytes, between the processors that sent the maximum and minimum
number of bytes.

4.1 Characterization

In this section we characterize the NPB much in the same way as we did the Split-C/AM
benchmarksin the previous chapter. We begin with abrief description of each benchmark, followed
by a balance graph and message count analysis. We compare the communication characteristics of
the benchmarks to the Split-C/AM programs. The benchmarks are:

e FT:Thiskernel performsa3-D Fast Fourier Transform (FFT) on a2562 x 512 grid. The pro-
gram implementsthe FFT as a series of 1-D FFTs. Each iteration, the program does a global
transpose of al the data, thus performing a perfectly balanced all-to-all communication pat-
tern. The FFT requires alarge amount of computation in addition to alarge volume of com-

munication.

e |S: Thelnteger Sort (1S) benchmark performsabucket sort on 1 million 32 bit keys per proces-
sor. Notice that the run time for 1S is much higher than for the equivalent Split-C sorts[39].
Like sample sort, this sort performs unbalanced all-to-all communication, relying on a ran-
dom key distribution for load balancing. Thus, the communication pattern is dependent on
the data-set.

e MG: This program solves a poisson equation on a256° grid using amultigrid “W” agorithm.
Unlike FT and IS, communication is quite localized, occurring between neighboring proces-
sorson the different grid levels. The communication pattern does not depend on the data.

Figure 4.1 shows that the three NPB codes are well structured. FT and MG are perfectly
balanced; each processor sends and receives the same amount of data. 1S is slightly unbalanced,

67

(@ FT (b) IS (c) MG

Figure 4.1: NAS Parallel Benchmar ks Communication Balance
This figure demonstrates the communication balance between each of the 32 processorsfor 3 of the
NAS Parallel Benchmarks. The greyscale for each pixel represents a byte count, as opposed to the
message counts in Figure 3.1. Each application isindividually scaled from white, representing zero
bytes, to black, representing the maximum byte count per processor as shown in Table 4.1. The y-
coordinate tracks the message sender and the z-coordinate tracks the receiver.

but on the whole is not overly imbalanced. For FT and | S, Figure 4.1 showsthat communicationis
global, which each processor sending much datato all other processors. Such patternswill stressthe
bi section bandwidth of the network. We can see that the hierarchical grid patternin MG resultsin a
much more localized communication pattern.

Table 4.1 shows just how different the NPB are from the Split-C/AM applicationsin Ta-
ble3.2. Firgt, for FT and| S, weseethat all communicationis performed at the MPI level in collective
operations. Using an MPI collective operations allows the communication layer to perform a num-
ber of optimizations, for example inserting global barriers[19] or using pairwise exchanges[39] that
can greatly improve the performance of such operations. However, the MPICH implementation re-
duces these operationsto a series of simple point-to-point sendsat the MPID level. Table4.1 shows
that even after this reduction, the number of messages is till very small. For example, the | S sort
sends only 670 messages per processor, compared with over 1 million for the Split-C sample sort.

Clearly, the authors of the NPB have taken painsto minimize message cost by aggregating
messages at the application level. Table 4.1 shows that as a result, the very few messages sent are
very large. For FT, theresult isthat on a 32 processor system the messages are half amegabyte each.
For IS, the sizeis still quite large, averaging about 60 KB. In both these applications, the median
message size is close to the average.

MG, however, isdifferent in that most messagesare small; the median message size occurs
at 32 KB, but the average message size is 10 KB. Figure 4.2 plots a histogram of message sizes. It
shows that the vast majority of the datais sent in large messages; 97% of the data sent in messages

68

MG Message Size Histogram
70000 T T T T T

60000

50000

40000

30000

Message Size (Bytes)

20000

10000

I 1

0 500 1000 1500 2000 2500 3000
Message #

Figure4.2: MG Message Size Histogram
Thisfigure shows the message size histogram for all 2615 messages sent by a single processor while
running the MG benchmark for class B input on 32 nodes. Message sizes are sorted in decreasing
order. Notice that message sizes follow an exponential distribution. Although most messages are
small, nearly all the data is sent in very large messages.

over 4 KB and 99% sent in messages over 1 KB. Althoughit has alarger number of small messages,
thetotal message cost isdominated by thelarge messages. The small messagecount issolow (around
1000) that these fail to have much impact on the total communication time.

4.2 Sensitivity Results

In this section, we examine the sensitivity of the NPB to the LogGP parameters. In partic-
ular, we concentrate the discussion on o and G. Given our MPI-GAM apparatus, and the nature of
the NPB sending a few long messages, these are likely to be the most important parameters. Recall
that for long messages, our apparatus inflates o for every 4KB fragment. Long messages will be af-
fected by o, although not nearly to the same extent as small messages. We will examine the validity
of this approach in the discussion section.

We attempt to explain any slowdown using the our knowledge of the MPI layer and the
simple piecewise-linear model of message passing in Section 2.3.2. Where we can not explain the

discrepancy, we hypothesize on reasons why a noticeable discrepancy exits between the measured

69

FT
18 . IS
MG -o--

Slowdown

0.8 |

0.6 |

0.4

0.2

0 1 1 1 1 1 1
0 20 40 60 80 100 120 140
Overhead (us)

Figure 4.3: NPB Sensitivity to Over head
This figure plots measured slowdown as a function of overhead in microseconds.

and predicted performance.

As with the Split-C section, each plotted data point is the minimum of three runs of the
program. However, we shall see from the data, the NPB are not as well behaved as the Split-C/AM
programs. In addition, there were bugsin the network switchesthat made data collection impossible

for some of the benchmarks. 1

421 Overhead

Given the MPICH design and our empirical apparatus, we would expect modest sensitivi-
tiesto overhead. Figure 4.3 showsthe slowdown of the three benchmarks as we scale the AM layer
overhead from 5t0 100 i:s. Thefirst noticeableresult isthat the NPB are much less sensitiveto over-
head than the Split-C/AM programs. Instead of slowing down by factors of 20 or 30, as most of the
Split-C/AM programs are, the NPB only slow down by factors of less than 2. Indeed, the program
with the heaviest volume of communication, FT, is only slowed down a modest 20% at 100 ps of
overhead. Also, unlike many Split-C/AM benchmarks, there are noticeable flat regions; ISand FT
have noticeable flat regions out to 60 swhile M G has aflat region past 60 y:s.

! Theworkaround from the vendor wasto increaseall messages sizesto >1 KB. Whileallowing the NPB to run without
crashing, thiswould artificially inflate the gap, Gap and latency parameters of the study to unacceptablelevels. Corrected
switches were not availablein timefor this thesis.

70

o us FT IS MG

measure | predict || measure | predict || measure | predict

10 173.3 | 1733 18.7 18.7 17.8 17.8
1 178.0 | 1733 21.3 18.7 18.3 17.8
20 175.7 | 1748 225 18.9 19.8 18.0
30 177 | 1764 - - 23.8 18.3
60 1849 | 1812 22.6 19.8 26.5 19.0
110 2220 | 189.3 329 20.9 26.6 20.2

Table 4.2: NPB Predicted vs. Measured Run Times Varying Over head
This table demonstrates how well our model for sensitivity to overhead predicts observed slowdown
for the 32 node runs. For each application, the column labeled measure isthe measured runtime,
while the column labeled predict isthe runtime predicted by our model. The model accurately pre-
dicts measured run times for smaller overheads.

Table 4.2 shows the measured vs. predicted performance for the NPB. The models are
reasonably accurate for o values under 50 ps. But for high overheads, the applications are more
sensitive than the models predict. The extra sensitivity might be because around-trip isrequired for
most messages. At very high overheads (e.g. 100 i:s) contention effects may dominate, magnifying
the cost of the round-trip set-up.

422 gap

Figure 4.4 shows the NPB are much less sensitive to gap than to overhead. One bench-
mark, FT, canignorea g entirely! Although messages are sent in bursts, the very large size of most
messages means that even a high g can be amortized over alow communication frequency. A safe
conclusion that can be drawn is that these benchmarks are very insensitiveto ¢g. Thisisin contrast
to many of the Split-C/AM benchmarks, which exhibited a strong sensitivity to g.

423 Latency

Aswe would expect, the NPB are quite insensitive to increased I.. Figure 4.5 plots the
latency figuresfor two of the benchmarks. Unfortunately, abug in the switches prevented collecting
data for the FT benchmark. It is arelatively safe assumption, given our characterization, that FT
would have avery low sensitivity to I.. Recall that around trip is only required once per message at
the MPID level, so the number of round trips numbersin the 100’s per processor.

Even with the MPICH-GAM round-trip set-up cost, the applications’ infrequent use of
messages and the very large size of most messages allows them to amortize the cost of along L.

71

FT
18 S -
MG -o--

16
141

12

Slowdown
-

0.8 |

0.6 |

0.4

0.2

0 1 1 1 1 1 1
0 20 40 60 80 100 120

gap

Figure 4.4: NPB Sensitivity to gap
This figure plots measured slowdown as a function of gap in microseconds.

Given that GAM providesin-order delivery, it would not bee too difficult to remove this round-trip
set-up. Inthat case wewould expect sensitivity to . to be even lower than the results presented here.

42.4 Bulk Gap

We now turn our attentionto bulk Gap. Figure4.6 plots sensitivity to bandwidth, or % We
seethat thereisaflat region to about 5 MB/s and then a sharp turn upward. Thefirst result isthat the
NPB are quite insensitive to a bandwidth below 12.5 MB/s. Thisis an important result because 100
Mb Ethernet and 155 Mb ATM are at or well above this performancelevel. Thus, these technologies
would be adequate for running the NPB on the class of processor used in this study.

The sharp inflection, however, demands more attention. An important question is if the
infection is due to an abnormal rise in sensitivity. Recall we are plotting sensitivity to a non-linear
change in the independent variable, i.e., sensitivity as a function of % We are scaling ¢ in alinear
fashion but plotting bandwidth instead, which isanon-linear change. It is thus difficult to ascertain
viathe naked eyeif theinflection is dueto ahyper-sensitivity or simply following a normal % curve.

In order to ascertain the sensitivity, we turn to the linear model of MPI performance de-
veloped in Section 2.3.2. Recall that in that section, we described how MPI performance should be
affected by inflation of the LogGP parameters. Table 4.3 showsthe resulting measured vs. predicted

72

FT
18 S -
MG -o--

16

141

12 F & JEERRR

Slowdown
-
%
2

0.8 |

0.6 |

0.4

0.2

0 1 1 1 1 1 1
0 20 40 60 80 100 120 140
Latency (us)

Figure 4.5: NPB Sensitivity to L atency
This figure plots measured slowdown as a function of latency in microseconds.

performance as we scale . We see that indeed, at 1.2 MB/s the applications are hyper-sensitive to
G, in that they take much longer to run than predicted by the model. The cause of the increased
slowdown is unclear; the LANai can continue to receive messages so network congestion should
not be aproblem. Whatever the result of the hyper-sensitivity, the result shows atechnology such as
switched 10Mb Ethernet is probably not sufficient for these applications.

4.3 NPB Sensitivity Summary

Aswith the Split-C/AM chapter, we organize our conclusionson the NPB around the areas

of performance analysis, application behavior, architecture and modeling.

4.3.1 Performance Analysis

In the performance analysis regime, we find that our apparatus is adequate for measuring
sensitivity of the NPB, although the programs are somewhat noisier than the Split-C programs. The
apparatus al so showed that it can measure non-linear responsesfor a number of the NPB. The extra
layer of communication protocol between our apparatus and the application (MPI), did cause us to
expend extra effort in modeling that we did not do for the Split-C/AM programs. A method around

73

FT +— FT +—
IS -+
MG -5

Slowdown
Slowdown

MB/s ‘ ' Gap (usec/byte)

(@ (b)

Figure 4.6: NPB Sensitivity to Bandwidth and Gap
Thisfigure plotsslowdown asa function of maximumavailable networ k bandwidth (a) aswell as Gap
(b). Bandwidth isa moreintuitive measure, but it is difficult to visualize the sensitivity to bandwidth
fromthe Figure (a) because aswe scale G in alinear manner we are plotting a % bandwidth curve.
Figure (b) showsFT and MG slow down in a hyper-linear fashion as we scale ;' linearly.

this problem would be to add delaysinto the MPI layer directly.

Asaside effect of Slowing down GAM instead of MPI, the apparatus introduces a some-
what artificial sensitivity to o. For example, many machines, (e.g., Cray T3D, Intel Paragon, Meiko
CS-2[7, 31]), donot introduce extraoverhead on aper-fragment basis. However, anumber of TCP/IP
stacks do exhibit per-fragment overheads [26, 60, 61]; such per-fragment overheadsform avisible
“sawtooth” linein per-byte costs. Our per-fragment overhead is thus a reasonable, if somewhat ex-

aggerated, approximation of this class of software overhead.

4.3.2 Application Behavior

Turing our attention to the application behavior area, the NPB we examined in this chapter
have a communication structure that is dominated by infrequent, large and bursty communication.
Theresulting sensitivity to G isquite intuitive. They are also sensitive to o somewhat, although our
results are somewhat inflated due to the apparatus construction mentioned previously. Sensitivity to
g was almost very low, even non-existent for FT.

The structure of the NPB shows their origins quite clearly: the codes were developed on

74

BW(L/G) FT IS MG

(MB/s) || measure | predict || measure | predict || measure | predict

37 173.3 | 1733 18.7 18.7 17.8 17.8

19 177.0 | 1816 22.1 19.7 235 185

15 171.8 | 186.2 19.6 18.8 195 18.9

1.2 186.2 | 1935 230 21.2 19.9 195

4.6 2256 | 2352 22.6 26.4 255 230

12 660.9 | 437.6 - - 60.8 40.2

Table 4.3: NPB Predicted vs. Measured Run Times Varying Bulk Gap
Thistable demonstrates how well our model for sensitivity to Bulk Gap predicts observed slowdown
for the 32 node runs. For each application, the column labeled measure isthe measured runtime,
while the column labeled predict isthe runtime predicted by our model. The model accurately pre-
dicts measured run times for bandwidths greater than 10Mb/s.

M PP machines as the iPSC and Delta which have very high message passing costs [32]. The high
communication costs, yet ample bandwidth, on these machines lead to a design where communica-
tionisavoided as much as possible. When communication is necessary, it is packed into afew large
messages. Given this history, the rather low sensitivities should not be too surprising.

It isinstructive to compare the structure and resulting sensitivity of the NPB codes to the
Split-C/AM codes. The Split-C/AM were developed in the context of very low-overhead machines,
e.g., the CM-5, and Berkeley NOW. Thus, these programs assumed |ow-overhead and so show quite
ahigh sensitivity to it. Thisraisesthe aclassic engineering analysis question: are our results merely
the result of ahistoric accident, or isthere something more fundamental going on? We shall explore

this question in greater detail in Chapter 7.

4.3.3 Network Architecture

Our architectural conclusionsfor the NPB are rather meager. Primarily, they are sensitive
to per-byte network bandwidth. In particular, as we saw from the communication balance graphs, a
machine’s bisection bandwidth will be an issue for two of these benchmarks. However, unlike the
Split-C/AM applications, communication is so infrequent on the machine sizes studied that for the
NPB, improvements in per-node processor performance, as opposed to network performance, will
yield the largest benefits.

75

4.3.4 Modeling

In the modeling area, we find that the 3 benchmarks exhibit stronger sensitivitiesto low-
performance networks than simple models describe. However, this should not cause too much con-
cern. Thefact that the modelsfail to describe this class of low performance networks should not be
surprising given that we are scaling the apparatus by an order of magnitude. The only conclusion
one can draw isthat in spite of their highly optimized communication, very cheap, low performance
networks are not suitable for the NPB.

76

Chapter 5

NFS Sensitivity

... but just running a lot of simulations and seeing what happensisa frustrating and
finally unproductive exercise unless you can somehow create a ” model of the model”
that lets you understand what is going on. — Paul Krugman, from atalk given to the
European Association for Evolutionary Political Economy.

Inthis chapter, we examinethe sensitivity of Sun’sNetwork File System (NFS) to network
performance. Our motivation is driven by the fact that previouswork shows that 60%-70% of LAN
traffic is filesystem related [48, 76]. We apply the same basic methodology used in the previous
two chapters. The NFS application parameter space, however, is much larger than he Split-C/AM
programs or the NPB. In the previous two chapters, run-time was the simple figure of merit. Inthe
NFS case, there can be many different metrics, e.g. read bandwidth, write bandwidth, and response
time.

Our method of fixing the class of inputsthat arethetraditional characteristicsof NFSwork-
loads, e.g. the mix of reads/writes/lookups, is to use the SPECsfs benchmark [94]. The SPECsfs
benchmark is an industry-standard benchmark used to evaluate NFS servers. The networking pa-
rameters are the same LogGP parameters used throughout this thesis.

The output of the SPECsfs benchmark is a two-dimensional curve of response time vs.
throughput, for a fixed mix of operations, as opposed to a point-metric such as run-time. Because
of the two-dimensional nature the SFS curve, our results are presented differently than in previous
chapters. Instead of a fixed slowdown line, the results are three dimensional: throughput vs. re-
sponse time vs. changein network performance. While we could plot a single 3-D graph of these
parameters, it ismoreinformativeto plot aseriesof 2-D graphs. The SFS curve hasimportant struc-
tures that would be difficult to discern in a single 3-D graph. We detail the important parts of the

77

SFS curve in the next section.

In order to understand the SFS curve, a more complex model of the NFS system is nec-
essary than the simple frequency-cost pairs used in the Split-C/AM and NPB models. We thus use
simple queuing theoretic models to understand the rel ationship between the networking parameters
and the SFS curve. Asin previous chapters, our goal in thiswork is not to develop highly accurate
models. Rather, the purpose of the queuing model isto gaininsight asto how a system should behave
aswe changethe networking parameters. The model’svalueliesinitsability to identify why the sys-
tem responds as it does. The quote at the beginning of this chapter illustrates this same purpose of
analytic modelsin the field of economics.

The combined use of amodel and experimental dataforms a synergy whichis much more
powerful than either alone. With only a model, we can predict the responses but the results are sus-
pect. Measured data alone, while not suffering from lack of credibility, often lacks the simple con-
ceptual interpretations that models provide. Using both a model and measurement we can explain
the measured results in terms of the model. Points where the data deviates from model predictions
expose weaknesses in our understanding of the system.

A side benefit of our choice of workload, SPECsfs, isthat it allows us to compare our re-
sults to industry published data. More importantly, using the techniques in this work we can infer
the structure of the NFS servers from the data published by SPEC.

The remainder of the chapter is organized as follows. We first describe the details of the
apparatusrelevant to NFS serversin Section 5.1. Section 5.2 provides background on SPECsfs, the
workload for this chapter. Next, Section 5.3 introduces our simple queuing-theoretic model of an
NFS system. Section 5.4 documents previouswork on NFS. Next, Section 5.5 documents the mea-
sured sensitivitiesto network parameters on two live systems and describes the accuracy of the pre-
dictions made by the model. Section 5.6 summarizes some implications of our results, and analyzes
industrial datain the context of our methods.

5.1 Experimental Setup

This section introduces the experimenta set-up used in our NFS experiments. We focus
on the disk sub-system because thisisthe component of interest uniqueto NFS performance. Recall
that the networking apparatus used to control the LogGP parameters was described in detail Sec-
tion 2.3.3. This section first describes the general characteristics of the clients, followed by a more

detailed description of the two different servers.

78

Asinthe Split-C/AM and NPB experiments, all of the machinesin our experiments consist
of Sun Ultra-1 workstations. Attached to the S-Busisan internal narrow SCSI busand local disk that
holds the operating system and swap space. All the clients have 128 MB of main memory. We use
atota of 4 clients: 3 load-generators and 1 master control station. The control station and other
machines are also connected via a switched 10Mb/s Ethernet. The Ethernet is used to start and stop
the benchmark as well as monitor results.

The primary difference between our two serversisthe disk sub-system. The“SCSI” sys-
tem contains 128MB of main memory and 24 7200 RPM 9GB IBM drives. The drives are evenly
divided between two SCSI buses. The S-businterfacesused are thefast-wide Sun*’FAS’ controller
cards. In contrast, the “RAID” system contains 448 MB of main memory. The 28 7200 RPM 9GB
Seagate disks are contained in a Sun “A3000" RAID. The disks are divided into 5 RAID level-0
(striping) groups; 4 groups have 6 disks and the last group contains 4 disks. The striping sizeis 64
KB. The A3000 contains 64 M B of battery-backed NVRAM which can absorb somewritesthat may
otherwise have gone to disk.

There are two reasons for investigating different systems. First, they allow us to draw
conclusions about the effects of different hardware and software, e.g., drivers, main memory, and
NVRAM. Second, having two systems serves as a check on our model; inaccuracies may show in
one system but not the other. In addition, the RAID is closer in spirit to servers found in published
SPEC data.

5.2 SPECsfsCharacteristics

Just as we did with the Split-C/AM and the NPB, in this section we first characterize the
SPECsfs benchmark which forms the workload for this chapter. We then describe the similarities
and differences between this and previous work done to quantify NFS performance.

SPEC, while widely known for its CPU benchmarks, also produces an NFS benchmark,
SPECsfs(formerly knownasLADDIS) [107]. SPEC released thelatest version, SFS2.0,in 1997 [94].
Version 2.0 adds several enhancements. First isthe addition of version 3 of the NFS protocol [82] as
well as retaining NFS version 2. In addition, TCP can be used as a transport layer instead of UDP.
The combination of these two variants results in four possible configurations (e.g., NFS version 3
on UDP and NFS version 2 on TCP). We focus on NFS version 2 running over UDP because this
will comprise alarge number of installed systems. Unless otherwisereported, all resultsare for sys-
tems running SFS 2.0, NFS version 2 using UDP. We do examine some TCP vs. UDP tradeoffsin

79

Saturation

Response Time

NFS Operations/Second

Figure 5.1: Important Characteristics of the SFS Curve
Thisfigure showsthe important characteristicsof all SFScurves: the base (i.e. minimum) response
time, the slope, which determinestherate of increasein responsetime asload increases for a linear
region of the curve, and the saturation point at the peak operations sustainable.

Section 5.5.2.

SPECsfs, as a synthetic benchmark, must define both the operation mix and scaling rules.
The mix has been derived from much observation of production systems[94, 107]. SFS 2.0 uses a
significantly different mix from SFS 1.0. With the decline of disklessworkstationsit was found that
the percentage of writeshad also steadily declined. Qualitatively, the SFS2.0 operation mix ismostly
small metadata operations and reads, followed by writes. The mix represents a challenge to latency
tolerating techniques because of the small and synchronousnature of most operations. Thetwo most
common operations are get _at tri but es and di r ect or y_| ookup; combined they make up
62% of the SFS 2.0 workload. Reads comprise 14% and writes comprise 7% of the operationswith
other metadata operations making up the remainder.

Learning from past benchmarking errors, SPECsfs also defines scaling rules for the data
set. In order for a vendor to report alarge number of operations per second, the server must also
handle alarge data-set. For every NFS op/sec, the clients create an aggregate of 10 MB of data. The
amount of data accessed similarly increases; for each op/sec 1 MB of datais touched.

Unlike the SPEC CPU benchmarks which report point-values, SPECsfs reports a curve
of response time vs. throughput. The reported response time is the weighted average of different
operations’ response times, where the weights are determined by the percentage of each operation
inthemix. Figure 5.1 showsan abstract SFSresults curve. The signatureof the curve containsthree
key features: the base responsetime, the slope of the curvein the primary operating regime, and the
saturation point.

At low throughput there will be an average base minimum response time. The base rep-

80

resents the best average response time obtainable from the system. The base will be determined by
ahost of factors, including the network, the speed of the CPU, the size of the file cache, the amount
of Non-Volatile RAM (NVRAM), and the speed of the disks.

Asload on the server increases, there will be aregion where there is alinear relationship
between throughput and responsetime. The slope signifies how well the server respondsto increas-
ing load; alow slope implies the clients cannot perceive a more loaded server, while a high slope
implies noticeable delays as we add load. The slope will be affected by queuing effects in the net-
work, at the server CPU, the server disks and the client CPU. However, amuch more important role
in the determination of the slopeis the changing missrate in the server file cache.

Astheload further increases, a bottleneck in the system will limit the maximum through-
put at the saturation point. The nature of the bottleneck will determine if the point is reached sud-
denly, resultingin apronounced inflection, or gradually. Example bottlenecksinclude aninsufficient
number of clients, lack of network bandwidth, the speed and number of CPUs on the server, and an
insufficient number of server disks.

SPECsfsisdesigned to isolate server performance. The benchmark thereforetakes careto
avoid client interactionsto the extent they influence the accuracy of theload placed on the server. For
example, differencesin client file cache management make it difficult for the benchmark to control
both the size and nature of the server load. The load generators thus call RPC procedures directly,
bypassing the client filesystem and file cache. The results of this study therefore are primarily from
the server perspective. Averageresponsetime resultson production systemswill depend on thetype
of workload (e.g. attribute vs. bandwidth intensive) and size of the client caches. See [44] for an
examination of the effects of client caches on server load.

Using SPECsfs as aworkload is quite novel in an academic setting. One factor limiting
previous work was the scale on which the benchmark must be run in order to obtain meaningful
results. For example, an insufficient number of disks would limit our understanding of CPU bottle-
necks. Also, industry reported results are for very large systems, often beyond the range of a dedi-
cated academictestbed. For example, at the completion of thisstudy, one of our testbedsimmediately
went into production use.

From our “grey-box” perspective, SPECsfsis quiteuseful becauseit fixesall theNFS para-
metric inputs but one: the server load. We can thusrestrict the parameter space primarily to the net-
work. At the same time, our choice of SPECsfs clearly limits our understanding of NFS in several
ways; it is attribute intensive and it does not model the client well. Practically, however, our choice
allowsustointerpret industrial data published on SPEC’swebsitein the framework presented inthis

81

Response Time

Ny
y

Fixed M/M/1
Delay

Figure 5.2: SPECsfs Analytic M odel
This figure shows the simple analytic model used to validate the NFSresults. The model assumes a
poisson arrival rate of A requests per second. The model then uses a fixed delay center to model
the network, an M/M/1 queue to model to CPU, a splitter to captures NFS cache effects, and finally
an M/M/mqueue to model the disk subsystem. The parametersfor each component were deter mined
by empirical measurement.

paper. We perform abrief analysis of industrial datain Section 5.6.

5.3 SPECsfsAnalytic Model

In this section we build asimple analytic model of the entire NFS system, focused on the
server portion of the system. The goal of the model isto provide aframework for understanding the
effects of changesin L, o and GG on the SFSresults curve. We then compare the predictions of the
model against two measured SFS curves. If the model and experimental data agree, we can have
reasonable confidence in both. Significant differences between the two would show where either
the model fails to describe the system, or where the system is mis-configured and thus not operat-
ing “correctly”. In either case, more investigation may be needed to resolve the discrepancy. We
conclude the section with predictions on the sensitivity of the system to network parameters.

5.3.1 Model Construction

Figure5.2 showsthe queuing network we useto model an NFS server, adopting the simple
techniquesdescribed in [57, 65]. Themodel consists of aCPU, disks, NFS cache, and adelay center.
Our model ignores queuing delays in the controllers and 1/O bus; they can easily support the load
placed on them given the small nature of most requests.

We assume that the arrival rate follows a Poisson process with arate of A\ requests per

82

second. Because the departure rate must equal the arrival rate, the departurerateisalso A, .

The CPU isthe ssimplest component of the system. We model it as an M/M/1 queue. We
derived the average service time, including all sub-systems (e.g. TCP/IP protocol stacks, and the
local filesystem, UFS) from experimental measurement. For the SCSI based system, the measured
average service time was 900 s per operation. The RAID system has alower average servicetime
of 650 i:s. We provide a detailed investigation the components of the servicetime in Section 5.5.3.

Most NFSoperations havethe potentia to be satisfied by anin-memory cache. Only 7% of
the SFS 2.0 mix are writes and these must bypass the cache—NFS version 2 semantics require that
they exist in stable storage before the write completes. The 64 MB of NVRAM in the RAID can
cache writes, however. The file cache size, and corresponding miss rate, are critical to determining
the baseresponsetime aswell asthe slope of the SFS curve. However, the SFSstrategy of increasing
the data set size per op/sec places an upper limit on the effectiveness of a cache.

We model the NFS caches (both in-memory and NVRAM) asasplitter. The probahility of
ahitisgivenas Py;; and of amissas P,,,;ss = 1 — Pyi:. On ahit, therequest is satisfied and leaves
the system. Because the data set accessed by SFS increases with the load, P;; isafunction of A;.
We use asimple approach to computing Py;;. We take the main memory size plusthe NVRAM size
and divide it by the accessed data set size. In terms of our model, the splitting a Poisson stream
resultsin two Poisson streams, A\, and As. The rate of requests going to the disksis easily derived
aS A3 = PrissM

The disks are modeled by an M/M/m queue where m is equal to the number of disks. We
have empirically observed using thei ost at command an unloaded average service time of 12 ms
for the IBM drives. We use the same value to model the Seagate drives.

We fold the remaining components into a fixed delay center with a delay of . These
components include the overhead in the client operating system, fixed costs in the server, and the
network latency. The use of fixed delay greatly simplifies the model, allowing us to focus on the
important elements of the server. We can still obtain reasonable accuracy using afixed delay center,
however. We empirically observed a D of 3.4 msec. This fixed delay parameter was obtained by
observing a small request rate of 300 op/sec on the RAID system. At that rate, the entire workload
fitsinto memory, so nearly al disk requests have been eliminated.

SCS| RAID

Range(op/sec) 200-1050 500-1400
Q-model | Measured | Q-model | Measured
Slope 8.5 14.3 104 18.9

JLSEC per op/s

Y-intercept 8.0 452 -6.8 -0.04
Base 8.6 7.3 4.3 45
r? 0.93 0.99 0.98 0.96

83

Table5.1: SPECsfsLinear Regression Models& Accuracy
Thistable demonstrateslinear regressions of the S-S queuing-theoretic model s and measured data.
The table shows the slope of the SFS curve, (increase in response time vs load), the Y-intercept, the
base performance at 200 and 500 ops/sec, and the coefficient of determination (r2).

5.3.2 Model Accuracy

Figure 5.3 showsthe accuracy of our simple queuing model compared to the measured data
for our baseline systems. The baseline systems have the minimum L, o, and (&, and thus maximum
performancein all dimensions. In order to measure the slope of the SFS curves, we performed alin-
ear regression on arange of measured data (200-1050 for the SCSI and 500-1400 for the RAID). Ta-
ble 5.1 shows that within these ranges a linear mode! is quite accurate; the r? values are 0.99 (SCSI)
and 0.96 (RAID).

Ataqualitative level, we can seethat the NFS cache sizes have a significant impact on the
shapes of both the measured and modeled systems. Below 500 ops/sec for the RAID, the SFS curve
is fairly flat because the cache is absorbing most of the requests. The SCSI system, with its small
cache, hasacontinuously rising curve. The dope of the RAID is much steeper than the SCS| system
for exactly the same reason—differencesin cache size.

At a more quantitative level, across the entire range of throughputs the relative error of
the queuing model is at worst 24% for the SCSI and 30% for the RAID. This s reasonably accu-
rate considering the simplicity of the model, e.g., we do not model writes by-passing the file cache.
Unfortunately, the queuing model consistently under predicts the slopes of the SFScurve. Linear re-
gressions of the queuing model predict slopes of 8.5 (SCSl) and 10.4 (RAID) us per op/sec. These
are substantially lower than the 14.3 and 18.9 s per op/sec for the measured slopes.

The shape of the inflection point is a second inaccuracy of the model. Inthe SCSI system,
the measured inflection point is quite muted compared to the modeled curve. The last point of the

modeled SCSI curve, which has no measured counterpart, shows arapid rise in response timein the

SCSl

Modeled vs Measured

40 4
35
modeled
30
25

20 4

(msec)

15 4

Response
Time

104

T T T T J
180 380 580 780 980 1180

NFS Ops/sec
RAID

Modeled vs Measured
40 +

354
measured

30
251 / modeled

Response
Time
(msec)

T T T T T T 1
280 480 680 880 1080 1280 1480 1680
NFS Ops/Sec

Figure 5.3: SPECsfs Modeled vs. M easured Baseline Performance
Thisfigure plots the modeled as well as baseline SFScurvesfor the SCS system (top) as well as for
the RAID based system (bottom).

99+% utilization regime. The real system, however, will not enter into that regime. We explorethe
effects of high utilization in Section 5.5.3.

Inspite of theinaccurate slopesand inflection point, the queuing model isquite accuratefor
most of the operating regime. Only at very high utilization doesit deviate much from the measured
values. Interestingly, ther? valuesin Table 5.1 show that the live system behavesin alinear fashion
across almost all of the operating regime, more so than the model would predict.

For the purposes of capacity planning, the queuing model may be quite acceptable because
operating at the extremes of the performance rangesisundesirable. A lightly loaded system wastes

resources, while a system operating near capacity results in unacceptable response times.

85

5.3.3 Expected Sensitivity

The model provides a concise conceptual framework; we use it to predict the impact of
changing each LogGP parameter. The delay center captures the network latency term. We thus
model an increase in . asalinear increase in D, thereby changing the base response time. Each
us of added I, should add 2 s to the base response time, because each operation is a synchronous
request-response pair. Anincreasein I, should have no effect on the slope or saturation point. In
the next section, we see that our model predictions for the slope and saturation point are accurate
for awide range of I values, but not for extreme ranges. We also see that the model consistently
under-predicts the sensitivity of the base responsetimeto 7.

Increasing o we expect changesto all three components of the SFSsignature. Theresponse
time should increase because of the client overhead encapsulated in the D parameter and increased
service time on the CPU. The slope should increase due to queuing delays at the CPU. The most im-
portant effect of o isthat the saturation point may be reached sooner. Because of theincreased service
time on the CPU, it will reach maximum utilization sooner. If, however, some other component of
the system were the bottleneck, we may observe a region where the saturation point is insensitive
to o. For our two servers, the model predicts that the CPU will be the bottleneck. We model the
relationship between the saturation point and overhead as:

1

Sat t1 =
aruratvon Serv+ 2.40

where Serv is the average CPU service time per operation previous measured in Sec-
tion 5.3.1. The coefficient of 2.4 is the average number of messages per NFS operation. We model
2 messages per operation: arequest and a reply. However, as o isincurred on every message, we
also model 2 extra fragments per read or write dueto MTU effects. Given the frequency and size of
reads and writes, the MTU effects raise the constant to 2.4. The next Section will show our model
of sensitivity to o to be quite accurate.

Thebandwidth, é , isnot captured well by any single parameter of themodel. If weassume
that requests are uniformly distributed in time, G will have no effect until A; > % Indeed, thisis
agood test to seeif requests are bursty or not. If requests are bursty then we expect that the NFS

system would be quite sensitive to changesin G.

86

5.4 PreviousWork on NFS Performance

Due to its ubiquity as a distributed filesystem there is vast body of work on NFS. Fortu-
nately, [82] contains an excellent bibliography and summary. This section does not try to document
all previous NFS work; rather we categorize related work and introduce papers which describe pre-
vious results upon which our work builds.

NFS studies fall into roughly three categories: protocol changes, client/server enhance-
ments, and performance evaluation. Although papers contain some element of al three, often they
focusin asingle area. Many NFS protocol studies explore changes to improve filesystem seman-
tics[68, 71, 77, 83], however, afew are performance oriented [38]. Enhancement studies focus on
client/server design changesrather than protocol changes[37, 100]. For example, [59] looksat write
gathering toimprove performance, and acomparison of TCPvs. UDP and copy reduction techniques
are examined in [70].

Our work clearly fallsinto the performance analysis category, using network performance
as the dependent variable. The work in [96] takes an interesting perspective compared with ours.
Instead of examining NFS performance as a function of the network, it examines network perfor-
mance as a function of NFSload. It found that modest NFS load can severely degrade Ethernet per-
formance. With the advent of multi-gigabit switched LANSs, network loading dueto NFStrafficisa
minor problem compared with the days of shared 10 Mb Ethernet.

Although it deals with differences between NFS version 2 and version 3 [82], performs
much performance analysis to justify the changes. It found that a server running NFS version 3 is
roughly comparable to the same server running version 2 with NVRAM. However, little exploration
of the impact of the version 3 protocol changes is made with relation to network performance.

An extensive bottleneck analysisis presented in [108]. The book examines the peak thr-
oughputs of real-world components (e.g. CPU, disks, network) and characterizeswhere the satura-
tion point will be for different configurations. Aninteresting result of the work is that most servers
in the SPEC results are over-provisioned with disks.

Section 2.6.2 showed that perhapsthe closest study in spirit to the experimentsin this chap-
ter is [21]. That work was primarily concerned with NFS performance over congested ATM net-
works. They found that a high 7., in the 10's of milliseconds, was quite detrimental. A trace-fed
simulation was used rather than alive system. Moreover, their custom workloads make a quantita-
tive comparison to our work difficult.

We examined the methodology of [49] in Section 2.6.4. Recall that their conclusions are

87

SCSI RAID

L(usec)
50 [10 -— A 50 [
50 -+--

100 -&--
500 -
40+ 1000 -&- |
2000 -*--
4000 -o--

s
0+ 0+

20 - 20 -

Response Time (msec)
Response Time (msec)

10 - 10 -

0 L L L L L 0 L L L L L L L L
0 200 400 600 800 1000 0 200 400 600 800 1000 1200 1400 1600
NFS Ops/Sec NFS Ops/sec

(@ (b)

Figure 5.4: SPECsfs Sensitivity to Latency
This figure plots the SFS curves as a function of latency in microseconds. Measurements for the
graph on the left were taken on the SCS system, while measurementsfor the graph on theright were
taken on the RAID system.

quite similar to ours: CPU overhead is a dominant factor in NFS performance. We compare their
resultsto oursin greater detail in Section 5.6. Some of their most interesting data, however, came
from their direct measurement of alarge production system.

5.5 Senditivity Results

Given our methodology and NFS characterization, we now quantify the effect of vary-
ing LogGP parameters. As in previous chapters, we independently vary each of the parametersin
turn and observe the resulting SFS curves. For each parameter, we attempt to explain any observed
changesto the SFS signatures based on the model developed in Section 5.3. In addition, we measure
the most appropriate sensitivity for each parameter. For latency thisis change in base responsetime
asafunction of I.. For overhead, it isthe changein saturation point as afunction of o.

5.5.1 Latency

Historically end-to-end latency is often thought of asthe critical parameter for NFS perfor-
mance[21, 80]. In terms of the LogGP model, the typical definition of latency includesboth 1. and

88

o. Inthissection, weexaminesolely the I, term. By focusing on latency a one, we can better quantify
the effects of the network itself, rather than mixing the effects of the network and end-system.

Responseto L atency

Figure5.4(a) showsarange of SFScurvesresulting fromincreasing 7. for the SCSI system.
Likewise, Figure 5.4(b) shows the results for the RAID. Therange of 1. has been scaled up from a
baseline of 10 pusto 4 msec. For comparison, most LAN switches have latenciesin the 10's of us.
Most IP routers, which would be used to form a campus-wide network, have latencies of about a
millisecond. Thus the range explored in Figure 5.4 is most likely what one might find in an actua
NFS network. We will explore the effect of very high WAN-class latenciesin Section 5.5.2.

We havetruncated the SCSI curvesat the saturation point, toincreasereadability, but present
the full RAID data. Figure 5.4(b) showsthe 4 msec RAID curve “doubling back”. Because the SFS
benchmark reports the response time vs. delivered throughput, as opposed to offered load, attempts
to exceed the saturation point can result in fewer operations per second than attempted. We will ex-
plore this effect in greater detail in the discussion of overhead.

As predicted by the queuing model, the measured data shows the primary effect of in-
creased L isto raise the base response time. Also, as predicted by the model, the slope does not
change. Modest changesin 1. do not affect the saturation point. However, a high L. can cause the
saturation point to fall, as shown by both the 4 msec curves. The reason for the drop is that insuffi-
cient parallelism exists due to lack of client processes. We have tested this hypothesis by increasing
the number of load generator processes on the client. An unusua side effect of increasing the num-
ber of load generators is a change in the slope of the SFS curve. We therefore use the minimum
number of load generatorsthat can saturate the system in the baseline case even if it resultsin lower
saturation pointsaswe scale .

Returning to the base response time, a key question is what the rate of the increaseto 1.
is. That is, for each usof I, added, what is the corresponding increase in response time? The next

section exploresthis question in greater detail.

Sensitivity to L atency

Figure 5.5 showsthe sensitivity of responsetimeasafunction of 1. for arange of through-
puts, i.e., eachlineisavertical dlice though Figure 5.4. Two distinct sensitivity regions are observ-

able. Figure 5.5(a) showsthe first region has a constant sensitivity of 3 i:s of responsetimefor each

89

SCSI SCSI
45 T T 20 T

Ops/sec

40 - 200 -— +
400 -+-- X e B

600 o - e

B 800 %] 151

30

xt LTl e T

10 oo |
Ops/sec
200 <-—

| 400 -+

600 -5
800 -

20t e o)r,

Response Time (msec)
3 e x
Response Time (msec)

0 L L L L L L L L 0 L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 0 200 400 600 800 1000
Latency (usec) Latency (usec)

(@ (b)

Figure 5.5: SPECsfsL atency vs. Response Time
Thisfigure plots response time as a function of latency in microseconds. Measurements were taken
on the SCS system. The graph on the left shows a range of 7. up to 4000 p:s. The graph on theright
showsthat up to 150 psthereislittle sensitivity to L.

us of added I, between 150 - 4000 y:s. Thisisquite abit higher than the 2 predicted by the model in
Section 5.3.2. Figure 5.5(b) shows a completely insensitive region between 10 and 150 ps.
Animportant result isthat in the sensitiveregion, all the sensitivity curves areaconstant 3
across an order magnitude changein L. Giventhat the systemisrespondingin alinear fashion, there
may be an accurateway to model it. However, the constant of 3 is quiteabit higher than the constant
2 predicted by our smple model. A more complex model is needed to account for the discrepancy.
In the insensitive region we can see there is little, if any, measurable change in response
timeaswe vary L. For the samerange of I, the same results applies to the RAID aswell. Thishas
important implications for switch and interface designers as these operate in the 10's of us region.
From an NFS perspective, aLAN switch adding 10 s of delay per hop would be quite acceptable.

5.5.2 High Latency

The original NFS protocol was not designed to operatein environmentswith very high ..
NFS version 3 added several latency tolerating techniques, most notably asynchronouswrites [82].
In this section, we examine the effects of very high 7., in the 10’ sof millisecond range. For example,
WANSsttypically have an I ranging from 10'sto 100’s of milliseconds.

90

NFS version 2 NFS version 3
160 T T T 300 T T T T

i baseline +— baseline +—
X L=10ms —+- L=10ms —+—
“oF % L=20ms - | L=20ms &
% L=40ms x 201 L=40ms x|

120

200 F ‘
100 F

B0F T 150 T

*-«\E&B‘(
T

&,
60F o.g o

iy |
Bpgegs

response time(msec)
Response Time(msec)

100 BT
Fups '

5l -
20+ 1
0 M—e—ev—*—ﬁ*—*—?”_*—/

1 L L L L L 0
200 400 600 800 1000 1200 1400 1600 0 100 200 300 400 500 600
OPslsec NFS V3 OPs/sec

(@ (b)

Figure 5.6: Effectsof Very Long Latency
This figure plots the SFS curves as a function of very high latencies on the RAID. Measurements
for the graph on the left were taken on for NFS Version 2 over UDP, while measurements for the
graph on the right were taken using NFSVersion 3 running over TCP. Thefigureis designed to show
the relative performance degradation for each version as neither the operations/sec or the response
times between versionsis comparable.

Figure 5.6 comparesthe relative effectiveness of NFSversion 2 running on UDP, atypical
configuration, to version 3 running on TCP for networks with high 7.. The experiment varies both
the NFS version and network transport at once to better understand the total impact of an upgrade.
Typically, operating systems that ship with version 3 also allow TCP as atransport layer. Both the
throughput and response times between NFS version 2 and version 3 are not comparable; thus we
examine the percentage of performance loss aswe scale ..

Figure 5.6(a) shows, asexpected, that the “classic” NFSV2/UDP performance over WAN
latenciesisdismal. First, the baseresponsetimeis hyper-sensitivity to high latency in that it ismuch
greater than one would predict from the simple model. Second, very little of the peak load is obtain-
able. NFS Version 3 over TCP isableto handlelong latencies much better than version 2 over UDP.
Figure5.6(b) showsthat even at an L of 40 msec (aroundtrip of 80 msec), Version 3/TCP can sustain
50% of the peak throughput without adding extra clients.

A notable effect on both versions is that average response time decreases as the load in-
creases. This could be caused by a number of effects. One possible effect could be the interaction
of alight workload with the RPC and TCP transport protocols. These algorithms constantly probe

91

scsl RAID

‘ ; 100 ; ; ;

f O(usec) ol géusic) |
50 ; 80 - 1 Sy g o

; 105 ~+- %

130 -8-- 80 : %

‘ 180 ‘ 100

40F f 280 1 0F : 105

i 480 -*- 130

580 -~ 60l 180

. 280

S0 “‘ 9

* P ok @

P
EEER N T
[N H

30

QF
20t

Response Time (msec)
Response Time(msec)

30 -

10k 20 -

10

0 L L L L L 0 L L L
0 200 400 600 800 1000 200 400 600 800 1000 1200 1400 1600
NFS OPs/Sec NFS Ops/sec

(@ (b)

Figure 5.7: SPECsfs Sensitivity to Over head
This figure plots the SFS curves as a function of overhead in microseconds. Measurements for the
graph on the | eft were taken on the SCS system, while measurementsfor the graph on theright were
taken on the RAID system.

the network looking for more bandwidth. Under alight workload however, an insufficient number
of packets may be sent for the protocol to reach a stabilization point in its time-out/re-try algorithm.
As both curves are consistent with this theory, it begs the question as to the performance of these

algorithms [56] under avery light load.

55.3 Overhead

Software overhead, the orphan of networking analysis, permeatesthe design space because
it affects all aspects of the SFS signature curve. We focus our analysis efforts, however, on its effect
on the saturation point. Not only are these effects likely to be the most pronounced, but they also
will greatly impact the machine size needed to sustain high loads.

Responseto Overhead

Figure 5.7 shows the SPECsfs curves for both the SCSI and RAID systems while scaling
overhead fromabaselineof 80 i:s. For the SCSI system wehavetruncated theresultsat the saturation
point to make the graph more readable.

Figure 5.7 shows that the base response time increases as we scale o, and the measured

92

results are close to the model predictions. The slope of the SFS curveisfairly insensitive to o until
throughput is near the saturation point. A queuing model givesusnearly the sameresult; the slope of
the SFS curvewill not change drastically with respect to o. The most dramatic effect of o, however,
is on the saturation point.

Figure 5.7(b) shows what happens to the saturation point in the RAID when system ca-
pacity is exceeded; both response time and throughput degrade slightly as offered load exceeds the
saturation point. A lessdramatic version of thiseffect was observableaswe scaled I aswell. Anin-
teresting open question is how well the system respondsto these extreme conditions, i.e., how much
performanceis obtainable when the offered load is 150% of peak? Queuing theoretic modelstell us
that response time should increase to infinity as offered load nears 100%. Figure 5.7(b) shows that
inareal system (which isaclosed system) the response time hovers around an overhead-dependent
maximum whilethe delivered throughput slowly decreases. Feedback loopsbuilt into the RPC layer,
based on algorithmsin [56], keep the system out of the realm of very high response times, instead
forcing the entire system towards lower throughputs. The algorithms are quite effective; rather than
a complete system breakdown we observe small degradations in throughput and response time. A
full investigation of these effects, however, is beyond the scope of this work.

Because we are scaling a processor resource, the lower saturation point must be dueto the
higher servicetime of the CPU. In the next sectionswe will explore the nature of the saturation point.
We first derive the sensitivity curve and then examine the components of the service time for both
the SCSI and RAID systems.

Sensitivity to Over head

Figure 5.8 shows the relationship between overhead and throughput. The modeled line
showswherethe CPU reaches 100% utilization in the model presentedin Section 5.3, whilethe mea-
sured line is derived from the results in Figure 5.7. The most interesting aspect of both systemsis
that the peak performance drops immediately as we add overhead; unlike the response to latency,
there is no insensitive region. Therefore, we can easily conclude that the CPU is the bottleneck in
the baseline system. Also for both curves, the response to overhead is non-linear, i.e., for each us of
added overhead, the peak drops off quickly and then tapers out.

To determine the accuracy of the model, we performed acurvilinear regression against the
overhead model in Section 5.3.2. The r? values of .99 for the SCSI and .93 for the RAID show that
our model isfairly accurate. The sensitivity to o agreeswell with the model.

Peak Ops/sec

1000

800 -

600 -

400 [

200 -

Modeled +—
e Measured -+--

50 100 150 200 250 300 350 400 450 500 550 600

Overhead (usec)

Peak Ops/sec

1600

RAID

1400

1200

1000

800 -

600 -

400 -

200 -

T
Modeled +—

Measured -+ |

50

100

150

200

Overhead (usec)

250

300

93

(@ (b)

Figure 5.8: Peak Throughput vs. Overhead
Thisfigure plots the saturation point as a function of overhead in microseconds. Measurements for
the graph on the left were taken on the SCS system, while measurements for the graph on the right
were taken on the RAID system.

Examining Over head

The SCSI and RAID system both usethe same CPU, operating system, network, and nearly
the same number of disks. Yet RAID’s saturation point is much higher. An obvious question isthe
reason for the lower performance of the SCSI system. Figure 5.9 reports the percentage breakdown
of different components of CPU near the saturation point for both the SCSI and RAID. Becausethe
monitor itself (kgnon) usessome CPU, it is not possibleto actually reach the saturation point while
monitoring the system. The relative areas of the charts show the difference in average time per op-
eration, including CPU idletime, of 1 msec for the SCSI and 714 p:s for the RAID.

The most obvious difference is the time spent in the device drivers; the FAS SCSI drivers
spend an average of 150 i:s per NFS operation while the RAID drivers spend an average of only 36
uS. The networking stacks and filesystem code comprise the two largest components of the CPU
time. However, an interesting feature of both systemsisthat a significant amount of the servicetime
(20% and 26%) is spent in general kernel procedures which do not fall into any specific category.
There areamyriad of these small routinesin the kernel code. Getting an order of magnitude reduc-
tion in the service time would require reducing the time of many sub-systems. Much as was found
in [26, 60] thereis no single system accounting for an overwhelming fraction of the servicetime.

94

Kernel Time (SCSI) Kernel Time (RAID)

% time in sub-system % time in sub-system
SCSI-driver(15.4%)

Other(19.9%)

RAID-driver(5.1%)

Other(26.1%) UFS(14%)

Unaccounted(5.2%)

Syne(5.2%) MemMgt(5.7%)
nc(5.

4 E Unaccounted(4.0%)
Waiting(10.8%)

Sync(6.5%; Bcopy/Bcmp(13%)

Network(11.9%) Network(17.1%)

Bcopy/Bcmp(10.1%)

(@ (b)

Figure5.9: Time Breakdown Near Peak Op/sec
These charts show the percentage of time spent in each sub-system when operating near the satura-
tion point. Measurements for the graph on the | eft were taken on the SCS system at 1000 ops/sec,
while measurementsfor the graph on theright were taken on the RAID system at 1400 ops/sec. The
area of each chart shows the relative time per operation, including idle time (i.e., waiting on 1/O),
of 1 msec for the SCS and 714 psfor the RAID.

554 Bulk Gap

We choose to examine sensitivity to bulk Gap, (7, as opposed to the per-message rate g.
First, networking vendors often tout per-byte bandwidth as the most important metric in comparing
networks. Using our apparatus we can quantify its sensitivity (and thus importance). Secondly, for
the SPECsfs benchmark, ¢ is quite low (in the 1000’'s msg/sec range) and is easily handled by most
networks.

Unlike overhead, which isincurred on every message, sensitivity to Gap isincurred only
if the data rate exceeds the Gap. Only if the processor sends data in an interval smaller than that
specified by GG will it stall. The clients and server could potentially ignore G entirely. Recall the
burst vs. uniform models for gap presented in Section 3.2.2. At one extreme, if all datais sent at a
uniform rate that is less than G we will not observe any sensitivity to Gap. At the other extreme, if
all datais sent in bursts then we would observe maximum sensitivity to Gap.

Because SPECsfs sends messages at a controlled rate, we would expect that message in-
tervals are not bursty and the benchmark should be quite insensitive to Gap. Figure 5.10 shows that
thisisindeed the case. Only when the bandwidth (é) falsfrom abaseline of 26 MBsto amere 2.5
MB/s do we observe any sensitivity to . We are thus assured that the SFS benchmark is not bursty.

M easured production environments, however, arequite bursty [49, 66]. Our measured sen-

95

SCSI

MB/s (1/G)
50 259 -— -
145 -+
1.2 -a-
9.1 x
40 b 5.8 -
25 -x-
@ 1.2 o~

30

20

Response time (msec)

10

0 200 400 600 800 1000
NFS Ops/Sec

Figure 5.10: Sensitivity to Gap
Thisfigure plots the SFScurves as a function of Gap in microseconds. Measurements for the graph
were taken on the SCS system.

sitivity to ¢ is thus lower than what one might expect in a production environment. We explore the
implications of bursty networks to the sensitivity of &G in more detail in Chapter 5.6.

Figure 5.10 shows queuing delays at very low bandwidths that are not captured by the
model. Thereisadlight increase in slope at a bandwidth of 2.5 MB, and at 10 Mb Ethernet speeds
(1.2 MBY/s) there is a noticeable increase in slope. Replacing the simple delay center with a more
sophisticated queuing network would capture these effects. However, given the low bandwidths at
which these effects occur, we have made a quite reasonabl e tradeoff between model simplicity and

accuracy.

5.6 NFSSummary

In thissection, we describe the implicationsof our sensitivity results. Asin previouschap-
ters, we organize our results around the four areas of performance anaysis, application behavior,

architecture and modeling.

96

5.6.1 Performance Analysis

This chapter demonstrates that the TCP/IP apparatus is quite effective at adding control -
lable delaysto various system components. One apparent drawback of our apparatusisthat we could
not reduce overhead to low levels. It would thus appear that our apparatusislimited inits ability to
answer questionsin the regime of low overhead. However, our methodol ogy can overcomethislimi-
tation. Rather than answer the question “what isthe benefit of reduced overhead?’ by measuring the
effects of low overhead directly, our method and apparatus allow indirect observation. The shape of
the sensitivity curve will quantify the effects of reducing overhead in areal system, limited by Am-
dahl’sLaw of course. A steep slowdown curve would show that overhead reduction would have an
immediate, positive impact.

A new use of our apparatusin this chapter was the scaling of latency into the WAN range.
While performing adequately in this context, it was clear from the results that neither NFS nor the
SPECsfs benchmark are suited to run over this class of networks. While not entirely surprising, our
methodol ogy showed it can quantify some of the strange effects that happen at these long latencies.

5.6.2 NFSBehavior

On the behavior side, one primary result is that in typical SAN and switched LAN envi-
ronments, the latency is quite satisfactory for NFS. Latencies under 150 p:s are easily obtainable in
these environments, even when cascading switches. Further reductionswill have little benefit.

Inthe WAN range, we have seen that the changesto NFSversion 3 indeed improve perfor-
mance. However, such latencies are till a significant performance drag, aswas also found in [21].
Qualitatively, the changesin Version 3 have raised the level of NFS performance over WANSs from
“unusable” to merely “dow”. Even with these enhancements however, it may not be economically
viableto use NFS over WAN ranges. Given the low cost of disk storage compared with WAN links,
it may make more sense to replicate the entire data-set. Even for large amounts of data, the storage
reguirements are cheap compared with the recurring costs of WAN links.

The SPECsfsworkload has minimal bandwidth needsand isquiteregular; generating traf-
fic onthe order of single MB/s. However, real networks exhibit quite bursty behavior and thus band-
width requirements would be higher, but not into the gigabit range.

97

5.6.3 Architecture

Inthe architectural arena, overhead continuesto be a performancelimiter, much asitisfor
the Split-C/AM programs, and this is where significant performance improvements could be made.
A similar conclusion as was found in [49] aswell. The study examined three pointsin the network-
ing space (ATM, Autonet and FDDI), rather than systematically varying overhead. However, it is
encouraging that two different studies have come to the same conclusions by much different meth-
ods.

Although the networking overhead was only 20% of the entire service time, that does not
mean that attempts to reduce o will yield marginal results. Indeed, networking overhead is one of
the primary components of the service time. However, a number of subsystems must be improved
at once for significant progress to be made. For example, a combination of novel overhead reduc-
ing interfaces between major OS sub-systems, disks and network interfaces might yield significant
improvements.

Turning to latency, the architectural improvementsin I from IP switches, which place
much of routing logic in silicon, will have alarge impact on NFS. The order of magnitudedropin L.
from the millisecond to the 10-20 s region [98, 99] will expand the range of NFSto a much wider
area. Recent switches also offer increased port densities, ranging to 100’ s of ports at 100 Mb Ether-
net speeds. A network composed of these low-latency, high-density IP switches would expand the
range of NFS service to awhole campus, even multiple campuses, instead of it’straditional domain,
abuilding. Theimplications of such an expansion are interesting; NFS service could reach a much
larger number of machines than previously possible.

For bandwidth, network technol ogies such as switched 100Mb Ethernet and 155 Mb ATM
provide plenty of bandwidth for NFSworkloads. Giventhat most NFS packetsare quite small, over-
head, rather than bandwidth or latency, will still be the dominant factor facing future network design-
ers.

5.6.4 Modeling

Simple queuing models are quite effectivein analyzing the behavior of an NFS server. We
were ableto model changesin response time, slope and saturation point for avariety of parameters,
although more investigation is needed to better describe the effect of latency on responsetime. We
empirically measured and validated the inputs to the model. However, one could obtain closeto the
sameinputsfor aspecific configuration by looking at the data published dataon SPEC’ swebsite[95].

98

Using the SPEC data and the results of this study, it is relatively straightforward to deduce the pa-
rameters of the queuing model for a specific configuration from the published SFS curves. A word
of caution is needed when using this approach: mixing parametersfor different hardware/software
configurations, particularly overhead, can be quite inaccurate.

Deconstructing the NetApp F630 and AlphaServer 4000 5/466 using the data from the
SPEC webpages is an instructive exercise. They both have roughly the same CPU (500 MHz Al-
pha), but the Alphaserver has twice the main memory and disks as the NetApp box. The NetApp
box however, has half the base response time, a much lower slope, and a higher saturation point.
Putting the results into the context of thiswork, we can conclude that Network Appliance was quite
successful in their bid to reduce overhead viaa specialized operating system [51]. Another approach
to obtaining a higher saturation point isto add processors, demonstrated by the 18 CPU Sun system.
Such an approach would not reduce the base response time, however, unless the operating system

can parallelize a single NFS operation.

99

Chapter 6

| nvestigating Over head Reduction

Thereis no such thing as a failed experiment, only more data. —Max Headroom.

The previous three chapters have shown that of al the LogGP parameters, most applica
tions exhibit considerable sensitivity to overhead. That results points to overhead reduction as a
promising avenue for improving application performance. In this chapter, we present preliminary
work on anovel software architecture, called SPINE [40], which was constructed with overhead re-
duction as a specific design goal. SPINE allows the application developer to reduce overhead by
partitioning the application between the host CPU and network interface. The potential advantage
of the SPINE approach is that the network interface may be able to reduce overall data movement
and control transfers, both of whichimpact o, at acost of an inflated gap and latency. Thekey to this
overhead-reduction technique is to limit the inflation of the other parameters.

There are many potential wayswhich to reduce overhead. Fortunately, they can be classi-
fied into three general methods:

e Restructure the application. In this approach, the application is changed to reduce and/or
aggregate communication. An example of thisapproach can be seen inthe successiveversions
of the EM 3D application presented in [28]. The simplest versionsare quite sensitiveto o, but a
series of progressively more complex transformationsaltersthe application until it isprimarily
sengitiveto G.

e Change the communication protocol. A straightforward method of reducing overhead is
to use afaster communicationslayer. For example, NFSwasiinitially built on UDPinstead of
TCPfor exactly thisreason[70]. Thetradeoff isthat the application may haveto re-implement
functionality in the higher overhead layer in order to use the other one.

100

Memory Memory
Control System System

Interconnect Control Interconnect
Network Network Network Network
Interface Interface Interface Interface
@

Figure 6.1: SPINE Approach to Overhead Reduction
Thisfigure showsthe basic overhead reduction technique used in SPINE. In a normal system, shown
infigure (a), the CPU must handle control and/or data fromthe network interface. Control and data
flow for messagesin SPINE, asshown infigure(b), can avoid themain CPU entirely. A unique aspect
of SPINE isthe ability to safely run arbitrary application code on the network processor.

e Add functional units. A familiar approach in the architecture community, this approach has
been spurnedin the network community in recent years. Thebasicideaisto partition the prob-
lem such that multiple hardware units can pipeline packet processing. Aswereduce o, we hope
that the additional cost in termsof 1,¢g and G will not be too high—or may even beless. A
DMA engineis awell known example of an added functional unit that reduces o and often
grestly improves ;. Although exploiting parallelism in communication has been explored in
the context of Symmetric Multiprocessors[91], there has been surprisingly littlework in more
specialized support.

In this section, we will explore acombination of restructuring and adding functional units
to reduce overhead in an I P router. In the terminology of thisthesis, we are trying to push the appli-
cation “work” into the other LogGP parameters. This approach has been tried in the past in many
different 1/0O contexts. Figure 6.1 shows the basic method behind this approach. In the context of
networking, most work has used off-board protocol processors. A few designs have added a com-
bination DM A/checksum engine [33]. More aggressive designs implemented demultiplexing and
segmentation/reassembly [12].

The dangers of adding functiona units to assist the main processor, an thus reduce over-
head, are widely known [26, 50]. The strongest objections tend to be that assist deviceis “slower”
in some manner. However, “slower” is oftenill-defined. More precise definitionswould include in-
creased latency, reduced throughput, or even increased overhead because of added synchronization

101

costs. In the next sections, we will see that although SPINE is successful at reducing overhead, it
does not improve the latency or bandwidth. The importance of reducing overhead without altering
the other parameters depends on the application context. For abusy server, overhead reduction might
be important, but in other contexts absolute latency or bandwidth may be more critical.

Inthe early 1980’ smany commercial network adapter designsincorporated the entire pro-
tocol stack into the adapter. There were two reasons for such an approach, which, due to its com-
plexity, required an /O processor. First, many host operating systems did not support the range of
protocolsthat existed at the time (e.g., TCP/IP, telnet, and rlogin) [86]. Writing these protocols once
for are-programmabl e network adapter was an effective method of quickly incorporating protocols
into avariety of operating systems. Second, the host processorsof thetimewere not powerful enough
to run both multi-tasking jobs and network protocol stacks efficiently.

By the late 1980's however, the tide had turned, with only support for very common pro-
tocol operationsincluded in the adapter. The migration of common protocols into commodity oper-
ating systems and the exponential growth of processor speed eliminated the original motivationsfor
re-programmable network adaptersat the time. There has been agreat deal of work, however, in of-
floading piecesof network protocols. For example, there has been work to offload Internet checksum
calculations[33], link layer processing, and packet filtering.

Intermsof thisthesis, there are clearly tradeoffs between reducing o and increasing 7. and
¢. For example, both the Meiko CS-2 and Paragon machines used 1/O processors. Adding /O pro-
cessors added I, to the system, and in the Meiko they also added a very high g aswell [64]. Given
the results of this thesis however, reducing o at the expense of L is the correct tradeoff. However,
inflation of g isnot asclear abenefit asthisreducesthe effectiveness of latency tol erating techniques.

Although the LogGP model is quite useful, its parameters are too abstract to capture some
of the performance enhancements of a system which reduces overhead. We need a method to more
concretely characterize the effect of adding or removing functional units. Althoughwe can cast such
performanceimprovementsin terms of the LogGP model, asin the above example, a better class of
models are the pipeline models introduced in the next section. The problem with LogGP is that it
lumps too much of the off-CPU processing into just two parameters. g and L. In addition, these
parametersinclude amyriad of system components. Pipeline modelsallow usto isolate the effect of
each function unit in isolation, yet allow are-construction of the entire communications path.

102

Time (U sec)
32 64 96 128 160 192
Stage ? \‘\ \‘\ \‘\‘\T\‘\?\‘\T\‘=
0 Send CPU
1 Send LANai
2 Wire

3 Receive LANai
4 Receive CPU

occupancy | (S

1st packet 155 2nd packet 204

Figure 6.2: Generic GAM Pipeline
This figure plots the movement of 2 packets each of size 2 KB through the abstract GAM pipeline.
Timeis represented on the x-axis and the stage number on the y-axis. The fixed occupancy is shown
in light grey and the variable per-byte cost (Gap) time in dark grey for each stage. Bubbles (idle
time) can result when moving from different speed stages.

6.1 Pipeline Framework

A lesscommon viewpoint than either queuing theoretic modelsor parallel program models
are pipeline models[32, 106]. In thisfamily of models, the network is modeled as a series of store-
and-forward stages. The time to move data through each stage is modeled as a fixed occupancy, O,
plus a variable per-byte cost, also called Gap, . Different versions of the models arise about the
restrictions placed on the stages. For example, the stages may alow for only fixed-size packets, as
opposed to the more general variable size packets.

Although superficialy similar to anetwork queuing model, theanal ysi stechniques of pipe-
line models are quite different. The differences arise because the questions asked about pipelines
have to do with how to discretize the packets to obtain minimum delay or maximum bandwidth
through the pipeline, not steady-state behavior assuming arandom processmodel. Some of the anal -
ysistechniques are the same as the min-max techniques used in the operations research community.

Figure 6.2 shows an abstract pipelineframework in which to reason about networking per-
formance. Timeis represented on the x-axis and stage number on the y-axis. Two 2 KB packets are
shown making their way through the network pipeline. The occupancy portion of thetimeis repre-
sented aslight grey, and the Gap portionin dark grey. Table 6.1 shows the actual valuesas measured
in[106]. Note in the real GAM system, stages 2 and 3 are collapsed into a single stage to simplify
the LANai firmware. However, performanceis not affected because the sum of stages1 and 2 nearly
equals stage 1.

103

Stage Occupancy | Gap
(nsec) (nsec/KB)

Send CPU 6.7 7.2

Send LANa | 5.3 245

Wire 0.2 6.4

Recv. LANai | 5.2 185

Recv. CPU 9.6 7.2

Table6.1: GAM Pipeline Parameters
Thistable shows the abstract pipeline parametersfor the GAM system. Each stage is abstracted by
a fixed cost, called the occupancy, and a cost-per-byte, which corresponds to a Gap parameter per
stage.

6.2 Example: SPINE IP Router

Inthis sectionweexplorethe overhead reductiontechniquesusedin the Safe Programmable
Integrated Networking Environment (SPINE). SPINE allows fragments of application code to run
on the network interface. An explicit goal of the SPINE system is to improve performance by re-
ducing dataand control transfers between the host and 1/0 device. In the context of thisthesis, such
reductions can reduce o. Aswe shall see in the next sections, this often comes at the expense of 1.
and g. The next sections show that by allowing application code to execute on the network interface,
we can obtain substantial efficienciesin data movement and control transfers.

Loading application-specific code, as opposed to vendor-supplied firmware, onto a pro-
grammable adapter raises many questions. How and when does it execute? How does one protect
against bugs? How does this code communicate with other modules located on the same adapter,
peer adapters, remote devices, or host-based applications spread across a hetwork?

We address these questions using extensible operating system technology derived from
the SPIN operating system [14] and communication technology from the NOW project [5] to de-
sign SPINE. SPINE extendsthe fundamental ideas of SPIN, that is, type-safe code downloaded into
a trusted execution environment. In the SPIN system, application code was downloaded into the
operating system kernel. In the SPINE environment, code is downloaded into the network adapter.
Extensibility isimportant, aswe cannot predict thetypes of applicationsthat may want to run directly
on the adapter.

The next sections document an application we have constructed on the SPINE system:
an Internet Protocol router. We have also constructed a video client application. However, the IP

104

Router Application I
@ User
Kernel | @
Kernel
SPINE ~| Network
Kernel Runtime Stack
I/O Bus]
éAlr\éa' Router IC‘:Alr\:ja' Router
aﬁ Extension a Extension
[1]
[~ SPINE /0 [~ SPINE /0
[T Runtime L [Runtime 7
@ T —
\
Network Network

Figure 6.3: SPINE IP Router Architecture
This figure shows the SPINE IP router architecture. In the common case, |P packets move directly
between LANai cards, bypassing the main CPU completely.

router is a better example of both the benefits and dangers of the overhead reduction techniques of
the SPINE approach.

6.2.1 Architecture

The SPINE system structure isillustrated in Figure 6.3. Programming re-programmable
adapters requires operating system support both on the host and on the LANai processor. A small
set of core interfaces defines the SPINE run-time. These are implemented in C, and provide a basic
execution environment (e.g. an operating system) to SPINE extensions. In anutshell, SPINE exten-
sions are application defined code to be loaded onto the network adapter. Extensions are realized as
sets of Modula-3 procedures that have access to the interfaces defined by the SPINE run-time. In
our case, the extensionsimplement IP router code.

Therun-timeinterfaces exported to extensionsinclude support for messaging, safe access
to the underlying hardware (e.g., DMA controllers), and a subset of the Modula-3 interface. The

interface also consists of message FIFOs that enable user-level applications, peer devices, and ker-

105

nel modules to communicate with extensions on the network adapter using an active message style
communication layer.

User-level applications inject extensions onto the adapter using SPINE’s dynamic linker,
and send messages directly to extensionsviaamemory mapped FIFO using SPINE’s communication

library. The kernel run-time currently works in the context of Linux and Windows NT.

A Message-Driven Architecture

The primary purpose of a network adapter is to move messages efficiently between the
system and the network media. The network adapter’s basic unit of work is thus a message. To ef-
ficiently schedule messages and the associated message processing, the SPINE 1/0 run-time uses
a message driven scheduling architecture, rather than the process or thread-oriented scheduling ar-
chitecture found in conventional operating systems. The primary goal is to sustain three forms of
concurrent operation: host-to-adapter message movement, message processing on the adapter, and
adapter-to-network message movement.

Maximizing the number of concurrent operations is our attempt to maximize the effec-
tive bandwidth. If we blocked on each data-movement operation, each DMA enginein the LANai
would see alower effective bandwidth asit would have to “wait its turn” behind other units. In the
pipelining context, we are thus attempting to maximize the effective G term at the cost of increased
occupancy. Theincrease in occupancy arises because of the overhead in managing as many concur-
rent operations as possible. We will see the result of this tradeoff in the next section. Briefly, we see
that occupancy of the 1/0 processor can result in a serious performance limitation.

In SPINE the message di spatcher managesthese concurrent operations. A re-programmable
network adapter not only moves data; it reacts and appliestransformationsto it aswell. On message
arrival, the adapter may haveto operate on the datain addition to movingit. Thisstyle of processing
iscaptured well by the Active Message programming model, which we useto program SPINE exten-
sions on the network adapter. Every message in the system is an active message. SPINE extensions
arethus expressed asa group of active message handlers. On message arrival, the SPINE dispatcher
can route messagesto the host, apeer device, over the network, or invoke an active message handler
of alocal SPINE extension.

As Figure 6.3 shows, the I/O run-time is a glorified message multiplexor, managing the
movement of messagesbetween input queuesfromthe host, the network, and peer LANai cardstothe
variousoutput queues. Thekey differencein the SPINE architecturefrom other fast messageand 1/0

106

processing schemesis that extensions provide a safe way for the user to program the interpretation
and movement of messages from any of these sources.

Thetwo goals of handler execution, in order to determine the correct action for each mes-
sage, and rapid message flow implies that handlers must be short-lived. Thus, the contract between
the SPINE run-time and extension handlers is that the handlers are given a small, but predictable
time to execute. If a handler exceeds the threshold it is terminated in the interests of the forward
progress of other messages. Long computations are possible, but must be expressed as a sequence
of handlers. The premature termination of handlers opens a Pandora's box of safety issues. We do
not describe these issues in this thesis, as they are tangential to the investigation of host-overhead
reduction. The reader isreferred to [40] for a complete treatment of the resulting operating systems
issues.

To increase the amount of pipelining in the system, message processing is broken up into
aseries of smaller events. These events are internally scheduled as active messages, which invoke
system provided handlers. Thus, only a single processing loop exists; al work is uniformly imple-
mented as active messages. We document the performance of these internal messages, and thus the
throughput and latency of the SPINE 1/0 run-time, in the next section.

Returning to Figure 6.3 we can trace the execution of eventsin the SPINE IP router. The
sequence of events needed to route an | P packet from one adapter to another are:

1. Therouter application communicates with the SPINE kernel run-time to obtain a queue into

the 1/O run-time running on the LANai card.

2. Therouter application loadsthe router extension onto the LANai and then loadsthe | P routing

tables onto the extension.

3. Asapacket arrivesfromthewire, the hardwarenetwork DM A enginespoolsit to card-memory.
The 1/O run-time polls a set of software events; one of which pollsa hardware event register.
When the packet arrives, the head of the message specifiesit isfor the IP router extension.

4. Thel/O run-time callsthe router extension receive event. If no router extension isloaded, the
run-time drops the packet.

5. After looking up the destination LANai of the packet, the router extension calls into the 1/0
run-time to send the packet to the output queue on the correct LANai card.

107

SPINE IP Router Event Graph

DMA start header T T

DMA start body DMA I. DMA DMA
DMA generic start |. Packet 0 |. |. Packet 1 I.| Packet 2
DMA start handler ‘

Peer to peer start - _J_ __________ _
=nQ 1P output E‘ Route '| IRoute Iil'Rt
§E§$‘?2L’I§I’?ﬂd'e' T —I"L Y Packetl T T T gt Packet2 T T —F “Pkt. 3

I Rx check body | | | | |
‘E Rx check header | - |-
© Peer ACK Receive | Receive | Receive |
{1 Free buffer Packet 1 I Packet 2 I Packet 3
Poll Q6
Poll Q5 III III III
Poll Q4
Poll Q3 |l Il |.
Poll Q2
Poll Q1 | | | | |
Poll Q0 I| I |I I I I I I I I [I I I |I I I| I | | I
0 10 20 30 40 50 §0 70 80 90 100 110 120 130
Time (usec)

Figure 6.4: SPINE IP Router Event Plot
Thisfigure plots events asthey unfold in the SPINE I P router. Timeis shown on the x-axis and event
types on the y-axis. A box is plotted at the point in time at each event occurrence. The width of the
box correspondsto the length of the event. The dashed rectangles correspond to higher-level packet
semantics: receiving a packet, routing it, and forwarding it over the PCI bus. The arrows tracethe
causal relationships of a single packet as it moves through the system.

6. Thel/O run-time sends the packet to the LANai card specified. In this case, the packet must
move over the I/O businto the input queue of another LANai card.

7. Thesecond LANai card does not need to forward the packet to any extensions; the address of
the output queue was known to the router extension. Thus, on finding the entire packet in the
I/0 bus input queue, the 1/0O run-time invokes the wire-output routine.

8. If the extension can not route the packet, it can be sent to the kernel network stack for further
processing. Later, the host OS can route the packet to the appropriate card.
6.2.2 SPINE Event Processing

In this section, we show how SPINE event processing trand atesinto overall performance.
The apparatus for our experiments is different than the one used in the rest of thisthesis. We use a
cluster of 4 Intel Pentium Pro workstations (200MHz, 64MB memory, 512 KB L2 cache) running

108

Windows NT version 4.0. One node has four LANai cards and acts as the router. The Myricom
LANai adaptersare on a 33 MHz PCI bus, and they contain IMB SRAM card memory. The LANai
is clocked at 33 MHz, and hasa wire rate of 160MB/s.

Figure 6.4 showsareal snapshot of the event processing. We used al gorithmsfor forward-
ing table compression and fast | Plookup described in [79], and inserted one thousand routesinto less
than 20K B of memory on the adapter. The event trace was collected while forwarding two million
packets at a maximum rate such that the percentage of dropped packets was less than 0.5%. The
average per-packet processing time, or ¢, was 95 ps/packet.

In order to understand Figure 6.4, first recall that all SPINE processing is ultimately de-
composed into internal Active Message handlers. For example, when the IP router extension calls
the procedure to forward a message to a peer device, the run-time implements this functionality by
issuing a series of active messagesto itself. Thus, event and handler invocation becomes synony-
mous. This approach not only simplifies the dispatcher, but it aso exposes the natural parallelism
inherent in the operation.

The x-axisin Figure 6.4 representstime. The y-axisis an enumeration of event (handler)
types. The dark boxes represent time spent in event processing. The position of the boxes on the
x-axis shows the time a particular event took place. The position on the y-axis shows what event
was processed at that time. The width of the dark box shows the length of the event. For example,
during the period between 16 and 20 microseconds, the P routing handler (Step 4 in Figure 6.3) was
running.

Theeventsare ordered by type. Thelower eventsare pollsto the 7 input queues. The next
set (peer ACK and Free buffer) are LANai-to-LANai flow control over the PCI bus. Receiving over
the wire occupiesthe next 3 events, followed by only 2 events needed to route the packet. The final
5 events manage the DM A engine over the PCI bus.

Because SPINE breaks message processing into many tiny events, the event graph at first
appearsto be ajumbled maze with little discernible structure. In reality however, Figure 6.4 shows
aregular, periodic pattern. The key to understanding the event graph is to recognize the high level
structure shown in Figure 6.3 emerging from the thicket of small events. From these patternswe can
deduce both the rate at which packets are processed, as well as the latency of a packet as it passes
through the system. The dashed rectanglesin Figure6.4 outline higher-level packet-processing steps.
Recall that to route an IP packet requires 3 high level operations. receiving the packet (step 3 in
Figure 6.3), determining the destination (routing, step 4 in Figure 6.3), and forwarding the packet to
an egress adapter (steps 5-6 in Figure 6.3).

109

Thegap, g, interms of seconds per packet, is easily discernible viathe period of new pro-
cessing steps in the event graph. The time between receiving packets 1, 2 and 3 in Figure 6.4 is
roughly 55 ps. The period for other kinds of processing, such asroutingand DMA, issimilar. Thus,
we can conclude that we can route a new | P packet once every 55 ps.

Thelatency, I, or timeit takes a single packet to move through the system, is observable
by tracing the path of asingle packet. The arrowsin Figure 6.4 trace the processing path of packet
2 asitisreceived, routed, and transferred to the egress adapter. From the graph we can see that the
latency of apacket through theinput adapter isroughly 100 us. Notethat the bandwidth and latency
are distinct due to overlap (as shown in Figure 6.4). The gap is determined by the most complex
operation, which isthe DMA of the packet between the two LANai cards.

A large discrepancy exists between the average measured ¢ of 95 us/packet and the ob-
served timesin Figure 6.4 of 55 us/packet. The key to understanding the missing 40 microseconds
isthat Figure 6.4 does not show atypica event ordering; rather it is a best case ordering.

We have discovered by observing many event plotsthat the slightly lower priority of PCI
eventsin SPINE resultsin oscillations of event processing. Several incoming packets are serviced
before any outgoing packets are sent over the PCI. These oscillations break an otherwise smooth
packet pipeline. The system oscill ates between the fast state of one-for-onereceive-and-send, and the
slow state of receiving afew packets and draining them over PCI. In our pipelining model, thiswould
be modeled as a succession of occupancies followed by a several transfers, forming large pipeline
bubbles. The net result isthat the average forwarding time increases from 55 to 95 us. We are cur-
rently investigating ways to improve the priority system of the SPINE dispatcher to eliminate this
effect.

A closer look at Figure 6.4 shows two key limitations of the SPINE architecture. First, a
general-purpose event scheduler may not always optimize performance. Second, the occupancies
needed to multiplex many hardware devices on aweak embedded processor are substantial.

SPINE was constructed to be general enough so that the natural parallelism of packet pro-
cessingwould automatically beinterleaved with user extensions. However, preci se scheduling would
be possibleif we a priori knew what sequence of events need to be processed, and thereby achieve
better overall performance. Indeed, many other projects [81, 103] have exploited this fact and de-
veloped firmware with a fixed event-processing schedule that is specialized for a specific message
abstraction or application. The lack of an efficient, static processing schedule may be an inherent
limitation of any general-purpose system.

The second weakness in the SPINE architecture is that the occupancy to multiplex many

110

Platform o) | g | L(us) | MBIs(E)
SPINE IP Router 0.0 95 155 17.0
USC/1SI | P Router 80 80 - 16.7
UltraSPARC GAM 2.9 5.8 5.0 38

Table 6.2: SPINE LogGP Parameters.

This table shows the LogGP performance of the SPINE IP router, the USC/IS IP router, and the
Berkeley GAM system. (& isat 2 KB packet size; larger sizesarepossiblefor theUSC/IS router. Both
the USC/IS and SPINE routers use identical hardware, but much different software architectures.
The gap of the USC/IS router isegual to the overhead, because the CPU isthe bottleneck for small
packets. The gap in the SPINE router is limited by the internal scheduling algorithm of the SPINE
I/0 run-time. Latency results were not reported for the USC/IS router. The table shows the SPINE
safety and functionality servicesin the LANai significantly increasethe g and I, termsover thebasic
GAM parameters.

concurrent events is substantial. In terms of our pipeline model, these occupancies show up in the
fixed cost per packet, i.e., the occupancy. Each packet requires 29 events to process, resulting in a
long occupancy of 100 us per packet. Many of these events are checks for events that never occur.
For example, pollsto queuesthat are empty. However, many are more insidiousforms of occupancy,
such as events to manage the concurrency of the host-DMA engine.

A somewhat disappointing result is that in spite of aggressive overlap, the occupancies of
the LANai processor greatly lengthen the period of packet processing. Observe how the box outlin-
ing the “DMA packet 1” in Figure 6.4 is lengthened by 10 s due to the polls to the input queues
during the period between 75-85 us. If the LANai processor had better PCl messaging support, the
period could be reduced.

Thenet resultisthat the pipelineformed by the SPINE 1P router hasag of within 15 ;s and
adlightly better GG than arouter built from the same 200 M Hz Pentium Pro processor, the sameLANai
cardsand amodified BSD TCP/IP stack [105]. 1 Table 6.2 summarizesthe LogGP parameters of the
two routers. Although the SPINE architecture can obtain close to the same performance in terms of
gap and latency with aweaker CPU, it is not clear that without additional architectural support, such
asafaster embedded processor or additional messaging support, if the overhead reducing techniques
of the SPINE architecture are worth the additional software complexity.

In the server context where high CPU utilization due to I1/O results in unacceptable per-
formance degradations, such as in Global Memory Systems [102], SPINE-like architectures make

' The device driver copies only the packet headers into host memory. Special code in the device driver and L CP does
adirect LANai-to-LANai DMA &fter the regular host OS makes the forwarding decision.

111

sense. However, in the more general case advanced 1/O architectures should improve gap and la-
tency aswell. Architectures more radical than SPINE are needed to deliver an order of magnitude
performance improvement for single communication streams. A slew of novel software protocols
can deliver thiskind of overhead reduction [25, 72, 81, 103]. However, an unfortunate problem with
these protocolsisthat in order to obtain their performance one loses connectivity to a vast body of
applications. An open question is thus if new 1/O architectures can obtain an order-of-magnitude
performance improvement over traditional designs while maintaining connectivity to common pro-
tocols stacks.

112

Chapter 7

Conclusions

Caltrans spent $1 billion to replace the old Cypress freeway. It spent millions more
to widen Interstate 80. But ... the commute hasn't gotten any better. The problemis
not the new Cypress freeway — it’s getting to it from Berkeley and beyond. —Catherine
Bowman, SF Chronicle, Feb. 8, 1999.

This 980 thing has been ridiculous. —David E. Culler, SF Chronicle, Oct. 1, 1998.

This chapter concludes the thesis. We organize our conclusions around the four areas of
contributions: performanceanalysis, observed application behavior, architecture and modeling. Each
section also provides some perspective about how thisthesisfitsinto the wider context of computer
science and the sciencesin general.

We conclude this chapter with a short analogy in the hope that it will help the reader re-
member our results. We then present some open questions and promising areas of research. We end

with somefinal thoughts for the reader to contemplate.

7.1 Performance Analysis

Thisthesis demonstratesthat performing application-centric sensitivity emulation experi-
ments validated with analytic modeling is a powerful strategy for understanding complex computer
systems. The fundamental premise of the method is that by introducing precision delays in key
components we can understand their importance to overall system performance. Our perturbation
method is surprising simple, almost to the point of seeming uninteresting. However, system design-
ersuse asimilar style of analysisal the timein analytic modeling—so much so that the style hasa
name: bottleneck analysis. What makes the method in this thesis unique is that we have applied a
similar methodology to real systems as opposed to analytic models or simulations.

113

The perturbation nature of the method has much in common with the experimentsin the
life-sciences. Even the smallest living organisms contain a complexity well beyond anything man-
made. A fundamental question is thus how to even begin to understand such systems. Yet, many
experiments in the life sciences take a similar, simple approach asin thisthesis. Thefirst stepisto
“damage” (in our case, slowdown) acomponent in a controlled manner. Next, a stimulusis applied
to the system (e.g. running the application) and then the experimenter can observe differences in
behavior from the baseline, “undamaged” system. Differencesin behavior are thus related in some
way to the modified component. An experiment in the field of neuroscience using this style of anal-
ysis can be found in [85]. It is somewhat eerie that computer systems are approaching a level of
complexity that necessitates this style of analysis.

Another advantage of the method is that we can probe the system in a systematic manner
without having to rely on factor analysis. Thisis quite different from more traditional studies com-
paring systems. Many studies compare two or more systems which differ from each other in many
dimensions. A factor analysis must then be used to quantify the impact of each component. The
method presented in this thesis takes an opposite approach. Because each factor can be controlled,
we can use asingle system and adjust the factors one at atime.

As computer systems become more complex, perhaps the methods used in this thesiswill
become more widespread. For example, often the claim is made that “the network istoo slow”. Us-
ing themethodsin thisthesis, we could sl ow the network down and observeif any application metrics
changed. If nothing changed, we can rest assured that some other component isthe bottleneck. 1f, on
the other hand, we observe an immediate slowdown, we may conclude that improving the network
will improve performance to until some other component becomes the bottleneck.

Our style of analysisis not limited to networks; we could apply our methodology to com-
ponents in computer architecture, operating systems, graphics, and indeed, any computer systems
area. For example, often the claim is made that the context switch time of the operating system is
too slow. One could artificially inflate thistime and observethe effects on application behavior in or-
der to determine the sensitivity to context switch time. In alike manner, we could slow down thefile
system, virtual memory and other sub-systemsin the operating system to help usisolate the impact
of these systems.

The reasons for a dearth of live sensitivity approaches in the computer sciences are two-
fold. First, it isaformidable engineering effort to construct atunable apparatus. Aswe saw in Chap-
ter 2, the construction requires accessto componentsthat were not designed for modification. Simu-
lation suffers from asimilar drawback in that a reasonable simulation requires substantial engineer-

114

ing effort. A second reason for the lack of live approachesis that the calibration can be amost as
involved as building the apparatusitself. The calibration aspect cannot be taken lightly; abuginthe
apparatus can easily ruin the whole experiment. The calibration aspect again mirrors experimentsin
other sciences, where recording calibrations can become adaily event. Fortunately, the calibrations
needed in thisthesis, although extensive, are not so tedious.

There is alarge weakness with the method of this thesis, however. Although straightfor-
ward to observe cause and effect, without amodel such datais merely adds to an increasing obscure
pile of experimenta results. As the quote in Chapter 5 shows, such data in an of itself is of little
value unlessit leadsto an understanding of the how and why a system works. In thisthesis, we have
attempted to use as simple models as possible to understand application behavior. We discuss the

effectiveness and character of our modelsin Section 7.4.

7.2 Application Behavior

The “live system” nature of our method is much more powerful than relying on analytic
modeling or simulation alone, because we can make statements about application behavior. These
observations, coupled with the LogGP model, allow usto draw architectural conclusions as well.

We have found that applications use awide range of latency tol erating techniques, and that
thesework quitewell in practice. A littlereflection showsthat this should not be too surprising given
thetremendousattention givento latency tolerating techniquesfrom many areas of computer science.
Indeed, the 1990's has seen a broad, if somewhat disorganized, assault on the “latency” problem
from the theory, language, and architecture communities. For example, models such as BSP, LogP
and QSM are important theoretic tool s needed to design algorithms which mask latency. Languages
suchasldand Split-C weredesigned to allow the programmer and run time systemto tol eratelatency.
On the architectural front, recent designs have emphasized reduced overhead and simpler interfaces
to alow for greater latency tolerance (e.g. the T3D vs. T3E). The importance of these techniques
across a broad range of computer science is such that they have entire book chapters devoted to the
them [32].

In spite of the many latency tolerant programs, NFS does exhibit hyper-sensitivity to la-
tency for the performance regimes of traditional LANs. However, as was noted in Chapter 5.6, IP
switching hardware has crossed a fundamental threshold into the 10-20 microsecond regime. Al-
though these latencies are till an order of magnitude higher than current SANS, they push NFSinto

alatency-insensitiveregion.

115

Of the applications studied, the NPB represent the |east sensitive to all the LogGP param-
eters. Thisis partly due to the combination of scaling rule (fixed problem size) and machine size
used. On a 32 processor machine the communication to computation ratio is quite small, even with
thelarger class B problem size. Given fixed problem-size scaling, only on very large configurations,
e.g. 512 processors, will any of the LogGP parameters have much impact on overall performance.

A second reason the NPB are quite insensitive to communication is because these codes
have been extensively studied at the algorithmic level. Over the past 10 years much attention has
been focused on how to minimize communication costsin these codes. Given that the early parallel
machines that the NPB were developed on (e.g. the nCUBE/2 and the iPSC/1) had very large com-
muni cation costs (5,000+ cycles) it is not too surprising that much attention was given to minimizing
the costs of communication. In fact, literature from the 1980’s often models all communication as
pure overhead, because message passing machines at the time provided little opportunity for over-
lap [42].

Itisinteresting to conjectureif the application behavior observed isfundamental to the ap-
plication, or smply ahistorical accident. The developers of each suite certainly had an architectural
model in mind when designing the applications measured in this thesis, and thisis reflected in the
structure of the applications. For the Split-C/AM benchmarks, the model was |ow-overhead parallel
machinesand clusters. The NPB were designed in the context of previous generation high-overhead
hypercubes. NFS was developed in the LAN context. Perhaps the only certain claim we can make
about the “fundamental” properties of these applicationsis that with the passage of time, program-
merswill invent new ways to tolerate latency and avoid overhead. The clever application designer
is rewarded for shifting the sensitivity of the application away from L., avoiding o, and towards ¢
and GG wherever possible. A common pattern isthat as applications age, they first lose sensitivity to
latency, then to overhead, and finally end with some sensitivity to aform of bandwidth (either ¢ or
G).

7.3 Architecture

The primary architectural result of this thesisis that software overheads for communica-
tion performance are still too high. Of al the LogGP parameters, the sensitivity to o cannot be over-
stated. Thisis because many of the latency-tolerating techniques are still sensitive to overhead. For
example, work overlapping and communication pipelining techniques still incur acost of o on every
message, even though they can mask latency.

116

Evenfor Split-C/AM applications, which were devel oped on low-overhead machines, over-
head isstill alimiting factor. Sensitivities slopes of 1-2 were common for the Split-C/AM programs.
For NFS, we abserved asensitivity slope of -1.5in overhead vs. throughput. These sensitivitiesalso
do not haveflat regions, implying that further reductions in overhead will have immediate benefits.
We observed some of the benefits of reduced overhead for NFS in the Network Appliance box; that
machine can sustain a much higher throughput than a comparable box running OSF/1 by using a
specialized operating system.

The NASParallel Benchmarks did not exhibit much sensitivity to overhead. Thisresultis
clearly explainable by observing the applications’ structure; few messages are sent for the machine
size (32) and problem size (class B) used in this study. Our results might be different if we extrap-
olated to an order-of-magnitude change in machine size, i.e., a 512-node machine. However, such
machines are the uncommon case. Much asthey have in the past, “small” configurations of 32 and
64 nodes will continue to dominate the field of parallel computing.

Almost al of the latency tolerating techniques of applications shift the sensitivity from
latency to some form of bandwidth, either per-message as in g or per-byte, G. The pressures that
latency tolerating techniques place on bandwidth are not unique to networking, they have been ob-
served in the CPU regime as well [20]. Although maintaining a high per-byte bandwidth is quite
tractable, obtaining high per-message bandwidths is still an architectural challenge.

Our results on application behavior lead us to the somewhat counterintuitive architectural
conclusion that future architectures do not need to continue to optimize for network transit latency.
Instead, designers should focus on reducing overhead. Programmers are adept at using latency-tol-
erating techniques, thus architectures should focus on enabling programmers to better tolerate la-
tency. Fromanarchitectural perspective, building machinesto toleratelatency iseasier thanreducing
the entire end-to-end path. In practice, it means designers should concentrate on improving access
to the network interface while maintaining a high message rate; many latency tolerating techniques
are still sensitive to overhead and gap.

A host of novel techniques exist to reduce both overhead and gap in the network inter-
face hardware/software combination. However, the problem with non-standard techniques is that
they ignore a very large existing infrastructure which is unlikely to change for the foreseeable fu-
ture. Powerful non-technical forceswill continue to cause large software overheads. Intuitively, the
network interface iswhere three vendors' software and hardware must work together: the operating
system vendor, the switch/hub vendor, and the network interface hardware vendor. Immutable stan-
dardsfor connecting all three are thusinevitable. For example, porting NFSto any of the alternative

117

message passing layersis not impossible, but is certainly a formidable engineering task. The chal-
lenge to future network interface designers will be to reduce overhead and gap while maintaining
connectivity between applicationsin the existing infrastructure.

One might be tempted to simply add CPU’s and network interfacesin alarge SMP box to
decrease the effective gap and Gap, or to amortize the overhead among many processors. However,
such an approach has several limitations. First, the parallelization of asingle stream is quite limited
using current operating systems[91]. Thus, In order to obtain areduced gap, the application has to
parallelize the communication into multiple streamsitself. Second, the size of the machine needed
to sustain a very high effective g and GG is substantial. For example, in order to add just 8 gigabit
network interfaces into a server and use them simultaneously requires 8 separate |/O busses. While
machines of this size do exist, the very high premium attached to this class of machinesis well-

known.

7.4 Modeling

We have found that simple models can give “reasonable’ performance predictions. The
simplefrequency-cost pair overhead model swere often close to the measured performance. At worst
they were 50% inaccurate. The results for gap were farther off, and for latency the results are even
more inaccurate. From an architectural standpoint, these results shows that a simple frequency-cost
pair analysisis an adequate “ballpark” measure for a system designer. However, more detailed ap-
plication and system models are needed (e.g. [39, 43]) to make truly accurate predictions across a
range applications and machine configurations.

The simple models proved useful in evaluating assumptions about application behavior.
For example, the simple gap models showed that communications are bursty in nature for both the
Split-C/AM programsand NPB. Thesemodel s al so showed that serial dependenciescan cause hyper-
sensitivesto overhead. The radix sort is a prime example of this effect.

The queuing models used for the NFS system are much more accurate than simple fre-
guency cost-pair models used for the other applications. This accuracy, however, is somewhat cir-
cular. The SPECsfsbenchmark isbuilt using some assumptionsof queuing theory, namely thetraffic
isgenerated as a Poisson process. Given that observed traffic is quite bursty, we would expect actua
NFStraffic to be more sensitive to overhead and Gap than our results showed. However, given that
the observed sensitivity to (G is very low, even under the worst-case assumption that all messages

are sent in bursts, the small nature of observed NFS requests means that even current LANs will not

118

bandwidth limit NFS.

The one place where the queuing model proved quite useful wasin interpreting the results
of vendors SFS curves. Section 5.6 gave a small example of how we could compare two servers
given SFS curves and the SPECsfs disclosures. We saw that we could, for example, derive the to-
tal software overhead from observing the base, slope and saturation points. An interesting exercise
would be to see how well the model did on avariety of published curves. However, such a compar-
ison is beyond the scope of thisthesis.

7.5 Final Thoughts

M odern computer systems have reached mind boggling complexity. The design of amod-
ern business server includes sub-systemsthat are impressive engineering achievementsin their own
right: the processor, the memory and 1/O system, the operating system, the database and the business
application logic.

To make the example more concrete, imaginethe number of designersinvolved in a4-way
UltraSPARC 111 server, running Solaris 7, Oracle 8 and SAP R/3 on 18 GB IBM disk drives, stitched
together with the UPA memory bus, multiple PCI and SCS| busses, and connected to the outside
world via Alteon gigabit Ethernets (each with 2 processors). The number of peopleinvolved in the
entire design certainly ranges into the tens of thousands. No one person can hope to understand it
al. Yet, performance analysis of such systemsis not an impossible task.

The staggering complexity of such systemswill require computer performance analyststo
increasingly use“black-box” methods. In thisthesisweinvestigated one such method in the context
of computer networks. Similar analysistechniqueswill eventually become an accepted methodol ogy
in computer science, much asthey have in the other sciences.

With regard to our findings, we leave the reader with a short analogy in the hope it will
serve asan aid to recalling our experimental results. The quotations at the beginning of this chapter
parallels an everyday experience many drivers have in the San Francisco Bay Area have to that of
modern computer networks. Commuters often wonder why after opening the billion dollar Cypress
freeway, congestion seemsjust as bad aswhen using the previous detour, Interstate 980. Onasmaller
scale, computer users wonder why, after installing their new gigabit networks, applications don’t
seem any faster. In both cases, it’'s not the freeway or network that is the limiting factor per say.
Rather, it’' sthe accessto the network or freeway: software overhead in computer networks, on-ramps

in the freeway case, that are the real bottlenecks.

119

The SPINE work showed some of the benefits and costs of using more specialized software
to reduce overhead. Although quite successful at reducing overhead, the resulting pipeline was not
faster interms of gap or latency than afast CPU running a more standard, but still modified, TCP/IP
stack. Chapter 6 showed that it an open question isif the overhead reduction obtainable with novel
SAN protocols can be achieved with the much more common Internet protocols.

Inthefinal analysis, we can conclude from the resultsin this thesis that computer systems
are complex enough to warrant our controlled perturbation, emul ation-based methodology. We ob-
served that programmers used a variety of latency tolerating techniques and that these work quite
well in practice. However, many of these techniques are still sensitive to software overhead. We
found that without either more aggressive hardware support or the acceptance of radical new proto-
cols, software overheadswill continue to limit communication performance across awide variety of

application domains.

120

Bibliography

[1]

[2]

(3]

[4]

(]

[7]

(8]

(9]

AHN, J. S, DANzIG, P. B, Liu, Z., AND YAN, L. Evauation of TCP Vegas: emulation
and experiment. 1n Proceedings of the ACM SGCOMM '’ 95 Conference on Communications
Architectures and Protocols (Cambridge, MA, Aug. 1995).

ALEXANDROV, A., IONESCU, M., SCHAUSER, K. E., AND SCHEIMAN, C. LogGP: In-
corporating Long Messages into the LogP model - One step closer towards a realistic model
for parallel computation. In 7th Annual Symposiumon Parallel Algorithmsand Architectures
(May 1995).

ANDERSON, E. A., AND NEEFE, J. M. An Exploration of Network RAM. Tech. Rep. CSD-
98-1000, University of California at Berkeley, July 1998.

ANDERSON, J.-A. M., BERC, L. M., DEAN, J., GHEMAWAT, S., HENZINGER, M. R., LE-
UNG, S.-T., SITES, R. L., VANDERVOORDE, M. T., WALDSPURGER, C. A., AND WEIHL,
W. E. Continuous Profiling: Where Have All the Cycles Gone? In Proceedings of the 16th
ACM Symposium on Operating Systems Principles (1997), pp. 1-14.

ANDERSON, T. E., CULLER, D. E., PATTERSON, D. A., AND THE NOW TEAM. A Case
for NOW (Networks of Workstations). |EEE Micro (Feb. 1995).

ARGONNE NATIONAL LABORATORY. MPICH-A Portable Implmentation of MPI, 1997.
http://www.mcs.anl.gov/mpi/mpich.

ARPACI, R. H., CULLER, D. E., KRISHNAMURTHY, A., STEINBERG, S., AND YELICK,
K. Empirical Evaluation of the CRAY-T3D: A Compiler Perspective. In Proceedings of the
22nd International Symposium on Computer Architecture (1995).

ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H., CULLER, D. E., HELLERSTEIN,
J. M., AND PATTERSON, D. A. High-performance sorting on networks of workstations. InIn
Proceedings of the ACM International Conference on Management of Data (S GMOD) (Tuc-
son, AZ, May 1997), pp. 243-254.

BAILEY, D. H., BARSszcz, E., BARTON, J. T., BROWNING, D. S., CARTER, R. L.,
DAGUM, L., FATOOHI, R. A., FREDERICKSON, P. O., LASINSKI, T. A., SCHREIBER,
R. S., SIMON, H. D., VENKATAKRISHNAM, V., AND WEERATUNGA, S. K. The NAS Par-
allel Benchmarks. International Journal of Supercomputing Applications 5, 3 (1991), 63—73.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

121

BAILEY, D. H., BARSzcz, E., DAGUM, L., AND SIMON, H. D. NAS Parallel Benchmark
Results. Tech. Rep. RNR-93-016, NASA Ames Research Center, 1993.

BAILEY, D. H., HARRIS, T., DER WIGNGAART, R. V., SAPHIR, W., WOO, A., AND
YARROW, M. The NAS Parallel Benchmarks 2.0. Tech. Rep. NAS-95-010, NASA Ames
Research Center, 1995.

BAILEY, M. L., PAGELS, M. A., AND PETERSON, L. L. The x-chip: An Experiment in
Hardware Demultiplexing. In Proceedings of the | EEE Wor kshop on High Performance Com+
muni cations Subsystems (Feb. 1991).

BARszcz, E., FATOOHI, R., VENKATKRISHNAN, V., AND WEERATUNGA, S. Solution of
Regular, Sparse Triangular Linear Systems on Vector and Distributed-Memory Multiproces-
sors. Tech. Rep. RNR-93-007, NASA Ames Research Center, Apr. 1993.

BERSHAD, B. N., CHAMBERS, C., EGGERS, S., MAEDA, C., MCNAMEE, D., PARDYAK,
P., SAVAGE, S., AND SIRER, E. G. SPIN—AnN Extensible Microkernel for Application-
Specific Operating System Services. Tech. rep., University of Washingtion, 1994.

BLACK, R., LESLIE, |I., AND MCAULEY, D. Experience of Building an ATM switch for
the Local Area. In Proceedings of the ACM SSIGCOMM ’ 94 Conference on Communications
Architectures and Protocols (London, UK, Sept. 1994), pp. 158-167.

BLUMRICH, M. A, L1, K., ALPERT, R., DuBNICKI, C., FELTEN, E., AND SANDBERG, J.
Virtual Memory Mapped Network Interfacefor the SHRIMP Multicomputer. In Proceedings
of the 21t International Symposium on Computer Architecture (Apr. 1994).

BobpEN, N. J., CoHEN, D., FELDERMAN, R. E., KuLAawik, A. E., SEITz, C. L.,
SEizovic, J. N., AND Su, W.-K. Myrinet—A Gigabit-per-Second Local-Area Network.
IEEE Micro 15, 1 (Feb. 1995), 29-38.

BREWER, E. A. High-Level Optimization via Automated Statistical Modeling. In Proceed-
ings of the Fifth ACM SIGPLAN Symposiumon Principlesand Practice of Parallel Program-
ming (PPoPP) (June 1995).

BREWER, E. A., AND KuszmAUL, B. C. How to Get Good Performance from the CM-5
Data Network. In Proceedings Eighth International Parallel Processing Symposium (SPAA)
(Cancun, MX, Apr. 1994).

BURGER, D., GOODMAN, J. R., AND KAGI, A. Memory Bandwidth Limitations of Future
Microprocessors. In Proceedings of the 23rd International Symposium on Computer Archi-
tecture (Philadel phia, PA, May 1996), pp. 78-89.

CHANG, K., MORRIS, R., AND KUNG, H. T. NFS Dynamics Over Flow-Controlled Wide
AreaNetworks. In Proceedings of the 1997 INFOCOMM (K obe, Japan, Apri 1997), pp. 619—
625.

CHESAPEAKE COMPUTER CONSULTANTS, INC. Test TCP (TTCP), 1997. http://www.ccci.-
com/tool s/ttcp/.

122

[23] CHIou, D., ANG, B., ARVIND, BECKERLE, M., BOUGHTON, G., GREINER, R., HICKS,
J., AND HOE, J. StarT-NG: Délivering Seamless Parallel Computing. In EURO-PAR 95
Conference (Aug. 1995).

[24] CHIu, D. M., AND JAIN, R. Analysisof the Increase and Decrease Algorithmsfor Conges-
tion Avoidance in Computer Networks. Computer Networks and ISDN Systems 17 (1989),
1-14.

[25] CHUN, B. N., MAINWARING, A. M., AND CULLER, D. E. Virtua Network Transport Pro-
tocolsfor Myrinet. IEEE Micro 18, 1 (1998), 53-63.

[26] CLARK, D. D., JACOBSON, V., ROMKEY, J., AND SALWEN, H. An Analysis of TCP Pro-
cessing Overhead. |EEE Communications Magazine 6 (June 1989), 23—29.

[27] CMELIK, B., AND KEPPEL, D. Shade: aFast Instruction-set Simulator for Execution Profil -
ing. In Proceedings of the 1994 ACM SIGMETRICS Conference (May 1994).

[28] CULLER, D. E., DusseAu, A. C., GOLDSTEIN, S. C., KRISHNAMURTHY, A., LUMETTA,
S., VON EICKEN, T., AND YELICK, K. Parallel Programming in Split-C. In Proceedings of
Supercomputing ' 93 (1993), pp. 262-273.

[29] CULLER, D. E., KARP, R. M., PATTERSON, D. A., SAHAY, A., SCHAUSER, K. E., SAN-
TOS, E., SUBRAMONIAN, R., AND VON EICKEN, T. LogP: Towards a Realistic Model of
Parallel Computation. In Fourth ACM S GPLAN Symposium on Principles and Practice of
Parallel Programming (1993), pp. 262—273.

[30] CULLER, D. E., KEETON, K. K., LIu, L. T., MAINWARING, A. M., MARTIN, R. P, RO-
DRIGUES, S., WRIGHT, K., AND YOSHIKAWA, C. O. The Generic Active Message Inter-
face Specification. NOW Research Project White Paper, http://now.cs.berkel ey.edu/Papers2,
1995.

[31] CULLER, D.E., Liu,L.T., MARTIN, R. P, AND YOSHIKAWA, C. O. Assessing Fast Net-
work Interfaces. In I[EEE Micro (Feb. 1996), val. 16, pp. 35-43.

[32] CULLER, D. E., SINGH, J. P, AND GUPTA, A. Parallel Computer Architecture: A Har-
ware/Software Approach. Morgan Kaufmann, 1999.

[33] DALTON, C., WATSON, G., BANKS, D., AND CALAMVOKIS, C. Afterburner (network-
independent card for protocols). |EEE Network 3, 4 (July 1993), 36-43.

[34] DiLL, D., DREXLER, A., HU, A., AND YANG, C. Protocol Verification as aHardware De-
sign Aid. In International Conference on Computer Design: VLS in Computers and Proces-
sors (1992).

[35] DONGARRA, J. J., AND DUNIGAN, T. Message-Passing Performanceof Various Computers.
Tech. Rep. UT-CS-95-299, University of Tennessee, Knoxville, July 1995.

[36] DONGARRA, J. J., AND DUNIGAN, T. MPI Benchmark, May 1995. http://www.netlib.org.-
benchmark/comm.tgz.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

123

DuUBE, R., Rals, C. D., AND TRIPATHI, S. Improving NFS Performance Over Wireless
Links. |EEE Transactions on Computers 46, 3 (Mar. 1997), 290-298.

DucHAMP, D. Optimistic Lookup of Whole NFS Pathsin a Single Operation. In Proceedings
of the 1994 USENIX Summer Conference (Boston, MA, June 1994), pp. 161-169.

Dusseau, A. C., CULLER, D. E., SCHAUSER, K. E., AND MARTIN, R. P. Fast Paral-
lel Sorting Under LogP: Experience with the CM-5. In IEEE Transactions on Parallel and
Distributed Systems (1996), val. 7, pp. 791-805.

FluczyNski, M. E., MARTIN, R. P., BERSHAD, B. N., AND CULLER, D. E. SPINE: An
Operating System for Intelligent Network Adapters. Tech. Rep. UW-CSE-98-08-01, Univer-
sity of Washington, Aug. 1998.

Fox, A., GRIBBLE, S., CHAWATHE, Y., AND BREWER, E. Scalable Cluster-Based Network
Services. |n Proceedings of the 16th ACM Symposium on Operating Systems Principles (Oct.
1997).

Fox, G. C., JOHNSON, M. A., LYNENGA, G. A., OTTO, S. W., SALMON, J. K., AND
WALKER, D. W. Solving Problems on Concurrent Processors: General Techniquesand Reg-
ular Problems. Prentice Hall, 1988.

FRANK, M. I., AGARWAL, A., AND VERNON, M. LoPC: Modeling Contention in Parallel
Algorithms. In Proceedingsof S XTH ACM SIGPLAN Symposiumon Principlesand Practice
of Parallel Programming (PPoPP) (June 1997).

FROESE, K. W., AND BUNT, R. B. The Effect of Client Caching on File Server Workloads.
In Proceedings of the 29th Hawaii International Conference on System Sciences (Wailea, HI,
Jan. 1996), pp. 150-159.

GHORMLEY, D. P, PETROU, D., RODRIGUES, S. H., VAHDAT, A. M., AND ANDERSON,
T. E. GLUnix: aGloba Layer Unix for a Network of Workstations. Software Practice and
Experience 28, 9 (July 1998), 929-61.

GIBBONS, P., MATIAS, Y., AND RAMACHANDRAN, V. CanaShared-Memory Model Serve
as a Bridging Model for Parallel Computation? In Symposium on Parallel Algorithms and
Architectures (July 1997), pp. 72-83.

GILLETT, R. B. Memory Channel Network for PCI. In IEEE Micro (Feb. 1996), val. 16,
pp. 12-18.

GUSELLA, R. A Measurement Study of Diskless Workstation Traffic on an Ethernet. |EEE
Transactions on Communications 38, 9 (Sept. 1990), 1557-1568.

HALL, J., SABATINO, R., CROSBY, S., LESLIE, |., AND BLACK, R. Counting the Cycles:
a Comparative Study of NFS Performance Over High Speed Networks. In Proceedings of the
22nd Annual Conference on Local Computer Networks (LCN'97) (Minneapolis, MN, Nov.
1997), pp. 8-19.

[50]

[51]

[52]

[53]
[54]

[55]

[56]

[57]
[58]
[59]

[60]

[61]

[62]

[63]

124

HENNESSY, J. L., AND PATTERSON, D. A. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, 1996.

Hitz, D., LAU, J., AND MALCOLM, M. File System Design for an NFS File Server Appli-
ance. In Proceedings of the Winter 1994 USENI X Conference (San Francisco, CA, Jan. 1994),
pp. 235-246.

HoLT, C., HEINRICH, M., SINGH, J. P, ROTHBERG, E., AND HENNESSY., J. The Effects
of Latency, Occupancy, and Bandwidthin Distributed Shared Memory Multiprocessors. Tech.
Rep. CSL-TR-95-660, Stanford University, Jan. 1995.

HORST, R. TNet: A Reliable System Area Nework. |[EEE Micro 15, 1 (Feb. 1995), 37-45.

HUANG, P, ESTRIN, D., AND HEIDEMANN, J. Enabling Large-scale Simulations. Selec-
tive Abstraction Approach to the Study of Multicast Protocols. In In Proceedings of the Sxth
International Symposium on Modeling, Analysis and Smulation of Computer and Telecom+
munication Systems (MASCOTS' 98) (Montreal, July 1998).

IANNELLO, G., LAURIA, M., AND MERCOLINO, S. LogP Performance Characterization
of Fast Messages atop Myrinet. In Sxth Euromicro Workshop on Parallel and Distributed
Processing (PDP’ 98) (Madrid, Spain, Jan. 1998), pp. 395-401.

JACOBSON, V. Congestion Avoidance and Control. In Proceedings of the ACM SGCOMM
’88 Conference on Communications Architectures and Protocol s (Stanford, CA, Aug. 1988),
pp. 314-329.

JAIN, R. The Art of Computer Systems Performance Analysis. John Wiley & Sons, 1991.

JONES, R. Netperf 2.1 Homepage. http://www.cup.hp.com/netperf/NetperfPage.html, Feb.
1995.

Juszczak, C. Improving the Write Performance of an NFS Server. In Proceedings of the
1994 USENIX Winter Conference (Jan. 1994).

KAY, J., AND PASQUALE, J. The Importance of Non-Data-Touching Overheadsin TCF/IP.
In Proceedings of the 1993 SGCOMM (San Francisco, CA, September 1993), pp. 259-268.

KEETON, K., PATTERSON, D. A., AND ANDERSON, T. E. LogP Quantified: The Case for
Low-Overhead Local AreaNetworks. In Hot Interconnects||1 (Stanford University, Stanford,
CA, August 1995).

KHALIL, K. M., Luc, K. Q., AND WILSON, D. V. LAN Traffic Analysis and Workload
Characterization. In Proceedings of the 15th Conference on Local Computer Networks (Min-
neapolis, MN, Sept. 1990), pp. 112-122.

KLEINROCK, L. Queueing Systems. John Wiley & Sons, New York, 1976.

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

125

KRISHNAMURTHY, A., SCHAUSER, K. E., SCHEIMAN, C. J., WANG, R. Y., CULLER,
D. E., AND YELICK, K. Evaluation of Architectural Support for Global Address-Based Com-
munication in Large-Scale Parallel Machines. In Proceedings of the 7th International Con-
ference on Architectural Support for Programming Languages and Operating Systems (Oct.
1997), pp. 3748.

LAzOWSKA, E. D., ZAHORIAN, J., GRAHAM, G. S., AND SEVCIK, K. C. Quantitative
System Performance: Computer System AnalysisUsing Queueing Network Models. Prentice-
Hall, Englewood Cliffs, N.J, 1984.

LELAND, W. E., TAQQU, M. S., WILLINGER, W., AND WILSON, D. V. Onthe Self-Similar
Nature of Ethernet Traffic. |EEE Transactions on Networking 2, 1 (Feb. 1994), 1-15.

LELAND, W. E., AND WILSON, D. V. High Time-Resolution Measurement and Analysis of
LAN traffic: Implicationsfor LAN Interconnection. In Proceedingsof the 1991 INFOCOMM
(Bal Harbour, FL, April 1991), pp. 1360—1366.

Liu,J. C. S, So, O. K. Y., AND TaM, T. S. NFS/M: an open platform mobile file sys-
tem. In Proceedings of the 18th International Conference on Distributed Computing Systems
(Amsterdam, Netherlands, May 1998), pp. 488—495.

LUMETTA, S. S., KRISHNAMURTHY, A., AND CULLER, D. E. Towards Modeling the Per-
formance of a Fast Connected Components Algorithm on Parallel Machines. In Proceedings
of Supercomputing ' 95 (1995).

MACKLEM, R. Lessons Learned Tuning the 4.3 BSD Reno Implementation of the NFS Pro-
tocol. In Proceedings of the 1991 USENIX Winter Conference (Jan. 1991), pp. 53-64.

MACKLEM, R. Not Quite NFS, Soft Cache Consistency for NFS. In Proceedings of the 1994
USENIX Winter Conference (Jan. 1994), pp. 261-278.

MARTIN, R. P. HPAM: An Active Message Layer for a Network of Workstations. In Pro-
ceedings of the 2nd Hot Interconnects Conference (July 1994).

MARTIN, R. P, VAHDAT, A. M., CULLER, D. E., AND ANDERSON, T. P. The Effects of
Latency, Overhead and Bandwidth in a Cluster of Workstations. In Proceedings of the 24th
International Symposium on Computer Architecture (Denver, CO, June 1997).

McVoy, L., AND STAELIN, C. Imbench: Portable Tools for Performance Analysis. In
Proceedings of the 1996 USENIX Conference (Jan. 1996).

MESSAGE PASSING INTERFACE FORUM. MPI: A Message Passing Interface Standard Ver-
sion 1.1, July 1995. http://www.mcs.anl.govcom/mpi.

MogcuL, J. C. Network Locality at the Scale of Processes. ACM Transactions on Computer
Systems 10, 2 (May 1992), 81-109.

MogGuL, J. C. Recovery in Spritely NFS. Computing Systems 7, 2 (1994), 201-62.

[78]

[79]

[80]
[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

126

MoRITZ, C. A., AND FRANK, M. I. LoGPC: Maodeling Network Contention in Message-
Passing Programs. In Proceedings of the 1998 ACM SGMETRICS and PERFORMANCE
Conference on Measurement and Modeling of Computer Systems (Madison, WI, June 1998).

NILSSON, S., AND KARLSSON, G. Fast Address Lookup for Internet Routers. In Fourth
International Conference on Broadband Communications (Stuttgart, Germany, Apr. 1998),
pp. 11-22.

OUSTERHOUT, J. K. Personal communication, Jan. 1997.

PAKIN, S., LAURIA, M., AND CHIEN, A. High Performance Messaging on Workstations:
[llinois Fast Messages (FM) for Myrinet. In Supercomputing *95 (San Diego, California,
1995).

PawLowskKl, B., JuszczAak, C., STAUBACH, P, SMITH, C., LEBEL, D., AND HiTZ, D.
NFS Version 3 Design and Implementation. In Proceedings of the Summer 1994 USENIX
Conference (Boston, MA, June 1994), pp. 137-152.

PayrRouzE, N., AND MULLER, G. FT-NFS:; an Efficient Fault-Tolerant NFS Server De-
signed for Off-the-Shelf Workstations. In Proceedings of the 26th International Symposium
on Fault-Tolerant Computing (Sendai, Japan, June 1996), pp. 64—73.

PFISTER, G. F., AND NORTON, V. A. Hot Spot Contention and Combining Multistage In-
terconnection Networks. |EEE Transactions on Computers C-34, 10 (1985), 943-8.

PHAN, M. L., SCHENDEL, K. L., RECANZONE, G. H., AND ROBERTSON, L. C. Acoustic
Spatial Deficitsin a Patient with Bilateral Parietal Damage. In 27th Annual Meeting of the
Society for Neuroscience (New Orleans, LA, Oct. 1997), p. 1312.

PowERs, G. A front-end TELNET/rlogin Server Implementation. In UniForum 1986 Con-
ference Proceedings (Anaheim, CA, Feb. 1986), pp. 27-40.

REINHARDT, S. K., HiLL, M. D., LARUS, J. R., LEBECK, A. R., LEwIS, J. C., AND
Woop, D. A. The Wisconsin Wind Tunnel: Virtual Prototyping of Parallel Computers. In
Proceedings of the 1993 ACM S GMETRICSand PERFORMANCE Conference on Measure-
ment and Modeling of Computer Systems (Santa Clara, CA, May 1993), pp. 48-60.

REINHARDT, S. K., LARUS, J. R., AND WoOO0D, D. A. Tempest and Typhoon: User-Level
Shared Memory. In Proceedings of the 21st International Symposium on Computer Architec-
ture (Apr. 1994), pp. 325-336.

ROSENBLUM, M., HERROD, S. A., WITCHEL, E., AND GUPTA, A. Complete Computer
Simulation: The SimOS Approach. In |EEE Parallel and Distributed Technology (Fall 1995).

SAAVEDRA-BARRERA, R. H. CPU Performance Evaluation and Execution Time Prediction
Using Narrow Spectrum Benchmarking. Tech. Rep. CSD-92-684, University of Californiaat
Berkeley, Feb. 1992.

ScHMIDT, D. C., AND SUDA, T. Measuring the Performance of Parallel Message-based
Process Architectures. In Proceedings of the 1995 INFOCOMM (1995).

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

127

SCHNARR, E., AND LARUS, J. R. EEL: Machine-independent Executable Editing. In In
Proceedingsof the 1995 ACM Conference on Programming Language Design and Implemen-
tation (PLDI) (LaJolla, CA, June 1995).

SHEIN, B., CALLAHAN, M., AND WOODBURY, P. NFSSTONE - A Network File Server
Performance Benchmark. In Proceedings of the 1989 USENIX Summer Conference (Balti-
more, MD, June 1989), pp. 269-274.

STANDARD PERFORMANCE EVALUATION CORP. SPEC SF97 Benchmarks, 1997. http://-
www.specbench.org/osg/sfs97.

STANDARD PERFORMANCE EVALUATION CORP. SPECSsfS97 Press Release Results, 1997.
http://www.specbench.org/osg/sfs97/results.

STERN, H. L., AND WONG, B. L. NFS Performance and Network Loading. In Proceedings
of the Sxth Systems Administration Conference (LISA VI) (Oct. 1992).

STERN, U., AND DiLL, D. L. Paraldizing the Murphi Verifier. In 9th International Confer-
ence on Computer Aided Verification (May 1997), pp. 256—267.

STRATEGIC NETWORKS CONSULTING. Fore Systems Intelligent Gigabit Routing Switch
Custom Test, Oct. 1998. http://www.snci.com/reports/ESX-4800.pdf.

STRATEGIC NETWORKS CONSULTING. Packet Engines Power Rail 5200 Enter prise Routing
Switch Custom Test, Apr. 1998. http://www.snci.com/reports/packetengines.pdf.

VAHALIA, U., GRAY, C. G., AND TING, D. Metadatalogging in an NFS server. In Pro-
ceedings of the 1995 USENIX Winter Conference (Jan. 1995), pp. 265-276.

VALLIANT, L. G. A Bridging Model for Parallel Computation. Communications of the ACM
33, 8(1990), 103—-111.

VOELKER, G. M., JAMROZIK, H. A., VERNON, M. K., LEVY, H. M., AND LAZOWSKA,
E. Managing server load in global memory systems. In Proceedings of the 1997 ACM S G-
METRICS and PERFORMANCE Conference on Measurement and Modeling of Computer
Systems (June 1997).

VON EICKEN, T., BASu, A., BUCH, V., AND VOGELS, W. U-Net: A User-Level Network
Interfacefor Parallel and Distributed Computing. In Proceedings of the Fifteenth SOSP (Cop-
per Mountain, CO, December 1995), pp. 40-53.

VON EICKEN, T., CULLER, D. E., GOLDSTEIN, S. C., AND SCHAUSER, K. E. Active
Messages: a Mechanism for Integrated Communication and Computation. In Proc. of the
19th Int’l Symposium on Computer Architecture (May 1992).

WALTON, S., HUTTON, A., AND TOUCH, J. High-speed Data Paths in Host-based Routers.
Computer 31, 11 (1998), 46-52.

[106]

[107]

[108]
[109]

[110]

[111]

128

WANG, R., KRISHNAMURTHY, A., MARTIN, R. P., ANDERSON, T., AND CULLER, D. E.
Modeling and Optimizing Communication Pipelines. In Proceedings of the 1998 ACM S G-
METRICS and PERFORMANCE Conference on Measurement and Modeling of Computer
Systems (Madison, WI, June 1998).

WITTLE, M., AND KEITH, B. E. LADDIS: the Next Generation in NFS File Server Bench-
marking. In Summer 1993 USENIX Conference (Cincinnati, OH, June 1993), pp. 111-128.

WONG, B. Configuration and Capacity Planning for Solaris Servers. Prentice-Hall, 1997.

WONG, F. C. Message Passing Interface on NOW Performance. http://www.cs.berkeley.-
edu/Fastcomm/M Pl/performance, 1997.

Woo, S. C., OHARA, M., TORRIE, E., SINGH, J. P,, AND GUPTA, A. The SPLASH-2
Programs. Characterization and Methodological Considerations. In Proceedings of the 22nd
International Symposium on Computer Architecture (June 1995), pp. 24-36.

YARROW, M., AND DER WIINGAART, R. V. Communication Improvement for theLU NAS
Parallel Benchmark: A Model for Efficient Parallel Relaxation Schemes. Tech. Rep. NAS-
97-032, NASA Ames Research Center, Nov. 1997.

129

Appendix A

SPECsfS97 Disclosures

This appendix has the SPECsfs97 disclosures. Two sets of disclosures are provided, one
for the SCSI system and one for the RAID system. The purposed of the disclosureisto allow others
to verify results. The format for the tables was taken from the SPECsfs97 webpages. Not al data
points for all experiments are listed; only the baseline numbers are provided (the measured linesin
Table 5.3).

Throughput | Response Time
(Ops/sec) msec
198 7.3

397 10.1

602 13.8

800 15.6

950 17.6

1006 18.9

1053 19.9

Table A.1: SPECSsfS97 Disclosure: SCSI Performance

Configuration

Server Configuration and Availability

Network Subsystem

Vendor Sun Microsystems Inc. Network Myrinet
Hardware Available Mar 1995 Controller Desc. Myricom 128K LANai
Software Available Oct 1997 Number Networks 1
Date Tested May 1998 || Number Network Controllers 1
SFS License Number A-8 Protocol Type UDP
Licensee Locations Berkeley, CA Switch Type Myricom 8x160 MBs
CPU, Memory and Power Bridge Type N/A
Model Name Sun Ultra-1 Hub Type N/A
Processor 167 MHz UltraSPARC-1 Other Network Hardware N/A

Primary Cache 16KB 1+16KB D on chip Disk Subsystem and Filesystems
Secondary Cache 512K (1+D) off chip Number Disk Controllers 3
Other Cache N/A Number of Disks 25
UPS N/A Number of Filesystems 25
Other Hardware N/A File System Creation Ops default
Memory Size 128 MB File System Config default
NVRAM Size N/A Disk Controller On-board narrow SCSI
NVRAM Type N/A # of Controller Type 1
NVRAM Description N/A Number of Disks 1
Server Software Disk Type 2GB 5200RPM SCSI
OS Name and Version Solaris2.5.1 File Systems on Disks OS, swap
Other Software | Myrinet-GAM device drv. Specia Config Notes N/A
File System UFS Disk Controller Sun FAS wide SCSI
NFSversion 2 # of Controller Type 2
Server Tuning Number of Disks 24
Buffer Cache Size Dynamic Disk Type | 9GB 7200RPM IBM SCSI
NFS Processes 128 File Systems on Disks F1-F24
Fileset Size 8.7GB Specia Config Notes N/A

Table A.2: SPECsfs97 Disclosure; SCSI Server and Networ k

130

131

Load Generator (LG) Configuration
Number of Load Generators 3
Number of Processesper LG 7
Biod Max Read Setting 5
Biod Max Write Setting 5
LG Type LG1
LG Model Ultral-170
Number and Type Processors | 1 167MHz UltraSPARC
Memory Size 128MB
Operating System Solaris2.5.1
Compiler gce
Compiler Options -02
Network Type Myricom 128K LANai

Table A.3: SPECSsfs97 Disclosure; SCSI Load Generators

Testbed Configuration
1| LGl | N1 F1..F8 | N/A
LGl | N1 F9..F16 | N/A
3 | LGl | N1 | F17.F24 | N/A

N

Table A.4: SPECsfs97 Disclosure: SCSI Testbed Configuration

Throughput | Response Time
(Ops/sec) msec
298 34

397 4.0

494 45

595 4.9

696 6.1

797 7.2

901 8.8

1001 114
1205 15.0
1304 18.7
1405 21.0
1503 30.8

Table A.5: SPECsfs97 Disclosure: RAID Performance

Configuration

Server Configuration and Availability Network Subsystem

Vendor Sun Microsystems Inc. Network Myrinet
Hardware Available Mar 1995 Controller Desc. Myricom 128K LANai
Software Available Oct 1997 Number Networks 1
Date Tested May 1998 || Number Network Controllers 1
SFS License Number A-8 Protocol Type UDP
Licensee Locations Berkeley, CA Switch Type Myricom 8x160 MBs
CPU, Memory and Power Bridge Type N/A
Model Name Sun Ultra-1 Hub Type N/A
Processor 167 MHz UltraSPARC-1 Other Network Hardware N/A

Primary Cache 16KB 1+16KB D on chip Disk Subsystem and Filesystems
Secondary Cache 512K (1+D) off chip Number Disk Controllers 2
Other Cache N/A Number of Disks 29
UPS N/A Number of Filesystems 16
Other Hardware N/A File System Creation Ops default
Memory Size 128 MB File System Config default
NVRAM Size N/A Disk Controller On-board narrow SCS|
NVRAM Type N/A # of Controller Type 1
NVRAM Description N/A Number of Disks 1
Server Software Disk Type 2GB 5200RPM SCSI
OS Name and Version Solaris 2.5.1 File Systems on Disks OS, swap
Other Software | Myrinet-GAM device drv. Specia Config Notes N/A
File System UFS Disk Controller Sun A3000 RAID
NFSversion 2 # of Controller Type 1
Server Tuning Number of Disks 28
Buffer Cache Size Dynamic Disk Type | 9GB 7200RPM Seagate SCSI
NFS Processes 128 File Systems on Disks F1-F15
Fileset Size 8.7GB Specia Config Notes N/A

Table A.6;: SPECSsfS97 Disclosure; RAID Server and Networ k

Load Generator (LG) Configuration

Number of Load Generators 3
Number of Processesper LG 15
Biod Max Read Setting 3
Biod Max Write Setting 2

LG Type LG1

LG Model Ultral-170

Number and Type Processors | 1 167MHz UltraSPARC
Memory Size 128MB

Operating System Solaris2.5.1

Compiler gce

Compiler Options -02

Network Type Myricom 128K LANai

Table A.7: SPECsfs97 Disclosure: RAID Load Generators

132

133

Testbed Configuration

LG# | LGType | Network | Target File Systems | Notes
1 LG1 N1 F1..F15 N/A
2 LG1 N1 F1..F15 N/A
3 LG1 N1 F1..F15 N/A

Table A.8: SPECsfs97 Disclosure: RAID Testbed Configuration

134

Appendix B

Performance Data

This appendix documents the raw run-times used in the slowdown graphs. All run-times
are expressed in seconds. For the Split-C/AM programs an NPB, all results are on 32 nodes unless

otherwise specified.

135

0 Radix | EM3D(r) | EM3D(w) | Sample | Barnes | P-ray | Mury | Connect | NowSort | Radb
us

29 13.7 229.7 88.6 24.6 77.8 235 67.6 23 127.2 7
3.9 16.1 257.3 108.9 30 81.5 25 69.1 23 126.2 7.3
4.9 184 278.2 128.6 34.4 86.2 258 70.2 23 129.6 7.4
6.9 22.9 3239 167.4 437 - 25.6 72.6 24 126.3 7.3
7.9 251 348.2 186.6 48.2 98.2 29.7 735 24 127 7.3
12.9 36.6 466.1 283.2 71.6 756.3 353 79.8 25 130.9 7.3
22.9 60.3 709.3 478.4 118 - 93.1 2.8 126.6 7.4
52.9 129.6 1439.8 1061.4 256.9 - 86.3 | 1315 35 128.5 8
102.9 251 3047.4 2029.1 493.3 - | 14877 | 1957 4.7 127.8 9.1

Table B.1: Split-C/AM Run Times varying Overhead on 16 nodes
Thistable showstherun time, in seconds, of the Split-C/AM applicationswhile varying the overhead
on 16 nodes. Thisisthe only result for these applications not run on 32 nodes.

0 Radix | EM3D(r) | EM3D(w) | Sample | Barnes | P-ray | Mure | Connect | NowSort | Radb
us

29 7.8 114 38 13.2 432 17.9 353 12 56.9 3.7
3.9 10.5 138.7 48.1 16.1 50.1 19 37.1 12 56.7 38
4.9 13.2 161.6 58.1 18.7 - 19.6 37.7 12 61.2 38
6.9 18.7 208.8 77.4 238 - 22 41.8 12 57.9 38
7.9 215 232.9 87.4 26.5 - 20.8 41.9 12 58.3 38
12.9 36.3 354.4 138.5 39.3 - 28.2 46.2 13 58.1 3.9
22.9 68.9 600.1 236.2 65.2 - 39 51.2 13 58.3 4.1
52.9 198.2 13325 535.9 142.7 - 69.7 72.6 1.6 61.7 4.8
102.9 | 4432 2551.7 1027.8 272.1 - 114 | 107.8 21 71.1 6.2

Table B.2: Split-C/AM Run Times varying Overhead on 32 nodes
Thistable showstherun time, in seconds, of the Split-C/AM applicationswhile varying the overhead
on 32 nodes.

g Radix | EM3D(r) | EM3D(w) | Sample | Barnes | P-ray | Mure | Connect | NowSort | Radb
us

5.8 7.8 114 38 13.2 432 17.9 353 12 56.9 3.7
8.3 10.2 119 46.1 14.8 44.1 18.1 374 12 57.9 3.8
10.8 13 129.7 56.5 175 50.2 17.8 36.1 12 57.6 3.8
15.8 19.2 164.7 785 24.2 55.3 17.9 36.2 12 60.9 3.8
30.8 381 289.3 150.3 429 61.6 19.1 384 13 57.3 3.9
55.8 69.9 523 273.1 75.1 9.1 232 375 15 57.2 4
80.8 101.9 756.9 394 107.5 157.3 29 39.3 17 56.9 41
105.8 | 1338 993.1 515.6 139.7 2079 | 355 39.9 1.9 57.4 4.3

Table B.3: Split-C/AM Run Times varying gap
This table shows the run time, in seconds, of the Split-C/AM applications while varying the gap.

{ Radix | EM3D(r) | EM3D(w) | Sample | Barnes | P-ray | Mury | Connect | NowSort | Radb
us

5 7.8 114 38 13.2 432 17.9 353 12 56.9 3.7
75 85 144 394 133 50.7 19 39.6 12 57.6 38
10 85 159.8 39.7 133 48.6 20.1 36.9 12 56.5 38
15 85 198.7 41.2 133 57.6 225 36.4 12 57.1 38
30 10.2 320.8 459 133 70.5 28.2 39 13 57.2 3.9
55 10.7 523.1 56.4 133 103.6 39.9 39 14 57.5 3.9
80 111 726.6 70.3 133 131.6 49.9 36.4 1.6 60.2 4
105 12.2 943.5 87.1 133 162.3 61.4 38 17 61.5 4

Table B.4: Split-C/AM Run Timesvarying L atency
This table shows the run time, in seconds, of the Split-C/AM applications while varying the latency.

136

Bandwidth | Radix | EM3D(r) | EM3D(w) | Sample | Barnes | P-ray | Mure | Connect | NowSort | Radb
MB/s

1.19 1.1 115.4 38.9 133 80.7 | 36.2 39.4 1.2 123.6 8.2
4.6 8.6 114.1 385 133 56.3 211 39.4 12 65.1 4.7
8.7 8.1 114.1 37.9 133 52.5 195 36.3 12 63.7 42
11.2 8.1 113.9 37.9 132 51.8 19.3 39 12 61.7 4
15 7.9 113.9 39.3 134 476 195 39.6 12 57.8 39
19 7.9 114 38.1 133 47.2 189 36.5 12 575 39
31 7.9 116 384 133 47.3 19.6 36.3 1.2 56.8 3.8
375 7.8 114 38 132 432 17.9 35.3 1.2 56.9 3.7

Table B.5: Split-C/AM Run Times varying Bandwidth
This table shows the run time, in seconds, of the Split-C/AM applications while varying the Gap.

o FT IS | MG
H“S

10 1732 | 187 | 178
11 1781 | 21.3 | 183
20 1758 | 225 | 199
30 177 - | 239
60 1849 | 225 | 26.6
110 | 2221 33 | 26.6

Table B.6: NPB Run Times varying Overhead
This table shows the run time, in seconds, of the NPB while varying overhead.

137

g FT IS | MG
us

58 1732 | 187 | 17.8
8.3 - | 213 | 182
10.8 - | 215 | 168
158 -1 201 | 168
30.8 - | 196 | 183
55.8 1706 | 21.3 | 226
80.8 1591 | 211 | 21.3
1058 | 1716 | 214 | 235

Table B.7: NPB Run Timesvarying gap
This table shows the run time, in seconds, of the NPB while varying gap. A switch bug caused FT
to crash often. Unfortunately, the fixed switches were not available in time for this thesis, and the
wor k-around would significantly perturb the results.

us
5 1732 | 187 | 17.8
75 1784 | 226 | 182

10 206 | 19.2
15 - | 211 | 178
30 - 21

55 -] 198 | 221
80 -] 198 | 21.9
105 - | 198 | 22.2

Table B.8: NPB Run Timesvarying latency
Thistable showstherun time, in seconds, of the NPB while varying latency. A switch bug caused FT
to crash for high latency. Unfortunately, the fixed switcheswere not availablein time for thisthesis,
and the work-around would significantly perturb the results.

Bandwidth FT IS | MG
MB/s

1.19 661 - | 609
4.6 2257 | 226 | 255
11.2 186.2 23 20
15 1718 | 221 | 196
19 1771 | 221 | 235
375 1732 | 187 | 178

Table B.9: NPB Run Times varying Bandwidth
This table shows the run time, in seconds, of the NPB while varying Gap. Bandwidth is used so as
to make an easier comparison to known systems.

138

Ops/sec Latency (u9)

Measured 10 | 50 [100 | 500 | 1000 | 2000 | 4000
198 7.3 7.2 7.3 8.2 94 | 119 | 164
199 - - - - - | 113 -

396 - 9.9 - - - -
397 10.1 - 10 11 | 123 | 149 -
398 - - - - - - | 205

602 13.8 | 134 14 | 148 - -
603 - - - - | 167 | 188 -

762 - - - - - - | 351
773 - - - - - - | 347
774 - - - - - - | 337
790 -
799 -
800 15.6 - - - - - -
801 - - - - 18.8 - -

943 - - - - - | 288 -
949 - - - - - | 256 -
950 17.6 -
951 - -
952 - | 173 - - - - -
958 - - - - - | 217 -

1000 - - -
1006 18.9 211 | 201 - - -
1007 - 19 - - -
1009 X - X | 58 X X
1045 - ~ | 238 - - - -
1053 19.9 - - - - - -
1054 - 20 - -
1055 - - 215 - - -

Table B.10: SPECsfsResponse Timesin varying Latency on the SCSI system
Thetable showsthe averageresponsetime, in milliseconds, for the SCS systemrunning NFSversion
2 over UDP using the SFS2.0 operation mix while varying latency.

Ops/sec

Latency (u9)

Measured

15 |

50 | 100 | 150 | 1000 | 4000

[298

35 |

38 37] 39

[59]

13.4

397

3.9

- 4 4.1

398

4 N N

6.3

16.4

494

45

- 4.6 4.9

7

495

16 - -

20.5

[595

52 |

49] 5] 52

17.4

[[696

58 |

6] 62 62

20.1

791

24.5

797

7.2

7.3 7.6 7.9

798

900

901

902

903

1001

1002

1003

1004

1006

1069

1121

1170

1188

1204

1205

1207

1304

1305

1306

1307

1400

1402

1405

1499

1501

1503

1505

Table B.11: SPECsfs Response Timesvarying L atency on the RAID system

139

The table shows the average response time, in milliseconds, for the RAID running NFSversion 2
over UDP using the SFS2.0 operation mix while varying latency.

Ops/sec

Overhead (u9)

Measured

85 [90 |

95 | 100

[105

130

[180

[280

298

39

3.6

38

51

6.6

299

38

397

4

4.2

398

4.3

5.6

7.8

| 494

4.7

4.6

[47

[66

[101

595

53

54

53

14.9

596

7.7

615

90.3

627

89.8

638

89.5

651

88.3

660

87.5

679

86.7

692

86.2

[696

697

704

[797

901

902

903

987

1001

1002

1003

1127

1168

1204

1205

1206

1207

1217

1282

41.8

1304

21.9

1307

1309

1330

1331

1338

1359

1378

1404

1405

1456

1503

30.8

Table B.12: SPECsfs Response Times varying Over head on the RAID

140

The table shows the average response time, in milliseconds, for the RAID running NFSversion 2

over UDP using the SFS2.0 operation mix while varying overhead.

141

Ops/sec Overhead (u9)
Measured 80 [105 | 130 | 180 [280 | 480 | 580

[[198 [73] 71] 74] 76 85] 97 105]
39 - - - [108 -
397 101 | 101 | 102 - 17 - -
398 - - - - - [146 | 166
[538 | [-1 -1 -1 -] -]%6]
602 138 138 14 - -
603 - - - [147 | 167 -
604 - - - - S -

798 - - -
799 - | 16.2 - - | 258 - -
800 15.6 - - - - - -
801 - - - - | 359 - -

950 176 | 187 - - - - -
951 - - -
952 - - | 195 - - - -
1005 - | 218 | 215 - - - -
1006 18.9 - - - - - -
1029 - | 249 - - - - -
1042 -
1053 19.9 - - - - - -

Table B.13: SPECsfs Response Times varying Overhead on the SCSI system
Thetable showsthe averageresponsetime, in milliseconds, for the SCS systemrunning NFSversion
2 over UDP using the SFS2.0 operation mix while varying overhead.

142

| Ops/sec | Bandwidth(MB/s) |
Measured | 26 | 145 | 113 [106 | 91 59] 45] 25 12 |
[1%8 [71] 72| 73] 73] 72] 75] 75] 79 106 |

396 9.8 10 10 - - | 10.2 - | 11.3 -
397 - - - - | 101 - | 104 - | 157

602 ~ | 135 - ~] 136 - - -
603 - | 14 - - [139 | 143 | 167 -
604 - - - - - - - [%53

758 - - - - - - - -] 358
759 - - - - - - - - 359
762 X X X X X X X 357
T4 - - - - - - - ~ [344

797 - -
798 155 | 158 - - - - - - -
799 - - - - - - - | 184 -
[905 | v -1 -[-[-[- - -1 -]
949 - 174 -
950 - -
951 [175 - - - - - - -
952 174 - - - - -
1004 - - - - 201 - - -

1005 - - | 191 - | 194 - | 198 - -
1006 - -
1007 18.9 - - - - - - | 221 -
1014 277 - - - - - - - -

1039 26.9 - - - - - -
1052 X X X X X 214 - -
1053 - -
1054 203 [205 - - -
1055 - 20 - - 212 - - -
1074 26.1 - - - - - - - -
1089 249 - - - - - - - -
1097 22.7 - - - - - - - -

Table B.14: SPECsfs Response Times varying Bandwidth on the SCSI system
Thetable showsthe averageresponsetime, in milliseconds, for the SCS systemrunning NFSversion
2 over UDP using the SFS2.0 operation mix while varying bandwidth.

